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A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique
is a maximal complete set. Denote by C(G) the clique family of G . The clique graph of G ,
denoted by K (G), is the intersection graph of C(G). Say that G is a clique graph if there
exists a graph H such that G = K (H). The clique graph recognition problem, a long-
standing open question posed in 1971, asks whether a given graph is a clique graph and it
was recently proved to be NP-complete even for a graph G with maximum degree 14 and
maximum clique size 12. Hence, if P 6= NP, the study of graph classes where the problem
can be proved to be polynomial, or of more restricted graph classes where the problem
remains NP-complete is justified. We present a proof that given a split graph G = (V , E)

with partition (K , S) for V , where K is a complete set and S is a stable set, deciding
whether there is a graph H such that G is the clique graph of H is NP-complete. As a
byproduct, we prove that determining whether a given set family admits a spanning family
satisfying the Helly property is NP-complete. Our result is optimum in the sense that each
vertex of the independent set of our split instance has degree at most 3, whereas when
each vertex of the independent set has degree at most 2 the problem is polynomial, since it
is reduced to the problem of checking whether the clique family of the graph satisfies the
Helly property. Additionally, we show three split graph subclasses for which the problem
is polynomially solvable: the subclass where each vertex of S has a private neighbor, the
subclass where |S| 6 3, and the subclass where |K | 6 4.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider finite, simple and undirected graphs. V and E denote the vertex set and the edge set of the graph G , respec-
tively. A complete set of G is a subset of V inducing a complete subgraph. A clique is a maximal complete set. The clique
family of G is denoted by C(G). The clique graph of G is the intersection graph of C(G).

The clique operator K assigns to each graph G its clique graph which is denoted by K (G). On the other hand, say that G
is a clique graph if G belongs to the image of the clique operator, i.e. if there exists a graph H such that G = K (H).
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Clique operator and its image were widely studied. First articles focused on recognizing clique graphs [9,20]. Graphs
fixed under the operator K or fixed under the iterated clique operator, K n , for some positive integer n; and the behavior
under these operators of parameters such as number of vertices or diameter were studied in [4,10,11]. For several classes of
graphs, the image of the class under the clique operator was characterized [5,12,18,21]; and, in some cases, also the inverse
image of the class [15,19]. Results of the previous bibliography can be found in the survey [23]. Clique graphs have been
much studied as intersection graphs and are included in several books [6,13,17].

The characterization of clique graphs given in [20] proposed the computational complexity of the recognition of clique
graphs, a long-standing open question [6,17,20,23] just recently settled as NP-complete [1,2].

A graph is split if its vertex set can be partitioned into a complete set and a stable set. In this paper, we are con-
cerned with the time complexity of the problem of recognizing split clique graphs, for which we establish NP-complete and
polynomial results.

split clique graph

instance: A split graph G = (V , E).
question: Is there a graph H such that G = K (H)?

We prove that split clique graph is NP-complete. As a byproduct, we prove that a problem about the Helly property is
NP-complete. Given a set family F = (Fi)i∈I , say that the sets Fi are members of the family, and F ∈ F means that F is a
member of F . The family is pairwise intersecting if the intersection of any two members is not the empty set. The intersection
or total intersection of F is the set

T
F = T

i∈I F i . The family F has the Helly property, if any pairwise intersecting subfamily
has nonempty total intersection. Besides the theoretical interest, the Helly property has applications in many different areas
such as optimization and location problems, semantics, coding, computational biology, data bases, image processing and, in
special, graph theory where it has been a useful and a natural tool. We refer to [7] for a survey on the Helly property and
its complexity aspects.

Given a family of sets F , say that a family F 0 is a spanning family for F if:
S

F 0∈F 0 F 0 = S
F∈F F ; for each F 0 ∈ F 0 ,

|F 0| > 1; for each F 0 ∈F 0 , there exists F ∈F such that F 0 ⊆ F ; and for each F ∈F ,
S

F 0⊆F ,F 0∈F 0 F 0 = F .

spanning Helly family

instance: A family of sets F .
question: Does F admit a spanning family F 0 that satisfies the Helly property?

