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Abstract

This paper presents estimation methods for dynamic non-linear models with
correlated random e¤ects (CRE) when having unbalanced panels. Unbalancedness
is often encountered in applied work and ignoring it in dynamic non-linear models
produces inconsistent estimates even if the unbalancedness process is completely at
random. We show that selecting a balanced panel from the sample can produce
e¢ ciency losses or even inconsistent estimates of the average marginal e¤ects. We
allow the process that determines the unbalancedness structure of the data to be
correlated with the permanent unobserved heterogeneity. We discuss how to address
the estimation by maximizing the likelihood function for the whole sample and
also propose a Minimum Distance approach, which is computationally simpler and
asymptotically equivalent to the Maximum Likelihood estimation. Our Monte Carlo
experiments and empirical illustration show that the issue is relevant. Our proposed
solutions perform better both in terms of bias and RMSE than the approaches that
ignore the unbalancedness or that balance the sample.
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1 Introduction

The purpose of this paper is to present and evaluate estimation methods for dynamic

non-linear models with correlated random e¤ects (CRE) when the panel data are unbal-

anced.1 Unbalanced panels are often encountered in applied work. For example, in large

households panel data sets like the PSID for the U.S or the GSOEP for Germany, some in-

dividuals drop out (potentially non-randomly) of the sample. At a �rm level, Compustat

and Datastream International also have an unbalanced structure. In other cases, like in

the so called �rotating panels�, the unbalancedness is generated by the sample design (for

instance, in the Monthly Retail Trade Survey for the U.S, or in the Household Budget

Continuous Survey for Spain).

It is well-known how to estimate CRE dynamic non-linear models with balanced pan-

els. However, the existing estimation methods cannot be in general directly implemented

with unbalanced panels. Ignoring the unbalancedness produces inconsistent estimates, as

we will discuss. Obtaining a balanced sub-sample from the unbalanced panel, so that the

existing CRE methods for balanced panels could then be used, is also problematic. If

we balance the sample by taking a subset of individuals that are observed over the same

periods, we are making an endogenous selection of the sample unless the unbalancedness

is independent of the individual e¤ects. Another possibility to balance the sample is to

take the subset of periods at which all individuals are observed (see Wooldridge, 2005).

But this is in some cases infeasible because of the lack of enough number of common

periods across individuals and, when feasible, it implies important e¢ ciency losses.

In a dynamic setting under the CRE approach the so-called �initial conditions prob-

lem�arises. Heckman (1981) and Wooldridge (2005) propose solutions to deal with it, but

these are developed only for balanced panels. Furthermore, the initial conditions prob-

lem is exacerbated when the panel is unbalanced because it a¤ects to each �rst period

of observation in the data set. This implies that, as we will show, even assuming that

unbalancedness is completely at random is not enough to allow us to ignore it in the

1The CRE approach has been found useful to estimate nonlinear dynamic models in many cases,
because it is not subject to the incidental parameters problem that the �xed-e¤ects (FE) approach
su¤ers and it does not require a large number of periods. Examples of applications using CRE are Hyslop
(1999), Contoyannis et. al. (2004), Stewart (2007), and Akee et. al. (2010). Arellano and Honoré
(2001) and Arellano (2003) discuss the general literature of non-linear dynamic models with unobserved
heterogeneity, using both the FE and the CRE approaches.
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estimation.2

We propose methods to deal with the unbalancedness structure of the data in the es-

timation of models with lags of the endogenous variable and other explanatory variables

that are strictly exogenous. We consider unbalancedness processes that are independ-

ent of the time-varying shocks, but allow them to be correlated with the time-invariant

unobserved heterogeneity. Therefore we are not restricted to the case of unbalancedness

completely at random. We �rst discuss how to address the unbalancedness problem by

maximizing the likelihood function for the whole sample. This can be computationally

cumbersome because speci�c parameters to each sub-panel need to be estimated jointly

with the common parameters of the model. We then propose to estimate the model for

each subpanel separately and then to obtain estimates of the common parameters across

subpanels by minimum distance (MD). This method allows to use the same estimation

routines that we would use if we had a balanced panel, while keeping the good asymptotic

properties of the maximum likelihood (ML) estimator for the whole sample.

A simulation study shows that these methods perform well compared to other alternat-

ives both in terms of bias and RMSE. As an empirical illustration, we estimate an export

participation equation with dynamic e¤ects using unbalanced data for Spanish manufac-

turing �rms. Our results show that the unbalancedness issue is relevant in practice, and

there is evidence of unbalancedness correlated with the unobserved heterogeneity.

To the best of our knowledge only Wooldridge (2010) addresses the issue of estimating

CRE models with unbalanced panels, but considering only static models with strictly

exogenous variables. He proposes several strategies for allowing the time invariant un-

observed heterogeneity to be correlated with the observed covariates and the selection

mechanism for unbalanced panels. However, the assumption of lack of dynamic e¤ects

is very restrictive, and the solutions in Wooldridge (2010) cannot be directly extended

to dynamic models because the unbalancedness also a¤ects how to deal with the initial

conditions problem.

Although unbalanced panels could be seen as a particular case of missing data, the

problem we address cannot be solved using the existing literature on panel models with

2This problem also a¤ects RE models assuming that the time invariant unobserved heterogeneity is
independent of the time-varying covariates. Examples of papers using the RE approach are Arulampalam
and Stewart (2009), Campa (2004), or Bernard and Jensen (2004). The CRE model that we cover in
detail contains the RE as a particular case.

2



missing data. One strand of this literature relies on missingness at random and on using

moment conditions that are valid both with complete and with missing data (e.g. Pacini

and Windmeijer, 2015). In our case, the sets of moments conditions (the �rst order condi-

tions of the likelihood) under complete data are not valid. The reason is that the likelihood

for complete balanced panels does not account for the di¤erent initial conditions, or for

the potential relation between the unbalancedness and permanent unobserved heterogen-

eity, as we will show. Other strand of the literature relies on having some variables upon

which you can condition to make the missing process conditionally independent of the

main model (e.g. Wooldridge, 2007), or on having additional information and assump-

tions about the missing process (e.g. Bhattacharya, 2008). In contrast with that, we do

not assume anything about the relation of the missing process and observable variables,

nor have any additional information related to the missing process. Also, the moment

conditions for panel data models considered in this literature are based on the �xed e¤ects

approach so they do not deal with the initial conditions problem, which is crucial in the

unbalanced case.

The rest of the paper is organized as follows. Section 2 presents the general model and

the likelihood functions that account for the unbalancedness. Section 3 formalizes the

existing approaches, that is, those ignoring the unbalancedness and making the sample

balanced, and discuss the restrictive conditions under which they could work. Section 4

presents the ML and MD estimators for the model that accounts for the unbalancedness.

Section 5 describes how the estimation can be implemented and several practical issues.

In Section 6 we study the �nite sample properties of the di¤erent estimators by means of

Monte Carlo simulations. In Section 7, as an empirical illustration, we estimate an export

market participation equation using �rms�level data. Finally, Section 8 concludes.

2 General framework

We present a general approach that can be applied to dynamic non-linear panel data

models. Let us denote

Yi = (yi1; :::; yiT )
0 ;

Xi = (X
0
i1; :::; X

0
iT )

0
;

Si = (si1; :::; siT )
0 ;
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where i = 1; :::; N represents cross-sectional units, yit is the (scalar) outcome, and Xit is

a row vector of dimension K of covariates. The possibility of having an unbalanced panel

is captured through a set of selection indicators, sit; which take the value 1 if unit i is

observed in period t, that is

sit =

�
1 if yit and Xit are observed
0 otherwise:

Notice that the balanced situation can be seen as a particular case of this setting, when

sit = 1 for all i and t. We only consider cases in which either both yit and Xit are observed

or both are not observed. We de�ne ti as the �rst period in which unit i is observed, i.e.

ti = ft : sit = 1 and sij = 0 8 j < tg ,

and Ti as the number of periods we observe for unit i;

Ti =
TX
t=1

sit

Another characteristic of the panels considered is that all the observations for unit i are

consecutive.3 This means that

sit = 1 8 t 2 [ti; ti + Ti � 1]

sit = 0 8 t < ti or t > ti + Ti � 1:

Let Mi be the (Ti � T ) matrix that select the set of Xi that we observe, that is,

MiXi =
�
X 0
iti
; :::; X 0

iTi

�0
. The element (j; k) of Mi, mi;(jk), is

mi;(jk) =

�
1 if sik = 1 and j = k � ti + 1
0 otherwise.

If the panel is balanced, Mi is the identity matrix. Note that Si = �
0
Ti
Mi where �Ti is a

vector of ones with dimension Ti. We denote by J the number of di¤erent Si sequences

that we have in the total panel. We refer to the sub-set of units with the same sequence

S(j) as �sub-panel�j, j = 1; : : : ; J . In other words, subpanel j contains all the individuals

i such that Si = S(j). Finally, we consider panels where N is large and T and J are small

relative to N .
3At the end of this section we discuss how a situation with non-consecutive observations could be

addressed.
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The kind of models we consider in this paper are as follows. For all i and t, yit is

determined as

yit = g (yit�1; Xit; �i; "it) ;

where g(:) is a non-linear function, non-additively separable in its latent terms, whose

form is known up a vector of parameters that characterized it. For simplicity, we focus on

a model with one lag of yit and contemporaneous values of X, which is the most frequently

model used in the applied literature. However, all our analysis could be extended to higher

order chains, or to cases that include in Xit previous values of these strictly exogenous

covariates. �i denotes the vector of permanent unobserved heterogeneous characteristics

or "individual e¤ect", and "it are period-speci�c disturbances that are assumed to be

independent and identically distributed across both i = 1; :::; N and t = 1; :::; T with

known distribution. Also "it are independent of �i and Xi. This means that we con-

sider models where X are strictly exogenous covariates with respect to the period-speci�c

unobservables, ", but they can be correlated with the time-constant unobservables, �i.

The function g(:) together with the distribution of " give the conditional distribution

F (yit j yit�1; Xi; �i) which is our primary object of interest and whose parameters will be

estimated. The previous assumptions imply that

F (yit j yt�1i ; Xi; �i) = F (yit j yit�1; Xit; �i),

where yt�1i = (yi1; :::; yit�1).

So far this is a standard model in the (balanced) panel data literature. The new import-

ant assumption related to the unbalancedness that we are going to maintain throughout

this paper is

Assumption 1:

"it ? Sij (�i; Xi) for all i and t

This implies that " is conditionally independent of the sample selection process Si that

produces the unbalancedness. However, note that this is assumption is not restricting

the relation between Si and (�i; Xi). This means that, although we are not going to

consider an endogenous selection process (endogenous with respect to the period-speci�c

disturbances), we are going to allow Si to be correlated with the unobserved permanent

characteristics �i.
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Let f(yit j yit�1; Xit; �i; Si; �) be the correctly speci�ed density for the conditional

distribution F (yit j yt�1i ; Xi; �i) under assumption 1, and h(�ijMiXi; Si; ��Si) the correctly

speci�ed density of the distribution �ijMiXi; Si.4 Then, the density of (si1yi1; : : : ; siTyiT )

for a given individual is

f (si1yi1; : : : ; siTyiT jMiXi; Si) =

TY
t=1

f (yitjsit�1yit�1;MiXi; Si)
sitsit�1 f (yitjMiXi; Si)

sit(1�sit�1)

=

ti+Ti�1Y
t=ti+1

f (yitjyit�1;MiXi; Si) f (yitijMiXi; Si) : (1)

Previous equation can be written as

f (si1yi1; : : : ; siTyiT jMiXi; Si) =Z
�i

ti+Ti�1Y
t=ti+1

f (yitjyit�1;MiXi; Si; �i; �) f (yitijMiXi; Si; �i;�Si)h(�ijMiXi; Si; ��Si)d�i; (2)

or as

f (si1yi1; : : : ; siTyiT jMiXi; Si) ="Z
�i

ti+Ti�1Y
t=ti+1

f (yitjyit�1;MiXi; Si; �i; �)h(�ijyiti ;MiXi; Si; ��Si)d�i

#
f (yitijMiXi; Si) ; (3)

depending on whether we integrate out the unobserved e¤ect by specifying the density for

the �rst observation in each sub-panel conditional on the unobserved e¤ect and the density

of the unobserved e¤ect, or we specify the density of the unobserved e¤ect conditional on

the �rst observation. Note that in equation (3) we can discard f (yitijMiXi; Si) because

this term is outside the integral.

Given that previous equations depend on the unobservable �i, if the �rst period ob-

served in the sample does not coincide with the beginning of the stochastic process, the

�rst observation will not be independent of �i. Moreover, f (yitijMiXi; Si; �i;�Si) and

h(�ijMiXi; Si; ��Si) in equation (2), or h(�ijyiti ;MiXi; Si; ��Si) in equation (3) are dif-

ferent for each sub-panel with di¤erent observed periods Si. Writing an equation for

f (yi1jXi; �i) and h(�ijXi), or for h(�ijyi1; Xi), as Heckman (1981) and Wooldridge (2005)

did respectively for the balanced case, is not enough to solve the initial conditions problem

for three reasons:

(i) The conditioning set of covariates is di¤erent for each Si, as in static models (see

Wooldridge, 2010).

4In our notation for de�ning functions, the set of parameters of that function appear after a semicolon.
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(ii) The initial observation is di¤erent for each Si. Thus, even in a model without X

covariates, without further assumptions f(yitij�i = �; Si) 6= f(yrtr j�r = �; Sr) for

ti 6= tr.

(iii) Last but not least, even if the starting period ti is the same, there may be correlation

between Si and the individual characteristics making the distributions of �i di¤erent

for each Si.

