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Abstract. This paper introduces a novel approach for querying samples
to be labeled in active learning for image recognition. The user is able
to efficiently label images with a visualization for training a classifier.
This visualization is achieved by using dimension reduction techniques
to create a 2D feature embedding from high-dimensional features. This
is made possible by a querying strategy specifically designed for the visu-
alization, seeking optimized bounding-box views for subsequent labeling.
The approach is implemented in a web-based prototype. It is compared
in-depth to other active learning querying strategies within a user study
we conducted with 31 participants on a challenging data set. While using
our approach, the participants could train a more accurate classifier than
with the other approaches. Additionally, we demonstrate that due to the
visualization, the number of labeled samples increases and also the label
quality improves.
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1 Motivation

In a classification task, there are machine learning models that can be trained
incrementally and samples can be labeled step-wise by the user. Active learning
[14] is an efficient training technique, where the samples, which are predicted to
deliver the highest improvement for the classifier, are chosen for being labeled.
There are several approaches for selecting the samples to be queried. However,
it depends on the actual data which approach yields the best accuracy [16].

Having this in mind, we try to find a more efficient way for applying active
learning. The common practice is to ask the human for a label of one single
sample at a time [15]. Since this is a monotonous task and therefore often leads
to mislabeled samples, we want to intervene already at this point by using a
labeling user interface which is not only capable of boosting the performance
of the classifier and increase the number of labeled samples, but also gives the
human a more pleasurable experience while training the classifier. Another goal
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is to give the human a better idea about the inner representation of the trained
model. This insight may lead to a better understanding where strengths and
weaknesses of a feature representation are. To facilitate human labeling of high-
dimensional samples, we use dimension reduction techniques to visualize the data
in a 2D feature embedding space. We use this for improving active querying in
an image recognition task.

There are some approaches towards machine learning using such a visualiza-
tion. Recently, Cavallo et al. [1] introduced an approach for not only visualizing
high-dimensional data, but also changing both the data in the feature embedding
space and in high-dimensional space. For instance, after changing data in feature
embedding space it can be explored what effect this has in the high-dimensional
data and vice versa. Iwata et al. [6] introduced an approach where the user can
relocate the data in a visualization to be more representative for him. This can
be useful if data is clustered in different categories and a category should be lo-
cated in one region of the visualization space. It is also useful for ordering data,
if it has a natural ordering like numbers or letters.

More related to active learning, there are approaches using scatter plots for
visualizing data to facilitate labeling. Huang et al. [5] improved the labeling
process of text documents showing the human visualizations of the feature space.
The text data is visualized by t-SNE [13], force-directed graph layout and chord
diagrams. Hongsen et al. [9] used semi-supervised metric learning to train a
visualization of video data. In both approaches, the data is displayed next to
the scatter plot for labeling. The querying of samples is done manually by the
user, so there is no active learning strategy involved directly, which we want to
accomplish for image recognition.

We introduce an active querying technique which utilizes the visualization
and enables an efficient training by finding bounding-box views in the visualiza-
tion for labeling images. Within a user study on a challenging outdoor object
data set, we show that using a visualization is favorable and that using our
adaptive interface together with the proposed querying method is more efficient
than state-of-the-art approaches.

2 Active Learning

Active learning is an efficient technique for training a classifier incrementally.
One variant of it is pool-based active learning, where the features X with labels
Y are divided in an unlabeled pool U and a labeled pool L. A querying function
selects the most relevant samples from U to be labeled by an oracle, which is
in most cases a human annotator. As the training progresses, samples from the
unlabeled pool U are labeled and put in the labeled pool L. Simultaneously, the
classifier c is trained online with the new labeled samples.

There were many research contributions in the past proposing querying meth-
ods for high performance gain of the classifier. An often used approach is Un-
certainty Sampling (US), originally proposed by Lewis et al. [8]. In US the clas-
sifier’s confidence estimation cp of the samples from the unlabeled pool are used



Active Learning using a Visualization-Based User Interface 3

to select those with the lowest certainty for querying: argminu∈Ucp(u). An-
other technique is query by committee (QBC) [17], where the query is chosen
that maximizes the disagreement of the classifiers. In our evaluation we use
the vote entropy for measuring the disagreement of classifiers: argmaxu∈U −∑

i
V (yi)

C log V (yi)
C where yi is a particular label and V (yi) is the number of clas-

sifiers voted for this label, C is the number of classifiers in the committee. In
our evaluation we chose a linear Support Vector Machine, a Decision Tree and
Logistic Regression as a committee of diverse classifiers.

