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Background: Symmetry of biological structures can be thought as the repetition of their parts in different positions
and orientations. Asymmetry analyses, therefore, focuses on identifying and measuring the location and extent of
symmetry departures in such structures. In the context of geometric morphometrics, a key step when studying
morphological variation is the estimation of the symmetric shape. The standard procedure uses the least-squares
Procrustes superimposition, which by averaging shape differences often underestimates the symmetry departures
thus leading to an inaccurate description of the asymmetry pattern. Moreover, the corresponding asymmetry values
are neither geometrically intuitive nor visually perceivable.
Methods: In this work, a resistant method for landmark-based asymmetry analysis of individual bilateral symmetric
structures in 2D is introduced. A geometrical derivation of this new approach is offered, while its advantages in
comparison with the standard method are examined and discussed through a few illustrative examples.
Results: Experimental tests on both artificial and real data show that asymmetry is more effectively measured by
using the resistant method because the underlying symmetric shape is better estimated. Therefore, the most
asymmetric (respectively symmetric) landmarks are better determined through their large (respectively small)
residuals. The percentage of asymmetry that is accounted for by each landmark is an additional revealing measure
the new method offers which agrees with the displayed results while helping in their biological interpretation.
Conclusions: The resistant method is a useful exploratory tool for analyzing shape asymmetry in 2D, and it might be
the preferable method whenever a non homogeneous deformation of bilateral symmetric structures is possible. By
offering a more detailed and rather exhaustive explanation of the asymmetry pattern, this new approach will
hopefully contribute to improve the quality of biological or developmental inferences.
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INTRODUCTION

Many biological structures exhibit some kind of symme-
try: i.e., the repetition of their parts in different positions
and orientations. Typically, these repeated parts are not
exact copies from each other but differ in their
morphological or histological characteristics (e.g., size,
shape, number and composition of cells). Shape asym-
metry, as the study of departures from symmetry of

symmetric structures, is of great interest in different areas
such as biology and medicine; the analysis of the
magnitude and/or the direction of asymmetry is routinely
applied when assessing pathological conditions and the
effect of genetic and environmental factors on the
development of phenotypic traits [1–3].
The quantitative evaluation of asymmetry has been

mostly based on linear measurements of continuous traits
and the counting of discrete traits [4]. More recently, the
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application of geometric morphometric techniques in
shape asymmetry analyses has shown some advantages
over other approaches [5–15]. Geometric morphometrics
assumes that Cartesian coordinates of landmarks capture
the essential information about the morphology of
individuals, describing also the position and orientation
of specimens; landmark-based methods are then used to
analyze and explain shape variation.
A central issue in landmark-based methods is which

criterion should be used to align the configurations of
landmarks under analysis, because the exhibited shape
differences highly depend on the chosen superimposition
[10,16–19]. The least-squares (LS) Procrustes method
allows atypically large deformations to have a big impact
on the alignment, and thus may obscure true shape
differences. Moreover, by spreading shape differences
among landmarks the LS method simultaneously under-
estimates variation in some parts of the structure and
overestimates it in others. It is acknowledged that
whenever shape variation is not homogeneously distrib-
uted (the underlying assumption of the LS method) but
instead concentrated in some anatomical traits a resistant
Procrustes superimposition is better in helping to identify
those regions where shape differences are in fact located
[17–21]. Among other distinctive features resistant
methods are specifically designed to capture the main
trend or pattern from data [23–25], thus limiting the
influence of atypical values or errors; following a resistant
superimposition [20,21], the matching tends to be close in
similar regions and not close in the relatively deformed
ones. In this way, resistant techniques are more effective
than LS methods in assessing shape differences.
The analysis of shape asymmetry in a geometric

