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Introduction

BK channels are members of a family of Ca2+ and voltage-
dependent potassium channels. They are constituted by a tetramer 
of α subunits that form the conducting pore and are encoded by 
the slo1 gene. In several tissues, BK channels have been observed 
to be modulated by auxiliary subunits, which confer important 
physiological performance to the channels. BK channels are 
ubiquitously expressed in cell membranes of mammalian tissues, 
where they couple signals that result from differences in membrane 

voltage and intracellular Ca2+ concentration, which are both key 
actors in the physiology of nervous and non-nervous cells. In this 
review we provide an overview of BK channel function and its 
relationship with structural cues, the voltage sensor domain and 
gating properties of the channels, as well as its crosstalk with its 
auxiliary subunits.

A Short Story about How BK 
Channels Were Identified

The first evidence of a K+ permeability induced by increases 
in intracellular calcium concentration was obtained in red blood 
cells.1 Later, a calcium-dependent K+ current was reported from 
experiments where Ca2+ was injected in motoneurons, resulting 
in both an increase in membrane conductance and a decrease 
in cellular excitability.2 Moreover, the removal of external 
Ca2+ was found to decrease a voltage-dependent K+ current in 
mollusk neurons.3,4 A few years later, these currents were defined 
as being carried by a calcium-dependent potassium current,5 
after which their critical role in neuronal firing properties and 
hyperpolarization was soon acknowledged.6

The year 1981 was the annus mirabilis of BK channel research, 
since abundant expression of these channels was found in skeletal 
muscles and chromaffin cells. Single channel recordings from 
skeletal muscle and chromaffin cells7,8 as well as the reconstitution 
of a calcium-dependent K+ channel in bilayers9 revealed the large 
conductance of BK channels, which ranges within 200 pS. This 
magnitude gave rise to the names MaxiK or BK, thus representing 
the large conductance potassium channel.10 With the advent 
of the giga-seal patch clamp technique11 and the possibility 
of isolating and patching small cells, BK channels were soon 
found and described in liver, lymphocyte, epithelium, exocrine, 
and endocrine glands as being linked to excitation-secretion 
coupling.8,12-14 Marty et al. discovered that channels of different 
conductance give rise to Ca2+-dependent potassium currents 
in rat lacrimal glands and named the largest conductance type 
channel BK.15 By that time, another important finding regarding 
this channel’s localization was made, namely that it is abundantly 
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Calcium and voltage-activated potassium (BK) channels 
are key actors in cell physiology, both in neuronal and non-
neuronal cells and tissues. Through negative feedback between 
intracellular Ca2+ and membrane voltage, BK channels provide 
a damping mechanism for excitatory signals. Molecular 
modulation of these channels by alternative splicing, auxiliary 
subunits and post-translational modifications showed that 
these channels are subjected to many mechanisms that add 
diversity to the BK channel α subunit gene. This complexity 
of interactions modulates BK channel gating, modifying the 
energetic barrier of voltage sensor domain activation and 
channel opening. Regions for voltage as well as Ca2+ sensitivity 
have been identified, and the crystal structure generated 
by the 2 RCK domains contained in the C-terminal of the 
channel has been described. The linkage of these channels 
to many intracellular metabolites and pathways, as well as 
their modulation by extracellular natural agents, has been 
found to be relevant in many physiological processes. This 
review includes the hallmarks of BK channel biophysics and its 
physiological impact on specific cells and tissues, highlighting 
its relationship with auxiliary subunit expression.
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expressed in smooth muscles.16 Experiments in neurons soon 
demonstrated that the BK channel is an essential component for 
neurotransmitter release in presynaptic terminals.17 In addition, 
BK channels serve as negative feedback pathways in neurons 
during membrane depolarization and changes in intracellular 
Ca2+ concentration.18,19 Contemporaneously, Miller et  al., 
discovered Charybdotoxin (ChTX), which is a scorpion toxin 
that is able to block BK channels with nM affinity.20 However, 
other K+ channels are also sensitive to ChTX, thus encouraging 
the search for a more specific toxin. Consequently, the Iberiotoxin 
(IbTx) was isolated from the scorpion venom and was shown to 
be a more specific blocker with a high degree of affinity to BK 
channels.21

A calcium-sensitive component of the potassium currents was 
soon identified in Drosophila, which was later shown to correspond 
to the slowpoke allele.22 The slowpoke was then isolated, cloned 
and expressed in heterologous systems, and shown to indeed 
produce BK channels.23,24 The BK mammalian counterpart was 
soon cloned, and it was demonstrated that general molecular 
characteristics of BK channels are evolutionarily conserved from 
fly to mouse.25

Functional BK channel diversity is quite frequent and is attained 
by alternative splicing of the α subunit, interaction with auxiliary 
subunits and other partners, post-translational modification, and 
trafficking.18,19,26 This review focuses on questions and advances 
related to the main and auxiliary subunits of BK channels, the 
molecular mechanisms proposed for gating that are governed by 
the voltage sensing domain and, finally, their relevance in certain 
cell physiology and pathophysiological events.

The Structure of the Slo Channels

The family of Slo channels is composed by the following 
three main members: (1) the BK channel, also known as Slo1; 
(2) Slo2 (with 2 variants: Slick and Slack), underlying Na+ and 
Cl--activated K+ channels; (3) and Slo3 (also called KSper), 
giving rise to the H+ activated K+ channel.19 The HUGO gene 
nomenclature, common names and locations for the 3 variants of 
Slo channels mentioned above are presented in Table 1.

Slo channels are homotetramers of 4 pore-forming α-subunits, 
whose topology resembles that of voltage-gated K+ (K

V
) channels, 

but also include a large C-terminal cytoplasmic domain and an 
extra transmembrane segment (S0), as in the case of Slo1 and 
Slo3.27,28 The C-terminus appears to confer ion sensitivity to the 
different members of this family.19 In fact, Ca2+ binding sites and 
regulatory domains have been identified in this region of the BK 
α subunit (Fig. 1). This subunit, containing about 1200 amino 
acids, also includes critical structural features of the channel such 
as ion permeation, gating, and modulation by other proteins 
and intracellular ions. The functional channel is composed of 
a tetramer of α subunits and a putative tetramerization domain, 
which has been described in the C-terminal region of the channel. 
This domain is near the pore region and is termed BK-T1.29

Electron cryo-microscopy studies have provided some insights 
about the channel’s structure in its native lipid environment. 
By averaging thousands of images of structures obtained 
from frozen vesicles, a 3D reconstruction was made with an 
approximate resolution of 20 Å.30 The general architecture of 
the channel resembles that of Kv channels, with the exception of 

Figure 1. Structural and functional characteristics of BK channels. (A) Schematic topology of 1 BK channel α subunit. (B) Homology model of BK channel 
from the side (left) and top (right). The transmembrane domain is a homology model of MthK (PDB 1LNQ) and the cytoplasmic domain corresponds 
to the crystal structure of the human BK channel gating ring. (C) HA allosteric model of BK channel activation. Activation of pore, voltage sensor and 
calcium sensor domains are described by L, J and K equilibrium constants. D, C and E are allosteric constants that couple with each functional domain 
(left). The calcium (middle) and voltage (right) dependence of open probability is also described by the HA allosteric model in a semi-logarithmic scale 
at different [Ca2+].
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large protrusions in the external aspect of the channel that may 
correspond to the S0 and N-terminal regions of the protein.