We prove as a corollary that our NP-completeness result yields that spanning Helly family is NP-complete even when
restricted to the members of the input family F having cardinality 2 or 3. Note that the problem is polynomial when all
members of F have cardinality 2. We prove an additional NP-completeness result that implies that spanning Helly family

is NP-complete even when restricted to all members of the input family F having cardinality 3.
Section 2 contains the NP-completeness results of the problem of recognizing clique graphs when restricted to split

graphs: first when restricted to 3-split inputs that admit a split partition where each vertex of the stable set S has degree
2 or 3; second further restricted to 3-split3 inputs that admit a split partition where each vertex of the stable set S has
degree exactly 3. Section 3 contains the polynomial results obtained by restricting the size of the complete set K or of the
stable set S . Section 4 concludes the paper and proposes related open problems.

2. NP-complete split clique graph classes

Theorem 1 is a well known characterization of Clique Graphs. The edge with end vertices u and v is represented by uv .
We say that the complete set C covers the edge uv when u and v belong to C . A complete set edge cover of a graph G is a
family of complete sets of G covering all edges of G .

Theorem 1. (See Roberts and Spencer [20].) G is a clique graph if and only if there exists a complete set edge cover of G satisfying the
Helly property.

Notice that for any graph G the clique family C(G) is a complete set edge cover of G , but, in general, this family
does not satisfy the Helly property. Graphs such that C(G) satisfies the Helly property are called clique-Helly graphs. It
follows from Theorem 1 that every clique-Helly graph is a clique graph. In [22], clique-Helly graphs are characterized and a
polynomial-time algorithm for their recognition is presented. Lemma 2 extends that result and leads to a polynomial-time
algorithm to check if a given complete set edge cover of a graph satisfies the Helly property which in turn yields that clique

graph is in NP [1,2].
A triangle is a complete set with exactly 3 vertices. The set of triangles of G is denoted T (G). Let F be a complete set

edge cover of G and T a triangle, and denote by FT the subfamily of F formed by all the members containing at least two
vertices of T .
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Lemma 2. (See Alcón and Gutierrez [3].) Let F be a complete set edge cover of G. The following conditions are equivalent:

(i) F has the Helly property.
(ii) For every T ∈ T (G), the subfamily FT has the Helly property.

(iii) For every T ∈ T (G), the subfamily FT has nonempty intersection, this means
T

FT 6= ∅.

A graph admits a complete set edge cover with the Helly property if and only if the graph admits a complete set edge
cover with the Helly property such that no member is contained in another; such cover is called an RS-family of the graph.
Thus Theorem 1 is equivalent to the following simpler statement: G is a clique graph if and only if G admits an RS-family.
The following properties are stated and proved by Roberts and Spencer [20].

Lemma 3. (See Lemma 1 and Theorem 3 of [20].) Let F be an RS-family of a graph G. Then F contains a complete set of size 2 if and
only if this complete set is a clique of G. If a triangle T is a clique of G, then T is a member of F .

We show that split clique graph is NP-complete by a reduction from the following version of the 3-satisfiability problem
with at most 3 occurrences per variable [14]. Let U = {ui,1 6 i 6 n} be a set of boolean variables. A literal is either a variable
ui or its complement ui . A clause over U is a set of literals. Let C = {c j,1 6 j 6 m} be a collection of clauses over U . We
say that variable ui occurs in clause c j (and then in C ) if ui or ui ∈ c j . We say that variable ui occurs in clause c j as literal
ui (or that literal ui occurs in c j ) if ui ∈ c j , and as literal ui (or that literal ui occurs in c j) if ui ∈ c j .

3sat3
instance: I = (U , C), where U = {ui,1 6 i 6 n} is a set of boolean variables, and C = {c j,1 6 j 6 m} a set of clauses over U

such that each clause has two or three variables, each variable occurs at most three times in C .
question: Is there a truth assignment for U such that each clause in C has at least one true literal?