morphometrics framework typically uses the LS Pro-
crustes superimposition as the standard alignment criter-
ion [7,8,11–13,26]. This method minimizes the sum of
squared Euclidean distances between the Cartesian
coordinates of corresponding landmarks after super-
imposition, and the magnitude of the resulting shape
asymmetry is estimated by the squared root of this sum
which is known as Procrustes distance. A major drawback
of the LS Procrustes superimposition is to average shape
variation among landmarks [17,20,22] although many
morphometric studies expect variability to be placed at
specific points from structures [21,27–29]. Moreover,
following a LS superimposition the Procrustes distance is
neither geometrically intuitive nor visually perceivable
when the results are graphically displayed: its value does
not properly quantify the exhibited lack of fit. Procrustes
distance is actually meaningful in the abstract non-
Euclidean (curved) shape space of LS superimposed
configurations which in turn differs from Kendall’s non-
Euclidean shape space (both shape spaces can be exactly
matched only under very restricted assumptions: config-

urations of only three landmarks; [30]). A projection of
the LS results onto a tangent Euclidean (flat) space is
typically used as an additional approximation that enables
standard linear (flat) multivariate analyses on the LS
residuals.
Based on these considerations, a resistant method for

the study of shape asymmetry via anatomical landmarks is
introduced. More specifically, a resistant estimate of the
symmetric shape (also known as the component of
symmetric variation) from a single configuration of
landmarks in two dimensions is obtained and used
afterwards to analyze and measure shape asymmetry
within individuals. Due to its widespread interest,
structures with bilateral symmetry are in particular
considered: these are made of two mirror copies at
opposite sides of the body. Two forms of bilateral
symmetry are commonly distinguished: matching sym-
metry, where the two mirror images are considered
separated parts of the structure (e.g., fly wings), and
object symmetry, where the two mirror images are located
at each side of an axis (plane) named the median or
sagittal axis (median plane in three dimensions) which
also composes the whole structure (e.g., human face).

RESULTS

The analysis of shape variation of a single structure with
matching symmetry focuses on the repeated parts and
does not consider the combined structure as a whole: the
structure is thought to be divided into two separated parts
that are approximate mirror images from each other. In
two dimensions, the Cartesian coordinates of m selected
landmarks are recorded on each of these parts; as a result
two m by 2 matrices L (left, say) and R (right), one for
each side of the structure, are used to store in their rows
the Cartesian coordinates of corresponding landmarks.
The median axis is usually not included neither in data nor
in the analysis [13].
The analysis of shape variation of a single structure

with two-dimensional object symmetry is instead based
on a single configuration of landmarks that includes
information from both mirror parts and also from the
median axis passing through the structure. Two types of
landmarks are in this case distinguished: paired and
unpaired landmarks. Paired landmarks occur on each of
the repeated parts and outside the median axis (e.g., in a
human face, the corresponding corners of the mouth or
the eye). Unpaired landmarks, in turn, are placed at the
median axis (e.g., in a human face, the tip from the nose
and the chin). A single m by 2 matrix X whose rows are
the Cartesian coordinates of the m selected landmarks
stores this information from the whole structure. Without
loss of generality, it can be assumed the storing pattern in
X is the following: the first s rows correspond to the
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Cartesian coordinates from the unpaired landmarks; the
next q rows (from s+ 1 to s+ q) correspond to the
Cartesian coordinates from the e.g. left paired landmarks,
while the last q rows (from s+ q+ 1 to s+ 2q) in X
correspond to the Cartesian coordinates from the remain-
ing right paired landmarks. Thus, m = s+ 2q where s and
q denote the number of unpaired and paired landmarks,
respectively.

