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ABSTRACT

Context. Among intermediate-mass and massive stars, Be stars are the fastest rotators in the main sequence (MS) and, as such, these
stars are a cornerstone to validate models of structure and evolution of rotating stars. Several phenomena, however, induce under- or
overestimations either of their apparent Vsin i, or true velocity V .
Aims. In the present contribution we aim at obtaining distributions of true rotational velocities corrected for systematic effects induced
by the rapid rotation itself, macroturbulent velocities, and binarity.
Methods. We study a set of 233 Be stars by assuming they have inclination angles distributed at random. We critically discuss the
methods of Cranmer and Lucy-Richardson, which enable us to transform a distribution of projected velocities into another distribution
of true rotational velocities, where the gravitational darkening effect on the Vsin i parameter is considered in different ways. We
conclude that iterative algorithm by Lucy-Richardson responds at best to the purposes of the present work, but it requires a thorough
determination of the stellar fundamental parameters.
Results. We conclude that once the mode of ratios of the true velocities of Be stars attains the value V/Vc ' 0.77 in the main-sequence
(MS) evolutionary phase, it remains unchanged up to the end of the MS lifespan. The statistical corrections found on the distribution
of ratios V/Vc for overestimations of Vsin i, due to macroturbulent motions and binarity, produce a shift of this distribution toward
lower values of V/Vc when Be stars in all MS evolutionary stages are considered together. The mode of the final distribution obtained
is at V/Vc ' 0.65. This distribution has a nearly symmetric distribution and shows that the Be phenomenon is characterized by a wide
range of true velocity ratios 0.3 . V/Vc . 0.95. It thus suggests that the probability that Be stars are critical rotators is extremely low.
Conclusions. The corrections attempted in the present work represent an initial step to infer indications about the nature of the Be-star
surface rotation that will be studied in the second paper of this series.

Key words. stars: emission-line, Be – stars: rotation

1. Introduction

A classical Be star is a non-supergiant B-type star whose spec-
trum has, or had shown at some time one or more Balmer lines
in emission (Jaschek et al. 1981; Collins 1987). This definition
selects objects in the main-sequence evolutionary phase (MS)
underscoring thus the “active” character of the Be phenomenon.
These stars have the faculty of creating their own circumstel-
lar environment in which emission lines are produced. This is

? Full Tables 1 and 4 are only available at the CDS via anonymous
ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A132

in contrast to early-type supergiants in which emission in the
Balmer lines is a “passive” consequence of their extended at-
mosphere. Even when some classic Be stars are believed to sur-
vive as such in the bright giant phase (Negueruela 2004), this
definition excludes the heterogeneous group of objects present-
ing the B[e] phenomenon, which likely manifests at different
states of stellar evolution (Lamers et al. 1998). Be stars have
long been known as rapid rotators (Struve 1931) and, accord-
ingly, these stars are assumed to create their circumstellar disk
or envelope thanks mainly to this rapid rotation. General prop-
erties of Be stars and mechanisms to build up their circumstellar
envelopes (hereafter CE) or disks are reviewed by Rivinius et al.
(2013).
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The rapid decrease of the source function of Balmer lines in
two domains of effective temperatures, those larger than Teff ≈

27 000 K, and lower than Teff ≈ 12 000 K, makes the corre-
sponding emission signatures produced by CE or disks too weak
to be detected in the respective spectral type domains (Zorec
et al. 2007). Adding to this the steep drop of the IMF for masses
M & 15 M�, the observed frequency of Be stars displays two
maxima and becomes significant only in a limited range of stel-
lar masses, i.e., 3 . M/M� . 30. Nothing precludes, however,
that continuous and variable winds implying mass-loss rates
Ṁ ∼ 10−11−10−9M�/yr (Snow 1981) and episodic mass ejec-
tions up to Ṁ ∼ 10−7M�/yr that are typical in Be stars (Brown &
Wood 1992; Hanuscihk et al. 1993; Floquet et al. 2000; Hubert
et al. 2000; Keller et al. 2002; Mennickent et al. 2002; de Wit
et al. 2006; Meilland et al. 2006) be present in more- and less-
massive rapidly rotating stars than in those of B spectral type
considered in the present paper. The conclusions drawn in this
work may also concern stars in these two mass extremes.

Regarding the critical rotation, statistical analyses (Cranmer
2005; Frémat et al. 2005) conclude that Be stars are under-
critical rotators. Studies of individual stars, based on nonradial
pulsation modes (Cameron et al. 2008; Saio 2013) and rotational
rates inferred from interferometric data (Meilland et al. 2012;
Domiciano de Souza et al. 2014), produce estimates of Ω/Ωc
ranging from 0.60 to 0.98, which correspond to linear veloci-
ties ratios 0.44 . V/Vc . 0.88 (Vc is the critical equatorial lin-
ear velocity) or to ratios of centrifugal to gravity accelerations
0.14 . ac/ag . 0.70. These rates suggest that the surface rota-
tional velocities of Be stars are undoubtedly very high, but they
are not necessarily critical. It is then important to inquire how
rapid the rotation of Be stars actually is and how much comple-
mentary energy is then necessary to release the mass required to
build up CEs or disks. On the other hand, these stars represent
a paradigm for rapid rotators and, as such, they are the corner-
stone to validate the physical input in models of the structure and
evolution of rotating stars.

In most cases, the stellar rotation is apprehended through the
Vsin i parameter. Nevertheless, a number of phenomena act ei-
ther to underestimate or increase the Vsin i of Be stars system-
atically. In the present paper we only pay attention to the fol-
lowing phenomena: (1) the gravity darkening effect (hereafter
GD), which may carry a systematic underestimation of the Vsin i
(Stoeckley 1968; Townsend et al. 2004; Cranmer 2005; Frémat
et al. 2005); (2) more or less chaotic macroscopic velocity fields
present in atmospheres of active stars, called macroturbulence,
and since Unsöld & Struve (1949) and Huang & Struve (1953)
are known to contribute a nonrotational broadening component
of spectral lines; (3) under certain conditions, the orbital motion
increases the apparent value of Vsin i because this phenomenon
can concern a large fraction of Be stars that are members of bi-
nary systems (Kriz & Harmanec 1975; Harmanec 1987; Gies
2000; Chini et al. 2012; Nasseri et al. 2013; Oudmaijer & Parr
2010).

The final distribution Φ(u) of velocity ratios u = V/Vc ob-
tained in the present work will be analyzed in the following paper
(Paper II, Zorec et al. 2016) to determine the degree of surface
differential rotation that may affect the Vsin i parameters and is
consistent with the function Φ(u) derived here.

The present work (Paper I) is organized as follows. In Sect. 2
presents the stellar sample and the data used in the paper. The
Sect. 3 is devoted to the discussion of pros and cons of the
most commonly used methods to derive the distribution of ro-
tational velocities corrected for the inclination angle factor sin i.
The effect of the macroturbulence and the presence of binary

components on the distribution of velocity ratios are studied in
Sects. 4 and 5, respectively. A discussion and comments on the
results obtained are summarized in Sect. 6.

2. Data

2.1. The studied stellar sample

The stellar sample used in this work has 233 Galactic classi-
cal Be stars, which have been previously studied by Chauville
et al. (2001), Frémat et al. (2005), Zorec et al. (2005), Frémat
et al. (2006) and Levenhagen & Leister (2006). They are listed
in Table 1. This sample was chosen not only because the
Vsin i parameters were determined using very similar methods,
but also because the spectra were corrected for CE emission
perturbations.

As the discussion in Sect. 3 requires that all stars had funda-
mental parameters determined, a significant part of this section is
dedicated to their estimation. Details concerning the acquisition
and reduction of data proper are found in the papes cited above.

2.2. Fundamental parameters

Rapidly rotating stars undergo geometrical deformations and the
concomitant GD. They can then be characterized with two types
of fundamental parameters:

1. Apparent fundamental parameters. Following Frémat et al.
(2005), the directly observed parameters are called apparent
fundamental parameters, which describe only the average
properties of the photosphere in the hemisphere projected
toward the observer. In the present work we deal with four
independent observed apparent quantities:
(i) T app

eff
, is the apparent effective temperature, which corre-

sponds to the effective temperature of a classical nonro-
tating, plane-parallel model of stellar atmospheres with-
out GD that describes the observed spectrum in a limited
wavelength domain.

(ii) As for the effective temperature, log gapp
eff

is the appar-
ent effective surface gravity of the observed stellar hemi-
sphere determined with classical plane-parallel model
atmospheres.

(iii) Lapp, is the apparent bolometric luminosity emitted by the
aspect-angle dependent stellar hemisphere.

(iv) Vsin i, is the apparent rotational velocity of a rigidly ro-
tating star that accounts for the observed spectral line
broadening in the visual spectral range when GD is not
taken into account.

2. Parent nonrotating counterpart parameters. To make the cal-
culation of quantities, such as the stellar mass, stellar age, or
the inclination angle i, easier, in Sect. 3.5.1 we determine the
stellar parent nonrotating counterpart parameters. These are
called, in short, the pnrc fundamental parameters that cor-
respond to the associated nonrotating stars having the same
mass as the studied objects (Frémat et al. 2005).

Although the parameters (Teff , log g, log L/L�,Vsin i) of our stel-
lar sample were discussed several times (see Chauville et al.
2001; Frémat et al. 2005, 2006; Zorec et al. 2005), since then
new data have been obtained for some of them. These data en-
abled us to redetermine their bolometric luminosities. We briefly
detail the characteristics of the apparent parameters adopted in
the present work.
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2.2.1. The apparent effective temperature and surface gravity

The apparent effective temperature T app
eff

and surface gravity
log gapp

eff
of stars employed in this work were determined in two

different ways: (a) from spectrophotometric observations in the
3500 ≤ λ ≤ 4600 Å wavelength interval; and (b) using high
resolution spectra in the blue spectral range. In Table 1 gives
the sources of the observed parameters, wavelength intervals ob-
served, characteristics of the spectra, and instruments used.

a) The stars in Chauville et al. (2001), Frémat et al. (2005)
and Zorec et al. (2005) have apparent effective temperatures
and gravities determined from the (λ1,D) parameters defined
in the BCD (Barbier, Chalonge, Divan) spectrophotometric
system (Chalonge & Divan 1952). For a number of these
stars, we added new BCD observations obtained by Cochetti
(2014), which are indicated with “4” in Table 1. We redeter-
mined the T app

eff
for these Be stars using the calibrations given

in Zorec et al. (2009), while for log gapp
eff

we used those listed
in Zorec (1986) and Divan & Zorec (1982a).
The (λ1,D) parameters describe the energy distribution
around the Balmer discontinuity (hereafter BD), which is
roughly from λ 3500 Å to λ 4500 Å. Explanations on the
characteristics, use and advantages of the BCD (λ1,D) pa-
rameters to determine T app

eff
and log gapp

eff
of Be stars can be

found in Zorec & Briot (1991), Cidale et al. (2001) and
Gkouvelis et al. (2016). To indicate average MK spectral
types, we employ the S 70 parameter (Zorec et al. 1983)
that in the BCD (λ1,D)-classification diagram (Chalonge &
Divan 1952) corresponds to the value of the BD determined
by the intersection of the λ1 − 3700 = 70 Å line with the
curve of intrinsic color gradient Φrb passing through the stel-
lar (λ1,D) point in the BCD (λ1,D)-classification diagram
(Chalonge & Divan 1952). The S 70 identifies curves of con-
stant effective temperatures (Zorec et al. 2009) and nicely
correlates with the spectral classification parameter “s” de-
fined by de Jager & Nieuwenhuijzen (1987).

b) The T app
eff

and log gapp
eff

from Frémat et al. (2006) and
Levenhagen & Leister (2006) were determined by fitting
spectra in the blue spectral range and/or ratios of H , He ,
Si, and N lines in the 3900 ≤ λ ≤ 5000 Å spectral range.
Depending on the intensity of the emission in the Balmer
lines, corrections to the spectra were carried out for veiling
effect. Details on this technique can be found in Ballereau
et al. (1995) and Semaan et al. (2013). For those stars where
effective temperatures and gravities were determined using
both spectrophotometric and spectroscopic data, we adopted
the weighted averages, where the weights were assigned us-
ing the individual uncertainties of parameters determined in
both methods.

A statement detailing the uncertainties of the fundamental pa-
rameters introduced by the use of the BCD quantities (λ1,D)
can be found in Zorec & Briot (1991) and Zorec et al. (2009).
A comparison of effective temperatures determined with the
BCD (λ1,D) parameters for B stars without emission with
those obtained in the literature using other methods is shown in
Appendix A.1.

2.2.2. The apparent bolometric luminosity

We call Lλ(η, i) the monochromatic luminosity emitted at the
wavelength λ by the hemisphere seen under the inclination

angle i of a star rotating at a velocity characterized by the ra-
tio η defined as

η =
ac

ag
=

(
Ωe

Ωc

)2 [
Re(η)

Rc

]3

, (1)

where ac is the centrifugal acceleration and ag the gravitational
acceleration at the equator; Ωe and Ωc are the actual and critical
stellar angular velocities at the equator, respectively; and Re(η)
and Rc are the rotationally modified stellar equatorial and critical
radii, respectively.

According to the data we have at our disposal, we write the
apparent bolometric luminosity Lapp as

Lapp =

∫ λUV

0
Lλ dλ +

∫ λIR

λUV

Lλ dλ +

∫ ∞

λIR

Lλ dλ, (2)

where λUV is the shortest wavelength at which was observed
the energy distribution of a star in the far-UV; λIR is the
longest wavelength observed in the far-infrared (IR). The param-
eters λUV and λIR are different from star to star, according to the
satellites or instruments that recorded the data. To make easier
the estimate of Lapp, Eq. (2) is rewritten as

Lapp =
[
1 + ∆L(η, i,M, t)

] ∫ λIR

λUV
Lλ dλ

∆L(η, i,M, t) = Σi
∫

∆λi
Fλ dλ/

∫ λIR

λUV
Fλ dλ,

(3)

where M is the stellar mass and t its age. The spectral re-
gions that are not attainable by direct observation are completed
with ∆L(η, i,M, t); these are determined with model-atmosphere
fluxes Fλ of rotating stars calculated with FASTROT (Frémat
et al. 2005). The completion factor ∆L in Eq. (3) is adjusted
consistently, according to the iterated parameters (η, i,M, t), as
explained in Sect. 3.5.1.

In Lapp, only the factor
∫ λIR

λUV
Lλ dλ is a genuine observed quan-

tity, which was determined following the same procedure as de-
scribed in detail by Zorec et al. (2009). Although the use of this
method is only justified for rotating stars without emission, it can
also be applied to objects with emission lines, such as Be stars,
provided that some modifications are introduced that take the
characteristics of their energy distributions into account.

The energy distribution in the visual spectral range of
Be stars is variable, displaying flux excesses or deficiencies ac-
cording to the sub-wavelength domain and/or emission phase B
normal, Be proper, or Be shell (Divan et al. 1982, 1983; Divan &
Zorec 1982b; Zorec & Briot 1991; Moujtahid et al. 1998, 1999).
To extract the nonvariable photospheric component L∗λ from the
luminosity Lλ emitted by the star+CE system, we have written

Lλ = L∗λ(1 + ελ), (4)

where ελ represents the contribution from the CE, so that the
apparent luminosity Lapp becomes

Lapp =
[
1 + ∆L(η, i,M, t)

] ∫ λIR

λUV

Lλ
1 + ελ

dλ. (5)

For ελ we used the expression obtained in Moujtahid (1998)
(Moujtahid et al. 1999, 2000a,b), which accounts for the energy
distribution of Be stars from λ ∼ 3000 Å to the near-IR and is a
function of the following parameters: r = R∗/Renv is the inverse
of the radius of the effective layer representing the circumstellar
environment; Bλ(Tenv) is the source function of this layer given
by the Planck function at a temperature Tenv; τλ = τe+τV(λ/λV)3
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Table 1. Studied sample of Be stars and their apparent fundamental parameters.