The framework considered so far includes situations in which the selection mechanism

Si is correlated with the individual e¤ect, �i. This implies that, if we write the like-

lihood of the data using expression (2), di¤erent distributions of the initial conditions

and of the unobserved e¤ects for each sub-panel are required. That is, the densities

f(yitijMiXi; Si; �i;�Si) and h(�ijMiXi; Si; ��Si) in (2) depend on a vector of parameters

di¤erent for each sub-panel. Likewise, in equation (3), we need to specify the density of �i

conditional on the initial observation, h(�ijyiti ;MiXi; Si; �Si) and this will have di¤erent

parameters for each sub-panel.

Also, notice that there are two sets of coe¢ cients in the conditional distribution of

interest. One set is �, which represent the parameters that are homogeneous across

individuals. The other set is �i that are heterogeneous coe¢ cients whose distribution

is used to integrate them out. The framework considered in this paper applies to any

random coe¢ cients model by varying what is included in each set: from the typical case

with only the constant term being individual speci�c, to more general situations where

several or even all the coe¢ cients are heterogeneous.

Unbalancedness independent of the individual e¤ect: If in addition to Assump-

tion 1, we assume,

Assumption 2: Si is independent of �i given X,

so that h(�ijX;Si) = h(�ijX) for any set of periods included in X. This assumption

is relevant, for instance, when having rotating panels. However, even under Assumption

2 f(yitijXi; �i; Si) is di¤erent for each Si simply because the process has been running a

di¤erent number of periods until that �rst observation, and we are not assuming that the

process is on steady state. Likewise, the density of the unobserved e¤ects conditional on

the initial conditions, h(�ijyiti ; Xi; Si) will be, in general, di¤erent for each ti. In addition
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to that, Assumption 2 is not enough to guarantee that h(�ijMiXi; Si) is the same for all

Si because, even if Si is independent of �i given X, �i can still depend on X and there

will be a di¤erent conditioning set of observations in MiXi for each Si.

Other unbanlancedness patterns: Some panels present unbalancedness structures

that include individuals with non-consecutive observations. In these cases, we could

integrate out the holes using the conditional model of yit. The main limitation of this

approach is that it cannot be applied when the model for yit has X covariates that are

not observed when sit = 0, as we consider in this paper. We would need to make further

assumptions about Xit to be able to either integrate over the missing X too, or to impute

their values for the missing periods so that we can integrate the unobserved yit using our

model F (yit j yit�1; Xit; �i). In any case, these will require to make assumptions about

Xit that would never be considered with balanced panels. This is out of the scope of

this paper, which is to estimate the model we would specify if having a balanced sample.

Nonetheless, if those further assumptions about X are made, the approach in these paper

could still be adapted.

3 Existing approaches

3.1 Ignoring the unbalancedness

In this subsection we study under which assumptions it is possible to ignore the unbal-

ancedness and to treat the data as if they were balanced. That is, we study when it is

possible to use the following likelihood that ignores the unbalancedness,

NX
i=1

log (f (si1yi1; : : : ; siTyiT jMiXi))

=
NX
i=1

log

 Z
�i

ti+Ti�1Y
t=ti+1

f (yitjyit�1;MiXi; �i; �) f (yitijMiXi; �i; �)h
�
�ijMiXi; ��

�
d�i

!
;

(4)

instead of the density given by equation (2).

Note that even though we ignore that each individual belongs to a di¤erent sub-panel

Si and is observed for the �rst time at a di¤erent moment in time, we have to write

the likelihood based on the MiXi observations that we have for each individual. The

restrictions coming from ignoring the unbalancedness are that the distribution of the
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initial observation is the same for all, and that the distribution functions given MiXi are

also the same. Given that under Assumption 1 the sample selection process Si is strictly

exogenous with respect to the idiosyncratic shocks to yit we have that

f (yitjsit�1yit�1;MiXi; Si; �i) = f (yitjyit�1; Xi; �i) : (5)

In order to have (2) and (4) leading to the equivalent Maximum Likelihood (ML)

Estimators of the parameters of the conditional distribution of yitjyit�1;MiXi; �i we need

the following conditions:

1. Assumption 2, i.e. for any given X, h(�ijX;Si) = h(�ijX), so that h(�ijMiXi; Si) =

h(�ijMiXi):

2. h (�ijMiXi) must be a function common to all Si, so that its value changes only as

the values of X at which it is evaluated change (but not as a function of the speci�c

periods at which Xi is observed).

3. The process is in the steady state (or the initial observations yti come from the same

exogenous distribution or rule for all units and ti).

4. Si is independent from the shocks to the initial conditions.

Conditions 1 and 2 together imply that h(�ijMiXi; Si; ��Si) = h
�
�ijMiXi; ��

�
for all i

as (4) imposes, where the common function h
�
�ijMiXi; ��

�
must be able to accommodate

any di¤erences coming from the di¤erent conditioning set (MiXi) across individuals.

Condition 2 is very restrictive because, for example, in general V ar (�jMiXi) will be

di¤erent if the number periods in which xit are observed is di¤erent.5 A case in which

this condition is trivially satis�ed is when �i is independent of Xi. Condition 2 does not

apply when there are no covariates X in the model.

Conditions 3 and 4 are needed to ensure that all units have the same distribution for

the initial condition regardless the period ti at which they enter the panel, i.e.

f (yitijMiXi; Si; �i;�Si) = f (yi1jMiXi; �i; �) = ::: = f
�
yimax tj jMiXi; �i; �

�
for all i,

as (4) imposes.

5The condition is not violated, however, if V ar (�jMiXi) changes with the number of periods of xit
observed in a deterministic way, e.g. V ar (�jMiXi) =

�2�

�
0
Ti
Mi�Ti

.
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Unless these four conditions are all satis�ed, the estimates of � obtained by ignoring

the unbalancedness are inconsistent.

Notice that the assumption that Si is independent from the shocks to the initial con-

ditions (condition 4) is not enough to ensure that the conditional densities for each initial

observational period coincide. Also notice that unbalancedness completely at random (i.e.

independent of everything else) is not enough to allow us to ignore it. For example, sup-

pose that we have two individuals in a process without covariates X, that yit starts in yi0

for both i, and that both follow the same process for yit. However, we start observing one

individual in period ti = 1 and the other in period ti = 2, and this is decided randomly.

Therefore, we are in a case in which Si is determined completely at random, and in which

condition 2 is not needed because there are no covariates. Then,

Pr(yi1 j �i; Si) =
X
yi0

Pr(yi1 j yi0; �i; Si) � Pr(yi0 j �i; Si) =
X
yi0

Pr(yi1 j yi0; �i) � Pr(yi0 j �i)

(6)

Pr(yi2 j �i; Si) =
X
y1

Pr(yi2 j yi1; �i) � Pr(yi1 j �i): (7)

The two probabilities are di¤erent unless yi1 is at the steady state (Condition 3).

3.2 Using a subset of periods at which all individuals are ob-
served

Wooldridge (2005) points out that a potential solution to the unbalancedness under As-

sumption 1 is to use the subset of periods constituting a balanced panel. Then, one could

apply to that balanced sample the standard solutions to the initial conditions problem.

Nonetheless, this approach has two limitations: (i) it discards useful information leading

to an e¢ ciency loss, and (ii) the balanced sample may not contain enough number of

common periods across individuals, making the estimation infeasible.6

Suppose that the correct conditional density of si1yi1; : : : ; siTyiT jMiXi; Si is given by

(3), excluding the term for the initial observations f (yitijMiXi; Si). Instead of that, the

6For example, in a rotating panel with T = 5 with three sub-panels where each sub-panel lasts for
three periods (i.e. Ti = 3), the �rst sub-panel starts at ti = 1, the second at ti = 2, and the third at
ti = 3, the sub-panels only have one period in common, less than the 3 periods needed for estimation.
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following likelihood function is maximized

f (yitm ; : : : ; yiTmjMiXi)

=

Z
�i

TmY
t=tm

f
�
yitjyit�1; XTm

itm
; �i
�
h(�ijyimax ti,XTm

itm
)d�i; (8)

where tm � maxj2[1;N ] tj + 1, and Tm � minj2[1;N ](tj + Tj � 1): Under Assumption 1

f
�
yitjyit�1; XTm

itm
; Si; �i

�
= f

�
yitjyit�1; XTm

itm
; �i
�
. Thus, to have a consistent ML Estimator

of the parameters of the conditional distribution of yitjyit�1;MiXi; �i based on (8) we need

h(�ijyimaxj2[1;N ] tj ; X
Tm
itm
)

=
JX
j=1

h(�ijyimaxj2[1;N ] tj ; X
Tm
itm
; Si = S

(j)) Pr
�
Si = S

(j)jyimaxj2[1;N ] tj ; X
Tm
itm

�
; (9)

where S(j) is the j-th element of the set of J di¤erent Si sequences that we have in the

panel, and XTm
itm

=
�
X 0
itm ; :::; X

0
i;Tm

�0
. So, as long as the h(�ijyimaxj2[1;N ] tj ,X

Tm
itm
) we spe-

cify satis�es this condition and we have enough periods in the balanced sample, the

MLE based on (8) will be consistent, though less e¢ cient. However, depending on

the nature of h(�ijyimaxj2[1;N ] tj ;MiXi; Si) (i.e. depending on the nature of the relations

between �i and Si and the evolution of the distribution of yit across periods and sub-

panels) approximating h(�ijyimax ti,X
min(ti+Ti�1)
imax ti+1

) may require a complex distribution even

if h(�ijyimaxj2[1;N ] tj ;MiXi; Si) is the standard normal distribution.7

3.3 Using a subset of individuals that are observed the same
number of periods

Another possibility to deal with the unbalancedness is to take one single sub-panel from

the total sample. This sub-panel is, by de�nition, a balanced panel where all the indi-

viduals are observed from the same �rst period to the same last period. In many cases,

this would be the sub-sample of individuals present in all the waves of the original panel.

For example, Contoyannis et. al. (2004) obtain a balanced sub-sample in this way. More

generally, one can take the sub-set of individuals observed only in all of some speci�c

consecutive waves.

Although this way of obtaining a balanced sample produces an e¢ ciency loss due

to discarding a potentially high proportion of the sample, it avoids the infeasibility of

7See Section 5.1 for a discussion of the problems with the practical implementation of this approach.
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the previous balancing method and may consistently estimate the common parameters

of the model. However, this does not allow to identify the average marginal e¤ect of

covariates because the conditional distribution of the heterogeneous individual e¤ects will

only be valid for this particular sub-group of individuals. Unless the unbalancedness is

independent of �i (Assumption 2) and of X, the distribution of �i for this balanced sub-

sample is di¤erent from the distribution of �i for the entire sample. And the marginal

e¤ects, which are the ultimate parameters of interest, are a function of the distribution

of �i. Therefore, unless Si is independent of �i and of Xi, the average marginal e¤ects

we estimate for this sub-sample are not a consistent estimation of the average marginal

e¤ects for the entire population of individuals.

4 Estimation with the entire sample

4.1 Maximum Likelihood Estimation

The models that accounts for unbalancedness explained in Section 2 can be estimated by

Maximum Likelihood (ML). The log-likelihood, if the model speci�es the terms in (2), is

given by

L =
NX
i=1

log

Z
�i

"
ti+Ti�1Y
t=ti+1

f (yitjyit�1;MiXi; Si; �i; �) f (yitijMiXi; Si; �i;�Si)h(�ijMiXi; Si; ��Si)

#
d�i:

(10)

If the model speci�es the terms in (3), then the log-likelihood is given by

L =
NX
i=1

log

Z
�i

"
ti+Ti�1Y
t=ti+1

f (yitjyit�1;MiXi; Si; �i; �)h(�ijyiti ;MiXi; Si; ��Si)

#
d�i: (11)

These log-likelihood functions will be maximized with respect to the vector of parameters

� = (�0; 0)
0 that can be partitioned into the set of common parameters � and the set

of sub-panel speci�c parameters  = (01; :::; 
0
J)
0. The parameters that are speci�c to

sub-panel j are, depending on the approach taken to deal with the initial observation,

j =
�
�0S(j) ; �

0
�S(j)

�0
in (10), or j = ��S(j) in (11).

The properties of the MLE are well-known, as well as the numerical procedures to

obtain it. The problem is that the optimization procedure is cumbersome. Our spe-

ci�c likelihood must be optimized jointly with respect to a high number of parameters,

because, due to the unbalancedness, there is a di¤erent set of some parameters for each
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subpanel. This will typically preclude using standard estimation software and will increase

computation time.

Integrating over the missing observations A di¤erent way to deal with the unbal-

ancedness is to see it as missing observations to be integrated out. In a model without

X, we would specify the initial condition for the earliest starting period in our panel and

write the likelihood integrating out the unobserved periods of yit, using the conditional

model F (yit j yit�1; �i). This is implicitly assuming that all individuals follow the same

process at t = 1 regardless of what is the �rst period at which we observe them. This

could be a realistic a assumption when the unbalancedness is at random. However, it is

harder to maintain when the unbalancedness can be correlated with individual unobserved

characteristics. In a model with X, this cannot be applied unless you are willing to make

further and restrictive assumptions about the stochastic process of X in a similar way as

discussed at the end of section 2.

4.2 Minimum Distance Estimation

Here we propose an estimation method that allows us to use the same routine or estimation

program as when having a balanced panel, while keeping the good asymptotic properties

of the MLE. Also this procedure allows us to reduce the computational burden compared

with the MLE.

The proposal has two steps. The �rst step is to estimate the model for each sub-

panel separately. This implies that we can use the same standard software as in balanced

panels and, at the same time, very easily accommodate di¤erent distributions of �i for

each sub-panel Si.