In order to reduce 3sat3 to split clique graph, we need to construct in polynomial time a particular instance G I of split

clique graph from a generic instance I = (U , C) of 3sat3, in such a way that the constructed graph G I is a clique graph if
and only if C is satisfiable. The particular instance G I is a 3-split graph and we first characterize 3-split clique graphs.

2.1. 3-Split graphs

A split graph admits a split partition of its vertex set into a complete set K and a stable set S . The family of cliques of
a split graph with split partition (K , S) is composed by the closed neighborhood N[s], for each s ∈ S , and the complete set
K if it is not contained in N[s], for s ∈ S . An `-cone is an (` + 1)-clique containing a vertex of S that is called its extreme
vertex and the remaining ` vertices are in K composing the basis of the cone. Note that any 2-cone is a clique and so by
Lemma 3 forced to belong to any RS-family of a split clique graph.

Lemma 4. Let G be a split graph with split partition (K , S).

(i) If there exist three 2-cones whose bases form a triangle then G is not a clique graph.
(ii) If there exist one 3-cone and three 2-cones whose bases are respectively {x, y, w}, {x, z}, {y, z} and {w, z}, being x, y, z, w vertices

of K , then G is not a clique graph.

Proof. Assume there exists an RS-family F of G . Since the three 2-cones are cliques of G , by Lemma 3, they are members
of F . Since their bases form a triangle, the three 2-cones do not satisfy the Helly property, a contradiction.

To prove the second statement, let N[s1] = {s1, x, y, w}, N[s2] = {s2, x, z}, N[s3] = {s3, y, z} and N[s4] = {s4, z, w} be
cones of G and suppose for a contradiction that G is a clique graph. Thus there exists an RS-family F of G . Since N[s2],
N[s3] and N[s4] must be members of F , any other member F covering the edge xy or the edge yw must contain z in
order to satisfy the Helly property. But, since N[s1] is a complete set of 4 vertices, if F 0 is a member of F covering s1 y then
x ∈ F 0 or w ∈ F 0 . In any case z ∈ F 0 , which is a contradiction because s1 is not adjacent to z. ✷

A 3-split graph admits a split partition where each vertex of the stable set S has degree 2 or 3, in this case (K , S) is
called a 3-split partition. A triangle of a 3-cone is any triangle that contains the extreme vertex of the cone. The two vertices
of the triangle belonging to the basis of the 3-cone are the basis of the triangle. A 3-cone has exactly three triangles. The
edge induced by the basis of a 2-cone or by the basis of a triangle of a 3-cone is also called basis.

Theorem 5. Let G be a 3-split graph with 3-split partition (K , S). The following are equivalent:

(1) G is a clique graph;
(2) There is a family composed by K , each 2-cone and exactly two triangles of each 3-cone, that is an RS-family of G;
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(3) There is a family composed by the basis of each 2-cone and the bases of exactly two triangles of each 3-cone, that satisfies the
Helly property;

(4) There is a set of edges of K composed by the basis of each 2-cone and the bases of exactly two triangles of each 3-cone, that induces
a triangle-free subgraph of G[K ].

Proof. 1 implies 2: Let F be an RS-family of G . Assume K is not a member of F . Consider F 0 the family obtained from F
by the addition of member K and by the removal of complete sets K 0 that satisfy K 0 is a member of F and K 0 ⊂ K . Suppose
there exists a pairwise intersecting subfamily of F 0 without a common vertex. It is clear this subfamily must contain K ,
since the original RS-family F has the Helly property. Let F1, F2, . . . , F`, K be the pairwise intersecting subfamily without a
common vertex. Observe that `> 2. Since F1, F2, . . . , F` are members of F , they have a common vertex s. It is clear s is not
in K , and so s ∈ S . In case s has degree 2, say N(s) = {x, y}, then F1 = {s, x} and F2 = {s, y} but this contradicts Lemma 3
since F1 and F2 are not cliques of G . Hence, N(s) = {x, y, z} and the assumption that F1, F2, . . . , F` have no common vertex
in K forces ` = 3, F1 = {s, y, z}, F2 = {x, s, z} and F3 = {x, y, s}. Note that F1, F2 and F3 are the three triangles containing
vertex s. Now we can eliminate one of these three triangles from F 0 , the remaining two triangles have a common vertex
in K and cover the same set of edges as F 0 . Observe that in case we have another intersecting subfamily in F 0 without
a common vertex, it must be the three triangles of another 3-cone. We repeat the same reasoning for each such pairwise
intersecting subfamily to obtain an RS-family containing K .