Calcium Sensitivity, Voltage Sensor, 
and Gating Mechanisms

Structure and function studies on calcium and divalent cat-
ion sensitivity

Many studies have revealed that Ca2+ binding promotes a 
leftward shift of the steady-state open probability of BK channels 
(Fig. 1C).7,8,31 The channels’ affinity to Ca2+ has been determined 
to be between 1–10 µM,32,33 and was later found to be regulated by 
modulatory proteins and metabolic conditions.34 Colocalization 
of Slo1 channels with VDCC (voltage-dependent calcium 
channels) appears to be essential for Slo1 channel activation since 
to raise the channel open probability to reasonable values (P

o
 ≥ 0.5)  

at membrane voltages in the range -50 to 0 mV requires range 
of Ca2+ concentrations of 10 μM or more.35 Colocalization of 
BK and VDCC channels has been found in hair cell (Fig. 3A, 
middle).36,37 Similarly, BK channels can form macromolecular 
complexes with VDCC channels in neurons.38 Moreover, 
cytosolic Ca2+ per se is able to open the channels.39 Current models 
have proposed that voltage sensing is more effectively translated 
into channel gating (opening) as intracellular calcium increases, 
thus imposing channels to open at more negative voltages than 
when Ca2+ is not present.31,33,39,40 Figure 1C illustrates BK Ca2+-
dependence curves at different membrane voltage.

The first site within the C-terminus to be identified as a high 
affinity Ca2+ binding site in BK channels was dubbed the Ca2+ 
bowl.41 This Ca2+ bowl contains several acidic residues (T273 
to Q910 in mSlo1) that dramatically alter the channel’s Ca2+ 
sensitivity when mutated.42-44 Soon after this finding, multiple 
sites of high Ca2+ affinity in the large intracellular proximal part 
of the C-terminus of the channel were reported.45-48 This region, 
conserved among prokaryotes and similar to TrkA domains 
that regulate K+ conductance in many prokaryotic cells, was 
established as the K+ channel conductance regulator and named 
the RCK domain (Fig. 1A and B). BK channels contain 2 RCK 
domains in tandem in the C-terminus of the α subunit, located in 
positions 340 to 610 for RCK1, and 640 to 1055 for RCK2, as was 
described for the human BK channel.49,50 The crystal structure 
of a Ca2+-gated K+ channel in bacteria, called MthK, revealed 
the existence of 4 RCK domains that co-assemble in a solution 

forming a ring. The conformation of this ring changes upon Ca2+ 
binding and is known as the gating ring.49,51 Each RCK domain 
contributes to the binding of 3 Ca2+ ions, providing a total of 24 
Ca2+ ions bound to the ring in the MthK channel.52 The RCK 
domain structure of the MthK channel has also been identified 
with Cd2+ bound to the ring,53 uncovering a large negatively 
charged surface in the C-terminal region. Neutralization of the 
charges in the RCK domain induces a change in the channel 
conformation that facilitates channel opening.53 The structure of 
the BK channel with and without bound Ca2+ has shown that Ca2+ 
stretches the intracellular region of the channel, thus transferring 
a conformational change to the coupling produced between 
voltage sensors and gating.50,52 The structural determinations of 
the BK RCK domains with 3 Å resolution50 displayed that each 
α subunit contains a pair of RCK domains in the C-terminus 
portion, and that the Ca2+ bowl resides within the distal RCK 
domain (Fig.  1A and B). Hence, as initially proposed for 
prokaryotes, eukaryotes also have an octameric gating ring in the 
intracellular C-terminal region of the channel, thus conferring 
its Ca2+ dependence.50,54 Spectroscopy and particle-scale optical 
dynamic light scattering analysis revealed a significant reduction 
and reverse in the gating ring radius upon Ca2+ binding in the BK 
channel.55 Furthermore, measurements by FRET also indicated 
that Ca2+ binding to the RCK domains induced changes in the 
gating ring, which seem to be significantly greater than those 
hypothesized by crystallography.56

In addition to calcium, other divalent ions have been reported 
to bind to the Ca2+-sensing sites of the BK channel, and some 
like Ba2+, Mg2+, Zn2+, and Cd2+ have been reported bind in 
crystallographic experimental approaches.48,53,57,58 The Mg2+ site 
is of particular interest, since it is formed by an interdomain 
composed of membrane spanning domains and cytoplasmic 
portions that are mostly located in its RCK1 domain.46,59 
Mg2+ ions that are bound to this site repel R213 residue in 
the S4 transmembrane segment, hence facilitating the active 
configuration of the voltage sensor and, consequently, the 
channel opening.59,60

The voltage sensor in BK channels
Early experiments in BK channels suggested that they could 

be activated by voltage in the absence of intracellular divalent 
cations.61 Their structural similarity to Kv channels, as observed 
by cloning the α subunit of the BK channel in Drosophila and 
mice, suggested the presence of a voltage sensor domain (VSD) 

Table 1. SLO family channels

Channel or subunit Alternating names Gene symbol (human) Location Estimated conductance

SLO1 BK, KCa, Maxi-K, KCa1.1, Big Potassium KNCMA1 10q22.3 100–270 pS

SLO2.1
Slick, KNa, KCa4.2, sodium activated potassium 

channel, sodium and chloride activated 
ATP sensitive potassium channel

KCNT2 1q31.3 60–140 pS

SLO2.2 Slack, KNa, KCa4.1 EIEE14, ENFL5 KCNT1 9q34.3 100–180 pS

SLO3 KCa5.1, Slowpoke homolog 3, pH-sensitive 
maxi potassium channel

KCNU1 8p11.2 8p11.2 pS
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(Fig. 1A), putatively lying in a conserved positively charged S4 
transmembrane spanning segment of the protein.23-25 The first 
direct demonstration that BK channels possess an intrinsic voltage 
sensor came from gating current measurements in the absence 
of intracellular Ca2+.39,62,63 The gating or sensing currents of BK 
channels proceed within a very fast time frame and have weak 
voltage dependence (~0.7e

0
/voltage sensor) compared with those 

found in Kv and Ca2+ channels. Auxiliary proteins and other 
agents can directly affect the voltage-dependence and kinetics 
of the gating currents.64,65 Studies on BK channels expressed in 
heterologous systems have also shown that several mechanisms 
are involved in channel gating based on voltage differences and 
Ca2+ changes.33,62,66,67