3 Dimension reduction for visualization

There are many dimension reduction approaches to visualize a high-dimensional
feature space in lower dimensions. Their training is usually unsupervised. An
early approach is Principal Component Analysis (PCA) [4], where a small set
of linearly uncorrelated variables having the highest variance in the data, called
principal components, are extracted. Multidimensional Scaling (MDS) [19] is a
technique for dimension reduction, which preserves the spatial relation of the
high-dimensional data in the lower-dimensional space. A Self Organizing Map
(SOM) [7], introduced by Kohonen in 1982, can be used for dimension reduction.
By applying competitive learning SOMs can preserve topological properties in
the lower dimensional map.

Unsupervised training of embedding Z (e.g. with t-SNE)

X

Query and label random view for having initial training data

Initial training of classifier c

Query next view

Train classifier c with 
new labeled samples

Human view 
labeling

Generate possible 
view positions

Score views
Query view with 

highest score

Adapting view 
size s

Fig. 1: General workflow diagram describing active
learning using a visualization.

In 2008, van der Maaten
et al. proposed t-SNE [13],
which is a variant of
Stochastic Neighbor Em-
bedding (SNE) [3]. By
modeling data points as
pairwise probabilities in
both the original space
and the embedding, us-
ing a gradient decent
method to minimize the
sum of Kullback-Leibler
divergences, it is possible
to create an embedding of
high quality. Especially if
there are classes with dif-
ferent variances in high-
dimensional space, t-SNE
delivers reasonable results. Our preliminary experiments also show, that t-SNE is
delivering best results compared to PCA and MDS for image data where classes
consist of objects showed from different viewing positions, like in the OUTDOOR
data set [12] that we will also use in our evaluation. Because of these advantages,
we use t-SNE as a dimension reduction technique in our experiments, but basi-
cally every other approach can be used as well.
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4 Adaptive Visualization View Querying (A2VQ)

The underlying idea is to query the samples within a bounding-box view of the
visualization which we denote as a view v. The goal of our approach is to query
the optimal view for labeling of its enclosed samples.

In the following we introduce the Adaptive Visualization View Querying
(A2VQ) approach for querying in active learning using an adaptive visualization.
The overall workflow is illustrated in Fig. 1. First, we use the t-SNE algorithm to
reduce the high dimensionality of X (usually a high dimensional feature descrip-
tion of an image using e.g. a CNN) to 2D for visualization. We normalize the
output by applying feature scaling so that values of each of the two dimensions
are between 0 and 1, naming this normalized embedding feature space Z. In the
following we refer Zi as the visualization of sample Ui.

s

o

vi vi+1

Fig. 2: t-SNE visualization of 50 objects from
the OUTDOOR data set with illustrated
sliding window approach. In one iteration of
sliding window, all views of the visualiza-
tion are scored by A2VQ’s scoring function.
The possible views are generated by moving
the squared template with side length s in
overlap o steps from the upper left to the
bottom right corner. The view with highest
score is queried for labeling and displayed in
our web-based user interface.

Since we assume to have no
label information at the begin-
ning, active training starts with
an empty L. So labeling of one or
more randomly generated views
is necessary to initially train a
classifier for our approach. Then
confidences for samples of U are
calculated by the classifier, used
to query the optimal view (de-
scribed in detail in the next sec-
tion). The queried view can be
labeled e.g. by a user with our
proposed user interface. Then the
classifier is trained incrementally
with the newly labeled samples.
After this training epoch, a new
optimal view is queried with the
retrained classifier and the pro-
cess repeats.

We think, a querying method
is necessary for an efficient la-
beling because a visualization of
more complex data sets can be
confusing for the human as there

are too many classes and the images are highly overlapping as one can see in
Fig. 2. Also we want to be able to actively query the samples which the classifier
demands for efficient training.