So we may assume that K is a member of the RS-family F . Recall that each 2-cone is a clique and must be a member
of F . Let Cs = {s, x, y, z} be a 3-cone with extreme s and basis T = {x, y, z}. In order to cover the edges incident to s, F
must contain exactly two triangles of Cs or must contain the 3-cone Cs itself. Suppose Cs ∈ F . Note that no other member
of F contains s. By Lemma 2, let uT ∈ T

FT . Since uT ∈ K ∩ Cs = T , we may assume uT = y. Consider F 0 obtained from F
by the removal of cone Cs and the addition of triangles {y, x, s} and {y, z, s}. We claim F 0 has the Helly property. Indeed,
first suppose F1, F2, . . . , F`, {y, x, s} is a pairwise intersecting subfamily of F 0 without a common vertex and that {y, z, s}
is not a member of the subfamily. Since Fi ∩ {y, x, s} 6= ∅ and s /∈ Fi , we may assume x ∈ F1 and y /∈ F1, x /∈ F2 and y ∈ F2.
Since F1, F2, Cs are pairwise intersecting members of F , we must have z = F1 ∩ F2 ∩ Cs . Now z, x ∈ F1 implies F1 ∈ FT ,
so y ∈ F1, a contradiction. Now suppose F1, F2, . . . , F`, {y, x, s}, {y, z, s} is a pairwise intersecting subfamily of F 0 without a
common vertex. We may assume y /∈ F1, but F1 ∩ {y, x, s} 6= ∅, F1 ∩ {y, z, s} 6= ∅ and s /∈ F1, thus F1 ∈ FT , again leading to
a contradiction.

2 implies 3: Assume G admits an RS-family F composed by K , each 2-cone and exactly two triangles of each 3-cone.
Let B be the family whose members are the bases of the cones and of the triangle members of F . Note that each pairwise
intersecting subfamily B0 of B corresponds to a pairwise intersecting subfamily F 0 of F . Since F 0 plus the member K is
also pairwise intersecting, F 0 has a common vertex that belongs to K . Clearly this is also a common vertex for the subfamily
B0 of B.

3 implies 4: Assume G admits a family B composed by the basis of each 2-cone and the bases of exactly two triangles
of each 3-cone that satisfies the Helly property. Let E be the corresponding set of edges which are bases of the 2-cones
and bases of exactly two triangles of each 3-cone. The Helly property satisfied by B implies that E induces a triangle-free
subgraph of G[K ].

4 implies 1: Let E be a set of edges composed by the bases of the 2-cones and the bases of exactly two triangles of each
3-cone that induces a triangle-free subgraph of G[K ]. Let e = xy be an edge of the family E . Call Se = {s ∈ S | {x, y} ⊆ N(s)}.
Observe that: (a) if s is the extreme vertex of a 2-cone then s belongs to exactly one set Se; (b) if s is the extreme vertex of
a 3-cone then s belongs to exactly two sets Se . Consider the complete set family F whose members are K and the triangles
Te,s , where e ∈ E and s ∈ Se . By (a) and (b), if a subfamily of triangles Te,s is pairwise intersecting then the corresponding
family of edges e is pairwise intersecting. Since, by hypothesis, the family of edges does not induce a triangle, then they
have a common vertex in K , which implies F is an RS-family. ✷

The set of edges defined in statement 4 of Theorem 5 is called an RS-basis of a 3-split clique graph.