The second step is to obtain estimates of the parameters � = (�0;01; 
0
2; : : : ; 

0
J)
0 by

Minimum Distance. Let b� = �b�01;b�02; : : : ;b�0J�0 be the vector of estimated coe¢ cients of the
model after the �rst step. Each b�0j contains the estimated coe¢ cients using sub-panel j,
(j = 1; 2; : : : ; J) of the parameters of the model relevant to this sub-panel, which includes

two types of parameters: b�j =  b�[c]jb�[nc]j

!

where b�[c]j are the estimates of the parameters � that are common across subpanels, andb�[nc]j are the estimates of the non-common parameters j for using sub-panel j only. We
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also have the var-cov matrix of b�; V ar �b��. It is a block diagonal matrix since di¤erent
sub-panels have no observations in common:

V = V ar
�b�� =

0BB@
V ar

�b�1� 0 0

0 ::: 0

0 0 V ar
�b�J�

1CCA (12)

where

V ar(b�j) =
24 V ar(b�[c]j ) Cov

�b�[c]j ;b�[nc]j

�
Cov

�b�[c]j ;b�[nc]j

�
V ar(b�[nc]j )

35 :
As described in Chamberlain (1982, 1984), we can impose restrictions on the vector of

coe¢ cients � by setting them to be equal to a known function of the structural parameters

�: � = h(�). In our case, in order to recover a unique estimate of �, the restriction is

that we assume that all the b�[c]j are estimates of the same � parameters that are common
across sub-panels. Therefore the restrictions are

h (�) =

0B@ h1 (�)
...

hJ (�)

1CA = P�

where hj (�) =
�
�0; 0j

�0
and the matrix P is

P =

2666664
� I 0 � � � 0 0
� 0 I � � � 0 0
...

. . .
...

� 0 0 � � � I 0
� 0 0 � � � 0 I

3777775
where � is a column vector of ones of the same dimension as �, I is an identity matrix of

the dimension of j and 0 is a matrix of dimensions dim(�)� dim(j).

Finally, the structural parameters � can be consistently and e¢ ciently estimated by

minimizing the following quadratic form:8

b�MD
= argmin

�
Q (�) =

hb� � h(�)i0 V �1 hb� � h(�)i : (13)

It is easy to see that the solution to the minimization of this quadratic form is

b�MD
=
�
P 0�1P

��1
P 0�1b�; (14)

8By choosing any other positive de�nite weighting matrix in this quadratic form, one still obtains
consistent estimates.
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where V is replaced by the consistent estimators obtained in the �rst step. The expression

of the Variance-Covariance matrix of b�MD
is

V ar
�b�MD

�
=
�
P 0�1P

��1
: (15)

This procedure is known to be asymptotically equivalent to obtain estimates by max-

imizing the log likelihood L on the entire set of parameters � (see Chamberlain, 1982 and

1984 and references in there). If N ! 1 but T and J are �xed, then the asymptotic

properties derived in those references are applicable to our case. These are the relevant

conditions for us since we are interested in situations in which N is large relative to T

and J . Then b�MD
is asymptotically equivalent to b�MLE

.

Appendix A shows that the solution for each component of � can be expressed as

b�MD
=

"
JX
j=1

�
V ar(b�[c]j )��1

#�1 JX
j=1

��
V ar(b�[c]j )��1b�[c]j � (16)

bMD
j = b�[nc]j � Cov

�b�[c]j ;b�[nc]j

�0 �
V ar(b�[c]j )��1 �b�[c]j � b�MD

�
: (17)

Note that the estimate of the common parameters, b�MD
, it is a weighted average only

of the estimates of those parameters by sub-panels, b�[c]j , whereas the MD estimate of the
other parameters, bMD

j , does not only depends on b�[nc]j but they are also �adjusted�by

the distance between b�[c]j and b�MD
.

5 Implementation and practical issues

In this Section we show how to implement the estimators presented in previous sections

with speci�c assumptions about parametric distributions. We have chosen one of the most

common distributions and models used in empirical work, but the general framework and

estimation procedures proposed in the previous sections are applicable to other non-linear

models and parametric distributions.

5.1 Unbalancedness correlated with the individual e¤ect

Let us consider the following dynamic binary choice model:

yit = 1 f�yit�1 +X 0
it� + �i + "it � 0g (18)

�"itj yt�1i ; Xi; �i; Si �
iid
N(0; 1): (19)
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The probability of a given random sample of N unit observations is

Pr (S 01Y1; : : : ; S
0
NYN jX1; : : : ; XN ; S1; : : : ; SN) =

NY
i=1

Pr (S 0iYijMiXi; Si) :

For each i = 1; :::; N;

Pr(si1yi1; : : : ; siTyiT jMiXi; Si; �i) =

=
TY
t=1

Pr (yitjsit�1yit�1;MiXi; Si; �i)
sitsit�1 Pr (yitjMiXi; Si; �i)

sit(1�sit�1)

=

ti+Ti�1Y
t=ti+1

Pr (yitjyit�1;MiXi; Si; �i) Pr (yitijMiXi; Si; �i) ; (20)

If one decides to make a distributional assumption about the conditional density of

the �rst observation Pr (yitijMiXi; Si; �i) and about �i, we can write the probability in

(20) as

Z
�i

ti+Ti�1Y
t=ti+1

Pr (yitjyit�1;MiXi; Si; �i) Pr (yitijMiXi; Si; �i)h(�ijMiXi; Si)d�i: (21)

where, from the model in equations (18) and (19), Pr (yitjyit�1;MiXi; Si; �i) in this equa-

tion is

Pr (yit = 1jyit�1;MiXi; Si; �i) = Pr (�"it � �yit�1 + �0 +X 0
it� + �ijyit�1;MiXi; Si; �i)

= Pr (�"it � �yit�1 + �0 +X 0
it� + �ijyit�1;MiXi; �i)

= � (�yit�1 + �0 +X
0
it� + �i) : (22)

To solve the initial conditions problem, we follow Heckman�s (1981) and use as an

approximation to the true model for the �rst observation, the same parametric form as

the conditional density for the rest of the observations. Then, using normal distributions,

Pr (yiti = 1jMiXi; Si; �i) = Pr (yit = 1jXit; Si; �i; sit�1 = 0; sit = 1)

= �
�
�0Si +X

0
iti
�Si + �Si�i

�
; (23)

where we have di¤erent parameters for each value of Si. If, instead, we allow only for

correlation between ti and �i, equation (23) will be di¤erent for each ti:

For h(�ijMiXi; Si) we can follow Chamberlain (1980) to allow for correlation between

the individual e¤ect and the explanatory variables:

�ijMiXi; Si � N
�
�0�Si +MiXi

0
��Si ; �

2
�Si

�
; (24)
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where MiXi contains the within-means of the time-varying explanatory variables for the

periods that they are observed, i.e. MiXi
0
= 1

Ti

Pti+Ti�1
t=ti

xit. Notice that (24) allows

for correlation between the sample selection process, Si, and the permanent unobserved

heterogeneity �i because the parameters are speci�c to each Si.

If one decides to consider the distribution conditional on the initial period observation,

we can write the probability in (20) as

"Z
�i

ti+Ti�1Y
t=ti+1

Pr (yitjyit�1;MiXi; Si; �i)h(�ijyiti ;MiXi; Si)d�i

#
Pr (yitijMiXi; Si) : (25)

To solve the initial conditions problem in this case we can follow Wooldridge (2005)

and specify an approximation for the density of �ijyiti ;MiXi; Si in (25). Continuing with

the Normal case, we have9

�ijyiti ;MiXi; Si � N
�
�0Si + �1Siyiti +MiXi

0
�2Si ; �

2
�Si

�
: (26)

Note that here MiXi

0
= 1

Ti�1
Pti+Ti

t=ti+1
xit for reasons given in Rabe-Hesketh and Skrondal

(2013).

Estimation

Previous models can be estimated by Maximum Likelihood (ML) and by Minimum Dis-

tance (MD).

The contribution to the likelihood function for individual i in model (21) is given by

Li =

Z
�i

�
�
�0Si +X

0
iti
�Si + �Si�i

�
(2yiti � 1) (27)(

ti+Ti�1Y
t=ti+1

� [(�yit�1 + �0 +X
0
it� + �i) (2yit � 1)]

)
h(�ijMiXi; Si)d�i;

where h(�ijMiXi; Si) is the distribution in (24) or any other distribution of �ijMiXi; Si

like a discrete �nite distribution.

In model (25) the contribution to the likelihood function for individual i is given by

Li =

Z ti+Ti�1Y
t=ti+1

�
h�
�yit�1 +X

0
it� + �0Si + �1Siyiti +MiXi

0
�2Si + a

�
(2yit � 1)

i 1

��Si
�

�
a

��Si

�
da:

(28)

9Notice that if in (26) we impose that the variance of the distribution of �ijyiti ;MiXi; Si is constant
across sub-panels, the estimation by ML becomes easier since it can be obtained using standard software
for the simple random-e¤ects probit model. See Albarran et. al. (2017) for details.
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The MLE maximizes L =
PN

i=1 logLi with respect to

� �
�
�; �0; f�0jgJj=1 ; f�1jg

J
j=1 ; f�2jg

J
j=1 ; f��jg

J
j=1

�
:

For balanced panels, it is well known since Wooldridge (2005) that modeling conditional

on the �rst observation of the dependent variable plus the normality assumption for

�ijyi1;MiXi produces a simple speci�cation that can be estimated with standard random-

e¤ects probit software. Also, for the model that follows Heckman�s approach to the

initial conditions problem, Arulampalam and Stewart (2009) propose and implement a

procedure using built-in commands in econometric software. However, in the unbalanced

case maximizing the likelihood in (27) or (28) is cumbersome and cannot be done using

such standard built-in commands.10

Regarding the MD Estimator, we obtain in a �rst stage b� = �b�01;b�02; : : : ;b�0J�0 by
maximizing Lj =

P
i2fi:Si=S(j)g logLi for each j = 1; :::; J . Then, in the second step, we

obtain b�MD
using formulas (16) and (17). The MDEstimator is simpler thanMLE because

we can use standard random-e¤ects probit software and because it is much faster. Further

details on computation time are given in Section 6.2. On the other hand, in speci�c �nite

samples, the MD estimator may su¤er from lack of variability in individual subpanels.

In such a case, the MLE could be obtained (since there could exist enough variability in

the whole sample), whereas the MD estimator could fail because in the �rst step b�j could
not be computed for all the subpanels. Based on the results reported in our simulation

exercises and in our application, this seems to be an infrequent problem.

Selecting a balanced sub-sample

Making the panel balanced using the sub-set of periods at which all individuals are ob-

served implies assuming a common normal distribution. From a practical point of view

this produces a potential problem.

If there is correlation between �i and Si and the distribution of �ijyimaxj2[1;N ] tj ;MiXi; Si

is Normal for each sub-panel, making the panel balanced and assuming that �ijyimaxj2[1;N ] tj ,X
Tm
itm

follows a normal distribution �which would allow to use the simple practical solution ex-

plained in Section 5.1 of Wooldridge (2005)� is incorrect because �ijyimaxj2[1;N ] tj ,X
Tm
itm

10Although in theory it is possible to obtain these ML estimates by using the �gllamm�and/or �gsem�
commands in Stata 13 (or higher), in practice this is not computationally feasible in many cases. See the
Albarran et. al. (2017) for details.
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would not follow a normal distribution.11

This also poses a problem for using the comparison between the estimates obtained

taking this balanced sub-sample with the estimates obtained ignoring the unbalanced-

ness to decide whether or not the unbalancedness is ignorable. If normality about the

distribution of �i is incorrectly assumed in both cases, these two estimators will tend to

produce similar biased estimates. Therefore, the comparison between them may lead to

the incorrect conclusion that the unbalancedness can be ignored.

5.2 Unbalancedness independent of the individual e¤ect

If we assume that Si is independent of �i (condition 1), then h(�ijMiXi; Si) = h(�ijMiXi).

If in addition we assume that the distribution is the same regardless of the periods for

which we observe Xi (such that condition 2 in section 3.1 is satis�ed) then we have:

�ijMiXi; Si � N
�
�0� +MiXi

0
��; �

2
�

�
: (29)

If we specify the likelihood based on expression (21), under conditions 1 and 2, even though

the unbalancedness is not ignorable, there is a simpli�cation in terms of computation

because the distribution of �i has the same parameters for all the sub-panels.
12

In contrast with that, if we use the likelihood based on (25), conditions 1 and 2 do not

lead to a conditional distribution of �i that is common to all sub-panels. As previously

noticed, even if we assume that the sample selection process Si is independent of �i,

h(�ijyiti ;MiXi; Si) will be di¤erent for each ti, i.e. it will be:

�ijyiti ;MiXi; Si � N
�
�0ti + �1tiyiti +MiXi

0
�2ti ; �

2
�ti

�
; (30)

unless the process is not dynamic or it is in its steady state since t = 0, or yti comes

from the same exogenous distribution for all units and ti (conditions 3 and 4). As can

be seen in (30), �ijyiti ;MiXi; Si still has di¤erent parameters depending on when each

sub-panel starts even under independence of the unbalancedness from �i. This implies a

11Of course, balancing the panel will work if the assumption about the distribution of
yimaxj2[1;N] tj ,X

mT
i;mt was the correct one: h(�ijyimaxj2[1;N] tj ,X

mT
i;mt) =

PJ
j=1 h(�ijyimaxj2[1;N] tj ,X

mT
i;mt; Si =

S(j)) Pr
�
Si = S

(j)jyimaxj2[1;N] tj ,X
mT
i;mt

�
. When h(�ijyimaxj2[1;N] tj ; X

mT
i;mt; Si) is the normal density, is a

mixture of normals with as many components as sub-panels. This would be a di¢ cult, though not infeas-
ible, model to estimate in practice. Certainly it is more di¢ cult to implement than the case that assumes
normality.

12For example, this makes feasible obtaining the MLE from (27) using the �gllamm�and �gsem�com-
mands in Stata, as explained in Albarran et. al (2017).
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more complicated structure of the Likelihood and, therefore, computation of the MLE in

this case is not simpler than in the general situation without independence.

5.3 Average Marginal e¤ects

The Average Marginal E¤ects (AMEs), which are ultimately the parameters of interest,

are based on

E[� (�yit�1 +X
0
it� + �i)]; (31)

where the expectation is taken with respect to the joint distribution of �i and all covariates

other than the one with respect to which the marginal e¤ect is computed.