HD T app
eff
± σTeff

log gapp
eff

log Lapp/L� E(B − V) ± σE (Vsin i)app Notes
±σlog g ±σlog L ±σVsin i

K dex dex mag km s−1

144 12 180 ± 170 3.80 ± 0.10 2.964 ± 0.026 0.08 ± 0.03 125 ± 6 1, f
4180 15 520 ± 360 3.54 ± 0.31 3.426 ± 0.037 0.11 ± 0.02 195 ± 10 1, f
5394 35 210 ± 2130 4.18 ± 0.31 5.190 ± 0.055 0.13 ± 0.07 432 ± 34 1, f

... ... ... ... ... ... ...
330 950 29 870 ± 3390 4.45 ± 0.38 2.578 ± 0.120 0.69 ± 0.13 60 ± 4 2, 4, d

Notes. 1: stars studied in Chauville et al. (2001), Frémat et al. (2005), Zorec et al. (2005); 2: stars studied in Levenhagen & Leister (2006); 3: stars
studied in Frémat et al. (2006); 4: stars with new BCD observations (Cochetti 2014); f: stars with integrated fluxes; and d: stars with spectroscopic
distances. The complete version of this table is available at the CDS.

(Moujtahid et al. 1999) is the optical depth at λ of the equiv-
alent layer, where τe is the electron scattering component, and
τV accounts for the bf+ff opacity at λV ' 5500 Å. These quan-
tities are only used as fitting parameters so that they are not a
specific physical interpretation in any case. For those stars for
which we had enough data, the CE parameters were determined
in the same way as described in Moujtahid et al. (2000a,b) using
the Moujtahid et al. (1998) catalog that lists changes with time
of: (a) the total BD D = D∗ + d of Be stars, where D∗ is the
photospheric BD and d R 0 is the second BD due to the CE; and
(b) the flux and color excess at λV ' 5500 Å. The explicit form
of ελ used and the parameters (r,Tenv, τe, τV) obtained for the ten
program Be stars with rather strong emission characteristics are
given in Appendix B.

The monochromatic fluxes used to determine Lλ and cal-
culate the integral in Eq. (5) are from the spectrophotometric
data obtained in the far-UV by the TD1, ANS satellites (Jamar
et al. 1976; Macau-Hercot et al. 1978; Wesselius et al. 1982)
and from the IUE satellite low resolution spectra (CDS com-
pilation). In the visible and near-IR domains the data are from
the BCD spectrophotometric data collection, the 13-color pho-
tometry (Johnson & Mitchell 1975) and various UBV, uvby,
UBVRIJHK, or JHK photometric catalogs (CDS database). The
far-IR data are from the ISO infrared sources (CDS). In Table 1
we identified with “ f ” those stars where log Lapp/L� was esti-
mated by integrating the fluxes from λUV to λIR.

For some program stars, we did not find the required far-UV
and/or far-IR spectrophotometry. In these cases we could not
do better than conform with the apparent bolometric luminos-
ity estimated from the bolometric absolute magnitude Mbol =
MV + BC(Teff) with M�bol = +4.742 mag, where MV is the vi-
sual absolute magnitude and BC(Teff) the bolometric correction
(Flower 1996; Torres 2010; Nieva 2013). The magnitude MV
was determined using the apparent magnitude V of an emission-
less phase.

No matter which method is used, to estimate log Lapp/L� we
need to know the ISM extinction Aλ = kλE(B − V), where kλ
is the ISM extinction law given by Cardelli et al. (1988, 1989)
and E(B − V) is the ISM determined in several ways: a) from
a smoothed distributions of the absorption E(B − V) against the
distance of stars without emission located in as narrow as pos-
sible intervals of equatorial spherical coordinates (∆α,∆δ . 1◦)
around each studied Be star [see examples of its use in Aidelman
et al. (2012)]; (b) by rectifying the energy distributions near
the λ 2200 Å absorption bump (Beeckmans & Hubert-Delplace
1980; Briot & Zorec 1987) using TD1, ANS far-UV spectropho-
tometric observations, and/or IUE low resolution spectra, or
through the fitting parameters of the 2200 UV bump given by

Guertler et al. (1982), Friedemann et al. (1983), Friedemann &
Roeder (1987) as used in Zorec & Briot (1991). Table 1 lists
the adopted average values of all independent determinations of
E(B − V) for each program Be star and their respective 1σ dis-
persion.

The transformation from the apparent bolometric fluxes to
bolometric luminosities is finally realized using Hipparcos par-
allaxes (van Leeuwen 2007). For stars where the trigonomet-
ric parallaxes are negative or nonexistent, we had to estimate
spectroscopic distances. To this end, we used the diagrams of
the long-term variability of the apparent magnitude V made by
Moujtahid et al. (1998), which enabled us to seize the value
corresponding to Be star emissionless-like phase. The stars with
spectroscopic distances are identified with “d” in Table 1.

Appendix A.2 gives a short statement on the systematic de-
viations that may characterize our estimates of bolometric lumi-
nosities. We use for this average MK spectral-luminosity classes
of emissionless B-type stars.

2.2.3. The apparent rotational velocity

A projected rotational velocity Vsin i determined as detailed be-
low is considered here as an apparent quantity because it can
be more or less underestimated due to the GD (Stoeckley 1968;
Townsend et al. 2004; Frémat et al. 2005).

For those program stars where T app
eff

and log gapp
eff

were rede-
termined, as mentioned in Sect. 2.2.1, we estimated the Vsin i pa-
rameter using the robust CERN-MINUIT algorithm to fit the
spectra (minimization package available at CERN1). Otherwise,
the Vsin i parameters were determined by Chauville et al. (2001),
Frémat et al. (2006), and Levenhagen & Leister (2006), who took
similar precautions and approaches to determine these parame-
ters. The main characteristics of the adopted Vsin i parameters

a) are based on the interpretation of He i 4 471 and Mg ii 4 481
lines corrected for veiling effect;

b) give a measurement of the line broadening as produced by
rigidly rotating atmospheres without GD;

c) are determined by comparing the observed line profiles with
synthetic spectra to avoid uncertainties produced by the use
of a unique limb darkening coefficient over the wavelengths
inside the spectral lines (Collins & Truax 1995).

When several determinations existed for a given star, we adopted
the weighted average. These averages and their 1σ deviations are
given in Table 1.

1 http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.
html
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2.3. The critical linear velocity

Gathering Be stars, and rapid rotators in general, into spec-
tral type groups and luminosity classes makes little sense be-
cause both characteristics are aspect-angle dependent and do
not clearly reflect either the true stellar mass or its evolutionary
stage. In order to keep a statistically reliable set of stars and min-
imize the bf uncertainties introduced by differences in masses
and/or evolutionary stages on the studied velocity distributions,
the calculations performed in this work use the Vsin i parame-
ters normalized to the critical linear rotational velocity Vc. We
adopted the following definition for the critical linear rotational
velocity Vc:

Vc = 436.7
[

M/M�
Rc(M, t)/R�

]1/2

km s−1, (6)

whose use for the studied Be stars is justified in Appendix C.
The stellar masses needed to estimate Vc were interpolated
in the evolutionary tracks calculated by Ekström et al. (2012)
with metallicity Z = 0.014 suited for the solar environment
(Asplund et al. 2009). The entries to these models are the pnrc
effective temperatures and bolometric luminosities defined in
Sects. 2.2.1 and 2.2.2. They also determine the pnrc stellar
radius Ro(M, t)/R� used to obtain Rc(M, t)/R�, where the ra-
tio Rc(M, t)/Ro(M, t) comes from two-dimensional (2D) models
of rotating stars (Zorec et al. 2011; Zorec & Royer 2012).

The mass and radius of the parent nonrotating object needed
to estimate Vc cannot be estimated in a simple way from the ap-
parent effective temperature and apparent bolometric luminosity
because in rapidly rotating stars both are deeply marred by rota-
tional effects. Moreover, they are both more or less aspect-angle
dependent. On the other hand, the apparent Vsin i parameters
have to be corrected for underestimation induced by the rapid
rotation of stars. Since this correction, as well as its use to pass
from a distribution of apparent Vsin i to the corresponding one
of true velocities V, both depend on the pnrc parameters, we first
define in Sect. 3 these corrections and the required deconvolu-
tion methods. We postpone the formal determination of the pnrc
quantities to Sect. 3.5.1 where, in particular, we consistently ob-
tain the mass and radius of the parent nonrotating object needed
to estimate Vc.

We can wonder whether systematic differences exist between
our estimates of Vc and those derived from the fundamental pa-
rameters adopted in the literature for the spectral types stud-
ied in the present work (cf. Collins et al. 1991; Lang 1992;
Townsend et al. 2004; Frémat et al. 2005; Huang & Gies 2006).
Such a comparison is attempted in Fig. 1, where the Vc parame-
ters were calculated for masses and radii corresponding to the
average MS spectral type-luminosity classes according to the
different calibrations. Filled symbols and the respective 1σVc dis-
persion bars represent the Vc obtained from fundamental param-
eters given in the literature for the average MK spectral types
(see Appendix A.2), while the open symbols correspond to our
estimates of Vc. Figure 1 shows that, depending on the spectral
type and luminosity class, our Vc estimates can differ at most by
10 to 20 km s−1 with those given by other authors.

Since in the BCD spectral classification system a given MK
spectral type-luminosity class covers a curvilinear quadrilateral
in the (λ1,D) diagram, our estimates of Vc shown in Fig. 1, and
given in Table 2, correspond to the centroids of these quadrilater-
als, which do not necessarily coincide with those implied by the
average MK spectral types defined by the stellar samples studied
by other authors. In this table, and in Fig. 1, the spectral types
are represented with the BCD index S 70 given in dex.
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Fig. 1. Filled symbols: average critical velocities Vc and the related dis-
persions against the MK spectral type for luminosity classes V, IV, and
III. These Vc were calculated using the effective temperatures and bolo-
metric luminosities from calibrations carried out by various authors.
Open symbols: critical velocities for the average MK spectral types and
luminosity classes that conform with the method used in this work to
obtain the Vc for individual stars. The MK spectral types are represented
with the BCD parameter S 70 dex.

Table 2. Critical velocities Vc derived in this work for average MK
spectral types and luminosity classes.

S 70 Vc (km s−1)
Sp.T. dex V IV III
O7 0.039 561 556 556
O9 0.052 542 538 517
B0 0.075 544 512 477
B1 0.104 530 494 423
B2 0.143 486 450 404
B3 0.181 461 418 380
B4 0.209 437 397 374
B5 0.238 438 381 362
B6 0.266 403 369 348
B7 0.297 393 360 341
B8 0.330 389 359 333
B9 0.384 386 355 326
A0 0.445 382 346 324
A1 0.491 375 343 322

Notes. The MK spectral types are represented with the BCD index
S 70 dex.

3. Distribution of “true” rotational velocities

In this section we determine the distribution of ratios Vsin i/Vc,
where the Vsin i are corrected only for measurement uncertain-
ties. This distribution is used in the rest of this work as the ref-
erence distribution of the data relative to rotational velocities.
In a second step, we transform the distribution of projected ra-
tios Vsin i/Vc into a distribution of ratios V/Vc of true rotational
velocities. For this transformation we discuss two methods in
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Fig. 2. a) Histogram giving the number N(Vsin i/Vc) of observed ra-
tios v = Vsin i/Vc per class ∆v studied in this work; b) smoothed den-
sity distribution Ψ(u) of projected velocity ratios u = Vsin i/Vc, where
measurement uncertainties on u = Vsin i were taken into account. The
error bars indicate the statistical uncertainty affecting the smoothed
Ψ(u) distribution.

which Stoeckley’s corrections (Stoeckley 1968) of the observed
Vsin i parameters are considered in different ways.

Since we shall deal with distributions corrected successively
for a series of different effects, we adopt the notations v and Ψ(v)
for velocity ratios and the corresponding distribution function
as they are “before correction for some geometrical or physi-
cal effect”. The notations u and Φ(u) are used for velocity ratios
and their distribution “after correction”, respectively. These no-
tations can concern either the projected velocity ratios Vsin i/Vc
or the true ratios V/Vc. We may then speak of v = Vsin i/Vc
and Ψ(v) before correction for measurement uncertainties of the
v values, which after correction become u = Vsin i/Vc and Φ(u),
respectively. In the same way we have v = V/Vc and Ψ(v) be-
fore correcting the v ratios, for example for binary effects, which
convert into u = V/Vc and Φ(u) once the correction is applied.

3.1. Distribution of rotational velocities corrected
for measurement uncertainties

To obtain a first glance on the aspect of the distribution of ap-
parent ratios v = Vsin i/Vc, we show in Fig. 2 the histogram
constructed using the whole stellar sample regardless of the evo-
lutionary state of the individual stars. The effect of the stellar
evolution is minimized by considering Vsin i/Vc velocity ratios,
where Vc is calculated consistently with the mass and evolution-
ary state of each object. Nonetheless, we discuss the possible
evolutionary effects on the V/Vc ratios in Sect. 3.6. The class-
steps of the histogram were established according to the bin-
width optimization method by Shimazaki & Shinomoto (2007).
We then obtained a smoothed version of the frequency density
distribution of ratios Vsin i/Vc corrected for measurement un-
certainties, which represents the reference distribution of the ob-
served projected rotational velocities for the present work. This

200 250 300 350 400 450
(Vsin i) (km/s)

200

250

300

350

400

450

(V
si
n
i)
o
b
s co

rr
(k
m
/s
) i = 70

o
log go = 4.0

T
o
eff = 21000 K

( ,i)

= 0.24

0.36

0.52

0.73

1.0

Fig. 3. Blue line: relation between the observed (Vsin i)obs
corr (ordinates)

against the Vsin i corrected from Stoeckley’s underestimation (abscis-
sas). This relation was calculated for model He i 4 471 line in stars with
pnrc parameters Teff = 21 000 K and log g = 4.0, inclination angle i =
70◦, and η ratios ranging from 0 to 1.0. The red bars indicate Stoeckley’s
correction Σ for an arbitrary near critical (Vsin i)obs

corr parameter. The η
values indicated in the figure are for the actual (Vsin i)Σ = V(η)sin i
parameters in abscissas.

distribution was established using kernel estimators (Bowman &
Azzalini 1997), where each observed parameter v = Vsin i/Vc
was represented by a Gaussian distribution, whose dispersion
is given by the standard deviation of individual estimates. The
distribution Ψ(u) thus obtained of ratios u = (Vsin i/Vc)obs

corr, i.e.,
observed ratios v corrected for measurement uncertainties, is rep-
resented with a blue curve in Fig. 2. The error bars indicate the
statistical uncertainty affecting the determination of the so-called
smoothed distribution Ψ(u).

3.2. The Stoeckley effect

In rapid rotators, the emitted bolometric flux weakens from the
pole to the equator as a function of the surface effective gravity
(von Zeipel 1924; Lucy 1967; Espinosa Lara & Rieutord 2011).
The contribution of the radiation to the total λ-dependent flux
in a spectral line broadened by the rotation is thus less effective
from the equatorial regions, which consequently translates into
an underestimation of the Vsin i parameter. As this effect was
first studied by Stoeckley (1968), in what follows we refer to it
as the Stoeckley effect. The expected value of (Vsin i)Σ corrected
from the Stoeckley effect can be written as

(Vsin i)Σ = (Vsin i)obs
corr + Σ(η, i,M, t), (7)

where (Vsin i)obs
corr is the observed projected rotational velocity

corrected for measurement uncertainties; Σ is the correction for
the rotationally induced underestimation that hereafter, and de-
pending on the circumstances, we call Stoeckley’s correction or
Stoeckley’s underestimation. A schematic representation of the
relation between the true Vsin i and the observed one is shown
in Fig. 3.

After Stoeckley (1968), a number of authors have calculated
Σ, in particular Townsend et al. (2004), Cranmer (2005), and
Frémat et al. (2005), who calculated this correction strictly in
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the frame of rigid rotation with the classical formulation of the
GD effect by von Zeipel (1924). Frémat et al. (2005) calculated
spectral lines in the visible spectral range in great detail using
non-LTE model atmospheres of massive and intermediate-mass
stars, mainly for He i 4471 and Mg ii 4481 lines.