4.1 Visualization View Querying

To query the optimal view we use a sliding window technique to cycle through
a grid of possible bounding-box views that arises from a view size s and overlap
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amount o. The first view is positioned at (0, 0) in Z. By shifting the square s− o
in each dimension (illustrated in Fig. 2), there is a total number of (1 + 1−s

s−o )2

views to be evaluated. We therefore calculate a scoring function r(v) for each
view:

r(v) =
∑

u∈Uv
(1− cp(u))
m

(1)

where Uv are the samples lying in the particular view, cp(u) is the classifier’s
confidences of the most certain class for sample u and m is the number of samples
in the view with the most enclosed samples. By dividing by m not only the
classifier’s confidences of the view’s samples are taken into account, but also
the number of samples in the view. We do this for not querying views with few
outlier samples with low confidences, as they can occur for instance at border
areas in a t-SNE visualization (see Fig. 2). After calculating r for each view
generated by the sliding window approach, the view with the highest score r is
queried for labeling.

4.2 User interface

Fig. 3: Querying user interface showing a view
queried by A2VQ. The user can label samples
via selecting their thumbnails by dragging rect-
angles in the visualization. The class name can
be entered in an input formula. With the but-
ton Label the selected samples are labeled and
removed from the view. The button Remove Se-
lection removes the rectangles. There are certain
possible labeling strategies, like label everything,
label only the biggest clusters or label only out-
liers. With a click on the button Query next view
the classifier is retrained with the new labeled
samples and a new view is queried with A2VQ.

The samples of the optimal
view can be labeled with our
user interface, also available
at github3 together with all
implemented querying tech-
niques. By applying an affine
transformation the view is
shown in full size with the
corresponding sample images
as scatter plot symbols. The
resulting display is shown in
Fig. 3. Due to the visualiza-
tion most neighboring sam-
ples will receive the same la-
bel. Interactive selection tech-
niques (see Fig. 3) allow eco-
nomic labeling of the samples
within the view.

4.3 Adaptive view size

In addition to querying the
best view for labeling, there
is the question of finding the
best view size s. A small s
3 https://github.com/limchr/A2VQ
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would not be efficient for labeling and a too large s makes it impossible for
the human to recognize the images because there are too many. We investigated
two heuristics for finding a suitable view size.

Number of Classes: In this heuristic we assume that showing the user
about c = 3 different classes within a view results in best usability. We incre-
mentally increase or shrink s we use a heuristic that is evaluated after each
labeled view:

s = s+ σ(λ ∗ (c− n))− 0.5 (2)

where λ is the learning rate, n are the number of individual classes in the
view after removing outlier classes with less than 5 samples and σ is the sigmoid
function. Using the learning rate inside the sigmoid function, which is centered
vertically by subtracting 0.5, enables us to incrementally change the view size
to match c.

Preliminary (automated) experiments showed, that adjusting view size with
upper heuristic converges to a proper view size with λ = 0.05. However, in our
automated experiments we assumed that the user has perfect ability in labeling
the samples and that he labels all samples within a view, whereas in our user
study we also train ambiguous objects. So we want to give the human the change
to skip samples. Since we can not evaluate n then, we used another heuristic for
choosing the view size:

Number of Samples: We assume that a view should not have more than
b = 100 samples so that the user is able to recognize them while using our label
interface. To determine the s that fits this assumption, we count the number of
samples within all possible views. We sort this array in descending order and
choose the highest 20% for calculating a mean, naming it m. We do this for
several view sizes {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40} and choose the view size
with the minimum |b −m|. In our user study we evaluated s = 0.25 and chose
o = 0.5s. A smaller overlap would be possible but requires longer calculation
time because more views have to be evaluated while querying.

5 Evaluation

5.1 Experiment

We did a user study for comparing A2VQ to the baselines US, QBC and random
querying (RAND).

Participants 31 participants (gender : 16 males, 13 females, 2 others. status: 27
students, 2 employees, 2 others) joined the study. The median of their age was
28 years. The participants were paid 5e for completing the whole study which
took 30 to 45 minutes. Three of the participants refused the money. The protocol
was approved by the Bielefeld University Ethics Committee.
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User interfaces In the study, participants labeled images with two different user
interfaces. For A2VQ they used the already described user interface (see Fig. 3).
Participants were told, that it is not necessary to label all images within one view
because we wanted to give them the ability to skip samples in all approaches.
If none of the images within a view could be labeled, the view with the next
higher score was displayed. A classic user interface was used for labeling with
US, QBC and RAND (see Fig. 4). To label an image, participants had to choose
a label from the upper left drop down menu and click the Label button. If they
were not sure about the label of an image, they could click the Skip button.
After skipping an image we use DBQE [11] to prevent the querying of similar
ambiguous images again, to speed up training.

