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1 Introduction

Dp-brane models for holographic mesons lead to very interesting results describing masses

of the low-lying mesons, meson interactions, as well as other important properties ob-

tained in the large N limit of their corresponding dual confining gauge field theories at

strong coupling [1–3]. These models include the description of quarks in the fundamental

representation of the gauge group by using flavor Dp-branes in the probe approximation.

However, we should note that there is no holographic dual model which exactly represents

all properties of real QCD, even at large N . In particular, for the referred Dp-brane modes

we can comment on some of their main differences with respect to large N QCD as follows.

The Sakai-Sugimoto model [3] is built out of N D4-branes in type IIA superstring theory,

by adding Nf D8-branes and Nf D8-branes in the probe approximation. The most impor-

tant property of this model is that it gives a geometric realization of the chiral symmetry

breaking. Recall that antiperiodic boundary conditions for the fermions are imposed on an

S1 where one of the spatial directions of the D4-brane is wrapped, thus supersymmetry is

completely broken. At low energy this model describes several properties as QCD does for
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mesons in the large N limit. At high energy, on the other hand, the size of the circumfer-

ence grows, which implies that the Kaluza-Klein modes become relevant. This is a signal

that the dual gauge theory becomes a five-dimensional one. Moreover, the existence of an

S4 in the ten-dimensional superstring theory background leads to a global SO(5) symmetry

which is absent in QCD. Neither the model based on N D4-branes and flavor D6-branes

in type IIA superstring theory represents real QCD at its full extent [2]. In addition, the

D3D7-brane model in type IIB superstring theory that we investigate in the present work

is the holographic dual description of the SU(N) N = 2 supersymmetric Yang-Mills the-

ory in four dimensions, in the multicolor limit and at strong coupling, with quarks in the

fundamental representation of the gauge group [1]. Another property which distinguishes

between the D3D7-brane model and QCD is that the D3D7-brane system does not lead to

any geometric realization of chiral symmetric breaking.

Thus, none of the mentioned Dp-brane models are exact holographic dual models of

the large N limit of QCD. However, as we have shown in [4–7], it is possible to inves-

tigate the internal structure of the corresponding scalar and polarized vector mesons of

the models [1–3] by using the gauge/string duality at large N and strong coupling. This

is very interesting because in references [4–7] it has been found that the behavior of the

corresponding structure functions is model independent in the sense that relations of the

Callan-Gross type, as well as generalizations of it to other structure functions for polarized

vector mesons, hold independently of which Dp-brane model one considers. This means

that there is a sort of universal behavior for the meson structure functions which should

be shared by the large N limit of QCD. This universal property is due to the fact that the

dynamics of mesons in the string theory dual model is accounted for by the Dirac-Born-

Infeld (DBI) action of the corresponding flavor Dp-brane. We have chosen the D3D7-brane

model for several reasons. Firstly, as we have already mentioned their meson structure

functions display universal behavior for relations of the Callan-Gross type. Secondly, the

relative simplicity of the geometry of this background allows one to perform a detailed anal-

ysis and obtain explicit expressions of the structure functions of scalar mesons in the 1/N

expansion, which in the end permits to obtain results to compare with lattice QCD and

phenomenology. Thirdly, the D3D7-model is the one which compares better with lattice

QCD results for the pion and the rho meson (for N → ∞) [7–10]. In addition, the fall-off

of the structure functions obtained from the D3D7-brane model at large N for x → 1 leads

to a factor (1− x)2, in agreement with phenomenological results [7, 11–17].

Also, it is interesting to notice that by using the gauge/gravity duality in the case of

the SU(N) N = 4 SYM theory glueballs have been studied in the large N limit, while

lattice gauge theory simulations have permitted to investigate their properties at finite

N [18–20]. Moreover, meson spectrum and decay constants have been obtained in the

quenched approximation with the Wilson fermion action for N = 2, 3, 4, 5, 6, 7 and 17 and

then extrapolated to N → ∞ [21, 22].

Recently, the structure of holographic mesons in the [1–3] models has been investigated

in the large N limit and at strong coupling [4–7], which corresponds to considering single-

hadron final states. The process under investigation is the deep inelastic scattering (DIS)

of a charged lepton from a hadron. Its differential cross section is obtained in terms of the
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forward Compton scattering (FCS) by using the optical theorem in quantum field theory

(QFT). In the strong coupling limit of the QFT, the appropriate framework to calculate

the structure functions is the gauge/string duality [23]. In particular, within the Bjorken

parameter range 1/
√
λ ≪ x < 1 for scalar mesons it turns out that the structure function

F1 vanishes since it is proportional to the corresponding Casimir operator of the Lorentz

group, which has been confirmed by direct calculation using supergravity [4, 5]. On the

other hand, for exp (−
√
λ) ≪ x ≪ 1/

√
λ, F1 does not vanish and it is obtained in terms of

superstring theory [6]. Recall that λ is the ’t Hooft coupling and x the Bjorken parameter.

The reason for this behavior of F1 comes from the fact that at strong coupling the virtual

photon probes the entire hadron, thus within the supergravity framework no partons are

found in this limit, 1 ≪ λ ≪ N . The non-vanishing structure function F2, on the other

hand, has also been calculated in [4–6] in the corresponding parametric regimes of x, and

it has been shown how its first moments agree with the corresponding results from lattice

QCD simulations [8–10] with an accuracy of 10.8% [7]. Similar results have been obtained

for the Sakai-Sugimoto model and for the D4D6-brane model [7]. The result of [7] strictly

corresponds to the tree-level Feynman diagram for FCS, i.e. by considering a single-hadron

final state DIS, which in terms of the following discussion corresponds to considering first

the N → ∞ limit and then the high energy limit.

Beyond the largeN limit, within the gauge/string duality framework one must consider

the 1/N expansion for which there are two possible approaches which work for different

regimes of the Bjorken parameter. For exp (−
√
λ) ≪ x < 1/

√
λ it is required a genus

expansion in superstring theory, while for 1/
√
λ ≪ x ≤ 1 it is enough to include Feynman

loop diagrams in the supergravity calculation. In both situations, a genus-one world-sheet

in superstring theory and the corresponding one-loop diagrams in supergravity, lead to

the holographic dual description of one-loop FCS in the dual QFT. This corresponds to a

two-hadron final state in DIS within two different kinematical regimes of x. Specifically,

we can look at the longitudinal structure function of a scalar meson in the 1/N expansion,

and simultaneously we can also perform an expansion in inverse powers of the momentum

transfer of the virtual photon q, which leads to

FL = F2 − 2xF1 (1.1)

= f
(0)
2

(

Λ2

q2

)∆in−1

+
1

N

(

f
(1)
2 − 2x f

(1)
1

)

(

Λ2

q2

)

+
1

N2

(

f
(2)
2 − 2x f

(2)
1

)

(

Λ2

q2

)

+ · · ·

where Λ is an IR confining scale of the QFT. Notice that ∆in is the conformal dimension

of the incident scalar state in supergravity, while f
(n)
i ’s stand for the structure functions

at the corresponding order in 1/Nn, with i = 1, 2 and n = 0, 1, . . . , where n indicates the

number of loops of the FCS Feynman diagram (i.e. the number of hadrons in the final

state DIS).1

1Notice that in equation eq. (1.1) we assume that 1/
√
λ ≪ x < 1. This equation is incomplete since for

smaller values of the Bjorken parameter it is necessary to take into account the effect of the leading twist-2

contribution from the energy-momentum tensor [23]. In this parametric range, in principle, it is necessary

to calculate the full four-point string scattering amplitude in terms of the genus expansion. On the other

hand, one can solve it in terms of the eikonal approximation considering methods developed in [24–30].
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Recall that for glueballs there is a 1/N2n expansion instead of the 1/Nn one shown in

the previous equation, which simply reflects the fact that glueballs in the calculations [31]

are made of N = 4 SYM theory fields in the gauge supermultiplet (thus all of them

belong to the adjoint representation of SU(N)). On the other hand, the mesons considered

here correspond to fields of the hypermultiplet of N = 2 SYM theory, thus being in the

fundamental representation. For the glueballs of N = 4 SYM theory it turns out that the

large N limit and the high energy limit, i.e. q2 ≫ Λ2 do not commute [31, 32]. This leads

to an important consequence on the longitudinal structure function for glueballs F glueball
L ,

which shows a rich structure for the currents which contain spin-1, spin-1/2 and spin-0

fields from the N = 4 SYM theory.

We would naively expect that the results for scalar mesons should not change sub-

stantially in comparison with those for glueballs. Still it is really worth to carry out these

explicit calculations because there are both lattice QCD [8–10] as well as phenomenological

results [11–14] to compare with for scalar mesons, in particular for the pion.

In fact, we will show how by considering first the high energy limit q2 ≫ Λ2 and then

the N → ∞ limit, we obtain expressions for the structure functions for scalar mesons

which lead to results for the moments of F2 which compare very well with lattice QCD

simulations.2 In particular, for the case of the pion the agreement with lattice QCD results

for the first three moments of F2 [8–10] is within 1.27% accuracy. This shows the importance

of taking these limits in the correct order to obtain physically sensible results. The reason

for the difference between 10.8% accuracy obtained in [7] and the 1.27% accuracy obtained

in the present work comes from the fact that in [7] we considered the large N limit first,

which implies that in the previous equation only the first term contributes to the structure

functions. On the other hand, when we consider first the high energy limit, the second term

of equation (1.1) is the relevant one, while the first term leads to a smaller contribution.

In order to have an idea of the level of accuracy of the present results notice for instance

that within the gauge/gravity duality two-point functions usually lead to 10% differences

with respect to observables for mesons [33, 34], while four-point functions lead to about

30% differences [35, 36], which is reasonable taking into account that these calculations

have been done in the large N limit, in comparison with real QCD, i.e. N = 3.

Also, it is worth mentioning that for the N = 4 SYM plasma the DC electrical conduc-

tivity, spectral functions and photoemission rates are also calculated from the correlation

functions of two electromagnetic currents. In fact, these properties have been calculated

in [37] in the strong coupling limit for 1 ≪ λ ≪ N , while in [38–41] the O(α′3) corrections

from type IIB superstring theory have been calculated. Although these calculations strictly

hold in the large N limit and the strong coupling expansion, i.e. 1/λ, it turns out that by

setting N = 3 and λ ≈ 15 there is a good agreement with lattice QCD simulations [42]. In

addition, for the N = 4 SYM plasma at strong coupling the structure functions F1 and F2

have been obtained in [43, 44], while O(α′3) corrections from type IIB string theory have

been calculated in [45].

2Notice that for the comparison with lattice QCD data we consider FL ∼ F2 since F1 is sub-leading in

the large energy limit.
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Recall that in the present work we focus on the parametric region where 1/
√
λ ≪

x < 1. On the other hand, it is worth mentioning that a remarkable effort has been

carried out, both theoretical and experimental, in order to investigate the parametric region

x ≪ 1/
√
λ and for large virtual momentum transfer. Considering QCD at high-energy

small-angle scattering, the traditional approach has a soft Pomeron Regge pole for the

tensor glueball, and also there is a hard BFKL Pomeron in the leading order at weak

coupling. In [24] it has been used type IIB superstring theory in curved spacetime to

provide a simultaneous description of the BFKL Pomeron and the classic Regge regime

in QCD-like theories. Recall that the Pomeron was proposed in [46, 47] in the early

1960’s, and the BFKL method was developed in the 1970’s in [48–50]. In particular, when

considering first the large N limit followed by s → ∞ limit, scattering amplitudes in the

Regge regime are dominated by the so-called single-Pomeron exchange. For real QCD at

finite N multi-Pomeron exchange becomes important at large s. Furthermore, in [25–27] it

has been investigated in terms of the eikonal approximation, by considering multi-graviton

exchange between two dilatons in the type IIB supergravity background, which leads to

four closed string scattering amplitude with an arbitrary number of loops in the eikonal

approximation. Also the eikonal approximation in the context of the AdS/CFT duality

was developed in [28–30].