2.2. Construction of G I from I = (U , C)

Let I = (U , C) be any instance of 3sat3. We assume with no loss of generality that each variable occurs two or three
times in C , and no variable occurs twice in the same clause. In addition, if variable ui occurs twice in C , then we assume it
is once as literal ui and once as literal ui ; and if variable ui occurs three times in C , then we assume it is once as literal ui

and twice as literal ui .
For each variable ui , let ji be the subindex of the unique clause where variable ui occurs as literal ui ; and J i = { j |

literal ui occurs in c j}.
For each clause c j with |c j | = 3, let I j = {i | variable ui occurs in c j}; and for each clause c j with |c j | = 2, let I j = {i |

variable ui occurs in c j} ∪ {n + 1}. Notice that in any case |I j| = 3.
We construct from instance I = (U , C) a graph G I = (V , E) as follows.
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Fig. 1. Graph Ti corresponding to a variable ui , with J i = {r, l}.

The vertex set V is the union:

V =
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The complete set is:

K =
[

16i6n

©
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,di

ji
, gi

ji
,hi

ji

ª ∪
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[

j∈ J i

©
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j

ª ∪
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j

ª

and the stable set is composed by the remaining vertices S = V \ K :

S =
[

16i6n

©
bi

ji
, ci

ji
, ei

ji
, f i

ji

ª ∪
[

16i6n

[

j∈ J i

©
bi

j, ci
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j, f i
j, pi

j,qi
j

ª ∪
[

16 j6m,|c j |=2

©
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j

ª
.

We finish the definition of the edge set by defining the edges incident to the vertices of the stable set S . We use the
following convention: whenever we refer to a vertex ai∗

t , i belongs to It = {i1, i2, i3} with i1 < i2 < i3, and i∗ is defined as
follows:

i∗ =
⎧⎨
⎩

i2, if i = i1,

i3, if i = i2,

i1, if i = i3.

For 1 6 i 6 n, N(bi
ji
) = {ai∗

ji
,di

ji
}, N(ci

ji
) = {ai∗

ji
,ai

ji
,di

ji
}, N(ei

ji
) = {di

ji
,hi

ji
}, N( f i

ji
) = {ai∗

ji
, gi

ji
}. For 1 6 i 6 n, j ∈ J i , N(bi

j) =
{ai∗

j ,di
j}, N(ci

j) = {ai∗
j ,ai

j,di
j}, N(ei

j) = {di
j,hi

ji
}, N( f i

j) = {ai∗
j , gi

ji
}, N(pi

j) = {ai
ji
, gi

ji
,ai

j}, N(qi
j) = {ai

ji
,hi

ji
,ai

j}. For 1 6 j 6 m,

|c j | = 2, N(cn+1
j ) = {an+1

j ,a(n+1)∗
j }.

Note that the constructed instance G I is a 3-split graph. Notice that for each variable ui , graph G I contains as induced
subgraph, Truth Setting component Ti , the graph depicted in Fig. 1 for the case variable ui has 3 occurrences. Throughout
the paper, we shall use the convention in the figures: vertices of K are black, vertices of S are white; only edges between
vertices of the same cone are drawn which means all other edges between black vertices are omitted.
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), (u2, u4, u5), (u3, u7), (u5, u6), (u4, u6, u7)}.
Fig. 2. Instance G = (V , E) obtained from 3sat3 instance I = (U , C), where U = {u1, u2, u3, u4, u5, u6, u7} and C = {(u1, u2), (u2, u3), (u1, u5
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Fig. 3. (a) RS-basis for Ti containing edge ai
rdi

r is depicted in bold edges. Dashed edges are the edges of the bases of the 3-cones that are not members of
the RS-basis. (b) Respectively for edge ai

rai∗
r .

For the convenience of the reader, we present in Fig. 2 an example of the whole graph G I obtained from an instance I
of 3sat3.

We refer to Fig. 3 for the proof of Lemma 6.

Lemma 6 (True edge–false edge). Suppose F be an RS-basis of the constructed graph G I . For each j,1 6 j 6 m, and for each i ∈ I j, i 6=
n + 1, exactly one of the edges ai

ja
i∗
j , ai

jd
i
j belongs to F . For each i,1 6 i 6 n, and for each j ∈ J i , if ai

jd
i
j ∈ F then ai

ji
ai∗

ji
∈ F , and if

ai
ja

i∗
j ∈F then ai

ji
di

ji
∈F .