Fig. 4: Classic labeling interface for
comparing with the baseline ap-
proaches US, QBC and RAND.

Data set We chose the OUTDOOR data
set [12] for labeling in the experiment.
The data set consists of 5000 images
showing objects of 50 classes in a gar-
den environment. Since this are too many
classes to be labeled properly within a
feasible time, we decided to reduce the
data set to only seven classes. To make
the labeling challenging for the partici-
pants, we selected object classes which
might look very similar: Onion, Orange,
Potato, RedApple, RedBall, Tomato and
YellowApple. As a preprocessing step, the
objects are cropped using a color segmen-
tation. For feature extraction we used the
penultimate layer of the VGG19 CNN [18]
trained for the imagenet competition, re-
sulting in a 4096 dimensional feature vec-

tor. For evaluation we used a 80/20 train-test split. The test images are used
to evaluate the classifier’s performance. The images of the train set were pre-
sented in the user interfaces and labeled by the participants. We have chosen a 1
nearest Neighbor classifier with the same parameters for all the approaches. For
estimating classifier confidences cp we chose relative similarity [10]. The classifier
is trained in an online fashion after each labeled image in the classic labeling
interface, or after each labeled image batch in A2VQ.

Task and procedure At the beginning participants signed an informed consent.
They read the global task instructions telling them that the main task is to
label images to train a service robot to distinguish objects. Afterwards, they
performed four experimental trials. They all followed the same procedure. First,
participants had read specific task instructions. It contained information about
which of the two user interfaces they will use in the following trial and how to
interact with it. Before using the user interface for the first time, they watched
a short video about the user interface’s usage. Thereafter, the trial started and
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participants had to label images for five minutes. They were told to be as fast as
possible but also as accurate as possible. After five minutes the trial was stopped
automatically by the system.

Data recording Whenever a participant labeled an image with any of the tested
approaches, several information were saved. We saved the time in milliseconds
since the start of the experiment, the index of the labeled image, the given label,
the ground truth label and the classifier’s 0/1 accuracies on both train and test
set.

Experimental design Since each participant labeled once with each approach,
they performed four trials in which they labeled the same images. Therefore, it
is likely that participants become familiar with the images and improve their
labeling performance during the experiment. To avoid such effects having an
impact on the analysis, we varied the order of the experimental trials between
the 31 participants. There are 24 different possibilities to order four experimental
trials. Seven of them were chosen randomly to take place twice resulting in 31
orders which were matched to the participants randomly.

5.2 Analysis

We investigated the impact of the querying approaches A2VQ, US, QBC and
RAND on three different parameters. The first one is the classifier’s accuracy
for the test data set. The accuracy’s temporal progress and the final accuracy
after 5 minutes of training was explored. The second parameter was the human
label quality which describes how much of the data was labeled correctly by
the participants. Finally, we analyzed whether the querying approaches have an
impact on the number of samples which are labeled during five minutes.

We aimed at analyzing whether there are significant differences in the three
parameters influenced by the querying approaches. Therefore, we first checked
whether the data meets the assumptions to perform an ANOVA with repeated
measures. Inspection of box-plots showed outliers in all three parameters’ data.
Furthermore the data were not normally distributed as assessed by Shapiro-
Wilk’s test (p < .05). According to this, we performed a two-sided Friedman’s
test (with α = .05) instead of the ANOVA. For each of the three parameters,
which showed significant results in Friedman’s test, we checked which of the
querying approaches differs significantly from each other. Hence, we conducted
multiple comparisons with a Bonferroni correction. Statistical tests were con-
ducted with IBM, SPSS Statistics, Version 23.

5.3 Results and discussion

Classifier’s accuracy Figure 5 shows the temporal progress of the classifier’s
accuracy on the test data during training. A2VQ had a slower increase of accu-
racy in early training while having a higher accuracy at the end (4.8% better
than US). The slow rise might be because labeling with A2VQ is comparable
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Table 1: Overview of means, medians and standard deviation as well as results
of Friedman’s test.

