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Abstract

Large-scale environmental applications of microbial electrochemical technologies (MET), such as 

wastewater treatment, bioremediation or soil improvement, would be more feasible if bioelectrodes 

could be fabricated with simpler materials. Biochar with potentially improved electroactive properties 

(e-biochar) can be an ideal candidate for this scope, being at the same time widely available, 

biocompatible and fully recyclable at end-of-life as soil amendment. Here we review the application 

of biochar to MET, to set benchmarks aimed at tuning the electroactive properties of such materials 

from the point of view of MET. The precursor biomass, thermochemical process conditions, and pre-, 

in-situ- and/or post-treatments should tailor optimized combinations of electrical conductivity, 

capacitance, superficial redox-active and electroactive functional groups, porosity distribution and 

capacity to host electroactive microbial communities. We also discuss methods to rigorously 

characterize e-biochar properties and the most relevant multidisciplinary research challenges towards 

its application in large-scale MET.

Keywords

e-biochar, microbial electrochemical technology, soil microbiology, bioremediation, electron 

transfer, bioelectrode; wastewater
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Introduction: a new generation of bioelectrodes?

Microbial electrochemical technologies (MET, see Nomenclature) are based on the capacity of 

certain microbes to use electrically conductive materials as electron acceptors or donors for their 

metabolism. Several different mechanisms involved in extracellular electron transfer (ET) to solid 

conductors have been demonstrated in a number of electroactive microorganisms (see 

Nomenclature) 1. The interest in research on MET has grown exponentially and a variety of 

applications has been proposed. In over 15 years of laboratory- and pilot-scale studies, bioelectrodes 

(see Nomenclature) have been typically fabricated using ‘technological’ materials (e.g. carbon 

fibers, graphite, graphene, carbon nanotubes, precious metals such as titanium, platinum, etc.) 2. At 

present, carbon materials represent the most widely used electrodic support, due to their excellent 

electrochemical properties and stability to corrosion. The most competitive include graphite-based 

rods, fiber brushes and granules, carbon-fiber cloths, carbon paper sheets, carbon felt and reticulated 

vitreous carbon 3. Besides, often METs’ architectures and materials have traced the technological 

features of typical engineered electrochemical cells, such as (abiotic) fuel cells or electrolysis cells. 

Such designs include plastic- or metal-based frames as support for electrodes or current collectors 4–

8.  Some examples of such electrodes were recently presented at the m2-scale 9. However, when MET 

are envisioned for large-scale environmental applications (e.g. wastewater treatment, soil/water 

bioremediation, biomass processing, CO2 fixation, etc.), the use of such materials and architectures 

might be a substantial challenge, because of their high economic, environmental fabrication costs and 

low sustainability at end-of-life 10. 

In this article, we aim at pointing a spotlight on an emerging class of carbon materials for potential 

large-scale MET applications. The target materials should simultaneously be electroactive (see 

Nomenclature), to facilitate MET applications; available in large amounts, at relatively low costs 

and environmental impacts; and easily recyclable at end-of-life. Carbon materials with several 

electroactive properties can be also found in large quantities at potentially low costs (e.g. charcoal, 

black carbon, cokes and graphites). In MET, such materials have been extensively applied as coating 

layers on bioelectrodes to improve (bio-)electrochemical properties 11. However, most of them are 

extracted from fossil reservoirs. More sustainable carbon materials, with similar and more versatile 

properties, can be produced by thermochemical conversions (see Nomenclature) of biomass and 

are generally referred to as biochar.

Biochar (see Nomenclature) has been extensively studied in the agricultural sciences framework as 

soil fertility improver and a way of sequestering chemically-stable carbon over long term 12. Very 

rarely, electrochemical properties such as electrical conductivity and superficial electroactivity were 

considered in this framework. Commercial biochar has typically widely variable and relatively poor 
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structural/mechanical properties (as compared to other carbons), as well as low electrical conductivity 
13. This have generally restricted its technological applications as compared to more performing 

carbon-based materials. 

In the MET field, electrical conductivity has been largely perceived as a key factor on performance 

of electrode materials. This might be probably due to the strong influence of the electrochemical 

science branch in this multidisciplinary field: several applications have been based on the possibility 

to harvest electrons through external circuits, just like in abiotic electrochemical cells (e.g. in 

microbial fuel cells, MFCs). In such applications, the role of biochar has remained marginal. 

However, METs embrace a much larger range of possible applications in the field of environmental 

biotechnology. For instance, one of the most fascinating recent findings was the possibility to enhance 

interspecies ET in soil microbial communities, by the presence of biochar 14. In another study, biochar 

outperformed highly conductive carbon materials (graphite, coke) in stimulating extracellular ET and 

enhanced pollutants removal from wastewater in electroactive biofilters 15. This happened because 

the superficial electroactivity played a major role, while electrical conductivity was sufficient to allow 

overall ET towards terminal electron acceptors  15.

Here, we introduce the new concept of electroactive biochar (e-biochar), which constitutes a 

particular category of biochars, with a range of improved and tailored properties aimed at maximizing 

electrochemical interactions with microbes. Such materials would be ideal as bulk material for the 

fabrication of large-scale sustainable METs. So far, only a few studies have systematically focused 

on potential technological applications of such properties to fabricate large-scale bioelectrodes. In 

this paper, we set some benchmarks for future efforts in this promising research field.

Biochar vs e-biochar 

Agriculture-derived biomass by-products and green waste can undergo thermochemical conversions, 

to yield bioenergy and biochar. Biochar has been largely studied as agricultural soil amendment, 

capable of favoring soils properties, acting as carbon sink over long term, stimulating soil microbial 

communities in several important soil processes 16,17. Among agricultural scientists, biochar was 

considered as a relatively ‘conductive’ material, as compared to organic redox-active molecules (e.g. 

humic acids) 18. Despite this, the potential impacts of biochar’s electrochemical properties on 

microbial communities were rarely considered in this framework. More recently, some authors 

reported that the presence of biochar promotes interspecies ET in soils 19–24. In a review, Yuan and 

colleagues 25 defined biochar as environmentally-sustainable electron donor/acceptor for 

biogeochemical redox reactions. Biochar acts as rechargeable reservoirs of bioavailable electrons, i.e. 

the so-called “geobatteries” 22,26. Functional groups can participate in reversible surface (interfacial) 
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redox reactions with other ambient species, including electroactive microbial communities 25. 

