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Abstract. In this work we introduce a category of discrete Lagrange–Poincaré

systems LPd and study some of its properties. In particular, we show that the
discrete mechanical systems and the discrete mechanical systems obtained by
the Lagrangian reduction of symmetric discrete mechanical systems are objects
in LPd. We introduce a notion of symmetry groups for objects of LPd and
introduce a reduction procedure that is closed in the category LPd. Further-
more, under some conditions, we show that the reduction in two steps (first
by a closed normal subgroup of the symmetry group and then by the residual
symmetry group) is isomorphic in LPd to the reduction by the full symmetry
group.

1. Introduction

The study of mechanical systems with symmetries is a classical subject. A
standard technique used in the area is the construction of a certain dynamical
system —the reduced system— where some or all of the original symmetries have
been eliminated and whose trajectories can be used to obtain the trajectories of the
original system. This general idea has been developed and used in many different
contexts. In the Lagrangian formulation of Classical Mechanics, one such approach
is given by E. Routh [24], although it was implicit in Lagrange’s original ideas.
A modern treatment, including nonholonomic constraints, is given by H. Cendra,
J. Marsden and T. Ratiu in [4]. In the modern Hamiltonian case, there are the
original works of V. Arnold [1], S. Smale [25, 26], K. Meyer [22], J. Marsden and
A. Weinstein [18] and, among the recent literature, J. Marsden et al. [19]. There is
also a field-theoretic version as explained, for instance, by M. Castrillón Lopez and
T. Ratiu in [2]. In the case of discrete mechanical systems (DMS), different versions
of reduction theory have been considered, among others, by S. Jalnapurkar et al.
in [12], R. McLachlan and M. Perlmutter in [21] and the authors in [7]. Reduction
theory has also been developed in the context of Lie groupoids and Lie algebroids
as discussed by J. C. Marrero et al in [16] and by D. Iglesias et al in [11].
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In some cases, if G is a symmetry group of a mechanical system, it may be con-
venient to consider a partial reduction, that is, the reduction of the system by a
subgroup H ⊂ G and, eventually, as a second step, the reduction of any remain-
ing symmetries in the associated reduced system. This process is called reduction
by (two) stages. A problem is that, in general, the reduced system associated to
a symmetric mechanical system is a dynamical system that is not a mechanical
system. Therefore, a second reduction cannot be performed in the framework of
mechanical systems. For continuous time systems, the solution found by different
authors consists of enlarging the class of systems considered beyond the mechani-
cal ones, developing a reduction theory for those generalized systems that extends
the original reduction of mechanical systems and, eventually, considering the re-
duction by stages in this generalized framework. This is the case, for instance,
in the Lagrangian context, of [5], and, for Lagrangian systems with nonholonomic
constraints, of [3, 6]. In the Hamiltonian case, it is extensively analyzed in [19]. It
should be remarked that in the Lie algebroid or Lie groupoid contexts the problem
described in this paragraph does not arise as the reduction of an object in one of
these categories lies within the same category.

The purpose of the present work is to introduce a generalized framework to
study the reduction of DMS by stages. In this sense, it parallels [5] for discrete
time mechanical systems. More precisely, a category LPd of discrete Lagrange–
Poincaré systems (DLPS) is introduced and it is shown that DMSs are among its
objects in a natural way. Also, the reduced systems associated to symmetric DMSs
are in LPd. The dynamics of a DLPS is defined via a variational principle that,
for a DMS, reduces to the discrete Hamilton Principle. Then, a reduction theory
for symmetric DLPSs is developed. It is shown that this theory, when applied to
DMS, coincides with the one defined in [7]. At this stage, we can prove the main
result of the paper, Theorem 7.6, showing that, under appropriate conditions, the
reduction in two stages is feasible and isomorphic in LPd to the full reduction in
one step.

The construction of reduced systems considered in [5], [3, 6], [15], [7] and here,
all require additional data: a connection or a discrete connection on a certain
principal bundle. We prove that, even though the reduced DLPSs depend on the
specific discrete connection used, any two choices lead to DLPSs that are isomorphic
in LPd. Last, we prove that under fairly general conditions discrete connections on
the appropriate principal bundles satisfying the conditions required by the reduction
by stages results exist.

It is well known and very useful that DMSs carry natural symplectic structures.
But, in general, their associated reduced systems are not symplectic; instead, they
carry Poisson structures. In contrast, general DLPSs do not carry a natural sym-
plectic or Poisson structure; we prove that, when a Poisson structure is added to
a DLPS, then it descends to any reduced system associated to it. A consequence
of this fact is that all DLPSs obtained by a finite number of reductions from a
symmetric DMS, have a “natural” Poisson structure coming from the symplectic
structure of the original DMS.

The plan for the paper is as follows. Section 2 reviews the notion of discrete con-
nection on a principal bundle and some of its basic properties. Section 3 introduces
discrete Lagrange–Poincaré systems, their dynamics and explores some examples.
Section 4 defines a category whose objects are the DLPSs. Section 5 introduces
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the notion of symmetry group of a DLPS and, then, constructs a “reduced” DLPS
associated to any symmetric DLPS and discrete connection; it also compares the
dynamics of the reduced DLPS and that of the original DLPS, proving that the
trajectories of one system can be obtained from those of the other. An example
of reduction process is analyzed in Section 6. Section 7 considers the reduction
of DLPSs in two stages. Section 8 studies some aspects of Poisson structures on
DLPSs. The paper closes with Section 9, where we list some basic and general re-
sults on group actions on manifolds and on principal bundles; most of this material
is standard and it is included to have a unified notation and reference point.

Finally, we wish to thank Hernán Cendra for his continuous interest in this work
and many very useful discussions.

2. General recollections

Let G be a Lie group acting on the left on the manifold Q by lQ in such a way
that the quotient map πQ,G : Q → Q/G be a principal G-bundle; we also consider
the induced diagonal G-action lQ×Q on Q × Q. Leok, Marsden and Weinstein
introduced in [15] a notion of discrete connection on principal G-bundles. The
following definition comes from [8], which the reader should refer to for further
details on discrete connections.

Definition 2.1. Let Hor ⊂ Q × Q be an lQ×Q-invariant submanifold containing
the diagonal ∆Q ⊂ Q×Q. We say that Hor defines the discrete connection Ad on
the principal bundle πQ,G : Q → Q/G if (idQ × πQ,G)|Hor : Hor → Q × (Q/G) is
an injective local diffeomorphism. We denote Hor by HorAd

.

When HorAd
is a discrete connection on πQ,G : Q→ Q/G, it is easy to see that

for any (q0, q1) ∈ Q ×Q, there is a unique g ∈ G such that (q0, l
Q
g−1(q1)) ∈ HorAd

,

where lQg (q) := lQ(g, q). In this case, the discrete connection form Ad : Q×Q→ G
is defined by Ad(q0, q1) := g.

Remark 2.2. It is well known that when the principal G-bundle is not trivial, the
existence of g stated above cannot be assured in general. It is true, though, when
(q0, q1) is in a certain open subset of Q×Q containing the diagonal, known as the
domain of the discrete connection. Still, in what follows, we omit this technical
detail in order to keep the notation simple.

As in the case of connections on a principal G-bundle, discrete connections define
a notion of discrete horizontal lift, that we introduce below.

Definition 2.3. Let Ad be a discrete connection on the principal G-bundle πQ,G :
Q → Q/G. The discrete horizontal lift hd : Q × (Q/G) → Q × Q is the inverse
map of the injective local diffeomorphism (idQ × π)|HorAd

: HorAd
→ Q× (Q/G).

Explicitly

hq0d (r1) = hd(q0, r1) := (q0, q1) ⇔ (q0, q1) ∈ HorAd
and πQ,G(q1) = r1.

We define hd := p2 ◦hd and hq0d := p2 ◦hq0d , where p2 : Q×Q→ Q is the projection
on the second variable. More generally, pj : X1 × · · · ×Xk → Xj is the projection
from the Cartesian product onto the j-th component.

Remark 2.4. In the same spirit of Remark 2.2, hd may not be defined on all of
Q× (Q/G) but only on an open subset. We ignore this fact in what follows.
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Discrete connections and their lifts satisfy a number of properties. The next
result reviews some of them.

Proposition 2.5. Let Ad be a discrete connection on the principal G-bundle πQ,G :
Q→ Q/G. Then,

(1) the discrete connection form Ad and the discrete horizontal lift hd are
smooth functions and,

(2) if we consider the left G-actions on G and Q× (Q/G) given by

lGg (g
′) := gg′g−1 and lQ×(Q/G)

g (q0, r1) := (lQg (q0), r1)

as well as the diagonal action on Q × Q then Ad, hd and hd are G-
equivariant.

(3) More generally, for any g0, g1 ∈ G,

Ad(l
Q
g0(q0), l

Q
g1(q1)) = g1Ad(q0, q1)g

−1
0 for all q0, q1 ∈ Q.

Proof. See Lemma 3.2 and Theorems 3.4 and 4.4 in [8]. �

In what follows we use several notions that are reviewed in the Appendix (Sec-
tion 9). For instance, fiber bundles and their maps are introduced in Definitions 9.6
and 9.13, while the action of a Lie group on a fiber bundle is introduced in Defini-
tion 9.14.

When a Lie group G acts on the fiber bundle (E,M, φ, F ) and F2 is a right
G-manifold, it is possible to construct an associated bundle on M/G with total
space (E × F2)/G and fiber F ×F2. The special case when F2 = G acting on itself

by rg(h) := g−1hg is known as the conjugate bundle and is denoted by G̃E (see
Example 9.17).

Proposition 2.6. Let G be a Lie group that acts on the fiber bundle (E,M, φ, F )
and Ad be a discrete connection on the principal G-bundle πM,G : M → M/G.

Define1 Φ̃Ad
: E ×M → E ×G× (M/G) and Ψ̃Ad

: E ×G× (M/G) → E ×M by

Φ̃Ad
(ǫ,m) := (ǫ,Ad(φ(ǫ),m), πM,G(m)),

Ψ̃Ad
(ǫ, w, r) := (ǫ, lMw (h

φ(ǫ)
d (r))).

Then, Φ̃Ad
and Ψ̃Ad

are smooth functions, inverses of each other. If we view E×M
and E × G × (M/G) as fiber bundles over M via φ ◦ p1, then Φ̃Ad

and Ψ̃Ad
are

bundle maps (over the identity). In addition, if we consider the left G-actions lE×M

and lE×G×(M/G) defined by

lE×M
g (ǫ,m) := (lEg (ǫ), l

M
g (m)) and lE×G×(M/G)

g (ǫ, w, r) := (lEg (ǫ), l
G
g (w), r),

then, Φ̃Ad
and Ψ̃Ad

are G-equivariant, so they induce diffeomorphisms ΦAd
: (E ×

M)/G→ G̃E × (M/G) and ΨAd
: G̃E × (M/G) → (E ×M)/G.

Proof. Being composition of smooth functions (see part 1 in Proposition 2.5), Φ̃Ad

and Ψ̃Ad
are smooth; direct computations involving part 3 of Proposition 2.5 show

that Φ̃Ad
and Ψ̃Ad

are inverses of each other. Using part 2 from Proposition 2.5 it is

1As we mentioned in Remark 2.2, the discrete connection Ad need not be defined on M ×M

but, rather, on an open subset. This restricts the domain of Φ̃Ad
and Ψ̃Ad

to appropriate open
subsets, where the results of Proposition 2.6 hold. Still, we ignore this point and keep working as
if Ad were globally defined in order to avoid a more involved notation.
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easy to verify the G-equivariance of Φ̃Ad
. Being Ψ̃Ad

= (Φ̃Ad
)−1, its G-equivariance

follows. The last part of the statement is derived from Corollary 9.4. �

Remark 2.7. Notice that (E ×M)/G can be seen as a fiber bundle over M/G

via ˇφ ◦ p1, corresponding to the associated fiber bundle M̃E constructed in Exam-

ple 9.17. Similarly G̃E × (M/G) is a fiber bundle over M/G via ˇφ ◦ p1. In this
context, ΦAd

and ΨAd
are bundle maps (over the identity).

After Proposition 2.6, we have the commutative diagram

(2.1) E ×M
Φ̃Ad

∼
//

πE×M,G

��

ΥAd

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
(E ×G)× (M/G)

(πE×G,G
◦p1)×p2

��

(E ×M)/G
ΦAd

∼ // G̃E × (M/G)

consisting of manifolds and smooth maps (or bundle maps, understanding that the
top row are bundles over M and the bottom row are bundles over M/G). In (2.1),
we have defined

(2.2) ΥAd
:= ΦAd

◦ πE×M,G = ((πE×G,G ◦ p1)× p2) ◦ Φ̃Ad
.

Lemma 2.8. Let G act on the fiber bundle (E,M, φ, F ) and Ad be a discrete
connection on the principal G-bundle πM,G : M → M/G. Then, ΥAd

: E ×M →
(G̃E × (M/G)) defined by (2.2) is a principal G-bundle.

Proof. Since ΦAd
is a diffeomorphism and πE×M,G is a surjective submersion, ΥAd

is also a surjective submersion. Also, as Υ−1
Ad

(ΥAd
(ǫ0,m1)) = lE×M

G (ǫ0,m1), by

Theorem 9.8, we conclude that (E ×M, G̃E × (M/G),ΥAd
, G) is a principal G-

bundle. �

When G acts on the fiber bundle (E,M, φ, F ) and Ad is a discrete connection
on the principal G-bundle πM,G : M → M/G, we have the following commutative

diagram involving the conjugate bundle G̃E .

(2.3) E

πM,G
◦φ

��

E ×M
p1oo

ΥAd

''PP
PP

PP
PP

PP
PP

Φ̃Ad // (E ×G)× (M/G)

(πE×G,G
◦p1)×p2

��

M/G G̃E × (M/G)
pM/G

◦p1

oo

3. Discrete Lagrange–Poincaré systems

A discrete mechanical system (DMS) as in [17] is a pair (Q,Ld) where Q is a
finite dimensional manifold known as the configuration space and Ld : Q×Q→ R

is a smooth function called the discrete lagrangian. Trajectories of such a system
are critical points of an action function determined by Ld.

In this section we introduce an extended notion of DMS as a dynamical system
whose dynamics arises from a variational principle. In addition, we find the corre-
sponding equations of motion. In Section 4, we formulate a categorical framework
that contains the extended systems.
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3.1. Discrete Lagrange–Poincaré systems and dynamics. The reduction pro-
cedure introduced in [7] and reviewed in the unconstrained situation later, in Sec-
tion 3.2, has a shortcoming in that, in most cases, when applied to a DMS, the
resulting dynamical system is not a DMS. The main objective of this paper is to
overcome this problem by considering a larger class of discrete mechanical systems
that is closed by the reduction procedure. In order to define the larger class of
DMSs we will consider more general “discrete velocity” phase spaces than Q ×Q;
concretely, we will consider spaces of the form E × M , where φ : E → M is a
fiber bundle. Furthermore, we will consider discrete time dynamical systems on
such spaces, whose dynamics will be defined using a lagrangian function and a
variational principle. In this section we study the extended discrete velocity phase
spaces and discrete lagrangian systems on them.

The motivation for the notion of extended discrete velocity phase space that
we consider in this paper comes from the type of space obtained by the reduction
process introduced in [7]. There, the reduced space associated to a discrete system

on Q ×Q with symmetry group G is the space (Q/G) × (Q/G)×Q/G G̃, that is a
fibered product of the pair bundle (Q/G)× (Q/G) and the fiber bundle G̃→ Q/G,

where G̃ = G̃E for E the fiber bundle idQ : Q→ Q (see Example 9.17). This space

is not a standard space for a DMS due to the presence of G̃. Therefore, it seems
reasonable to enlarge the class of spaces to be considered by looking at spaces that
are the fibered product of a pair bundleM×M and a fiber bundle E →M . In fact,
for continuous mechanical systems, this is the approach of [5], where their extended
velocity phase space is of the form TQ⊕ V and V is a vector bundle over Q. Yet,
we will consider a minor variation of the preceding idea: instead of (M ×M)×M E,
we will consider E×M that, as fiber bundles overM (by φ◦p1 in the second space)
are isomorphic. The technical advantage of using this last space is that it is easier
to work with a product manifold rather than with a fibered product.