This paper is organized as follows. In section 2 we carry out a detailed derivation

of the interaction Lagrangian at different orders in terms of the D7-brane fluctuations.

This is done by starting from the Dirac-Born-Infeld action of the D7-brane in the probe

approximation. We also describe the solutions of the corresponding equations of motion.

In section 3 we calculate the leading one-loop Feynman-Witten diagram in type IIB super-

gravity, which corresponds to the Bjorken parameter range 1/
√
λ ≪ x < 1. Then, from

this one-loop supergravity diagram we obtain the structure functions for scalar mesons. In

section 4 we perform a comparison with lattice QCD simulations and with phenomenolog-

ical results, and carry out the discussion and conclusions. Some details of the calculations

are described in the appendices.

2 The interaction Lagrangian

2.1 Derivation of the interaction Lagrangian from the D7-brane DBI-action

In this section we begin with the derivation of the interaction Lagrangian corresponding

to scalar mesons from the Dirac-Born-Infeld action of a single D7-brane3 in the AdS5 ×S5

background obtained from the backreaction of N D3-branes in type IIB superstring theory

ds2 =
r2

R2
ds2(E(1,3)) +

R2

r2
d~Z · d~Z . (2.1)

Let us call the metric (2.1) GAB, with A,B = 0, 1, · · ·, 9. The Dirac-Born-Infield action of

the D7-brane is given by

S = −µ7

∫

d8ξ
√

− det(P [G]ab + 2πα′Fab) +
(2πα′)2

2
µ7

∫

P [C(4)] ∧ F ∧ F , (2.2)

3We consider a single-flavor calculation in the dual gauge field theory. The multi-flavor generalization

can be easily done following [5], where a single-hadron final state has been considered.
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where the relevant part of the Ramond-Ramond potential C(4) is given in [1], while P

stands for the pullback of the metric

P [G]ab = GAB
dxA

dξa
dxB

dξb
, (2.3)

being a, b = 0, 1, ···, 7 the indices which parameterize the D7-brane coordinates. The coordi-

nates perpendicular to the D7-brane are Z5 and Z6, and following [1] one can parameterize

the transversal fluctuations in terms of two scalar fields χ and φ by

Z5 = 2πα′χ , Z6 = L+ 2πα′φ , (2.4)

which represent the holographic scalar mesons. On the other hand, Zi with i = 1, . . . , 4

are parameterized in terms of spherical coordinates with radius ρ and angles ψ, θ and ω.

The radial coordinate r of the AdS5 can be written in terms of the new coordinates as

r2 = ρ2 + (L+ 2πα′φ)2 + (2πα′χ)2 , (2.5)

and the metric induced by the D7-brane fluctuations is then

ds2 =
r2

R2
ds2(E(1,3)) +

R2

r2
[(2πα′)2(dχ2 + dφ2) + dρ2 + ρ2dΩ3] . (2.6)

In order to solve the equations of motion (EOM) we consider the static gauge with xi = ξi

for i = 0, . . . , 3, while ρ = ξ4, ψ = ξ5, θ = ξ6 and ω = ξ7. Therefore, the holographic

scalar mesons are functions of these coordinates: φ(ξi) and χ(ξi). Moreover, in order to

obtain the interaction vertices one has to carry out a Taylor series expansion in φ and χ

around the classical solution φ = 0 and χ = 0. We identify two kinds of fluctuations of the

pullback

P [G]ab =

(

GMN |χ,φ=0 +
∂GMN

∂χ
|χ,φ=0 χ+

∂GMN

∂φ
|χ,φ=0 φ+O(φ2, φχ, χ2)

)

×
(

δMa δNb + δM8 δN8 ∂aφ∂bφ+ δM9 δN9 ∂aχ∂bχ
)

. (2.7)

Recall that the zeroth order term, P [G]
(0)
ab , is given by gab ≡ GMN |χ,φ=0δ

M
a δNb , and it is

obtained from the induced metric on the D7-brane

ds2 =
r20
R2

ηµνdx
µdxν +

R2

r20

(

dρ2 + ρ2dΩ2
3

)

, (2.8)

where µ, ν = 0, 1, 2, 3, and r20 = ρ2 + L2. Thus, due to fluctuations perpendicular to the

D7-brane the pullback changes as P [G]
(0)
ab → P [G]ab = P [G]

(0)
ab + hab +Xab. We can write

hab =
∑

i h
(i)
ab , with i = 1, . . . , 4 indicating at which order the scalar fluctuations appear in

the metric. Fluctuations hab come from the δMa δNb terms in equation (2.7). In addition,

we must consider the contributions due to the product of the metric expansion times the

derivatives of the scalar fluctuations. These generate the kinetic terms of the effective

Lagrangian. They are also induced by the perturbations in the transverse directions to the

D7-brane and are denoted by Xab =
∑

j X
(j)
ab with j = 2, 3, 4 being j the order at which

the fluctuation appears.

– 6 –
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In order to calculate hab and Xab, let us focus on the fluctuations of metric tensor. We

only need to consider the following metric warp factors:

r2

R2
=

r20
R2

+
1

R2

[

2(2πα′)Lφ+ (2πα′)2(φ2 + χ2)
]

(2.9)

R2

r2
=

R2

r20
+

R2

r40

{

−2(2πα′)Lφ+ (2πα′)2
[(

4
L2

r20
− 1

)

φ2 − χ2

]

+
(2πα′)3

r20
4L

[(

1− 2
L2

r20

)

φ3 + φχ2

]}

+O(φ4, φ3χ, . . .) . (2.10)

The expansion is written up to fourth order terms indicated by O. By plugging these

expressions in the induced metric (2.6) we obtain the hab and the Xab contributions. The

latter are given by

Xab = (2πα′)2
[

R2

r20
+

R2

r40

{

−2(2πα′)Lφ+ (2πα′)2
[(

4
L2

r20
− 1

)

φ2 − χ2

]}]

×

(∂aφ∂bφ+ ∂aχ∂bχ) ≡ X
(2)
ab +X

(3)
ab +X

(4)
ab . (2.11)

Now, let us consider a generic background metric Mab with perturbations of the form

mab. One can write the following expression

√

det (Mab +mab) =
√
M

[

1 +
1

2
m+

(

1

8
m2 − 1

4
m ·m

)

+

(

1

48
m3 − 1

8
m(m ·m) +

1

6
m ·m ·m

)

+

(

1

384
m4 +

1

32
(m ·m)2 − 1

32
m2(m ·m) +

1

12
m(m ·m ·m)

−1

8
m ·m ·m ·m

)]

, (2.12)

where all indices are raised and lowered with the unperturbed metric M . We use the

following notation:

m ≡ ma
a = Mabmab , m2 = (Mabmab)

2 , m ·m ≡ ma
bm

b
a = M bcMadmabmcd.(2.13)

In the present case we set Mab = gab, i.e. the unperturbed metric induced on the D7-brane,

and consider the following matrix perturbationmab = hab+Xab+F̃ab, where F̃ab = 2πα′Fab.

Recall that Fab are the contributions from the fluctuations along the D7-brane directions

associated with vector mesons.

Now, we can derive the Lagrangian terms order by order in the perturbations as follows.

First order effective Lagrangian. As expected, there are no linear terms in the fluc-

tuations of the metric, thus this Lagrangian vanishes as shown below4

L1 = −µ7
√−g

[

1

2
m(1)

]

= −µ7

2

√−g gab
(

h
(1)
ab + F̃ab

)

= −µ7

2

√−g h(1) = 0 , (2.14)

where obviously gabF̃ab = 0, while the trace of h(1) also vanishes.

4Note that X
(1)
ab = 0.
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Second order effective Lagrangian. This leads to the kinetic terms for the scalar and

vector fluctuations which correspond to the kinetic terms of the holographic scalar and

vector mesons as in [1],

L2 =−µ7
√−g

[

1

2
m(2) − 1

4
m(1) ·m(1) +

1

8
(m(1))2

]

=−µ7
√−g

[

1

2
(h(2)+X(2))− 1

4
(F̃ · F̃+h(1) · h(1) + h(1) · F̃ )+

1

8
((h(1))2+F̃ 2+h(1)F̃ )

]

=−µ7
√−g

[

1

2
X(2) +

1

4
F̃ · F̃

]

=−µ7(2πα
′)2

√−g

[

1

2

R2

ρ2 + L2
gab (∂aφ∂bφ+ ∂aχ∂bχ)−

1

4
FabF

ab

]

. (2.15)

Note that there are several vanishing terms due to the antisymmetric character of Fab, and

in addition the sum of all terms coming exclusively from hab at any order in the scalar

fluctuations vanishes.

Third order effective Lagrangian. The non-vanishing terms are

L3 = −µ7
√−g

[

1

2
(X(3) − h(1) ·X(2)) +

1

2
h(1) · F̃ · F̃

]

, (2.16)

which after looking for the explicit dependence of the scalar fluctuations becomes

L3=−µ7(2πα
′)3

√−g

[

R4L

(ρ2+L2)3
φ(∂µφ∂νφ+ ∂µχ∂νχ)η

µν +
L

ρ2+L2
φ(FaIF

aI−FaµF
aµ)

]

,

(2.17)

as reported in [1].

Fourth order effective Lagrangian. The fourth order Lagrangian is

L4 = −µ7
√−g

[

1

2
X(4) +

1

8
(X(2))2 − 1

4
X(2) ·X(2) +

1

32
(F̃ · F̃ )2 − 1

8
F̃ · F̃ · F̃ · F̃

−1

2
h(2) ·X(2) +

1

2
h(1) · h(1) ·X(2) +

1

2
F̃ · F̃ ·X(2) − 1

8
X(2)(F̃ · F̃ ) (2.18)

−1

2
h(1) ·X(3) + h(1) ·X(2) · F̃ +

1

2
h(2) · F̃ · F̃ − 1

2
h(1) · h(1) · F̃ · F̃

−1

4
h(1) · F̃ · h(1) · F̃

]

.

While these vertices could appear in different one-loop diagrams the related amplitudes

turn out to be sub-leading in the high energy limit. Thus, it is not necessary to write down

the explicit form of this Lagrangian in terms of the meson fields.

All these are terms of the Lagrangian which are obtained by considering scalar and

vector fluctuations on the D7-brane contributing to the one-loop Feynman-Witten diagrams

on the gravity side of the calculations.
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Effective interaction Lagrangian for gravitons propagating on the D7-brane.