It is worth mentioning, however, that in spite of the colatitude
θ-dependent GD exponent β1 (Espinosa Lara & Rieutord 2011;
Rieutord 2016; Zorec et al. 2016), the effective temperature is
still written as (von Zeipel 1924; Tassoul 1978)

T 4
eff(θ) = const.gβ1

eff
(θ), (8)

with β1 = 1. Other formulations of this relation for con-
servative and nonconservative rotation laws, produce β1 < 1
(e.g., von Zeipel 1924; Lucy 1967; Smith & Worley 1974;
Kippenhahn 1977; Hadrava 1992; Maeder 1999, 2009; Lovekin
et al. 2006; Gillich et al. 2008; Dall & Sbordone 2011; Espinosa
Lara & Rieutord 2011; Claret 2012). Moreover, because of the
simple fact that β1 is colatitude θ-dependent, an observed β1 is
necessarily a function of the aspect angle (Domiciano de Souza
et al. 2014; Rieutord 2016; Zorec et al. 2016). Holding forcibly
β1 = const. over the stellar surface, form Eqs. (4), (27), and (28)
in Espinosa Lara & Rieutord (2011) and the condition that for
rigid rotation the ratio between the equatorial and polar radii is
Re/Rp = 1 + η/2, readily yields

β1 = 1 −
2
3

[
ln(1 − η) + η(1 + η/2)−3

ln(1 − η) − 2 ln(1 − η/2)

]
, (9)

which shows that this exponent varies from β1 = 1 at η = 0 to
β1 = 1/3 when η = 1. The function β = β1/4 against the stel-
lar flattening ε = 1 − Rp/Re = η/(2 + η) is shown in Espinosa
Lara & Rieutord (2011) and Domiciano de Souza et al. (2014).
According to this dependence of β1 with η, the contrast between
the emitted polar and equatorial radiative fluxes reduces signif-
icantly when η → 1 as compared to predictions obtained with
β1 = 1. We adopted β1 = 1 on purpose, however, to produce the
highest possible contrasts of effective temperatures in the stel-
lar surface and maximize in this way the correction Σ(η, i,M, t).
This favors artificially inferring the highest possible values of
V in the Vsin i parameter. Following these assumptions, we re-
calculated Σ with FASTROT (Frémat et al. 2005) imposing rigid
rotation and, for angular velocity, ratios ranging from Ω/Ωc =0.0
to Ω/Ωc = 0.9999 (0 ≤ η ≤ 0.985).

3.3. Deconvolution methods

When the inclination angle of the stellar rotational axis is as-
sumed to be distributed at random, the probability of occur-
rence of the inclination angle between i and i + di is given by
P(i)di = sin i di. To derive the distribution Φ(u) of ratios of true
velocities u = V/Vc from the distribution Ψ(v) of ratios of ap-
parent velocities v = Vsin i/Vc, we can adapt the rules given
in Appendix D by writing v = u sin i. The variables (x, y, z) in
Appendix D then translate into (u, i, v) and the functions Z(z) and
X(x) into Ψ(v) and Φ(u), respectively. Accordingly, dz/(∂z/∂y)
becomes di = dv/(u cos i) and Eq. (D.3) transforms into the
known Abel-like integral equation, first discussed by Kuiper
(1935) and Chandrasekhar & Münch (1950)

Ψ(v) = v

∫ ∞

v

Φ(u)

u
(
u2 − v2)1/2 du. (10)

Cranmer (2005) notes that when we have to deal with the cor-
rected velocity ratio v = u sin i + Σ(η, i), Eq. (10) does not take

into consideration the effect of the term Σ, and the correspon-
dence between Φ(u) and Ψ(v) is no longer unique.

So, if we take this observation by Cranmer into account, we
guess that at least two different ways can be envisioned to de-
rive Φ(u) from Ψ(v): a) using the method introduced by Cranmer
(2005), where Φ(u) is given a generic analytic form and each
ratio v is corrected for the corresponding GD effect according
to all possible values of u and i to form the same v; b) using
the Lucy-Richardson method (Lucy 1974; Richardson 1972) to
solve Eq. (10), where v of each star is corrected in advance for
Stoeckley’s underestimation.

In Sects. 3.4 and 3.5 we apply both methods in turn and dis-
cuss the pros and cons of their use.

3.4. Cranmer method

In the method originally introduced by Cranmer (2005), the
function Φ(u)2 is represented by a truncated linear function
(trapezoid),

Φ(u) = p × u + q; um ≤ u ≤ uM, (11)

where four parameters have to be determined: the constants p
and q, and the two extreme values [um, uM] over which is defined
Φ(u), so that Φ(u) , 0 when um ≤ u ≤ uM, and Φ(u) = 0
outside the interval. Actually, only three of them are iterated,
since q is determined automatically through the normalization
condition

∫ uM

um
Φ(u) du = 1. These parameters are inferred by

fitting the function Ψ(v) with a series of Monte Carlo trials using
N = 105 model stars. In this method, the basic requirement of
Cranmer is solved by assigning Stoeckley’s correction to each
built projected velocity ratio v = u sin i, where the quantity u
belongs to a defined basis function and i is assigned at random.
The ratios v are treated with an imposed uncertainty.

We tested the Cranmer method, but introduce small formal
changes as follows:

(1) The simulations were tested using the distribution of pro-
jected rotational velocities corrected in advance for measure-
ment uncertainties, for example, the distribution obtained in
Sect. 3.1. According to this, the ratios v = u sin i simulated in
the Monte Carlo trials are considered free from measurement
uncertainties.

(2) In Appendix F it is shown that within some limiting con-
ditions we can choose many different analytical expressions
for Φ(u), which all can be considered statistically equivalent.
We then replaced the above trapezoidal form by the follow-
ing function,

Φ(u) = Aua exp
[
−b(u − c)2

]
, (12)

which also depends on four free parameters: A, a, b, and c,
where A is fixed by the normalization condition

∫ 1
0 Φ(u) du =

1. This analytical form was chosen because it resembles the
Φ(u) function determined by the Lucy-Richardson decon-
volution method of data analyzed in the present work (see
Sect. 3.5).

(3) Stoeckley’s correction were assigned to the v parameters not
only as a function of the u- and i-Monte Carlo simulated pa-
rameters, but also depending on (Teff , log g). The effective
temperatures and gravities used are the average Teff and log g

2 The notation Φ(u) is used for the actual distribution, while Φ(u) in-
dicates its analytical/auxiliary representation.
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Table 3. Solution parameters (a, b, c, A) estimated using the Cranmer
method for the function Φ(u) defined in Eq. (12).

a b c A umode

Φ(u)Cr1 0.000 44.179 0.690 3.722 0.6900
Φ(u)Cr2 8.809 23.517 0.420 475.788 0.6912

values calculated from the apparent parameters of the stud-
ied stellar sample distributed in 16 equidistant groups. For
each tested triplet (a, b, c), the fraction of model stars with
the same (Teff , log g) is determined by the fraction of real
stars in the corresponding (Teff , log g) group.

(4) The method was applied twice: (i) using a predefined basis
u−function; (ii) with a Monte Carlo sorting of the u parame-
ters, using the probability function Φ(u) defined by the ongo-
ing tested a, b, and c parameters. We noted that both methods
lead to the same result.

(5) The N simulated v=u sin i parameters were gathered into an
histogram whose class width, determined as in Sect. 3.1, was
adopted as the dispersion of the Gaussian kernels needed to
obtain a smoothed version of the predicted frequency den-
sity distribution of apparent velocity ratios. As in Cranmer’s
method, the quality of the fit of the predicted frequency
with the reference distribution Ψ(v) was controlled with the
χ2 test.

Curiously, two sets of parameters (a, b, c) for Φ(u) given by
Eq. (12) were obtained that produce the same ‘best’ fit of Ψ(v)
according to the χ2 test. We call these solutions Ψ(u)Cr1 and
Φ(u)Cr1, respectively. They are shown in Fig. 4 and the parame-
ters characterizing them are given in Table 3. For comparison
sake, Fig. 4 also shows the reference distribution Ψ(v) ob-
tained in Sect. 3.1 (see Fig. 2 curve b). Nevertheless, both so-
lutions Φ(u)Cr1 and Φ(u)Cr2 are probably equivalent within the
uncertainties that affect Ψ(v) shown in Fig. 2 (curve b).

3.5. Lucy-Richardson deconvolution method

In the original Lucy-Richardson deconvolution method, the solu-
tion for Φ(u) is obtained from Eq. (10) with a subsidiary equation
constructed using a Bayesian equivalence principle. According
to this principle the probability of occurrence of u and v can be
written either as Φ(u)P(u|v) or Ψ(v)P(v|u), where for a value v
the probability of the occurrence of u is represented with P(u|v),
presently given by the factor multiplying Φ(u) in the integrand
of Eq. (12). This equivalence translates into

Φr+1(u) = Φr(u)
∫

V (u)

[
Ψ(v)
Ψr(v)

]
P(v|u) dv, (13)

which together with Eq. (10) enables iteration of Φ(u) and Ψ(v).
In Eq. (13), Φr(u) and Ψr(v) are the r-iterated estimates of the
respective distributions, and V (u) represents the integration in-
terval dependent on u. The optimal number of required iterations
was controlled through the Kolmogorov-Smirnov test over Φ(u)
and on the recalculated Ψ(v) compared with the original or input
apparent distribution.

To account for the main Cranmer demand, i.e., to con-
sider Stoeckley’s correction consistently, the application of the
Lucy-Richardson method becomes possible when each apparent
ratio v is corrected for Stoeckley’s underestimation in advance of
the iteration process. In the next section we detail our procedure
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Fig. 4. Diagram showing the two functions Φ(u) that lead to the same
χ2; Φ(u = V/Vc)Cr1 (red full line) and Φ(u = V/Vc)Cr2 (red dashed
line), obtained with the Cranmer method and the analytical form given
in Eq. (12). The reference distribution Ψ(v) of ratios v = Vsin i/Vc cor-
rected for observational uncertainties is also shown (blue dashed curve).

to estimate Σ(η, i,M, t) and derive v = Vsin i/Vc corrected for
Stoeckley’s underestimation.

3.5.1. Correction Σ(η, i,M, t) as a function of pnrc parameters

To estimate Σ(η, i,M.t) we assume that stars are rigid rotators
and use Eq. (8) with β1 = 1. Stoeckley’s correction is then a
function of the stellar mass M/M�, stellar age t/tMS (tMS is the
time a rotating star spends in the main-sequence phase), the ra-
tio of the centrifugal to gravitational acceleration at the equator η
(see Eq. (1)), and inclination i of the rotation axis. To determine
these quantities, the following form is given to the stellar appar-
ent fundamental parameters:

T app
eff

= T pnrc
eff

(M, t) CT(M, t, η, i)
g

app
eff

= g
pnrc
eff

(M, t) CG(M, t, η, i)
Lapp = Lpnrc(M, t) CL(M, t, η, i)
(Vsin i)app

Vc(M, t)
=

[
η

Re(M, t, η)/Rc(M, t)

]1/2

sin i −
Σ(M, t, η, i)

Vc(M, t)
,

(14)

where Re(M, t, η) and Rc(M, t) are the actual and critical stellar
equatorial radii, which are determined using our 2D models of
rigidly rotating stars (Zorec et al. 2011; Zorec & Royer 2012).
The left side of Eq. (3) is associated with the observed (appar-
ent) fundamental parameters determined in Sect. 2.2. On the
right side of Eq. (3), T pnrc

eff
(M, t), gpnrc

eff
(M, t), Lpnrc(M, t) are the

pnrc effective temperature, surface gravity and bolometric lu-
minosity introduced in Sect. 2.2. The functions CT(M, t, η, i),
CG(M, t, η, i), and CL(M, t, η, i) carry all the information relative
to the geometrical deformation of the rotating star and of its GD
over the observed hemisphere.

To determine CT(M, t, η, i) and CG(M, t, η, i), we calculated
synthetic spectra in the λλ 4000−4500 Å wavelength interval as
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Fig. 5. a) Function CT(M, t, η, i); b) function CL(M, t, η, i); c) function CG(M, t, η, i). The pnrc parameters used here are T pnrc
eff

= 20 000,
log gpnrc = 3.8 and inclination angles in the interval 0 ≤ i ≤ π/2 at steps ∆i = 10◦.

emitted by our 2D models of rigid rotators seen at several as-
pect angles i. The effective temperature and surface gravity of
the rotationless counterparts of these models define the respec-
tive T pnrc

eff
(M, t) and gpnrc

eff
(M, t) parameters. The effective temper-

atures and surface gravities of classic nonrotating, plane-parallel
model atmospheres, which fit the above synthetic spectra of ro-
tating stars, define the theoretical T app

eff
and gapp

eff
parameters; this

enables us to calculate the functions CT(M, t, η, i) = T app
eff
/T pnrc

eff

and CG(M, t, η, i) = g
app
eff
/g

pnrc
eff

. The fit of spectra was performed
with the CERN-MINUIT minimization package.

The function CL(M, t, η, i) was determined employing a sim-
ilar formulation as in Georgy et al. (2014), except that in Eq. (8)
we maintained β1 = 1 on purpose for all values of η to produce
the largest possible Stoeckley’s corrections Σ(M, t, η, i). Figure 5
shows the functions CT(M, t, η, i), CL(M, t, η, i) and CG(M, t, η, i)
calculated for an object with mass M/M� = 8.2 and age t/tMS =
0.9, i.e., pnrc parameters T pnrc

eff
= 20 000 K and log gpnrc = 3.8.

As a result of the known “mass-lowering effect” induced by
the rotation (Milne 1923; Sackmann 1970; Bodenheimer 1971;
Tuominen 1972; Clement 1979), according to which a rotating
star behaves as another object with lower mass and, thus, its
bolometric luminosity is lower the higher its rotation, these func-
tions depend sensitively on the stellar mass and age. Hence, the
coefficients CT, CL, and CG calculated for the present work do
not exactly reproduce the behavior of the absolute magnitude
MV against the color (B − V) as a function of η and the incli-
nation i obtained by Collins et al. (1991). In fact, the magnitude
MV determined by Collins et al. (1991) remains brighter than
that of a nonrotating counterpart even at i & 60◦ as η → 1 for
spectral types hotter than B3. This is because of two important
simplifications introduced in their calculations: (1) the “mass-
lowering effect” was neglected; and (2) the polar radius Rp is
maintained unchanged, even though its variation with η intro-
duces non-negligible effects on the magnitudes as i & 50◦. The
changes of the bolometric luminosity used in the present work
are detailed in Frémat et al. (2005), while the variation of the
Re and Rp radii are given in Zorec et al. (2011) and Zorec &
Royer (2012). We recall that for M/M� = 3 the lowering in the
bolometric magnitude ranges from ∆Mbol = +0.12 to +0.22 mag
as η changes from 0.3 to 1.0, while for M/M� = 20 we have
∆Mbol = +0.08 mag at η = 0.3 and ∆Mbol = +0.12 mag at
η = 1.0. The respective changes ∆MV are slightly smaller be-
cause of the additional bolometric corrections. In any case, the
aspect-angle dependence of MV with i & 50◦ and η are much
larger than those predicted by Collins et al. (1991).
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Fig. 6. Distribution function Φ(u)LR obtained with the Lucy-Richardson
method (blue curve) with the corresponding statistical uncertainties.
Both distributions Φ(u)Cr1,2 of true rotational velocities derived using
the Cranmer method (red curves) are also superimposed.

The solution of Eq. (3) automatically determines the
Σ(M, t, η, i) that corrects the apparent Vsin i of each star for
the GD effect in a consistent way with the stellar fundamen-
tal parameters M/M�, t/tMS, η and i. Details on the method
used to solve the system of equations in Eq. (3) are given in
Sect. E. The pnrc effective temperatures, gravities, bolomet-
ric luminosities, ratios η, and inclinations i obtained for the
program Be stars are listed in Table 4. We did not consid-
ered the stars HD 49131, HD 50737, HD 112091, HD 166566,
HD 171054, and HD 330950 in this work because we obtained
uncertain pnrc fundamental parameters, which situate then far
below the ZAMS.