Besides, the carbon matrix, organized with variable graphitization degrees, can store, transport and 

exchange electrons, i.e. the ‘geoconductor’ mechanism 26. While superficial electroactive functional 

groups play a key role in local ET 27, extended conductive graphitic structures may enable long-range 

ET, facilitating external access to electron acceptors/donors. The combination of conductivity and ET 

capacity is generally referred to as ‘electroactivity’ 26. 

On the other side, material scientists and electrochemists have been considering biochar as an 

amorphous/low-crystalline material with interesting superficial ET properties, but poor electrical 

conductivity (~10-2- 10-4 S cm-1, i.e. much lower than technological electrode materials), substantially 

unsuitable for fast-response abiotic electrochemical applications 28.

Under the perspective of MET, however, the term ‘electroactive’ should be seen under a new light. 

Bioelectrodes are typically characterized by much slower ET rates and current densities than abiotic 

electrodes 29. Therefore, high surface areas available for microbial EET, features stimulating 

extracellular ET, and sufficient conductivity may be needed for effective applications in METs, rather 

than materials with outperforming abiotic electrochemical properties. In this sense, biomass or 

conventional biochar can undergo thermochemical, chemical and structural treatments, for ‘tuning’ a 

wider spectrum of properties, that concur to harmonize the complex mechanisms involved in 

microbial EET, depending on the final MET application.

The obtained bulk material, ‘e-biochar’, is proposed as a new class of biochars with tailored 

conductivity and ET properties for specific METs application. Because widely available, 

biocompatible and fully recyclable at end-of-life as soil amendment, e-biochar is an ideal candidate 

to fabricate bioelectrodes for large scale METs applications, as compared to traditional 

‘technological’ carbon conductors.

e-biochar: fabrication of biochar with improved electrochemical properties 

To obtain ideal e-biochars, fabrication techniques should look at optimizing the main properties that 

influence electron transfer (ET), conduction and storage 28. Under abiotic conditions, similarly to 

other carbon materials, biochar has been described to accept or donate electrons (irreversible 

superficial redox activity), reversibly transfer electrons (superficial electroactivity) or transport them 

within the material (electroconductivity) 28. The porous texture and the available surface area at 

different pores dimensions have an important influence on these properties 28. Finally, the capability 

to host and promote electroactive microbial communities over such surface is the key factor for e-

biochar. Pores dimensions are also likely to determine the accessibility of surface area to direct 

contact with microbes or to biomolecules that promote EET 30–32. 
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The ideal e-biochar, depending on the application, could be rendered by an equilibrium of all these 

properties. This tuning is achieved by playing with the structural, textural and chemical nature of the 

precursor biomass, the conditions used during carbonization, additional chemical/physical treatments 

and the enrichment of microbial electroactive communities (Figure 1). 

Redox-activity, electroactivity and conductivity are related with chemical and structural properties, 

which are modulated essentially by the temperature and pressures of preparation 33. Biochar’s 

conductivity is directly related to its structural (graphitic) order (Figure 1-n). Its structure may lie 

between amorphous (non-graphitic) natural organic molecules (humic/fulvic acids, biopolymers, etc.) 

and graphitized carbons (with variable 2D/3D crystalline order of polyaromatic layers) 34. The longer 

the range of crystalline order, the more delocalized the π-electrons and, thus, the higher electrical 

conductivity. Higher aromatic content in the biomass may also lead to more conductive e-biochars 35. 

Higher carbonization temperatures (> 600°C), slower heating rates and longer treatments (hours) 

promote structural order 35,36 and, consequently, conductivity 26. Some electron-donating O-, N- and 

metals functional groups may increase the conductivity too. By contrast, the presence of electron-

demanding functional groups and increased porosity (rendering a larger concentration of textural 

defects) may decrease the conductivity of e-biochars. If normal biochar’s conductivity falls typically 

in the range 10-2- 10-4 S/cm (far from that of graphites ~10-30 S/cm), e-biochar might find optimal 

values in between (10-2 - 10 S/cm) (Table 1). However, deeper investigation is needed to define 

optimal conductivity ranges, depending on the target application, electrode configuration and 

dimensions.

Both quantity of available surface area and its quality (presence of electroactive functional groups 

and the capability of reversible binding/adsorption of ionic positive charges) strongly influence ET 

and the related phenomena (Figure 1-m), such as pseudocapacitance and double-layer capacitance 
28. Depending on the redox potential of superficial reversible redox-active groups and/or the aromatic 

rings, the material might show greater tendency to uptake/release electrons and transport through 

conductive graphitic structure (Figure 1-i) 36–38. First, a suitable precursor may introduce a given 

proportion of O, N, P, S and metals on the final biochar 39,40. Second, the choice of suitable heating 

conditions strongly affects the nature and concentration of superficial functional groups: at higher 

pyrolysis temperatures, both O/C and H/C ratios decrease 36, as well as the proportion of less-stable 

O-functional groups in favor of more stable ones 41. When prepared at lower temperatures (<700ºC), 

the ET in biochar is mainly mediated by surface functional groups (i.e. phenolic/quinoid groups) 26,42. 

All the different functional groups are susceptible of exhibiting redox activity. Besides the well-

known phenolic/quinone couple, other have been demonstrated as abiotic electroactive functional 

groups: anhydride 43, N-(pyridine/pyridinic) 39 and P-groups 44. 
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Under abiotic conditions, an amount of 1.57 mmol quinone/g was found among the highest 

pseudocapacitive (electroactive) contributions ever reported in carbon materials 45. Above 1200 ºC, 

most superficial functional groups are typically decomposed 46. Another factor greatly affecting the 

redox- and electroactivity may be the presence of certain minerals (mineral oxides, silicates and salt 

phases) 47. Special attention must be paid to the effects of some metallic species, particularly alkaline 

metals and other nutrients commonly present in biomass, which are well-known catalysts of the 

chemical activation of chars 36.