The S4 segment of BK channels has three positively charged 
residues (Fig. 1A), but only one (i.e., the R213) seems to contribute 
to the total amount of gating charges. Other important amino 
acid residues of the voltage sensor, including D153 and R167, are 
located in the S2 segment. However, the D186 residue, which is 
also involved in charge movements of the gating current, is present 
in the S3 segment of the channel.68 The structural rearrangements 
of the voltage sensor during BK channel activation have also been 
studied by using the voltage clamp fluorometry technique. In this 
technique,56,69 fluorescent probes are attached to cysteine residues 
in a region thought to undergo conformational changes during 
voltage sensor charge movements. Changes in the environment 
where the probe is located may result in changes in fluorescence 
intensity, which is recorded together with electrophysiological 
determinations. When the fluorescent probe is introduced in the 
S3-S4 region of the protein, measurements of voltage-dependent 

changes that correlate with fluorescence fluctuations can account 
for the conformational changes in the voltage sensor during 
channel activation. Nevertheless, extremely slow conformational 
changes were unexpectedly revealed by the fluorescent labeling 
of position 202 of the S4 segment, which might be explained 
due to the interaction of the fluorophore with nearby tryptophan 
203.69 The quenching of the fluorescent probe diminished with 
W203F mutation, suggesting that this residue acts as an intrinsic 
fluorescence quencher. Based on these results, it has been 
hypothesized that a possible secondary structure of the voltage 
sensor in the BK channel in the S3-S4 region, placing amino 
acids L204, G205, and L206 within the extracellular portion 
of the S4 helical transmembrane segment.70 Fluorescent labeling 
of tryptophan introduced residues that showed that the voltage 
sensing domain (VSD) of the S4 segment moves away from 
the S1 and S2 segments, while S2 gets closer to the S1 segment 
during voltage-dependent activation gating.71 The S0 segment 
seems to play a pivot-like role, by which the S4 segment moves 
upward during depolarization, thus facilitating the opening of 
the channel.72 All together, these results allowed for hypothetical 
interpretations of how the BK channel might function and how 
Ca2+ and voltage sensing can be incorporated so as to understand 
the BK channel as an allosteric protein.73

Mechanisms of gating: allosteric linkage of channel opening 
to voltage and calcium sensitivity

One of the most successful models that explains the behavior 
of BK channels is the one developed by Horrigan, Cui, Cox 
and Aldrich in a series of papers by the end of the 90s.33,62,67,74 
Following the Monod-Wyman-Changeux scheme of channel 

Figure 2. Ionic and gating currents for (α)BK and (α/βx)BK channels. (A) Representative families of ionic currents evoked by voltage steps of 50 ms for 
(α)BK and 120 ms for the α/βx complexes, ranging from 0 to 250 mV in 10 mV steps. Currents were recorded in 1 mM symmetrical K+ and ~5 nM Ca2+. (B) 
Gating currents elicited by 1 ms pulse duration to increasing voltages from -90 to 350 mV in increments of 10 mV; pulse duration was set to reach a quasi-
steady-state. (C) Gating charge-voltage and conductance-voltage relationships for (α)BK and (α/βx)BK channels. Q-V and G-V curves correspond to (α)
BK (black), (α/β1)BK (orange), (α/β2IR)BK (light blue), (α/β4)BK channels (bluish green). (D) Quantification of Vh and z obtained from fits to Q-V relations 
(values represent mean ± S.D).
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allosteric modeling, the authors proposed that the channel 
subunit can undergo closed to open transitions in the absence of 
Ca2+ or membrane depolarization. They also proposed that Ca2+ 
binding or membrane depolarization produces conformational 
changes that are allosterically coupled to the channel gate, hence 
facilitating its opening (Fig. 1C).39

BK Channel Diversity

Alternative splicing of BK channels
There is a single gene encoding the α subunit of BK channels, 

in contrast with other members of the voltage-dependent 
potassium channel family. The structural and functional diversity 
of BK channels has been established by alternative splicing of the 
slo1 gene and based on the association with auxiliary subunits 
that are encoded by multiple genes (Table  2). Many groups 
have described alternative gene slo1 splicing that can produce 
the α subunit of the BK channel with different functional 
properties and tissue distribution.75-78 Interestingly, the analysis 
of alternative splicing in BK channels showed that constitutive 
exons are conserved among different species of the same phylum, 
while alternative exons are not.78 Across phyla, some sites of the 
slo1 gene appear to be more susceptible to alternative splicing 
than others, thus suggesting a convergent evolution at this level.78 
A major determinant of splicing in BK channels is the STREX 
complex (stress-axis hormone-regulated exon) that changes the 

ability of the channel to respond to calcium, oxidation and 
phosphorylation shifts.79,80 It is worth noting that alternative 
splicing of the slo1 gene is critical in determining the localization 
of the BK channel in the plasma membrane or in intracellular 
organelles.81,82 Interestingly, it is yet to be known whether the α 
subunit of intracellular BK channels is associated with auxiliary 
subunits and, if it were, the question would arise as to what 
auxiliary subunits are involved.82

Another important question is how interaction among 
alternative exons regulates BK channel function. An attempt to 
answer this question was made taking advantage of the worm 
Caenorhabditis elegans.83,84 The C. elegans BK channel gene has 
only 3 sites for alternative splicing (A, B, and C), and encodes 
12 splice variants.83 The splice site enable the insertion of exons 
encoding part of the RCK1 (exons A1 and A2) and sections 
of the RCK1-RCK2 linker (exons B0, Β1, Β2, C0, and C1). 
Functional studies of all isoforms show that the A1 and A2 
exons regulate channel gating kinetics and Ca2+sensitivity but 
only if alternate exons are inserted in sites B or C. For example, 
a shift of about 40 mV in the voltage dependence arises if the 
variant (A1; B0; C1) is expressed compared with (A2; Β1; 
C0). The biophysical properties of these splice variants, plus 
eventually co-expression with auxiliary proteins, could prove 
to be essential for some physiological processes, such as voltage 
shift of that magnitude alters behavior and decrease synaptic 
transmission.85,86

Table 2. Alternative splicing variants of BK channels and modulatory subunits

Channel or subunit
Gene symbol 
(human)

Location Tissue expression

BKCa KCNMA 10q22.3

Zero: brain, kidney, thymus, stomach, muscle, small intestine, testis, adrenal gland, uterus, 
prostate, pituitary, breast virgin, breast pregnant, breast lactating, embyo (9.5, 12.5, 19 d)
STREX (e21): brain, heart, kidney, spleen, thymus, stomach, muscle, small intestine, lung, testis, 
adrenal gland, pancreas, uterus, prostate, pituitary, breast virgin, breast pregnant, breast 
lactating, breast involuting, embryo (8.5, 9.5, 12.5, 19 d)
e22: spleen, liver, muscle, small intestine, skin, uterus, prostate, breast virgin, breast pregnant, 
breast lactating, breast involuting, embryo (9.5, 12.5, 19 d)
Δe23: brain, heart, kidney, spleen, thymus, liver, stomach, muscle, small intestine, lung, testis, 
skin, adrenal gland, pancreas, uterus, prostate, pituitary, breast virgin, breast pregnant, breast 
lactating, breast involuting, embryo (8.5, 9.5, 12.5, 19 d)