Given a fiber bundle φ : E →M we will denote C′(E) := E×M , seen as a fiber
bundle over M by φ ◦ p1. Similarly, we define the discrete second order manifold
C′′(E) := (E ×M) ×p2,(φ◦p1) (E ×M) that we view as a fiber bundle over M via
the map induced by p2.

Remark 3.1. Given a fiber bundle φ : E → M , the second order manifold
C′′(E) →M is isomorphic as a fiber bundle to the fiber bundle φ◦p2 : E×E×M →
M via FE((ǫ0,m1), (ǫ1,m2)) := (ǫ0, ǫ1,m2).

Definition 3.2. Let φ : E → M be a fiber bundle. A discrete path in C′(E) is a
collection (ǫ·,m·) = ((ǫ0,m1), . . . , (ǫN−1,mN )) where ((ǫk,mk+1), (ǫk+1,mk+2)) ∈
C′′(E) for k = 0, . . . , N − 2.

Definition 3.3. Let φ : E → M be a fiber bundle. An infinitesimal variation
chaining map P on E is a homomorphism of vector bundles over p̃1, according to
the following commutative diagram (of vector bundles)

TE

��

p̃3
∗(TE)oo

��

P // ker(dφ)

��

�

�

// TE

{{✇✇
✇✇
✇✇
✇✇
✇✇

E C′′(E)
p̃3

oo
p̃1

// E
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where p̃1((ǫ0,m1), (ǫ1,m2)) := ǫ0 and p̃3((ǫ0,m1), (ǫ1,m2)) := ǫ1. Notice that since
φ : E → M is a fiber bundle, ker(dφ) has constant rank, so it defines a vector
subbundle of TE → E.

Definition 3.4. Let φ : E → M be a fiber bundle. A discrete Lagrange–Poincaré
system (DLPS) over E is a triple M := (E,Ld,P) where Ld : C′(E) → R is a
smooth function and P is an infinitesimal variation chaining map on E.

Definition 3.5. Let (E,Ld,P) be a DLPS and (ǫ·,m·) = ((ǫ0,m1), . . . , (ǫN−1,mN ))
be a discrete path in C′(E). An infinitesimal variation on (ǫ·,m·) is a tangent vec-
tor (δǫ·, δm·) = ((δǫ0, δm1), . . . , (δǫN−1, δmN)) ∈ T(ǫ·,m·)C

′(E)N such that

(3.1) δmk = dφ(ǫk)(δǫk) for k = 1, . . . , N − 1

or, equivalently, that ((δǫk−1, δmk), (δǫk, δmk+1)) ∈ TC′′(E) for k = 1, . . . , N −
1. An infinitesimal variation on (ǫ·,m·) with fixed endpoints is an infinitesimal
variation (δǫ·, δm·) on (ǫ·,m·) such that

δmN =0,

δǫN−1 =δ̃ǫN−1,

δǫk =δ̃ǫk + P((ǫk,mk+1), (ǫk+1,mk+2))(δ̃ǫk+1), if k = 1, . . . , N − 2,

δǫ0 =P((ǫ0,m1), (ǫ1,m2))(δ̃ǫ1),

(3.2)

where δ̃ǫk ∈ TǫkE is arbitrary for k = 1, . . . , N − 1.

Remark 3.6. The name “infinitesimal variation with fixed endpoints” is not en-
tirely accurate in Definition 3.5. Certainly, δmN = 0 means that mN remains fixed.
On the other hand, δǫ0 does not necessarily vanish, but neither it is arbitrary, as

it is determined by δ̃ǫ1 through P . As the δ̃ǫk are arbitrary for k = 1, . . . , N − 1,

given δǫk for k = 1, . . . , N − 1, it is possible to find δ̃ǫk for k = 1, . . . , N − 1 such

that δǫN−1 = δ̃ǫN−1 and δǫk = δ̃ǫk + P((ǫk,mk+1), (ǫk+1,mk+2))(δ̃ǫk+1) for all
k = 1, . . . , N − 2. In this case, δǫ0 turns out to be a function of all δǫ1, . . . , δǫN−1.

Definition 3.7. Let M = (E,Ld,P) be a DLPS. The discrete action of M is a
function from the space of all discrete curves on C′(E) to R defined by Sd(ǫ·,m·) :=∑N−1
k=0 Ld(ǫk,mk+1). A trajectory of M is a discrete curve (ǫ·,m·) in C′(E) such

that

(3.3) dSd(ǫ·,m·)(δǫ·, δm·) = 0

for all infinitesimal variations (δǫ·, δm·) on (ǫ·,m·) with fixed endpoints, that is,
satisfying (3.1) and (3.2).

The following Proposition characterizes the trajectories of a DLPS in terms of
(algebraic) equations.

Proposition 3.8. Let M = (E,Ld,P) be a DLPS and (ǫ·,m·) be a discrete path
in C′(E). Then, (ǫ·,m·) is a trajectory of M if and only if for all k = 1, . . . , N−1,

D1Ld(ǫk,mk+1)+D2Ld(ǫk−1,mk) ◦ dφ(ǫk)
+D1Ld(ǫk−1,mk) ◦ P((ǫk−1,mk), (ǫk,mk+1)) = 0

(3.4)

in T ∗
ǫkE, where Dj denotes the restriction to the j-th component of the exterior

differential on a Cartesian product.
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Proof. Equation (3.4) is obtained from the standard variational computation of
dSd(ǫ·,m·)(δǫ·, δm·), taking into account that the fixed endpoint infinitesimal vari-

ations (δǫ·, δm·) over (ǫ·,m·) satisfy (3.2) for arbitrary δ̃ǫk ∈ TǫkE. �

Next, we introduce sufficient conditions for the existence of a flow on a DLPS
M = (E,Ld,P). Consider the commutative diagram (of smooth maps)

T ∗E

��
E × E ×M

E

88qqqqqqqqqq

p2
// E

where

E(ǫ0, ǫ1,m2) :=D1Ld(ǫ1,m2) +D1Ld(ǫ0, φ(ǫ1)) ◦ P((ǫ0, φ(ǫ1)), (ǫ1,m2))

+D2Ld(ǫ0, φ(ǫ1)) ◦ dφ(ǫ1).
Notice that all trajectories ((ǫ0,m1), (ǫ1,m2)) of M satisfy E(ǫ0, ǫ1,m2) = 0ǫ1 ∈
T ∗
ǫ1E. Conversely, given (ǫ0, ǫ1,m2) ∈ E × E ×M such that E(ǫ0, ǫ1,m2) = 0ǫ1,

then ((ǫ0, φ(ǫ1)), (ǫ1,m2)) is a trajectory of M.
Let Z ⊂ T ∗E be the image of the zero section of the canonical projection T ∗E →

E. It is easy to check that Z ⊂ T ∗E is an embedded submanifold.

Proposition 3.9. Let M, E and Z be as above.

(1) Assume that (ǫ0, ǫ1,m2) ∈ E × E ×M is such that E(ǫ0, ǫ1,m2) = 0ǫ1 and
that Im(dE(ǫ0, ǫ1,m2)) + T0ǫ1Z = T0ǫ1T

∗E. Then, there is an open subset

U ⊂ E × E ×M with (ǫ0, ǫ1,m2) ∈ U and such that EU := U ∩ E−1(Z) is
an embedded submanifold of E×E×M with dim(EU ) = dim(E)+dim(M).

(2) Consider the smooth map p1 × (φ ◦ p2) : E ×E ×M → C′(E). In addition
to what was assumed in part 1, suppose that
(i) d(p1 × (φ ◦ p2))|EU (ǫ0, ǫ1,m2) ∈ hom(T(ǫ0,ǫ1,m2)EU , T(ǫ0,φ(ǫ1))C′(E)) is

injective and
(ii) d(p2 × p3)|EU (ǫ0, ǫ1,m2) ∈ hom(T(ǫ0,ǫ1,m2)EU , T(ǫ1,m2)C

′(E)) is injec-
tive.

Then, there are open sets V1, V2 ⊂ C′(E) such that (ǫ0, φ(ǫ1)) ∈ V1 and
(ǫ1,m2) ∈ V2 and a diffeomorphism FM : V1 → V2 such that FM(ǫ0, φ(ǫ1)) =
(ǫ1,m2) and, for all (ǫ′0,m

′
1) ∈ V1, ((ǫ

′
0,m

′
1), FM(ǫ′0,m

′
1)) is a trajectory of

M.

Proof. Part 1 follows immediately from the transversality argument on page 28
of [9], applied to the point (ǫ0, ǫ1,m2). Notice that, as (ǫ0, ǫ1,m2) ∈ EU , it is not
the empty set.

Let P := (p1 × (φ ◦ p2))|EU : EU → C′(E). As dim(EU ) = dim(C′(E)), con-
dition 2i implies that dP (ǫ0, ǫ1,m2) is an isomorphism and, consequently, P is a
local diffeomorphism at (ǫ0, ǫ1,m2). Hence, there are open sets V1 ⊂ C′(E) and
V ′
2 ⊂ EU such that (ǫ0, φ(ǫ1)) ∈ V1 and (ǫ0, ǫ1,m2) ∈ V ′

2 where P |V ′
2
is a diffeomor-

phism onto V1. In addition, as dim(EU ) = dim(C′(E)), condition 2ii implies that
d(p2×p3)|EU (ǫ0, ǫ1,m2) is a local diffeomorphism at (ǫ0, ǫ1,m2) so that (eventually
shrinking V ′

2) V2 := (p2 × p3)(V
′
2 ) ⊂ C′(E) is open and (p2 × p3)|V ′

2
: V ′

2 → V2 is a
diffeomorphism.

Let FM : V1 → V2 be the diffeomorphism FM := (p2 × p3) ◦ (P |V ′
2
)−1. By

construction, FM(ǫ0, φ(ǫ1)) = (ǫ1,m2). Furthermore, for (ǫ′0,m
′
1) ∈ V1, if we let
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(ǫ′1,m
′
2) := FM(ǫ′0,m

′
1), it follows readily that ((ǫ′0,m

′
1), (ǫ

′
1,m

′
2)) ∈ C′′(E) is a

trajectory of M. �

Definition 3.10. The function FM that appears in part 2 of Proposition 3.9 is the
discrete Lagrangian flow of M.

Remark 3.11. If (ǫ·,m·) = ((ǫ0,m1), . . . , (ǫN−1,mN )) is a trajectory of the DLPS
M, then it satisfies (3.4) for k = 0, . . . , N − 1. But then, if j = 0, . . . , N − 2,
((ǫj ,mj+1), (ǫj+1,mj+2)) also satisfies (3.4) (for k = j, j + 1) and, by Proposi-
tion 3.8, is also a trajectory of M. That is, contiguous points of a trajectory of M,
form a trajectory of M.

The following example shows how a DMS can be seen as a DLPS.

Example 3.12. Let (Q,Ld) be a DMS. Define the fiber bundle φ : E → M by
idQ : Q→ Q, so that Ld defines a lagrangian function on C′(idQ : Q→ Q) = Q×Q.
Next, let P((qk−1, qk), (qk, qk+1))(δqk) := 0 for all δqk ∈ TqkQ. We define the DLPS
M := (E,Ld,P).

Discrete paths (ǫ·,m·) of M are, in the current context, the same as discrete
paths q· in Q2. Such discrete paths are trajectories of M if and only if they
satisfy (3.4) that, in this case, becomes

(3.5) D1 Ld(qk, qk+1) +D2 Ld(qk−1, qk) = 0

for all k, that is the usual discrete Euler–Lagrange equation (see equation (1.3.3)
in [17]) that characterizes the trajectories of (Q,Ld). Hence, all DMSs can be seen
as DLPSs whose dynamics coincide with those of the original systems.

Remark 3.13. As, by Example 3.12, all DMSs are DLPSs, we can specialize
Proposition 3.9 to the case of a DMS (Q,Ld). A simple analysis provides the
following statement. Let (q0, q1, q2) ∈ Q×Q×Q be a solution of (3.5) (for k = 1)
such that Ld is regular3 at (q0, q1) and (q1, q2). Then there are open sets V1, V2 ⊂
Q × Q with (q0, q1) ∈ V1 and (q1, q2) ∈ V2 and a diffeomorphism FLd

: V1 → V2
such that FLd

(q0, q1) = (q1, q2) and that (q′0, FLd
(q′0, q

′
1)) is a solution of (3.5) (for

k = 1) for all (q′0, q
′
1) ∈ V1. We emphasize that the existence of a trajectory

(q0, q1, q2) as a staring point cannot be avoided. For example, when Q = R and
Ld(q0, q1) := 1

2 (q1 − q0)
2 − η(q0 + q1)

3 for η > 0, we have that Ld is regular at

(q0, q1) and (q1, q2) for q0, q1, q2 < − 1
6η . But, it is easy to check that, if q1 < − 1

24η ,

there is no trajectory of the form (q0, q1, q2).

The dynamical system obtained by the reduction process of a symmetric DMS
can be seen as a DLPS, as we describe in the following section.

3.2. Reduced system associated to a symmetric discrete mechanical sys-

tem. We say that the Lie group G is a symmetry group of the DMS (Q,Ld) if G
acts on Q in such a way that the quotient mapping πQ,G : Q→ Q/G is a principal
G-bundle and Ld◦ lQ×Q

g = Ld for all g ∈ G. Given such a system we can construct a
discrete time dynamical system called the reduced system whose dynamics captures

2A discrete path x· in a manifold X is an element of the Cartesian product XN , for some
N ∈ N.

3Regularity at (q0, q1) means that, with respect to local coordinates qaj (for j = 0, 1 and

a = 1, . . . , n := dim(Q)) neat q0 and q1, the matrix
∂2Ld(q0,q1)

∂q
j
0∂q

k
1

∈ Rn×n be invertible.
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the essential behavior of the original dynamics. First we review the construction of
the reduced system and, then, compare the dynamics of the reduced to that of the
unreduced system. After that, we prove that the reduced system can be seen as a
DLPS with the same trajectories.

Given a discrete connection Ad on the principal G-bundle πQ,G : Q → Q/G,
we can specialize the commutative diagram (2.1) to the case where φ : E → M is
idQ : Q→ Q:

Q×Q
Φ̃Ad //

πQ×Q,G

��

ΥAd

((◗◗
◗◗

◗◗◗
◗◗◗

◗◗
(Q×G)× (Q/G)

(πQ×G,G
◦p1)×p2

��

(Q ×Q)/G
ΦAd

// G̃× (Q/G)

where G̃ = (Q × G)/G with G acting on Q by lQ and on G by conjugation and,
explicitly,

(3.6) ΥAd
(q0, q1) = (πQ×G,G(q0,Ad(q0, q1)), π

Q,G(q1)).

By the G-invariance of Ld, there is a well defined map Ľd : G̃ × (Q/G) → R

such that Ľd(v0, r1) = Ld(q0, q1) whenever (q0, q1) ∈ Q × Q satisfies (v0, r1) =
ΥAd

(q0, q1). The action associated to Ľd is Šd(v·, r·) :=
∑
k Ľd(vk, rk+1).

The following result from [7]4 relates the dynamics of the original system to a

variational principle for a system on G̃× (Q/G).

Theorem 3.14. Let G be a symmetry group of the DMS (Q,Ld). Fix a discrete
connection Ad on the principal G-bundle πQ,G : Q → Q/G. Let q· be a discrete
path in Q, rk := πQ,G(qk), wk := Ad(qk, qk+1) and vk := πQ×G,G(qk, wk) be the

corresponding discrete paths in Q/G, G and G̃ (see footnote 2). Then, the following
statements are equivalent.

