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A B S T R A C T

Bone remodeling is a complex phenomenon during which old and new bone is continuously removed and re-placed. This phenomenon involves several 
processes at different length scales such as mechanical, biological, molecular, and chemicals. In the current work, we study the influence of the biological 
(cells) and molecular (oxygen and glucose) factors coupled with mechanical loads in order to predict bone remodeling for orthodontic treatments. A coupled 
theoretical mechanobiological model is proposed to extract the oxygen variation due to the deformation of the periodontal ligament leading to cell 
differentiation and activation. The mechan-obiological stimulus is then calculated. The model is applied on a simplified two dimensional geometry to 
highlight the density variations and migrations of cells and molecular factors influencing the bone remodeling process.

1. Introduction

Bone is a continually renewed living material [1]. It undergoes
continual adaptation under externally applied mechanical loads as in-
itially phenomenologically modeled by Wolff under the well-known
Wolff's Law [2]. Many multiscale and/or multiphysics theoretical and
numerical models have followed since predicting of the global kinetics
of bone remodeling was tried [3–14]. However, there are still many
difficulties to obtain a precise understanding of the mechanotransduc-
tion processes driving this bone remodeling [15]. For example, bone
density evolution is highly dependent on vascularization and nutrient
supply [16–18], is difficult to comprehend due to its highly hetero-
geneous structure [19–23], and depends strongly on the biology dis-
tribution and activation processes inside its porous matrix [24–27].

We present here this influence for an application of the mechan-
obiological couplings in orthodontic bone remodeling due the applied
orthodontic forces [28,29]. The cell proliferation is activated through
oxygen variation in the periodontal ligament [30–33] being partially
occluded due to the applied mechanical forces. We study the variations
in the supply chain of nutrients and oxygen to predict cell recruitment,
proliferation and migration assuming that bone remodeling occurs by
the osteoblasts proliferating with oxygen increase [30] and bone re-
sorption occurs by the osteoclasts proliferating in hypoxia [31,32].

2. Model development

Bone remodeling comes via the application of a mechanobiological
stimulus ΔS, defined from a variation of the mechanobiological equi-
librium [8,12,14] and newly expressed [18] as:

=
=

S S D X X dXexp( ( ) ( ) )
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n
i i1 0 0 (1)

where n is the total number of external sources Si (mechanical, biolo-
gical, electrical, neurological, …) involved in the remodeling process
and αi are their weighting coefficients, triggered by genetic and/or
epigenetic factors, allowing to simultaneously control their impact on
the overall response of the system as well as their interactions. X( )
and X( )0 are the kinematical fields that associate to any material point
its current (X ) and reference (X0) position respectively, and Di is a
characteristic distance accounting for each independent effect. The
external sources Si considered in this work are: (i) the mechanical en-
ergy accounting for the mechanical loads sustained by the bone cells
and triggering bone density evolution, (ii) the concentration of cell
nutriments (here being oxygen and glucose) expressed as function of
the hydrostatic pressure in specific regions of the system, and (iii) the
cells activity triggered by specific levels of oxygen and glucose con-
centration together with the intensity of the mechanical force applied.
The cells recruiting and migration are described via two diffusion
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equations [25,33] reading:
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where cj is the cell density (with j being the osteoblasts or osteoclasts), t
is the time, j and j are two coefficients of proliferation and differ-
entiation respectively. The diffusion tensor D depends on the principal

strains ( )i and strain directions ( )i and with j and j two coefficients
and I the identity matrix. The bone density variation in time is calcu-
lated by the rates of bone synthesis and resorption respectively, de-
pending on the positiveness of the defined mechanobiological stimulus.

The chosen application proposes to solve the mechanobiological
effects through a stepped analysis of coupled partial differential equa-
tions as presented in Fig. 1.

The presented schematic shows that the applied mechanical force
leads to a partial compression or tension of the periodontal ligament.
Through elastic mechanical behavior, a variation of oxygen con-
centration is observed due to blood flow variation inside the period-
ontal ligament vascularization, which has a direct impact on the os-
teoblasts [30] or osteoclasts [31,32] concentration. In parallel,
compression (resp. tension) of the periodontal ligament influences cells
recruiting and migration [33]. The mechanical effect, together with the
cellular combined effects, will then impact the calculated mechan-
obiological stimulus driving the bone density variation.

The proposed schematic of Fig. 1 was implemented in a simplified
2D finite element (FE) numerical model of the periodontal ligament to
predict cell density variation and, sugar and glucose concentration
variations. As the periodontal ligament is very thin, a simply strained
2D rectangular geometry can highlight the corresponding kinetics (see
Fig. 2).

The geometry is anchored on the left side and distributed force is
applied on the right side. Biology that is initially distributed on the left
side only (vivid zone) will migrate towards the right side (initially non-
vivid zone). The challenge to obtain a satisfactory prediction in the
bone remodeling process lies in the adequate identification and im-
portance of each of the external sources and parameters used together

Fig. 1. Schematic of the stepped mechanobiological couplings leading to bone remodeling.

Fig. 2. Schematic of the 2D model used to obtain the cells and molecular mi-
gration kinetics.

Table 1
Initial cells and molecular distributions inside the geometry.

Osteoclasts
concentration
(%)

Osteoblasts
concentration
(%)

Oxygen
concentration
(%)

Glucose
concentration
(%)

Vivid zone 5 10 20 10
Non-vivid zone 0



with their mutual interactions and quantification of each of the applied
individual kinetics involved in the process.

3. Results and discussion

The defined model being a strained simplified geometry under
simple tension mechanical load, the expected results are the kinetics
and extract cells and molecular migration between the two sides of the
geometry. The initial parameters distributions are defined in Table 1.

Preliminary results are presented in Fig. 3 for the cells density and
molecular evolutions as a function of time (defined arbitrary between 0
and 1).

For osteoclasts, only apoptosis and migration is taken into account,
no proliferation. For osteoblasts, proliferation comes from osteoclasts
differentiation in addition to migration. Finally, molecular (oxygen and
glucose) absolute quantities are not supposed changing, only migrating
geographically as a function of time and depending on the applied
strain.

Overall, the results show migrations between the small strained
(left) and large strained (right) area for each parameter. For osteoclasts,
as no proliferation is defined, an initial migration (mid-length) is ob-
served at the beginning of the analysis. But differentiation between
osteoclasts to osteoblasts becomes then predominant and osteoclasts
density degrades quickly to reach almost zero at the end of analysis. For
osteoclasts, both migration and proliferation are observed since the
start of the analysis. The maximum density reaches a value of 13.4%
(left) then migration become predominant as no more osteoclasts are
present to be differentiated and osteoblasts density increases more on
the large strained region (right) than on the small strained one (left).
Finally, both kinetics of oxygen and glucose being defined identical, the
migration between the two regions is completely symmetrical and
reaches equilibrium at the end of the analysis since it is supposed not
being influenced by other parameters in this model.

Evolutions of these four densities (osteoblasts, osteoclasts, oxygen
and glucose) impact directly the mechanobiological stimulus. More
specifically, the bone remodeling process will be concentrated where
these densities will be the highest at any given time of evolution. It is

therefore crucial to know their distributions as it will help to predict the
bone density evolution and remodeling process.

4. Conclusion

We presented a coupled multiphysic theoretical numerical analysis
integrating the mechanical and biological phenomena within a single
mechanobiological stimulus influencing the bone density evolution and
remodeling process. This coupled model could help predict the bone
remodeling for patient specific orthodontic applications and the or-
thodontist understanding and optimization of the procedure to follow
for each patient's case.
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