β subunit

β1 KCNMB1 5q34 smooth muscle, aorta, trachea, kidney, urinary bladder, brain

β2 KCNMB2 3q26.32 spleen, placenta, pancreas, heart, kidney, uterus, chromafin cells, brain, dorsal root ganglia

β3 KCNMB3 3q26.3-q27
β3a: spleen, placenta, pancreas, heart, kidney; β3b: spleen, pancreas, kidney, heart, brain, 
placenta, lung, liver, testes; β3c: spleen, prostate, placenta, liver, kidney, pancreas, ovary, brain, 
lung; β3d: spleen, testes, placenta, kidney, pancreas, brain, lung

β4 KCNMB4 12q brain, neuronal tissue, kidney, bladder smooth muscle

γ subunit

γ1 LRRC26 9q34.3
cerebellum, brain (whole), fetal brain, testis, aorta, mucosa, lung, trachea, prostate, thyroid 
gland, thymus, salivary glands, acinar cells, epithelial cells, hair cells (inner ear), arterial smooth 
muscle cells

γ2 LRRC52 1q24.1 testis, skeletal muscle, placenta, sperm cells, kidney, lung, prostate, thyroid gland, salivary gland

γ3 LRRC55 11q12.1
brain (whole: mitral cell layers of olfactory bulb, medial habenular nuclei of thalamus, ventral 
tegmental area, substantia nigra, cortex), fetal brain, placenta, uterus, testis, liver, spleen, lung, 
thymus, skeletal muscle, prostate, kidney, adrenal gland, salivary gland, thyroid gland, trachea

γ4 LRRC38 p36.21 cerebellum, brain (whole), fetal brain, placenta, uterus, testis, skeletal muscle, aorta, spleen, 
trachea, prostate, thyroid gland, thymus, salivary gland, adrenal gland
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Post-translational modifications
Most post-translational modifications described in BK 

channels are related to the addition of hydrophobic groups for 
membrane localization. Palmitoylation of BK channels has 
been reported to be critical for PKA inhibition to occur in 
these channels.87 This modification could regulate BK channel 
localization and its modulation by other proteins.88,89 Particularly, 
the S0-S1 linker palmitoylation appears to be fundamental to 
plasma membrane localization.88 The molecular determinants for 
α subunit palmitoylation have been located in a polybasic domain 
upstream of palmitoylated cysteine residues in splice variants of 
the C-terminal region of the channel. Mutations of residues in 
this polybasic domain prevents palmitoylation, thus generating a 
reduction in the channel’s voltage sensitivity.90

BK channels are also modulated by strong and reversible 
protein phosphorylation in native tissues. The phosphorylation 
by cAMP-dependent protein kinase (PKA) activates BK channels 
in smooth muscle cells and neurons, but inhibits channel activity 
in anterior pituitary cells.91-95 This diversity of PKA actions is 
due to a differential regulation of different splice variants of the 
BK channel by phosphorylation. PKA has shown to activate BK 
channel formed by α subunits that lacks the stress-regulated exon 
(STREX) and inhibits homotetramers formed by α subunits 
containing the STREX exon.96,97 The increase in BK channel 
activity is mediated by direct phosphorylation of serine 869 
(serine 899 in some isoforms) in the C terminus, in which the 
phosphorylation of all four serine 869 residues in the tetrameric 
channel is required. PKA-mediated phosphorylation of a single 
serine residue of the STREX insert leads to channel inhibition 
independent of the presence of serine 869.96,97 On the other hand, 
PKC inhibits BK channel activity and Src has been reported 
to increase channel activity (for a review see ref. 98).98 The 
exhaustive study performed by Yan et al., showed the presence of 
30 Ser/thr phosphorylation sites, 23 of which are located in the C 
terminus and 4 are found on splice insertions.99

BK Channel Auxiliary Subunits

β-subunits
Four types of β auxiliary subunits of the BK channel have 

been identified thus far in mammals. All of them share a similar 
predicted topology, containing 2 transmembrane segments 
called TM1 and TM2, short intracellular N and C-terminal 
regions, and an extracellular loop of about 100 amino acids 
containing four cysteines. β1, β2, and β3 exhibit high degrees 
of homology, whereas β4 is genetically more distant from all β 
subunits. Although to a different degree, β subunits can modify 
Ca2+ sensitivity, voltage dependence and gating properties of 
BK channels (Fig. 2). It has been estimated that the most likely 
stoichiometry in which α and β subunits interact is that of one 
β subunit per α subunit.100 Despite the breadth and depth of BK 
channel research, some important questions remain unanswered 
with regards to how BK channels interact in native systems, such 
as the following: (1) are there BK channels with less than 4 β 
subunits in native cells?; (2) do different types of β subunits 
co-exist in the same channel? In some tissues more than 1 type 

of β subunits are present.101,102 Hence, the overall question that 
arises is whether subunit heterogeneity could eventually be an 
additional source of functional diversity.

The main site of surface interaction between α and β subunits 
appears to involve the S0 segment of the α subunit.103 There have 
been experiments in which amino acids in the TM1 and TM2 
segments of the β subunits as well as in different transmembrane 
segments of the α subunit were substituted by cysteines. These 
experiments showed that cross-linking between TM2 and S0 
occurs with high efficiency; whereas TM1 crosslinks with S1 
and S2 occur to same extent.104,105 Co-immunoprecipitation 
experiments and TOXCAT assays with the β2 subunit have 
suggested that TM1 binds to the S1 α subunit segment.106 
Consequently, S0, S1, and S2, which are part of the VSD in BK 
channels, appear to interact with the TM1 and TM2 segments 
of the β subunits. These interactions suggest that conformational 
changes of the VSD during channel activation would be 
influenced by the presence of β subunits and could be the cause 
of the β1, β2 and β4 effects on gating currents (see Fig. 2).

Early studies using Xenopus oocytes as expression systems showed 
that the β1 subunit induces an increase in apparent sensitivity 
to Ca2+, a decrease in voltage dependence, and a deceleration of 
the macroscopic kinetics of α subunits in BK channels.64,107,108 
The β1 subunit also modifies the pharmacological properties 
of the channel, such sensitivity to alcohols,109 estrogens,110 and 
omega-3 polyunsaturated fatty acids.111 The affinity of scorpion 
toxins to BK channels is also increased by the β1 subunit and 
its presence is needed for internal binding to the channel opener 
dehydrosoyasaponin-I (DHS-1).112,113 The β1 subunit is encoded 
by the kcnmb1 gene, which is located in chromosome 5q35.1 in 
the Homo sapiens. This subunit is mainly expressed in vascular 
smooth muscles, but it is also found in the urinary bladder and in 
some regions of the brain (see Table 2).