Symmetric shape estimation within individuals: the
standard LS Procrustes method

Matching symmetry

To extract information on shape asymmetry from single
structures with matching symmetry, a reasonable strategy
is to try to optimally match the two separated mirror
copies (e.g., left and right wings) represented by matrices
L and R; the resulting differences can be afterwards
attributed to asymmetry. If differences in size between the
two mirror parts are detected in the process, they are
thought to be caused by (centroid) size asymmetry. This
type of asymmetry is different from shape asymmetry, and
both are usually assumed independent and analyzed
accordingly [12].
The LS Procrustes superimposition [31,32] is the

commonly chosen strategy to achieve the optimal
matching between mirror parts L and R [11,13].
Intuitively, a reflection should serve to optimally match
two mirror images; this suggests that a more restricted
version of the LS Procrustes superimposition, specifically
considering translation, scale and reflection transforma-
tions, could be used instead when shape variation under
matching symmetry is analyzed (recall that a rotation
transformation can be obtained as a combination of two
reflections, but not conversely).
In studies of asymmetry, the Procrustes method usually

proceeds in several steps [7,13,15,26,33]. The standard
LS Procrustes procedure for quantifying departures from
matching symmetry within individuals via landmarks is
[11]:
(i) For a preliminary orientation matching, reflect the

landmark configuration from on one side onto its mirror
image (e.g., reflect the left wing onto the right one) by
reversing the sign of one of the Cartesian coordinates (e.
g., change the sign of the x coordinate from matrix L; this
step turns out to be unnecessary since the optimal
orientation agreement can be achieved in the next step
through a reflection transformation, if needed).
(ii) Perform a LS Procrustes superimposition of

configurations L and R.
(iii) Estimate the symmetric shape as the average

between the two optimally fitted configurations.
(iv) Measure the resulting shape asymmetry as the

Procrustes distance between the optimally fitted config-

urations, or equivalently (up to a factor of 2), through the
Procrustes distance between one of them and the
estimated symmetric shape.

Object symmetry

Under object symmetry, the two mirror halves belong to a
whole structure and are thus interdependent. Because only
one landmark configuration is available, a mirror copy of
it needs to be created if a superimposition is to be
performed. Unlike matching asymmetry, any difference
between the two mirror sides (including differences in
size) is considered a property of the whole structure and
thus a specific analysis of size asymmetry does not make
sense in this case.
A procedure to study variation and asymmetry of

shapes with internal symmetry was briefly outlined by
Bookstein [10] and Auffray et al. [8]. The standard LS
Procrustes procedure to quantify departures from object
symmetry within individuals via landmarks consists of
these steps [11]:
(i) Generate a mirror copy Z of configuration X by

reversing the sign of one of the Cartesian coordinates in X
(e.g., change the sign of the x coordinate). Each paired
landmark from the reflected copy is then relabeled to
obtain the label of its counterpart; corresponding rows
frommatrices X and Zwill in this way describe landmarks
lying on the same side from the median axis.
(ii) Perform a LS Procrustes superimposition between

X and its reflected copy Z
(iii) Estimate the symmetric shape as the average

between the two optimally fitted configurations, which is
perfectly symmetrical
(iv) The resulting shape asymmetry of the whole

structure is finally measured through the Procrustes
distance between the fitted configurations, or equivalently
(up to a factor of 2), through the Procrustes distance
between the original configuration X and the estimated
symmetric shape.

Analyzing asymmetry: a resistant method

Available formulations of resistant Procrustes methods in
a more general shape analysis context [20,21,22] suggest
that a resistant approach to the specific study of shape
asymmetry could also be offered. A resistant method
might bring insightful information on the pattern of
symmetry departures at least as an exploratory tool, and
the framework presented in this article takes the
challenge.
The estimation of the symmetric shape is a central step

in assessing asymmetry when the standard LS Procrustes
method is used. The resistant method focuses on the same
target, which in turn will enable a more comprehensive
measurement of asymmetry.
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Matching symmetry