(1) q· satisfies the variational principle dSd(q·)(δq·) = 0 for all vanishing end-
points variations δq· over q·.

(2) dŠd(r·, v·)(δr·, δv·) = 0 for all variations (δv·, δr·) such that

(δvk, δrk+1) := dΥAd
(qk, qk+1)(δqk, δqk+1)(3.7)

for k = 0, . . . , N − 1 and where δq· is a fixed endpoints variation over q·.

Remark 3.15. The more general Theorem 5.11 in [7] requires the additional data
of a connection A on the principal G-bundle πQ,G : Q→ Q/G. With this additional
information the variations δq· are decomposed in A-horizontal and A-vertical parts.

The reduced system associated to (Q,Ld) is the discrete dynamical system on

G̃ × (Q/G) whose trajectories are the discrete paths that satisfy the variational
principle stated in point 2 of Theorem 3.14. A DLPS M := (E, Ľd,P) is associated
to this reduced system; we prove later that the trajectories of both systems coincide.

Define the fiber bundle φ : E → M as the conjugate bundle pQ/G : G̃→ Q/G, where

pQ/G(πQ×G,G(q, w)) := πQ,G(q). The reduced Lagrangian Ľd : G̃ × (Q/G) → R

defines a real valued function on C′(E) = E×M.

4In fact, Theorem 3.14 here is part of Theorem 5.11 in [7], specialized to the unconstrained
case, and where we have adapted the notation slightly to match the one used in the present paper.
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In order to define the infinitesimal variation chaining function, we consider ΥAd
:

Q×Q → G̃× (Q/G) defined by (3.6). Then define P ∈ hom(p∗3(T G̃), ker(dp
Q/G))

by

(3.8) P((v0, r1), (v1, r2))(δv1) := D2(p1 ◦ΥAd
)(q0, q1)(δq1) ∈ Tv0G̃

where (q0, q1, q2) are such that (v0, r1) = ΥAd
(q0, q1) and (v1, r2) = ΥAd

(q1, q2),
and δq1 ∈ Tq1Q is such that D1(p1 ◦ ΥAd

)(q1, q2)(δq1) = δv1. Lemma 3.16 proves
that P is well defined.

Lemma 3.16. Let Q, Ad and ΥAd
be as before. Then, the following assertions are

true.

(1) For (q0, q1) ∈ Q×Q, D1(p1◦ΥAd
)(q0, q1) : T(q0,q1)(Q×{q1}) → TΥAd

(q0,q1)G̃

is an isomorphism of vector spaces.

(2) For ((v0, r1), (v1, r2)) ∈ C′′(E) and δv1 ∈ Tv1G̃ define P((v0, r1), (v1, r2))(δv1)
using (3.8). Then, P is well defined. In addition, P is linear in δv1.

(3) For ((v0, r1), (v1, r2)) ∈ C′′(E) and δv1 ∈ Tv1G̃ we have

dpQ/G(v0)(P((v0, r1), (v1, r2))(δv1)) = 0.

We skip the proof of Lemma 3.16 as we will be proving more general statements
later: see point 2 in Lemma 5.1 for point 1 and Lemma 5.10 for points 2 and 3.

Next, we compare discrete trajectories of M with the reduced trajectories given

by part 2 of Theorem 3.14. We denote points in E = G̃ with v and in M = Q/G with
r. The following result proves that all discrete paths in C′(E) arise from discrete
paths in Q.

Lemma 3.17. Let (v·, r·) be a discrete path in C′(E) and q0 ∈ Q such that
pQ/G(v0) = πQ,G(q0). Then, there exists a unique discrete path in C′(idQ : Q→ Q)
such that ΥAd

(qk, qk+1) = (vk, rk+1) for all k = 0, . . . , N − 1.

Proof. See Proposition 5.2, that is the same result, in a more general context. �

A trajectory (v·, r·) = ((v0, r1), . . . , (vN−1, rN )) of M is a pair of discrete paths
v· and r· such that φ(vk) = pQ/G(vk) = rk for k = 1, . . . , N − 1, and satisfies
dSd(v·, r·)(δv·, δr·) = 0 for all infinitesimal variations (δv·, δr·) on (v·, r·) with fixed
endpoints. Those infinitesimal variations are given by (3.1) and (3.2).

In what follows, we fix discrete paths (v·, r·) in M and q· in Q such that
(vk, rk+1) = ΥAd

(qk, qk+1) for all k. The following result compares the infinitesimal
variations over (v·, r·) in M to those coming from (3.7).

Proposition 3.18. With the notation as above, the following statements are true.

(1) Given a fixed endpoint variation δq· over the discrete path q· in Q, the
infinitesimal variation (δv·, δr·) defined by (3.7) is an infinitesimal variation
with fixed endpoints over (v·, r·) in M.

(2) Given a discrete variation (δv·, δr·) over (v·, r·) with fixed endpoints, there
is a fixed endpoints variation δq· over the discrete path q· such that (3.7)
holds for all k.

Proof. (1) Let (δv·, δr·) be the variation defined by (3.7) in terms of δq·. Let

δ̃vk := D1(p1 ◦ ΥAd
)(qk, qk+1)(δqk) ∈ TvkG̃ for k = 0, . . . , N − 1. Direct

computations using (3.7) prove that (δv·, δr·) satisfies (3.1) and (3.2). Thus,
it is an infinitesimal variation with fixed endpoints in M on (v·, r·).
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(2) Write (δv·, δr·) according to (3.1) and (3.2) for some vectors δ̃vk ∈ TvkG̃
and k = 1, . . . , N − 1. Let δqN := 0 ∈ TqNQ, δq0 := 0 ∈ Tq0Q and,
for each k = 1, . . . , N − 1, using point 1 in Lemma 3.16, let δqk ∈ TqkQ be

such thatD1(p1◦ΥAd
)(qk, qk+1)(δqk) = δ̃vk. Straightforward computations

using (3.1) and (3.2) now show that δq· as constructed is an infinitesimal
variation over q· with fixed endpoints and that (3.7) holds.

�

Corollary 3.19. A discrete path (v·, r·) is a trajectory of M if and only if it is a
trajectory of the reduced system according to point 2 in Theorem 3.14.

Hence, the family of DLPSs contains in a natural way all DMSs as well as all
the dynamical systems obtained by reduction of symmetric DMSs.

4. Categorical formulation

In many circumstances it is useful to be able to consider “maps” between me-
chanical systems. One example in the area of interest of this paper is the reduction
process, seen as a map from a symmetric system to a reduced one. Another exam-
ple is the comparison of different reductions of the same symmetric system. More
generally, a symmetry could be seen as a map from a system to itself. A common
framework for considering spaces together with their maps is provided by construct-
ing a category (see, for instance, [5]). In this section we study the basic properties
of DLPSs and their morphisms in this categorical context.

Definition 4.1. We define the category of discrete Lagrange–Poincaré systems as
the category LPd whose objects are DLPSs. Given M,M′ ∈ obLP

d
with M =

(E,Ld,P) and M′ = (E′, L′
d,P ′), a map Υ : C′(E) → C′(E′) is in morLP

d
(M,M′)

if

(1) Υ is a surjective submersion,
(2) D1(p1 ◦ Υ)(ǫ0,m1) : T(ǫ0,m1)(E × {m1}) → Tp1(Υ(ǫ0,m1))E

′ is onto for all
(ǫ0,m1) ∈ C′(E),

(3) D1(p2 ◦Υ)(ǫ0,m1) = 0 for all (ǫ0,m1) ∈ C′(E)
(4) as maps from C′′(E) to M ′,

(4.1) p
C′(E′),M ′

2 ◦Υ ◦ pC
′′(E),C′(E)

1 = φ′ ◦ pC
′(E′),E′

1 ◦Υ ◦ pC
′′(E),C′(E)

2 ,

where pA,Bj : A → B are the maps induced by the canonical projections of
a Cartesian product onto its factors,

(5) Ld = L′
d ◦Υ,

(6) For all ((ǫ0,m1), (ǫ1,m2), δǫ1) ∈ p∗3(TE),

P ′(Υ(2)((ǫ0,m1),(ǫ1,m2)))(D1(p1 ◦Υ)(ǫ1,m2)(δǫ1)) =

d(p1 ◦Υ)(ǫ0,m1)(P((ǫ0,m1), (ǫ1,m2))(δǫ1), dφ(ǫ1)(δǫ1))
(4.2)

(see Remark 4.2 below).

Remark 4.2. If Υ ∈ morLP
d
(M,M′), by point 4, Υ × Υ defines a map Υ(2) :

C′′(E) → C′′(E′), which is used in point 6.

Lemma 4.3. Let Υ ∈ morLP
d
(M,M′), ((ǫ0,m1), (ǫ1,m2)) ∈ C′′(E) and (ǫ′0,m

′
1) :=

Υ(ǫ0,m1). The following assertions are true.
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(1) Given δǫ′0 ∈ Tǫ′0E
′, if D1(p1 ◦ Υ)(ǫ0,m1)(δǫ0) = δǫ′0 for some δǫ0 ∈ Tǫ0E,

then dΥ(ǫ0,m1)(δǫ0, 0) = (δǫ′0, 0).
(2) If δǫ1 ∈ Tǫ1E,

(4.3) D2(p2 ◦Υ)(ǫ0,m1)(dφ(ǫ1)(δǫ1)) = dφ′(ǫ′1)(D1(p1 ◦Υ)(ǫ1,m2)(δǫ1)).

Proof. Point 1 follows from morphism’s condition 3, satisfied by Υ. Point 2 fol-
lows by noticing that (0, dφ(ǫ1)(δǫ1), δǫ1, 0) ∈ T((ǫ0,m1),(ǫ1,m2))C

′′(E) and, then,
using (4.1). �

Proposition 4.4. LPd is a category considering the standard composition of func-
tions and identity mappings.

Proof. In order to prove that the given data defines a category one has to check
that the composition mapping is associative and the identities are left and right
identities for the composition mapping. The composition of functions and the
identity mappings meet those requirements, so the only thing left to prove is that
◦ is well defined in LPd, that is, that ◦ : morLP

d
(M′,M′′) ×morLP

d
(M,M′) →

morLP
d
(M,M′′) and that idM := idC′(E) ∈ morLP

d
(M,M). Both properties

follow in a lengthy but straightforward manner. �

Lemma 4.5. Let Υ′ ∈ morLP
d
(M,M′) and Υ′′ ∈ morLP

d
(M,M′′) where M =

(E,Ld,P), M′ = (E′, L′
d,P ′) and M′′ = (E′′, L′

d,P ′′). If F : C′(E′) → C′(E′′) is
a smooth map such that the diagram

C′(E)

Υ′

zz✉✉
✉✉
✉✉
✉✉
✉

Υ′′

$$■
■■

■■
■■

■■

C′(E′)
F

// C′(E′′)

is commutative, then F ∈ morLP
d
(M′,M′′). Furthermore, if F is a diffeomor-

phism, then F is an isomorphism in LPd.

Proof. That F satisfies morphism’s conditions 1 and 2 follows easily using the
corresponding property of the morphism Υ′′ to lift the data (point or tangent
vector) to C′(E) and, then, using Υ′ to push down to C′(E′).

Given (ǫ′0,m
′
1) ∈ C′(E′) and δǫ′0 ∈ Tǫ′0E

′, let (ǫ0,m1) ∈ C′(E) and δǫ0 ∈ Tǫ0E
such that Υ′(ǫ0,m1) = (ǫ′0,m

′
1) and D1(p1 ◦ Υ′)(ǫ0,m1)(δǫ0) = δǫ′0, by point 1

in Lemma 4.3, dΥ′(ǫ0,m1)(δǫ0, 0) = (δǫ′0, 0). As p2 ◦ Υ′′ = p2 ◦ F ◦ Υ′, taking
differentials and evaluating at (ǫ0,m1) we get

D1(p2 ◦ F )(ǫ′0,m′
1)(δǫ

′
0) =d(p2 ◦ F )(ǫ′0,m′

1)(δǫ
′
0, 0) = d(p2 ◦Υ′′)(ǫ0,m1)(δǫ0, 0)

=D1(p2 ◦Υ′′)(ǫ0,m1)(δǫ0) = 0,

where the last identity holds because Υ′′ ∈ morLP
d
(M,M′′). Thus, F satisfies

morphism’s condition 3.
The remaining conditions follow in a similar fashion, and we conclude that F ∈

morLP
d
(M′,M′′).

The last assertion of the statement follows easily as the first part of the Lemma
proves that F−1 is a morphism in LPd and since, as functions, F and F−1 are
mutually inverses, they have the same property as morphisms in LPd. �
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Lemma 4.6. Let Υ ∈ morLP
d
(M,M′) for M = (E,Ld,P) and M′ = (E′, L′

d,P ′)
such that Υ : C′(E) → C′(E′) is a diffeomorphism. Then Υ is an isomorphism of
LPd.

Proof. As Υ ∈ morLP
d
(M,M′) and, by Proposition 4.4, idC′(E) ∈ morLP

d
(M,M),

the result follows from Lemma 4.5 with M′′ := M and F := Υ−1. �

The following result exposes the relation between trajectories of a DLPS and
their images under a morphism in LPd.

Theorem 4.7. Given Υ ∈ morLP
d
(M,M′) with M = (E,Ld,P) and M′ =

(E′, L′
d,P ′), let (ǫ·,m·) = ((ǫ0,m1), . . . , (ǫN−1,mN )) be a discrete path in C′(E)

and define (ǫ′k,m
′
k+1) := Υ(ǫk,mk+1) for k = 0, . . . , N − 1. Then, (ǫ·,m·) is a

trajectory of M if and only if (ǫ′·,m
′
·) is a trajectory of M′.

Proof. Assume that (δǫ·, δm·) is an infinitesimal variation in M over (ǫ·,m·) and
that (δǫ′·, δm

′
·) is an infinitesimal variation in M′ over (ǫ′·,m

′
·) satisfying

(4.4) dΥ(ǫk,mk+1)(δǫk, δmk+1) = (δǫ′k, δm
′
k+1) for k = 0, . . . , N − 1.

Then, using the chain rule, we see that

(4.5) dSd(ǫ·,m·)(δǫ·, δm·) = dS′
d(ǫ

′
·,m

′
·)(δǫ

′
·, δm

′
·).

Next we prove the equivalence of the assertions in the statement.
Assume that (ǫ·,m·) is a trajectory of M. Let (δǫ′·, δm

′
·) be an infinitesimal

variation with fixed endpoints in M′ over the path (ǫ′·,m
′
·). That is, there are

δ̃ǫ′k ∈ Tǫ′
k
E′ for k = 1, . . . , N − 1 such that (3.1) and (3.2) hold with δǫ′k and δ̃ǫ′k

instead of δǫk and δ̃ǫk.

By morphism’s property 2 applied to Υ, there exist δ̃ǫk ∈ TǫkE such that D1(p1◦
Υ)(ǫk,mk+1)(δ̃ǫk) = δ̃ǫ′k for k = 1, . . . , N − 1; we fix one such vector for each k.
Next apply (3.1) and (3.2) to define an infinitesimal variation (δǫ·, δm·) on (ǫ·,m·)

with fixed endpoints based on the δ̃ǫ· constructed above.
Direct computations using the morphism properties of Υ show that condition (4.4)

holds for these variations. Then, using (4.5),

dS′
d(ǫ

′
·,m

′
·)(δǫ

′
·, δm

′
·) = dSd(ǫ·,m·)(δǫ·, δm·) = 0,

where the last equality holds because (δǫ·, δm·) is an infinitesimal variation with
fixed endpoints in M over (ǫ·,m·), that is a trajectory of M. Finally, as (δǫ′·, δm

′
·)

was an arbitrary infinitesimal variation with fixed endpoints in M′ over the path
(ǫ′·,m

′
·), we conclude that (ǫ′·,m

′
·) is a trajectory of M′.