Consider the model with a speci�cation of the distribution of the individual heterogen-

eity as in (26). Using that �i = �0Si + �1Siyiti +MiXi

0
�2Si + �i and following Wooldridge

(2005), the expression (31) becomes

E

24�
0@�yit�1 +X 0

it� + �0Si + �1Siyiti +MiXi

0
�2Siq

1 + �2�Si

1A35 ; (32)

where this expectation is taken with respect to the distribution of the covariates condi-

tional on the unbalancedness structure, fS(1); : : : ; S(J)g. It is worth noting that this ex-

pression and, therefore, the AMEs depend on the correlation between the unbalancedness

and this individual e¤ect. Therefore, when this correlation is neglected, biased estimates

of the AMEs will be obtained.

The AME for a continuous regressor is the derivative of (32) with respect to that

regressor, and the AME for a discrete regressor is the di¤erence in expression (32) for a

unitary change in that regressor.

The estimated AME, \AME, can be simply obtained by replacing the population

expectation in (32) with the sample mean. For instance, since the AME for the lagged

dependent variable is (32) evaluated at yit�1 = 1 minus that expression evaluated at

yit�1 = 0, the corresponding \AME of yit�1 is

\AMEyt�1 =
1

N

NX
i=1

�

0@�+X 0
it� + �0Si + �1Siyiti +MiXi

0
�2Siq

1 + �2�Si

1A
� 1

N

NX
i=1

�

0@X 0
it� + �0Si + �1Siyiti +MiXi

0
�2Siq

1 + �2�Si

1A : (33)

Finally, the standard errors of \AME can be computed using the Delta method.
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5.4 Summary of estimators and notation

We summarize the di¤erent estimators that could be used in practice when having an

unbalanced panel and present the notation that will be used in next sections.

Ignore Unbal.: Standard ML estimators ignoring the unbalancedness and using all ob-

servations as if the panel were balanced.

Bal. Periods: Standard ML estimators making the panel balanced using the sub-set of

periods at which all individuals are observed.

Bal. Units: Standard ML estimators making the panel balanced using the sub-set of

individuals that are observed the same number of periods.

Unbal. ML: ML estimators that account for the unbalancedness (S) and allow for cor-

relation between S and �.

Unbal. MD: MD estimators that account for the unbalancedness (S) and allow for

correlation between S and �.

Unbal. ti_ML: ML estimators that account for the unbalancedness (S) and allow for

correlation between the S and �i but only through the moment at which we �rst

observe each individual, ti: The number of periods each individual is observed is

assumed to be independent of �i.
13

Unbal. ti_MD: The same as ti_ML, but estimating by Minimum Distance.

Unbal. Indep_ML: ML estimator when assuming independence between S and �.

6 Simulations: Finite sample performance

In this section we use Monte Carlo techniques to illustrate the behavior of the estimators.

We are particularly interested in the �nite sample performance of the estimators under

di¤erent degrees of unbalancedness. In the simulations we consider the model without

other covariates because this model already contains all the problems we want to address

13For the model that speci�es the distribution of �i conditional on the initial observation this also
corresponds with the case in which we assume that the unbalancedness is independent of �i. See equation
(30) and the comments that follow that equation, and comments in subsection 5.2.
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and it reduces computational time. Nonetheless, we also present simulation results with

exogenous covariates based on the data used in the empirical application.

6.1 Data Generating Process

The sub-panels may vary in both the period individuals enter and when they leave the

sample. The degree of unbalancedness in the sample is governed by J , which, as de�ned

in Section 2, indicates the number of sub-panels. The set of individuals that are observed

the same periods form a sub-panel. We set J = 0 when the panel is balanced. In our

baseline Data Generating Process (DGP), if J = 2, i.e. if there are two sub-panels: the

�rst half of units (N
2
) are observed from 1 to T�1 and the second half of units are observed

from 2 to T . If J = 4, the �rst quarter of units are observed from 1 to T � 1, the second

quarter of units are observed from 1 to T � 2, the third are observed from 2 to T , and the

last quarter of units is observed from 3 to T . And the same for higher values of J . Table

B.1 in Appendix B shows this structure of unbalancedness up to J = 6 for a case with

T = 6. Given this way of generating the unbalancedness, J can only take even values. In

our simulation, we impose the following restrictions on the values of J : (i) the maximum

value is Jmax = minf2 � T � 3; N30g; where 2 � T � 3 guarantees that all sub-panels have

at least 3 periods and N
30
guarantees that there is at least 30 units in all sub-panels, and

(ii) the minimum value is Jmin = maxf2 � T � 15; 0g; where the restriction 2 � T � 15 is

to have sub-panels with less than 8 periods.14

Given that unbalancedness structure, we generate observations for our baseline spe-

ci�cation as follows. There are T periods in the sample and N individuals. If the panel

is balanced, then we observe all individuals from 1 to T . If the panel is unbalanced, each

individual i belongs to one of the J subpanels and it is observed from ti until ti + Ti � 1.

That is, Si 2 j where j can go from 1 to J . The �rst N
J
individuals that we generate

belongs to sub-panel j = 1, the second N
J
individuals (i.e. i from N

J
+ 1 to 2 � N

J
) belongs

14When the time length is long, �xed e¤ects approaches may be preferable. For example, simulations
in Carro (2007) show cases where a modi�ed MLE �xed e¤ects estimator performs well with 8 periods.
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to sub-panel j = 2, and so on. Our baseline DGP is:

yit = 1f�yit�1 + �i + "it � 0g (34)

"it �
iid
N(0; 1) (35)

�i jSi 2 j �
iid
N(��j; �

2
�j) (36)

��j = �� + (1:3 � J= (J � 1)) � ((j=J)� (J + 1) = (2 � J)) (37)

��j = 0:25 + (j � 1) � ((�� � 0:2) = (J � 1)) (38)

yi0 = 1f�0 + ((j=J)� (J + 1) = (2 � J)) + �1�i + vi0 � 0g; vi0 �
iid
N (0; 1) ; (39)

where � = 0:75, N = 1; 000, �� = 0, �2� = 1, �0 = �1:25, and �1 = 0:5, so the initial

condition and �i are both correlated with the unbalancedness process. We have run 1; 000

replications for each DGP considered in this section.

��j and �
2
�j are generated in a way such that in all the unbalancedness structures (J)

that we simulate: Ej(��j) = �� = 0, Ej(��j) = 0:6, ��j 2 [�1; 1], ��j 2 [0:2; 1], and ��j
and ��j are increasing in S. Thus, the value of �i is more likely to be larger the larger

the value of j, i.e. for the last sub-panels.

After the baseline DGP is simulated, it is changed to evaluate the �nite sample per-

formance along the following dimensions:

1. Unbalancedness only from the left, i.e., sub-panels di¤er only on the period they

start but all are observed until T . In this case J can take both even and odd values.

Table B.1 contains examples of this unbalanced structure. Apart from the balanced

case (J = 0), J goes from Jmin = maxfT � 6; 4g to Jmax = minfT � 2; N
30
g. Jmin

cannot be smaller than 4 because since the unbalancedness is only from the left,

a smaller J would be a case too close to a balanced situation and we have not

considered it. The way in which we generate �i here implies that individuals with

higher �i tend not to be observed the �rst periods.

2. Unbalancedness process and initial condition both generated exogenously: �i jSi 2 j �
iid

N(��; �
2
�), �� = 0, �

2
� = 1, so that �i does not depend on j, and yi0 = 1f�0+vi0 � 0g.

We also consider exogenous unbalancedness process but maintaining the endogeneity

of the initial condition.

3. We have also considered N = 500.
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4. We have also considered � = 0:5 and � = 1 to evaluate the sensitivity to di¤erent

degrees of persistence.

6.2 Monte Carlo results

For the sake of brevity not all estimators are used in all the simulation exercises. Our

general criteria has been to study in each simulated DGP the performance of estimators

whose assumptions correspond with those made in the DGP. For instance, even though

the �Unbal. ML�estimator will give consistent estimates in all the cases considered in

this paper, when the unbalancedness is generated at random, only the estimators based

this assumption (or a weaker version of it) are used. Nonetheless, for completeness, there

will be a few simulations shown in Appendix B in which other estimators, including those

that are known to be incorrect, are used too.

Table 1 and 2 shows the results for our baseline speci�cation, in which both the initial

condition and the unbalancedness are correlated with �i, when estimating the � parameter

and the AME of the lagged dependent variable, respectively. Since the true AME (slightly)

varies with the sample drawn in each Monte Carlo simulation, Tables 2 reports the true

expected AME along with the estimated AME and the Root Mean Square Error (RMSE)

of the estimators. In all cases we deal with the initial conditions problem by specifying

the density of the unobserved e¤ect conditional on the �rst observation.15

In Table 1 we observe that all the four approaches considered provide estimated values

of the parameter � very close to its true value. However, there exists some relevant points

that are worth noting. The solution that employs standard methods after balancing the

sample using the subset of periods at which all individuals are observed (�Bal. Periods�),

has two important drawbacks compared to the approaches that account for the unbal-

ancedness. First, this solution cannot be employed in many cases, including some where

the unbalancedness is moderate: for J = 4 with T = 6 or J = 6 with T = 8. Second, this

solution implies an important loss of e¢ ciency in terms of RMSE of the parameter and

of the marginal e¤ect when it can be employed, even for moderate unbalancedness. For

instance, Table 1 shows that for T = 8 and J = 4 the RMSE of the estimated parameter

15Table B.6 in Appendix B presents simulations dealing with the initial conditions problem by spe-
cifying the density of the �rst observation conditional on �i and the density of �i, and by specifying the
density on �i conditional on the �rst observation. We �nd that the results are very similar, so we focus
on the latter in all the other simulations.
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Table 1: Simulation results on the estimation of �. Baseline case. Double Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD MLb� RMSE

T=4
J=0 0.7502 0.7491 0.7502 0.7491 0.0860 0.0872 0.0860 0.0872
J=2 0.7568 0.7361 0.7185 0.1855 0.1241 0.1283

T=6
J=0 0.7508 0.7476 0.7508 0.7508 0.0579 0.0589 0.0579 0.0579
J=2 0.7211 0.7544 0.7492 0.7468 0.0925 0.1016 0.0685 0.0675
J=4 0.7448 0.7485 0.7432 0.1504 0.0714 0.0707
J=6 0.7500 0.7505 0.7356 0.1803 0.0811 0.0810

T=8
J=2 0.7282 0.7519 0.7510 0.7504 0.0610 0.0830 0.0514 0.0511
J=4 0.7457 0.7525 0.7512 0.7499 0.0925 0.1181 0.0506 0.0504
J=6 0.7476 0.7468 0.7440 0.1387 0.0557 0.0555
J=8 0.7415 0.7490 0.7432 0.1615 0.0598 0.0590
J=10 0.7500 0.7512 0.7407 0.1887 0.0638 0.0638

T=10
J=6 0.7502 0.7551 0.7515 0.7507 0.1004 0.1186 0.0430 0.0433
J=8 0.7500 0.7485 0.7472 0.1441 0.0449 0.0448
J=10 0.7413 0.7533 0.7505 0.1580 0.0494 0.0489
J=12 0.7536 0.7482 0.7429 0.1661 0.0502 0.0501
J=14 0.7464 0.7516 0.7430 0.1784 0.0549 0.0544

T=15
J=16 0.7517 0.7492 0.7484 0.1532 0.0353 0.0352

Note: In the baseline case, the initial condition and the unbalancedness are both correlated with
�, � = 0:75 and N = 1; 000.

of the �Bal. Periods�estimator is around 0:09 compared with around 0:05 for the �Unbal.

MD�and �Unbal. MLE�. For the AME, see Table 2, these �gures are around 0:04 and

0:02, respectively. Regarding the �Bal. Units�estimator, we �nd that the RMSE when

estimating � is much higher than in the case of any other estimator due to the loss of

observations when using this estimator. Furthermore in the estimation of the marginal

e¤ect the �Bal. Unit�has not only an e¢ ciency loss but also a bias problem. As explained

in Section 3.3, the estimated marginal e¤ect is inconsistent, and this is precisely what we

can see in Table 2. As a result the RMSE is twice to �ve times larger than the �Unbal.

MD�and the �Unbal. MLE�.

With respect to the comparison between �Unbal. MD�and �Unbal. MLE�, as ex-

pected, the behavior of these estimators is very similar, both in terms of the estimated
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Table 2: Simulation results on the estimation of the AMEs. Baseline case. Double
Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD ML

AME \AME RMSE
T=4
J=0 0.2020 0.2096 0.2088 0.2096 0.2015 0.0298 0.0298 0.0298 0.0286
J=2 0.2194 0.1813 0.2201 0.2072 0.0621 0.0460 0.0441

T=6
J=0 0.2021 0.2096 0.2089 0.2096 0.2024 0.0206 0.0206 0.0206 0.0187
J=2 0.2194 0.2152 0.1813 0.2259 0.2183 0.0315 0.0479 0.0291 0.0228
J=4 0.2278 0.1825 0.2320 0.2249 0.0624 0.0281 0.0252
J=6 0.2292 0.1847 0.2320 0.2230 0.0677 0.0312 0.0289

T=8
J=2 0.2195 0.2183 0.1811 0.2279 0.2192 0.0197 0.0451 0.0206 0.0169
J=4 0.2280 0.2414 0.1836 0.2349 0.2279 0.0381 0.0559 0.0205 0.0176
J=6 0.2297 0.1833 0.2336 0.2272 0.0612 0.0215 0.0195
J=8 0.2300 0.1820 0.2333 0.2269 0.0673 0.0228 0.0205
J=10 0.2300 0.1848 0.2329 0.2253 0.0707 0.0240 0.0224

T=10
J=6 0.2300 0.2484 0.1857 0.2368 0.2300 0.0558 0.0174 0.0149
J=8 0.2305 0.1845 0.2354 0.2290 0.0625 0.0171 0.0155
J=10 0.2304 0.1823 0.2362 0.2303 0.0671 0.0190 0.0171
J=12 0.2306 0.1858 0.2339 0.2276 0.0664 0.0185 0.0172
J=14 0.2303 0.1852 0.2342 0.2270 0.0694 0.0209 0.0190

T=15
J=16 0.2312 0.1849 0.2372 0.2304 0.0651 0.0137 0.0118

Note: See note in Table 1.

parameters and the marginal e¤ects. Although when estimating the model by ML we

make use an e¢ cient use of all the observations in the sample, estimating this model is

computationally cumbersome and takes a lot of time because all parameters are jointly

estimated. The MLE can take between 150 and 1; 600 times more computing time than

the MD, depending on the number of periods and subpanels. Note that the computation

time will further increase when adding covariates. In contrast to that, the MD estimation

is much faster. On the other hand, we face a potential problem of lack of variability in

certain sub-panels, although the percentage of simulations that achieved convergence for

the MD estimator is very high. In Table B.11, we see that the percentage of failures is

below 1%. Higher failure rates only appear in a few cases when considering very high
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degree of state dependence.