A resistant Procrustes procedure to identify and measure
via landmarks departures from symmetry within indivi-
duals for two-dimensional structures exhibiting matching
symmetry is presented next. For simplicity, geometric
shapes are used to illustrate the method: two mirror copies
of a 18-landmark letter “R” were chosen. To simulate
localized asymmetry, landmarks 2-3 and 11-12-13 were
randomly distorted in each of them (Figure 1A).
(i) Compute any of these two location centers, the

componentwise median (cmed) (darkest dots, Figure 1A)
or the spatial median (smed), for both landmark
configurations. Both are reasonable choices as multi-

variate resistant location centers because they generalize
the univariate median according to different critera:
� cmed [32] is the point that divides the corresponding

landmark configuration in halves along the direction of
every coordinate axis (i.e., either an horizontal or a
vertical line through the cmed leaves 50% of the points on
one side and the remaining 50% on the opposite side)
� smed [22,34] is the point that minimizes the sum of

non-squared Euclidean distances to every landmark in the
configuration.
Once the same resistant location center has been

computed for both sides, translate each of them to place
their common center at the origin (resistant centering)
(Figure 1B). (Note that both resistant centerings could be

Figure 1. Steps for the resistant analysis of matching symmetry. (A) The same resistant location center (darkest dots) is
computed for both mirror copies. (B) Configurations are translated to place their corresponding resistant center (black dot) at the

origin of coordinates. (C) Difference vectors (dotted lines) are first normalized, and their sphmed (arrow) is afterwards computed.
The estimated resistant median axis (dashed line) is the line perpendicular to sphmed. (D) Any of the copies (the yellow one in this
case) is reflected about the estimated median axis. An additional resistant Procrustes superimposition filters out the eventually
remaining differences due to scale and/or orientation.
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tried in an exploratory analysis, and their results after-
wards compared)
(ii) Compute the difference vectors between the

landmarks from one side and the corresponding land-
marks from the other side (e.g., vectors going from right
landmarks to left ones; dotted lines, Figure 1C) and divide
each of them by the respective length to produce unit-
length difference vectors. These vectors lie on the unitary
circumference and can be thought as representing
directions in two dimensions, which due to matching
symmetry are approximately parallel to each other.
(iii) Compute the spherical median (sphmed) [35] from

all these directions, which is also a unit-length vector that
minimizes the sum of arc-distances over the unitary
circumference to all of them. From a resistant point of
view, the sphmed (arrow, Figure 1C) is the direction that
best summarizes the whole set of difference directions.
(iv) Take the line through the origin that is perpendi-

cular to the sphmed direction as the resistant median axis
(dashed line, Figure 1C) and reflect about it one side onto
the other, thus leaving both sides with the same
orientation (Figure 1D)
(v) Perform an resistant Procrustes superimposition

[22], which by construction does not include a reflection,
to filter out the possibly remaining differences in size and/
or orientation between sides (Figure 2, left)
(vi) Compute the resistant symmetric shape as the row-

wise spatial median [22] (agrees with the average in case
of two configurations) from the optimally fitted sides. A
resistant measure of asymmetry is afterwards given by the
sum of non-squared Euclidean distances across corre-
sponding landmarks between the optimally fitted config-
urations or, equivalently (up to a factor of 2), by the sum
of non-squared Euclidean distances across corresponding

landmarks between one of the fitted configurations and
the estimated symmetric shape. This measure is a resistant
shape distance [22] where each landmark contributes the
corresponding term in the sum. Moreover, this contribu-
tion simply quantifies the residual or misfit for each
landmark that is readily seen when the results are
graphically depicted (Figure 2, left). When this contribu-
tion is expressed as a percentage (Table 1), the degree
of asymmetry accounted for by each landmark is
revealed.

Object symmetry

A resistant Procrustes procedure to analyze and measure
via landmarks departures from symmetry within indivi-
duals for two-dimensional structures exhibiting object
symmetry is now presented. Geometric shapes are again
used for illustration: a 15-landmark letter “Y” consisting
of 5 unpaired and 10 paired landmarks was chosen. To
simulate a localized pattern of asymmetry (Figure 3A),
random distortion was introduced in unpaired landmarks
1 and 4 and paired ones 7, 8, 12 and 13 (lower distortion
was used for the unpaired landmarks to be more realistic).
(i) For the given landmark configuration X, compute

any of the two resistant location centers previously
described: the componentwise median cmed (red dot,
Figure 3B) or the spatial median smed. Translate the
configuration to place its resistant location center at the
origin (Again, both alternatives could be tried in an
exploratory analysis).
(ii) For every pair of unpaired landmarks compute the

corresponding difference vector and divide it by its
length, obtaining in this way unit-length unpaired
difference vectors (arrows, Figure 3C) or unpaired