A similar argument shows that if (ǫ′·,m
′
·) is a trajectory of M′, then (ǫ·,m·) is a

trajectory of M. �

5. Reduction of discrete Lagrange–Poincaré systems

The purpose of this section is to define what is meant by a group of symmetries
of a DLPS. Also, a reduction result is studied.
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5.1. Symmetry groups of discrete Lagrange–Poincaré systems. Recall that
a G-action on a fiber bundle consists of a pair of G-actions lE and lM , satisfying a
number of conditions (Definition 9.14). We can use these actions to define “diago-
nal” G-actions on the fiber bundles C′(E) and C′′(E) by

lC
′(E)

g (ǫ0,m1) :=(lEg (ǫ0), l
M
g (m1))

lC
′′(E)

g ((ǫ0,m1), (ǫ1,m2)) :=(lC
′(E)

g (ǫ0,m1), l
C′(E)
g (ǫ1,m2)).

(5.1)

These actions are smooth and free because lE and lM have those properties. In
addition, the bundle projection maps of C′(E) and C′′(E) on M are G-equivariant
and πM,G : M → M/G is a principal G-bundle. In fact, it is easy to check that G
acts on the fiber bundles φ ◦ p1 : C′(E) →M and φ ◦ p3 : C′′(E) →M .

We can also define G-actions on ker(dφ) and p∗3(TE) by

lTEg (ǫ0, δǫ0) :=dl
E
g (ǫ0)(δǫ0),

l
p∗3(TE)
g ((ǫ0,m1), (ǫ1,m2), δǫ1) :=(lC

′′(E)
g ((ǫ0,m1), (ǫ1,m2)), dl

E
g (ǫ1)(δǫ1)).

(5.2)

We denote the G-action on ker(dφ) by lTE because it is the restriction of the natural
G-action on TE. The action lTE is well defined by the G-equivariance of φ.

Lemma 5.1. Let G be a Lie group acting on the fiber bundle φ : E → M and
Ad be a discrete connection on the principal G-bundle πM,G : M → M/G. Define

Υ
(2)
Ad

: C′′(E) → C′′(G̃E) as the restriction of (ΥAd
◦ p1) × (ΥAd

◦ p2) : C′(E) ×
C′(E) → C′(G̃E)×C′(G̃E) to the corresponding spaces, where ΥAd

is the surjective
submersion defined in (2.2). Then

(1) Υ
(2)
Ad

is well defined.

(2) D1(p1 ◦ ΥAd
)(ǫ0,m1) : T(ǫ0,m1)(E × {m1}) → T(p1◦ΥAd

)(ǫ0,m1)G̃E is an

isomorphism of vector spaces for every (ǫ0,m1) ∈ C′(E).

(3) Υ
(2)
Ad

: C′′(E) → C′′(G̃E) is a principal G-bundle with structure group G.

In particular, C′′(E)/G ≃ C′′(G̃E).

(4) For ((v0, r1), (v1, r2)) ∈ C′′(G̃E) and (ǫ0,m1) ∈ C′(E) such that ΥAd
(ǫ0,m1) =

(v0, r1), there is a unique (ǫ1,m2) ∈ C′(E) such that ((ǫ0,m1), (ǫ1,m2)) ∈
C′′(E) and Υ

(2)
Ad

((ǫ0,m1), (ǫ1,m2)) = ((v0, r1), (v1, r2)).

Proof. A simple computation shows that, for ((ǫ0,m1), (ǫ1,m2)) ∈ C′′(E), we have
p2(ΥAd

(ǫ0,m1)) = pM/G(p1(ΥAd
(ǫ1,m2))), proving point 1.

Let (v0, r1) := ΥAd
(ǫ0,m1) = (πE×G,G(ǫ0,Ad(φ(ǫ0),m1)), π

M,G(m1)). It is easy
to check that if δǫ0 ∈ ker(D1(p1◦ΥAd

)(ǫ0,m1)), then (δǫ0, 0) ∈ ker(dΥAd
(ǫ0,m1)) =

{(ξE(ǫ0), ξM (m1)) ∈ T(ǫ0,m1)(E ×M) : ξ ∈ g}. But, being πM,G : M → M/G a
principal G-bundle, ξM (m1) = 0 implies that ξ = 0, and we conclude that δǫ0 = 0,

so that D1(p1 ◦ ΥAd
)(ǫ0,m1) : T(ǫ0,m1)(E × {m1}) → Tv0G̃E is one to one. As, in

addition, dim(T(ǫ0,m1)(E×{m1})) = dim(Tv0G̃E), we conclude that point 2 is true.
Consider the commutative diagram

C′′(E)

Υ
(2)
Ad ��

FE // E × E ×M

Υ̃
(2)
Ad��

C′′(G̃E)
FG̃E

// G̃E × G̃E × (M/G)
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where FE and FG̃E
are the diffeomorphisms introduced in Remark 3.1 and

Υ̃
(2)
Ad

(ǫ0, ǫ1,m2) := ((p1 ◦ΥAd
)(ǫ0, φ(ǫ1)),ΥAd

(ǫ1,m2)).

It is clear that Υ̃
(2)
Ad

is smooth. Furthermore, as the projection to its last two

components is simply ΥAd
: E ×M → G̃E × (M/G), that is known to be a sur-

jective submersion and applying point 2 to the first component, we conclude that

Υ̃
(2)
Ad

is a submersion. We check explicitly that Υ̃
(2)
Ad

is surjective. Let (v0, v1, r2) ∈
G̃E × G̃E × (M/G). Then, by definition of G̃E , there are (ǫ0,m1) ∈ E × M
such that ΥAd

(ǫ0,m1) = (v0, p
M/G(v1)). Next, choose (ǫ′1,m

′
2) ∈ E × M such

that ΥAd
(ǫ′1,m

′
2) = (v1, r2). Notice that, using diagram (2.3), πM,G(φ(ǫ′1)) =

pM/G(v1) = πM,G(m1). Hence, as π
M,G :M → M/G is a principal G-bundle, there

is g′ ∈ G such that lMg′ (φ(ǫ
′
1)) = m1. We define (ǫ1,m2) := lE×M

g′ (ǫ′1,m
′
2). By con-

struction, ΥAd
(ǫ1,m2) = (v1, r2) and φ(ǫ1) = m1. All together, Υ̃

(2)
Ad

(ǫ0, ǫ1,m2) =

(v0, v1, r2), showing that Υ̃
(2)
Ad

is onto. Using that ΥAd
is a principal G-bundle,

it follows easily that (Υ̃
(2)
Ad

)−1(v0, v1, r2) = lE×E×M
G {(ǫ0, ǫ1,m2)}, showing that

(Υ̃
(2)
Ad

)−1(v0, v1, r2) coincides with the orbit of the free “diagonal” action of G on

E × E ×M . Theorem 9.8 proves that Υ̃
(2)
Ad

: E × E ×M → G̃E × G̃E × (M/G) is

a principal G-bundle. Finally, since the diffeomorphism FE is G-equivariant (when

considering the G-actions lC
′′(E) and lE×E×M), we conclude that point 3 holds.

Notice that in the first step of the previous construction, we picked (ǫ0,m1) ∈
C′(E) such that ΥAd

(ǫ0,m1) = (v0, p
M/G(v1)). In the context of point 4, such

(ǫ0,m1) is given. Hence, the rest of the construction produces (ǫ1,m2) so that

((ǫ0,m1), (ǫ1,m2)) ∈ C′′(E) and Υ
(2)
Ad

((ǫ0,m1), (ǫ1,m2)) = ((v0, r1), (v1, r2)). The
uniqueness of that pair follows from the fact this is the only element in the G-orbit
that has (ǫ0,m1) as the first component. Hence, point 4 is valid. �

Proposition 5.2. Let G be a Lie group acting on the fiber bundle φ : E →M and
Ad a discrete connection on the principal G-bundle πM,G : M → M/G. Given a

discrete path (v·, r·) = ((v0, r1), . . . , (vN−1, rN )) in C′(G̃E) and (ǫ̃0, m̃1) ∈ C′(E)
such that ΥAd

(ǫ̃0, m̃1) = (v0, r1), there is a unique discrete path (ǫ·,m·) in C′(E)
such that (ǫ0,m1) = (ǫ̃0, m̃1) and ΥAd

(ǫk,mk+1) = (vk, rk+1) for all k.

Proof. The proof is by induction in the length of the reduced discrete path, N .
If N = 0, taking (ǫ0,m1) := (ǫ̃0, m̃1) solves the problem. Otherwise, assume
that the result holds for all lengths < N and (v·, r·) = ((v0, r1), . . . , (vN−1, rN )).
Then, there is a discrete path ((ǫ0,m1), . . . , (ǫN−2,mN−1)) in C′(E) that lifts
((v0, r1), . . . , (vN−2, rN−1)) starting at (ǫ̃0, m̃1). In particular, ΥAd

((ǫN−2,mN−1)) =

(vN−2, rN−1). As, in addition, ((vN−2, rN−1), (vN−1, rN )) ∈ C′′(G̃E), by point 4 in
Lemma 5.1, there is (ǫN−1,mN ) ∈ C′(E) such that ((ǫN−2,mN−1), (ǫN−1,mN )) ∈
C′′(E) and Υ

(2)
Ad

((ǫN−2,mN−1), (ǫN−1,mN )) = ((vN−2, rN−1), (vN−1, rN )). This

proves that ((ǫ0,m1), . . . , (ǫN−2,mN−1), (ǫN−1,mN)) is a discrete path in C′(E)
starting at (ǫ̃0, m̃1) and that lifts ((v0, r1), . . . , (vN−1, rN )). This proves that the
statement holds for discrete paths of length N so that, by the induction principle,
it holds for arbitrary lengths. �

Definition 5.3. A Lie group G is a symmetry group of the DLPS M = (E,Ld,P)
if
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(1) G acts on the fiber bundle φ : E →M (Definition 9.14),

(2) considering the “diagonal action” of G on C′(E), lC
′(E) defined in (5.1), Ld

is G-invariant, and
(3) P is a G-equivariant element of hom(p∗3(TE), ker(dφ)) for the G-actions

lTE and lp
∗

3(TE) defined in (5.2). In other words,

(5.3) P ◦lp
∗

3(TE)
g = lTEg ◦ P = dlEg ◦ P for all g ∈ G.

Example 5.4. Let (Q,Ld) be a DMS and M := (idQ : Q → Q,Ld, 0) the DLPS
associated to (Q,Ld) in Example 3.12. If G is a symmetry group of (Q,Ld) as in
Section 3.2, then G acts on the fiber bundle idQ : Q → Q and Ld is G-invariant.
Also, as P = 0, condition (5.3) is trivially satisfied. Hence, G is a symmetry group
of M.

Lemma 5.5. Let M = (E,Ld,P) ∈ obLP
d
and G be a Lie group. Then, for

g ∈ G, (5.3) holds if and only if (4.2) holds for Υ := l
C′(E)
g and M′ = M.

Proof. Unravel the definitions. �

Proposition 5.6. Let M = (E,Ld,P) ∈ obLP
d
and G a Lie group. Then G is a

symmetry group of M if and only if G acts on the fiber bundle φ : E → M and

l
C′(E)
g ∈ morLP

d
(M,M) for all g ∈ G.

Proof. Assume that G is a symmetry group of M. Then, by definition, G acts on

the fiber bundle φ : E → M . We have to prove that l
C′(E)
g ∈ morLP

d
(M,M).

It is immediate that l
C′(E)
g is a diffeomorphism, so it has morphism’s property 1.

As p1 ◦ lC
′(E)

g = lEg ◦ p1, we have D1(p1 ◦ lC
′(E)

g ) = dlEg , that is an isomorphism;

hence, l
C′(E)
g has morphism’s property 2. As p2 ◦ lC

′(E)
g = lMg ◦p2, D1(p2 ◦ lC

′(E)
g ) =

D1(l
M
g ◦ p2) = 0, it follows that l

C′(E)
g has morphism’s property 3. Also, as on

C′′(E) we have that

p
C′(E),M
2 ◦ lC′(E)

g ◦ pC
′′(E),C′(E)

1 =lMg ◦ pC
′(E),M

2 ◦ pC
′′(E),C′(E)

1

=φ ◦ pC
′(E),E

1 ◦ lC′(E)
g ◦ pC

′′(E),C′(E)
2 ,

we see that l
C′(E)
g has morphism’s property 4. As Ld ◦ lC

′(E)
g = Ld, l

C′(E)
g has

morphism’s property 5 and Lemma 5.5 shows that morphism’s property 6 is valid

for l
C′(E)
g . We conclude that l

C′(E)
g ∈ morLP

d
(M,M).

Conversely, ifG acts on the fiber bundle φ : E →M and l
C′(E)
g ∈ morLP

d
(M,M),

the first condition for being a symmetry group is met. The other two follow from
morphism’s properties 5 and 6, together with Lemma 5.5. �

Later on we will be interested in subgroups of a symmetry group of a DLPS. The
following results establish that closed subgroups of a symmetry group of a system
M are symmetry groups of M.

Lemma 5.7. Let G act on the fiber bundle (E,M, φ, F ) and H ⊂ G be a closed
Lie subgroup. Then H acts on the fiber bundle (E,M, φ, F ).

Proof. We consider the H-actions on E, M and F obtained by restricting the G-
actions lE, lM and rF to H . Hence, all are smooth and the first two are free; also,
φ is H-equivariant. As πM,G :M →M/G is a principal G-bundle, by Lemma 9.11,
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the G-action lM is proper and, being H ⊂ G closed, the H-action lM obtained
by restriction is proper. Then applying Corollary 9.10 to the H-action lM , we
see that πM,H : M → M/H is a principal H-bundle. Given m ∈ M , there is a
trivializing chart (U,ΦU ) with m ∈ U , an open G-invariant subset of M , and ΦU
G-equivariant. Thus, U is H-invariant and ΦU is H-equivariant, so that (U,ΦU ) is
the type of trivializing chart required in point 3 of Definition 9.14 to conclude that
H acts on the fiber bundle (E,M, φ, F ). �

Proposition 5.8. Let G be a symmetry group of M ∈ obLP
d
. If H ⊂ G is a closed

Lie subgroup, then H is a symmetry group of M.

Proof. Since G is a symmetry group of M = (E,Ld,P), G acts on the fiber bundle
(E,M, φ, F ) and, by Lemma 5.7, the same happens to the closed subgroup H , when
acting via the restricted G-actions. That Ld is H-invariant and P is H-equivariant,
follow from the fact that they have those properties for G, and that H acts by the
restriction of the corresponding G-actions. Thus, H is a symmetry group of M. �

Remark 5.9. When G is a symmetry group of M = (E,Ld,P) ∈ obLP
d
there are

functions Jd : C
′(E) → g∗ and (Jd)ξ : C

′(E) → R defined as follows. Jd(ǫ0,m1)(ξ) :=
−D1Ld(ǫ0,m1)(ξE(ǫ0)) for (ǫ0,m1) ∈ C′(E) and ξ ∈ g, where ξE is the infini-
tesimal generator associated to ξ by the G-action on E. Then, (Jd)ξ(ǫ0,m1) :=
Jd(ǫ0,m1)(ξ). In some sense, these functions resemble the momentum mappings
that appear in the context of DMS. It is easy to check that when (ǫ·,m·) is a
trajectory of M, for any ξ ∈ g,

(Jd)ξ(ǫk,mk+1) =(Jd)ξ(ǫk−1,mk)

+D1Ld(ǫk−1,mk) ◦ P((ǫk−1,mk), (ǫk,mk+1))(ξE(ǫk))
(5.4)

for all k = 0, . . . , N − 1. This last expression shows how Jd evolves on a given
trajectory of M. In particular, when the image of P is contained in ker(D1Ld), the
momentum is conserved along the trajectories; this is the case of a DLPS arising
from a discrete mechanical system (see Example 3.12). Equation (5.4) can also
be compared with the momentum evolution equation in the nonholonomic case:
equation (35) in [7].