In addition to the effective interaction Lagrangian due to transversal and longitudinal

fluctuations of the D7-brane, there are also tensor fluctuations of the induced metric on

the D7-brane, gab. They are obtained by considering small perturbationsHab corresponding

to gravitons propagating within the D7-brane worldvolume. The effect of this type of tensor

fluctuations is reflected both on the squared root of the determinant of the metric, as well

as, on the metric used to raise indices on the D7-brane directions. These perturbations

couple to fluctuations on the D7-brane. We can consider the fluctuations of the metric of

the form GMN +HMN (xµ) leading to extra contributions to the pullback δP [G]H due to

the ten-dimensional bulk metric fluctuations HMN ,

δP [G]Hab =
3

∑

i=1

H
(i)
ab = Hab +Ha8(2πα

′)∂bφ+H8b(2πα
′)∂aφ+Ha9(2πα

′)∂bχ

+H9b(2πα
′)∂aχ+H89(2πα

′)2∂aφ∂bχ . (2.19)

Note that these contributions only include a single graviton. Thus, cubic vertices having a

single graviton come from the following Lagrangian

Lgraviton =−µ7
√−g

[

1

2
H(3) − 1

2
H(2) · h(1) − 1

2
H(1) · h(2) + 1

2
H(1) · h(1) · h(1) + 1

4
H(1)X(2)

−1

2
H(1) ·X(2) +

1

2
H(1) · F̃ · F̃ − 1

8
H(1)(F̃ · F̃ )

]

. (2.20)

By using the DIS Ansatz for the graviton Hmi ∼ Amvi, where Am is a five-dimensional

gauge field on AdS5 while vi is a Killing vector of S3, all terms containing H
(2)
ab and H

(3)
ab

vanish. Similarly, the trace of H(1) is zero. Also terms like H(1) · h(2) and H(1) · h(1) · h(1)
vanish because h

(i)
ab and gab are diagonal. Therefore, the above Lagrangian becomes

Lgraviton = −µ7
√−g

[

−1

2
H(1) ·X(2) +

1

2
H(1) · F̃ · F̃

]

. (2.21)

In principle, we have quartic vertices5 which contain a gravi-photon and three mesons. They

have the same contribution in powers of N that the diagram with two cubic vertices (one

of them contains the graviton).6 We do not write them explicitly because these diagrams

produce sub-leading contributions in powers of Λ2/q2 and will be more suppressed as in [31].

2.2 Solutions of the equations of motion

The equations of motion of the mesons are obtained from the second order fluctuations

calculated in last subsection. For scalar mesons, the quadratic Lagrangian is given by X
(2)
ab

and the EOM is

∂a

(

ρ3
√−g

ρ2 + L2
gab∂bφ

)

= 0 . (2.22)

5These vertices come from H(1) ·X(3) or H(1) · h(1) ·X(2).
6See subsection 3.2.
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The solutions have been calculated in terms of Hypergeometric functions in [1]. L ∼ ΛR2

plays the role of a cut-off in the radial coordinate. In the limit L → 0 the conformal

symmetry is recovered, the coordinate ρ → r and the induced metric becomes AdS5 × S3.

We are interested in the high energy limit, q2 ≫ Λ2, therefore we shall consider finite

but small values of L such that the background is approximately AdS5 × S3 and the

solutions are somehow similar to those for glueballs in AdS5 ×S5. This allows one to have

cubic vertices which are linearly proportional to L, and use the solutions of meson fields

obtained in [4]. By solving the EOM in the limit ρ ≫ L and by imposing a hard cut-off,

we obtain the solutions for the scalar fields Φ = φ, χ with some four-momentum kµ as

Φ(l)(xµ, z,Ω) = ceik·xzJ∆−2(kz)Y
l(Ω) , (2.23)

where we have introduced the variable z = R2/ρ and a normalization constant c ∼
√
Λk,

while Y l(Ω) is a scalar spherical harmonic on S3. Notice that for closed strings there is

a factor z2 instead of z multiplying the Bessel function J . The EOM for the gauge fields

(Fab = ∂aBb − ∂bBa) on the D7-brane which follows from the second term in (2.15) plus

the Wess-Zumino term, is

∂a

(√−gF ab
)

− 4ρ(ρ2 + L2)

R4
ǫbjk∂jBk = 0 , (2.24)

where ǫijk is the Levi-Civita pseudo-tensor density, the indices a, b, c, . . . run over all

directions of the D7-brane world-volume, and i, j, k, . . . belong to S3. The second term

is the contribution from the Wess-Zumino action and it is nonzero only if b is one of the

S3 indices. We can expand Ba in scalar and vector spherical harmonics on S3, and obtain

three modes

type I : Bµ = 0, Bρ = 0, Bi = φ±
I (ρ) e

ik·x Y l,±1
i (Ω), (2.25)

type II : Bµ = ζµ φII(ρ) e
ik·x Y l(Ω), k · ζ = 0, Bρ = 0, Bi = 0, (2.26)

type III : Bµ = 0, Bρ = φIII(ρ) e
ik·x Y l(Ω), Bi = φ̃III(ρ) e

ik·x ∇iY
l(Ω). (2.27)

Y l,±1
i (Ω) and ∇iY

l(Ω) are the different vector spherical harmonics on S3. The solutions are

associated with different representations of the isometry group of SO(4) ≈ SU(2)× SU(2).

The properties of the modes and their on-shell solutions are shown in table 1. For type I

and III modes, which interact with the scalar meson, we obtain the following ρ dependence

(in the limit q2 ≫ Λ2)

φ±1
I (ρ) = cI

J∆−2(
MR2

ρ )

ρ2
, φIII(ρ) = cIII

J∆−2(
MR2

ρ )

ρ2
, φ̃III(ρ) =

1
ρ∂ρ(ρ

3φIII(ρ))

l(l + 2)
, (2.28)

where the constants are cI ∼ R4
√
MΛ and cIII ∼ R2

√

l(l+2)Λ
M . In this work we use the

propagator of the type I mode. Since the solution in the AdS is analogous to the glueball

solution, we can use a similar propagator as in references [31, 32]

G∆(x, z;x
′, z′) = −

∫

d4k

(2π)4

∫

dω ω

ω2 + k2 − iε
z2J∆−2(ωz)(z

′)2J∆−2(ωz
′), (2.29)

together with the corresponding vector spherical harmonics.
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Field Type of field in 5D Built from ∆(l) SU(2)× SU(2) irrep

φ, χ scalars φ, χ l + 3, l ≥ 0
(

l
2 ,

l
2

)

Bµ vector BII
µ l + 3, l ≥ 0

(

l
2 ,

l
2

)

φ−
I scalar BI

i l + 1, l ≥ 1
(

l+1
2 , l−1

2

)

φ+
I scalar BI

i l + 5, l ≥ 1
(

l−1
2 , l+1

2

)

φIII scalar BIII
i,z l + 3, l ≥ 1

(

l
2 ,

l
2

)

Table 1. Some features of D7-brane fluctuations around the AdS5 × S3 background which are

relevant to this work. The integer l indicates the SO(4) ∼ SU(2) × SU(2) irreducible representa-

tion (irrep) and defines the corresponding Kaluza-Klein mass. The relation between the scaling

dimension of the associated operator ∆ and l is written.

Using the gauge/string duality the current operator inserted at the boundary of the

AdS excites a non-normalizable mode which propagates within the bulk. The perturbations

(gravi-photons) take the form δGmi = Amvi. The field Am is derived from a Maxwell

Lagrangian in the AdS space with the boundary condition Aµ(y,∞) = nµ eiq·y. In the

Lorentz-like gauge the solution is given by

Aµ = nµ eiq·y q z K1(q z) , Az = i n · q eiq·y z K0(q z), (2.30)

where K0 and K1 are modified Bessel functions of the second kind.

3 The leading diagram in the 1/N expansion

3.1 DIS and comments on the FCS tree-level calculation

The DIS cross section is related to the matrix element of a product of two electromagnetic

currents Jµ(y) Jν(0) inside the hadron. Through the so-called optical theorem, one has to

calculate the FCS process associated with the DIS one. Specifically, there are two steps to

follow. The first one is given by the operator product expansion of Jµ(y) Jν(0), which is

obtained within an un-physical region of the Bjorken parameter, x ≫ 1. For the second

step one needs to consider the dispersion relations in order to connect the un-physical

calculation with the physical DIS process for 0 ≤ x < 1.

Recall that the matrix element of two electromagnetic currents Jµ(y) Jν(0) inside a

hadron can be expressed by using the Tµν tensor. For the incoming and outgoing hadrons

with polarizations h and h′, we can write

Tµν(q
2, x) = i

∫

d4y eiq·y 〈P, h′|T̂ (Jµ(y) Jν(0))|P, h〉 . (3.1)

By using the optical theorem the Tµν tensor is related to the hadronic tensorWµν as follows,

Wµν(q
2, x) = i

∫

d4y eiq·y〈P, h′|[Jµ(y), Jν(0)]|P, h〉 . (3.2)
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In the present work we investigate scalar mesons, which reduces this tensor to only two terms

Wµν = F1(x, q
2)

(

ηµν −
qµqν
q2

)

+
2x

q2
F2(x, q

2)
(

Pµ +
qµ
2x

)(

Pν +
qν
2x

)

, (3.3)

where it has been used the Bjorken parameter defined as

x =
−q2

2P · q , (3.4)

while F1(x, q
2) and F2(x, q

2) are the so-called structure functions. At weak coupling these

functions are obtained within the parton model, and they are related to the parton distri-

bution functions (PDFs). The PDFs represent the probability of finding a parton with a

fraction x of the target hadron momentum, P . Particularly, from the optical theorem one

learns that 2π times the imaginary part of the structure functions associated with FCS

gives exactly the DIS structure functions. Based on this Polchinski and Strassler [23] pro-

posed a way to calculate structure functions at strong coupling by using the gauge/string

theory duality.

The tree-level type IIB supergravity calculation, which in terms of the 1/N expansion

implies taking the large N limit from the beginning, has been done in [4] and [5]. In the

range 1/
√
λ ≪ x < 1 the results using the D3D7-brane model for scalar mesons have been

obtained in [4] for one flavor (and in [5] for the multi-flavor case) obtaining

F1 = 0, F2 = Ã0Q2

(

Λ2

q2

)l+2

xl+4 (1− x)l+1 , (3.5)

where Ã0 = 22l−4 π−7 (l + 2)!2 |ci|2 |cX |2 is a dimensionless normalization constant, while

ci and cX are the normalization constants of the incident and intermediate (in FCS) scalar

mesons. We consider that the integer l > 0, which means that the scalar fields are charged

under a U(1) group. Notice that Q labels the charge under the U(1) symmetry group

induced by transformations on the three-sphere in the direction of the Killing vector vj .

On the other hand, although in the present work we only consider the calculation

within the validity range of supergravity, we can also write the structure functions for

scalar mesons for small x values within the range exp(−
√
λ) ≪ x ≪ 1/

√
λ. In this case the

calculation has been done by considering type IIB string theory scattering amplitudes of

two open strings (representing the scalar mesons) and two closed strings (which represent

the two virtual photons in the FCS). This has been done in [6], obtaining

F1 =
π2

16x2
ρ3 |ci|2

(

Λ2

q2

)l+1
1√
4πλ

I1,2l+5 , (3.6)

F2 =
π2

8x
ρ3 |ci|2

(

Λ2

q2

)l+1
1√
4πλ

(I0,2l+5 + I1,2l+5) . (3.7)

Notice that ρ3 is defined through the normalization condition for the spherical harmonics

on S3

∫

dΩ3

√

g̃ vi v
i Y (Ω3) Y

∗(Ω3) = ρ3 R2 . (3.8)
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Also the definition of Ij,n is given in terms of the integral of the square of the modified

Bessel functions of the second kind times integer powers of its argument ω = qR2

r ,

Ij,n =

∫ ∞

0
dω ωnK2

j (ω) . (3.9)

Next we focus on the type IIB supergravity calculation of one-loop diagrams which are

the holographic dual representation of the one-loop FCS corresponding to a DIS process

with two outgoing hadron states. The following calculations hold in the kinematical range

1/
√
λ ≪ x < 1, and at strong coupling.

3.2 The leading diagram for the one-loop FCS calculation

We can redefine the fields in such a way that their kinetic terms become canonically nor-

malized in terms of N , i.e. they do not depend on N . Through this field redefinition it

is possible perform the 1/N counting of each Feynman-Witten diagram. By noting that

µ7 = [(2π)7gsα
′4]−1 = 2N [R4(2π)6α′2]−1, the scalar and vector meson fields are redefined as

φ → φ√
N

, χ → χ√
N

, Fab →
Fab√
N

. (3.10)

Notice that with this field redefinition the cubic and quartic vertices have the factors 1/
√
N

and 1/N , respectively.