Figure 2. Matching symmetry: fitted configurations by using the resistant (left) and the LS (right) Procrustes method. A

resistant measure of asymmetry is given by the sum of non-squared Euclidean distances across landmarks, where each landmark
contributes the corresponding proportion of exhibited lack of fit. The resistant symmetric shape (not shown) is the row-wise spatial
median from the matched configurations.
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directions. Since by object symmetry all unpaired land-
marks approximately lie on the (unknown) median axis,
these unpaired directions are approximations of the
median axis and thus approximately perpendicular to all
difference vectors between paired landmarks
(iii) For every pair of paired landmarks now compute

the corresponding paired difference vector, not dividing it
by its length. As mentioned, due to object symmetry these
paired differences vectors (dotted lines, Figure 3D) are
approximately perpendicular to the (unknown) median
axis or, equivalently, their projections onto the (unknown)
median axis are approximately zero.
(iv) Pick each unpaired direction at a time, and project

all paired differences onto it computing the sum (or the
median) of the resulting projection lengths (red lines,
Figure 3E). A rank of the unpaired directions can be given
based on these sums (or medians). Obtain also the sphmed
direction from the unpaired directions and project all
paired differences onto it, compute the corresponding sum
(or median) of the projection lengths and rank it among
those from all the unpaired difference vectors.
(v) The direction of the unpaired difference or the

sphmed achieving the least sum (or median) of projec-
tions is chosen as the resistant median axis (dashed line,
Figure 3E): by construction, it enjoys two desirable and
intuitive geometrical properties: 1) it is based on unpaired
landmarks, which by definition lie approximately on the

median axis; and 2) by minimizing the sum (median) of
the projection lengths from all the paired differences, it is
approximately perpendicular to all such paired differ-
ences.
(vi) Use the resistant median axis estimated from the

previous step, which goes through the origin of
Coordinates, to produce a reflected copy Z (open dots,
Figure 3F) of the original configuration X. Relabel each
paired landmark in Z to make the corresponding rows
from X and Z describe landmarks on the same side from
the median axis.
(vii) Compute the resistant symmetric shape (green

dots, Figure 4 left) as the row-wise spatial median
between the original and the reflected configurations.
Landmarks (rows) from this spatial median configuration
[22]; agrees with the average in case of two configura-
tions) are, by contruction, equidistant from the corre-
sponding original and reflected landmarks thus resulting
in a perfectly symmetric configuration. A resistant
measure of asymmetry is afterwards given by the
resulting sum of non-squared Euclidean distances across
corresponding landmarks between the original and the
reflected configuration or, equivalently (up to a factor of
2), by the sum of non-squared Euclidean distances across
corresponding landmarks between the original configura-
tion (orange dots, Figure 4 left) and the estimated
symmetric shape (green dots, Figure 4 left). Just as in

Table 1. Matching symmetry geometric example.
Landmark Contribution % to asymmetry (Res) Contribution % to asymmetry (LS)

1 0.0668 3.3492

2 28.9533 17.0307

3 14.1879 6.6644

4 0.0325 2.9273

5 0.0387 2.8304

6 0.0482 2.7569

7 0.0663 2.7147

8 0.0602 2.9986

9 0.0611 3.2828

10 0.0656 3.5670

11 2.5674 4.2481

12 30.5805 16.6064

13 23.1067 12.5457

14 0.0098 3.4580

15 0.0114 3.1926

16 0.0189 3.5635

17 0.0477 3.9408

18 0.0770 4.3228

100.0000 100.0000

Contribution% by landmark to asymmetry for the resistant (Res) and LS results displayed in Figure 2. Total asymmetry was computed in both cases as

the sum of non-squared Euclidean distances across landmarks (i.e., the visible asymmetry) between the matched configurations.