Proof. Consider any j, 1 6 j 6 m, and i ∈ I j, i 6= n + 1. Assume with no loss of generality, j = ji . By considering the 2-cone
N[bi

ji
], notice that edge ai∗

ji
di

ji
must belong to the RS-basis F which implies that both edges ai

ji
ai∗

ji
and ai

ji
di

ji
cannot belong

to F , which implies that exactly one of the edges ai
ji

ai∗
ji

, ai
ji

di
ji

belongs to F .

Consider any i,1 6 i 6 n, and j ∈ J i = {r, l}. Say j = r and refer to Fig. 3(a). Notice that, edge hi
ji

di
r must belong to the

RS-basis F . Assume that ai
rdi

r ∈ F . Then ai
rhi

ji
/∈ F , and so by considering the 3-cone N[qi

r], edges ai
rai

ji
,hi

ji
ai

ji
∈ F . Notice

that edge hi
ji

di
ji

must belong to the RS-basis F . Hence ai
ji

di
ji

/∈ F , and so by the first statement, ai
ji

ai∗
ji

∈ F . Assume that

ai
rai∗

r ∈F and refer to Fig. 3(b) to obtain an analogous reasoning. ✷
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Lemma 6 is the key for the NP-completeness result. Given any variable ui and any clause c j where ui occurs, any RS-basis
of G I is forced to choose exactly one of the edges ai

ja
i∗
j , ai

jd
i
j . If r ∈ J i , then any RS-basis of G I is forced to choose different

types of edges incident to vertices ai
r and ai

ji
, respectively. If r, ` ∈ J i , then any RS-basis of G I is forced to choose the same

type of edges incident to vertices ai
r and ai

` , respectively. The correspondence between the two possible truth assignments
of variable ui and the two possible edges incident to vertex ai

ji
is clear.

Theorem 7. split clique graph is NP-complete.

Proof. As explained above, split clique graph belongs to NP [1,2].
Let G I be the constructed 3-split graph obtained from an instance I = (U , C) of 3sat3. Suppose G I is a clique graph, and

we exhibit a truth assignment for U such that C is satisfied. By Theorem 5, let F be an RS-basis for G I . Let ui ∈ U be a
variable. Set ui equal to true if and only if edge ai

ji
di

ji
∈ F . To see that this truth assignment for U satisfies C consider a

clause c j and its corresponding triangle {ai
j,ai∗

j ,ai∗∗
j }. Since F induces a triangle-free subgraph of G I [K ], there exists i ∈ I j

such that the edge ai
ja

i∗
j is not a member of F . Notice that i 6= n + 1. By Lemma 6, edge ai

ja
i∗
j /∈ F implies that edge

ai
jd

i
j ∈F . If j = ji then variable ui is true and clause c j is satisfied. If j 6= ji , then j ∈ J i , by Lemma 6 edge ai

jd
i
j ∈F implies

edge ai
ji

ai∗
ji

∈F , and edge ai
ji

di
ji

/∈F . It follows that ui is false, and then c j is satisfied.
Conversely, given a truth assignment of U that satisfies C , by Theorem 5, it suffices to exhibit an RS-basis F in order to

prove that G I is a clique graph. Let F contain:
For each i,1 6 i 6 n, the edges ai∗

ji
gi

ji
, di

ji
hi

ji
, ai∗

ji
di

ji
; and for each j ∈ J i , the edges ai∗

j gi
ji

, di
jh

i
ji

, ai∗
j di

j , ai
ji

ai
j .

For each j,1 6 j 6 m with |c j | = 2, the edges an+1∗
j an+1

j .

For each i,1 6 i 6 n, such that variable ui is true, the edges di
ji

ai
ji

, ai
ji

gi
ji

; and for each j ∈ J i , the edges hi
ji

ai
j , ai

ja
i∗
j .

For each i,1 6 i 6 n, such that variable ui is false, the edges ai
ji

ai∗
ji

, ai
ji

hi
ji

; and for each j ∈ J i , the edges gi
ji

ai
j , ai

jd
i
j .