We have also simulated the baseline DGP with left-side unbalancedness. Results are

reported in Table B.2 and B.3 in Appendix B. The comparison of the di¤erent estimators

leads to the same conclusions as in the double unbalancedness case, both for the parameter

� and for the AMEs.

Finally, Table 3 presents the simulation results for a situation in which the initial

condition and the unbalancedness are uncorrelated with �i. As in the baseline case we

present the results from the two solutions that balance the sample. The results show a

similar pattern than in the previous DGPs, but the performance of the �Bal. Periods�

estimator is slightly better. This is because in this case it is easier to approximate the

relation between � and S with a common distribution of � that does not change across

sub-panels. Third column in Table 3 presents MD estimates allowing for correlation

between the unbalancedness and �i only through the moment at which we �rst observe

each individual, ti. Last column presents the ML estimates using the assumption of

independence between the unbalancedness and �, which corresponds with the assumption

in this DGP, but in this case using the distribution of the �rst observation conditional

on the unobserved e¤ect and the distribution of the unobserved e¤ect to deal with the

initial conditions problem. As in the baseline case, we can see that both MD and ML

estimates behave very similarly, being the former computationally much faster. Given

this, the remaining simulation results that can be found in Appendix B do not include

ML estimates.

From Tables B.4 to B.10 in Appendix B, we present a number of simulation results

where we have sequentially changed di¤erent parameters of the baseline speci�cation as

explained in Section 6.1. Although the RMSE of all the solutions is increased when the

sample size decreases, the results remain basically unchanged.

7 An application to export market participation

We illustrate previous methods by estimating a model for �rms� export market parti-

cipation decision. We use data for Spanish manufacturing �rms, the Business Strategies

Survey (Encuesta sobre Estrategias Empresariales, ESEE). The survey, sponsored by the

Spanish Ministry of Industry and published by the Fundación Empresa Pública, is under-

27



Table 3: Simulation results on the estimation of �. Baseline case but the initial condition
and the unbalancedness are uncorrelated with �. Double Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units ti_MD Indep_ML Periods Units ti_MD Indep_ML

� = 0:75 b� RMSE
T=4
J=0 0.7498 0.7498 0.7498 0.7498 0.0844 0.0844 0.0844 0.0844
J=2 0.7564 0.7528 0.7416 0.2592 0.1433 0.1261

T=6
J=0 0.7501 0.7501 0.7501 0.7501 0.0566 0.0566 0.0566 0.0566
J=2 0.7549 0.7531 0.7502 0.7488 0.1085 0.1152 0.0728 0.0709
J=4 0.7540 0.7505 0.7488 0.1685 0.0825 0.0783
J=6 0.7556 0.7585 0.7484 0.2054 0.0939 0.0861

T=8
J=2 0.7517 0.7488 0.7501 0.7495 0.0673 0.0827 0.0548 0.0545
J=4 0.7583 0.7465 0.7508 0.7498 0.1166 0.1173 0.0584 0.0578
J=6 0.7450 0.7512 0.7502 0.1407 0.0628 0.0620
J=8 0.7454 0.7513 0.7473 0.1588 0.0699 0.0679
J=10 0.7448 0.7542 0.7457 0.1781 0.0755 0.0729

T=10
J=6 0.7565 0.7526 0.7520 0.7513 0.1155 0.1199 0.0514 0.0509
J=8 0.7537 0.7511 0.7501 0.1365 0.0541 0.0536
J=10 0.7533 0.7519 0.7508 0.1505 0.0573 0.0572
J=12 0.7558 0.7535 0.7496 0.1620 0.0607 0.0594
J=14 0.7534 0.7540 0.7525 0.1751 0.0653 0.0645

T=15
J=16 0.7541 0.7509 0.7499 0.1416 0.0404 0.0406

taken annually since 1990 and constitutes an unbalanced panel.16

We use data for the period 1990 to 1999, because after 1999 there was a change in the

sample design.17 We have dropped those observations for which relevant information is

missing and those �rms a¤ected, in the corresponding year, by some process of absorption,

16There are di¤erent reasons why �rms disappear from the sample: liquidations, merges, acquisitions,
or activity changes to non-manufacturing sectors. There are also �rms that stop collaborating for un-
known reasons. Refreshment samples try to compensate the drop outs with new entrants, so as to keep
approximately the initial sample size. However, the entrance of new �rms is not implemented every year,
nor in a systematic way. For more details on the survey, see, for example, Fariñas and Jaumandreu
(1999).

17Data before and after the change are hardly comparable, because big �rms are overrepresented for
several waves after 1999. Including also this period after 1999 would imply a more severe unbalanced
structure, which would go in favor of our proposed estimators. However, we preferred not to use this
data because we did not want the unbalancedness structure to be arti�cially driven by a change in the
sample design.
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merger or split. We also eliminate the �rms that are not observed in consecutive years

and those with less than 3 observations in the sample period. Our �nal sample consists of

an unbalanced panel of 1,920 �rms and 13,203 observations. There are between 1,200 and

1,450 �rms per year approximately and 36% of the �rms are in the panel during the whole

sample period. Table 4 shows the unbalancedness structure of our sample. We have 34

di¤erent subpanels, some of them with missing observations to the right and others with

missing observations to the left. We have dropped out those subpanels with less than

100 observations (less than 30 �rms). This only represents a loss of less than 5% of the

sample, while making it feasible to obtain the MD estimator. We end up with 14 di¤erent

subpanels and with 12,683 observations and 1,807 �rms.

Table 4: Unbalancedness structure of the total sample

Number Pattern by year
Subpanel of �rms 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
S = 1 143 x x x . . . . . . .
S = 2 100 x x x x . . . . . .
S = 3 102 x x x x x . . . . .
S = 4 66 x x x x x x . . . .
S = 5 63 x x x x x x x . . .
S = 6 48 x x x x x x x x . .
S = 7 79 x x x x x x x x x .
S = 8 699 x x x x x x x x x x
S = 9 65 . x x x x x x x x x
S = 10 34 . . x x x x x x x x
S = 11 37 . . . x x x x x x x
S = 12 34 . . . . x x x x x x
S = 13 91 . . . . . . x x x x
S = 14 246 . . . . . . . x x x
S = 1 to 14 1,807
S = 15 16 . . . . . . x x x .
S = 16 12 . x x x x . . . . .
: : : other patterns
S = 15 to 34 113
All subpanels 1,920

The starting point for estimation is an equation of the form

yit = 1(�yit�1 +X
0
it� + �i + vit � 0); (40)

where yit = 1 if the i � th �rm exported in year t. Our empirical model is based on a
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simple model of optimization for a �rm facing the export decision. A pro�t-maximizing

�rm makes its decision based on the expected pro�ts from exporting, now and in the

future, taking into account the sunk costs of entering the new market, which depends

on previous export behavior, and other variable costs (see Roberts and Tybout, 1997).

On the other hand, export decision is also a¤ected by a number of time-invariant �rm-

speci�c characteristics (for instance, product quality or managerial ability) that cannot

be directly observed. The choice of variables included in the vector X largely follows

the previous literature on the determinants of �rm�s export decisions. See Table C.1 in

Appendix C for the de�nition and descriptive statistics of these variables.18 Exporters in

our total sample are on average larger and older companies, spend more on R&D and have

a higher proportion of skilled workers. These characteristics are in line with the previous

literature. With respect to the persistence, 46% of �rms in the sample exported each

year, while approximately 36% of �rms never exported and about 18% showed variation

in their exporting behavior.

With this data set we cannot perform the estimates using the balanced sample formed

by the periods at which all the �rms are observed (�Bal. Units�), because we do not have

any observation in that set (see Table 4). We have performed estimates using the balanced

sample with the �rms that are observed all the periods (those in subpanel S = 8). Tables

5, 6 and C.2 in Appendix B presents the estimation results. Columns labeled �Bal. Units�

shows estimates using the previously commented balanced sample. Columns labeled �Ig-

nore Unbal.� present the results from a model that ignores the unbalancedness. And,

�nally, columns labeled �Unbal. MD�show the results from the model that accounts for

the unbalancedness and allows for its correlation with the unobserved e¤ect. We consider

only the MD estimates because the estimation by ML is computationally cumbersome

and it presents similar performance than the MD ones, as shown in the simulations. In

all cases we model the unobserved heterogeneity conditional on the initial condition and

the time average of the exogenous variables as in equation (26).

Table C.2 presents three estimates of the common parameters of the correlated random

e¤ects probit model. Given that the comparison between estimated parameters is not

obvious because of the di¤erences in scale, we focus on Average Marginal E¤ects (AME).

18Typically the literature includes a measure of �rm�s productivity. Our data set does not o¤er a good
measure for it, but it has been accounted for by including �rms�speci�c e¤ects.
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Moreover, marginal e¤ects are usually the parameters of interest in nonlinear models.

These are presented in Table 5 for the lagged export status variable. First row presents

the AME for the entire sample. As explained in the previous sections, the estimator

that ignores the unbalancedness and the estimator that takes the balanced sample are

incorrect, since they do not allow the unobservables to have di¤erent distributions across

subpanels. Coincidentally both estimators provide similar results, probably because the

observations in the balanced sample are 56% of the sample used to estimate the model

ignoring unbalancedness. This is an example where comparing these two estimators leads

to the incorrect conclusion about the possibility of ignoring the unbalancedness.

Regarding the �Unbal. MD�estimator, we �nd that the estimated AME for the entire

sample is around 4 percentage points greater than the one from the estimator that ignores

the unbalancedness. This di¤erence is statistically signi�cant even though the AME for

the entire sample tends to mask biases in opposite directions in di¤erent subsamples.19

This can be seen in more detail if we analyze the average marginal e¤ects by subgroups

(see Table 5) and by subpanels (see Table 6). In particular, we �nd statistically di¤erent

results for younger �rms and also for �rms that do not export in the �rst period. The

last row in Table 5 presents the estimates excluding the largest subpanel (S = 8). This is

to show that if we had a dataset without a panel that dominates so much, the di¤erences

between the �Ignore Unbal.� and �Unbal. MD.�are more signi�cant, as it can be seen

from the Test of Di¤erence in the last column.

If we look at the AMEs by subpanel, there are �ve subpanels in which the MD gives

statistically signi�cant AMEs and the di¤erences are even larger than for the total sample.

Furthermore, while the MD estimates range between 0.1095 and 0.4399, the corresponding

estimates for the model ignoring the unbalancedness only range from 0.2108 to 0.2689.

There is a great deal of variation on the marginal e¤ect of lagged export across subpan-

els that is not captured by the �Ignore Unbal.� estimator. These results indicate that

the model that ignores the unbalancedness incorrectly imposes, among other restrictions,

independence between the distribution of the unobserved heterogeneity and the unbal-

ancedness.
19 In the last column of Tables 5 and 6 we have perform a Hausman-type test of the di¤erence between

the �Unbal. MD� estimates and the estimates that ignore the unbalancedness, using the variance�
covariance matrix of the MD estimates only instead of subtracting from it the variance of the �Ignore
Unbal.� estimator. Under correct speci�cation, this represents a lower bound for this test and a rejection
here will also be a rejection when using the well-de�ned variance�covariance matrix of the di¤erence.
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Table 5: Estimated Average marginal e¤ects of Lagged Export.

Bal. Units Ignore Unbal. Unbal. MD Test of Di¤.
(1) (2) (3) (2) vs (3)

Total sample 0.2423 0.2351 0.2776 *
(0.0290) (0.0234) (0.0254)

Subsample, by ageyy

Age < 12 0.2590 0.2528 0.3181 **
(0.0313) (0.0251) (0.0290)

Age 12-24 0.2735 0.2573 0.2994
(0.0314) (0.0250) (0.0266)

Age > 24 0.2121 0.2032 0.2307
(0.0268) (0.0212) (0.0234)

Subsample, by I.C.
Exportti = 1 0.1640 0.1808 0.2064

(0.0257) (0.0209) (0.0234)
Exportti = 0 0.2811 0.2811 0.3391 **

(0.0269) (0.0269) (0.0287)
Subpanels S 6= 8 0.2358 0.3267 ***

(0.0236) (0.0328)

Note: Standard errors are reported in parentheses. The implementation of the test of di¤erence
is discussed in footnote 19. Asterisks indicate the di¤erence is signi�cantly di¤erent from zero
at *10%; **5%; ***1%.
yy The age of approximately one third of the sample is lower than 12 and around 40% of the
�rms are 24 or older.

Simulation evidence on the properties of the estimators We simulated data

calibrated to the ESEE sample to study the properties of the estimators in the empirical

application. This also has the additional interest of exhibiting some Monte Carlo results

with covariates in the dynamic model, which complement those reported in Section 6.