The β2 subunit, encoded by the kcnmb2 gene, also increases 
Ca2+ and voltage sensitivity, slows down kinetics,65,114-116 and 
induces a fast and complete inactivation of BK channels.115,117 The 
N-terminus of the β2 subunit (residues 1 to 45) blocks the BK 
channel by interacting with a receptor site in the α subunit, which 
becomes accessible once the channel is in the open state.115,117,118 
The 3D structure of the β2 subunit N-terminus was established 
by NMR.119 The structural analysis of the first 45 amino acids of 
the N-terminus shows that it consists of 2 well-defined domains 
connected by a flexible linker (see Fig. 3A, lower). Residues 1 
to 17 form the so-called “ball domain,” and residues 20 to 45 
generate the “chain” and, thus, provide a structural explanation 
to β2-mediated BK channel inactivation. Fluorescent labeling 
of BK channels formed by α and β2 subunits has shown that 
β2 expression results in a shift of the F-V curve toward more 
negative membrane potentials, which is consistent with the shift 
promoted in the G-V activation curve.114 F-V curves from BK 
channels carrying a fluorescence probe in the VSD domain are 
shifted due to the co-expression of the β2 subunit, which is 
independent from the presence of the N-terminal inactivating 
gate. This result suggest that in α/β2 channels, interaction does 
not produce VSD charge immobilization, as in the case of Shaker 
K+ channels, where N-type inactivation produces sharp charge 
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immobilization.114 However, this result may also be interpreted 
differently, considering that only half of the gating charges are 
located in the S4 segment, and that only 1 charge present in 
this segment (i.e., R213) suffers displacement during activation. 
This would be contrary to what has been observed in the Shaker 
K+ channel, where 4 positively charged residues move across the 
entire electric field. β2 also induces an instantaneous outward 
rectification, suggesting that the β2 external loop approaches 
the BK pore in order to alter the α subunit ion conduction 
features.116 It is worth noting that the N-terminus of β2 prevents 
the surface expression of this subunit and hinders the surface 
expression of the α subunit by stimulating endocytocis.120 This 
fast inactivation by β2 appears to be responsible for the fast 
inactivating phenotype of BK channels in chromaffin cells and 
CA1 hippocampal neurons.121,122 At least 2 splice variants of this 
β subunit have been identified in the pancreas and are known 
as β2a and β2b. Splice variant β2b does not confer inactivation 
to BK channels and it yields currents almost identical to those 
observed from the α subunit alone.123 β2b is the predominant 
variant in the pancreas and is also present in kidneys, spleen, 
adrenal chromaffin cells, dorsal root ganglia, and brain  
(see Table 2).

The β3 subunit was cloned and expressed by 3 different 
groups, thus identifying 4 splice variants (a to d).116,124,125 Unlike 
β1 and β2, none of the β3 subunits were observed to alter 
calcium sensitivity or voltage dependence of the α subunit.116 
Of the 4 splicing variants, only a, b, and c induced partial 
inactivation.116,126,127 Albeit incomplete, this inactivation is faster 
than the one induced by the β2a subunit. Although to a small 
degree, the β3b subunit consistently seems to speed activation 
at low Ca2+ concentrations and produce an inward rectification 
of BK channel currents, which is regulated by the extracellular 
segment of this subunit.126 The N-terminal region of β3, which 
is related to BK channel inactivation, seems to be non-conserved 
among different species.128 The gene encoding this subunit in 
Homo sapiens is kcnmb3 and it is located quite close to kcnmb2 
in chromosome 3q26.3-q27. This subunit is expressed in adrenal 
chromaffin cells, kidneys, the heart, brain, spleen, lung, liver, 
testis, and other tissues (see Table 2).

The human β4 subunit was cloned almost at the same time as 
β3124,125 and its sequence is more distantly related to the other β 
subunits.124,129 β4 has been seen to alter calcium sensitivity of the 
channel in a complex manner.124,130 At low Ca2+ concentrations, 
this subunit decreases apparent Ca2+ sensitivity, but increases it at 

Figure 3. Proposed role of BK in physiology and pathology. (A) Cartoon representation of α and β subunits of BK channels co-expressed in vascular 
smooth muscles (upper), cochlear hair cells (middle) and chromaffin cells (lower). In VSM cells β1 subunits confer calcium sensitivity during the cou-
pling of calcium sparks and outward currents. In chromaffin cells β2 subunits induce deceleration in BK current deactivation, consequently producing 
repeated firing in cells. In auditory hair cells, co-expression with β2 allows to tune the cells in a characteristic firing frequency. (B) BK channel expression 
has been found to be upregulated in tumors, such as prostate, glioma, and astrocyte cancer types, thus correlating with cell proliferation and malig-
nancy coupled to calcium signaling and protein kinase activation. (C) BK channels play an active role in volume changes during cell invasion, acting in 
orchestration with other transporters and channels. The expression of these channels is relevant in glioma cells, because they migrate long distances 
through the brain.
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high Ca2+ concentrations. This has been observed as a reduction 
in open probability compared with the α subunit alone at low 
Ca2+ concentrations and as a rise in open probability at high Ca2+ 
concentrations when the subunit is present.124,130,131 β4 also slows 
down kinetic activation and deactivation, allowing for a more 
prolonged control over repolarization after the depolarization of 
the plasma membrane. This property is observed in the brain 
as a reduction of dentate gyrus excitability and protection 
against seizures,132 and seems to be related to phosphorylation-
dependent changes.133 Palmitoylation of the β4 subunit in the 
amino acid residue C193 of the β4 C-terminus has been observed 
to regulate the expression of BK splice variants containing the 
putative trafficking motif REVEDEC in the C-terminus of the 
α subunit.80,134 Despite these actions, the β4 subunit is able to 
downregulate the surface expression of BK channels in brain.135 
This subunit is responsible for some of the features that are 
unique to neuronal BK channels, such as low affinity to scorpion 
toxins and sensitivity to ethanol.129,136 It is important to note that 
the effects of ethanol over the BK features also depend on the 
location of the channel in different neuronal compartments. For 
example, in the nucleus accumbens, which is a brain area known 
to be involved in addiction, somatic channels (but not dendritic 
BK channels) increase the open probability that is governed by 
compartimentalized β4 expression in somas.137 Similar effects 
were also observed in the hypothalamic-neurohypophysial 
system, where β1 expression predominates and where channels 
in the soma and dendritic compartments are insensitive to IbTx, 
in contrast to those found in the nerve terminal (β4 expression 
is higher in nerve terminals). In addition, these channels are 
highly activated by ethanol.138 Accordingly, spiny neurons 
isolated from mice, showed low tolerance to alcohol, but cells 
derived from β4 knockout mice exhibit chronic tolerance to 
ethanol, even at the behavioral level.139 β4 is expressed almost 
exclusively in the brain, but it has also been found in kidneys 
and genito-urinary smooth muscles (see Table  2).140,141 The 
kcnmb4 gene encodes the β4 subunit in humans and is located 
in chromosome 12q15.