The porous texture (see Nomenclature) is the last piece of this complex puzzle. Several literature 

reports revealed pore size distribution of extraordinary hierarchical architectures (Figure 2). 

Roughness and macroporosity mainly depend on the precursor (Figure 1a-b). Except for some 

thermoplastic biopolymers (which fluidize at certain temperature), the carbon-enriched material 

retains the initial characteristic shape (Table 1-c). Thus, some biochars can exhibit the vascular 

structure of preceding plant trunks/stems (Figure 2A-C). The meso-/microporosity inherently 

develops with increasing temperature by the loss of volatile matter, up to a maximum (800-1000ºC) 
36,48 and then decreases due to solid reorganization. These features usually lead to surface areas in the 

10-600 m2/g (Table 1). 

Remarkably, a larger volume of micro-/mesopores reduces conductivity, but simultaneously provides 

a larger number of sites with distinct electroactive functional groups 49. Meso- and micropores also 

determine the double-layer capacitance (electrostatic storage of charge by reversible adsorption of 

ions onto the surface, Figure 1-m). Since e-biochar particles must be globally neutral, the number of 

electrons exchanged by electroactive microorganisms are likely to be limited by the capability of the 

surface to compensate this negative charge. The effective adsorption of positive charges on a larger 

(microporous) surface area might therefore be a determining factor towards ET from biofilms. This 

hypothesis is in line with the geobattery mechanism 22 and should be better investigated. An 

equilibrium between conductivity and superficial electroactive properties should be found, according 

to the target application, and deserve dedicated studies. 

Finally, precursors (which can be either biomass or conventional agriculture-derived biochars, Figure 

1-a) can be conformed into suitable conformations (pellets, monoliths, granules etc.) for specific 

applications (Figure 1-b). Several pre-, in-situ, and/or post-modification treatments (Figure 1-c) 

might tailor bulk e-biochars with optimized structural, textural and chemical features, similarly to 

activated carbons (Table 1). Surfaces can be chemically-/physically activated 40,50. P-functional 

groups can be introduced by H3PO4-activation 37,44,46 and various oxidative treatments may induce 

O-, N- and S- superficial functional groups 41,51,52. Electrochemical post-treatments may be a green 
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choice to incorporate electroactive phenolic/quinoid groups 33. However, any additional treatment 

may increase the production costs and impacts of bulk e-biochar.

Properties and characterization techniques to define e-biochar 

Structural, chemical, and textural properties should be thoroughly studied using a range of analytical 

techniques (Table 2). These properties strongly affect the abiotic redox-activity and electroactivity, 

features that have been often confused in the literature. Biochar’s electroactivity is estimated as 

electron exchange capacity (EEC), i.e. the sum of the electron donating and accepting capacities 

(EDC, EAC) 53. These properties are associated exclusively to reversible electroactive functional 

groups and often measured by mediated (indirect) electrochemical analysis  28,42,54. However, these 

methods detect also redox-active species that are irreversibly oxidized/reduced at biochar’s surface 
42,54. The characterization should be complemented by electrochemical techniques like CV and EIS 
35: the electrochemically-active surface area (EAS) and the ion diffusion capability determine the 

reversible (abiotic) charge transfer with biochar surface. These properties are strongly influenced by 

the available micro- and meso-porous surface area. Remarkably, the electroactivity of quinoid-like 

groups, proposed to mediate in ET with bacteria, can be characterized by CV 26, and the involved 

charge may be related to their number and accessibility of these groups, the conductivity, etc. 

The actual capability of the material to promote ET in microbial reactions completes the definition of 

e-biochar. The e-accepting/donating capacity of e-biochar in MET is proportional to the abundance 

and diversity of electroactive biofilm communities grown on the solid surface. As the ultimate charge 

transfer depends on microbial EET kinetics, which are typically much slower than in abiotic ET, 

electrochemical techniques are often adapted to such conditions 55. The morphology of biofilms can 

be revealed by several microscope techniques, coupled to selective probes. Microbial electroactive 

communities can also be investigated by molecular, culture-dependent analyses and microscopic 

techniques (Table 2).

State of the art of biochar in MET

Little is rigorously proven about the possible electrochemical interactions between microorganisms 

and biochar. In the agricultural and soil science framework, positive effects of biochar on soil 

microbial pool have been largely reported 17. However, electrochemical aspects were rarely taken into 

account. Only more recently, the emerging scientific community of microbial electrochemistry 

published a relatively small number of studies on the behavior of biochar as electrode interface in 

specific MET (Table 1). Some authors used biochar on MET electrodes, but limited the focus to 
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particular electrocatalytic properties of the material on abiotic electrodes (Table 1-a). Several other 

authors reported that the presence of biochar on bioelectrodes enhanced redox reactions towards 

metals or organic compounds, by enriching the biofilm community with electroactive microbial 

species 20,21,23,24,56,57. Remarkably, biochar was demonstrated to act as promoter of direct interspecies 

ET for different syntrophic associations of microorganisms, thanks to its electrical conductivity and 

stimulating capacity of EET by pili or other direct membrane mediators 14. In this study, microbial 

co-cultures did not need to form aggregates, suggesting that the cells were electrically connected 

through the biochar, which permitted EET. Besides, the addition of biochar particles in anaerobic 

fermenters was found to increase overall electrical conductivity in the bulk liquid and facilitate EET, 

between both fermentative and methanogenic communities 58–62. Interestingly, SEM images of the 

biofilm showed that both microbial cells and high-density structure of extracellular polymeric 

substances (EPS) were increasingly denser in the vicinity of biochar particles 58. 

In these studies, however, several reasons have often led to uncertain conclusions. Biochars are 

complex materials showing inter-related properties, affecting extracellular ET in different ways. 