In addition, the normalization for the graviton modes (closed strings) implies a different

power of N in comparison with the meson fields, since in order to obtain canonically

normalized quadratic terms one has to re-scale

Hab →
Hab

N
, (3.11)

since the Newton’s constant in type IIB supergravity is 1/k210 = N2/(4π5R8).

The arguments used to select the leading diagram contributing to the 1/N expansion

are similar to those exposed in [31] and [32]. The idea is to understand what changes

when considering large but finite values of the number of color degrees of freedom in the

holographic calculation of the structure functions Fi(x, q
2) of scalar mesons obtained from

the D3D7-brane model, with respect to the methods and results of the tree-level calculation

performed in [4, 5]. Moreover, we want to compare both the results of the present 1/N

expansion and those of [4, 5, 7] in the large N limit with lattice QCD simulations for the

first three moments of the F2 structure function of the pion [8–10]. Since we focus on the

1/
√
λ ≪ x < 1 range the supergravity description is accurate enough. Therefore, in order

to obtain the leading 1/N correction7 we have to consider all one-loop diagrams that can

be drawn for the holographic dual FCS process. This involves two non-normalizable gauge

bosons Aµ coming from the boundary, plus two normalizable modes on the D7-brane, in

7In fact, at the end of the calculation, after considering the high energy limit first, it will become clear

that the result will not be a correction but the leading contribution. Obviously, if one considers the large N

limit first, which in the high energy limit is not the physical situation, it can be seen as a 1/N correction,

see equation (1.1).
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this case the scalar mesons that describe the D7-brane transverse fluctuations. By using

the optical theorem we just need to calculate the imaginary parts of these diagrams, which

means that we have to introduce a vertical cut in the one-loop supergravity Feynman-

Witten diagrams and, therefore, we have to consider two-particle on-shell intermediate

states. All these fields and their interactions have been described in the previous section for

small but non-vanishing L. This permits to unveil important physical aspects of the process.

The crucial point is that we are working in the large-q2 limit. This allows one to

classify diagrams in a Λ2/q2 series expansion. The qµ four-moment is carried by a gauge

field, which is the holographic dual representation of a virtual photon on the boundary

gauge theory. As in the case of the AdS5 × S5 fields, which we carefully studied in [31],

the vertices coupling to the Aµ field (which is a five-dimensional field after integrating over

the S3) with scalar bulk fields are always of the same form

SΦΦA ∝
∫

dp+1x
√−g hab ∂aΦ ∂bΦ , hab ∼ (Aavb +Abva) , (3.12)

where Φ represents some generic scalar field. This implies that in the on-shell evaluation

of this vertex for a given field Φ∆ coming from the IR region we will find a suppression

factor (Λ2/q2)∆−1 in the structure functions. The physical reason for this suppression is

understood as follows. Bessel-J functions of bulk fields solutions (incident holographic

hadrons) mainly live in the IR region near z ∼ Λ−1, while the Bessel-K function decreases

exponentially from the boundary towards the interior. This fall-off is characterized by q,

hence the Λ2/q2 factor and its ∆ power are related with the probability for the Φ∆ hadron

to tunnel from the IR to the UV region where it can interact with the gauge field [23].

We should mention that after studying other types of vertices, such as quartic inter-

actions, and checking that they do not change this analysis, we can conclude that the Λ/q

expansion will be dominated by processes where the non-normalizable gauge field inter-

acts with the scalars with the smallest possible value of ∆. In the N → ∞ limit there is

only one allowed interaction vertex, and this index (conformal dimension) is fixed by the

incoming hadron with its associated scaling dimension ∆in, but when the number of color

degrees of freedom becomes finite one must take into account the one-loop processes where

the initial hadron splits into two other particles, and only one of them interacts with Aµ.

The leading contribution comes from the case where this splitting happens in IR region.

Furthermore, among the fields that one obtains within the D3D7-brane model we can see

that the type I gauge fields will play a key role since they can have the lowest ∆min = 2

index. Note that this is the same ∆min that we have obtained in [31] in the AdS5 × S5

context from the scalar fields usually called s-scalars, a particular combination of graviton

and 4-form perturbations [51]. Thus, the 1/q2 dependence of the final result will be the

same as in our paper [31], however the dependence on the Bjorken parameter x will be

significantly different.

The conclusion from this analysis is that the fields involved in the calculation and the

diagram rendering the leading contribution to the on-shell scattering amplitude and the

structure functions of the scalar mesons are given schematically by the diagram of figure 1.
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Figure 1. Feynman-Witten diagram corresponding to the left side of the cut (vertical long-dashed

line) of the leading one-loop FCS related through the optical theorem to the DIS diagram with a two-

hadron final state. The field associated with each line is explicitly written with the corresponding

four-dimensional momenta, ∆ indices and AdS masses. The solutions are described in section 2.

In the following subsection we will analyze explicitly the two interaction vertices and

the propagator that appears in this diagram. The interaction vertices are: the IR vertex

where the initial hadron splits into two intermediate hadrons, and the UV vertex where

one of the resulting fields interacts with the gauge field near the boundary. We will also

carry out the final steps of the calculation and, within some approximations, obtain the

explicit form of the longitudinal structure function FL = F2 − 2xF1.

3.3 The UV interaction vertex

This vertex comes from the second term in the Lagrangian of equation (2.21), where the

metric fluctuation couples to two vector modes. In principle, both Fab can be built out

from one of the vector modes of type I±, II or III. The one associated with the vertical

propagator in figure 1 must be the type I− mode, which has the lowest possible index

∆min = 2. The relevant interaction is of the form AφIφI . The situation where the second

vector involved in the UV interaction vertex is a type II or type III mode is excluded

since in that case the interaction Lagrangian vanishes because of the angular integral. The

effective action associated with this vertex is

SAφIφI
= −µ7

N
(2πα′)2

∫

d4x dρ dΩ3
√−g

1

2
H(1) · F I · F ∗I , (3.13)

where

F I
µν = 0 , F I

µz = 0 , F I
µi = ∂µB

I
i , F I

zi = ∂zB
I
i , (3.14)
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thus, we have

H(1) · F I · F ∗I = gbcgdegafhabF
I
cdF

∗I
ef

= AµvigdeF I
µdF

∗I
ei +AµvigdeF I

idF
∗I
eµ

= Aµvi∂µB
j
I

(

∂jB
∗I
i − ∂iB

∗I
j

)

+Aµvi∂µB
∗j
I

(

∂jB
I
i − ∂iB

I
j

)

= −
(

Aµ∂µB
jvi∂iB

∗
j +Aµ∂IB

∗jvi∂iBj

)

. (3.15)

In order to evaluate the on-shell vertex one must insert the actual form of the solutions

described in the previous section and integrate over the eight-dimensional space. The

integration over the first four coordinates xµ is trivial since it always renders the momentum

conservation condition associated with the corresponding momenta. The integrals over the

spherical harmonics can be simplified by considering the charge eigenstates8

vi ∂iY
j = iQ Y j . (3.16)

Finally, by changing variables z = R2

ρ , the effective action becomes

SAφIφI
= i Q µ7

N
2 (πα′)2

∫

d4x dz dΩ3
√−g Am(z)×

(

BIi(z,Ω) ∂mB∗I
i (z,Ω)−B∗I

i (z,Ω) ∂mBIi(z,Ω)
)

. (3.17)

Type I modes labeled with (±) are orthogonal and therefore they do not couple to each

other. The only outgoing particle is a type I scalar mode with label (−) and with the

same quantum numbers with l,m,m′ as the incoming scalar. Hence, even if in the full

8-dimensional theory the type I modes come from gauge fields and the existence of their

solution rely on the presence of the Wess-Zumino term in the action together with the DBI

term in [1] the angular integral only leads to charge conservation, which also indicates that

there is no mixing with other particles in this vertex. Then, the on-shell action that we

obtain is exactly the same found for glueballs [23], scalar mesons [4, 5] and s scalars [31].

After integration of equation (3.17) on S3, by using the orthogonality relations of the

vector spherical harmonics, we obtain

SAφIφI
= iQ µ7

N
2 (πα′)2

∫

d4x dz
√−g Am(z) (φI(z) ∂mφ∗

I(z)− φ∗
I(z) ∂mφI(z)) , (3.18)

where φI =
√
Λω ei(P−pω)·x z2 J∆ω−2(ωz) and φI∗ =

√
ΛM3 e

−iq′·x z2 J∆ω−2(M3z).

3.4 The IR interaction vertex

The relevant vertex couples the incident scalar meson to a scalar mode of type I− having

the smallest conformal dimension ∆min = 2 corresponding to l = 1. From the Lagrangian

at cubic order the only term which couples the scalar meson φ to type I± eight-dimensional

8Notice that the charge Q does not need to be the one carried by the initial hadron, Qi because of the

hadron splitting process.
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vector modes is the second term of equation (2.16). Thus, for small L we have9

LφFF =
µ7

N3/2
(2πα′)3

√−g
L

ρ2
φ

(

FIJF
IJ − FµνF

µν
)

.

Since one of the vector modes must be of type I−, its field strength is such that F I
µν = 0.

Hence, we are left with the term proportional to FIJF
IJ only. Note that this implies that

the on-shell mode produced in this process (whose mass is denoted by M3) cannot be a type

II mode. This means that we only have to consider scalar modes from the five-dimensional

point of view. The remaining two-form field strength contraction can be decomposed in

terms of angular coordinates on S3, and the radial coordinate ρ as

FIJF
IJ = FijF

ij + 2FiρF
iρ = 2

[

∇iBj∇iBj −∇iBj∇jBi +∇ρBi∇ρBi −∇ρBi∇iBρ
]

,

(3.19)

where in the last step we have used the fact that for a type I mode Bρ = 0. Plugging it in

the action and taking the complex conjugate field for the outgoing field we obtain

SφφIφI
= − µ7

N3/2
(2πα′)3 × (3.20)

∫

d8ξ
√−g

2Lφ

ρ2
(

∇iBj∇iBj∗ −∇iBj∇jBi∗ +∇ρBi∇ρBi∗ −∇ρBi∇iBρ∗) ,

where B corresponds to the type I− scalar mode with mass ω which comes from the

propagator and interacts with the virtual photon in the UV region. On the other hand, B∗

is the outgoing mode with mass M3. We will analyze in detail the case where this mode

is of type I±. The possibility for the on-shell mode outgoing from this IR vertex to be of

type III is considered in appendix B.