Previous studies revealed that the modulation of the apparent 
Ca2+ sensitivity mediated by the β1 subunit was not due to an 
increase of the affinities of the Ca2+-binding sites, but rather to 
a Ca2+-independent effect.142,143 These studies suggested that β1 
alters the BK voltage- sensing properties. Measurements of gating 
currents in the BK channel α subunit alone or in combination 
with different types of β subunits revealed that β1, β2 and β4 
stabilize the voltage sensor in its active conformation, whereas 
β3 has no effect on voltage sensor equilibrium.64,65,144 It has 
been recently proposed that coupling between α and β subunits 
is mediated by electrostatic forces between the following three 
interaction sites: (1) a PI site that accounts for pre-inactivation; 
(2) an E site, which enhances Ca2+ sensitivity of the α subunit; 
(3) and an ECaB site, which couples the α subunit Ca2+ bowl 
to the gating process through the β2 subunit.145 According to 
these results, the binding energy between the α and β2 subunits 
is mainly electrostatic, suggesting a close interaction between the 
β2 subunit extracellular loop with the pore gate and the voltage 
sensor in the α subunit.

It should be highlighted that β subunits may also bind to 
other members of the Slo family. In fact, Slo3 has been found to 
be able to bind to the β4 subunit.146 However, although all 4 β 
subunits are able to co-assemble with the Slo3 channel, only β4 
has been observed to produce significant changes in the surface 
expression of the Slo3 channel.

In summary, 4 different auxiliary β subunits are expressed 
in mammalian tissues. A functional conserved domain among 
β1, β2, and β4 subunits stabilize the active configuration of 
the channels, while increasing the energy barrier that separates 
closed from open states.147 The importance of the β subunits is 
not only related to the modulation of Ca2+ sensitivity and voltage-
dependent gating of the α subunit, but also to the fact that they 
act as a target “sites/receptors” for different agents that could 
modulate BK channel function, such as protein, toxins, blockers or 
openers. Consequently, their significance is also related to channel 
trafficking and expression in cellular surface. These subunits also 
play a critical role as receptors for estrogens and steroids.110 The BK 
channel responds to steroids in a manner that does not only depend 
on the nature of the ligand, but also on the type of β subunit 
associated to the channel.148 Lipids like omega 3 polyunsaturated 
fatty acids with vasoactive properties have also been shown to 
activate BK channels in a β subunit-dependent manner.111

γ subunits
In addition to β subunits, there are other auxiliary subunits 

that have been described in terms of their ability to modulate BK 
channel α subunits, which are known as γ subunits. Pioneers 
in the study of these subunits are Yang and Aldrich, who 
identified conserved leucine-rich repeat proteins (LRRCs) that 
can dramatically modify BK channel activation features.149,150 
The first γ subunit described was LRRC26 (γ1), which induces 
a Ca2+-independent leftward shift of ~140 mV in the opening 
probability vs. voltage curve, with V

h
 ~18 mV.150 Within the 

framework of Horrigan’s model for BK channel activation, this 
result can be interpreted as γ subunits improving coupling 
between the activation of the voltage-sensor and channel opening. 
Several paralogous proteins of LRRC26 (γ1), such as LRRC52 
(γ2), LRRC55 (γ3) and LRRC38 (γ4), have been identified.150 
Although all γ subunits have been seen to modify V

h
 values for 

BK channel activation, their effects extend to different degrees, 
thus being LRRC26 (γ1) and LRRC52 (γ2) the subunits that 
cause greater effects.150 Thus far, γ and β subunits do not appear 
to co-assemble at the same time with α subunits. The LRRC52 
(γ2) subunit has also been found to interact with other Slo 
channels, like Slo3 in testis.151

Endogenous Signaling Molecules

Several small endogenous molecules such as heme, carbon 
monoxide and oxygen reactive species are able to modulate BK 
channels (for an excellent review see ref. 150).152 In particular, 
haem, a stable protein prosthetic group acutely modulates 
BK channels and it does so by binding to CKACH sequence 
located in the linker that join together the RCK1 and RCK2 
domains.153-155 It has been suggested that interaction of heme with 
the RCK1-RCK2 linker may expand the gating ring, hindering 
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the interactions between the ring and the voltage sensor domain 
that occur during BK channel activation.156 Although the 
physiological role of heme binding to BK is still unclear, its 
binding is modulated by the redox state of the cell suggesting 
that the channel activity can be widely different in hypoxic and 
normoxic conditions.157

BK Channel Pharmacology: Blockers and Openers

Slo1 channels have been observed to be blocked by the 
scorpion toxins ChTx and by the highly selective IbTX.20,158 
These scorpion toxins act as pore blockers occluding conduction 
pathways of the α subunit in BK channels. A positively charged 
side chain of lysine 27 in ChTx has been identified as the 
blocking particle in the molecule.159 In addition, a quite potent 
blocker isolated from scorpions is known as kaliotoxin, which 
inhibits BK channel opening with a K

D
 of approximately 20 

nM.160 Paxilline is another high-affinity blocker of the channel, 
which is a tremorgenic mycotoxin that has been described as an 
extremely potent BK channel blocker with a K

D
 also in the nM 

range.161 BK channels are also very sensitive to the administration 
of tetraethylammonium in the extracellular side of the channel, 
with K

D
 ~250 μM.162-164 This high sensitivity is due to the 

presence of a phenylalanine ring in the boundaries of the external 
mouth of the selectivity filter.165,166

Furthermore, a number of BK channel openers have been 
identified, including the synthetic benzimidazolone derivative 
NS1619, and the natural modulator dihydrosoyasaponin.167 It is 
worth mentioning that the compound NS11021 is a Slo1 channel 
activator that has shown to have better specificity and 10 times 
higher potency compared with NS1619, which is one of the most 
broadly applied Slo1 openers.168

BK Channels in Smooth Muscles

The main function of BK channels in vascular physiology is 
to reduce contractile responses to excitatory stimuli by increasing 
in the concentration of intracellular Ca2+. Myogenic tone control, 
vasorelaxation induced by Ca2+ sparks, endothelial factors or 
exogenous and endogenous vasoactive agonists also involve BK 
channel activation.169-172

There are numerous reports indicating that BK channels 
participate in the endothelium-dependent hyperpolarization of 
vascular smooth muscle cells, for which nitric oxide (NO) appears 
to be an important BK channel activator.173 NO activation of 
BK channels is linked to cGMP-activated kinases.174,175 NO is 
produced by endogenous synthases like eNOs in endothelia.176 
Other endothelium-derived factors, such as cytochrome P450-
derived epoxyeicosatrienoic acids, prostacyclin and lipoxygenase 
derivatives produce the relaxation of smooth muscle cells by 
activating BK channels.177

Additionally, redox agents such as H
2
O

2
, have also been 

shown to have an inhibitory effect on BK channels by decreasing 
their open probability.178 The inhibitory action of reactive 
oxygen species (ROS) has been compared with β1 function 
impairment.179 However, the β1 subunit enhances the ability of 

oxidative regulation of the BK channel.180 In general, CO is a 
potent BK channel activator composed of vascular myocytes and 
carotid body glomus cells. It has been suggested that a motif in 
the BK C-terminal region is a binding region for CO, promoting 
its gating changes independently of redox changes (an excellent 
review on endogenous signaling molecules that modulate BK 
activity can be read in Hou et al., 2009).152

BK channels work as transducers and coupling agents between 
the endothelium and vascular smooth muscles, communicating 
diverse chemical signals generated in the endothelium to the 
vascular smooth muscle tone, thus controlling blood vessel 
caliber and flow.181 BK channel activation in smooth muscles 
is tightly related to endothelium activity through NO/cGMP-
dependent protein kinase I (PKGI).182 This has profound 
implications in many tissues and organs, where smooth muscle 
activity plays important roles in regulating pressure, volume and 
flow. Figure 3A shows a general view of BK in smooth muscle 
physiology.