There is a lack of systematic studies analyzing the influence of only one property, disregarding others. 

Tailoring specific properties, without affecting the others, is difficult; in most works the 

characterization of biochar was incomplete; both surface chemistry and porous texture of biochar 

were insufficiently considered for their influence in extracellular ET (Table 1). 

The accessibility to the electrochemically-active surface area (EAS) includes more aspects than in 

abiotic systems, implying the capability to host microbes (Figure 1-h) and/or promote diffusion of 

many different primary agents, i.e. ions, electrons, redox mediators, electron shuttles (see 

Nomenclature) and increase hydrophilic properties of the material. In e-biochar-based bioelectrodes, 

surface area and pore volume distribution (Figure 2) likely play a relevant role for reasons other than 

affecting conductivity and superficial redox reactions. Suitable pore textures are essential to host 

microbial communities and promote biofilm growth 63. Also, EET reactions depend on the 

accessibility of surface area to the primary agents of redox reactions, including microbial cells, 

molecular electron shuttles, soluble carbon sources and dissolved ions.

In particular, surface roughness and macroporous surface area (Figure 1-j) strongly influence the 

access of microbes to surface 64 and biofilm anchorage 65,66. This aspect is well known and carbon 

powders are widely used to increase the surface of plain carbon-cloth bioelectrodes and improve their 

bioelectrochemical performances 67. Although, most studies on carbon-based bioelectrodes lack of 

data regarding architectural and dimensional features at macroporous scales, focusing only on meso- 

and micro-pores 2. The surface area of meso-pores (Figure 1-l) is inaccessible to microbial cells (< 

50 nm, Figure 2) and eventually available only to molecular electron shuttles (Figure 1-h). In fact, 
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EET processes performed by electroactive microorganisms are based either on direct contact with the 

cell, or through redox-active molecules, that interact with the components of the respiratory redox-

chain and diffuse in the outer medium 27 (Figure 1-h). Up to date, four types of cell-surface redox 

proteins (see Nomenclature) were identified to be responsible for ET across the cell-surface of 

electroactive organisms. Among these, cell-surface exposed cytochromes were found as principal 

cellular components in interacting with solid conductors and with different electron shuttles 68.  Redox 

proteins (particularly multiheme cytochromes) form conductive ET chains that allows the exchange 

of electrons with solid electron donor or acceptors outside of the cell 30. Furthermore, numerous 

electroactive microorganisms may employ cellular structures, such as nanowires or pili to improve 

EET 69. Recently, it has also been demonstrated that EPS also facilitate EET 70. 

The accessibility of such molecules to all potential meso-, micro- and ultramicro-porous surface area 

might greatly affect the overall ET. Smaller pores are likely to act as cut-off barriers for such 

biomolecules, according to their molecular dimension and architecture. These aspects should 

particularly be focus of deeper insights.

Large scale bioelectrodes based on e-biochar? 

Bioelectrodes architectures generally include different features, such as defined structural shapes (e.g. 

plain, granular, cylindrical, sponge-like), porous separation layers (e.g. air-water interface for air-

exposed cathodes 71,72), and current collection frameworks 2. Many carbon-based ‘technological’ 

materials (e.g. carbon fibers, cloths and rods, graphite) have excellent structural and conductive 

properties, but generally very low EAS 73. Therefore, many of them can barely act as current 

collectors, rather than efficient bioelectrodes 72. On the other side, activated carbon powders, carbon 

nanotubes and other nanomaterials with high surface areas were largely employed to increase biofilm 

adhesion, improve EAS and/or abiotic electrocatalytic properties 2. To this end, polymeric binders, 

resins and other adhesives have been extensively employed to create layers of these powders on 

current collectors in lab-scale MET applications 2,72.

Lab-scale studies have seldom taken into account the real applicability at large scales of intensively-

manufactured materials (carbon fibers, cloths, meshes, felts), non-renewable or engineered carbons 

(graphites, charcoal, cokes, activated carbon powders, nanotubes) and non-biocompatible additives 

(PTFE, Nafion®, polyvinyl alcohol and other binders) 72. Very few authors have been mentioning the 

economic costs of such materials 74,75 and even less have assessed their life cycle and environmental 

compatibility 76, envisioning large scales manufacturing 10.

Optimized e-biochar have potential of being more efficient and versatile (with customized fabrication 

design and properties), including the characteristics of both structural features of a current collector 
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(defined conformation, mechanical rigidity, conductivity) and high EAS. This idea is supported by a 

reasonable number of reports, where electrodes designs are based on biochar monoliths with self-

supported 3-Dimensional structures (Table 1-c). Good examples are binder-free air-cathodes made 

of sintered activated carbon powders, which were found to be inexpensive and easily mass 

manufactured 72. Other authors fabricated bioelectrodes via ligno-cellulosic biomass carbonization, 

while preserving the original 3-D shape. Bioanodes were obtained from carbonized plant stems (kenaf 

and bamboo), corn cobs, marine loofah sponges, king/wild mushrooms 64,77–79. Rigid air-breathing 

biocathodes were obtained from Giant cane stems, which maintained their original cylindrical shape 

and simultaneously acted as microporous air-water separators 71,80. 

Bioelectrodes configurations even closer to scaled-up MET applications were also proposed, even if 

in some cases the employed carbon materials (e.g. activated carbon granules) were from origins other 

than biomass (Table 1-d). Fluid-like bioelectrodes made of floating carbon particles are very 

promising configurations 81. Electroconductive granules are fluidized in a bioreactor acting as 

“planktonic” electrodes supporting microbial electroactivity 82. Electrons accumulate on the material 

and are discharged to a collector by periodic contact. The potentials of this concept is currently under 

investigation at Bioe group (University of Alcalá, Spain).

Until today, most of the experiments on biochar have been run using regular electrochemical cells 

configurations, i.e. with well-defined anodic and cathodic electrode surfaces, with uniform 

electrochemical potential. However, we envisage the most interesting applications of e-biochar with 

not well-defined anodic or cathodic electrode surfaces. Every single niche created by electroactive 

communities at the surface of biochar might behave like an anode or a cathode, depending on the 

redox conditions in the electrolyte as well as on the surface of conductive portion of biochar.