The proof is completed by showing that F indeed induces a triangle-free subgraph of G I [K ] containing all the basis of
2-cones and two edges of the basis of each 3-cone. The latter is easily checked by looking at the list of cones of G I given
in the construction of G I . To see that there are no triangles, notice first that the edges included in the family above, for any
fixed i, are exactly the bold edges in Fig. 3(a) if variable ui is false, and exactly the bold edges in Fig. 3(b) if variable ui is
true. Therefore, they do not form any triangle. Thus, the only triangles that may have been formed by the edges of F are
the triangles with vertices ai1

j , ai2
j and ai3

j for some j and I j = {i1, i2, i3} (see Fig. 2). But this implies that clause c j is not
satisfied, a contradiction. ✷

For the convenience of the reader, we present in Fig. 4 an example of an RS-family defined by a satisfying truth assign-
ment, according to the proof of Theorem 7.

We remark that the split graph restriction produces the powerful concept of RS-basis of Theorem 5 which yields a much
simpler proof when compared to the former clique graph NP-completeness proof. Note further that our NP-completeness
result yields the following corollary:

Corollary 8. spanning Helly family is NP-complete.

Proof. Given a set family F , to obtain the split graph instance, we consider a complete set K with vertices corresponding
to the elements of the members of F , a stable set S with vertices corresponding to the members of F , and set a vertex x
of K adjacent to a vertex F of S whenever x ∈F . ✷
2.3. 3-Split3 graphs

Denote by 3-split3 the class of 3-split graphs such that the vertices of the independent set have degree exactly 3.
The NP-completeness proof for split clique graph given in Theorem 7 constructs a graph instance that is a 3-split graph.

We present next a recursive procedure that given a 3-split graph G constructs in polynomial time a 3-split3 graph G H in
such a way that G is a clique graph if and only if G H is a clique graph.

In order to avoid ambiguity, we denote the split partition for V (G) as (K (G), S(G)), where K (G) is the complete set and
S(G) is the independent set.

Let G be a 3-split graph with 3-split partition (K (G), S(G)). Assume s is a degree 2 vertex of S(G) with N(s) = {u, w}.
Call Fs the 3-split3 graph such that K (Fs) = {u, w,1,2,3,4,5,6,7,8}; and S(Fs) has a vertex zT with neighborhood

N(zT ) = T , for each triangle T contained in any one of the subsets {u, w,1,2}, {1,2,3,4}, {3,4,5,6}, {5,6,7,8}, and
{7,8,2, w} of K (Fs). Since each one of these subsets contains exactly 4 triangles, we have |V (Fs)| = 4 × 5 = 20.

In Fig. 5, we draw all the vertices of K (Fs) and only the edges between them that define the triangles T which are
neighborhoods of the vertices zT ∈ S(Fs). In other words, each triangle T defined by the edges drawn in Fig. 5 is the basis
of the 3-cone of Fs with extreme vertex zT . Observe that Fs has no other cones and that V (G) ∩ V (Fs) = {u, w}.
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u7 = T .
Fig. 4. Satisfying truth assignment for 3sat3 instance I = (U , C), where u1 = u2 = u3 = u4 = u5 = u6 =
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Fig. 5. Gadget Fs : we draw only the vertices of K (Fs), and only the edges that induce the triangle bases of a 3-cone.

Fig. 6. (a) depicts RS-basis for graph Fs , and (b) is used for fact 3.

Finally, we obtain a graph Gs by the union of G − s and Fs and by adding all necessary edges to make K (G − s) ∪ K (Fs)

a complete set. Notice that K (G − s) = K (G). Formally,

V (Gs) = V (G − s) ∪ V (Fs),

E(Gs) = E(G − s) ∪ E(Fs) ∪ ©
xy

¯̄
x ∈ {1,2,3,4,5,6,7,8} and y ∈ K (G) − {u, w}ª.

Observe that Gs is a 3-split graph with 3-split partition

K (Gs) = K (G) ∪ {1,2,3,4,5,6,7,8},
S(Gs) = ¡

S(G) − {s}¢ ∪ S(Fs).