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 275

Landmark-based resistant analysis of individual asymmetry



Figure 3. Steps for the resistant analysis of object symmetry. (A) The structure consists of unpaired landmarks 1 to 5, and
paired landmarks 6–11, 7–12, 8–13, 9–14, 10–15. (B) A resistant location center (red dot) is computed and the configuration is
afterwards translated to place this resistant center at the origin of coordinates. (C) For every pair of unpaired landmarks, the
corresponding unit-length direction vectors (arrows) are computed. (D) For every pair of paired landmarks, the corresponding

difference vectors (dotted lines) are computed. (E) All paired differences are projected onto every unpaired direction and onto their
sphmed direction also (arrows), and the corresponding sum of projection lengths (red lines) is computed. The unpaired or sphmed
direction achieving the least sum of projections lengths is the estimated median axis (dashed line). (F) The original configuration

(filled dots) is reflected (open dots) about the estimated median axis. The resistant symmetric shape (not shown) is the row-wise
spatial median from the original and the reflected configurations.
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the matching symmetry case, the contribution percentage
to asymmetry accounted for by each landmark can be
obtained (Table 2).

Comparison of methods in biological examples

Simulated biological examples based on real data are now

considered. For each type of bilateral symmetry, the
standard LS and the introduced resistant Procrustes
method were applied in order to compare their results.

Matching symmetry

The wings of a Drosophila melanogaster (Figure 5) were

Figure 4. Object symmetry: original configuration (orange dots) and the estimated symmetric shape (green dots) when
the resistant (left) and the LS (right) Procrustes methods are used. Resistant asymmetry is measured through the sum of non-

squared Euclidean distances across landmarks between them; each landmark contributes the proportion of displayed lack of fit in
the overall sum.

Table 2. Object symmetry geometric example.
Landmark Contribution % to asymmetry (Res) Contribution % to asymmetry (LS)

1 9.3158 11.4231

2 0.0000 4.2057

3 0.0000 3.9795

4 25.4068 15.6850

5 0.0000 3.5271

6 0.0000 3.3087

7 26.6502 17.9146

8 5.9884 3.9430

9 0.0000 2.7740

10 0.0000 2.6496

11 0.0000 3.3087

12 26.6502 17.9146

13 5.9884 3.9430

14 0.0000 2.7740

15 0.0000 2.6496

100.0000 100.0000

Contribution% by landmark to asymmetry for the resistant (Res) and LS results displayed in Figure 4. Total asymmetry was computed in both cases as

the sum of non-squared Euclidean distances across landmarks (i.e., the visible asymmetry) between the original configuration and the estimated

symmetric shape.
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used for matching symmetry simulation. Thirteen land-
marks were digitized; eight of them were perfectly
symmetric while symmetry distortion was randomly
introduced in landmarks 7, 8, 9, 10 and 13. The estimated
symmetric shape (orange dots) versus one of the fitted
configurations (black dots) by using the LS and resistant
methods are displayed in Figure 6.
As shown, all landmarks exhibit some departure from

the estimated symmetric shape when the standard LS
method is used (Figure 6, top). Based on this overall lack
of fit it is inferred that every landmark is contributing to
asymmetry to varying degrees.
The resistant Procrustes method (Figure 6, bottom)

estimates instead a symmetric shape that almost perfectly

covers those landmarks with no symmetry distortion; a
clear residual is thus exhibited for the few points deviating
from symmetry.
This visual impression can be accordingly quantified by

computing the contribution percentage accounted for by
each landmark to the measured and visible asymmetry
(Table 3). Note that those landmarks with a prominent
role in explaining asymmetry can be readily drawn from
the resistant (Res) contributions list by their highest
percentages. This is not easily seen by checking the LS
contributions; moreover, the LS method wrongly identi-
fies landmark 7 as the location most deviating from
symmetry (which in fact occurs at landmarks 9 and 10)
and misses landmark 13 moderate asymmetry contribu-

Figure 5. Simulated biological example of matching symmetry: digitized landmarks from Drosophila melanogaster
wings. Asymmetry between sides was artificially introduced in landmarks 7, 8, 9, 10 and 13.