If the outgoing normalized mode corresponds to a type I scalar one has B∗
ρ = 0 and,

therefore, the last term in equation (3.20) vanishes. Plugging the solutions of the modes

in the action and taking into account that ∆ = ∆min = 2 for the scalar that corresponds

to the vertical propagating line in the diagram of figure 1 we find the following interaction

action,

SI±

φφIφI
=− µ7

N3/2
(2πα′)32LC

∫

d4x ei(p1+pω−p3)x

(

∫ 1
Λ

0
dzz2J∆i−2(M1z)J0(ωz)J∆3−2(M3z)I1

+

∫ 1
Λ

0
dz J∆Φ−2(M1z) ∂z(z

2J0(ωz)) ∂z(z
2J∆3−2(M3z)) I2

)

, (3.21)

where ∆in and ∆3 are associated with the spherical harmonic representation index of the

incident and outgoing on-shell modes, respectively, and C =
√
Λ3M1M3ω is the product

of the corresponding normalization constants discussed in section 2. In addition, I1 and I2
are integrals of the spherical harmonics on S3 defined as follows

I1 =

∫

dΩ3

(

∇i
~Y l′′ · ∇i~Y 1 Y lin −∇iY

l′′

j · ∇jY 1,i Y lin
)

, I2 =

∫

dΩ3
~Y l′′ · ~Y 1 Y lin , (3.22)

9Note that in the conformal case, i.e. L = 0, this vertex does not exist. Here, we analyze the situation

for the non-conformal background and keep a non-vanishing but small L in order to approximate the

Hypergeometric functions by Bessel functions. The L = 0 case should be analyzed in a different way.
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where l′′ and lin are related to the conformal dimensions as shown in table 1. By using

properties of vector spherical harmonics we obtain the following identity

±(l + 1)ǫilmY l,±
i = ǫilmǫijk∇jY

l,±
k = ∇lY

l,±
m −∇mY l,±

l , (3.23)

which allows us to express one of these integrals in terms of the other as

I1 =

∫

dΩ3 Y lin ∇iY l′′,±,j
(

∇iY
1,−
j −∇jY

1,−
i

)

= ∓2(l′′ + 1) I2. (3.24)

The result of the integral I1 is presented in appendix A and it restricts the conformal

dimension of the outgoing mode. In order to calculate the structure functions we have to

sum over indices m and n of the spherical harmonics of the intermediate field by using

the optical theorem. Note that there are many vanishing terms due to the U(1) charge

conservation associated with these indices.

Hitherto we have worked from first principles, finding the leading diagram and studying

the needed on-shell vertices and propagators. Once we have dealt with the angular integrals,

we are left with definite z-integrals (within the integration region given by 0 ≤ z ≤ z0,

where z = 0 is the AdS-boundary and z0 = Λ−1 corresponds to the IR cut-off) of products

of three Bessel functions of the first kind times some positive integer power of z. Since

these integrals are not known analytically, there are two ways to proceed. The first one

would be a numerical approach, simplified by the fact that since the splitting occurs mainly

in the IR region, the Bessel functions can replaced by their asymptotic expression

Jm(az) ≈
√

2

πaz
cos

(

az −m
π

2
− π

4

)

. (3.25)

However, the intricate x-dependence of the scattering amplitude difficults the extraction

of the x-dependence of the structure functions. In this work we will proceed as in [31] and

attempt to obtain these functions Fi(x, q
2) semi-analytically within the range of validity of

some reasonable approximations. Most of the details of the following calculations can be

found in our previous work [31], and the new ingredients that appear due to the different

structure of the IR vertex are analyzed in this section and are collected in appendix C.

3.5 Calculation of the structure functions

The 1/N corrections to the structure functions can be obtained from the hadronic tensor

as in [31] where glueballs have been considered. One focuses on the DIS process in the

boundary theory, and isolates the contribution from two-particle intermediate states to the

hadronic tensor Wµν in terms of the corresponding electromagnetic current Jµ one-point

functions, which is related to the FCS tensor Tµν by the optical theorem. In this context

we can schematically write

Im (Tµν
2 ) = π

∑

X1,X2

〈P,Q|J̃µ(q)|X1, X2〉〈X1, X2|Jν(0)|P,Q〉 (3.26)

= π
∑

M2,M3

∫

d3p′

2Ep′(2π)3
d3q′

2Eq′(2π)3
〈P,Q|J̃µ(q)|X1, X2〉〈X1, X2|Jν(0)|P,Q〉

= 4π3
∑

M2,M3

∫

d4q′

(2π)4
δ
(

M2
2 − q′2

)

δ
(

M2
3 − (P + q − q′)2

)

|〈P,Q|Jν(0)|X1, X2〉|2,
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where the subindex in Tµν
2 indicates that we are considering only processes with two-particle

intermediate states X1 and X2 associated with the momenta p′ and q′ (see figure 1), and

nµ〈P,Q|J̃µ(q)|X1, X2〉 = (2π)4δ(4)
(

P + q − p′ − q′
)

〈P,Q|n · J(0)|X1, X2〉 , (3.27)

is identified in the AdS/CFT duality with the amplitude of our diagram of figure 1. We

refer the reader to our previous paper [31] for details of the rest of the calculation since

there are several common steps. As in references [31, 32] the dominant diagram is the

t-channel one. Therefore, the tensor structure of the amplitude is governed by10

vµs ≡ 1

q

(

Pµ +
qµ

2x

)

and vµt ≡ 1

q

(

q′µ +
qµ

2y′

)

with y′ =
−q2

2q′ · q , (3.28)

which means that the structure functions are obtained from

F1(x, q
2) = π

∑

M2,M3

∫

d3p′

2Ep′(2π)3
d3q′

2Eq′(2π)3
(2π)4δ(4)

(

P + q − p′ − q′
)

|Ct|2

×2q2
[

v2t + 4x2(vs · vt)2
]

, (3.29)

F2(x, q
2) = π

∑

M2,M3

∫

d3p′

2Ep′(2π)3
d3q′

2Eq′(2π)3
(2π)4δ(4)

(

P + q − p′ − q′
)

|Ct|2

×4xq2
[

v2t + 12x2(vs · vt)2
]

, (3.30)

where Ct is given by

Ct(M2,M3, p
′, q′) =

∫

dz dz′
[

VIR(z)× VUV (z
′)×G(z, z′)

]

=

∫

dω
ω

ω2 + (P − p′)2
S
(z)
φφIφI

(M1,M3, ω) S
(z′)
AφIφI

(M2, q, ω) , (3.31)

where the momentum conservation Dirac delta functions have been written in equa-

tions (3.29) and (3.30). This means that we can identify a first term in the Fi functions that

fulfills exactly the Callan-Gross relation F2 = 2xF1, and a second term which contributes

to the longitudinal structure function







F1

F2

FL






=

1

N

∑

M2M3

q|~p′|
8

√

x

1− x

∫

dθ sin θ







v2t + 4x2(vs · vt)2
2x[v2t + 12x2(vs · vt)2]

16x3(vs · vt)2






|Ct|2 . (3.32)

One should keep in mind that the N−1 pre-factor carries all the dependence on the number

of colors once the fields have been re-scaled in order to obtain canonically normalized

kinetic term in the Lagrangian. The term corresponding to F1 turns out to be sub-leading

in the large-q2 expansion, thus we focus on the calculation of FL(x, q
2). The constant Ct

contains the integrals in z of each vertex as well as the contribution from the propagator

of type I scalars G(z, z′), which has the same form as in the case of glueballs.

10Note that y′ plays the role of the Bjorken parameter for the scattering of the scalar φI mode and the

gauge field Aµ.
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The main difference with respect to the glueball case of [31] comes from the integrals

of the IR interaction vertex, containing integrals of three Bessel functions of the first kind

multiplied by zκ, with positive integer values κ. Recall that the κ = 1 case appears for the

glueballs. In the present case, although the z-integrals are difficult to be solved analytically,

due to the presence of the cut-off z0 = Λ−1 we can approximately relate them to the one

with κ = 1 and then analyze them by using techniques inspired in the case studied by

Auluck [53]. These approximations are described in detail in appendix C. The resulting

formulas that will be used in the rest of this section in order to obtain the structure

functions are given by the equations

I(κ)(a, b, c,Λ) ≡
∫ Λ−1

0
dz zκ Jm(az) Jn(bz) Jl(cz)

⇒ Λ3I(4)(a, b, c,Λ) ≈ Λ2I(3)(a, b, c,Λ) ≈ ΛI(2)(a, b, c,Λ) ≈ I1(a, b, c,Λ), (3.33)

which is written up to certain O(1) numerical constants that are not relevant in studying

the leading x-dependence of the structure functions. I(1)(M1,M3, ω,Λ) is the integral

which appears in the glueball case. Equation (3.33) implies that since we are working in

the small Λ regime the larger contribution comes from the κ = 4 case, thus in what follows

we will focus on this case. However, as we will see the contribution of the other integrals

will become important in the x → 1 limit. In addition, we can perform an approximation

similar to the one we have used in [31]

I(4)(a, b, c,Λ) =

∫ Λ−1

0
dz z4 Jm(az) Jn(bz) Jl(cz)

≈
(

1

Λ

)3 1√
ab

[

(−1)αδ(c− (a+ b)) + (−1)βδ(c− (a− b))
]

, (3.34)

for some integer powers α and β that carry all the dependence on the indices of the

Bessel functions.11 The similarities between the different integrals come from the fact

that, regardless of the integration limit, as functions of c their largest contribution comes

from the region near c = |a ± b|. In this context we have ω = M1 ± M3. This kind of

behavior where bulk interactions in AdS act as some sort of energy conservation restriction

has been noted before [31, 32], and in a sense it is an intuitive interpretation for the Dirac

delta functions approximation (3.34).

Considering this approximation for the IR vertex and, since both the UV vertex and

the propagator G(z, z′) can be treated in the same way as for the glueball calculation, one

can square the amplitude, perform the ω integration and carry out the angular integration

in θ. The leading amplitude is given by ω = M1 −M3. Then, the sum over M3 indicates

that the important contributions are given when the mass M3 takes values near αM1, with

α = |~p′|/|~p|. All of these results indicate that the splitting occurs at small angles and that

the ratio between the momentum carried by the on-shell resulting particle of mass M3 and

the momentum p of the incoming hadron is similar to that of the AdS masses.12 Finally,

11See appendix C and also [53].
12As in [31] we call m2 = R−2∆(∆− 4) the Kaluza-Klein mass and Mi (i = 1, 2, 3) as the AdS masses.
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we are left with the following M2 sum

F I
L =

B2

λN

M6
1

Λ3

∑

M2

M2

q14
(M2

2 + q2)2x6(q2(1− x)− xM2
2 )

3x6
(

1 +
M2

2

q2

)6

, (3.35)

where B is a numerical constant.

The difference between this sum and the glueball one is given by some constant factors

Λ, but also M3 and ω = M1 − M3 which change the result as a function of x. Now, the

leading contribution comes from the case where M2 takes values of order q, which means

that we can treat this sum as an integral with measure dM2/Λ [23]. This integral gives the

final result for the longitudinal structure function

F
(I)
L (x, q2) =

1

λN

B2

120

(

M1

Λ

)6 Λ2

q2
x3(1− x)4(1 + 2x(2 + 5x)) . (3.36)

This is the most important result of this paper. However, since equation (3.36) behaves

as (1 − x)4 when x → 1 one has to keep in mind that there are other sub-leading z-

integrals. These contributions render terms proportional to x3(1− x)2(1 + x(2 + 3x)) and

x3(1−x)2. This last term is exactly the one that appears in the glueball case. Notice that

the x dependence is independent of the conformal dimension of the initial state. This is

very different in comparison with the large N limit, as it has been noted for the glueball

case [31]. Among the contributions coming from these terms, the one coming from the z2

and z3 integrals are the leading ones in this limit: when x → 1 they behave as (1 − x)2.

All other terms are sub-leading. The appearance of this asymptotic (1 − x)2 behavior is

an important observation in terms of the comparison with phenomenology.

Notice that the upper index in equation (3.36) indicates that this is the leading con-

tribution we have from the type I mode. Since we are using the optical theorem, we must

add to this the other leading-order contribution that we have from the possibility that one

of the intermediate states is associated with a type III mode. Details of the calculation are

shown in appendix B, being the final result of the same form as (3.36).

Finally, it is worth noticing that as expected in the leading structure function (3.36)

(and also in the rest of the contributions) the q-dependence that one obtains is the same:

the amplitude fall off is Λ2/q2. In the case of the glueballs this is predicted by OPE

arguments on the quantum field theory side [23]. The gravitational interpretation of this

is clear, when

q2 > Λ2N2/(τQ−τc) , (3.37)

the 1/N2 suppression for large (but finite) N of the one-loop level process and the

(Λ2/q2)∆in−1 suppression factor of the tree-level amplitude becomes comparable, and for

larger q the former calculation associated with two-particle final states DIS is the leading

one.13 In that case, one obtains a suppression factor Λ2/q2. Thus, initial hadron splitting

and particle creation are allowed. The scalar mode with lower Kaluza-Klein mass (i.e.