5.2. Reduced discrete Lagrange–Poincaré system. Let G be a symmetry
group of M = (E,Ld,P) ∈ obLP

d
. We want to construct a new DLPS that,

as will be shown later, will play the role of the reduced system of M. First of

all, since G acts on (E,M, φ, F ), the conjugate bundle (G̃E ,M/G, pM/G, F × G),
introduced in Example 9.17, is a fiber bundle.

Fix a discrete connection Ad on the principal G-bundle πM,G : M → M/G and

let ΥAd
: E×M → G̃E×(M/G) be the map introduced in (2.2) that, by Lemma 2.8,

is a principal G-bundle. Define Ľd : G̃E × (M/G) → R by Ľd(v0, r1) := Ld(ǫ0,m1)
for any (ǫ0,m1) ∈ Υ−1

Ad
(v0, r1); Ľd is well defined by the G-invariance of Ld.

Next we define P̌ ∈ hom(p∗3(T (G̃E)), ker(dp
M/G)). By point 3 of Lemma 5.1,

given any ((v0, r1), (v1, r2)) ∈ C′′(G̃E), there are elements ((ǫ0,m1), (ǫ1,m2)) ∈
C′′(E) such that Υ

(2)
Ad

((ǫ0,m1), (ǫ1,m2)) = ((v0, r1), (v1, r2)). In fact, those ele-

ments form a G-orbit in C′′(E); we fix one element in the orbit. Also, by point 2 of

Lemma 5.1, D1(p1 ◦ΥAd
)(ǫ1,m2) : T(ǫ1,m2)(E×{m2}) → Tv1G̃E is an isomorphism

of vector spaces. Consequently, every element ((v0, r1), (v1, r2), δv1) ∈ p∗3(T (G̃E))



DISCRETE LAGRANGIAN REDUCTION BY STAGES 19

is δv1 = D1(p1 ◦ΥAd
)(ǫ1,m2)(δǫ1) for a unique δǫ1 ∈ T(ǫ1,m2)(E × {m2}). Let

P̌((v0, r1), (v1, r2))(δv1) :=D1(p1 ◦ΥAd
)(ǫ0,m1)(P((ǫ0,m1), (ǫ1,m2))(δǫ1))

+D2(p1 ◦ΥAd
)(ǫ0,m1)(dφ(ǫ1)(δǫ1)).

(5.5)

Lemma 5.10. Under the previous conditions, the map defined by (5.5) is a well

defined homomorphism P̌ ∈ hom(p∗3(T (G̃E)), ker(dp
M/G)).

Proof. Two things have to be checked: that the image of P̌ is contained in ker(dpM/G)
and that the definition is independent of any choices involved in lifting the input
data to p∗3(TE). Since the points ((ǫ0,m1), (ǫ1,m2)) lying over ((v0, r1), (v1, r2))
form a G-orbit, any other such point would be of the form ((ǫ′0,m

′
1), (ǫ

′
1,m

′
2)) =

l
C′′(E)
g ((ǫ0,m1), (ǫ1,m2)) for some g ∈ G. It follows from the G-invariance of ΥAd

that

D1(p1 ◦ΥAd
)(ǫ1,m2)(δǫ1) = D1(p1 ◦ΥAd

)(lC
′(E)

g (ǫ1,m2))(dl
E
g (ǫ1)(δǫ1)).

Hence, a variation ((v0, r1), (v1, r2), δv1) ∈ p∗3(T (G̃E)) lifts to the (unique for each

g) variation (l
C′′(E)
g ((ǫ0,m1), (ǫ1,m2)), dl

E
g (ǫ1)(δǫ1)) for arbitrary g ∈ G. Then,

for a given g ∈ G, using the G-equivariance of P and the G-invariance of ΥAd
,

we see that replacing ((ǫ0,m1), (ǫ1,m2)) and δǫ1 by l
C′′(E)
g ((ǫ0,m1), (ǫ1,m2)) and

(l
C′′(E)
g ((ǫ0,m1), (ǫ1,m2)), dl

E
g (ǫ1)(δǫ1)) does not alter the value of the left side

of (5.5). This proves P̌ is independent of the choices made.
Direct computations show that the image of P̌ is contained in ker(dpM/G). �

Definition 5.11. Let G be a symmetry group of M = (E,Ld,P) ∈ obLP
d
and Ad

a discrete connection on the principal G-bundle πM,G : M → M/G. The DLPS

(G̃E , Ľd, P̌) ∈ obLP
d
defined above is called the reduced discrete Lagrange–Poincaré

system obtained as the reduction of M by the symmetry group G using the discrete
connection Ad. We denote this system by M/G or M/(G,Ad).

Example 5.12. Given a DMS (Q,Ld), let M := (Q,Ld, 0) be the DLPS con-
structed in Example 3.12. Let G be a symmetry group of (Q,Ld). By Example 5.4,
G is a symmetry group of M. Fix a discrete connection Ad on the principal G-

bundle πQ,G : Q→ Q/G. The reduced DLPS M/(G,Ad) is (G̃E , Ľd, P̌) where the

fiber bundle φ : G̃E → M/G is pQ/G : G̃ → Q/G, the lagrangian is determined by
Ľd ◦ΥAd

= Ld and, according to (5.5),

P̌((vk−1, rk), (vk, rk+1))(δvk) = D2(p1 ◦ΥAd
)(qk−1, qk)(δqk),

where (vk−1, rk) = ΥAd
(qk−1, qk), (vk, rk+1) = ΥAd

(qk, qk+1) and δvk = D1(p1 ◦
ΥAd

)(qk, qk+1)(δqk). Notice that this DLPS coincides with the DLPS associated
to the reduction of (Q,Ld) in Section 3.2. In other words, the reduced system
M/(G,Ad) extends the reduction construction of DMSs introduced in [7].

Proposition 5.13. Let G be a symmetry group of M = (E,Ld,P) ∈ obLP
d
and

Ad a discrete connection on the principal G-bundle πM,G :M → M/G. Then ΥAd

defined by (2.2) is in morLP
d
(M,M/(G,Ad)).

Proof. We have already noticed that ΥAd
: C′(E) → G̃E is a surjective submer-

sion, so that morphism’s property 1 holds. By point 2 of Lemma 5.1, morphism’s
property 2 holds. As p2 ◦ ΥAd

= πM,G ◦ p2, if i1 : TE → T (C′(E)) = TE ⊕ TM
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is the natural inclusion, we have that D1(p2 ◦ ΥAd
) = dπM,G ◦ dp2 ◦ i1 = 0, as

Im(i1) ⊂ ker(dp2), so that morphism’s property 3 is valid. As

(p
C′(G̃E),M/G
2 ◦ΥAd

◦ pC
′′(E),C′(E)

1 )((ǫ0,m1), (ǫ1,m2)) = πM,G(m1)

and

(pM,G ◦ pC
′(G̃E),G̃E

1 ◦ΥAd
◦ pC

′′(E),C′(E)
2 )((ǫ0,m1), (ǫ1,m2))

=pM,G(πE×G,G(ǫ1,Ad(φ(ǫ1),m2))) = πM,G(φ(ǫ1)) = πM,G(m1),

morphism’s property 4 is satisfied. Morphism’s property 5 is satisfied by G being a
symmetry group of M and, by definition of P̌ (5.5), we see that (4.2) holds, proving
that morphism’s property 6 holds for ΥAd

. �

When a DLPS is symmetric, constructing the associated reduced system requires
the choice of a discrete connection. The following result proves that all reduced
DLPSs obtained from a DLPS by this procedure are isomorphic in LPd, indepen-
dently of the discrete connection chosen.

Proposition 5.14. Let G be a symmetry group of the M = (E,Ld,P) ∈ obLP
d

and A1
d,A2

d two discrete connections on the underlying principal G-bundle πM,G :
M →M/G. Then, the reduced systems M/(G,A1

d) and M/(G,A2
d) are isomorphic

in LPd.

Proof. By Lemma 2.8, ΥA1
d
,ΥA2

d
: C′(E) → C′(G̃E) are principalG-bundles. Then,

we have the following commutative diagrams of smooth maps, where the horizontal
arrows are diffeomorphisms (see Proposition 2.6)

C′(E)

πC′(E),G

��

Υ
A1

d

yyss
ss
ss
ss
s

C′(G̃E)
Φ−1

A1
d

// C′(E)/G

and C′(E)

πC′(E),G

��

Υ
A2

d

%%❑
❑❑

❑❑
❑❑

❑❑

C′(E)/G
Φ

A2
d

// C′(G̃E)

Joining the two diagrams we obtain the commutative diagram of smooth maps

C′(E)
Υ

A1
d

zz✉✉
✉✉
✉✉
✉✉
✉ Υ

A2
d

$$■
■■

■■
■■

■■

C′(G̃E)
Φ

A2
d
◦Φ−1

A1
d

// C′(G̃E)

The result then follows from Lemma 4.5 because the horizontal arrow is a diffeo-
morphism and, by Proposition 5.13, the non-horizontal arrows are morphisms in
LPd. �

5.3. Dynamics of the reduced discrete Lagrange–Poincaré system. The
following result compares the dynamics of a reduced DLPS to that of the original
symmetric system.

Theorem 5.15. Let G be a symmetry group of the DLPS M = (E,Ld,P), Ad a
discrete connection on the principal G-bundle πM,G :M →M/G and M/(G,Ad) =

(G̃E , Ľd, P̌) the corresponding reduced DLPS. If (ǫ·,m·) = ((ǫ0,m1), . . . , (ǫN−1,mN ))

is a discrete path in C′(E), we define a discrete path (v·, r·) in C
′(G̃E) by (vk, rk+1) :=
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ΥAd
(ǫk,mk+1) for k = 0, . . . , N −1. Then, (ǫ·,m·) is a trajectory of M if and only

if (v·, r·) is a trajectory of M/(G,Ad).

Proof. As, by Proposition 5.13, ΥAd
∈ morLP

d
(M,M/(G,Ad)), the result follows

from Theorem 4.7. �

Corollary 5.16. In the same setting of Theorem 5.15, the following assertions are
equivalent.

(1) (ǫ·,m·) is a trajectory of M.
(2) Equation (3.4) is satisfied.
(3) (v·, r·) is a trajectory of M/(G,Ad).
(4) For all k = 0, . . . , N − 1,

D1Ľd(vk, rk+1) +D1Ľd(vk−1, rk)P̌((vk−1, rk), (vk, rk+1))

+D2Ľd(vk−1, rk)dp
M/G(vk) = 0

(5.6)

Proof. Use Theorem 5.15 and Proposition 3.8, applied to M and M/(G,Ad). �

The following reconstruction result shows how, knowing the discrete trajectories
of a reduced system, the trajectories of the original system can be recovered.

Theorem 5.17. Let G be a symmetry group of the DLPS M = (E,Ld,P), Ad a
discrete connection on the principal G-bundle πM,G : M → M/G and M/(G,Ad)
the corresponding reduced DLPS. Let (v·, r·) be a trajectory of M/(G,Ad) and
(ǫ̃0, m̃1) ∈ C′(E) such that ΥAd

(ǫ̃0, m̃1) = (v0, r1). Then, there exists a unique tra-
jectory (ǫ·,m·) of M such that (ǫ0,m1) = (ǫ̃0, m̃1) and ΥAd

(ǫk,mk+1) = (vk, rk+1)
for all k.

Proof. By Proposition 5.2, the discrete path (v·, r·) lifts to a unique discrete path
(ǫ·,m·) in C′(E), starting at (ǫ̃0, m̃1). Then, (ǫ0,m1) = (ǫ̃0, m̃1) and (vk, rk+1) =
ΥAd

(ǫk,mk+1) for all k. By Theorem 5.15, (ǫ·,m·) is a trajectory of M. �

Remark 5.18. Theorem 5.17 asserts that all trajectories of a reduced DLPS
M /(G,Ad) come from trajectories of the original system M. It is possible to
give a direct description of the reconstruction process in terms of lifting discrete
paths (see Lemma 5.1 and Proposition 5.2). This process is inductive, so it suffices
to describe the initial step, as we do next.

Given a discrete path ρ := ((v0, r1), (v1, r2)) ∈ C′′(G̃E) and (ǫ0,m1) ∈ C′(E)
such that ΥAd

(ǫ0,m1) = (v0, r1), the discrete lift of ρ starting at (ǫ0,m1) is ρ̂ :=
((ǫ0,m1), (l

E
g (ǫ

′
1), l

M
g (m′

2))) where (ǫ′1,m
′
2) ∈ Υ−1

Ad
(v1, r2) is arbitrary —as ΥAd

is

onto, it is always possible to find such pairs (ǫ′1,m
′
2)— and g ∈ G is the unique

element making lMg (φ(ǫ′1)) = m1.

Using (2.3) we see that πM,G(φ(ǫ′1)) = pM/G(p1(ΥAd
(ǫ′1,m

′
2))) = pM/G(v1) =

r1 = πM,G(m1), so that m1 and φ(ǫ′1) are in the same G-orbit and g is well defined.
Furthermore, as φ(lEg (ǫ

′
1)) = lMg (φ(ǫ′1)) = m1, we have that ρ̂ ∈ C′′(E). Finally, as

ΥAd
is G-invariant ΥAd

(lEg (ǫ
′
1), l

M
g (m′

2)) = ΥAd
(l
C′(E)
g (ǫ′1,m

′
2)) = ΥAd

(ǫ′1,m
′
2) =

(v1, r2). Hence Υ
(2)
Ad

(ρ̂) = ρ, and ρ̂ is, indeed, the corresponding lifted path.

6. Example

In this section we illustrate the reduction techniques introduced so far with the
reduction of an explicit symmetric DLPS and give a description of the resulting
system.
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6.1. The system and a symmetry group. The starting point is the DMS
(Q,Ld), where Q := C2 −∆xy, for ∆xy the diagonal in C2 and

(6.1) Ld(q0, q1) :=
1

2h
(‖qx1 − qx0‖2 + ‖qy1 − qy0‖

2
)− h

2
V (‖(qy0 − qx0 )‖

2
)

where h 6= 0 is a real constant. This DMS arises as a simple discretization of the
mechanical system consisting of two distinct unit-mass particles in the plane that
interact via a potential V , that only depends on the distance between the particles.

Following Example 3.12, we associate a DLPS M to (Q,Ld). Take the fiber
bundle φ : E → M to be idQ : Q → Q, the Lagrangian function Ld and P := 0.
Define the DLPS M := (Q,Ld,P).

Recall that SE(2) is the group of special Euclidean symmetries of R2 ≃ C. We
can identify SE(2) with {(A, v) ∈ C2 : |A| = 1} = U(1)×C. The product operation
is (A1, v1)·(A2, v2) = (A1A2, A1v2+v1) with null element eSE(2) = (1, 0) and inverse

(A, v)−1 = (A−1,−A−1v). The subset T2 := {(1, v) ∈ U(1)×C} ⊂ SE(2) is a closed
normal subgroup that is isomorphic (as a group) to C.
SE(2) acts naturally onC by lC(A,v)(z) := Az+v. This action induces the diagonal

action of SE(2) on Q×Q by lC
2

(A,v)(q) := (lC(A,v)(q
x), lC(A,v)(q

y)) = (Aqx+v,Aqy+v).

Since Q is preserved by lC
2

, SE(2) acts smoothly on Q by the restricted action,
that we denote by lQ.

It is immediate that lQ is a free action. Being U(1) compact, lQ is a proper
action. Then, by Corollary 9.10, πQ,SE(2) : Q → Q/SE(2) is a principal SE(2)-
bundle.