Figure 6. Resistant vs LS results for the Drosophila melanogaster wings. One of the configurations (black dots) and the
estimated symmetric shape (orange dots) are shown.

278 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Sebastián Torcida et al.



tion, which is probably lost in the overall misfit.

Object symmetry

For object symmetry simulation, human face data were
used. Twenty landmarks, six unpaired (landmarks 1 to 6)
and seven pairs (landmarks 7 to 20), were digitized in
facial traits such as the corners of eyes, nose and mouth,
and the tip of nose and chin (Figure 7) . Among them,
thirteen landmarks were perfectly symmetric while
artificial distortion (lower for paired ones) was randomly
intoduced in unpaired landmarks 4 and 5 and paired ones
7, 16, 17, 18 and 19.
The original configuration (black dots) and the

estimated symmetric shape (orange dots) are shown in
Figure 8. As is usually the case whenever localized shape
variation is present, an overall misfit about the symmetric
shape is exhibited following a LS Procrustes super-
imposition. Again, this result suggests that every land-
mark is contributing to asymmetry to some extent (Figure
8, right).
The resistant method (Figure 8, left), in turn, estimates

a median axis and a corresponding symmetric shape that
passes through most unpaired landmarks: the undistorted
ones. A readily and more accurate identification of the
least symmetrical locations is therefore obtained because
a clear lack of fit is shown basically for the few landmarks
deviating from symmetry.
When the visual impression is quantified by computing

the asymmetry contribution percentage (Table 4), follow-
ing a LS approach some landmarks turn out to contribute
much more (e.g., unpaired landmark 6, paired landmarks
13-20) or much less (e.g., paired landmarks 7-14) than

Table 3. Matching symmetry biological example (Drosophila wings).
Landmark Contribution % to asymmetry (Res) Contribution % to asymmetry (LS)

1 1.6566 6.2517

2 1.8427 6.6286

3 0.7217 5.4708

4 1.1847 5.7650

5 0.7929 5.9256

6 0.8393 5.9218

7 20.1630 17.3580

8 14.0140 6.0611

9 24.7160 11.6390

10 26.2230 12.6910

11 0.1862 5.5184

12 0.8967 5.3457

13 6.7633 5.4230

100.0000 100.0000

Contribution% by landmark to asymmetry for the resistant (Res) and LS results displayed in Figure 6 . Total asymmetry was computed in both cases as

the sum of non-squared Euclidean distances across landmarks (i.e., the visible asymmetry) between the matched configurations

Figure 7. Simulated biological example of object

symmetry: digitized landmarks from a human face.
Landmarks 1 to 6 are unpaired, and paired landmarks
are 7-14, 8-15, 9-16, 10-17, 11-18, 12-19 and 13-20.

Asymmetry was artificially introduced in unpaired land-
marks 4 and 5 and in paired ones 7, 16, 17, 18 and 19.
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Figure 8. Resistant vs LS results for the human face. The original configuration (black dots) and the estimated symmetric
shape (orange dots) are shown.

Table 4. Object symmetry biological example (human face).
Landmark Contribution % to asymmetry (Res) Contribution % to asymmetry (LS)