13Note that τQ is the minimum twist of a single-trace operators of charge Q, and τc is the minimum

twist of all electrically charged single-trace operators. In both cases the operator’s anomalous dimensions

are order 1.
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with ∆min = 2) is the one propagating along the vertical line and interacting with the

non-normalizable gauge field representing the holographic virtual photon. We expect the

same interplay between these two terms in the N = 2 SYM theory dual to the D3D7-brane

model. An obvious difference is that instead of the factor N2/(τQ−τc) in equation (3.37) we

should have N1/(τQ−τc) due to the fact that the fields in the hypermultiplet of the N = 2

SYM theory transform in the fundamental representation of SU(N).

4 Discussion and conclusions

In this work we have investigated the longitudinal structure function FL(x, q
2) for scalar

mesons derived from the D3D7-brane model, at strong coupling and in the 1/N expansion.

Equation (1.1) shows that the large N limit and the high energy limit (Λ2 ≪ q2) do not

commute. This is because ∆ ≥ 3 for scalar mesons (see table 1), therefore in the Λ2 ≪ q2

limit the first term is suppressed by (at least) an additional factor Λ2/q2 in comparison

with the rest of terms. This implies that in this limit the second term in that equation

becomes the leading contribution. Similarly to what happens with DIS of charged leptons

off glueballs, we find that for scalar mesons two-hadron final states dominate DIS processes.

In terms of the FCS this implies that certain one-loop Feynman-Witten diagrams in the

supergravity calculation are the most relevant ones. Using some reasonable approximations

explained in the preceding sections, we have obtained FL(x, q
2) in the high energy limit:

FL =
1

N

(

f
(1)
2 − 2x f

(1)
1

)

(

Λ2

q2

)

.

Specifically we have obtained the expression (3.36), where we have calculated the explicit

dependence on the Bjorken parameter when the FCS intermediate state corresponds to a

type I mode, and a similar expression when the exchanged particle is a type III mode.

These two expressions behave as (1− x)4 as x approaches 1. There are additional contri-

butions from the sub-leading z-integrals which behave as (1 − x)2, however they are only

relevant for x very close to 1, therefore their contribution to the moments of the structure

functions is very small. Also, we have obtained the explicit dependence on the virtual

photon momentum transfer q2.

We observe that the one-loop structure of the DIS amplitude leads to a non-vanishing

F1 structure function even for scalar hadrons, where this contribution is sub-leading in

1/N . The leading term contribution to the DIS amplitude is given by F2, or in this

case the longitudinal structure function FL = F2 − 2xF1. We have obtained the full x-

dependence for the Kaluza-Klein tower of scalar (and pseudoscalar) mesons. In all cases

the key element comes from the analysis of the z-integral of the Bessel functions involved

in the splitting process of the incoming hadron, followed by the sum over the intermediate

masses M2 and M3 (see figure 1). A remarkable effect is that in equation (3.36) there is

a factor 1/λ in addition to the 1/N factor. This is expected since the cubic interaction

vertex involving three mesons has a coupling strength proportional to

gcubic ∝
1√
N

α′

L
, (4.1)
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where L = ΛR2 and since R2 =
√
λα′ then

gcubic ∝
1√
N

1√
λ
. (4.2)

There are several interesting aspects that we should emphasize. Firstly, the l depen-

dence of the structure function appears only in the coefficients, but not in the powers of x

or (1 − x). This is an important difference with respect to the structure functions in the

N → ∞ limit [5, 7], where F2 ∝ xl+4(1 − x)l+1. This behavior has also been found for

glueballs [31]. Secondly, for all mesons the structure function behaves as FL ∼ (1− x)2 in

the x ≈ 1 region. This has already been pointed out in [7] for the pion, and the fact that

it holds for the one-loop correction and extends to the rho meson constitutes an important

test for the validity of our results. In the context of the valence structure functions it has

been found a fall-off (1− x)2±0.1 [17].

The idea of this work is to show that the contribution of certain one-loop Feynman-

Witten diagrams of FCS lead to a better agreement with lattice QCD simulations and

phenomenological results for scalar mesons, in comparison with the tree-level calculations.

Since the Bjorken parameter dependence of the results for FL is independent of ∆in it

should hold for different scalar and pseudoscalar mesons. Thus, we have compared our

results for the lightest pseudoscalar mesons from the D3D7-brane model with the pion,

for which there are more available data. In fact the structure functions of the pion, and

the associated parton distribution functions have been extensively studied allowing us to

compare with data coming from experiments and also from different phenomenological

models [11–17], as well as from lattice QCD simulations [8–10].

The experiments carried out in order to analyze the internal structure of the pion are

generally based on the Drell-Yan process within the parametric region 0.2 ≤ x ≤ 1. This

is approximately the range of values of 1/
√
λ ≪ x < 1 where the supergravity description

is accurate, since the center-of-mass energy is not high enough in order to produce excited

string states in the intermediate channels [23]. This is true at tree level, and in this work we

have assumed that the absence of excited strings also holds at one-loop level. For smaller

values of x supergravity is not a good description and one has to take into account the full

string theoretical description in the holographic dual model, in that case string loop effects

become important and, eventually, it could lead to black hole formation. Nevertheless, it

is worth noticing that even when x is small some approximations can be done in order to

describe the curved-space string theory scattering amplitude at high energy in terms of

the flat-space ten-dimensional string theory scattering amplitude [23]. We have done this

for scalar and polarized vector mesons in the N → ∞ limit in [6], i.e. for single-hadron

outgoing states. As we have pointed out in [7], in the multi-color limit the results in the

1/
√
λ ≪ x < 1 region, which one obtains from the holographic dual description of DIS

of charged leptons off mesons in terms of supergravity, are well described in terms of the

valence distribution functions. On the other hand, for smaller values of x the structure

functions obtained from the inclusion of string theory effects seem to be associated with

the contribution emerging from the soft gluons and the sea of quarks [6, 7].
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Another important data to compare with are the first moments of the structure func-

tions obtained from QCD lattice simulations. These moments are defined as

Mn[Fi] =

∫ 1

0
dxxn−1Fi(x, q

2) , (4.3)

for a generic structure function Fi. In [7] we have already analyzed our N → ∞ results

in terms of the moments of the pion and rho meson in comparison with the QCD lattice

simulations results presented in [8]. In our holographic description of scalar mesons the

lightest pseudoscalar one corresponds to the case where the initial and final states are

described by the scalar fluctuation φ whose solution has the smallest Kaluza-Klein mass

and couples to the U(1) gauge field Am given by a graviton. In the D3D7-brane model,

the smallest ∆ = l + 3 corresponds to the case l = 1, where l indicates the irreducible

representation of SO(4) ∼ SU(2)× SU(2) of the associated scalar spherical harmonic.

The first three moments of F1(x, q
2) and F2(x, q

2) have been calculated from lattice

QCD in [8] for the pion and the rho meson. We consider the moments of F2(x, q
2) for the

pion and compare them with the moments of our FL(x, q
2) since in our case F1(x, q

2) is

sub-leading. Thus, we integrate our result between x = 0.1 and x = 1, i.e. within the range

of validity of the supergravity calculations (we refer this parametric region as the large-x

region). However, since we are analyzing the first moments it is important to take into

account the region for smaller values of x in order to be able to integrate the structure

function for lower x values as well. We will assume that the small-x behavior is similar to

the one we found in [6] and used in [7], i.e., F small
L (x, q2) ∝ x−1. The reason is given as

follows. The main difference between our result for large-x in the one-loop calculation from

the leading diagram of figure 1 and the previous one obtained in the planar limit is the

fact that in the tree-level FCS calculation both the q- and x-dependence are determined

by ∆in of the target hadron, while at one-loop it is determined by ∆min. Recall that ∆min

is given by the lowest conformal dimension available among the supergravity excitations.

Nevertheless, at low-x the string theoretical calculation is independent of ∆in. In this way,

we may conjecture that in this aspect this will not be very different in comparison with the

one-loop level situation. Thus, we consider this 1/x behavior and add it to the moment

calculation by integrating it from x = 0.0001 and x = 0.1 as before [7]. We rewrite the

rest of the structure function in two dimensionless constants: one in front of the small-x

FL part and the other one multiplying the large-x FL part. Then, we carry out the best

fitting for these two constants in comparison with the lattice QCD calculations of three

lowest moments for the pion.

The results of that fitting are presented in figure 2 compared with the known results

and the previous fitting performed with the N → ∞ structure function F2. The first

constants are approximately 0.0017 and 14.47. They are similar to the ones found in our

previous work [7] in the large N limit, for which the constants associated with the small-

x FL and with the large-x FL are 0.0143 and 28.89, respectively. Another interesting

point is the ratio of the third and second moments of F2, which in large N limit gives

M3[F2]/M2[F2] = 0.69 [7], while in the high energy limit gives M3[F2]/M2[F2] = 0.55. The

last result is closer to the expected ratio near 0.5.14

14We thank Andreas Schafer for this comment.

– 24 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
3

Figure 2. The first three moments of F2 are shown for the pion. The free parameters of the

D3D7-brane model are chosen in order to fit the results of [9, 10], obtained with lattice QCD

simulations, and labeled by “Lattice QCD”. Also, for comparison we have included the best fitting

corresponding to the moments of the structure function in the large N limit, with errors up to

10.8% with respect to lattice QCD results. These are labeled by “D3D7 N → ∞”. “D3D7 1/N”

labels the best fitting corresponding to the moments of the structure function in the high energy

limit, with errors up to 1.27% with respect to lattice QCD simulations [9, 10].

Model / Moment M1(F2) M2(F2) M3(F2)

Lattice QCD 0.27 0.13 0.074

D3D7 (1/N) 0.2699 0.1326 0.0731

Percentage error 0.04 -1.27 1.27

D3D7 (N → ∞) 0.2708 0.1161 0.0803

Percentage error -0.3 10.8 -8.5

Table 2. Comparison of our new results for the first moments of the structure function F2 of the

lightest pseudoscalar meson for a suitable choice of the normalization constants with respect to

the average results of the lattice QCD simulations in [9, 10] and in comparison with the results

presented in [7]. Uncertainties in the lattice computations are omitted.

Table 2 shows a comparison of our new results for the first three moments of the

structure function F2 of the lightest pseudoscalar meson with respect to the average results

of the lattice QCD computations in [9, 10] and in comparison with the results presented

in [7] at large N . Uncertainties in the lattice computations are omitted.

We should emphasize that the divergence of the F small
L (x) which is proportional to x−1

in the x → 0 limit comes from the ultra-local approximation used in order to obtain the

effective Lagrangian of the four-point interaction from the superstring theory amplitude.

This approximation breaks down as x becomes exponentially small, i.e. x ≪ e−1/
√
λ. In this

regime it is necessary to include diffusion effects. As pointed out in the introduction, the

understanding of this parametric region from the string theory side has been notoriously
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Figure 3. F2 as a function of the Bjorken parameter x. We consider the values of the constants

which give the moments indicated in table 2.

improved [23–27]. However, the results introduced in the present work and the subsequent

comparison with the lattice QCD calculations in terms of the moments of the structure

functions are almost independent of these important corrections. We have dealt with the

indicated divergence by introducing an ultra-small-x cutoff at x = 0.0001, however the

results presented in figure 2 and table 2 are robust: they do not change significantly if we

take a smaller or a larger cutoff. For example, the absolute value of the larger error varies

between 1.22% and 1.42%, which are very similar to the 1.27% value which we refer to in

table 2.