We then determined the smoothed distribution of projected
velocity ratios v = [Vsin i + Σ(M, t, η, i)]/Vc corrected for mea-
surement uncertainties of Vsin, using the same procedure as in
Sect. 3.1 that by iteration of Eqs. (10) and (13) enabled us to de-
rive the distribution Φ(u)LR of ratios u = V/Vc, which is shown in
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Table 4. pnrc fundamental parameters of the studied Be stars.

HD T pnrc
eff
± σTeff

log gpnrc log Lpnrc/L� (Vsin i)pnrc Vc ± σVc M/M� ± σM η ± ση i ± σi
±σlog g ±σlog L ±σVsin i

K dex dex km s−1 km s−1 deg
144 13 300 ± 180 3.81 ± 0.10 2.912 ± 0.028 140 ± 11 318 ± 15 4.59 ± 0.23 0.55 ± 0.08 38 ± 9

4180 17 400 ± 500 3.70 ± 0.31 3.514 ± 0.057 215 ± 18 357 ± 19 6.59 ± 0.33 0.47 ± 0.14 58 ± 14
5394 40 200 ± 2320 4.25 ± 0.34 5.274 ± 0.084 441 ± 51 677 ± 59 31.69 ± 2.01 0.52 ± 0.13 65 ± 16

.... ................ ............... ................. ............ ............. ................. ................. ...........
330 950 30 440 ± 3650 4.54 ± 0.39 2.475 ± 0.121 60 ± 6 531 ± 91 4.94 ± 0.55 0.47 ± 0.11 8 ± 5

Notes. This table is given in full at the CDS.
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Fig. 7. Distributions Φ(u)LR obtained with Stoeckley’s corrections
Σ(η, β1 = 1) calculated for different values of η: η = η∗ (derived
in Sect. 3.5.1); η = ηmin; η = 1.0 and η = 0.0. For comparison
the smoothed distribution of ratios of pnrc velocities Vsin i/Vcsin i
(crosses) is also shown.

Fig. 6 (blue curve). This figure shows the statistical uncertainties
of Φ(u)LR and, for comparison, the two distributions Φ(u)Cr1,2
derived with Cranmer’s method (red curves).

Since Φ(u)LR depends on Stoeckley’s corrections Σ obtained
by solving Eq. (3), it is worth asking what uncertainties affect
its determination that rely on the estimate of η. To this end we
have tested three extreme cases: (a) all stars have the lower pos-
sible rotational parameter ηmin, i.e., the value derived when we
consider that V(ηmin) = Vsin i; (b) Stoeckley’s corrections esti-
mated for η = 1, i.e., V(η = 1) = Vc; (c) neglecting Stoeckley’s
correction, i.e., Σ(M, t, η = 0, i) = 0 in all stars. The distribution
functions Φ(u)LR thus obtained are shown in Fig. 7. Also, the
solution that comes from η = η∗ derived with Eq. (3) (blue full
line) is also shown in this section. As expected, approximation
(a) produces a slight excess of low rotators (dashed red line); so-
lution (b) is characterized by an excess of rapid rotators (red full
line); (c) the distribution is shifted to smaller values of u = V/Vc
(blue long-dashed line).

Another test of consistency of both the pnrc parameters used
to infer Stoeckley’s correction and of Φ(u)LR can be performed
by calculating just the smoothed distribution Φ(upnrc) of the true

velocity ratios defined as upnrc = [(Vsin i)pnrc/Vc]/ sin ipnrc, and
thus obtained independently of the Lucy-Richardson method.
The smoothed distribution is established using the kernel-
estimator method (Bowman & Azzalini 1997) employed in
Sect. 3.1. Figure 7 shows this function as a black cross-marked
curve. This function, despite the errors that may affect the so-
lutions issued from Eq. (3), in particular the inclination angles,
adjusts the distribution Φ(u)LR, which is obtained in Sect. 3.5
with Eqs. (10) and (13), and is widely within the statistical un-
certainty limits.

As noted above, we used Eq. (8) with β1 = 1 to simulate the
GD effect with the purpose of having the largest possible mode
of the Φ(V/Vc) distribution. Nonetheless, because in real stars
not only β1 < 1, but also β1 = β1(θ) (Espinosa Lara & Rieutord
2011; Zorec et al. 2016), it is expected that the actual mode of
Φ(V/Vc) be displaced to a even lower value that found here, i.e.,
(V/Vc)mode < 0.7.

If the inclination angles were not distributed at random,
Φ(u)LR could suffer from an additional skewness, which is a
function of that particular distribution of inclination angles. This
issue is briefly discussed in Sect. 3.7.

3.5.2. Comments on the obtained distributions Φ(u)
and adopted deconvolution method

Having obtained the distribution Φ(u) using two different meth-
ods, where both enforce the basic requirements for Stoeckley’s
correction of the apparent ratio v = Vsin i/Vc, we would like to
know whether they can be considered equivalent to each other.

We can notice that the Lucy-Richardson method does not im-
pose any restriction to the functional aspect of Φ(u), although it
requires that Stoeckley’s correction be applied before the itera-
tion procedure, which is not a straightforward task.

The Cranmer method imposes the use of an analytical ex-
pression Φ(u) meant to represent the actual function Φ(u), which
necessarily depends on a limited number of free parameters.
In this way, only a limited number of moments of the actual
distribution Φ(u) can be accounted for. Moreover, when a decon-
volution has to be carried out with kernels determined by com-
plicated probability distributions, doubts may arise as to whether
the chosen analytical function Φ(u) may correctly account for the
physical phenomena that shape the actual Φ(u) distribution.

Nonetheless, the application of the Cranmer method is sim-
ple and the Monte Carlo simulation can be significantly short-
ened when an approximation of the free parameters defining
Φ(u) is known in advance. In Appendix F we develop a sim-
ple analytical way to calculate these quantities for trapezoidal
and triangular distributions Φ(u). If the apparent variable v
is corrected in advance for Stoeckley’s underestimation, the
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Table 5. Parameters defining trapezoidal and triangular Φ(u) derived
according to the Cranmer method.

um uM p q
Φ(u)trapezoid 0.468 0.900 1.856 1.044

um uM umax Φmax

Φ(u)triangle 0.381 0.987 0.721 3.295

Notes. u ∈ [um, uM]; Φ = p.u + q; Φmax = Φ(umax).
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Fig. 8. a) Distribution function ΦLR(u) and the associated auxiliary
trapezoidal and triangular distributions Φ(u). b) Cumulative distribu-
tions C[Φ(u)] ≡

∫ 1

0
Φ(u)du of the density distributions shown in a).

analytical method produces the final values of the sought free
parameters.

We compared the Cranmer and Lucy-Richardson methods
using quantitative procedures. To this end, we have applied
Cranmer’s algorithm in full to our stellar sample using Eq. (12),
trapezoidal, and triangular functions to represent Φ(u). The free
parameters thus obtained are given in Table 5, and the respective
functions are shown in Fig. 8a. We then applied two different
tests: (i) comparison of the first four moments of distributions
and (ii) the Kolmogorov-Smirnov test.

(i) Moments of distributions
The first four moments are usually employed to control four
basic characteristics of distributions: the average value of the
studied random variable; the variance, or dispersion of the
studied random variable; the skewness, or symmetry of dis-
tributions; and the kurtosis, or flattening of distributions. In
Table 6 are given the moments 〈un〉, with n =1,...,4, of func-
tions Φ(u)LR, Φ(u)Cr1,2, Φ(u)trapezoid, and Φ(u)triangle, as well
as their respective modes (umax).
From Fig. 6 and the quantities given in Tables 5 and 6 we can
then conclude:
(1) The distributions, Φ(u)Cr1,2 and Φ(u)LR are defined over

the same interval of u ratios and their modes are fairly
similar.

(2) The Cranmer solution Φ(u)Cr2 is closer to Φ(u)LR. The
approach Φ(u)Cr1 suggests a relative lower number of ro-
tators with V/Vc & 0.8 and a relative higher number of
rotators, but it has nearly the same mode of velocities.
This may be due to a compensation effect related to the
use of an imposed analytical form for Φ(u).

Table 6. First four moments of the function Φ(u) derived according
to different approaches used: Lucy-Richardson; Cranmer with pseudo-
Maxwellian, trapezoidal and triangular functions.

Methods 〈u1〉 〈u2〉 〈u3〉 〈u4〉 umax p%

Φ(u)LR 0.697 0.501 0.370 0.281 0.684 –

Φ(u)Cr1 0.689 0.487 0.351 0.258 0.690 60.0
Φ(u)Cr2 0.695 0.497 0.365 0.275 0.691 99.9

Φ(u)trapezoid 0.696 0.500 0.370 0.279 0.735∗ 20.5
Φ(u)triangle 0.696 0.500 0.370 0.279 0.721 99.4

Notes. The last column gives the confidential level at which the
Cranmer distributions can be considered parent to the Lucy-Richardson
distribution. (∗) The parameter given here is the median of the
distribution.

(3) The first three moments produced by the trapezoidal
and triangular auxiliary distributions using the Cranmer
algorithm in full are closer to those of Φ(u)LR than those
due to pseudo-Maxwellian auxiliary distributions.

(4) Different analytical forms of Φ(u) are in principle able
to reproduce distributions that reassemble the observed
Φ(v) , i.e., having nearly the same first four moments,
even though the same probability P(u|v) was employed
in all cases.

We can then wonder whether imposed analytic functions
Φ(u) may reliably describe the properties of the actual and
sought distribution Φ(u).

(ii) The Kolmogorov-Smirnov test
To simplify the comparisons, we compared the distributions
Φ(u)Cr1,2 and Φ(u)trapez,triang with Φ(u)LR. The cumulative dis-
tributions C[Φ(u)Cr1,2], C[Φ(u)trapezoid] and C[Φ(u)triangle] are
shown in Fig. 8b; the notation means C(Φ) =

∫ 1
0 Φ(u) du.

The last column of Table 6 gives the probability at which
the analytical functions Φ(u) imposed here can be consid-
ered parent to Φ(u)LR.
According to the Kolmogorov-Smirnov test, we see that the
Cranmer solutions Φ(u)Cr1,2 with pseudo-Maxwellian func-
tions can be considered parent distributions of Φ(u)LR, re-
spectively, within 60.0% and 99.9% levels of confidence,
while Φ(u)trapezoid and Φ(u)triangle are at 20.5% and 99.4%
confidence levels, respectively. Also, the use of trapezoidal
distributions to discuss the velocity distributions of Be stars
is less appropriate.
So, according to tests (i) and (ii), it seems sensible to use the
Lucy-Richardson deconvolution method because it avoids
imposing analytical behaviors for Φ(u). Moreover, the com-
plexity of some corrections applied in the next sections,
makes the use of analytical auxiliary functions to account
for the inherent subtleties that may characterize Φ(u) rather
uncertain and complicated.

3.6. Effects of stellar evolution on the distribution
of V/Vc ratios

In general, a stellar sample can be considered statistically reli-
able if it is formed by a rather large number of objects, which
all have roughly the same masses and ages. When this is not so,
however, the effects assumed by the differences in masses can
be somewhat suppressed using normalized apparent rotational
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Table 7. Main-sequence evolutionary subphases, number of program
stars in each group, the corresponding average fractional times 〈t/tMS〉

with their dispersions, modes (V/Vc)mode of the distributions, and the
respective characteristic dispersions.

Time interval N∗ 〈t/tMS〉 ± σt/tMS (V/Vc)mode ± σV/Vc

1 0.00 ≤ t/tMS ≤ 0.61 77 0.25 ± 0.23 0.64 ± 0.12
2 0.61 ≤ t/tMS ≤ 0.90 79 0.77 ± 0.09 0.76 ± 0.10
3 t/tMS ≥ 0.90 77 1.01 ± 0.03 0.77 ± 0.15

4 0.00 ≤ t/tMS ≤ 0.33 44 0.06 ± 0.09 0.63 ± 0.09
5 0.33 ≤ t/tMS ≤ 0.66 48 0.54 ± 0.10 0.72 ± 0.15
6 t/tMS ≥ 0.66 141 0.91 ± 0.11 0.76 ± 0.13

7 0.66 ≤ t/tMS ≤ 1.00 85 0.84 ± 0.09 0.76 ± 0.10

velocities Vsin i/Vc. Nevertheless, the ratio V/Vc depends on
stellar evolutionary effects, which are controlled by the rotation
itself (cf. Maeder 2009). It is then difficult to establish a statis-
tically sample of Be stars where the effects of the evolution are
entirely obliterated.

In this study we considered all Be stars forming a unique
group, although they are in different MS evolutionary phases.
It is however important to inquire which statistical tendencies
can be brought out from rotation-velocity distributions of stars
in different evolutionary time intervals, in particular on the evo-
lution of the ratio V/Vc. For early-type stars, few studies have
attempted to tackle this issue by putting stars into luminosity-
class groups (Balona 1975; Zorec 1986; Zorec et al. 1988, 1990,
2004; Yudin 2001; Cranmer 2005). When dealing with rapid ro-
tators, however, the MK luminosity classes are apparent stellar
properties whose relation with the actual evolutionary character-
istics is not straightforward. We then divided our Be-star sam-
ple into three groups of different fractional age t/tMS−intervals:
early MS period, intermediate MS period, and late MS period,
using the t/tMS determined in Sect. 3.5.1. This division is marred
by uncertainties. Adopting equal t/tMS−intervals, the number of
stars in each of these groups is very different; in particular, there
are some which can be considered statistically ‘underpopulated’
groups. On the contrary, if the same number of stars is demanded
for each group, the t/tMS−intervals become very unequal. Some
of them are quite large in duration, which cannot then single
out characteristics proper to a given short evolutionary period.
Table 7 gives the characteristics of some Be-star groups we could
form. As a number of stars have t/tMS & 1, we also established a
group with objects in 0.66 ≤ t/tMS ≤ 1.00.

The distributions of Φ(u) velocity ratios u = V/Vc ob-
tained for these stellar groups are shown in Fig. 9, where
the area under each curve is proportional to the number of
stars in the group. It is thus clear that a significantly larger
number of objects would be necessary to draw more pre-
cise results on the evolution of the ratio V/Vc. However,
these distributions confirm the known fact that V/Vc becomes
globally larger as stars evolve from early MS evolutionary
phases to later evolutionary phases, whether or not they are
rapid rotators (Yudin 2001; Zorec et al. 2004; Cranmer 2005).
Nevertheless, Fig. 9 uncovers another property that becomes ev-
ident when we compare the V/Vc-distributions of intermediate
and late MS evolutionary periods, which is probably specific to
Be stars: once the mode (V/Vc)mode ' 0.77 is attained at some in-
termediate evolutionary phase in the MS, it will stay unchanged
up to the end of the MS evolutionary lifespan (see rows 2, 3, 6
and 7 in Table 7).
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Fig. 9. a) Distributions of velocity ratios u = V/Vc of the program
Be stars corresponding to three MS evolutionary subphases, which are
indicated in the inlay. Each group has roughly the same number of stars.
b) Distributions of velocity ratios u = V/Vc corresponding to three MS
evolutionary subphases of the same duration, which are indicated in the
inlay. In each block, the normalization is made by adding the area of all
three distributions.

Studies of other effects that change the V/Vc-distributions
of Be stars would certainly benefit from sample divisions by
shorter evolutionary intervals than those that we outlined here.
Nevertheless, on account of the statistical uncertainties just men-
tioned above, in the remainder of this work and in Paper II of this
series (Zorec et al. 2016), we continue to treat the entire stellar
sample forming a unique, single group.

The discussion of the variation of the ratio V/Vc with the age
can be extended a little by studying its dependence with the stel-
lar mass. We distributed our stellar sample in age-mass groups
with the goal of having the same average masses in the different
age intervals. Unfortunately, this attempt ends up with groups
where the number of objects are not the same and some of them
are rather under-represented to the detriment of the quality of
statistics. These groups and the corresponding average values of
the pnrc velocity ratios Vsin i/Vc and V/Vc are given in Table 8.