From the previous discussion and the fact that φ = idQ is an SE(2)-invariant
trivialization of φ : E → M, we conclude that SE(2) acts on the fiber bundle

φ : E → M. As Ld ◦lQ×Q
(A,v) = Ld for all (A, v) ∈ SE(2) and P := 0 is SE(2)-

equivariant, we conclude that SE(2) is a symmetry group of M. Being T2 ⊂ SE(2)
a closed subgroup, it is also a symmetry group of M by Proposition 5.8.

6.2. A discrete connection. In this section we use the canonical real inner prod-
ucts in C2 and C to produce a discrete connection AT2

d on the principal T2-bundle
πQ,T2 : Q → Q/T2, following the construction given in Section 5 of [8]. The idea
of that construction (in the current setting) is as follows. As T2 acts by isometries
on C (with the canonical real product), T2 acts by isometries on C2 via the diago-
nal action (with the canonical real inner product on C2). This last inner product
induces a T2-invariant riemannian metric on Q. The horizontal subspace for the
discrete connection is an open subset of the set of pairs (q0, q1) ∈ Q×Q such that
q1 = expQ(v) for some v ∈ Tq0Q that is orthogonal to Tq0V(q0) = ker(dπQ,T2(q0)),
the tangent space to the lQ-orbit through q0.

The previous construction gives that

Hor
A

T2
d

:= {(q0, q1) ∈ Q×Q : qx0 + qy0 = qx1 + qy1}

is a discrete connection on the principal T2-bundle π
Q,T2 : Q→ Q/T2. Straightfor-

ward computations show that the discrete connection form is

AT2

d (q0, q1) =

(
1,

1

2

(
(qx1 + qy1 )− (qx0 + qy0 )

))
.(6.2)

Remark 6.1. Other discrete connections can be considered on the principal T2-
bundle πQ,T2 : Q→ Q/T2. For instance, one can define an affine discrete connection
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whose horizontal space consists of a level manifold of the discrete momentum func-
tion (see Remark 5.9), This would lead to the reduction procedure considered in
Section 11 of [7] for DMS with horizontal symmetries.

6.3. The reduced system. Using the discrete connection AT2

d we construct the

reduced system M /(T2,AT2

d ) = ((̃T2)Q, Ľd, P̌), in such a way that

Υ
A

T2
d

(q0, q1) = (πQ×T2,T2(q0,AT2

d (q0, q1)), π
Q,T2 (q1))

is in morM(M,M /(T2,AT2

d )). Below we give an explicit DLPS M′, isomorphic to

M /(T2,AT2

d ).

6.3.1. An alternative model. Define φ′ : E′ → M′ by p1 : C∗ × T2 → C∗, so that
(E′,M′, φ′, T2) is a trivial fiber bundle. Define the map Υ : C′(E) → C′(E′) by

Υ(q0, q1) :=

((
1√
2
(qx0 − qy0 ),

(
1,

1

2
((qx1 + qy1 )− (qx0 + qy0 ))

))
,
1√
2
(qx1 − qy1 )

)
.

Clearly Υ is smooth and T2-invariant.
We intend to define a DLPS structure on φ′ : E′ → M′ in such a way that Υ is

a morphism. This forces us to define

Ld
′((r0, z0), r1) =

1

2h

(
2 ‖zs0‖2 + ‖r1 − r0‖2

)
− h

2
V
(
2 ‖r0‖2

)
(6.3)

and

P ′
(
((r0, z0), r1), ((r1, z1), r2)

) (
b
∂

∂r1
+ c

∂

∂z1

)
= −c ∂

∂z0
,(6.4)

where (r, z) ∈ C∗ ×C. A number of computations confirm that M′ := (E′,Ld
′,P ′)

is a DLPS and that Υ ∈ morLP
d
(M,M′).

By the T2-invariance of Υ, there is a smooth map Υ̃ such that the diagram

C′(E′) Q×Q
Υoo

πQ×Q,T2

��

Υ
A

T2
d

  

(Q×Q)/T2

Υ̃

ee❑❑❑❑❑❑❑❑❑❑❑

(̃T2)QΨ
A

T2
d

∼oo

is commutative. Define the smooth map Υ̌ := Υ̃ ◦Ψ
A

T2
d

. As Υ is onto and satisfies

Υ−1(Υ(q0, q1)) = lQ×Q
T2

(q0, q1) for all (q0, q1) ∈ Q ×Q, which easily implies that Υ̃

is one to one, Υ̌ is a diffeomorphism. By Lemma 4.5, Υ̌ is an isomorphism in LPd.

All together, M′ is an explicit model for the reduced DLPS M /(T2,AT2

d ).

6.3.2. Equations of motion. Trajectories in M′ are found using (3.4). Evaluating
the left side of (3.4) on an arbitrary tangent vector b ∂

∂r1
+ c ∂

∂z1
∈ T(r1,z1)E

′ and
computing the corresponding derivatives we obtain the equations

Re((z1 − z0)c) = 0 and Re(((r1 − r0)− (r2 − r1)− 2h2V ′(2 ‖r1‖2)r1)b) = 0

which, due to de arbitrariness of b, c ∈ C, lead to

z1 = z0 and r2 = 2r1 − r0 − 2h2V ′(2 ‖r1‖2)r1.
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It should be noticed that the zk are (proportional to) the velocity of the center
of mass of the original system, which explains the fact that zk is constant for a
trajectory, while rk gives the position of one particle relative to the other.

Remark 6.2. There is a U(1) action on M′ given by lE
′

(A,0)(r, z) := (Az,Az). This

action is a “residue” of the original SE(2) action on M. This action is, indeed, a
symmetry of M′ and can be reduced using the same techniques. During the rest of
the paper we will show that, under appropriate conditions, this second reduction
produces a system that is isomorphic to M /SE(2).

7. Reduction in two stages

Let G be a symmetry group of the DLPS M and H ⊂ G a normal closed
subgroup. In this section we apply the reduction theory of M by H and, provided
that G/H is a symmetry group of M/H , perform a second reduction. Last, we
compare the two step reduction with the reduction M/G performed in one step.

7.1. Residual symmetry group.

Lemma 7.1. Let G act on the fiber bundle (E,M, φ, F ) and H ⊂ G be a closed
normal subgroup. Define mappings

lH̃E

πG,H(g)
(πE×H,H(ǫ, w)) :=πE×H,H(lEg (ǫ), l

G
g (w)),

l
M/H

πG,H(g)
(πM,H(m)) :=πM,H(lMg (m)).

(7.1)

Then lH̃E , lM/H and the trivial right action on F ×H define a G/H-action on the

fiber bundle (H̃E ,M/H, pM/H , F ×H).

Proof. By Lemma 5.7, H acts on (E,M, φ, F ). Hence, by Example 9.17, the con-

jugate bundle (H̃E ,M/H, pM/H , F ×H) is a fiber bundle. Consider the G-action
on E ×H defined by

(7.2) lE×H
g (ǫ, w) := (lEg (ǫ), l

G
g (w)),

where lGg (w) = gwg−1. Being a product of smooth actions, it is a smooth action.

Also, as lE is a free and proper G-action (see Lemma 9.11), the same is true for

lE×H . Therefore, by Lemma 9.12, the function lH̃E given in (7.1) defines a smooth,

free and proper G/H-action on H̃E = (E ×H)/H .
Analogously, as the G-action lM on M is smooth, free and proper (this last fact

by Lemma 9.11 ), Lemma 9.12 proves that lM/H defined in (7.1) is a smooth, free
and proper G/H-action on M/H . Then, Corollary 9.10 proves that the quotient
map πM/H,G/H :M/H → (M/H)/(G/H) is a principal G/H-bundle.

It follows from the G-equivariance of φ : E → M that pM/H : H̃E → M/H is
G/H-equivariant for the G/H-actions defined above.

For the rest of the proof we construct G/H-equivariant trivializing charts of the

fiber bundle (H̃E ,M/H, pM/H , F ×H). Since this is a local problem (in the base of
the bundle) we will assume that φ : E →M is p1 : M × F →M with the G action
on E given by lEg (m, f) = (lMg (m), rFg−1 (f)). Even more, as πM,G : M → M/G

is a principal G-bundle, by shrinking M further we may assume that πM,G is a
trivial principal G-bundle, that is, M = (M/G) × G, where the G-action is given
by left multiplication on G. All together, we have that φ : E → M is given by the
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projection on the first two components p12 : (M/G)×G×F → (M/G)×G and the
G-actions are lEg (π

M,G(m), g′, f) = (πM,G(m), gg′, rFg−1 (f)) and lMg (πM,G(m), g′) =

(πM,G(m), gg′).
Define the map

σ : (M/G)×G× F︸ ︷︷ ︸
=E

×H → (M/G)×G︸ ︷︷ ︸
=M

×F ×H

by

σ(πM,G(m), g′, f, h) := (πM,G(m), g′, rFg′ (f), (g
′)−1hg′).

A quick check shows that σ is a G-equivariant diffeomorphism for the left actions
lE×H and lM×F×H

g (m, f, h) := (lMg (m), f, h), for all g ∈ G. Restricting those

actions to H ⊂ G and applying Corollary 9.4, σ induces a map ΦH̃E : H̃E →
(M/H) × F × H . It is easy to see that ΦH̃E provides a (local) G/H-equivariant

trivialization of pM/H : H̃E → M/H , concluding the proof of the fact that G/H

acts on the fiber bundle (H̃E ,M/H, pM/H , F ×H). �

Lemma 7.2. Let G be a Lie group acting on Q by the action lQ in such a way
that πQ,G : Q→ Q/G is a principal G-bundle. Assume that H ⊂ G is a closed and
normal subgroup and that Ad is a discrete connection on the principal H-bundle
πQ,H : Q → Q/H whose domain is G-invariant for the diagonal G-action lQ×Q.
Then, the following assertions are equivalent.

(1) For each g ∈ G and (q0, q1) in the domain of Ad,

(7.3) Ad(l
Q
g (q0), l

Q
g (q1)) = gAd(q0, q1)g

−1.

(2) The submanifold HorAd
⊂ Q×Q is G-invariant for the G-action lQ×Q.

Proof. Recall that (q0, q1) in the domain ofAd is inHorAd
if and only ifAd(q0, q1) =

e. Assume that (7.3) holds, for each g ∈ G. Let (q0, q1) ∈ HorAd
. Then, for any

g ∈ G,

Ad(l
Q
g (q0), l

Q
g (q1)) = gAd(q0, q1)g

−1 = gg−1 = e,

showing that lQ×Q
g (q0, q1) = (lQg (q0), l

Q
g (q1)) ∈ HorAd

.
Conversely, if (q0, q1) is in the domain of Ad, which is G-invariant, we have that

(lQg (q0), l
Q
g (q1)) is also in the domain of Ad. Then Ad(l

Q
g (q0), l

Q
g (q1)) = h ∈ H if

and only if

(7.4) (lQg (q0), l
Q
h−1(l

Q
g (q1))) ∈ HorAd

.

But, as (q0, l
Q
Ad(q0,q1)−1(q1)) ∈ HorAd

and HorAd
is G-invariant, we have that

(lQg (q0), l
Q
gAd(q0,q1)−1g−1(l

Q
g (q1))) = lQ×Q

g (q0, l
Q
Ad(q0,q1)−1(q1)) ∈ HorAd

so that h := gAd(q0, q1)
−1g−1 satisfies (7.4). As the element of G with this property

is unique, we conclude that (7.3) holds. �

Proposition 7.3. Let G be a symmetry group of M = (E,Ld,P) ∈ obLP
d
and

H ⊂ G be a closed and normal subgroup. Choose a discrete connection Ad of
the principal H-bundle πQ,H : Q → Q/H such that either one of the conditions
in Lemma 7.2 holds. Then G/H is a symmetry group of the DLPS MH :=

M/(H,Ad) = (H̃E , Ľd, P̌) obtained by the reduction of M using Ad.
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Proof. By Lemma 7.1, G/H acts on the fiber bundle (H̃E ,M/H, pM/H , F × H).

Recall that ΥAd
: C′(E) → C′(H̃E) is defined by

ΥAd
(ǫ0,m1) := (πE×H,H (ǫ0,Ad(φ(ǫ0),m1)), π

M,H(m1)).

Unraveling the definitions and taking (7.3) into account, we have that

ΥAd
◦ lC′(E)
g = l

H̃E×(M/H)
πG,H(g) ◦ΥAd

for all g ∈ G.(7.5)

Then, as Ľd satisfies Ľd ◦ΥAd
= Ld, and Ld is G-invariant for the G-action lE×M ,

we have that

Ľd ◦ lH̃E×(M/H)

πG,H (g) ◦ΥAd
= Ľd ◦ΥAd

◦ lE×M
g = Ld ◦ lE×M

g = Ld = Ľd ◦ΥAd
.

Hence, as ΥAd
is onto, Ľd is G/H-invariant for the G/H-action lH̃E×(M/H).

Differentiating the first component of (7.5) we see that, for v0 = ΥAd
(ǫ0,m1),

(7.6)

D1(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))dl

E
g (ǫ0)(δǫ0) = dlH̃E

πG,H(g)(v0)D1(p1 ◦ΥAd
)(ǫ0,m1)(δǫ0)

and
(7.7)

D2(p1◦ΥAd
)(lC

′(E)
g (ǫ0,m1))dl

M
g (m1)(δm1) = dlH̃E

πG,H(g)
(v0)D2(p1◦ΥAd

)(ǫ0,m1)(δm1).

Now, fix ν = ((v0, r1), (v1, r2)) ∈ C′′(H̃E) and take η = ((ǫ0,m1), (ǫ1,m2)) ∈
C′′(E) such that Υ

(2)
Ad

(η) = ν. Then, by point 2 of Lemma 5.1, any δv1 ∈ Tv1(H̃E)
is of the form δv1 = D1(p1 ◦ ΥAd

)(ǫ1,m2)(δǫ1) for a unique δǫ1 ∈ Tǫ1E. Then,
using (7.6), we obtain

D1(p1 ◦ΥAd
)(lC

′(E)
g (ǫ1,m2))dl

E
g (ǫ1)(δǫ1) =dl

H̃E

πG,H(g)
(v1)(δv1),

which shows that the unique element of TlEg (ǫ1)E that represents dlH̃E

πG,H (g)
(v1)(δv1) ∈

T
l
H̃E

πG,H (g)
(v1)

H̃E is dlEg (ǫ1)(δǫ1). Also, notice that using (7.5) we obtain

Υ
(2)
Ad

(lC
′′(E)

g (η)) =l
C′′(H̃E)

πG,H(g)(Υ
(2)
Ad

(η)) = l
C′′(H̃E)

πG,H(g)(ν).

We use this information to compute P̌ ◦ lp
∗

3T (H̃E)

πG,H(g)
. For any g ∈ G,

(P̌ ◦ lp
∗

3T (H̃E)

πG,H(g) )(ν,δv1) = P̌(l
C′′(H̃E)

πG,H(g)(ν))(dl
H̃E

πG,H (g)(v1)(δv1))

=D1(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(P(lC

′′(E)
g (η))(dlEg (ǫ1)(δǫ1)))

+D2(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(dφ(l

E
g (ǫ1))(dl

E
g (ǫ1)(δǫ1))).

(7.8)

Using the G-equivariance of P and (7.6), we have

D1(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(P(lC

′′(E)
g (η)(dlEg (ǫ1)(δǫ1))))

=D1(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(l

TE
g (ǫ0)(P(η)(δǫ1)))

=D1(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(dl

E
g (ǫ0)(P(η)(δǫ1)))

=dlH̃E

πG,H(g)(v0)D1(p1 ◦ΥAd
)(ǫ0,m1)(P(η)(δǫ1))
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and, using (7.7),

D2(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(dφ(l

E
g (ǫ1))(dl

E
g (ǫ1)(δǫ1)))

=D2(p1 ◦ΥAd
)(lC

′(E)
g (ǫ0,m1))(dl

M
g (m1)(dφ(ǫ1)(δǫ1)))

=dlH̃E

πG,H(g)
(v0)D2(p1 ◦ΥAd

)(ǫ0,m1)(dφ(ǫ1)(δǫ1)).