Other types of smooth muscle cells
BK channels are also important in other kinds of smooth muscle 

cells. In the uterus, for instance, they participate in the control 
of myometrial cell membrane potentials,183 their expression being 
under hormonal control.184 Thus, a significant downregulation 
of the BK α subunit is observed in rat myometrium at the end of 
pregnancy, likely enhancing the myometrial excitability needed 
during labor and parturition.184

As in vascular smooth muscles, BK channels can regulate the 
tone and contractility of airway smooth muscles by providing 
a negative feedback mechanism. In human bronchial smooth 
muscle cells, these channels also participate in maintaining 
resting membrane potential.185 Although BK channels are 
present in rat bronchial smooth muscle cells, they do not seem 
to contribute to resting membrane potentials or participate in 
excitation responses.186

Gastrointestinal motility is another physiological function 
involving BK channels, for which they appear to be particularly 
important in the regulation of colonic motility. In the colonic 
longitudinal layer, these channels are involved in setting 
membrane potential and determining excitability. In the circular 
layer, on the other hand, they do not underlie basal electrical 
activity, but limit the responses to excitatory agonists.187

In urinary bladder smooth muscle cells, BK channels play a 
critical role in regulating their excitability and contractility. In 
these cells, BK currents are activated by Ca2+ sparks originating 
from Ca2+ release mediated by ryanodine receptors (RyRs) that 
are present in the sarcoplasmic reticulum.188 A similar mechanism 
has been observed in cerebral arteries.189 The modulation of 
BK channel activity by spontaneous Ca2+ sparks is known as 
spontaneous transient outward current (STOC).190

Membrane potential profoundly alters the coupling strength 
of Ca2+ sparks in BK channels. As an explanation for this, it 
has been proposed that calcium and voltage dependence of the 
sparking BK currents is modulated.191 Furthermore, a similar 
coupling mechanism between Ca2+ sparks and BK channel 
activity was demonstrated in gallbladder myocytes.192 Thus, 
inhibition and/or downregulation of BK channels could be the 
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cause of smooth muscle cell contractility alteration, as found in 
urinary bladder overactivity.193

In brief, despite tissue and interspecies diversity, a general 
behavior can be observed as a common factor for BK contribution 
to cell physiology. This has profound implications in many tissues 
and organs where smooth muscle activity plays an important role 
in regulating pressure, volume and flow. Finally, changes in the 
activity or expression of BK channels are related to cardiovascular 
pathological states, as will be discussed below.

BK Channels in Hair Cells

In the cochlea the sound sensitive region resides in the 
basilar membrane in the organ of Corti. Is in this membrane 
where the hair cells, the sound sensitive cells, reside. In frog, 
chick, and turtle, used as models of this sense, frequency tuning 
is performed almost exclusively in these cells. Hair cells are 
arranged tonotopically and show a gradual change in oscillation 
frequency that correspond to the cell’s tonotopic location.194-196 
The oscillation in membrane potential appears as a consequence 
of the interplay of an inward Ca2+ current and an outward K+ 
current. In hair cells BK currents are activated by an increase 
in internal Ca2+ concentration brought about by the opening of 
L-type voltage-dependent Ca2+ channels (VDCC) that colocalize 
with BK channels (Fig.  3A).36,37 Activation of BK channels 
hyperpolarizes the cell, closing VDCC, thus promoting the 
membrane potential oscillation. Subsequent membrane voltage 
oscillations are damped, because as VDCC channels close, 
fewer BK channels are recruited in each cycle. The combination 
between the number and type of BK channel in each sensory cell, 
control the resonant frequency of a particular hair cell. The origin 
of the wide range of BK gating kinetics along the tonotopic map 
is still under debate. The presence of many different BK splice 
variants changing along the tonopic axis led to the hypothesis 
that this was the origin of the changes in gating kinetic properties 
of the channel.197-199 However, due to their limited range of 
relaxation time constants of the BK splice variants found in hair 
cells, the splice variant hypothesis appear to be part of but not all 
the story.200,201 As discussed earlier in this review, other means of 
altering BK function is the co-expression of α and β subunits. 
The presence of different alternative splice variants, together 
with a differential expression of β1 subunit has been proposed 
to be the main mechanism that generates the cochlear tonotopic 
gradient.201,202 Actually, a gradient in the expression of the β1 
subunit slows BK channel kinetics toward the low-frequency 
apex of the cochlea.203 More recently, it was found that the β4 
subunit is also expressed in a gradient along the tonopic axis of 
the basilar membrane. β4 is preferentially expressed in the apical 
end of the basilar papilla suggesting that this subunit may also 
play an important role in the hair cell electrical behavior.102

BK Channels and Diseases, Pathophysiological 
and Genetic Involvement

In humans, alterations in BK channels are known to be 
important in the pathophysiology of hypertension,204,205 asthma,206 

diabetes, and vascular insulin secretion,123,207 epilepsy,208-210 and 
cancer.211,212 In this section we will briefly discuss some of these 
findings that link BK channels with the diseases in which they 
play a major role.

BK channels and hypertension
BK channels are known to be essential regulators of blood 

pressure and tissue perfusion.213 An important observation 
supporting this view is that knocking-out the β1 subunit gene 
yields an increment in arterial tone and blood pressure.214 Since 
the β1 subunit increases the apparent calcium sensitivity of 
BK channels, its absence would reduce functional coupling to 
calcium sparks for BK channel activation, thus increasing muscle 
tone and blood pressure.214

Moreover, BK channel polymorphisms may be related to 
genetic forms of hypertension and cardiovascular diseases. 
Single-nucleotide polymorphisms (SNPs) that promote either 
“gain-of-function” or “loss-of-function” have been identified in 
both the α and β1 subunits.215-217 AE65K polymorphism in the 
β1 subunit diminishes the prevalence of severe hypertension as 
well as myocardial infarction.204,218