Granular carbons of macroscopic size and sufficient mechanical rigidity (diameters in the range of 5 

– 20 mm) were also the base of fixed- or packed-bed bioelectrodes (either anodes or cathodes), for 

different purposes 83–85. This design has been applied to probably the largest-scale application of 

MET, which merges the use of electroactive material with the concept of constructed wetland. The 

result is the so-called ‘METland’ concept where the classical bed biofilter made of inert material can 

be substituted by electroconductive material 86. Based on this concept, a 20-m2 METland made of e-

biochar was constructed for treating around 7 m3/day of urban wastewater. The e-biochar acts as 

electroconductive bed for electroactive biofilm and helps in avoiding electron acceptor limitations for 

bacteria. The final outcome is a stimulation of the ET mechanism that resulted in a large enhancement 

of the biodegradation rates for organic pollutants in the wastewater with no energy cost and under 

extremely low growth yield 86.
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METland biofilters made of e-biochar have been also used at large scale for enhancing anaerobic 

treatment in a real-scale wastewater treatment plant (serving a community of around 200 people) 

recently constructed by the startup company METfilter at Otos (Murcia, Spain). Interestingly, in 

METlands e-biochar was considerably more efficient for wastewater treatment than more conductive 

materials (coke and graphite) 87. Higher performances were observed under a wide range of 

operational conditions, including polarization at 0.4 and 0.6 V (vs. Ag/AgCl/Cl─ ref.) 87. Higher 

working potentials showed higher currents for graphite, but overall lower COD removal efficiency, 

as compared to e-biochar. Hence, larger EAS, hierarchical pore architecture and richer surface 

chemistry (including phenol and quinones) might dominate over conductivity in some systems. Such 

aspects deserve deeper investigation.

Outlook and future challenges

e-biochar is an intriguing candidate to realize the ambitious promises of large-scale MET 

applications. However, many aspects remain definitely open, due a substantial lack of comprehensive 

and multidisciplinary approaches in the existing literature reports. Both fundamental studies and 

applied research are still needed, involving a wide variety of cross-disciplines. A lot of work has still 

to be done to identify and obtain the best characteristics of the material according to different targets. 

To achieve this goal, all available knowledge on biochar involving surface material chemistry, 

thermochemical processing, nanotechnology and abiotic electrochemistry, should be strictly 

complemented with approaches coming from bioelectrochemistry, molecular studies on ET, 

microbial metabolism and microbial biofilm ecology. In parallel, environmental and bioprocess 

engineering should accompany basic studies to foresee the viability of potential applications at certain 

scales. Up to date, the large majority of studies lacks a vision for scalable bioelectrodes 

configurations.

In spite of the attractive “circular economy” concept (Figure 1), both economic and environmental 

sustainability of e-biochar production at target scales should be analyzed by proper tools, such as 

exhaustive Life Cycle Assessment. For example, hydrothermal carbonization (HTC) might bring 

some advantages on conventional pyrolysis, excluding energy-intensive drying before or during the 

process. This opens up the field to several alternative sources: wet animal manures, human waste, 

sewage sludges, municipal solid waste (MSW), as well as aquaculture and algal residues 88.

Finally, soil science and agronomy should also be involved both at the beginning and end of the chain. 

Sustainable biomass supply, including agricultural and agro-industry residues and green waste, is the 

first key element towards the sustainability of the whole concept. Simultaneously, studies should 

assess the possibility of fully recycle e-biochar after bielectrodes working life, as amendment for 
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agricultural soil application in view of long-term carbon storage as strategy to mitigate climate change 
12.
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Nomenclature

Biochar: a chemically-stable form of carbon (charcoal) derived from thermochemical conversions of 

biomass.

Bioelectrode: electrodes where the electrocatalysis is driven by living microbes.

Cell-surface redox proteins: Proteins present at the cell-surface of organisms, containing one or 

several redox groups, responsible to transfer electrons with electrodes, soluble electron shuttles, or 

insoluble metals. Examples of these proteins are the outer-membrane cytochromes, including MtrC 

and OmcA from Shewanella oneidensis MR-1, OmcS, OmcB, OmcF and OmcZ from Geobacter 

sulfurreduces, PioA from Rhodopseudomonas palustris, among others 68.

Electron shuttles: Mobile compounds produced by microorganisms that can assist EET, including 

quinones, flavins, humic substrances and phenazines.

e-pili and nanowires: Electrically-conductive appendages and outer-membrane extensions described 

in Gram-negative bacteria that assist in the process of EET.

Electron transfer (ET): chemical/biochemical processes driving the exchange of electrons by redox 

and electroconductive mechanisms.

Extracellular electron transfer: The process by which microorganisms exchange electrons across 

the cell surface for the reduction/oxidation of extracellular compounds. Metal-reducing organisms 

use EET to respire metal oxides/hydroxides, while others to exchange electrons with solid electrodes.

Electroactive microorganisms: Microorganisms that are able to exchange electrons with an 

electrochemically-active surface such as an electrode.

Electroactive: a material/surface with chemical and textural properties allowing efficient ET from/to 

external sources/sinks of electrons. 

Microbial electrochemical technologies (METs). Electrochemical devices where ET from/to 

electrodes is mediated by living microbial cells. Several applications (e.g. microbial fuel, electrolysis, 

electrofermentation and electrosynthesis cells) are used to enhance a range of bioprocesses of 

environmental interest (e.g. wastewater treatment, water desalination, nutrients recovery, soil 

bioremediation, environmental sensing, biomass processing, CO2 fixation towards bio-molecules and 

biofuels production).

Porous texture: Macropores: pores with diameter (d) more than 50 nm; Mesopores: pores with 2 

< d < 50 nm; Micropores: pores with d < 2 nm; Ultra-micropores: pores with d < 0.7 nm. 