The data generating process in sub-section 6.1 is extended here to incorporate exo-

genous covariates. Thus, the main equation becomes

yit = 1f�yit�1 +X 0
it� + �i + "it � 0g; t = ti + 1; :::; ti + Ti (41)

"itjyiti ; Xi; Si 2 j �
iid
N(0; 1) (42)

�ijyiti ; Xi; Si 2 j � N
�
�0j + �1jyiti +Xi

0
�2j; �

2
�j

�
; (43)

where Xit denotes the vector of exogenous regressors, Xi contains the within-means (from

period ti + 1 to ti + Ti) of the time-varying explanatory regressors and yiti is the �rst

observed value of the endogenous variable for the individual i (i.e., her initial condition).
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Table 6: Estimated Average marginal e¤ects of Lagged Export. By Subpanels

Bal. Units Ignore Unbal. Unbal. MD Test of Di¤.
(1) (2) (3) (2) vs (3)

Subpanels
S = 1 0.2414 0.2903

(0.0245) (0.0904)
S = 2 0.2338 0.4380 ***

(0.0239) (0.0442)
S = 3 0.2470 0.4144 **

(0.0247) (0.0776)
S = 4 0.2108 0.2539

(0.0218) (0.1033)
S = 5 0.2340 0.3477

(0.0239) (0.0732)
S = 6 0.2230 0.1095 ***

(0.0222) (0.0209)
S = 7 0.2182 0.3441 ***

(0.0223) (0.0477)
S = 8 0.2423 0.2336 0.2413

(0.0290) (0.0233) (0.0245)
S = 9 0.2195 0.2758

(0.0221) (0.0793)
S = 10 0.2612 0.2634

(0.0257) (0.1403)
S = 11 0.2689 0.3256

(0.0260) (0.0830)
S = 12 0.2674 0.3144

(0.0251) (0.1175)
S = 13 0.2563 0.4399 ***

(0.0250) (0.0393)
S = 14 0.2374 0.3765

(0.0239) (0.0877)

Note: See note in Table 5.

In this Monte Carlo exercise, the initial conditions, the exogenous regressors Xit and

their means Xi are kept �xed at their observed sample values across simulations. In

order to make the simulated model as parsimonious as possible, we have excluded those

variables that were insigni�cant in the main estimated equation (41) and in the auxiliary

regressions (43) for all the subpanels j = 1; : : : ; 14. Therefore, we consider a model only

with �Size�, the share of �Medium skill�workers, the �Age�of the �rm and a time trend

as covariates Xit (and Xi, accordingly), and it is estimated using the �Unbal. MD�in the

entire sample. The parameters required for simulations, �, �, �0j, �1j, �2j and �2�j are
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taken from these estimates. In each of our 1,000 simulations, we obtained random draws

of two mutually independent standard normal variables, "it and �i. Thus the simulated

values of yit are computed by plugging "it and �i = �0j + �1jyiti +Xi

0
�2j + ��j � �i into

(41).

Table 7 contains the simulation results for the lagged dependent variable coe¢ cients

and average marginal e¤ects. The results obtained in this experiment con�rms that the

�Unbal. MD�outperforms both �Bal. Units�and �Ignore Unbal.� estimator. First, in

part A of Table 7, we can see that our proposed �Unbal. MD�estimator performs clearly

better in terms of both bias and RMSE than the two alternatives to estimate in the total

sample the state-dependence parameter � and, specially, the AME. Then, in part B of

Table 7 we check the extent to which each estimator is able to capture heterogeneity in

the AME across subgroups. Of course, the �Bal. Units�estimator does a nice work in the

only subpanel that is using, but neglects the other ones. On the other hand the estimator

that ignores the unbalancedness can provide di¤erent AMEs across subgroups, but the

estimated AMEs are substantially biased in some of them. By contrast, the �Unbal. MD�

estimator performs reasonably well overall.

8 Conclusions

In this paper we consider the estimation of dynamic non-linear correlated random e¤ects

models when using unbalanced panel data. We identify two types of problems: (i) an

inconsistency in the estimates of the coe¢ cients when the unbalancedness is ignored;

and (ii) an e¢ ciency loss and/or an inconsistency in the estimates when using di¤erent

balanced versions of the unbalanced original data. These problems are specially severe

when the unbalanced process is correlated with the individual e¤ect.

We propose a general model that accounts for the unbalancedness that can be arbit-

rarily correlated with the permanent unobserved heterogeneity. We show that this model

can be estimated by Maximum Likelihood (ML) and also by Minimum Distance (MD).

Monte Carlo experiments and an empirical illustration show that our proposed estima-

tion approaches perform better both in terms of bias and RMSE than the approaches

that ignore the unbalancedness or that balance the sample. Both the ML and the MD

estimators have comparative advantages and disadvantages. Its computational simplicity

leads us to favor the MD approach.
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Table 7: Simulation results based on the MD results obtained in the empirical application

A. Total Sample
Bal. Units Ignore Unbal. Unbal. MD

True parameter Estimated RMSE Estimated RMSE Estimated RMSE
� = 1:5153 1.5145 0.0962 1.4651 0.0900 1.5413 0.0796

AME = 0:2721 0.2332 0.0483 0.2449 0.0358 0.2539 0.0305

B. By Subgroups
Bal. Units Ignore Unbal. Unbal. MD

True AME \AME RMSE \AME RMSE \AME RMSE
By Age
< 12 0.3055 0.2495 0.0639 0.2606 0.0513 0.2698 0.0463
12� 24 0.2895 0.2606 0.0425 0.2647 0.0352 0.2761 0.0292
> 24 0.2310 0.2065 0.0363 0.2172 0.0258 0.2249 0.0245

By Initial
Conditions
yti = 1 0.2167 0.1644 0.0580 0.1974 0.0287 0.2041 0.0281
yti = 0 0.3200 0.2962 0.0412 0.2857 0.0430 0.2970 0.0364

By Subpanels
S = 8 0.2334 0.2332 0.0280 0.2442 0.0255 0.2387 0.0266
S 6= 8 0.3196 0.2456 0.0778 0.2726 0.0576

The comparison between the sets of estimates presented in the empirical application

emphasizes the point that di¤erent individuals behave di¤erently due to the heterogeneity

in the distribution of the unobservables across subpanels. It also reveals the importance

of accounting for it to give a proper estimate of the marginal e¤ect of the explanatory

variables in a dynamic non-linear model.

The model and estimation solutions proposed in this paper include di¤erent possible

random e¤ects speci�cations: from the simple model in which the random heterogen-

eous intercepts are independent to the most general correlated random coe¢ cients model.

Moreover, it can easily accommodate models for which the state dependence follows higher

order Markov chains and models with autocorrelation in the error term.

References

[1] Akee, R. K, W. E. Copeland, G. Keeler, A. Angold, and E.J. Costello (2010): �Par-

ents�Incomes and Children�s Outcomes: A Quasi-Experiment Using Transfer Pay-

35



ments from Casino Pro�ts�, American Economic Journal: Applied Economics 2:1,

86�115.

[2] Albarran, P., R. Carrasco and J. Carro (2017): �Using Stata to Estimate Dynamic

Nonlinear Random E¤ects Models with Unbalanced Panels�, mimeo.

[3] Arellano, M. (2003): �Discrete Choice with Panel Data�, Investigaciones Económ-

icas, vol. XXVII (3), 423-458.

[4] Arellano, M. and J. Hahn (2007): �Understanding Bias in Nonlinear Panel Models:

Some Recent Developments�, in Advances in Economics and Econometrics, Theory

and Applications, Ninth World Congress, Volume 3, edited by Richard Blundell,

Whitney Newey, and Torsten Persson. Cambridge University Press.

[5] Arellano, M. and B. Honoré (2001): �Panel Data Models: Some Recent Develop-

ments�, in J. Heckman and E. Leamer (eds.): Handbook of Econometrics, Vol. 5.

North-Holland, 3229-3296.

[6] Arulampalam, W. and M. B. Stewart (2009): �Simpli�ed Implementation of the

Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative

Estimators�, Oxford Bulletin of Economics and Statistics, 71, 659-681.

[7] Bhattacharya, D. (2008): �Inference in panel data models under attrition caused by

unobsevables�, Journal of Econometrics, 144, 430-446.

[8] Bernard, A. B. and J. B. Jensen (2004): �Why Some Firms Export�, The Review of

Economics and Statistic, 86(2), 561-569.

[9] Campa, J. M. (2004): �Exchange rates and trade: How important is hysteresis in

trade?�, European Economic Review, 48, 527-548.

[10] Carro, J. M. (2007): �Estimating dynamic panel data discrete choice models with

�xed e¤ects�, Journal of Econometrics, 140, 503-528.

[11] Chamberlain, G., (1980): �Analysis of Covariance with Qualitative Data�, The Re-

view of Economic Studies, 47 (1), 225-238.

[12] Chamberlain, G., (1982): �Multivariate Regression Models for Panel Data�, Journal

of Econometrics, 18, 5-46.

36



[13] Chamberlain, G., (1984): �Panel data�, in Griliches, Z., Intrilligator, M.D., (Eds.),

Handbook of Econometrics, Vol. 2. North-Holland, Amsterdam.

[14] Contoyannis, P., A. M. Jones and N. Rice (2004): �The Dynamics of Health in the

British Household Panel Survey�, Journal of Applied Econometrics, 19, 473-503.

[15] Fariñas, J. C. and J. Jaumandreu (1999): �Diez años de Encuesta sobre Estrategias

Empresariales�, Economía Industrial, 329, 29-42.

[16] Heckman, J.J. (1981): �The incidental parameters problem and the problem of ini-

tial conditions in estimating a discrete time�discrete data stochastic process�, in

Structural Analysis of Discrete Data with Econometric Applications, Manski, C.,

McFadden, D. (eds). MIT Press: Cambridge, MA, 114�178.

[17] Hyslop, D. R. (1999): �State dependence, serial correlation and heterogeneity in

intertemporal labor force participation of married women�, Econometrica, 67, 1255-

1294.

[18] Magnus, J. R. and H. Neudecker (1999): �Matrix Di¤erential Calculus with Applic-

ations in Statistics and Econometrics�, Wiley, England.

[19] Pacini, D. and F. Windmeijer (2015): �Moment conditions for AR(1) panel data

models with missing outcomes�, Discussion Paper 15/660, Department of Economics,

University of Bristol.

[20] Rabe-Hesketh, S., and A. Skrondal (2013): �Avoiding biased versions of Wooldridge�s

simple solution to the initial conditions problem�, Economics Letters, 120, 346-349.

[21] Roberts, M., and J. Tybout, J. (1997): �The decision to export in Colombia: An

empirical model of entry with Sunk Costs�, American Economic Review, 87(4), 545-

564.

[22] Stewart, M. B. (2007): �The interrelated dynamics of unemployment and low-wage

employment�, Journal of Applied Econometrics, 22, 511- 531.

[23] Wooldridge, J. M. (2005): �Simple Solutions to the Initial Conditions Problem for

Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity�, Journal of

Applied Econometrics, 20, 39-54.

37



[24] Wooldridge, J. M. (2007): �Inverse probability weighted estimation for general miss-

ing data problems�, Journal of Econometrics 141, pp. 1281-1301

[25] Wooldridge, J. M. (2010): �Correlated Random E¤ects Models with Unbalanced

Panels�, mimeo.

38



A Appendix: MD Estimator

We show that (16) and (17) are the result to the minimization problem in (13). Given

that the matrix V is block diagonal, that problem becomes

min
�
Q(�) =

JX
j=1

24 b�[c]j � �b�[nc]j � j

!0 �
V ar(b�j)��1 b�[c]j � �b�[nc]j � j

!35 ; (44)

where V ar(b�j), that is the jth-block in the diagonal of V ar �b��, is:
V ar

�b�j� =
0@ V ar

�b�[c]j � Cov
�b�[c]j ;b�[nc]j

�
Cov

�b�[c]j ;b�[nc]j

�0
V ar

�b�[nc]j

�
1A : (45)

Based on the result on the inverse of block matrices (cf. p. 11 in Magnus and Neu-

decker, 1999): �
V ar(b�j)��1 � � V11j V12j

V 012j D�1
j

�
; (46)

where

V11j = V ar
�b�[c]j ��1 + V ar �b�[c]j ��1Cov �b�[c]j ;b�[nc]j

�
D�1
j Cov

�b�[c]j ;b�[nc]j

�0
V ar

�b�[c]j ��1
(47)

V12j = �V ar
�b�[c]j ��1Cov �b�[c]j ;b�[nc]j

�
D�1
j (48)

Dj = V ar
�b�[nc]j

�
� Cov

�b�[c]j ;b�[nc]j

�0
V ar

�b�[c]j ��1Cov �b�[c]j ;b�[nc]j

�
: (49)

We can derive the �rst order conditions of the minimization problem in (44) as:

@Q(�)

@j
= �2V 012j

�b�[c]j � ��� 2D�1
j

�b�[nc]j � j
�
= 0; j = 1; :::; J (50)

@Q(�)

@�
=

JX
j=1

h
�2V11j

�b�[c]j � ��� 2V12j �b�[nc]j � j
�i
= 0 (51)

Substituting the expression of V 012j in (50), we obtain�b�[nc]j � bMD
j

�
= DjD

�1
j Cov

�b�[c]j ;b�[nc]j

�0
V ar

�b�[c]j ��1 �b�[c]j � b�MD
�
: (52)

from which the expression for the MD estimator of each bMD
j in (17) follows.

On the other hand, we can insert the expression of
�b�[nc]j � bMD

j

�
from (52) into (51)

to get
JX
j=1

h
V11j

�b�[c]j � b�MD
�
� V12jDjV

0
12j

�b�[c]j � b�MD
�i
= 0: (53)
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Then using the expressions for V11j and V12j it simpli�es to 
JX
j=1

V ar
�b�[c]j ��1

! b�MD
=

JX
j=1

V ar
�b�[c]j ��1b�[c]j (54)

and we obtain the expression for the MD estimator of the common parameters in (16).