From Table 8 we can conclude that in each studied age inter-
val, the dependence of the average of true velocity ratios with the
stellar mass is marginal, if there is any. There is, however, a de-
pendence with age in the sense that V/Vc is higher as the age ratio
t/tMS → 1 in all mass groups. Thus, this result does not confirm
the claim by Cranmer (2005), which states that the lower limit
of V/Vc to form circumstellar disks in the hottest (more massive)
Be stars is “well below 1”, while the lower limit approaches 1 in
the less massive Be stars.

3.7. Effects on the distribution of ratios V/Vc due
to nonrandomly distributed inclinations

In Sects. 3.3−3.5 we assumed that the inclination angles are
distributed at random, however, the studied sample may not
agree with this hypothesis. To complete the discussion on the
characteristics of distributions of true rotational velocities, we
simulate cases where the inclination angle i of the stellar rota-
tional axis is not distributed at random and observe the induced
effects on the distributions of ratios of true rotational velocities.
Because there is not a unique way to formulate the lack of ran-
domness, we assume the density probability of the occurrence of
an inclination between i and i + di is given by

Pk(i) di = Ak sin1+k i di, (15)

where k is a free parameter, while Ak is the normalization con-
stant. With k > 0, there are simulated frequencies favoring high
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Table 8. Average pnrc velocity ratios 〈Vsin i/Vc〉 and 〈V/Vc〉 for mass-
age groups of the studied Be star sample.

t/tMS ≤ 0.4 0.4 < t/tMS ≤ 0.8 t/tMS > 0.8

〈M/M�〉 〈t/tMS〉 n 〈M/M�〉 〈t/tMS〉 n 〈M/M�〉 〈t/tMS〉 n
M/M� ≤ 7.5 5.2 0.09 20 5.0 0.62 29 5.6 0.97 34

7.5 < M/M� ≤ 15 10.1 0.11 20 10.7 0.63 40 10.5 0.96 40
15 < M/M� ≤ 25 19.0 0.12 7 18.4 0.75 9 18.2 0.98 15

t/tMS ≤ 0.5 t/tMS > 0.5

M/M� > 25 33.7 0.33 6 33.6 0.87 13

〈Vsin i/Vc〉 〈V/Vc〉 〈Vsin i/Vc〉 〈V/Vc〉 〈Vsin i/Vc〉 〈V/Vc〉

M/M� ≤ 7.5 0.42 0.54 0.54 0.69 0.61 0.77
7.5 < M/M� ≤ 15 0.49 0.63 0.56 0.72 0.57 0.73
15 < M/M� ≤ 25 0.40 0.51 0.59 0.75 0.63 0.81

t/tMS ≤ 0.5 t/tMS > 0.5
M/M� > 25 0.56 0.71 0.57 0.72

Notes. For both series of average velocity ratios the standard deviations
are &0.17.

inclinations, while k < 0 produces an excess of low inclination
angles as compared to those predicted by randomly distributed
inclined axes (k = 0). Figure 10a shows some functions Pk(i),
while Fig. 10b shows the histograms calculated for the same
number of objects as in our stellar sample. The observed distri-
bution Ψ(v) of apparent ratios v = Vsin i/Vc and the distribution
Φ(u) of true ratios u = V/Vc is now written as

Ψ(v, k) = Akv
1+k

∫ ∞

v

Φ(u, k) u−(1+k)
(
u2 − v2

)−1/2
du. (16)

Using the Lucy-Richardson algorithm, we obtain the distri-
butions shown in Fig. 10c. In these calculations we used
Stoeckley’s corrections derived in Sect. 3.5.1. Although it is not
shown explicitly, we note that the statistical uncertainty affect-
ing the correction of distributions for measurement uncertainties
is smaller than the spread of distributions Φ(u, k) obtained with
−0.5 . k . 0.5. The modes and dispersions of functions Φ(u, k)
due to Pk(i) given in Eq. (15) are almost the same. On the con-
trary, their skewness and kurtosis are sensitive to k.

One might be tempted to inquire how the distribution of the
inclination angles determined in this work compares with the
random distribution. Using the derived inclinations and their un-
certainties, we obtained the histogram shown in Fig. 11 (blue),
which is compared with the histogram obtained for randomly
distributed inclinations (white). In both cases the respective sam-
pling uncertainties are shown. The student test performed on the
individual classes in the interval 0 < sin i . 0.5 shows that both
distributions are the same to better than 99% confidence level,
while they are definitely different in 0.5 . sin i . 1.0. In this last
interval of inclinations, a function given by Eq. (15) with k < 0
might fit the distribution.

Before concluding anything about the actual distribution of
the inferred angles i, it is important to note the following: (1) the
CT, CL, and CG functions entering Eq. (3) do not vary strongly
in the interval 0.7 . η . 1.0, which according to the algorithm
used to solve this system of equations, the propagation of the
uncertainties affecting the observed parameters produces sightly
overestimated values of η and, thus, the number of stars with in-
clinations in the interval 35◦ . i . 70◦ is increased; (2) for some
unknown reason, the stellar data used here do not frequently pro-
duce sin i & 0.95, a high value indeed, but low enough to under-
estimate the number of stars with i & 75◦; (3) in spite of the care
we payed to estimate the bolometric luminosity of stars, Lapp,
this parameter is probably the main source of uncertainties be-
cause we can never be absolutely sure that the effects due to the
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Fig. 10. a) Density probability distributions Pk(i) against sin i for
k = −0.5, 0.0 and +0.5. b) Frequency histograms of inclinations i
against sin i for k = −0.5, 0.0 and +0.5. c) Distributions Φ(u, k) of ra-
tios u = V/Vc assuming that the distributions of inclinations angles is
given by Pk(i) in Eq. (15). The tested cases are for k = 0 (random) and
nonrandom distributions with k = +0.5 and k = −0.5.

variable circumstellar envelope of Be stars have been correctly or
entirely accounted for; and (4) all stars were assumed to be rigid
rotators. Nevertheless, they can have some degree of differential
rotation, which would then require that the line broadening be
reinterpreted and given the right meaning to the Vsin i parameter
(see Paper II).

Thus, because of the difficulties listed above in determining
the absolute inclination angles, it is not possible to figure out
the actual distribution of inclinations of the studied Be stars.
On the other hand, in Fig. 7 we have shown that the distribu-
tion of the velocity ratios (V/Vc)pnrc = [(Vsin i)pnrc/Vc]/sin ipnrc
(crosses), which depends on the derived inclination angles i, fits
very closely the distribution of ratios V/Vc obtained assuming
that the inclination angles are distributed at random. We can then
conclude that even if the individual inclinations are still rough
estimates, they are precise enough to warrant that the conclu-
sions drawn from the statistical distribution of V/Vc obtained in
Sect. 3.5 is reliable.

4. Effect carried by the macroturbulence

4.1. Preliminary comments

Since the early fifties it has been recognized that spectral lines
may undergo broadening due to random motions of eddies in
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Fig. 11. Comparison of the distribution of inferred inclination angles
for the program stars (cyan histogram) with the histogram for randomly
distributed inclinations (white histogram). The error bars correspond to
sampling uncertainties.

the stellar atmospheres (Unsöld & Struve 1949; Huang & Struve
1953). When these movements are characterized by distance
scales on the order or lower than the mean free-path of photons,
they are called microturbulence. These movements affect the line
absorption coefficient and produce the so-called “second-class”
line broadening. Movements of eddies implying distance scales
that are larger that photon mean free-paths are called macro-
turbulence and they do not change the effective mean atomic-
line absorption coefficient. The line broadening is then pro-
duced by the Doppler effect associated with the macroscopic
motion of eddies and is called first class. Howarth et al. (1997)
claim that macroturbulence can be an important line broaden-
ing mechanism in O- and early B-type supergiants that adds to
rotation. Nevertheless, its determination is not unique, since the
same broadening can be produced by combining large ranges
of macroturbulent velocities vmt and Vsin i values (Ryans et al.
2002).

Like microturbulence, macroturbulence hides in principle a
series of motions due to physical nature that is not yet well iden-
tified. Cantiello et al. (2009) evoke the subphotospheric convec-
tion to account for the microturbulent motions, while Aerts et al.
(2009, 2014) suggest that macro-turbulence could be ascribed
to low-amplitude gravity modes of nonradial pulsations. Similar
conclusions are also put forward by Simón-Díaz (2015).

Two models are currently used to describe the line broad-
ening carried by macroturbulent motions: isotropic Gaussian
and anisotropic with radial and tangential components,
which each have a Gaussian-dependent velocity distribution
(Gray 1975, 1992). Although the anisotropic model depends on
at least three free parameters, these authors assume that both
models are characterized by a unique dispersion of macroturbu-
lent velocities σmt, which is somewhat correlated with the stel-
lar effective temperature. Generally, more effective fits of spec-
tral line profiles are obtained using the anisotropic model, which
requires slightly larger values of vmt than the isotropic model
(Simón-Díaz & Herrero 2007, 2014; Dufton et al. 2006a). Both
models are, however, nothing but spectral line fitting procedures
that mask unidentified line broadening phenomena.

Up to now, macroturbulence was mostly explored in early-
type stars of several luminosity classes, mainly supergiants, but
all they have low values of Vsin i (cf. Howarth et al. 1997;
Ryans et al. 2002; Dufton et al. 2006a; Simón-Díaz & Herrero
2007; Fraser et al. 2010; Sundqvist et al. 2013). The existence
of macroturbulence was also noticed in later B-type supergiants
(Dufton et al. 2006a). According to Simón-Díaz & Herrero
(2014) and Sundqvist et al. (2013) macroturbulence should not
be entirely negligible in early-type dwarfs to giants. We can then
expect that macroturbulent-like movements also exist in the at-
mospheres from B-type dwarfs to giants of lower effective tem-
peratures than those explored in the above cited works. This
can be the case of all those stars that undergo nonradial pul-
sations and/or a wide funnel of instabilities induced by the ro-
tation. We assume then that the photospheric spectral lines cur-
rently used to determine the Vsin i parameters of Be stars are
affected by macroturbulence. It is worth noting that the macro-
turbulent motions are detected on average only when apparent
rotational velocities are low, i.e., Vsin i ≤ 150 km s−1. Spectral
lines broadened by Vsin i & 150 km−1 remain fairly insensitive
to broadening induced by macroturbulent motions. Although in
these cases we are not able to detect such motions, we should
not conclude that they are not present, regardless of their phys-
ical origin. This is particularly valid in Be stars, where atmo-
spheres can undergo significant upheavals maintained by nonra-
dial pulsations, a large spectrum of instabilities induced by the
rapid rotation, and possible disordered magnetic fields generated
by underphotospheric convection (Clement 1979; Maeder et al.
2008; Cantiello et al. 2009; Cantiello & Braithwaite 2011).

4.2. Formulation

Following the composition rules of probabilities given in
Appendix D, the relation between the frequency Ψ(v) of velocity
ratios v = (Vsin i)mt/Vc, where the (Vsin i)mt is the projected ro-
tational velocity affected by macroturbulence, and the frequency
Φ(u) of ratios u = Vsin i/Vc corrected for macroturbulence, is
given by

Ψ(v) =

∫ v

0
Φ[v − ε(vmt, u)]

{
φ(vmt, u)
∂ε/∂vmt

}
du, (17)

where we have written

v = u + ε(vmt, u) (18)

with ε(vmt, u) representing the overestimation of the actual ap-
parent rotation velocity assumed by the macroturbulence. In
Eq. (17), φ(vmt) is the occurrence probability of the macrotur-
bulent velocity vmt. We assume that this distribution is the same
for all B-type stars from dwarfs to giants.

The definition of ε(vmt, u) given in Eq. (18) is the same as
used by Simón-Díaz & Herrero (2007, see their Fig. 10), and
it is adapted to account for the effect introduced by macrotur-
bulence on the distribution function of rotational velocities. Its
formal aspect can make us believe that a single scalar can also
accurately account for the effects of macroturbulence on line
profiles. In fact, the effects on a line profile depend on several
parameters, depending on the approximation used to describe
the macroturbulent motions: isotropic or anisotropic (Gray 1975,
1992). In any case, all these parameters are free without clear
physical meaning and their values are not unique, as shown by
Ryans et al. (2002). The parameter ε(vmt, u) simply accounts for
the difference between the Vsin i parameters determined with the
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Fig. 12. Normalized distributions Φ(vmt, u) against the macroturbulent
velocity vmt given by Eq. (19) for some u = Vsin i/Vc values that are
identified in the figure.

FT method, once from rotationally broadened spectral lines con-
volved and then from not convolved line profiles for macrotur-
bulence effects. We used the anisotropic approach to represent
macroturbulence in the currently used monoparametric version
(see Simón-Díaz & Herrero 2007). Other details for its use in
Eq. (18) are given in Sect. 4.3.

To carry out the deconvolution of Φ(u) in Eq. (17) we
need to specify φ(vmt). To this end we used the compilation
of vmt values presented by Simón-Díaz (2015), which encom-
pass 100 O- and 200 B-type stars of different spectral types and
luminosity classes. This compilation is presented in Fig. 1 of
Simón-Díaz (2015) as a two-dimensional distribution φ(vmt, u)
of discrete macroturbulent velocity vmt determinations as a func-
tion of Vsin i. Making cuts in this diagram by intervals of Vsin i
against vmt, and cuts by intervals of vmt against the Vsin i, we
produced least-squares fits of the resulting one-dimensional dis-
tributions of points with the following system of functions;

φ(vmt, u) = [1 − γ(u)]φG(vmt) + γ(u)φF(vmt)

φG(vmt, u) = cg exp
{
−

1
2σ2 [vmt − vM(u)]2

}
φF(vmt, u) = cf

1 − exp
[

A(u)
vmt

]b(u)


A(u) =

[
b(u)

b(u) − 1

]
vM(u),

(19)

which we adopted as the analytical translation of the φ(vmt, u)
distribution of points in Simón-Díaz (2015). This density of
points increases as a function of vmt and attains a maximum at
vmt = vM, which in turn is an increasing function of Vsin i. For
Vsin i & 80 km s−1 the points acquire a rather uniform distribu-
tion in the (Vsin i, vmt) diagram. In Eq. (19), cg and cf are normal-
ization constants. γ(u) is a linear function of u = Vsin i/Vc that
varies from 0 to 1 as Vsin i goes from 0 to 80 km s−1. The expo-
nent b(u) accounts for the density of points, whose value ranges
from b = 12 in the interval 0 . u . 0.2 (0 . Vsin i . 80 km s−1)
to about b = 100 as Vsin i → 200 km s−1. The dispersion
σ = 17.5 km s−1 as well as the functions vM(u), γ(u), and b(u)
are determined in the fitting procedure of the mentioned dia-
gram in Simón-Díaz (2015). The obtained analytical distribution
φ(vmt, u) against vmt for some values 0.0 ≤ u = Vsin i/Vc ≤ 0.4
is shown in Fig. 12.
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Fig. 13. Macroturbulent broadening ε(vmt, u) for 10 values of the macro-
turbulent velocity vmt scaled by steps of 10 km s−1, as a function of the
ratio u = Vsin i/Vc.

4.3. Distribution of true velocities corrected
from macroturbulent broadening

We calculated a great number of He i 4471 and Mg ii 4481 line
profiles for many effective temperatures and log g = 3.8 to
sketch an average MS evolutionary phase. They were all broad-
ened assuming that stars were gravity-darkened rigid rotators
(Frémat et al. 2005). The obtained line profiles were then broad-
ened for macroturbulence with the currently used simplified
anisotropic model. For each adopted macroturbulent velocity
vmt, we calculated the weighted average of the broadening dif-
ferences ε(vmt, u). The weights are the fractions of sample stars
that enter per interval of effective temperatures. Figure 13 shows
the deviations ε(vmt, u) obtained for several values of vmt against
u = Vsin i/Vc.