1 0.0000 0.7883

2 0.0000 1.3007

3 0.0000 1.8856

4 13.2750 9.4706

5 20.6000 14.9791

6 0.9155 6.0078

7 6.3636 4.1969

8 0.5118 1.2582

9 4.3428 4.4145

10 7.4554 7.4663

11 4.1453 5.1682

12 8.6189 6.8189

13 1.1671 3.4610

14 6.3636 4.1969

15 0.5118 1.2582

16 4.3428 4.4145

17 7.4554 7.4663

18 4.1453 5.1682

19 8.6189 6.8189

20 1.1671 3.4610

100.0000 100.0000

Contribution% by landmark to asymmetry for the resistant (Res) and LS results displayed in Figure 8. Total asymmetry was computed in both cases as

the sum of non-squared Euclidean distances across landmarks (i.e., the visible asymmetry) between the original configuration and the estimated

symmetric shape.
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expected. This is caused by the impact of the neighboring
highly asymmetric landmarks allowed by the LS method
when averaging. The resistant (Res) contributions,
conversely, effectively reflect the degree of asymmetry
seen for every landmark. Note that paired landmarks
always share their contribution (either Res or LS) because
the estimated symmetric shape equally distributes their
asymmetry.

DISCUSSION

It is acknowledged within geometric morphometrics that
the quantitative description of shape may be approached
according to different paradigms [9,16,20–22,31–33],
each of them having the corresponding biological
implications. The specific field of shape asymmetry
analysis is not an exception, and this work claims that
the use of a resistant approach may bring insightful
information to address a wide range of biological or
medical problems.
This article introduces a resistant method for studying

individual shape asymmetry in two dimensions, whose
formulation is more grounded on the geometry of data.
Simulated examples suggested that resistant method
results agree with visual impressions: the most asym-
metric (symmetric) landmarks can be readily identified by
their large (small) residuals, which in turn helps symmetry
departures to be more easily understood. The worked
examples also showed that by limiting the effect of highly
asymmetric points, the symmetric shape is more effec-
tively estimated and asymmetry is therefore more
accurately measured when the resistant method is used.
In addition, a revealing measure such as the contribution
percentage to measured asymmetry accounted for by each
landmark can be computed; this useful tool provides an
objective basis for a comprehensive characterization of
the measured (and exhibited) asymmetry.
Overall, the resistant method is a useful exploratory

tool which may be the preferable method whenever a non
homogeneous deformation of bilateral symmetric struc-
tures is possible (e.g., skulls with craniosynostosis). By
offering a more detailed analysis and a rather exhaustive
explanation of the asymmetry pattern, the resistant
approach may indeed contribute to improve the quality
of biological or developmental inferences. Worth noting
that the specific formulation of the resistant method
presented here neither requires a standard LS Procrustes
superimposition to be performed first nor is benefited
from such a preliminary LS fit; this is a slightly different
situation from more general shape analyses [20–22].
The LS Procrustes method is commonly used and has

proven useful in the study of shape asymmetry; it is not
implied here that a resistant approach should replace it at
all. Instead, researchers are invited to keep asking

questions about their data and try to avoid blindly
applying techniques that often produce misleading
results. Different symmetric shape estimates and hence
different inferences can be drawn by using different
methods. As the pioneer in robust statistics John Tukey
once said, it is perfectly proper to use both LS and
resistant methods routinely and only worry when they
differ enough to matter. But when they do differ,
researchers must think hard. Modern morphologists are
thus encouraged to increase their statistical training, not
only to gain insight into the methods they use but also to
apply and eventually conceive alternative ones.
A resistant analysis of symmetry departures for

individual biological structures could be particularly
useful in many actual situations: e.g., to help diagnosis
when asymmetry is linked to some type of illness or
pathology (brain asymmetrical pathology in neurodegen-
erative diseases, mandibular asymmetry causing dentofa-
cial asymmetry). When asymmetry analyses are based on
populations rather than on single individuals, specific
types of asymmetry such as directional asymmetry,
fluctuating asymmetry and antisymmetry [7,8,11,12,15]
are distinguished and their implications studied accord-
ingly. A general strategy to perform a resistant study of
asymmetry in such context, either for two or three
dimensional data, could complete the ideas introduced
here and it is hoped that a future work will entail this
target.

METHODS

All methods used were implemented in Scilab (free and
open source software for numerical computation) 5.5.2
for 64-bit Windows, available from http://www.scilab.
org.
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