Notice that for estimation the elements of V ar
�b�j� in (45) are replaced by the con-

sistent estimators of them that we obtain in the �rst step.
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B Appendix: Other simulation tables

Table B.1: Examples of (un)balanced structures

t = 1 2 3 4 5 6
Balanced case
J = 0, For N units x x x x x x

Double unbalancedness
J = 2, For N=2 units x x x x x .

For N=2 units . x x x x x
J = 4, For N=4 units x x x x x .

For N=4 units x x x x . .
For N=4 units . x x x x x
For N=4 units . . x x x x

J = 6, For N=6 units x x x x x .
For N=6 units x x x x . .
For N=6 units x x x . . .
For N=6 units . x x x x x
For N=6 units . . x x x x
For N=6 units . . . x x x

Left-side Unbalancedness
J = 2, For N=2 units x x x x x x

For N=2 units . x x x x x
J = 3, For N=3 units x x x x x x

For N=3 units . x x x x x
For N=3 units . . x x x x

J = 4, For N=4 units x x x x x x
For N=4 units . x x x x x
For N=4 units . . x x x x
For N=4 units . . . x x x

Note: �x�denotes that individuals are observed in that period and �.� that they are not.
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Table B.2: Simulation results on the estimation of �. Baseline case. Left-side Unbal-
ancedness

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD MLb� RMSE

T=4
J=0 0.7502 0.7502 0.7502 0.7502 0.0860 0.0860 0.0860 0.0860
J=2 0.7325 0.7430 0.7376 0.1103 0.0947 0.0942

T=6
J=0 0.7508 0.7508 0.7508 0.7508 0.0579 0.0580 0.0580 0.0580
J=4 0.7416 0.7490 0.7449 0.1014 0.0673 0.0668

T=8
J=4 0.7388 0.7494 0.7516 0.7505 0.0723 0.0778 0.0509 0.0507
J=5 0.7386 0.7440 0.7480 0.7462 0.0931 0.0902 0.0509 0.0506
J=6 0.7427 0.7510 0.7480 0.0983 0.0564 0.0560

T=10
J=4 0.7386 0.7489 0.7479 0.7476 0.0504 0.0667 0.0399 0.0398
J=5 0.7415 0.7439 0.7488 0.7482 0.0581 0.0768 0.0419 0.0419
J=6 0.7438 0.7472 0.7493 0.7484 0.0746 0.0829 0.0438 0.0437
J=7 0.7427 0.7500 0.7501 0.7488 0.0956 0.0914 0.0456 0.0456
J=8 0.7456 0.7498 0.7476 0.0960 0.0467 0.0466

T=15
J=9 0.7438 0.7460 0.7486 0.7483 0.0518 0.0760 0.0336 0.0337
J=10 0.7495 0.7458 0.7496 0.7491 0.0608 0.0835 0.0349 0.0350
J=11 0.7487 0.7538 0.7521 0.7515 0.0765 0.0860 0.0344 0.0344
J=12 0.7404 0.7472 0.7483 0.7473 0.0997 0.0892 0.0362 0.0361
J=13 0.7493 0.7491 0.7478 0.0940 0.0380 0.0380
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Table B.3: Simulation results on the estimation of the AMEs. Baseline case. Left-side
Unbalancedness.

Bal. Bal. Unbal. Unbal. Bal. Bal. Unbal. Unbal.
Periods Units MD ML Periods Units MD ML

AME \AME RMSE
T=4
J=0 0.2023 0.2096 0.2096 0.2096 0.2023 0.0298 0.0298 0.0298 0.0284
J=2 0.2278 0.2684 0.2306 0.2227 0.0613 0.0362 0.0334

T=6
J=0 0.2020 0.2097 0.2096 0.2096 0.2024 0.0206 0.0206 0.0206 0.0187
J=4 0.2398 0.2732 0.2424 0.2372 0.0528 0.0260 0.0244

T=8
J=4 0.2364 0.2361 0.2764 0.2419 0.2364 0.0265 0.0507 0.0260 0.0178
J=5 0.2401 0.2388 0.2745 0.2433 0.2385 0.0356 0.0494 0.0203 0.0183
J=6 0.2438 0.2738 0.2472 0.2426 0.0495 0.0215 0.0206

T=10
J=4 0.2347 0.2364 0.2766 0.2395 0.2338 0.0181 0.0495 0.0157 0.0139
J=5 0.2376 0.2404 0.2745 0.2422 0.2367 0.0216 0.0478 0.0161 0.0147
J=6 0.2404 0.2432 0.2758 0.2444 0.2396 0.0286 0.0480 0.0172 0.0155
J=7 0.2431 0.2441 0.2773 0.2470 0.2423 0.0378 0.0494 0.0174 0.0164
J=8 0.2461 0.2750 0.2492 0.2449 0.0472 0.0178 0.0171

T=15
J=9 0.2412 0.2469 0.2757 0.2459 0.2406 0.0203 0.0452 0.0128 0.0118
J=10 0.2429 0.2496 0.2754 0.2474 0.2424 0.0242 0.0456 0.0133 0.0123
J=11 0.2449 0.2499 0.2784 0.2498 0.2453 0.0300 0.0469 0.0136 0.0122
J=12 0.2469 0.2470 0.2757 0.2500 0.2456 0.0397 0.0446 0.0135 0.0129
J=13 0.2489 0.2768 0.2516 0.2477 0.0456 0.0143 0.0138
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Table B.4: Simulation results on the estimation of �. Baseline case but with N = 500.

Panel A: Double Unbalancedness
Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

� = 0:75 b� RMSE
T=4 J=0 0.7472 0.7472 0.7472 0.1280 0.1280 0.1280

J=2 0.7479 0.7192 0.2602 0.1718
T=6 J=0 0.7518 0.7518 0.7518 0.0796 0.0796 0.0796

J=2 0.7250 0.7523 0.7502 0.1225 0.1457 0.0923
J=4 0.7443 0.7468 0.2171 0.1008
J=6 0.7489 0.7479 0.2604 0.1050

T=8 J=2 0.7277 0.7497 0.7465 0.0815 0.1085 0.0675
J=4 0.7460 0.7503 0.7506 0.1325 0.1614 0.0728
J=6 0.7455 0.7477 0.1999 0.0769
J=8 0.7429 0.7525 0.2372 0.0844
J=10 0.7387 0.7485 0.2530 0.0842

T=10 J=6 0.7521 0.7516 0.7533 0.1363 0.1682 0.0599
J=8 0.7543 0.7508 0.1875 0.0627
J=10 0.7416 0.7472 0.2261 0.0664
J=12 0.7346 0.7480 0.2474 0.0717
J=14 0.7434 0.7490 0.2627 0.0735

T=15 J=16 0.7475 0.7484 0.2162 0.0500

Panel B: Left-side Unbalancedness
Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

� = 0:75 b� RMSE
T=4 J=0 0.7472 0.7472 0.7472 0.1280 0.1280 0.1280

J=2 0.7178 0.7327 0.1582 0.1318
T=6 J=0 0.7518 0.7518 0.7518 0.0796 0.0796 0.0796

J=4 0.7300 0.7487 0.1396 0.0922
T=8 J=4 0.7393 0.7419 0.7485 0.0995 0.1085 0.0699

J=5 0.7355 0.7420 0.7498 0.1319 0.1234 0.0719
J=6 0.7340 0.7519 0.1332 0.0774

T=10 J=4 0.7421 0.7491 0.7498 0.0745 0.0927 0.0580
J=5 0.7425 0.7442 0.7491 0.0817 0.1027 0.0584
J=6 0.7454 0.7455 0.7504 0.1020 0.1157 0.0622
J=7 0.7421 0.7422 0.7497 0.1293 0.1285 0.0640
J=8 0.7442 0.7514 0.1374 0.0650

T=15 J=9 0.7437 0.7466 0.7472 0.0718 0.1059 0.0473
J=10 0.7449 0.7476 0.7484 0.0860 0.1094 0.0474
J=11 0.7543 0.7556 0.7550 0.1044 0.1246 0.0505
J=12 0.7483 0.7478 0.7502 0.1381 0.1242 0.0508
J=13 0.7526 0.7493 0.1248 0.0518
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Table B.5: Simulation results on the estimation of the AMEs. Baseline case but with
N = 500.

Panel A: Double Unbalancedness
Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

AME \AME RMSE
T=4 J=0 0.2020 0.2094 0.2094 0.2094 0.0431 0.0431 0.0431

J=2 0.2195 0.1801 0.2148 0.0778 0.0581
T=6 J=0 0.2022 0.2106 0.2106 0.2106 0.0276 0.0276 0.0276

J=2 0.2194 0.2165 0.1811 0.2280 0.0428 0.0559 0.0331
J=4 0.2277 0.1819 0.2332 0.0761 0.0358
J=6 0.2291 0.1838 0.2324 0.0851 0.0370

T=8 J=2 0.2194 0.2182 0.1800 0.2271 0.0275 0.0498 0.0243
J=4 0.2281 0.2420 0.1827 0.2352 0.0529 0.0644 0.0267
J=6 0.2298 0.1828 0.2352 0.0737 0.0275
J=8 0.2302 0.1843 0.2372 0.0811 0.0307
J=10 0.2301 0.1820 0.2335 0.0868 0.0296

T=10 J=6 0.2299 0.2491 0.1842 0.2381 0.0572 0.0669 0.0226
J=8 0.2306 0.1872 0.2378 0.0706 0.0233
J=10 0.2306 0.1837 0.2361 0.0809 0.0240
J=12 0.2308 0.1814 0.2356 0.0856 0.0255
J=14 0.2304 0.1842 0.2346 0.0879 0.0257

T=15 J=16 0.2313 0.1855 0.2374 0.0791 0.0187

Panel B: Left-side Unbalancedness
Bal. Bal. Unbal. Bal. Bal. Unbal.
Periods Units MD Periods Units MD

AME \AME RMSE
T=4 J=0 0.2020 0.2094 0.2094 0.2094 0.0431 0.0431 0.0431

J=2 0.2276 0.2625 0.2285 0.0723 0.0466
T=6 J=0 0.2022 0.2106 0.2106 0.2106 0.0276 0.0276 0.0276

J=4 0.2397 0.2679 0.2440 0.0613 0.0340
T=8 J=4 0.2364 0.2367 0.2731 0.2417 0.0369 0.0561 0.0255

J=5 0.2402 0.2377 0.2735 0.2449 0.0501 0.0589 0.0265
J=6 0.2439 0.2702 0.2483 0.0577 0.0288

T=10 J=4 0.2345 0.2378 0.2766 0.2408 0.0275 0.0554 0.0217
J=5 0.2376 0.2406 0.2746 0.2428 0.0304 0.0544 0.0215
J=6 0.2404 0.2443 0.2751 0.2457 0.0393 0.0567 0.0230
J=7 0.2431 0.2442 0.2732 0.2472 0.0507 0.0583 0.0235
J=8 0.2461 0.2740 0.2501 0.0597 0.0241

T=15 J=9 0.2416 0.2467 0.2756 0.2454 0.0274 0.0527 0.0171
J=10 0.2430 0.2479 0.2758 0.2470 0.0332 0.0530 0.0175
J=11 0.2449 0.2552 0.2792 0.2506 0.0413 0.0585 0.0188
J=12 0.2469 0.2501 0.2759 0.2507 0.0544 0.0556 0.0187
J=13 0.2491 0.2773 0.2518 0.0550 0.0189
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Table B.6: Simulation results. Baseline case but with the Unbalancedness and the initial
condition uncorrelated with � and N = 500.

Panel A: Double Unbalancedness

Bal. Units Bal. Units* MD Indep_ML* Bal. Units Bal. Units* MD Indep_ML*
� = 0:75 b� RMSE

T=4 J=0 0.7532 0.7532 0.7532 0.7532 0.1212 0.1213 0.1212 0.1213
J=2 0.7633 0.7409 0.2115 0.1848

T=6 J=0 0.7502 0.7502 0.7502 0.7502 0.0833 0.0833 0.0833 0.0833
J=2 0.7567 0.7538 0.7557 0.7530 0.1620 0.1617 0.1046 0.1025
J=4 0.7588 0.7513 0.1178 0.1100
J=6 0.7715 0.7543 0.1366 0.1253

T=8 J=2 0.7518 0.7500 0.7513 0.7505 0.1002 0.0999 0.0801 0.0796
J=4 0.7616 0.7561 0.7513 0.7504 0.1673 0.1665 0.0856 0.0850
J=6 0.7518 0.7493 0.0912 0.0892
J=8 0.7558 0.7460 0.0984 0.0956
J=10 0.7594 0.7474 0.1072 0.1057

T=10 J=6 0.7672 0.7608 0.7505 0.7500 0.1652 0.1638 0.0699 0.0697
J=8 0.7513 0.7494 0.0739 0.0732
J=10 0.7526 0.7471 0.0791 0.0783
J=12 0.7572 0.7459 0.0843 0.0853
J=14 0.7590 0.7530 0.0887 0.0906

T=15 J=16 0.7475 0.7438 0.0559 0.0564

* indicates that this estimator has been computed using Heckman�s approach.
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Table B.6: Simulation results. Baseline case but with the Unbalancedness and the initial
condition uncorrelated with � and N = 500. (cont�d)

Panel B: Left-side Unbalancedness

Bal. Units Bal. Units* MD Indep_ML Bal. Units Bal. Units* MD Indep_ML
� = 0:75 b� RMSE

T=4 J=0 0.7532 0.7532 0.7532 0.7532 0.1212 0.1213 0.1212 0.1213
J=2 0.7590 0.7482 0.1595 0.1482

T=6 J=0 0.7502 0.7502 0.7502 0.7502 0.0833 0.0833 0.0833 0.0833
J=4 0.7667 0.7514 0.1304 0.1230

T=8 J=4 0.7537 0.7501 0.7520 0.7493 0.1229 0.1224 0.0895 0.0876
J=5 0.7553 0.7502 0.7570 0.7492 0.1662 0.1667 0.0979 0.0944
J=6 0.7590 0.7474 0.1068 0.1035

T=10 J=4 0.7506 0.7488 0.7502 0.7494 0.0836 0.0836 0.0681 0.0679
J=5 0.7473 0.7447 0.7491 0.7480 0.0986 0.0981 0.0719 0.0717
J=6 0.7468 0.7435 0.7494 0.7458 0.1199 0.1194 0.0766 0.0754
J=7 0.7467 0.7414 0.7527 0.7441 0.1648 0.1653 0.0827 0.0814
J=8 0.7553 0.7480 0.0875 0.0829

T=15 J=9 0.7540 0.7520 0.7510 0.7497 0.0842 0.0838 0.0548 0.0547
J=10 0.7533 0.7507 0.7506 0.7484 0.0961 0.0955 0.0575 0.0570
J=11 0.7563 0.7523 0.7519 0.7452 0.1219 0.1210 0.0606 0.0606
J=12 0.7568 0.7527 0.7540 0.7406 0.1655 0.1665 0.0629 0.0643
J=13 0.7557 0.7399 0.0663 0.0648

* indicates that this estimator has been computed using Heckman�s approach.
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Table B.7: Simulation results. Baseline case but with Smaller state dependence (� = 0:50)
and N = 500.