Thermochemical conversions: Biochars are produced either by pyrolysis or hydrothermal 

carbonization (HTC). Both processes involve thermochemical decomposition of biomass in absence 

of stoichiometric oxygen, leading to a progressive increase in C-content (carbonization) 34. Both 

processes are esoergonic, with the production of heat and reduced volatile molecules (H2, CO, etc.). 
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Pyrolysis is carried out under reducing atmosphere (at >200ºC), while HTC (also called wet pyrolysis) 

under autogenous pressure (< 20 bar) and temperature (<350°C) in subcritical water. The product is 

known as hydrochar 34,88. Typical solid yields of (slow or intermediate) pyrolysis are 20-40%, 

whereas 50-80 % for HTC in relatively short times (1-24 h) 88.
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Table 1 - Studies reporting properties of e-biochars, fabrication techniques, observed effects on microbial communities, observed ET mechanisms.

Precursor Feedstock Pyrolysis conditions 
and treatments

Particle size or 
geometrical shape

BET* 
Surface 
Area
/ m2 g -1

Porosity 
range

Electrical 
conductivity 
/ mS cm-1

Surface 
heteroatoms
/ functional 
groups

Function in electrodes, observed effects and main 
electrochemical parameters Ref.

a. Studied in abiotic electrodes

Pomelo peel 1000 °C n.r.* 622.2
63% micro, 
36% meso

n.r.
Fe, N

Studied as coating for abiotic ORR* electrocatalysis:
j = 1.7 mA cm-2; U = 0.1997 ± 0.0013 mW cm-2

89

Dewatered sewage sludge 800 °C n.r. 265.05 Mesopores
n.r.

N, S, Fe
OER* and ORR* electrocatalysis
j = 5.65 mA cm-2; U = n.r.

90

Cellulose 250-500 °C 0.8-2 mm 199 - 557 Mesopores
n.r.

N, P
Catalyst support for abiotic MeOH oxidation
j = n.r.; U = n.r.

91

Coconut shell 800 °C
Carbon paste electrode 
(mixed with spectro grade 
paraffin wax)

2536 Micropores
n.r.

n.r.
Photocatalytic hydrogen production
j = n.r.; U = n.r.

92

Cotton microfiber 700 – 850 °C n.r. 912.1 Mesopores
n.r.

N
ORR* abiotic electrocatalysis
j = 5 mA cm-2; U = n.r.

93

Sawdust and sugarcane straw 800 °C n.r. 590 Micropores
n.r.

n.r.
Abiotic catalyst for sulfide oxidation
j = n.r.; U = n.r.

94

b. Studied in MET at laboratory scale

Pine
700°C for 30 sec & 
500°C for 15 min

≤0.4 mm 15 n.a 4.4 n.r.
Biochar promoted interspecies ET in co-cultures of Geobacter 
metallireducens with Methanosarcina barkeri
j = n.r.; U = n.r.

14

Wood chip 620°C
0.1-0.3 µm and a 
significant fraction of 
3−30 μm

341 n.a 49.7 N, Fe
Biochar improved the microbial reduction of the Fe(III) by 
Shewanella oneidensis MR-1
j = n.r.; U = n.r.

20

Rape-straw
350 °C, 20 °C min−1 
held constant for 4 h

0.165-mm 2.12 n.r. n.r. n.r.
Biochar accelerated the reductive dechlorination of PCP by 
stimulated the dechlorinating bacteria and Fe(III)-reducing bacteria
j = n.r.; U = n.r.

95

Rice straw
increase at 20°C min−1 
up to 900°C for 1 h

0.15 mm 10.85 n.r. 2.4 n.r.
Biochar worked as electron mediators for the dechlorination of PCP
j = n.r.; U = n.r.

21

Sieving residues 550ºC for 2 h n.r. 193.9 n.r. n.r. n.r.

Biochar influenced the speciation of metals by increasing the 
relative abundance of As(V)-/Fe(III)-reducing bacteria (mostly 
Geobacter, Anaeromyxobacter, Desulfosporosinus and Pedobacter)
j = n.r.; U = n.r.

24

Mature coconut shell 900 °C for 1.5 h 0.3 mm n.r. n.r. 2.6 n.r.
Biochar improved sediment MFC power generation and TOC 
removal rate by enriching the Firmicutes (mostly Fusibacter sp.)
j = 0.045 mA cm-2 ; U = 0.0053 mW cm−2

56

Activated sludge
increase at 10ºC min−1 
up to 500ºC

0.15 mm n.r. n.r.
n.r.

n.r.
Biochar improved bioleaching efficiency of metals by regulating 
the ratio of Alicyclobacillus spp. and Sulfobacillus spp.
j = n.r.; U = n.r

96
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Fruitwoods 800-900ºC
2-5 mm, 0.5-1 mm and 
75-150 µm

n.r. n.r. n.r. n.r.
Biochar increased the resistance to ammonium and substrate high 
concentrations by enriching Methanosaeta and then Methanosarcina
j = n.r.; U = n.r.

60

Rice-straw treated with 3.2 g 
FeCl3:100 g

500 °C for 2 h 0.15 mm 5.48 Mesopores n.r. n.r.
Biochar improved methane production due to selective enrichment 
of electroactive bacteria participating in anaerobic digestion
j = n.r.; U = n.r.

59

Pine chips 800-1000 ºC for 8 h 0.5-1.0 mm 8.92 n.r. n.r. n.r.
Biochar enhanced caproate and caprylate production via chain 
elongation
j = n.r.; U = n.r.

58

Rice straw
5 °C min−1 up to 
maximum Tº for 2 h: 
300 °C, 800 °C

0.15 mm
2.6
205

n.r.
8.4
20.4

n.r.

300°C-biochar reduced NO3− faster by the enrichment of the 
nitrate-reducing bacteria. 800ºC-biochar decreased denitrification 
rate and promoted N2O reduction
j = n.r.; U = n.r.