BK channels and diabetes
In diabetes mellitus there are several metabolic changes, some 

of which are reflected in BK channel function. Vessels in diabetics 
are a common target, and some of the effects described previously 
for vascular smooth muscles tend to increase or are modified due 
to the development of diabetes. The β1 subunit of BK channels 
is downregulated under diabetic conditions in several cells where 
BK is expressed, leading to alterations in intracellular Ca2+ 
sensitivity.219 Furthermore, there is an increment of coronary 
heart disease in diabetics compared with normal subjects or to 
those that have other vascular diseases. It has been reported that 
one of the factors contributing to coronary dysfunction leading 
to coronary heart disease is related to the downstream regulation 
of β1 subunit channel expression in coronary arteries induced 
by diabetes.220 β1 expression is also impaired in other alterations 
promoted by diabetes in the microvasculature, such as in diabetic 
retinopathy.207 Other vessels affected by the downregulation of 
β1 expression in diabetes are those found in the brain, hence 
creating greater susceptibility to strokes.221

BK channels may also play a role in insulin secretion during 
diabetes, since they regulate action potential firing in pancreatic 
β-cells.222 Splice variants of β2 subunits (i.e., β2a and β2b) have 
been observed to be expressed in the pancreas in experimental 
models as well as in patients with diabetes.123 The predominant 
splice variant is β2b, and the functional characteristics of α 
subunit and β2b complexes expressed in heterologous systems 
are almost identical to those of the α subunit alone, lacking 
inactivation. This fact may explain alterations of insulin secretion 
by pancreas islets during diabetes.

BK channels and asthma
In the airway pathway, the β1 subunit seems to play a 

major role regulating BK channel sensitivity to intracellular 
Ca2+.223 Genetic studies in high-prevalence asthma populations 
are consistent with these findings.206 Additionally, evidence 
that BK channels are sensitive to estrogen may explain gender 
susceptibility to asthma.224
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BK channels and kidney disease
In the kidney epithelia, BK impairment by different β subunits 

leads to hydrosaline retention an hypertension.225,226 A common 
allelic variant for SNPs in hypertension is the E65K mutation in 
the β1 subunit, which increases basal glomerular filtration rate. It 
has been anticipated that profiling this SNP can contribute to the 
prognosis of progressive renal disease.227 Besides the β1 subunits, 
β2 and β4 are also expressed in the kidney epithelial cells.140 In 
podocytes, nephrin seems to organize BK channel expression at 
the surfaces of nearby cells.228

BK channels and nervous system diseases
The activation of BK channels in the nervous system is related to 

the modulation of a number of physiological processes, like action 
potential firing and transmitter release,229,230 and are the main 
effectors for the modulation of a wide range of neurotransmitters, 
including those that are involved in the pathogenesis of several 
neurological and psychiatric disorders. Genetic analyses of a 
human syndrome in which generalized epilepsy coexists with 
paroxysmal dyskinesia has uncovered a disease that causes 
mutations in the RCK domain of the α subunit.208,210 A highly 
conserved aspartate at position 434 appears to be replaced by a 
glycine mutation that leads to higher intracellular Ca2+ sensitivity 
and to the enhancement of BK currents in heterologous expression 
systems. These changes may lead to an overall increase in neuronal 
excitability as a consequence of faster repolarization of action 
potentials, allowing neurons to fire at faster rates to the point of 
producing generalized epilepsy and paroxysmal dyskinesia. At 
the single channel level, the missense mutation D434G increases 
BK channel open probability by spending less time in the long-
lived closed state.231 This mutation has also been important in 
understanding basic questions and issues, such as the link between 
Ca2+ sensitivity and BK channel opening enhancement. This is 
because this mutation is located in a cytosolic motif immediately 
following the activation gate in the S6 helix (known as AC region), 
which is thought to mediate allosteric coupling between Ca2+ 
binding and channel aperture. Other epileptogenic mutations 
are related to changes in the expression of the α subunit. More 
specifically, these changes have been observed in the medial 
temporal lobe in epilepsy.232 β3 subunit deletions have also been 
implicated in the genesis of epilepsy, particularly in the absence of 
seizures. It has been shown that a single base pair deletion in exon 4 
of the KCNMB3 gene (delA750) eliminates the last 21 amino acids 
of this subunit, thus altering BK channel inactivation.209 Likewise, 
deletion of β4 subunits has also been linked to epilepsy, based on 
evidence of temporal lobe epilepsy in mice when such subunits are 
deleted. It is interesting to note that α/β4 channels activate and 
deactivate slower than those composed by the α subunit alone, 
allowing for better control of the firing processes in neurons.233 
Psychiatric diseases such as autism and mental retardation have 
also been linked to BK channel deficits.234 Finally, BK channels are 
also major players for many sensory responses such as hearing. It 
has been shown that α subunit deficiency can lead to progressive 
deafness in a similar way as it has been observed for KCNQ4.235

BK channels and cancer
BK channels have been found to be one of the most frequent 

channels in tumor cell lines, such as prostate cancer, ovary 

cancer, osteosarcoma, breast cancer, gliomas, meningiomas, and 
other brain tumors.236,237 In non-excitable cells, BK channels are 
important in functions such as cell proliferation, migration, and 
volume regulation.238 BK channels act as effective transducers 
of changes in intracellular Ca2+ to signal proliferation and 
migration, which lead to invasive proliferations of the transformed 
cells (Fig.  3B and C).238 In some cases, BK channels have also 
been found in the inner membrane of mitochondria, such as in 
some glioma culture cells.239 Overexpression of BK channels, in 
particular of BK isoforms with enhanced Ca2+-sensitivity, strongly 
correlate with the degree of malignancy observed in gliomas.211,240 
In breast cancer cells, BK channel expression has been shown to be 
related to cell cycle and division, correlating with high proliferation 
rates and malignant tumors.241,242 BK channel expression has also 
been correlated with the production of metastasis in the brain (see 
Fig. 3C).212 Amplifications of the BK channel gene have also been 
observed in many types of prostate cancers.243 The study of BK 
channels in prostate cancer has shown that BK channels open at 
resting potentials and low intracellular Ca2+,244 thus paving the 
way to find γ subunits.149 Figure 3B and C shows a scheme of the 
role of BK channels in cell proliferation and migration that can be 
related to cancer malignancy.

Conclusions and Future Perspectives

Since their discovery, BK channels have emerged as key players 
in many physiological and pathophysiological conditions, also 
posing exciting biophysical questions relating to the convergence 
of voltage and free intracellular Ca2+ in the opening of K+ channels 
during evolution. In essence, BK channels are unique molecular 
transducers that link intracellular signals with extracellular 
stimuli through the interplay of multiple tuning knobs that 
control signaling gain and timing, thus allowing for the correct 
physiological activity of cells, organs and tissues. Although the 
key components related to Ca2+ sensitivity and voltage-dependent 
gating have been amply explored, many questions remain 
unanswered from the molecular biophysics standpoint, as well as 
regarding the many pathophysiological issues where this channel 
is a relevant actor. Finally, it is it is worth noting that changes 
in the activity or expression of BK channels are linked to several 
pathophysiological disorders, such as cardiovascular illness states, 
cancer, diabetes and neurological diseases. This highlights the 
importance of accurately understanding how conduction may 
take place and how it can be modulated in order to find possible 
therapeutic interventions for these diseases.
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