Panel A: Double Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

� = 0:50 b� RMSE
T=4 J=0 0.5014 0.5014 0.1199 0.1199

J=2 0.5107 0.2168
T=6 J=0 0.4964 0.4964 0.0801 0.0801

J=2 0.4991 0.4999 0.1516 0.1007
J=4 0.5020 0.1150
J=6 0.5168 0.1330

T=8 J=2 0.5024 0.5017 0.0942 0.0771
J=4 0.5109 0.5018 0.1550 0.0821
J=6 0.5020 0.0871
J=8 0.5060 0.0962
J=10 0.5108 0.1059

T=10 J=6 0.5128 0.4998 0.1488 0.0660
J=8 0.4996 0.0701
J=10 0.5001 0.0743
J=12 0.5037 0.0789
J=14 0.5061 0.0845

T=15 J=16 0.4964 0.0543

Panel B: Left-side Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

� = 0:50 b� RMSE
T=4 J=0 0.5014 0.5014 0.1199 0.1199

J=2 0.5063 0.1597
T=6 J=0 0.4964 0.4964 0.0801 0.0801

J=4 0.5079 0.1199
T=8 J=4 0.5041 0.5020 0.1141 0.0874

J=5 0.5074 0.5048 0.1542 0.0933
J=6 0.5097 0.1018

T=10 J=4 0.5003 0.5000 0.0775 0.0626
J=5 0.4968 0.4992 0.0920 0.0665
J=6 0.4956 0.4998 0.1093 0.0870
J=7 0.4795 0.5032 0.1517 0.0751
J=8 0.5060 0.0805

T=15 J=9 0.5006 0.4995 0.0798 0.0534
J=10 0.5016 0.4987 0.0919 0.0559
J=11 0.5030 0.4998 0.1136 0.0590
J=12 0.5065 0.5013 0.1539 0.0604
J=13 0.5035 0.0627
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Table B.8: Simulation results. Baseline case but with Higher state dependence (� = 1)
and N = 500.

Panel A: Double Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

� = 1 b� RMSE
T=4 J=0 1.0029 1.0029 0.1206 0.1206

J=2 1.0167 0.2136
T=6 J=0 1.0016 1.0016 0.0856 0.0856

J=2 1.0112 1.0072 0.1691 0.1096
J=4 1.0161 0.1249
J=6 1.0220 0.1381

T=8 J=2 1.0030 1.0017 0.1042 0.0829
J=4 1.0140 1.0010 0.1761 0.0889
J=6 1.0037 0.0981
J=8 1.0078 0.1051
J=10 1.0106 0.1152

T=10 J=6 1.0184 1.0014 0.1854 0.0730
J=8 1.0030 0.0772
J=10 1.0060 0.0834
J=12 1.0104 0.0879
J=14 1.0100 0.0929

T=15 J=16 1.0001 0.0592

Panel B: Left-side Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

� = 1 b� RMSE
T=4 J=0 1.0029 1.0029 0.1206 0.1206

J=2 1.0089 0.1608
T=6 J=0 1.0016 1.0016 0.0856 0.0856

J=4 1.0232 0.1344
T=8 J=4 1.0050 1.0033 0.1367 0.0923

J=5 1.0044 1.0095 0.1865 0.1012
J=6 1.0113 0.1135

T=10 J=4 1.0031 1.0015 0.0923 0.0718
J=5 1.0012 1.0010 0.1086 0.0765
J=6 1.0005 1.0040 0.1352 0.0823
J=7 1.0034 1.0076 0.1878 0.0890
J=8 1.0081 0.0940

T=15 J=9 1.0055 1.0033 0.0934 0.0604
J=10 1.0051 1.0027 0.1061 0.0626
J=11 1.0080 1.0048 0.1350 0.0661
J=12 1.0085 1.0067 0.1873 0.0691
J=13 1.0065 0.0718
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Table B.9: Simulation results. Baseline case but with the Unbalancedness uncorrelated
with � and N = 500.

Panel A: Double Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

� = 0:75 b� RMSE
T=4 J=0 0.7535 0.7535 0.1258 0.1258

J=2 0.7658 0.2207
T=6 J=0 0.7506 0.7506 0.0852 0.0852

J=2 0.7580 0.7565 0.1642 0.1067
J=4 0.7596 0.1203
J=6 0.7727 0.1403

T=8 J=2 0.7518 0.7519 0.1007 0.0815
J=4 0.7615 0.7521 0.1676 0.0873
J=6 0.7528 0.0928
J=8 0.7569 0.1006
J=10 0.7608 0.1098

T=10 J=6 0.7672 0.7505 0.1657 0.0709
J=8 0.7514 0.0749
J=10 0.7526 0.0803
J=12 0.7574 0.0855
J=14 0.7594 0.0905

T=15 J=16 0.7482 0.0562

Panel B: Left-side Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

� = 0:75 b� RMSE
T=4 J=0 0.7535 0.7535 0.1258 0.1259

J=2 0.7596 0.1659
T=6 J=0 0.7506 0.7506 0.0852 0.0852

J=4 0.7684 0.1329
T=8 J=4 0.7537 0.7525 0.1230 0.0903

J=5 0.7554 0.7577 0.1664 0.0989
J=6 0.7594 0.1075

T=10 J=4 0.7506 0.7499 0.0837 0.0690
J=5 0.7473 0.7489 0.0987 0.0725
J=6 0.7468 0.7492 0.1199 0.0770
J=7 0.7466 0.7525 0.1648 0.0831
J=8 0.7552 0.0879

T=15 J=9 0.7540 0.7511 0.0842 0.0547
J=10 0.7533 0.7508 0.0961 0.0574
J=11 0.7563 0.7521 0.1219 0.0605
J=12 0.7568 0.7541 0.1655 0.0629
J=13 0.7589 0.0664
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Table B.10: Simulation results on the estimation of the AMEs. Baseline case but with
the Unbalancedness uncorrelated with � and N = 500.

Panel A: Double Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

AME \AME RMSE
T=4 J=0 0.2019 0.2034 0.2034 0.0416 0.0416

J=2 0.2019 0.2092 0.0764
T=6 J=0 0.2021 0.2024 0.2024 0.0273 0.0273

J=2 0.2021 0.2088 0.2052 0.0602 0.0362
J=4 0.2021 0.2068 0.0414
J=6 0.2021 0.2093 0.0476

T=8 J=2 0.2021 0.2039 0.2031 0.0339 0.0265
J=4 0.2021 0.2109 0.2034 0.0612 0.0286
J=6 0.2021 0.2038 0.0306
J=8 0.2021 0.2048 0.0333
J=10 0.2021 0.2045 0.0360

T=10 J=6 0.2020 0.2133 0.2025 0.0625 0.0229
J=8 0.2020 0.2030 0.0244
J=10 0.2020 0.2032 0.0264
J=12 0.2020 0.2043 0.0274
J=14 0.2020 0.2040 0.0296

T=15 J=16 0.2021 0.2018 0.0180

Panel B: Left-side Unbalancedness
Bal. Units Unbal. MD Bal. Units Unbal. MD

AME \AME RMSE
T=4 J=0 0.2019 0.2034 0.2034 0.0416 0.0416

J=2 0.2019 0.2065 0.0589
T=6 J=0 0.2021 0.2024 0.2024 0.0273 0.0273

J=4 0.2021 0.2086 0.0462
T=8 J=4 0.2021 0.2058 0.2042 0.0436 0.0304

J=5 0.2021 0.2081 0.2060 0.0614 0.0335
J=6 0.2021 0.2055 0.0369

T=10 J=4 0.2020 0.2036 0.2026 0.0285 0.0226
J=5 0.2020 0.2028 0.2023 0.0340 0.0239
J=6 0.2020 0.2032 0.2026 0.0423 0.0256
J=7 0.2020 0.2048 0.2037 0.0605 0.0280
J=8 0.2020 0.2037 0.0297

T=15 J=9 0.2021 0.2051 0.2031 0.0286 0.0178
J=10 0.2021 0.2051 0.2030 0.0331 0.0188
J=11 0.2021 0.2071 0.2035 0.0435 0.0199
J=12 0.2021 0.2093 0.2040 0.0612 0.0208
J=13 0.2021 0.2039 0.0218
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Table B.11: Percentage of Monte Carlo Simulations that achieved convergence for the
Minimum Distance estimation

Uncorrelated IC Higher Uncorrelated
Baseline and Unbalancedness State Dependence Unbalancedness

Unbal. MD in Unbal. MD in Unbal. MD in Unbal. MD in
Tables 1 & B.2 Table B.6 Table B.8 Table B.9

Panel A: Double Unbalancedness
T=4 J=0 100.0 100.0 100.0 100.0

J=2 99.0 100.0 100.0 100.0
T=6 J=0 100.0 100.0 100.0 100.0

J=2 100.0 100.0 100.0 100.0
J=4 100.0 100.0 99.9 100.0
J=6 99.9 99.8 99.5 99.9

T=8 J=2 100.0 100.0 100.0 100.0
J=4 100.0 100.0 100.0 100.0
J=6 100.0 100.0 100.0 100.0
J=8 100.0 100.0 100.0 100.0
J=10 99.8 99.1 95.5 99.1

T=10 J=6 100.0 100.0 100.0 100.0
J=8 100.0 100.0 100.0 100.0
J=10 100.0 100.0 100.0 100.0
J=12 100.0 100.0 99.7 100.0
J=14 100.0 95.0 89.2 95.1

T=15 J=16 100.0 100.0 99.9 100.0

Panel B: Left-side Unbalancedness
T=4 J=0 100.0 100.0 100.0 100.0

J=2 99.9 100.0 100.0 100.0
T=6 J=0 100.0 100.0 100.0 100.0

J=4 100.0 100.0 99.7 100.0
T=8 J=4 100.0 100.0 100.0 100.0

J=5 100.0 100.0 100.0 100.0
J=6 100.0 99.9 99.3 99.9

T=10 J=4 100.0 100.0 100.0 100.0
J=5 100.0 100.0 100.0 100.0
J=6 100.0 100.0 100.0 100.0
J=7 100.0 100.0 100.0 100.0
J=8 99.9 99.5 98.3 99.5

T=15 J=9 100.0 100.0 100.0 100.0
J=10 100.0 100.0 100.0 100.0
J=11 100.0 100.0 99.9 100.0
J=12 100.0 100.0 99.7 100.0
J=13 99.8 96.8 91.3 96.8

Note: In other speci�cations all simulations converged or the percentage of convergence
very was close to 100%.
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C Appendix: Other application tables

Table C.1: De�nition of variables and Descriptive statistics

Variable De�nition Total Exporters Non-exporters
Export Export activity (binary indicator) 0.52

(0.50)
Size (Number of employees)/100 1.77 2.95 0.48

(5.7) (7.6) (1.1)
R&D intensity (R&D expenditure)/Sales 0.006 0.009 0.002

(0.02) (0.02) (0.01)
High skill Share of workers 2.93 3.7 2.0

with a university degree (5.6) (5.7) (5.4)
Med. skill Share of workers 4.23 5.2 3.1

with a high-school degree (6.9) (7.3) (6.2)
Age Years since �rm�s creation /10 2.40 2.98 1.78

(2.3) (2.5) (1.9)
Number of Observations 13,203 6,887 6,316

Note: For each variable, Mean and Standard Deviation (in parentheses) are reported
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Table C.2: Export decision estimates

Variables Bal. Units Ignore Unbal. Unbal. MD

Exportt�1 1.544 1.459 1.534
(0.094) (0.075) (0.074)

Sizet 0.107 0.035 0.029
(0 .119) (0.085) (0.086)

Trend 0.100 0.097 0.095
(0 .015) (0.011) (0.013)

R&D_intt -2.535 -1.412 -2.263
(1.994) (1.562) (1.752)

High_skillt -0.010 -0.009 -0.011
(0 .011) (0.008) (0.008)

Med_skillt 0.002 0.002 0.006
(0.007) (0.005) (0.005)

Aget 0.039 0.045 0.025
(0.030) (0.021) (0.021)

Exportti 2.618 2.475
(0 .239) (0.177)

Size 0.106 0.211
(0.128) (0.093)

R&D_int 6.695 7.123
(4.871) (3.215)

High_skill 0.000 0.003
(0.019) (0.012)

Med_skill 0.038 0.028
(0.015) (0.009)

Const. -2.646 -2.693
(0.165) (0.126)

Num. obs. 6,291 10,876 10,876
Note: Standard errors are reported in parentheses.
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