Also, the shape of the F2 structure function as a function of the Bjorken parameter for

fixed virtual photon momentum transfer is shown in figure 3. The darker line represents the

present 1/N calculations, while the other curve corresponds to the previous ones reported

in [7] in the large N limit. For low-x we consider our previous result from [6]. The difference

between the two low-x curves is due to the slightly different constants needed for the best

fitting in each situation. Also, notice that for the 1/N expansion for small-x FL is smaller

in comparison with the large N limit, while there is an opposite trend for the larger x

region. In addition, as expected from phenomenological results the peak in FL in the 1/N

calculation moves toward smaller values of x.

Higher order moments can also be calculated from our results. We display these in

figure 4 in comparison with [54]. The difference between the corresponding first moments

of figure 4 and table 2 is due to the fact higher order moments are generally calculated

from the valence structure functions and they do not include the small-x contributions.

The analysis of this work is restricted to the 1/N corrections to the holographic dual

description of DIS of a charged lepton off scalar mesons. The Bjorken parameter depen-

dence of the structure functions for higher orders in this expansion is difficult to calculate

explicitly. However, we can comment on the q2-dependence of these terms. This depen-

dence for the leading diagram is dictated by the UV interaction vertex, which has the same

form as for the glueball case. In that situation the propagating mode is an s-scalar, also

with the lowest conformal dimension [31]. Hence, it is reasonable to expect that at higher

order in 1/N the splitting process will be more complicated, but still it will be restricted to

– 26 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
3

Figure 4. Higher moments of F2 are shown for the pion. Previous data correspond to reference [54].

the IR region. Note that for these ladder type higher-order diagrams there are in principle

two possibilities: a type I− D7-brane field and the s-scalar bulk field. In any case the

leading 1/q2 contribution should not change.

Let us very briefly comment on the L = 0 case which is very different for several

reasons. Formally a null separation between the D7-brane and the stack of N D3-branes

implies that conformal symmetry is restored, therefore the quarks become massless. This

is because for k D7-branes the beta function for the ’t Hooft coupling is proportional to

k/N , which vanishes in the probe limit [1]. From the computational point of view, the

crutial IR interaction vertex that couples the scalar mesons with any type of gauge modes

is absent. In fact, except for the non-Abelian case (number of flavors larger than one) all

three-point vertices vanish. This means that our leading diagram of figure 1 does not exist

in this case. Thus, the results will be conceptually very different in this limit. For example,

as in the previous paragraph one should go to higher orders in the 1/N expansion in order

to find a diagram with a propagating mode carrying the lowest dimension. If the number

of loops is increased one should also have higher powers of 1/λ multiplying the 1/N ones.

It is interesting to mention that in the small-x parametric region DIS cross sections

can be studied using the AdS/CFT duality, considering a systematic 1/N expansion as

developed in [25–27]. In terms of the operator product expansion, the energy-momentum

tensor, after the inclusion of associated higher-spin string excitations, leads to Pomeron

exchange. In that regime the 1/N expansion is associated with a multi-Pomeron exchange.

For a full calculation in string theory, one should calculate a worldsheet genus expansion

of the four-point string scattering amplitude, which is invariant under s− t duality. That

calculation is beyond the scope of the present research, however two different parametric

regions can be studied in order to perform a more restricted analysis. One of this is the

small-x region, where by using the eikonal approximation the 1/N expansion for glueballs

has been studied in [25–30]. A similar approach can be carried out for mesons. On the

other hand, for x larger than 1/
√
λ, as pointed out in [23], the use of supergravity Witten’s

diagrams gives an accurate enough description.
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A very interesting question concerns the effects of the inclusion of s-channel high spin

contributions. These contributions cannot be accounted for by using the pure supergravity

description. For that, in principle, it will be necessary to study string theory scattering

amplitudes in terms of the genus expansion.

Possible extensions of this work to other gauge field theories can be done by considering

the DpDp+4-brane models, which are holographic dual models of gauge theories in p+1

dimensions such as the ones discussed in [52].

Acknowledgments

We thank S. K. H. Auluck for correspondence on reference [53], and Ezequiel Koile, Gustavo
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A Spherical harmonics on S3

In this appendix we list some properties and formulas relevant for the type IIB supergravity

Feynman diagram calculation at one-loop level that we use in order to obtain the structure

functions of scalar mesons in the 1/N expansion. Several of the basic results involving

scalar and vector spherical harmonics have been derived in [55] and [56].

A.1 Basic properties of spherical harmonics

Spherical harmonics belong to representations of the isometry group of the three-sphere,

i.e. SO(4) ≈ SU(2) × SU(2). The scalar spherical harmonics transform in the
(

l
2 ,

l
2

)

rep-

resentation, where l is a non-negative integer, while − l
2 ≤ m,n ≤ l

2 . They satisfy an

orthogonality condition

∫

S3

Y m,n
l Y m′,n′

l′ = δll′ δmn δm′n′ , (A.1)

and their complex conjugate are calculated from

(Y m,n
l )∗ = (−1)m+n Y −m,−n

l . (A.2)

Spherical harmonics are eigenfunctions of the Laplace operator on the sphere

∇2Y m,n
l = −l(l + 2)Y m,n

l . (A.3)

Under parity transformation their eigenvalues are (−1)l.

A vector field on S3 can be spanned by a combination of gradients of the scalar spher-

ical harmonics ∇iY plus a set of vector spherical harmonics Y ±
i , which transform in the

(

l∓1
2 , l±1

2

)

representation of the SO(4) ≈ SU(2) × SU(2) group, with l ≥ 1. In order to

make the notation simpler, the indices m and n can be omitted. Whenever it is necessary
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to write them explicitly, we use the following notation ~Y m,n
l,ǫ , where ǫ = ±1 indicate the

representation. They satisfy the eigenvalue equations

∇i∇iY l,±
j −Rk

jY
l,±
k = −(l + 1)2 Y l,±

j , (A.4)

ǫijk∇jY
l,±
k = ±(l + 1)Y l,±

i , (A.5)

∇iY l,±
i = 0 , (A.6)

where Rij = 2δij is the Ricci tensor of an S3 of unit radius. Also, they satisfy the following

relation

~Y ∗,m,n
l,ǫ = (−1)m+n+1 ~Y −m,−n

l,ǫ . (A.7)

The vector spherical harmonics satisfy orthogonality relations,
∫

S3

~Y m,n
l,ǫ · ~Y m′,n′

l′,ǫ′ = δl,l′ δm,m′ δn,n′ δǫ,ǫ′ ,

∫

S3

~Y m,m′

l,ǫ · ~∇Y n,n′

l′ = 0 . (A.8)

The ~Y m,n
l,ǫ harmonics does not mix with other vector spherical harmonics since they belong

to different representations of SO(4).

A.2 Integrals of spherical harmonics

The interaction vertices we consider have coefficients involving integrals over three spherical

harmonics. These integrals lead to selection rules for the outgoing modes and introduce a

dependence in l. The relevant integrals are,

∫

S3

Y m,n
l

~Y m′,n′

l′,ǫ · ~Y m′′,n′′

l′′,ǫ′ =

(

l′+ǫ
2

l′′+ǫ′

2
l
2

m′ m′′ m

)(

l′−ǫ
2

l′′−ǫ′

2
l
2

n′ n′′ n

)

R1,ǫ,ǫ′(l
′, l, l′′) (A.9)

∫

S3

Y m,n
l

~Y m′,n′

l′,ǫ · ∇Y m′′,n′′

l′′ =

(

l′′

2
l′+ǫ′

2
l
2

m′′ m′ m

)(

l′′

2
l′−ǫ′

2
l
2

n′′ n′ n

)

R2(l
′, l, l′′), (A.10)

where the matrices are the 3j-symbols, while the functions R1 and R2 are defined as

R1,ǫ,ǫ′(x, y, z) =
(−1)σ+(ǫ+ǫ′)/2

π

(

(y + 1)

32(x+ 1)(z + 1)

)1/2
(

(ǫ(x+ 1) + ǫ′(z + 1) + y + 2)

(ǫ(x+ 1) + ǫ′(z + 1) + y)(ǫ(x+ 1) + ǫ′(z + 1)− y)

(ǫ(x+ 1) + ǫ′(z + 1)− y − 2)
)1/2

, (A.11)

R2(x, y, z) =
(−1)σ

′

π

[

(x+ 1)(z + 1)(σ′ − x)(σ′ − y)(σ′ − z)(σ′ + 1)

(y + 1)

] 1
2

. (A.12)

The right-hand sides of these equations are defined to be non-vanishing only if the inequality

|x−z| ≤ y ≤ x+z is fulfilled, and if σ = x+y+z
2 in R1 and σ′ = x+y+z+1

2 in R2 are integers.

The leading diagram in the 1/N expansion has an incoming scalar meson, a vector

type I (ǫ = −1) mode with l = 1, and a third field which could be a type I or type III
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mode. The intermediate meson with l = 1 only admits m′ = 0 and the n′ index can take

three possible values (±1, 0). Firstly, we consider the case with a type I (ǫ = −1) scalar as

the third field in the vertex. The angular integral is

∫

S3

Y m,n
l

~Y m′,n′

1,−1 · ~Y m′′,n′′

l′′,−1 =

(

l′′−1
2 0 l

2

m′′ 0 m

)(

l′′+1
2 1 l

2

n′′ n′ n

)

R3,−1,−1(l
′′, l, 1) . (A.13)

The first j-symbol imposes a selection rule on l′′

(

l′−1
2 0 l

2

m 0 −m

)

=
(−1)−m i−l

√
l+1

if l′′ = l + 1

0 if l′′ 6= l + 1 .
(A.14)

From the conservation conditions m + m′ = 0 and n + n′ + n′′ = 0, we can simplify the

integral and calculate the sum of the square terms by using the optical theorem

1
∑

n′=−1

((

l
2 0 l

2

−m 0 m

)(

l+2
2 1 l

2

−n− n′ n′ n

)

R3,−1,−1(l, l + 1, 1)

)2

=
1

2π2
. (A.15)

The result is independent of the conformal dimension related to the incoming field (∆ ∼ l).