97

Pine wood lumber 1000 °C Fine frit glass filter funnel 183.0
82% 
Micropores

n.r.
Traces of 
metals

Electrocatalytic layer on a carbon cloth support for air-breathing 
cathode in MFCs
j = 0.9 mA cm−2 ; U = 0.015 mW cm−2

98

Bananas 550-900 °C Ground to powder
105.2 - 
172.3

n.r. n.r. N

Electrocatalytic layer on a carbon cloth support for air-breathing 
cathode in MFCs
j = -0.79 for 550°C-biochar; j. =-3.5 mA cm-2 for 900°C-biochar at 
-0.8 V. U = 0.05 mW cm-2 for 900°C-biochar as cathode

99

Chestnut shell 900 °C
Natural chestnut shell 
shape and powder

468
71% 
Microopores

n.r. N
Used in MFCs anodes
j = n.r. ; U = 0.085 mW cm−2

57

Corncob
250, 350, 450, 550, 
650, 750 °C for 2 h

Ground to powder n.r. n.r. n.r. n.r.
Used as a layer on a carbon cloth MFC cathode for abiotic ORR*
j = 9 mA cm−2 ; U = 458.85 mW m−3

100

c. Self-standing 3D shaped e-biochar bioelectrodes

Pinewood sawdust pellets and 
chips

1000 °C 26-700 mm3 0.04
Small 
mesopores

16 - 35 n.r.
Granular bioanodes in MFCs
j = n.r. ; U = 457 mW m-2 for forestry residue and U = 532 mW m-2 
for compressed milling residue

32

Giant cane (Arundo donax L.) 
stalks

900 °C
Natural cylindrical shape 
(10 mm diameter, 10-20 
cm length)

114 Micropores 11 N, P
Air-breathing biocathodes in METs, acting as self-structured air-
water porous interface, with cylindrical shape
j = 130 mA m−2 ; U = 40 mW m-2

71,80

Kenaf (Hibiscus cannabinus) 1000 °C
Natural cylindrical shape 
4 mm/10 mm inner/outer 
diameters

n.r.
Macro-
channels of 
50-60 µm

n.r. n.r.
Studied as bioanodes 
j = 32.5 A m−2. ; U = n.r.

64

Bamboo 1000°C
Tubes with inner 
diameter: 1 mm, 1.5 mm, 
2 mm and 3 mm

n.r. n.r. n.r. n.r.

Bioanodes for microbial fuel cells.
j = n.r. ; U = 1550 mW m-2 for bamboo 1 mm inner diameter, U = 
1363 mW m-2 for bamboo 1.5 mm inner diameter, U = 1651 mW m-

2 for bamboo 2 mm inner diameter and U = 1881 mW m-2 for 
bamboo 3 mm inner diameter,

79

Pomelo peel 900°C Sponge-like architecture n.r.
Macroporous 
architecture

n.r. n.r.
High-performance anode in microbial fuel cells
j = 4 mA cm-2. ; U = n.r.

78

King mushroom, wild 
mushroom and corn stem

1000°C Sponge-like architecture n.r.
Macroporous 
architecture

n.r. n.r.
Anodes for microbial fuel cells.
j = 3.12 mA cm-2. ; U = n.r.

101
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Natural Loofah Sponge 900°C Sponge-like architecture 445-504 
Macroporous 
architecture

n.r. N
Anodes for microbial fuel cells.
j = 5.6 mA m-2; U = 1090 mW m-2

77 

d. Potentially-scalable bioelectrodes configurations (some studies were based on non-biogenic carbons)

Graphite granules fixed bed - 2-3.5 mm n.r. n.r. n.r. n.r.
Measurements on single graphite granules in bed electrodes by 
cyclic voltammetry. 
j = 1.7 – 2.1 mA mg-1 of wet weight

85

Graphite particles/glassy
 carbon particles

-
0.42 to 0.69 mm/0.63 to 1 
mm

n.r. n.r. n.r. n.r.
Studies on electron transfer mechanisms in microbial 
electrochemical fluidized bed reactor
j = 2-10 mA cm-2 imposed by potentiostats

81,82

unspecified n.r.
Granules of 1–3 mm 
diameter

764 n.r. n.r. n.r.
Granular carbon biocathodes in methane-producing MET
j = 1 mA cm-2

83

Coke granules fixed bed - 5-20 mm n.r. n.r. n.r. n.r.
‘METlands’: integration of microbial electrochemical technolo-
gies with natural wastewater treatment biofilters
j = 1-4 mA dm-3 of coke granules bed volume

86

Quercus wood biochar fixed 
bed

6-12 mm

250 (N2 
isoterm)
550 (CO2 

isoterm)

Hierarchical 
structure

0.37 
O, Phenols, 
Quinones, 
Fe,  

‘METlands’: integration of microbial electrochemical technolo-
gies with natural wastewater treatment biofilters
j = 10 mA cm-2 measured on single granules

15

*ORR: Oxygen Reduction Reaction; OER: Oxygen Evolution Reaction; BET: Brunauer–Emmett–Teller method; j: Current Density ranges or average (per 
geometric projected area or weight or volume of the electrode material); U = Power density; n.r.: not reported;
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Table 2 - Properties and characterization techniques used to define e-biochar.

Property Technique Parameters
Four-Point Probe Resistivity Electrical Conductivity AC impedance Resistivity (Ω cm) or conductivity (S/cm)

XRD * Features of (002) and (100) peaksStructural order Raman Features of D, G and 2D bands
XPS Surface % C, N, S, O, P and metals (and qualitative)

Surface chemistry TPD-MS * mmol (CO2/CO-evolving O-functionality)/g e-biochar 
(and qualitative)

Chemical composition Elemental analysis ICP-MS Bulk % C, H, N, S, O, ash
N2 adsorption-desorption isotherms SBET (m2/g), Vmicro and Vmeso (cm3/g)

CO2 adsorption ACO2 (m2/g), VCO2 (cm3/g)Porous texture
Hg porosimetry VHg (cm3/g) macroporosity, porosity (%), density