To obtain Φ(u) in Eq. (17), we used the Lucy-Richardson al-
gorithm (Lucy 1974; Richardson 1972) and the probability dis-
tribution φ(vmt, u) given by Eq. (19). The results thus obtained are
shown in Fig. 14. The blue line represents the normalized distri-
bution of parameters Vsin i/Vc corrected for both, measurement
uncertainties and Stoeckley’s effect (cf. Fig. 2). The red curve
represents the normalized distribution Φ(u) of u = Vsin i/Vc sta-
tistically corrected for macroturbulent line broadening obtained
with b = 12 in 0 6 u ≤ 0.2. As expected, the distribution is
slightly affected in the interval 0.0 . u = Vsin i/Vc . 0.4,
and suggests a modest increase of genuine low rotators, while
the mode of the distribution is slightly reduced. We do not
have a reliable explanation for the bump-shaped excess at u =
Vsin i/Vc ∼ 0.10−0.15. If there were a higher number of points
in 0 . u . 0.2 than actually displayed by Simón-Díaz (2015),
we should need b < 12. Figure 14 show the effect produced by a
hypothetical exponent b = 6 (black dashed curve).

In conclusion, owing to the correction for macroturbulent
line broadening, the number of low rotators is slightly increased
to the detriment of rotators with velocity ratios near the mode of
the distribution, but the mode itself is almost preserved.

5. Effect carried by the presence of a binary
component

In Be stars, binarity not only helps to form a circumstellar
disk during a mass-transfer episode (Kriz & Harmanec 1975;
Harmanec 1987), but also to spin up one of the components
owing to the angular momentum gained during a mass transfer
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Fig. 14. Distribution Φ(u) after correction for macroturbulence. The
blue line represents the normalized distribution Ψ(v) of parameters v =
Vsin i/Vc corrected for both, measurement uncertainties and Stoeckley’s
effect. The red and dashed black curves represent the normalized distri-
bution Φ(u) of ratios u = Vsin i/Vc corrected for macroturbulent mo-
tions using different values of b (see text).

event (Packet 1981; Gies 2000; Harmanec et al. 2002; de Mink
et al. 2013). In the context of our subject, it has long been ac-
cepted that binarity can alter the Vsin i parameters of the indi-
vidual components.

As in other stellar classes, a rather large fraction fbin of
Be stars studied in this work can be binaries. Recent statistics
show that among massive stars this frequency can be as high
as 70% (de Mink et al. 2013), while it climbs to nearly 100%
(Sana et al. 2012, 2014) for O-type stars. Chini et al. (2012)
report that the frequency of binaries is higher than 80% for
masses M > 16 M�, and it steadily decreases to 20% for masses
M ∼ 3 M�. Oudmaijer & Parr (2010) find that the frequency
of binaries among B stars without emission is 30% and it is the
same for Be stars. In the past there have been several surveys
of B star binarity: Abt et al. (1990) obtain 74% binaries among
B2-B5-type stars, considering both spectroscopic and visual;
Kouwenhoven et al. (2007) infer that in the Sco OB2 association
there must be 70% binaries among intermediate-mass stars (B- to
A-type); and Mason et al. (2009) find 64% binaries in a speckle
interferometry survey of Galactic B stars.

Beyond the low-mass extreme of B-type stars, Fuhrmann &
Chini (2012) report that the percentage of binary stars may prob-
ably increase to 100% from F to late A-type stars, although these
last are considered with all their aspects of multiplicity. Recent
studies based on adaptive optics surveys (De Rosa et al. 2014),
and VLTI/PIONIER interferometry (Marion et al. 2014) note an
increase of 13% A-type stars among objects considered single
object up to now.

Since the frequency of binary systems for O-type stars ap-
proaches 100% and the multiplicity of all kinds among late A-
type stars attains similar percentages, we can ask whether the
above noted low frequency of binary systems of B spectral type
is biased in some way.

According to environments, authors and methods used to
detect binaries, the frequency for B-type binaries ranges from
30% to 70%. Frequently, the search of binaries among them is

limited to the use of Balmer lines, whose large broadening easily
hides the existence of components leading thus to underestimate
the frequency of binaries. On the other hand, the occurrence of
the Be phenomenon is the largest among stars of apparent B2
spectral type. These stars have masses of apparent O9-B1 spec-
tral types (Zorec & Briot 1997; Zorec et al. 2007), implying
M & 12 M�, which enters the domain of massive stars, where
binarity is frequent. As a consequence of these uncertainties, the
curious lack of binaries among B-type stars appears rather doubt-
ful. Thus, we proceed by making the ansatz that at least 70% of
Be stars are binaries.

5.1. Formulation

We assume that the measured Vsin i parameter of an object
in a binary system mainly reflects the rotation of the primary.
This value can then be affected by the orbital angular velocity,
but the effect depends on the mass ratio and the separation of
components.

The radial velocity of a point P located on the observed hemi-
sphere of the tested primary component, whose rotation axis is
for simplicity taken parallel to that of the orbital rotation, is given
by (Limber 1963; Moreno & Koenigsberger 1999; Moreno et al.
2005)

Vx=

{
q

1 + q
r(θ)ω(t)

[
r(θ)

e
p

r(θ) sin2 θ + cos θ
]

−
[
Ωp + ω(t)

]
x1

}
sin i,

(20)

where q = Ms/Mp is the mass ratio of the secondary to the pri-
mary; ω(t) is the time dependent orbital angular velocity; e is
the eccentricity of the orbit; p = a(1− e2) is the conic parameter
with a = ap + as the semimajor axis of the relative orbit, with ap
and as being those of the components; θ is the polar azimuthal
coordinate; Ωp is the value of the nonsynchronous angular veloc-
ity of the primary; r(θ) is the time-dependent separation of the
components; x1 is the coordinate of the test point P measured
positively from the center of the primary toward the secondary
on the axis that joins both components; and sin i accounts for the
inclination between the rotation axis and the direction toward
the observer. Because of several other uncertainties that we may
deal with in the present discussion, we assume that all binaries
have circular orbits (e = 0), so that ω(t) = ω = constant. We
also do not take into account the periodical apparent changes of
Vsin i due to spectral effects produced by mutual reflection ef-
fects. The determination of Vsin i requires that all spectral lines
are reduced to a common radial velocity. This means that the
first term in Eq. (20), which represents the orbital motion, is re-
moved. According to these simplifications, the effective velocity
that broadens the spectra lines reduces to (cf. Eq. (20))

Vx =
[
Ωp + ω

]
x1sin i, (21)

which means that V in the measured Vsin i is

V = (Ωp + ω)Rp = Vp + ∆V, (22)

where Rp is the radius of the primary. Using the third law of
Kepler, we readily obtain the expression for the normalized per-
turbation component ∆v = ∆V/Vc,

∆v =
[
(1 + q)δ−3

]1/2
, (23)
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solutions and the blue line corresponds to the solution for α = β = 0.

where we have written δ = a/Rp. It is easy to see that the range
of variation of ∆v is limited to 0 ≤ ∆v ≤ 0.5, where ∆v = 0.5
corresponds to the extreme configuration given by q = 1 and
δmin = 2.

The calculation of the effect carried by ∆v on the observed
distribution of V/Vc depends on the occurrence probability f (∆v)
of ∆v. Following the definition of probability and the relations
presented in Appendix D, the frequency function f (∆v) can be
obtained with the surface integral

f (∆v)d(∆v) =

∫ ∫
∆σ

Q(q)D(δ) dq dδ, (24)

which is calculated over the area ∆σ and limited by the curves
∆v = ∆v(q, δ) and ∆v + d(∆v) = ∆v(q, δ). In Eq. (24), Q(q) is
the probability distribution of the binary mass-ratios q, while
D(δ) represents the probability of the occurrence of the orbital
separation δ. We adopt for Q(q) and D(δ) the following expres-
sions frequently used in the literature (Kobulnicky & Fryer 2007;
Reggiani & Meyer 2013; de Mink et al. 2013),

Q(q)=qα

D(δ)=
(ln δ)β

δ

(25)

Introducing these definitions into Eq. (24) and knowing that for
each δ = const. it is dq = d(∆v)/|∂v/∂q|, where 1/(∂v/∂q) =
2∆vδ3, the integration of Eq. (24) over δ from ∆v−2/3 to (2∆v2)1/2

(see Eq. (23)), we obtain

f (∆v) =
fo
∆v

∫ 1

0
qα

[
ln

(
1 + q
∆v2

)]β
dq, (26)

where fo stands for a normalization constant. Since the expo-
nents α and β are highly uncertain (Shatsky & Tokovinin 2002;
Kobulnicky & Fryer 2007; Reggiani & Meyer 2013; de Mink
et al. 2013, and references therein) to account for the large range
of their possible values, we calculated Eq. (26) using nine pairs
(α, β) with α = −0.6, −0.15, 0.3 and β = −0.5, 0.0, 0.5. The nine
functions f (∆v) thus obtained are all comprised in the shaded re-
gion shown in Fig.15. Because the higher frequencies f (∆v) are
for 0 ≤ ∆v . 0.2, we can safely adopt a unique average relation,
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Fig. 16. Distribution functions of true velocity ratios V/Vc. Ψ(v)Σ+mt
is the distribution of v = V/Vc corrected for measurement uncertain-
ties, Stoeckley’s effect (Σ), macroturbulent velocities (mt) with b = 12
and projection factor sin i. It distinguish thus from Φ(u)b = 12 shown in
Fig. 14, which is not corrected for effects owing to sin i. Full red line
corresponds to the distribution of u = V/Vc corrected for Σ + mt and
binarity with fbin = 0.7. Dashed red line corresponds to the distribution
corrected for Σ + mt and binarity assuming fbin = 1.0.

which nearly coincides with the expected canonical solution for
α = β = 0 (blue curve in Fig.15) adopted by de Mink et al.
(2013), which can be nicely represented by the following simple
interpolation expression:

f (∆v) '
0.168

∆v
· (27)

Since Q(q) and D(δ) are given by power laws, the normalization
of f (∆v) must be carried out with limited values of ∆v. Apart
from ∆vmax = 0.5, the other limiting value ∆v → 0 was here as-
sumed to be provided by ∆vmin = 10−4, which implies a negligi-
ble effect on V and roughly corresponds to an orbital separation
δmax = 600.

5.2. Distribution velocities corrected for effects
due to binarity

Assuming that the same fraction fbin of binaries occurs in all
spectral types and luminosity classes, the relation between the
observed frequency function Ψ(v) of ratios v = V/Vc perturbed
by the presence of binaries and the “actual” frequency Φ(u) of
“unperturbed” ratios u = v − ∆v is given by

Ψ(v) = fbin

∫ v

0
Φ(u) f (v − u) du + (1 − fbin)Φ(v), (28)

which is solved with the Lucy-Richardson deconvolution algo-
rithm (Richardson 1972; Lucy 1974). Figure 16 shows the results
obtained for fbin = 0.7 and fbin = 1.0. In this figure, Ψ(v)Σ+mt
stands for the input distribution of velocity ratios V/Vc corrected
for Stoeckley’s effect and macroturbulent velocities. Apart from
the modes, which are systematically shifted to lower values the
higher is the fraction fbin, there is a small secondary bump at
V/Vc ∼ 0.1 that appears due to the correction for macroturbu-
lent velocities. Perhaps, according to speculations in Fig. 14,
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instead of a “bump” at V/Vc ∼ 0.1, there is a “depression” in
0.15 . V/Vc . 0.35, which reveals a possible insufficient cor-
rection for macroturbulence or even other perturbations that we
are not able to detect at such rotational velocity ratios.

6. Comments and conclusions

The main purpose of this work is to obtain the distribution Φ(u)
of rotational velocity ratios u = V/Vc (Vc is the critical velocity
at the equator) of a sample of Galactic classical Be stars. The dis-
tributions of ratios V/Vc were corrected statistically for a number
of phenomena affecting the value of the Vsin i that blurs the in-
formation on the stellar rotation contained in the factor V . The
function Φ(u) obtained in the present work is used in the sec-
ond paper of this series (Zorec et al. 2016) to inquire about the
average properties of the surface rotation in Be stars.

Because the parameter Vsin i of Be stars suffers from effects
of gravitational darkening (GD), we discussed two statistical de-
convolution procedures that take “Stoeckley’s underestimation”
in different ways and produce distributions of ratios V/Vc from
the observed distributions of projected velocity ratios Vsin i/Vc.
The results obtained using these methods can be summarized as
follows:

1. We adopted a sample of 233 classic Be stars that was previ-
ously studied in Chauville et al. (2001), Frémat et al. (2005),
Zorec et al. (2005), Frémat et al. (2006) and Levenhagen &
Leister (2006), whose apparent (viewing angle dependent)
fundamental parameters were rediscussed. The selection of
this stellar sample is justified by the similarity in the ap-
proaches and in precautions taken to determine the Vsin i
(Sect. 2.1).

2. The translation of the distribution of Vsin i/Vc into another
one corrected for the i-viewing angle effect proceeds by as-
suming that i is distributed at random and considering that
the parameters Vsin i are systematically underestimated be-
cause of GD (Sect. 3).
As it is still rather widely presumed in the literature that
Be stars are critical rotators, we used the original von Zeipel
formulation to determine the distribution Φ(V/Vc) character-
ized by the largest possible mode to calculate the GD effect,
i.e., the larger value of the ratio V/Vc at which Φ takes its
maximum.

3. We discussed two deconvolution methods:
(a) The Cranmer (2005) method (see Sect. 3.4) uses a Monte

Carlo simulation based on a mathematical stellar sam-
ple, where each parameter Vsin i is corrected for the GD
effect, and sampled statistically according to the quanti-
ties V and i. This method also uses an imposed analytical
expression for Φ to represent the actual distribution Φ
whose defining free parameters are selected by search-
ing the best fit of the observed distribution Ψ of Vsin i.
We have shown that even when the set of moments that
characterizes each function Φ is similar to that of the ac-
tual distribution Φ, the Kolmogorov-Smirnov test indi-
cates that not all analytical functions Φ defined with the
same number of free parameters can be used to represent
the sought function Φ reliably. In this context, the trape-
zoidal function Φ is less appropriate. From this study it
also emerges that there can be analytical expressions for
Φ where the characterizing free parameters can have dif-
ferent values, but they lead to equally “well satisfying
fits” of the observed distribution Ψ.

(b) The Lucy-Richardson (1972, 1974) method (see
Sect. 3.5) is based on the iteration of the distribution
Φ(u) of ratios u = V/Vc and the distribution Ψ(v) of ratios
v = Vsin i/Vc. This method is free from any imposed
analytical expression of Φ, but requires that the ratios
Vsin i/Vc be corrected for Stoeckley’s underestimation
in advance. Such a correction requires a thorough
determination of the fundamental parameters of each
studied object. To this end, we ntroduced a method to
determine the stellar mass, age, rotational ratio η (ratio
of centrifugal to the gravitational acceleration at the
equator), and approximate inclination angle i of each
star in the studied sample (Sect. 3.5.1). The distribution
Φ(u) of ratios u = V/Vc corrected for GD effect finally
adopted here is that obtained with the Lucy-Richardson
method.

4. We separated the stars into three MS evolutionary groups,
early, intermediate, and late, to provide an idea on the evo-
lution effect on the distribution of ratios V/Vc (Sect. 3.6). In
spite of the uncertainties related to the definition of reliable
statistical samples, we found that once the mode (V/Vc) .
0.77 is attained by Be stars at some intermediate evolution-
ary phase in the MS, it will stay unchanged up to the end of
the MS evolutionary lifespan. This behavior may represent a
property that can be specific to Be stars.

5. We attempted a discussion of the effect introduced on
Φ(V/Vc) by a nonrandom distribution of the inclination an-
gle i of the stellar rotation axis (Sect. 3.7). According to the
assumed function that gives the probability of occurrence of
inclination angles, the mode of Φ does not change heavily
but its skewness and kurtosis depend on the parameter that
represents the deviation to the randomness.

The Lucy-Richardson iteration method was then used to intro-
duce two different corrections to the distributions of velocity ra-
tios to account for phenomena that carry systematic overestima-
tions of parameters Vsin i:

I. We have taken into account the effects on the distribution
Ψ(Vsin i/Vc) due to the macroturbulent motions in the stellar
atmospheres (Sect. 4). This correction slightly increases the
frequency Φ(V/Vc) in the interval of velocity ratios 0 .
V/Vc . 0.3, but does not significantly change the mode of
Φ(V/Vc) .