If the third mode is a type I scalar with ǫ = 1 the j-symbols change and the selection rule

is l′′ = l−1, but the result is the same. However, for a type III scalar we obtain a selection

rule l = l′′ and the result depends on the conformal dimension of the incoming field

1
∑

n′=−1

((

l
2 0 l

2

m 0 −m

)(

l
2 1 l

2

−n− n′ n′ n

)

R2(l, l, 1)

)2

=
l(l + 2)

2π2
. (A.16)

B Contribution of the type III mode

Let us consider an outgoing type III mode. In eight dimensions the solution is defined by

two functions φIII(ρ) and φ̃III(ρ), and the scalar spherical harmonics Y (l)(Ω) of S3. It

takes the form [1]

Bµ = 0 , Bρ = eik·x φIII(ρ)Y
(l)(Ω) , Bi = eik·x φ̃III(ρ)∇iY

(l)(Ω) , (B.1)

where the associated conformal dimension is ∆ = l+3 and the relation between the radial

functions is

l(l + 2) φ̃III =
1

ρ
∂ρ

(

ρ3φIII

)

. (B.2)

The equation of motion is given by

∂ρ

(

1

ρ
∂ρ(ρ

3φIII(ρ))

)

− l(l + 2)φIII(ρ)−
M2R2

ρ2
φIII(ρ) = 0 , (B.3)

where we have taken L very small. Since L appears only at quadratic order in equa-

tion (B.3), we can use the L = 0 solutions for the on-shell evaluation instead of the

Hypergeometric ones corresponding to non-zero values of L. Then, the normalizable

solutions are given in terms of Bessel functions is φIII = cIIIJ∆−2(MR2/ρ) where
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cIII = R2
√

l(l + 2)Λ/M . Note that these modes have a different normalization constant

in comparison with the mode I. Plugging this expression in the on-shell interaction action

given in equation (3.20), the first two terms of the effective action vanish. Thus
∫

dΩ3 Y
l′′ ∇iY 1j

(

∇i∇jY
∗l −∇j∇iY

∗l
)

= 0 . (B.4)

Therefore, we obtain the following expression for the on-shell evaluation of the interaction

action

Sint=− µ7

N3/2
(2πα′)32L

∫

dρdΩ3
√−g

φ(ρ)

ρ2
∇ρ(φI(ρ))

(

∂ρφ̃III(ρ)− φIII(ρ)
)

Y inY Ii∇iY
III ,

(B.5)

where we have omitted the momentum conservation factor as before. This can be simplified

by using the relation between φ̃III and φIII of equation (B.2) and the equation of motion,

since they imply

∇ρ(φ̃III(ρ)) =
∂ρ

(

1
ρ∂ρ(ρ

3φIII(ρ))
)

l(l + 2)
= φIII

(

1 +
M2

3R
4

l(l + 2)ρ2

)

. (B.6)

The resulting action in terms of z = R2/ρ for the outgoing type III mode is

Sint = − µ7

N3/2
(2πα′)32L

√

M3M1ω

l(l + 2)
M3

∫

dzz2∂z(z
2J0(ωz))J∆in−2(M1z)J∆3−2(M3z)) I3,

(B.7)

where I3 =
∫

dΩ3Y
(in)~Y I ·∇Y III is the angular integral on the sphere which it is performed

in appendix A. As we can see, the z-integrals have powers of order 3 and 4 as for the

type I case. Now, one can insert this on-shell Sint in the holographic expression for the

electromagnetic current one-point function with the corresponding two-particle final state.

This leads to a non-vanishing contribution to the longitudinal structure function of the same

form as in the type I case. The M2
3 factor is canceled with the normalization constant of

the modes III. In addition, the factor
√

l(l + 2) in the denominator, which introduces a ∆

dependence, is canceled by the angular integral on S3.

C Integrals of products of Bessel functions

In this appendix we discuss the approximations of the z-integrals of three Bessel functions

at the IR interaction vertex that we use to obtain the structure functions in section 3.5.

In the case of glueballs [31], the IR interaction vertex describes a process where an

incoming hadron, whose holographic dual representation is given by a normalizable Kaluza-

Klein mode of the dilaton, splits into two other hadrons. Similarly, in the present case for

scalar mesons, in the leading contribution one of the two resulting fields has the minimal

conformal dimension ∆min. This is ∆min = 2, and it is the same both for glueballs [31] and

for scalar mesons. Considering the change of variable z = R2/r, the on-shell interaction

action involves a z-integral of the form

I(1) =

∫ zmax

0
dz z J∆in−2(M1z)J∆′−2(M3z) J0(ωz) , zmax = Λ−1 . (C.1)
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This kind of integrals are not explicitly known for arbitrary integration limits. The known

analytic results are obtained when the upper limit is z → ∞, and they can be written in

terms of Hypergeometric functions and Appell series [57]. However, an interesting numeri-

cal analysis has been developed by Auluck. In [53], it has been proposed that as a function

of one of the AdS masses, ω, and in the limit of large zmax the integral of equation (C.1) be-

haves approximately as a sum of Dirac delta functions, up to some normalization constant.

It is easy to see how these functions arise. By using the asymptotic expression15 (3.25) it

allows one to rewrite a general product of three Bessel functions Jm(az) Jn(bz) Jl(cz) as

(

2

πz

)3/2 1√
abc

cos
(

az −m
π

2
− π

4

)

cos
(

bz − n
π

2
− π

4

)

cos
(

cz − l
π

2
− π

4

)

(C.2)

=

(

2

πz

)3/2 1√
abc

∑

α=±1,β=±1

cos
[

(c− αa− βb)z + (−m+ αn+ βl)
π

2
+ (−1 + α+ β)

π

4

]

.

Now, the integration of each term multiplied by z leads to the appearance of the square of

the corresponding frequency, plus some signs and Fresnel sine and cosine functions. These

frequencies are given by |c± a± b|, and each term describes the correct behavior near the

region where one of these factors vanishes. In our case it means that the integral has two

divergencies, namely: at ω = (M1 ±M3). Another way to see this is to proceed as in [58]

by using the analytic continuation of the series expansion of the Bessel functions

Jm(az) ≈ 1√
2πaz



ei(az−mπ
2
−π

4 )
∞
∑

j=0

ij(m, j)

(2az)j
+ e−i(az−mπ

2
−π

4 )
∞
∑

j=0

i−j(m, j)

(2az)j



 , (C.3)

where

(m, j) ≡ Γ
(

1
2 +m+ j

)

n!Γ
(

1
2 +m− j

) .

By combining this expression for each Bessel function, multiplying by z and integrating

term by term, one obtains the same poles as before plus finite terms. Thus, scaling ar-

guments for the behavior of the integral under the change (a, b, c) → (ka, kb, kc) for some

constant k, together with a numerical analysis similar to the one of reference [53] around

each singularity, lead to an approximation in terms of two Dirac delta functions. It takes

the form

I(1) ≈ 1√
M1M3

[(−1)γ−δ (ω − (M1 −M3)) + (−1)γ+δ (ω − (M1 +M3))] , (C.4)

where γ± can be 0 or 1 according to the phases determined by the (m,n, l) indices in the

asymptotic approximation (C.2). They are not important for the present calculation, since

we only need the square of the first term. There is a simple physical interpretation for

this Dirac delta function behavior: it is associated with some sort of mass-conservation

condition in the IR process [31, 32].

15Since the hadron splitting occurs in the IR region this approximation makes sense because the main

contribution to the z-integral comes from values of z far away from zero.
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In the present case, the situation seems to be more complicated since we have a linear

combination of different integrals of the form

I(κ) =

∫ zmax

0
dz zκJ∆in−2(M1z) J∆′−2(M3z) J0(ωz) , (C.5)

with κ = 2, 3, 4. Naively, it seems that we might have a problem since for zmax → ∞
the integrand grows (and oscillates) with z for κ ≥ 3/2. However, we are not integrating

up to z = ∞ and the fact that there is an upper limit given by the cut-off is important.

In addition, there would be no problem even if there was no cut-off: one has to keep

in mind that the Bessel function solutions are only an approximation. The background

is not exactly AdS5 × S3 and the exact form of the solutions is given in [1] in terms of

Hypergeometric functions. The product of three of them times zκ falls off for any κ for

large z for all the values of κ we are dealing with. We do not see this explicitly because

this behavior occurs at distances larger than z ∼ R2/L, where the approximation breaks

down. On the other hand, a similar analysis singles out the same singularities on the ω-

plane. Now, all of this encourages us to consider an analogous approximation to what was

used in the glueball calculation for κ = 1, and we only need to study the behavior near

ω = M1 ±M3.

We find that these integrals behave very similarly when they are divided by an appro-

priate power of the upper limit of integration. The observed numerical behavior is depicted

by some examples where each integral is studied as a function of Λ−1 for different values of

ω (figures 5, 6 and 7). From these figures we can see that ΛI(2), Λ2I(3) and Λ3I(4) behave

in the same way, up to some O(1) numerical constants, and very similarly to I(1).

In fact, one can see directly this from (C.2) by performing first an indefinite integral

in z for the four different cases, obtaining

∫

dz z−1/2 cos(Pz + b) =

(

2π

P

)1/2
[

cos(b)C(
√
2π−1Pz)− sin(b)S(

√
2π−1Pz)

]

∫

dz z1/2 cos(Pz + b) =

(

2π

4P 3

)1/2
[

− cos(b)S(
√
2π−1Pz)− sin(b)C(

√
2π−1Pz)

+2
√
Pz sin(Pz + b)

]

∫

dz z3/2 cos(Pz + b) =
1

4

(

2π

P 5

)1/2
[

−3 cos(b)C(
√
2π−1Pz) + 3 sin(b)S(

√
2π−1Pz)

+2
√
Pz (3 cos(Pz + b) + 2Pz sin(Pz + b))

]

∫

dz z5/2 cos(Pz + b) =
1

8

(

2π

P 7

)1/2
[

15 cos(b)S(
√
2π−1Pz) + 15 sin(b)C(

√
2π−1Pz)

+2
√
Pz

(

10Pz cos(Pz + b) + (4P 2z2 − 15) sin(Pz + b)
)

]

where P stands for the deviation from ω = M1 ±M3 and b represents some phase, while

S(x) and C(x) are the Fresnel sine and cosine functions, respectively. Now, evaluating

these results between z = 0 and z = Λ−1 and expanding around the peak, i.e., around
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(a) κ = 1,ω < M1 −M3 (b) κ = 1,ω = M1 −M3 (c) κ = 1,ω > M1 −M3

(d) κ = 2,ω < M1 −M3 (e) κ = 2,ω = M1 −M3 (f) κ = 2,ω > M1 −M3

(g) κ = 3,ω < M1 −M3 (h) κ = 3,ω = M1 −M3 (i) κ = 3,ω > M1 −M3

(j) κ = 4,ω < M1 −M3 (k) κ = 4,ω = M1 −M3 (l) κ = 4,ω > M1 −M3

Figure 5. Examples of the integrals I(κ)(Λ) numerically evaluated for κ = 1, . . . , 4 and shown as

a function of the upper integration limit Λ−1. The parameters used are M1 = 15, M3 = 6 and

ω = 7, 9, 11 respectively.

P = 0 one finds that, at least in this parametric region, the different integrals are related

as stated in our approximation.

The reason for this behavior is that as the integrands of the I(n) integrals grow with z

up to zmax, the most important contribution comes from the region z ∼ zmax = Λ−1. This

was already noticed in the study of the normalization of the wave function of an incoming

glueball in [23]. Scaling arguments under the change (a, b, c) → (ka, kb, kc) also agree with

this analysis. Therefore, the approximation we use is given by equations (3.33) and (3.34).
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(a) κ = 2,ω < M1 +M3 (b) κ = 2,ω = M1 +M3 (c) κ = 2,ω > M1 +M3

(d) κ = 3,ω < M1 +M3 (e) κ = 3,ω = M1 +M3 (f) κ = 3,ω > M1 +M3

(g) κ = 4,ω < M1 +M3 (h) κ = 4,ω = M1 +M3 (i) κ = 4,ω > M1 +M3

Figure 6. The rescaled integrals Λκ−1I(κ)(Λ) are numerically evaluated for κ = 2, . . . , 4 and shown

as a function of the upper integration limit Λ−1. The parameters used are M1 = 15, M3 = 6 and

ω = 7, 9, 11 respectively. The different behaviors depicted in the previous figure disappear (up to

an order 1 constant) and the results for each ω are similar for all integrals. One can see that in all

cases the integral decreases (or gives a small constant) for all values of ω 6= ωc = M1 −M3.

(a) κ = 1, ω = 8.5 (b) κ = 1, ω = 8.75 (c) κ = 1, ω = 9 (d) κ = 1, ω = 9.25 (e) κ = 1, ω = 9.5

(f) κ = 4, ω = 8.5 (g) κ = 4, ω = 8.25 (h) κ = 4, ω = 9 (i) κ = 4, ω = 9.25 (j) κ = 4, ω = 9.5

Figure 7. The behavior of integrals I(κ)(Λ) with κ = 1 and κ = 4 near the peak is shown using

diagrams similar to the ones in the previous figures but with ω = 8.5, 8.75, 9, 9.25 and 9.5 in both

cases.
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