Going back to (7.8), we obtain

P̌ ◦ lp
∗

3T (H̃E)

πG,H(g) (ν, δv1) =P̌(l
C′′(H̃E)
πG,H(g)(ν))(dl

H̃E

πG,H (g)(v1)(δv1))

=dlH̃E

πG,H(g)(v0)
(
D1(p1 ◦ΥAd

)(ǫ0,m1)(P(η)(δǫ1))

+D2(p1 ◦ΥAd
)(ǫ0,m1)(dφ(ǫ1)(δǫ1))

)

=dlH̃E

πG,H(g)(v0)
(
P̌(ν)(δv1)

)
,

showing that P̌ is G/H-equivariant. Hence, G/H is a symmetry group of MH . �

Example 7.4. In Section 6.1 we introduced a DLPS M and saw that SE(2) was
one of its symmetry groups. As T2 ⊂ SE(2) is a closed normal subgroup, it was also
a symmetry group of M. A simple verification shows that the discrete connection
form AT2

d defined in (6.2) satisfies (7.3) for G := SE(2) and H := T2 so that,

by Proposition 7.3, SE(2)/T2 is a symmetry group of M /(T2,AT2

d ) ≃ M′. As
SE(2)/T2 ≃ U(1), we see that this fact is already suggested in Remark 6.2.

7.2. Comparison with reduction by the full symmetry group. Here we con-
sider a symmetry group G of M = (E,Ld,P) ∈ obLP

d
. Fixing a discrete con-

nection AG
d on the principal G-bundle πM,G : M → M/G we have the reduced

system MG := M/(G,AG
d ). When H ⊂ G is a closed and normal subgroup, by

Proposition 5.8, H is a symmetry group of M and, when AH
d is a discrete connec-

tion on the principal H-bundle πM,H : M → M/H we have the reduced system
MH := M/(H,AH

d ). Furthermore, when AH
d satisfies any one of the conditions in

Lemma 7.2, by Proposition 7.3, G/H is a symmetry group of MH . Fixing a dis-

crete connection AG/H
d on the principal G/H-bundle πM/H,G/H : M/H → M/H

G/H ,

we have the reduced system MG/H := MH/(G/H,AG/H
d ). The following diagram

depicts the relation between the different DLPSs and morphisms.

M

Υ
AG

d

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧ Υ

AH
d

""❊
❊❊

❊❊
❊❊

❊

MH

Υ
A

G/H
d

$$❍
❍❍

❍❍
❍❍

❍❍

MG MG/H
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At the “geometric level”, the corresponding spaces and smooth maps are

C′(E)

Υ
AG

d

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥ Υ

AH
d

$$■
■■

■■
■■

■■

C′(H̃E)
Υ

A
G/H
d

%%▲
▲▲

▲▲
▲▲

▲▲
▲

C′(G̃E) C′(G̃/HH̃E
)

We can enlarge the previous diagram by adding the different diffeomorphisms ΦAd

introduced in Proposition 2.6 and by taking into account the commutative dia-
gram (2.1). The resulting diagram follows.

(7.9) C′(E)

Υ
AG

d

��

πC′(E),G

��☛☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

πC′(E),H

��

Υ
AH

d

��
C′(E)
H

π
C′(E)

H
,G/H

��F1
}}③③
③③
③③
③③
③

Φ
AH

d

∼
// C′(H̃E)

πC′(H̃E ),G/H

��

Υ
A

G/H
d

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

C′(G̃E)
C′(E)
GΦ

AG
d

∼oo
C′(E)

H

G/HF2

∼oo
ˇΦ
AH

d

∼ // C
′(H̃E)
G/H Φ

A
G/H
d

∼ // C′(G̃/HH̃E
)

The following result introduces the new functions that appear in diagram (7.9)
and explores their basic properties.

Lemma 7.5. Under the previous conditions,

(1) ΦAH
d

: C′(E)
H → C′(H̃E) is a G/H-equivariant diffeomorphism. Hence it

induces a smooth diffeomorphism ˇΦAH
d
:

C′(E)
H

G/H → C′(H̃E)
G/H .

(2) πC
′(E),G : C′(E) → C′(E)

G is a smooth H-invariant map, hence it induces a

smooth map F1 : C
′(E)
H → C′(E)

G .

(3) F1 : C′(E)
H → C′(E)

G is a smooth G/H-invariant map, hence it induces a

smooth map F2 :
C′(E)

H

G/H → C′(E)
G . Furthermore, F2 is a diffeomorphism.

(4) The diagram (7.9) is commutative.

Proof. Unraveling the definitions and recalling that AH
d satisfies (7.3), we see that

ΦAH
d

is G/H-equivariant. As, by Proposition 2.6, ΦAH
d

is smooth, we conclude

from Corollary 9.4 that the induced map ˇΦAH
d

is smooth. Furthermore, as ΦAH
d

is also a diffeomorphism by Proposition 2.6, its inverse is also G/H-equivariant,
so that ˇΦAH

d
is a diffeomorphism. Hence point 1 in the statement is proved. By

construction the square in diagram (7.9) is commutative.

Point 2 follows immediately using theH-invariance of πC
′(E),G and Corollary 9.5.

Furthermore, it is immediate that F1 is G/H-invariant, and the same argument
proves that F2 is a well defined smooth map. It is easy to check that the map

π
C′(E)

H ,G/H ◦ πC′(E),H : C′(E) →
C′(E)

H

G/H is smooth and G-invariant, so it induces a
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smooth inverse of F2, showing that F2 is a diffeomorphism. This proves point 3.
By definition, the two triangles involving F1 in diagram (7.9) are commutative.

The commutativity of the three remaining triangles in diagram (7.9) is due to
the commutativity of diagram (2.1). �

Theorem 7.6. Consider the data given at the beginning of this section. Let F :

C′(G̃/HH̃E
) → C′(G̃E) be defined by the bottom row of diagram (7.9), that is,

F := ΦAG
d
◦ F2 ◦ ( ˇΦAH

d
)−1 ◦ (Φ

A
G/H
d

)−1. Then, the following statements are true.

(1) F is a diffeomorphism.
(2) F ∈ morLP

d
(MG,MG/H).

(3) F is an isomorphism in LPd.

Proof. By Proposition 2.6, ΦAG
d
and Φ

A
G/H
d

are diffeomorphisms and, by Lemma 7.5,

the same happens to F2 and ˇΦAH
d
. Hence, F is a diffeomorphism, proving point 1.

Next, as Υ
A

G/H
d

∈ morLP
d
(MH ,MG/H) and ΥAH

d
∈ morLP

d
(M,MH), we have

that Υ
A

G/H
d

◦ ΥAH
d

∈ morLP
d
(M,MG/H). Also, ΥAG

d
∈ morLP

d
(M,MG), F is

smooth and F ◦ΥAG
d
= Υ

A
G/H
d

◦ΥAH
d
, so that, by Lemma 4.5 point 2 is true. Using

point 1 and Lemma 4.6, point 3 follows. �

Theorem 7.7. Consider the data given at the beginning of this section.

(1) Let (ǫ·,m·) = ((ǫ0,m1), . . . , (ǫN−1,mN )) be a discrete path in C′(E). For
k = 0, . . . , N − 1 define the discrete paths (vHk , r

H
k+1) := ΥAH

d
(ǫk,mk+1),

(vGk , r
G
k+1) := ΥAG

d
(ǫk,mk+1) and (v

G/H
k , r

G/H
k+1 ) := ΥAH

d
(vHk , r

H
k+1) in C

′(H̃E),

C′(G̃E) and C′(G̃/HH̃E
) respectively. Then, the following assertions are

equivalent.
(a) (ǫ·,m·) is a trajectory of M.
(b) (vG· , r

G
· ) is a trajectory of MG.

(c) (vH· , r
H
· ) is a trajectory of MH .

(d) (v
G/H
· , r

G/H
· ) is a trajectory of MG/H .

(2) Let F : C′(G̃/HH̃E
) → C′(G̃E) be the diffeomorphism defined in Theo-

rem 7.6. Then F (v
G/H
k , r

G/H
k+1 ) = (vGk , r

G
k+1) for all k.

(3) The DLPSs MG and MG/H are isomorphic in LPd.

Proof. By Proposition 5.13 ΥAG
d
, ΥAH

d
and Υ

A
G/H
d

are morphisms in LPd. Then,

point 1 follows from Theorem 4.7.
Point 2 is true by the following computation.

(vGk , r
G
k+1) =ΥAG

d
(ǫk,mk+1) = (F ◦Υ

A
G/H
d

◦ΥAH
d
)(ǫk,mk+1)

=(F ◦Υ
A

G/H
d

)(vHk , r
H
k+1) = F (v

G/H
k , r

G/H
k+1 ).

Point 3 is immediate from point 3 in Theorem 7.6. �

7.3. Discrete connections derived from a Riemannian metric. The condi-
tions stated at the beginning of Section 7.2 require the choice of three discrete

connections AH
d , AG

d and AG/H
d on the corresponding principal bundles. One case

where such connections are known to exist is when the total space of the corre-
sponding principal bundle carries a Riemannian metric and the structure group
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acts by isometries; this is the content of Theorem 5.2 in [8]. In addition, AH
d is re-

quired to satisfy either one of the conditions in Lemma 7.2. In this Section we prove
that when the total space Q of a principal G-bundle πQ,G : Q → Q/G is equipped
with a G-invariant Riemannian metric, it is possible to apply Theorem 5.2 in [8] to
construct discrete connections AH

d satisfying the conditions in Lemma 7.2 on the
principal H-bundle πQ,H : Q→ Q/H for any closed and normal subgroup H ⊂ G.

The construction analyzed in Theorem 5.2 in [8] is as follows. When Q is a
Riemannian manifold and a Lie groupH acts onQ by isometries, the vertical bundle

VH ⊂ TQ defined by VHq := Tq(l
Q
H(q)) ⊂ TqQ has an orthogonal complement,

the horizontal bundle HH . This horizontal bundle determines a connection AH

on the principal H-bundle πQ,H : Q → Q/H . In addition, there is a unique
Riemannian metric on Q/H that makes Q/H a Riemannian manifold and πQ,H a
Riemannian submersion. Standard results of Riemannian Geometry show that, for
any r ∈ Q/H , there are open sets Wr ⊂ Q/H containing r and such that any two
points in Wr can be joined by a unique length-minimizing geodesic that, also, is
contained inWr (see Theorem 3.6 on page 166 of [13]); we call these sets geodesically
convex. Using such a collection {Wr : r ∈ Q/H}, the open set

(7.10) U := ∪r∈Q/H
(
(πQ,H)−1(Wr)× (πQ,H)−1(Wr)

)
⊂ Q×Q

is defined. Then, a function AH
d : U → H is constructed as follows. Given (q0, q1) ∈

U , there is r ∈ Q/H such that πQ,H(q0), π
Q,H(q1) ∈ Wr . Let γ : [0, 1] → Q/H

be the unique length-minimizing geodesic contained in Wr and joining πQ,H(q0) to
πQ,H(q1). Let γ̃ be the AH -horizontal lift of γ to Q, starting at q0. Finally, let

(7.11) AH
d (q0, q1) := κq1(γ̃(1), q1),

where κq1 : QπQ,H(q1) → H is the smooth map defined by κq1(l
Q
h (q1), q1) := h.

Theorem 5.2 in [8] asserts that there is a discrete connection AH
d on the principal

H-bundle πQ,H : Q→ Q/H whose domain is U and whose associated discrete form
is given by (7.11).

Below, we consider the case where G is a Lie group and H ⊂ G is a closed
normal subgroup. G acts on the Riemannian manifold Q by isometries and in such
a way such that πQ,G : Q → Q/G is a principal G-bundle. Then, by restricting
the G-action to an H-action, H acts by isometries on Q and πQ,H : Q → Q/H
is a principal H-bundle. But, still, G/H acts on Q/H by isometries and making
πQ/H,G/H : Q/H → (Q/H)/(G/H) a principal G/H-bundle.

Lemma 7.8. Under the previous conditions, there is a collection of open subsets
{Wr ⊂ Q/H : r ∈ Q/H} that are geodesically convex as above that, in addition,
satisfies

(7.12) l
Q/H

πG,H(g)
(WπQ,H (q)) =WπQ,H (lQg (q)) for all q ∈ Q and g ∈ G.

Proof. In the current context, we have the commutative diagram

Q
πQ,H

//

πQ,G

��

Q/H

πQ/H,G/H

��

Q/G
φ

∼ // Q/H
G/H
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where all the π-mappings are principal bundles and φ is a diffeomorphism. Let σ̃
be a section of πQ/H,G/H that may be discontinuous, and define σ : Q → Q/H by
σ := σ̃ ◦ φ ◦ πQ,G. It is easy to see that σ is G-invariant, that its image intersects
each G/H-orbit in Q/H in exactly one point and that, for each q ∈ Q, σ(q) and
πQ,H(q) are on the same G/H-orbit.

For each σ(q) ∈ Q/H , let Wσ(q) ⊂ Q/H be any geodesically convex open subset.

Using the G/H-action lQ/H , for each q ∈ Q, we define

WπQ,H(q) := l
Q/H

πG,H(g)
(Wσ(q)) where πG,H(g) := κ(σ(q), πQ,H(q)).

Since l
Q/H
πG,H(g) is an isometry in Q/H , the open sets WπQ,H(q) are also geodesi-

cally convex. A direct computation shows that the collection {WπQ,H(q) : q ∈ Q}
satisfies (7.12). �

Proposition 7.9. With the same conditions as above, let U be defined by (7.10),
for a collection of geodesically convex open subsets {Wr ⊂ Q/H : r ∈ Q/H} satis-
fying (7.12). Then

(1) U is G-invariant for the diagonal G-action lQ×Q.
(2) The discrete connection with domain U and discrete connection form AH

d

defined above satisfies condition (7.3) in Lemma 7.2.

Proof. Let (q0, q1) ∈ U and g ∈ G. By definition of U , there is πQ,H(q) ∈ Q/H
such that πQ,H(q0), π

Q,H(q1) ∈WπQ,H (q). Hence, for j = 0, 1,

πQ,H(lQg (qj)) = l
Q/H

πG,H(g)
(πQ,H (qj)︸ ︷︷ ︸
∈W

πQ,H (q)

) ∈ l
Q/H

πG,H(g)
(WπQ,H (q)) =WπQ,H (lQg (q)),

Hence lQ×Q
g (q0, q1) = (lQg (q0), l

Q
g (q1)) ∈ U , proving part 1.

Given (q0, q1) ∈ U and πQ,H(q) as above, let γ0 and γ1 be the unique length-
minimizing geodesics contained in WπQ,H(q) and WπQ,H (lQg (q)) going from πQ,H(q0)

to πQ,H(q1) and from πQ,H(lQg (q0)) to πQ,H(lQg (q1)). Let γ̃0 and γ̃1 be the AH -

horizontal lifts starting at q0 and lQg (q0) respectively.
Notice that, by the uniqueness of the length-minimizing geodesics inWπQ,H (lQg (q))

and since l
Q/H

πQ,H(g)
is an isometry in Q/H , we have that γ1 = l

Q/H

πQ,H(g)
◦ γ0.