Morphology SEM * Rugosity, pore size and shape
Potentiostatic electrochemical 

analysisRedox properties Hydrodynamic electrochemical
techniques 

Electron-exchange Capacity (EEC)
Electron-Accepting Capacity (EAC)
Electron-Donating Capacity (EDC)

CV *Electrochemical properties EIS *
Electrochemically-active surface area (EAS), electro-active 

species, ion-diffusion, charge-transfer under abiotic conditions

Microbial electrochemical 
properties

Chronoamperometry, linear 
voltammetry,

CV, EIS

Electrogenic current density, bacteria-biochar charge transfer 
(potential, current, resistance)

Biofilm morphology, 
identification of 
microorganisms

SEM, Confocal microscopy, FISH, DAPI *

Specific enzymatic activity assessment of dehydrogenase activity (DH), fluorescein diacetate hydrolysis activity (FDA), others
Microbial communities 

composition and functional 
analysis

16S rDNA Illumina sequencing and/or rRNA intergenic spacer analysis (RISA)

* CV: cyclic voltammetry; EIS: electrochemical impedance spectroscopy; SEM: scanning electron microscopy; TPD-MS: temperature-programmed desorption 

coupled to a mass spectrometer; XRD: X-ray diffraction; XPS: X-ray photoelectron spectroscopy; FISH: fluorescence in situ hybridization; DAPI: 4',6-diamidino-

2-phenylindole dye coupled to fluorescence microscope used for cells counting
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Figure 1 - Low-cost and widely available materials are needed for large-scale environmental applications of microbial electrochemical technologies 
(MET), when most high-tech materials are substantially excluded. Electroactive biochar (e-biochar) might open a new perspective. Residual biomass 
derived from agro-forestry and conventional biochars (a) undergo: mechanical pretreatments to set precise conformations (b), optimized 
thermochemical conversions and specific superficial treatments (c), to sustainably produce electroactive-biochar (e-biochar) (d), as base for the 
fabrication of bioelectrodes in possible large-scale MET (e). At end-of-life, such electrodes can be used in soil conditioning and e-biochar might 
contribute to soil fertility (f). The word ‘electroactive’, under the point of view of MET, includes a series of chemical/textural/structural properties 
that tend to simultaneously optimize: electroactive biofilm growth (g), microbial extracellular electron transfer (ET) mechanisms (h) and abiotic 
reversible redox reactions towards ET (i), surface area and pores texture (j), porosity distribution (k,l), surface redox and charge properties 
(capacitance), due to chemical composition (m) and sufficient electrical conductivity over given distances (n). 

 

Figure 2 – Scanning electron microscopy (SEM) images of biochars synthesized by different groups in the literature: A-C) Prado et al., 2018 ; D) 
Pore size distributions from different techniques (considering DFT model and Washburn's equation for isotherms and porosimetry, respectively) of a 
quercus-derived biochar shown in A-C. Other SEM reports at different scales: a) Q. Chen et al., 2018; b) Lin et al., 2017; c) Ma et al., 2016; d) Yuan 
et al., 2014; e) Zha et al., 2016 (Chen et al. 2018; Lin et al. 2017; Ma et al. 2016; Yuan et al. 2014; Zha et al. 2016). SEM images demonstrating 
biochar-mediated interspecies electron transfer in f) G. metallireducens and G. sulfurreducens and g) G. metallireducens (rods) and M. barkeri 
(spheres) co-cultures (Chen et al. 2014). Reprinted (adapted) with permission from (Chen et al. 2018; Lin et al. 2017; Ma et al. 2016; Yuan et al. 2014; 
Zha et al. 2016). Copyright © 2017, American Chemical Society and Elsevier.
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Figure 1
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Figure 2
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Synopsis (For Table of Contents Use Only)

Electroactive biochar (e-biochar) can be an ideal platform material to fabricate large-scale bioelectrodes for environmental applications of microbial 
electrochemical technologies.
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Figure 1 - Low-cost and widely available materials are needed for large-scale environmental applications of 
microbial electrochemical technologies (MET), when most high-tech materials are substantially excluded. 

Electroactive biochar (e-biochar) might open a new perspective. Residual biomass derived from agro-
forestry and conventional biochars (a) undergo: mechanical pretreatments to set precise conformations (b), 

optimized thermochemical conversions and specific superficial treatments (c), to sustainably produce 
electroactive-biochar (e-biochar) (d), as base for the fabrication of bioelectrodes in possible large-scale MET 

(e). At end-of-life, such electrodes can be used in soil conditioning and e-biochar might contribute to soil 
fertility (f). The word ‘electroactive’, under the point of view of MET, includes a series of 

chemical/textural/structural properties that tend to simultaneously optimize: electroactive biofilm growth 
(g), microbial extracellular electron transfer (ET) mechanisms (h) and abiotic reversible redox reactions 
towards ET (i), surface area and pores texture (j), porosity distribution (k,l), surface redox and charge 

properties (capacitance), due to chemical composition (m) and sufficient electrical conductivity over given 
distances (n). 
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Figure 2 – Scanning electron microscopy (SEM) images of biochars synthesized by different groups in the 
literature: A-C) Prado et al., 2018 ; D) Pore size distributions from different techniques (considering DFT 

model and Washburn's equation for isotherms and porosimetry, respectively) of a quercus-derived biochar 
shown in A-C. Other SEM reports at different scales: a) Q. Chen et al., 2018; b) Lin et al., 2017; c) Ma et 

al., 2016; d) Yuan et al., 2014; e) Zha et al., 2016 (Chen et al. 2018; Lin et al. 2017; Ma et al. 2016; Yuan 
et al. 2014; Zha et al. 2016). SEM images demonstrating biochar-mediated interspecies electron transfer in 
f) G. metallireducens and G. sulfurreducens and g) G. metallireducens (rods) and M. barkeri (spheres) co-

cultures (Chen et al. 2014). Reprinted (adapted) with permission from (Chen et al. 2018; Lin et al. 2017; Ma 
et al. 2016; Yuan et al. 2014; Zha et al. 2016). Copyright © 2017, American Chemical Society and Elsevier. 
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