II. As there can be an additional component in the Vsin i owing
to the orbital motion of objects in a binary system (Sect. 5),
we formulated the correction for this effect and considered
that there must be at least fbin = 70% binary stars among
Be stars. This fbin is because there are no clear reasons that
among B-type stars the frequency of binaries is significantly
smaller than in both B-type spectral extremes, i.e., more and
less massive objects than those assigned to B-type objects.
The effect for binarity is the last correction introduced here
on the distribution of velocity ratios V/Vc.

Thus, according to the corrections taken into account thus far,
we conclude the following:

(i) The mode of Φ(V/Vc) depends on the frequency fbin of bina-
ries: for fbin = 0.7 the mode is at (V/Vc)mode = 0.663, while
for fbin =1.0 it becomes (V/Vc)mode =0.644. If we had admit-
ted that fbin = 0.3, the mode would be at (V/Vc)mode = 0.680,
while for fbin = 0.0 it is at (V/Vc)mode = 0.681. At fractions
fbin & 0.7 the number of rotators with 0.75 . V/Vc . 1.0
reduces significantly.

A132, page 18 of 26



J. Zorec et al.: Critical study of the distribution of rotational velocities of Be stars. I.

(ii) In Fig. 16 we can see that for fbin = 0.7 the most frequent
rotation of classic Be stars is characterized by (V/Vc)mode =
0.663, which implies η = 0.35 or Ω/Ωc = 0.84. From
Φ(u)Σ+mt+bin0.7 we can show that 90% of program stars, i.e.,
210 objects, rotate with 0.44 . V/Vc . 0.89, which means
0.61 . Ω/Ωc = 0.98 or 0.14 . η . 0.73. Accordingly, 7%
of them (16 stars) have V/Vc . 0.4 and barely 3% of them
(7 stars) have V/Vc & 0.9. Since half of the Be stars in the
whole sample rotate roughly with V/Vc . 0.65, saying that
Be stars are critical rotators sounds excessive.

(iii) According to Fig. 9, the larger fraction of Be stars with
0.44 . V/Vc . 0.89 is in the second half of the MS evo-
lutionary phase (t/tMS & 0.5).

(iv) From Fig. 16 we can see that the difference in velocities ow-
ing to the presence of binary components represent ∆V '
14 km s−1 at V/Vc = 0.4 and ∆V ' 38 km s−1 at V/Vc = 0.9,
which are measurable.

We note that Eq. (8) is not appropriate even for rigid rotators
because β1 is a function of the stellar colatitude θ and its value
decreases as η→ 1 (Espinosa Lara & Rieutord 2011; Zorec et al.
2016). However, in the present contribution Stoeckley’s correc-
tion Σ(η, i,M, t) given in Eq. (7) was calculated imposing β1 = 1,
so as to overestimate the GD effect on purpose. This means that
the correction for GD used in this work is the highest we could
apply to an observed Vsin i parameter and that the characteristic
V/Vc ratios of Be stars must actually be lower than inferred in
this work.

Finally, if critical rotation is a transient phenomenon that
helps the star to eject the matter needed to form its CE, the tran-
sition from some V/Vc = 0.9 to V/Vc = 1.0 would require that
during a short time a sufficient amount of energy be provided to
photospheric layers to let them at critical rotation. Critical ro-
tation maintains, however, the surface layers bound to the star,
which can be freed only if the rotation rate attains the escape
velocity, Vesc =

√
2Vc.

Assuming that the excess of energy necessary to attain the
critical rotation is supplied by a magnetic field, in a star with an
equatorial rotation velocity V , the strength of this field must obey
B2/2µo ∼ ρphot[1 − (V/Vc)2]/2, where ρphot is an average density
of photospheric layers of dwarf B-type stars. In a typical Be star
Vc = 480 km s−1 and ρphot ∼ 6 × 10−10 g cm−3. The above men-
tioned change of surface rotational velocities would then imply
B & 2 × 103 G. Such magnetic fields could certainly be detected
if they existed and were global. As they are not detected, mag-
netic fields of such intensities could nonetheless exist, but must
be concentrated in small areas, and maintained perhaps by a dy-
namo process hosted in the rotationally enlarged subsurface con-
vection zones, such as those suggested by Clement (1979) and
Maeder et al. (2008). Under such cases it would also be possible
to think of activities that evoke flares with huge mass-ejection
episodes through magnetic recombination phenomena. For ex-
ample, emerging magnetic fields from the surface of some 102 G
by magnetic buoyancy in massive stars that originate in the thin
“iron convection zone” were already foreseen by Cantiello &
Braithwaite (2011).

In Paper II we complete the discussion started in the present
work. To this end we assume that stars undergo surface differ-
ential rotation and derive: (1) the distribution function Φ(u) cor-
rected for differential rotation; (2) the density probability func-
tion for the occurrence of a gradient of the angular velocity in the
stellar surface that is consistent with the predicted line broaden-
ing and with the distribution Φ(u) of ratios u = V/Vc obtained in
Sect. 5.1. In Paper II we also discuss a number of measurement

and conceptual uncertainties affecting the Vsin i determination
of Be stars. These include the effects due to surface differen-
tial rotation, bivalued relations between line broadening and the
Vsin i, expansion velocities in atmospheres of active stars, and
effects on spectral lines due to tides in binaries.
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Fig. A.1. a) Effective temperatures for MK luminosity classes V, IV, and III determined by de Jager & Nieuwenhuijzen (1987) against those
extracted from the BCD calibration; b) effective temperatures determined from the uvby photometry using the calibration by Napiwotzki et al.
(1993) against those obtained in the BCD system; and c) average effective temperatures determined by Adelman et al. (2002), Nieva (2013), and
Fitzpatrick & Massa (2005) against those obtained in the BCD system for a number of common OB stars without emission. The red dashed lines
correspond to x = y diagonal.
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Fig. A.2. Comparison of bolometric luminosities derived using different calibrations of MV with those derived for the same discrete MK spectral
types and luminosity classes using integrated fluxes that are identified here with log L(λ1,D)/L� (red lines). The identifications are dJM (de Jager
& Nieuwenhuijzen 1987), DDS (Deutschman et al. 1976), SK (Aller et al. 1982), and W (Wegner 2006). The blocks a), b), and c) are for average
MK luminosity classes V, IV, and III, respectively.

Appendix A: Fundamental parameters

A.1. The effective temperature

There are many independent calibrations of effective tempera-
tures given in the literature, which are useful to estimate stel-
lar radii and masses and could be used as references to inquire
whether our apparent Teff(λ1,D) (Zorec et al. 2009) and the crit-
ical velocities Vc related to it are affected by systematic devia-
tions. We have chosen: (1) de Jager & Nieuwenhuijzen (1987)
because it was used by Cranmer (2005) to discuss the distri-
bution of rotational velocities of Be stars; (2) the calibration
of the ubvy−Strömgren photometric indices given by Moon &
Dworetsky (1985) and revisited by Napiwotzki et al. (1993); and
(3) the effective temperatures derived from fitted visible spectral
energy distributions by Adelman et al. (2002), Fitzpatrick &
Massa (2005), and Nieva (2013). In Fig. A.1a the effective tem-
peratures by de Jager & Nieuwenhuijzen (1987) are compared
with the Teff(λ1,D) for the average luminosity classes V, IV, and
III in the stars studied in the present paper. The effective temper-
atures determined with the ubvy indices obtained with the rela-
tion given by Napiwotzki et al. (1993) for OBA stars without

emission are compared in Fig. A.1b with Teff(λ1,D) given in
Zorec et al. (2009). Figure A.1c compares the effective temper-
atures obtained by Adelman et al. (2002) and Nieva (2013) (in-
dicated with AN) with those from Fitzpatrick & Massa (2005)
(FM). From these figures we can then conclude that there are no
significant systematic deviations between Teff(λ1,D), Teff(AN)
and Teff(FM) for stars in the interval of spectral types studied in
the present work.

A.2. The bolometric luminosity

The bolometric luminosities of the program Be stars were de-
termined from integrated monochromatic fluxes. Even though
these fluxes were corrected for the presence of circumstellar en-
velopes/disks, the calculation followed the same rules and data
gathered from the same sources as those used in Zorec et al.
(2009) for OB stars without emission. Then, we can use the
bolometric luminosities for average MK spectral types and lu-
minosity classes that can be determined from this paper to test
whether our estimates of bolometric luminosities suffer from
some systematic deviations. To this end, we compare our mean
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log Lapp/L� with those given by de Jager & Nieuwenhuijzen
(1987) and with the bolometric luminosities derived indirectly
using calibrations of visual absolute magnitudes MV. In this
last case, MV is transformed into absolute bolometric magnitude
using the Teff(λ1,D) and bolometric corrections (Flower 1996;
Torres 2010; Nieva 2013) with M�bol = +4.742 mag. The calibra-
tions of MV against the spectral classes used are from Wegner
(2006), Deutschman et al. (1976), and Aller et al. (1982). The
log L/L� against the average MK spectral type determined for
the average luminosity classes V, IV, and III with the cited meth-
ods are shown in Figs. A.2a−c. We can then conclude that our
bolometric luminosity estimates are consistent with those deter-
mined by other methods. In Fig. A.2, however, there can be a
systematic deviation between the BCD luminosities of the aver-
age spectral-luminosity classes with those of other authors that
stem from the BCD definition of average spectral-luminosity
classes. The average log Lapp/L� of the BCD system correspond
to the barycenter of the curvilinear quadrilaterals in the (λ1,D)-
diagram assigned to the average MK spectral types and luminos-
ity classes, while in other calibrations these averages are defined
by the specific stellar sample used to carry out the calibrations,
which do not necessarily characterize the same centroids as in
the BCD system.

Appendix B: The energy emitted by the star-CE
system

The energy emitted by the star-CE system mentioned in
Sect. 2.2.2 has been written as (Moujtahid 1998; Moujtahid et al.
2000a)

1 + ελ = αλ(r, τλ) + r−2βλ(r, τλ)[S λ(Tenv)/F∗λ], (B.1)

where r = R∗/Renv; Renv is an equivalent mean extent of the cir-
cumstellar region analyzed, R∗ is the stellar radius, F∗λ is the stel-
lar flux, τλ is the total continuum opacity of the region, and S λ

is its source function for continuum radiation given here sim-
ply by the Planck function in terms of the CE temperature Tenv:
S λ = Bλ(Tenv). The functions αλ and βλ are given by

αλ(r, τλ) = r−2
[
E3(τλ) + µ2

oE3

(
τλ
µ

)]
βλ(r, τλ) = 1 − r−2α(r, τλ) − 2µ2E3

(
2τλ
µ

)
, (B.2)

where E3 is the exponential integral or order 3 and µo = [1 −
r2]1/2. In the limits for r → 0 and r → 1, the expression in
Eq. (B.1) recovers the forms commonly used in the literature

1 + ελ = e−τλ + r−2S λ[1 − 2E3(2τλ)] for r → 0

1 + ελ = 2E3(τλ)Fλ + r−2S λ[1 − 2E3(τλ)] for r → 1. (B.3)

Appendix C: The equatorial critical linear velocity

In principle, the radiation pressure in the hottest Be stars may
produce a significant compensation of the stellar-inside directed
effective gravity, so that two critical rotational velocities can be
defined (Maeder 2009). Writing the total surface gravity as

gtot = geff[1 − Γ(Ω, θ)], (C.1)

Table B.1. CE parameters derived for 10 Be stars studied here with the
stronger emission in the Hα line.

HD r ± σr Tenv ± σT τe ± σe τV ± σV

28497 0.55 ± 0.04 13 660 ± 740 0.79 ± 0.09 0.06 ± 0.01
50013 0.30 ± 0.01 11 120 ± 100 0.66 ± 0.03 0.05 ± 0.01
68980 0.36 ± 0.02 11 060 ± 290 0.49 ± 0.04 0.04 ± 0.02
91465 0.76 ± 0.27 10 890 ± 2050 0.56 ± 0.30 0.05 ± 0.03

105435 0.63 ± 0.01 14 470 ± 100 1.42 ± 0.05 0.05 ± 0.01
110432 0.31 ± 0.03 11 430 ± 990 0.77 ± 0.14 0.05 ± 0.01
120991 0.83 ± 0.09 14 280 ± 330 1.18 ± 0.12 0.09 ± 0.01
124367 0.93 ± 0.04 15 200 ± 1560 0.36 ± 0.06 0.02 ± 0.01
148184 0.32 ± 0.01 11 920 ± 100 0.91 ± 0.03 0.06 ± 0.01
209409 0.93 ± 0.05 10 250 ± 340 0.33 ± 0.14 0.04 ± 0.02

for which the following definitions hold:

geff =
GM
R(θ)
{[1 − η(θ) sin2 θ]2 + η2(θ) sin2 θ cos2 θ},

η(θ) =
Ω2R3(θ)

GM
,

Γ(Ω, θ) =
κ(θ)L(Ω)

4πc GM[1 − m(Ω)]
,

m(Ω) =

(
Ω2

2πG ρ

)
, (C.2)

where geff is the colatitude-angle dependent surface effective
gravity; R(θ) is the stellar surface radius vector; κ(θ) is the
Rosseland mean total opacity for the atmospheric optical depth
τ = 2/3; L(Ω) is the bolometric luminosity changed by the rota-
tional effects, and ρ is the stellar density averaged over its entire
volume. For Γ(Ω, θ) < 1, the critical velocity is determined by
geff = 0, which for a surface rigid rotation occurs at the equator
(θ = π/2) and corresponds to η(θ = π/2) = 1.0 that translates
into the well-known expression for the equatorial critical linear
velocity

Vc = 436.7
[

M/M�
Rc(M, t)/R�

]1/2

km s−1. (C.3)

In very massive Be stars, i.e., Oe stars with M . 40 M�, we
could have Γ(Ω, θ) = 1 at some colatitude θ where η(θ =
π/2) < 1.0. Nevertheless, using the von Zeipel relation to de-
scribe the latitudinal variation of the effective temperature, the
absorption coefficients calculated for the corresponding gravity
and temperature (Kurucz 1993), and knowing that m(Ω) ≤ 0.361
(Maeder 2009), the condition Γ(Ω, θ) = 1 can be translated into
To/T� & 12.5(go/g�)1/4 (To and T� are the effective tempera-
tures of a parent nonrotating star and solar, respectively, while go
and g� are the respective surface gravities). Since of the Be stars
in our sample most have M . 25 M� (only 16 of then seem to
have M & 25 M�) for which it is To/T� . 12.5(go/g�)1/4, in
our calculation we used the equatorial critical velocity given by
Eq. (6).

Appendix D: Integral equation of probability density
distributions

In several sections of this paper we construct integral equa-
tions that relate the distributions (frequency of probability den-
sities) of the respective, either true and apparent parameters, or
parameters corrected statistically from some physical effect. To
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avoid repetitions, we summarize below the basics of the formu-
lation followed in each particular application of the method.

We consider an observed parameter z, whose observed dis-
tribution is Z(z) and where z is function of parameters x and y

z = z(x, y), (D.1)

with probability densities distributions of X(x) and Y(y), respec-
tively. According to the definition of probability, Z(z) dz must be
the surface integral of X(x)Y(y) over the area ∆σ between the
curves z = constant and z + dz = constant

Z(z)dz =

"
∆σ

X(x)Y(y) dx dy. (D.2)

For some explicit value of x in Eq. (D.2), the width of the strip
∆σ is obviously dy = dz/[∂z/∂y] that introduced into Eq. (D.2)
leads to

Z(z) =

∫
x = xz(y)

X(x)
Y[y(x, z)]
∂z/∂y

dx, (D.3)

which has to be integrated over the curve x = x(y) given by
Eq. (D.1) for the required value of z and within the limits of x
established by the specific physical phenomenon analyzed. In the
same way, we can obtain and equivalent expression to Eq. (D.3)
given by

Z(z) =

∫
y= yz(x)

Y(y)
X[x(y, z)]
∂z/∂x

dy. (D.4)

In this paper, we derive the distributions X(x) or Y(y) as counter-
parts of Z(z) or simply Z(z) once X(x) and Y(y) are defined.