Let ρ := lQg ◦ γ̃0. It is easy to check that ρ is a lift of γ1 starting at lQg (q0). It is

also AH -horizontal, a fact that follows from the G-invariance of HH , that is, from
dlQg (q

′)(HH
q′ ) ⊂ HH

lQg (q′)
for all q′ ∈ Q. By the uniqueness of the horizontal lifts, we

conclude that γ̃1 = ρ.
Finally, using (7.11), we have

AH
d (lQg (q0), l

Q
g (q1)) =κlQg (q1)

(γ̃1(1), l
Q
g (q1)) = κlQg (q1)

(lQg (γ̃0(1)), l
Q
g (q1))

=gκq1(γ̃0(1), q1)g
−1 = gAH

d (q0, q1)g
−1,

that is, identity (7.3) holds, concluding the proof of part 2. �

8. Poisson structures

It is a well known and used fact that if (Q,Ld) is a regular DMS, there is a
symplectic structure ωLd

defined in (an open subset containing the diagonal of)
Q×Q. Furthermore, the discrete Lagrangian flow FLd

is symplectic for ωLd
. This
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structure is important both for the theoretical as well as the numerical applications
of DMSs. Still, the dynamical system obtained as the reduction of a DMS may not

carry a symplectic structure: an obvious reason could be that dim(G̃ × (Q/G)) =

2 dim(Q) − dim(G) could be odd, making it impossible for the reduced space G̃ ×
(Q/G) to be a symplectic manifold.

The purpose of this section is to show that when a symmetric DLPS has a
Poisson structure, in a sense to be defined below, and the symmetry group acts by
Poisson maps, then its reduction also carries a Poisson structure and the reduction
morphism is a Poisson map. In principle, these structures could be uninteresting —
for instance, the trivial Poisson structure is always a Poisson structure for a DLPS.
Still, when a DLPS has an interesting structure, as is the case of those DLPSs
obtained from DMSs, the natural Poisson structure arising from the symplectic
structure is inherited by all reductions, as we see below.

Definition 8.1. Let M = (E,Ld,P) be a DLPS. We say that a Poisson structure
{, }C′(E) on C′(E) is a Poisson structure of M if the flow map FM is a Poisson
map for {, }C′(E).

Proposition 8.2. Let {, }C′(E) be a Poisson structure of M = (E,Ld,P). If G
is a symmetry group of M that preserves {, }C′(E) and Ad is a discrete connection

on πM,G : M → M/G, then there is a Poisson structure {, }C′(G̃E) of the reduced

system M/(G,Ad) such that the reduction morphism ΥAd
is a Poisson map, i.e.,

(8.1)

Υ∗
Ad

({f1, f2}C′(G̃E)) = {Υ∗
Ad

(f1),Υ
∗
Ad

(f2)}C′(E) for all f1, f2 ∈ C∞(G̃E).

Proof. Being G a symmetry group of M, by Lemma 2.8, ΥAd
: C′(E) → C′(G̃E)

is a principal G-bundle. Then, the G-action on C′(E) is free and proper and ΥAd

is a surjective submersion. As G acts on C′(E) by Poisson maps, it follows from

Theorem 10.5.1 in [20] that there is a unique Poisson structure {, }C′(G̃E) on C
′(G̃E)

such that ΥAd
becomes a Poisson map, hence (8.1) holds. By Theorem 5.15, we

have the commutative diagram of manifolds and smooth maps:

C′(E)
FM //

ΥAd

��

C′(E)

ΥAd

��

C′(G̃E)
FM/G

// C′(G̃E)

where FM/G is the flow of the reduced system. As ΥAd
and FM are Poisson maps,

with ΥAd
onto, it follows from Lemma 8.3 below that, FM/G is a Poisson map. All

together, we have seen that {, }C′(G̃E) is a Poisson structure of M/(G,Ad). �

Lemma 8.3. Let φ1 : M → M1 and φ2 : M → M2 be Poisson maps and assume
that φ1 is onto. If f : M1 → M2 is a smooth map such that f ◦ φ1 = φ2, then f is
a Poisson map.

Proof. As f ◦ φ1 = φ2, a direct computation shows that, for h1, h2 ∈ C∞(M2),
φ∗1(f

∗({h1, h2}M2)) = φ∗1({f∗(h1), f
∗(h2)}M1). The result follows by noticing that,

as φ1 is onto, φ∗1 is one to one. �
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Recall that a regular DMS (Q,Ld) carries a natural closed 2-form ωLd
that is

symplectic in, at least, an open subset of Q ×Q containing the diagonal ∆Q. We
have the following result.

Lemma 8.4. Let G be a symmetry group of the regular discrete mechanical system
(Q,Ld). Then, the diagonal G-action on Q × Q is symplectic for the symplectic
form ωLd

.

Proof. See the argument at the beginning of page 375 in [17]. �

In particular, a DLPS M = (Q,Ld,P) that comes from a DMS (Q,Ld) as in
Example 3.12, carries a natural Poisson structure {, }Q×Q arising from the sym-
plectic structure ωLd

on Q×Q. It is well known that F ∗
M(ωLd

) = ωLd
(see Section

1.3.2 in [17]). Hence FM is a Poisson map and, consequently, {, }Q×Q is a Poisson
structure of M.

When G is a symmetry group of (Q,Ld), it is a symmetry group of M and,
by Lemma 8.4, it acts on C′(Q) = Q × Q by Poisson maps for {, }Q×Q. Fixing
a discrete connection Ad on πQ,G : Q → Q/G, by Proposition 8.2, the reduced
system M/(G,Ad) has a natural Poisson structure induced by {, }Q×Q and ΥAd

is
a Poisson map.

We conclude that all DLPSs obtained from a DMS by a finite number of re-
ductions have natural Poisson structures that make the corresponding reduction
morphisms Poisson maps.

9. Appendix

The purpose of this Appendix is to review some basic definitions and standard
results, using a notation that is compatible with the rest of the paper. Sections 9.1
and 9.2 contain well known material. Section 9.3 contains some nonstandard ma-
terial.

9.1. Group actions on manifolds. A continuous map f : X → Y between
topological spaces is proper if f−1(K) is compact for every K ⊂ Y compact. A
G-action lM of a Lie group G on a manifold M is proper if the map LM : G×M →
M ×M defined by LM (g,m) := (lMg (m),m) is proper. The following result gives
a characterization of properness in terms of sequences that is very convenient in
practice.

Proposition 9.1. Let M be a manifold and G be a Lie group acting on M by lM .
Assume that lM has the property that for any convergent sequence (mj)j∈N in M
and sequence (gj)j∈N in G such that the sequence (lMgj (mj))j∈N is convergent, there

exists a convergent subsequence of (gj)j∈N. Then l
M is a proper action. Conversely,

if the action lM is proper, then the property holds.

Proof. See Proposition 9.13 in [14]. �

Theorem 9.2. Let lM be a smooth, free and proper action of the Lie group G on
M . Then, the quotient spaceM/G is a topological manifold of dimension dim(M)−
dim(G). In addition, M/G has a unique smooth structure with the property that
the quotient map πM,G :M → M/G is a smooth submersion. Furthermore, πM,G :
M →M/G is a principal G-bundle (Definition 9.7).

Proof. See Theorem 9.16 in [14]. �



34 JAVIER FERNÁNDEZ, CORA TORI AND MARCELA ZUCCALLI

Proposition 9.3. Let G be a Lie group acting smoothly on the manifolds M and
N in such a way that πM,G : M → M/G and πN,G : N → N/G are smooth
submersions (in particular, M/G and N/G are smooth manifolds). If f : M → N

is a smooth G-equivariant map, then there is a unique smooth map f̌ :M/G→ N/G
such that πN,G ◦ f = f̌ ◦ πM,G.

Proof. An application of the local description of submersions. �

Corollary 9.4. Let G be a Lie group acting smoothly, freely and properly on the
manifolds M and N . If f : M → N is a smooth G-equivariant map, then there is
a unique smooth map f̌ :M/G→ N/G such that πN,G ◦ f = f̌ ◦ πM,G.

Corollary 9.5. Let G be a Lie group acting smoothly, freely and properly on the
manifold M . If f : M → N is a smooth G-invariant map, then there is a unique
smooth map f̌ :M/G→ N such that f = f̌ ◦ πM,G.

9.2. Bundles.

Definition 9.6. A fiber bundle is a quadruple (E,M, φ, F ) where E, M and F are
smooth manifolds and φ : E → M is a smooth map such that each m ∈ M has a
neighborhood U ⊂M and a diffeomorphism ΦU : φ−1(U) → U ×F that makes the
following diagram commutative.

(9.1) φ−1(U)
ΦU //

φ

��

U × F

p1
yytt
tt
tt
tt
tt
t

U

In this case, E, M and F are called the total space, base space and fiber of the fiber
bundle. A pair (U,ΦU ) as above is called a trivializing chart of the bundle. It is
convenient to denote a fiber bundle (E,M, φ, F ) by E or φ.

If (E,M, φ, F ) is a fiber bundle, given two of its trivializing charts (Uα,Φα)
and (Uβ,Φβ) such that Uαβ := Uα ∩ Uβ 6= ∅, we can write (Φα ◦ Φ−1

β )(m, f) =

(m,Φαβ(m)(f)) for allm ∈ Uαβ and f ∈ F , for a smooth map Φαβ : Uαβ → Diff(F )
known as a transition function of the bundle. The fiber bundle is called a G-
bundle for a Lie group G if there is a right G-action on F denoted by rF such
that all transition functions are of the form Φαβ(m) = rFχαβ(m) for a family of

smooth functions χαβ : Uαβ → G that satisfy χβγ(m)χαβ(m) = χαγ(m) for all
m ∈ Uα ∩ Uβ ∩ Uγ 6= ∅.
Definition 9.7. Let (E,M, φ,G) be a G-bundle such that G acts on the fiber G
by right multiplication. Then, E is called a principal G-bundle over M .

Theorem 9.8. Let (E,M, φ,G) be a principal G-bundle. Then φ is a surjective
submersion, G acts freely on the left on E and the G-orbits for this action are of
the form φ−1(m) for m ∈M . Conversely, if φ : E →M is a surjective submersion
and the Lie group G acts freely on the left on E in such a way that the G orbits are
of the form φ−1(m) for m ∈M , then (E,M, φ,G) is a principal G-bundle.

Proof. The first part is direct computation. See Lemma 18.3 in [23] for the converse
(in the right action case). �
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Remark 9.9. All principal G-bundles are left G-spaces by Theorem 9.8. This
follows, eventually, from the fact that our G-spaces have right G-actions on the
fibers. The opposite choices are common in most of the fiber bundle literature
(see [10]). Our choice is the standard one in Geometric Mechanics (see [5]).

Corollary 9.10. In the context of Theorem 9.2, πM,G : M → M/G is a principal
G-bundle.

Lemma 9.11. Let ψ : M → R be a principal G-bundle. Then the G-action on M
is proper. If, furthermore, (E,M, φ, F ) is a fiber bundle and G acts on E by lE

making φ equivariant, then lE is proper.

Proof. The first statement follows from Proposition 9.1, using the local triviality of
the bundles. The second repeats the same argument building on the properness of
the G-action on M . �

Lemma 9.12. Let G be a Lie group acting smoothly, properly and freely on the
manifold Q. Let H ⊂ G be a closed and normal Lie subgroup. The G-action on Q
induces an H-action on Q. Then

(1) G/H acts on Q/H by the induced action l
Q/H
πG,H(g)(π

Q,H(q)) := πQ,H(lQg (q)).

(2) The G/H-action lQ/H is free and proper.

Definition 9.13. Let (Ej ,Mj, φj , Fj) be fiber bundles for j = 1, 2. A bundle map
from E1 to E2 is a pair (Ψ, ψ) of smooth maps Ψ : E1 → E2 and ψ : M1 → M2

such that the following diagram is commutative.

E1
Ψ //

φ1

��

E2

φ2

��
M1

ψ
// M2

9.3. Group actions on bundles. The following definition introduces what we
mean by the action of a Lie group on a fiber bundle. We warn the reader that it
may not be completely standard.

Definition 9.14. Let G be a Lie group and (E,M, φ, F ) a fiber bundle. We say
that G acts on the fiber bundle E if there are free left G-actions lE and lM and a
right G-action rF on F such that

(1) lM induces a principal G-bundle structure πM,G :M →M/G,
(2) φ is a G-equivariant map for the given actions,
(3) for every m ∈ M there is a trivializing chart (U,ΦU ) of E such that U is

G-invariant, m ∈ U and, when considering the left G-action lU×F on U ×F
given by lU×F

g (m, f) := (lMg (m), rFg−1 (f)), the map ΦU is G-equivariant.

Example 9.15. Let G act on the fiber bundle (E,M, φ, F1) by the left actions lE

and lM and the right action rF1 on F1, and let F2 be a right G-manifold for the
action rF2 . Consider the left G-action lE×F2 on the fiber bundle (E × F2,M, φ ◦
p1, F1 × F2) defined by lE×F2

g (ǫ, f2) := (lEg (ǫ), r
F2

g−1(f2)). Then G acts on the fiber

bundle E×F2. The only part of the verification that requires some work is the ex-
istence of local G-equivariant trivializations. This is done by taking the (Cartesian)
product of G-equivariant trivialization of E and the identity mapping on F2. Using
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the right G-action rF1×F2
g := rF1

g × rF2
g on F1 × F2 makes the resulting mapping

G-equivariant, in the sense of point 3 of Definition 9.14.

Proposition 9.16. Let G be a Lie group that acts on the fiber bundle (E,M, φ, F ).
Then φ induces a smooth map φ̌ : E/G → M/G such that (E/G,M/G, φ̌, F ) is a
fiber bundle.

Proof. Since the G-actions on E and M are free and proper and φ is equivariant,
by Theorem 9.2 and Corollary 9.4, we have that E/G and M/G are manifolds,
the quotient mappings πE,G : E → E/G and πM,G : M → M/G are smooth

submersions and φ̌ is smooth.
An outline of the proof of the local triviality of (E/G,M/G, φ̌, F ) goes as follows.

Since the existence of local trivializations is a local matter, we can assume that
πM,G :M →M/G is a trivial G-principal bundle, that is, it is p1 : R×G→ R for
some manifold R and the G-action on M is lR×G

g (r, g′) := (r, gg′). Similarly, we
can assume that φ : E → M is p1 : (R ×G) × F → R ×G and the G-action on E

is l
(R×G)×F
g ((r, g′), f) := ((r, gg′), rFg−1(f)).

Using Corollary 9.4, p1 induces a map p̌1 : ((R×G)×F )/G→ (R×G)/G = R.
In addition, define σ : (R × G) × F → R × F by σ(r, g, f) := (r, rFg (h)). As σ is
smooth and G-invariant, it induces a smooth map σ̌ : ((R ×G) × F )/G→ R× F .
In fact, σ̌ is a diffeomorphism and satisfies p1 ◦ σ̌ = p̌1. Thus, we have the following
commutative diagram

E/G = ((R ×G)× F )
σ̌ //

φ̌=p̌1
��

R× F

p1
vv♠♠♠

♠♠
♠♠♠

♠♠
♠♠♠

M/G = R

showing the (local) triviality of the bundle (E/G,M/G, φ̌, F ), ending the proof. �

Example 9.17. Applying Proposition 9.16 to the setting of Example 9.15 we
conclude that if G acts on the fiber bundle (E,M, φ, F1) and F2 is a right G-
manifold, then ((E×F2)/G,M/G, ˇφ ◦ p1, F1×F2) is a fiber bundle that we call the

associated bundle and denote by F̃2E . A special case of this construction is the so

called conjugate bundle, denoted by G̃E , that corresponds to the case when F2 = G
and the right action is rF2

g (h) := lGg−1(h) = g−1hg. For the conjugate bundle, we

define pM/G := ˇφ ◦ p1.
When the Lie group G acts on a manifold Q in such a way that πQ,G : Q→ Q/G

is a principal G-bundle, (Q,Q, idQ, {pt}) is a fiber bundle with a G-action. The

conjugate bundle in this case, G̃Q coincides with the conjugate bundle pQ/G : G̃→
Q/G considered in Section 3.2 and in [7].
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