M Mdn SD χ2(3) p

classifier’s accuracy in % 0.73 0.74 0.15 10.869 .012*
human label quality in % 0.79 0.81 0.11 9.311 .025*
number of labeled samples 148.63 62 171.13 60.650 <.001*

Note: An asterisk marks significant differences between the querying approaches
on a level of α = .05.

with a depth-first search in a tree. Contrariwise the other approaches are rather
comparable with a breadth-first search, having a representation of each object
class early in training. Most of the time QBC performed better then US, which
performed better than RAND. All baseline approaches started to converge near
the end of the experiment.
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Fig. 5: Classifier’s accuracy on held out test set while active training.
Friedman’s test, comparing the accuracies of the different approaches after

five minutes training, showed significant results. Post hoc tests revealed signifi-
cant differences between A2VQ and QBC with p=.021 and between A2VQ and
RAND with p=.002. This implies A2VQ delivers a better accuracy than RAND
and QBC after five minutes training. Even if we did not find any significant
differences between A2VQ and US, we can state that in our study A2VQ had
the best mean accuracy compared with the other approaches after training the
classifier for five minutes.

Human label quality In Fig. 6, a confusion matrix is displayed showing the true
labels and the labels given by the participants averaged over all approaches. The
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labeling task was challenging for the participants who were not perfect oracles
while labeling. This is especially noticeable at classes RedApple, RedBall and
Tomato with a label quality of 80% and below.
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Fig. 6: Confusion matrix of human labels from
all compared querying approaches.

To compare the label ac-
curacy of the participants be-
tween the tested approaches,
we performed Friedman’s test.
Results were significant and,
therefore, we performed mul-
tiple comparisons with a
Bonferroni correction. There
were significant differences
between A2VQ and all base-
line approaches (A2VQ and
US with p = .005, A2VQ and
QBC with p < .021, A2VQ
and RAND with p = .030).
Figure 7 demonstrates the re-
sults. Using A2VQ results in
the best label quality, which
is around 4% better than the
second best. The reason for
this may be an improved human capability to see the objects in context with
similar other objects and then to decide. Furthermore the RAND querying ap-
proach results in the second best label quality. This may lead to the assumption
that classifier’s uncertainty, which is used in US and QBC to query the most
uncertain samples, is related to human uncertainty. Another interesting insight
is, that even with a worse mean labeling quality, using US and QBC resulted in
a better performing classifier than RAND (see Fig. 5).

A2VQ US QBC RAND
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Fig. 7: Human label quality for tested ap-
proaches.

Figure 8 shows how many
samples were labeled within
five minutes in the differ-
ent experimental trials. The
figure indicates, that people
could label more samples us-
ing A2VQ while the number
of labeled samples of the base-
line approaches were compa-
rable. The result of the statis-
tical tests confirmed this ob-
servations. This outcome is as
expected, because with A2VQ
people can label multiple im-

ages with the same label while in baseline approaches just one image can be
labeled at a time.
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6 Conclusion

In this paper we have proposed to use dimension reduction techniques for apply-
ing active learning with a visualization. Therefore we introduced the querying
approach A2VQ which queries optimal views for labeling by the user. We devel-
oped a user interface which implements A2VQ and was also evaluated in a user
study. For the used OUTDOOR data set, the study showed that using A2VQ
improves the classifier’s accuracy, the number of labeled samples and also the
label quality compared to US, QBC and random querying.

A2VQ US QBC RAND
approach

0

100

200

300

400

500
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Number of labeled samples

Fig. 8: Number of labeled samples of the differ-
ent approaches.

There are some possible
directions for interesting fur-
ther research in this field. The
user study showed that base-
line methods have the advan-
tage to faster respond at the
start of training. When train-
ing samples can be ambigu-
ous, we showed that the used
DQBE [11] approach has a
huge impact in boosting the
speed by querying only mean-
ingful samples. However, our
study showed that after 100
seconds the fast increase in
accuracy of the baseline methods saturates. So it may be worth to evaluate
a hybrid model, that first uses a baseline technique to query a few samples of
each class for the fast training of an initial classifier. Following this, A2VQ could
be used to label in depth. Using A2VQ also results in a higher label quality, as
our study showed. Therefore, it may also correct former contradictions in labels,
since we think that seeing patterns in contrast to other patterns facilitate to give
the correct label.

It may be possible to use semi-supervised dimension reduction techniques [20]
for a better visualization. Doing so, after each trained view not only the classifier
is retrained, but also the visualization is regenerated with new label information.

In the near future we will integrate A2VQ together with the labeling interface
within a service robot [2], which interacts in a smart lobby environment. By
showing the user interface on the robot’s front touch screen we want to allow
the user not only to teach the robot objects by a finger swipe, but also give him
a feeling what the robot’s internal representation of the objects might be.
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