Appendix E: Determination of pnrc parameters

E.1. Two-fold iterations

The calculation of parameters M/M�, t/tMS, η and i with Eq. (3)
requires two iteration “series” or “stages”. In the first stage, we
derive M/M� and t/tMS, while in the second stage, we refine the
estimates of η and i.

The models of stellar evolution with rotation used to inter-
polate masses and ages (Ekström et al. 2012) require the use
of fundamental parameters averaged over the rotationally de-
formed stellar surface. At each n−iteration step of (M/M�, t/tMS)
quantities we establish a list of m−pairs (ηk, ik), k = 1, ...,m
(m ' 100), so that ηmin(M, t) ≤ ηk ≤ 1 and the respec-
tive inclinations range in the interval π/2 ≥ ik ≥ imin. From
Eq. (3) we draw m-triplets (T pnrc

eff
(M, t)k, g

pnrc
eff

(M, t)k, Lpnrc(M, t)k)
calculated as T pnrc

eff
(M, t)k = T app

eff
/CT(M, t, ηk, ik), gpnrc

eff
(M, t)k =

g
app
eff
/CG(M, t, ηk,k ) and Lpnrc(M, t)k = Lapp/CL(M, t, ηk, ik),

which are then used to determine the m-surface-averaged val-
ues 〈Teff(M, t, η)〉k, 〈g(M, t, η)〉k, 〈L(M, t, η)〉k. Taken by pairs
[〈Teff(M, t, η)〉k, 〈g(M, t, η)〉k] and [〈Teff(M, t, η)〉k, 〈g(M, t, η)〉k]
as entry parameters to the models of stellar evolution, we
determine two independent series of mass and age estimates
[Mk/M�, ηk], [tk/tMS, ηk]. A third series of mass estimates comes
from the definition Mk/M� = (Lpnrc

k /L�)(gpnrc
eff/g�,k

)(T�/T
pnrc
eff,k )4.

The interpolation of masses and ages is made on the evolution-
ary models with rotation, labeled with ZAMS rotational velocity
previously determined with curves giving the variation of Ω/Ωc
with time calculated by Ekström et al. (2012), so that at the
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Fig. E.1. a) Determination of the pnrc mass M/M� interpolated in
stellar evolution models with rotation (black and red lines) and from the
relation M ∝ L.g/T 4

eff
(blue line). b) Determination of η and i using the

functions vapp, CT, CL, and CG defined in Eq. (3).

iterated stellar age tk/tMS we recover the Ωk/Ωc for the given
ratio ηk.

The intersection of the three series of curves [Mk/M�, ηk],
[t/tMS, ηk] determine the n−estimate of the stellar mass Mn/M�
and age tn/tMS as shown in Fig. E.1a, which corresponds to the
iteration step n = 1. These three mass/age curves are only co-
incident for nonrotating stars. Depending on the star, we need
from 5 to 50 iterations to obtain that all three curves in Fig. E.1a
determine a unique crossing point.

In the second iteration series, we take advantage of the above
estimated Mn/M� and tn/tMS to establish five relations between
sin i and η, whose common intersection is considered the refined
estimate of η and i. These curves are the solutions of Eq. (3)
written as sin i = sin i(η) for the given values of Mn/M� and
tn/tMS, respectively. A fifth curve is also obtained from the com-
bination CR(η, i) = C1/2

L /C2
T, which may seem redundant, but it

is sometimes useful to disentangle the right solution when the
intersection of other curves is not unique. Figure E.1b shows the
behavior of these relations obtained at the very end of the iter-
ation procedure. This iteration requires another 3 to 15 iteration
steps.

The observed parameters [T app
eff
, g

app
eff
, Lapp, vapp] of each pro-

gram star are considered with their respective uncertainties.
So, an observed quantity X is assigned 11 different values
within the interval [Xo − 2.5σx, Xo + 2.5σx] using random
numbers, which means that for a given star we get 14 641
quartets (T app

eff
, g

app
eff
, Lapp, vapp). Obviously, a certain number of

such combinations do not produce any viable solution, how-
ever, for most stars we obtain more than Nsol ' 104 solu-
tions for [M/M�, t/tMS, η, i]. In most cases these solutions have
asymmetric distributions, which are used as weighting functions
to produce weighted averages and their respective equivalent
1σ dispersions.
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Table E.1. Test pnrc solutions parameters.

Input apparent model-data Solutions for pnrc parameters

η i◦ Teff log g log L
L�

Vsin i Vsin i η i◦ T ◦eff
log go log Lo

L�
Vsin i Vc

K km s−1 corr K corr km s−1

0.00 0◦ 20 000 4.00 3.461 0 0 0.00 0◦ 20 000 4.00 3.461 0 462

0.20 20◦ 19 665 3.95 3.496 81 81 0.20 20◦ 20 001 4.00 3.461 81 462
0.22 ± 0.17 23◦ ± 10 20 093 ± 79 4.01 ± 0.02 3.462 ± 0.025 82 ± 6 465 ± 5

50◦ 19 195 3.92 3.432 182 182 0.20 50◦ 20 002 4.00 3.461 182 462
0.20 ± 0.13 48◦ ± 11 19 915 ± 79 3.99 ± 0.03 3.444 ± 0.018 184 ± 14 463 ± 5

80◦ 18 758 3.88 3.372 234 234 0.20 80◦ 19 999 4.00 3.461 234 462
0.22 ± 0.09 60◦ ± 10 19 792 ± 338 3.98 ± 0.03 3.424 ± 0.039 237 ± 18 462 ± 6

0.50 20◦ 19 555 3.90 3.572 119 122 0.46 22◦ 20 116 3.99 3.488 122 461
0.45 ± 0.15 24◦ ± 6 20 114 ± 75 3.98 ± 0.02 3.496 ± 0.015 122 ± 9 460 ± 5

50◦ 18 468 3.85 3.427 259 273 0.45 53◦ 20 092 4.00 3.476 270 462
0.45 ± 0.09 54◦ ± 6 20 110 ± 224 4.00 ± 0.01 3.479 ± 0.017 271 ± 21 462 ± 5

80◦ 17 209 3.74 3.259 334 351 0.51 71◦ 19 811 3.95 3.426 355 462
0.54 ± 0.11 74◦ ± 8 20 051 ± 598 3.96 ± 0.02 3.448 ± 0.062 363 ± 36 466 ± 11

0.75 20◦ 19 143 3.89 3.615 126 143 0.75 20◦ 20 004 4.00 3.461 143 462
0.73 ± 0.13 20◦ ± 2 19 965 ± 108 4.00 ± 0.00 3.457 ± 0.012 141 ± 11 462 ± 1

50◦ 17 881 3.86 3.431 283 319 0.75 50◦ 20 000 4.00 3.460 320 462
0.76 ± 0.11 50◦ ± 4 19 967 ± 262 4.00 ± 0.01 3.454 ± 0.026 317 ± 24 462 ± 4

80◦ 16 214 3.76 3.189 346 411 0.75 80◦ 19 999 4.00 3.461 411 462
0.76 ± 0.14 78◦ ± 7 19 758 ± 536 3.99 ± 0.02 3.434 ± 0.049 403 ± 42 459 ± 10

This procedure enables us to obtain Stoeckley’s correction
Σ(M, t, η, i), which is consistent with the stellar fundamental
parameters.

E.2. Reliability of the inferred pnrc parameters

We tested the procedure described in Sects. 3.5.1 and E.1 us-
ing several model stars, where the apparent parameters were
simulated with FASTROT using model atmospheres with so-
lar metallicity as required for the program stars. We performed
many tests, in particular for a typical model star character-
ized by T pnrc

eff
= 20 000 ± 500 K, log gpnrc

eff
= 4.0 ± 0.01,

log Lpnrc/L� = 3.461 ± 0.025, so that M/M� = 7.31 ± 0.08,
t/tMS = 0.710 ± 0.016 and Vpnrc

c = 462 km s−1. This mathemati-
cal object was assumed to rotate successively at η = 0.2, 0.5 and
0.75, and each time seen at inclinations i = 20◦, 50◦ and 80◦.
The results obtained for this model object are given in Table E.1,
where we can see that the algorithm recovers the right pnrc
parameters if they are treated without uncertainties. However,
when the input parameters are taken with their uncertainties, as
occurs with the observed stars, unavoidable deviations appear
because the error propagation is asymmetric. Nevertheless, in
Table E.1 we see that the error bars of the recovered pnrc quan-
tities are not larger than the input uncertainties quoted above in
this paragraph, which warrants that the algorithm is consistent.

Appendix F: Approximate or auxiliary distributions

Let x be a random variable defined in the interval 0 ≤ x ≤
1, whose probability density distribution is Π(x). When the
moments of Π(x) are known up to degree n = 3, it is pos-
sible to derive simplified analytical expressions Π(x) that can
be considered statistically quasi-equivalent to Π(x) because they
reproduce the same average value of x, the same variance (or

Table F.1. First four moments of the function Π(x) and the parameters
of its quasi-equivalent trapezoidal and triangular functions Π(x).

γ 〈x〉 〈x2〉 〈x3〉 〈x4〉

−0.75 0.8313 1.0000 1.1687 1.4643
0.00 0.8875 1.2250 1.5625 2.4551
0.75 1.0897 1.6750 2.2602 3.4459

Trapezoidal Π(x)
γ a b p q 〈x4〉 p%

−0.75 0.0756 0.8676 −0.6762 0.9503 1.4465 36.3
0.0 0.0892 0.9108 0.0 0.6086 2.4427 66.5

0.75 0.1324 0.9244 0.6762 0.2741 3.4442 36.3

Triangular Π(x)
γ p1 q1 p2 q2 〈x4〉 p%

−0.75 2.5554 0.1600 −1.3331 1.3408 1.4689 99.7
0.00 1.4816 0.1199 −1.4816 1.6015 2.4714 97.1
0.75 1.3331 0.0077 −2.5554 2.7154 3.4508 99.7

dispersion), and the same skewness (or symmetry) of the Π(x).
The degree n can be higher than 3, so that moments of higher or-
der can accounted for. We limit our discussion to n = 3 because
we compare the Lucy-Richardson deconvolution method to the
Cranmer method, where n = 3 was used. Thus, we develop here
simple rules to derive trapezoidal or truncated linear functions,
and triangular quasi-equivalent distribution functions Π(x).

F.1. Trapezoidal functions

We assume that Π(x) is given by

Π(x) =

{
px + q x ∈ [a, b]

0 x < [a, b], (F.1)
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where p and q, as well as the boundaries a and b are parameters
that we need to determine. We then ask that the moments are
conserved, i.e.,

〈xn〉 =

∫ 1

0
xnΠ(x) dx =

∫ b

a
xnΠ(x) dx, (F.2)

where n = 0 indicates the normalization condition for both Π(x)
and Π(x). Calling ζ = a + b and ξ = a − b, the normalization of
Π(x) and its moment of first order requires that

1
2

pζ + q =
1
ξ

1
6

pξ3 + ζ = 2〈x〉, (F.3)

while the moments of order n = 2 and 3 lead to

λ3 + 3Pλ + 2Q = 0

ζ2 − 4〈x〉ζ + 4〈x2〉 =
ξ2

3
, (F.4)

where the following definitions hold:

λ = ζ − 2〈x〉
P = 2〈x〉2 − 2〈x2〉

Q = 10〈x〉3 − 15〈x2〉〈x〉 + 5〈x3〉. (F.5)

Solving in Eq. (F.4) the algebraic equation of 3rd order for λ, we
derive an expression for ζ, which in turn determines ξ using the
2nd relation in Eq. (F.4). The constants a and b are then obtained
from Eq. (F.3), which lead to p and q.

F.2. Triangular functions

We assume that Π(x) is defined as

Π(x) =

{
Π1(x) = p1x + q1 x ∈ [a, c]
Π2(x) = p2x + q2 x ∈ [c, b],

where the constants to be determined are p1, p2, q1, and q2. The
conditions Π1(a) = Π2(b) and Π1(c) = Π2(c) produce

p1a + q1 = 0
p2b + q2 = 0
(p1 − p2)c = q2 − q1. (F.6)

The normalization of Π(x) imposes

p1(b − a)(c − a) = 2
p2(b − a)(c − b) = 2. (F.7)

We then impose that the moments 〈xn〉 (n = 1 to 3) are conserved
as in Eq. (F.2), so that

A = 3〈x〉 = a + b + c
B = 9〈x〉2 − 6〈x2〉 = ab + ac + bc
C = 10〈x3〉 + 27〈x〉3 − 36〈x〉〈x2〉 = abc,

which lead to the following 3rd order equation that enables us to
calculate the boundary a

a3 − a2A + aB −C = 0. (F.8)

Defining α = b + c = A− a and β = bc = C/a, we obtain the 2nd
order algebraic equation for the boundary b,

b2 − αb + β = 0. (F.9)

0.0

0.2

0.4

0.6

0.8

1.0

(x) = -0.75

= -0.75

(x)

0.0

0.2

0.4

0.6

0.8
(x) = 0.0

= 0.0

(x)

0.0 0.25 0.5 0.75 1.0
x

0.0

0.2

0.4

0.6

0.8
(x) = -0.75

0.25 0.5 0.75 1.0
x

= -0.75

(x)

Fig. F.1. Left side: distribution functions Π(x) (thick black curves)
and their quasi-equivalent trapezoidal (blue curves) and triangular (red
curves) Π(x) distributions up to the third moment. Right side: respective
cumulative distributions π(x) =

∫ x

o
Π(z) dz.

Once a and b are known, we get c = α − b. Then, from Eq. (F.7)
we readily obtain p1 and p2, so that q1 and q2 can be drawn from
Eq. (F.6).

For the sake of an exercise, we adopt the following distribu-
tion function3:

Π(x) =

{
0.3183

[
1 − (2x − 1)2

]1/2

+ 0.375
[
1 − (2x − 1)2

]}
× [1 + γ(2x − 1)],

defined for 0 ≤ x ≤ 1, which is shown in Fig. F.1, for γ = −0.75,
0.0 and 0.75. From the relations obtained in Sects. F.1 and F.2 we
derive the parameters of the quasi-equivalent trapezoidal and tri-
angular distributions Π(x) given in Table F.1, and the respective
functions Π(x) are shown in Fig. F.1 (blue and red curves). In this
figure the respective cumulative distributions π(x) =

∫ x
o Π(z) dz

(right side blocks) are also shown.
For the approximations Π(x) obtained here, where by defi-

nition only the first three moments are conserved, the most im-
portant question to solve is, which of these moments should be
considered the closer parent distribution to the actual Π(x) one?
To this end we added in Table F.1 the moments of order four
〈x4〉 issued from the respective simplified functions Π(x) and
the probabilities p% that, according to the Kolmogorov-Smirnov
test, can be considered parent with Π(x). We thus immediately
note that in Cranmer’s attempts the triangular would clearly be
a better choice than the trapezoidal. Nevertheless, depending on

3 This function is inspired on the classical broadening function of spec-
tral lines by rotation. There is no specific reason to use this expression
to do the exercise.
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the statistical problem, the suited simplified functional form Π(x)
is probably different. Moreover, this leads us to conclude that it
is not enough to claim that Gaussian or Maxwellian distributions
are consistent with the observed distributions simply because the
first two moments (average and dispersion) coincide, as the lit-
erature sometimes concludes (e.g., Mokiem et al. 2006; Dufton
et al. 2006b; Hunter et al. 2008).

The approximate distributions are useful when Stoeckley’s
correction can be neglected. Nevertheless, using the relations

between moments of apparent and true distributions, Ψ(v) and
Φ(u) given by Chandrasekhar & Münch (1950), provide a first
good guess for the searched parameters defining the functions
Φ(u) that are supposed to represent Φ(u). Trapezoidal and trian-
gular distributions Φ(u) are dependent on four independent pa-
rameters, which means that apart from the normalization con-
dition, they can reproduce only the first three moments of the
actual distribution Φ(u).
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