Since each vertex in S(Fs) has degree 3, the number of vertices of degree 2 of S(Gs) is one less than the number of vertices
of degree 2 of S(G). It is clear that repeating the described procedure for each vertex of degree 2 of S(G) we get a 3-split3
graph that will be called G H in the proof of Theorem 10.

To prove that Gs is a clique graph if an only if G is a clique graph, notice the following facts:

(1) The cones of Gs are exactly the cones of G − s plus the cones of Fs , thus the bases of the cones of Gs are in K (G) or in
K (Fs).

(2) The bold edges of K (Fs) depicted in Fig. 6(a) form an RS-basis of Fs .
(3) Any RS-basis B of Gs contains the edge uw . Indeed, please refer to Fig. 6(b), if uw is not in B , in order to contain

the bases of exactly two triangles of the cone with extreme zT for T = {u, w,1}, we have that u1, 1w must be in B .
Analogously, in order to contain the bases of exactly two triangles of the cone with extreme zT for T = {u, w,2}, we
have that u2 and 2w must be in B . Now, in order to contain the bases of exactly two triangles of the cone with extreme
zT for T = {1,2, u}, we have that 12 is not in B . Repeating this argument for each one of the K4’s {1,2,3,4}, {3,4,5,6},
{5,6,7,8}, and {7,8,2, w}, we obtain that 2w is not in B , which is a contradiction.
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Fig. 7. (a) w is a private neighbor of s1. (b) No vertex in S has a private neighbor.

Lemma 9. Graph Gs is a clique graph if and only if G is a clique graph.

Proof. By Theorem 5, since both graphs are 3-split, we have to show that there exists an RS-basis of Gs if and only if there
exists an RS-basis of G .

Let B be an RS-basis of Gs . Consider the edge family B 0 formed by all the edges of B , contained in K (G). Since the cones
of G are the cones of G − s plus the 2-cone with extreme vertex s and basis uw , by facts (1) and (3), B 0 is an RS-family
of G .

Let B be an RS-basis of G . Since uw is the basis of the 2-cone with extreme s, we have that uw belongs to B . Consider
the RS-basis B 0 of Fs depicted by the bold edges in Fig. 6(a). By fact (1), and since uw belongs to B and B 0 , it follows that
B ∪ B 0 is an RS-family of Gs . ✷
Theorem 10. 3-split3 clique graph is NP-complete.

Proof. The problem is in NP because clique graph is in NP.
We reduce the NP-complete problem 3-split clique graph to 3-split3 clique graph. Let G be an instance of 3-split

clique graph. We construct recursively an instance G H of 3-split3 clique graph as described above. Since Lemma 9 can be
applied at each step of the construction, it follows that G is a clique graph if and only if G H is a clique graph. ✷
3. Polynomially solvable split clique graph classes

In the following three theorems we present split graph subclasses for which clique graphs can be recognized in polyno-
mial time. Theorem 11 defines a split graph subclass that is a split clique graph subclass. Theorems 12 and 13 define split
graph subclasses that are non-trivial for the split clique graph problem in the sense that both contain split clique graphs
and non-split clique graphs.

In this section whenever we refer to the vertex subsets K or S of a split graph G , we mean the split partition (K , S)

such that K = S
s∈S N(s). Observe that for any split graph such partition always exists.

We say that a vertex w ∈ K is a private neighbor of s ∈ S , if s is the only vertex in S adjacent to w , i.e. N(w) ∩ S = {s}.
We refer to Fig. 7.

Theorem 11. Let G be a split graph. If every vertex s ∈ S has a private neighbor then G is a clique graph.

Proof. Suppose every vertex s ∈ S has a private neighbor hs . Let x and y be vertices of K . We say that x is a twin of y
when N[x] = N[y]. Observe this is an equivalence relation, and so the equivalence classes define a partition of K . Let Rs be
the class of hs for s ∈ S; and R1, R2, . . . , Rk the remaining classes, this means the classes that do not contain any vertex
hs for s ∈ S . We notice that ((Rs)s∈S , R1, R2, R3, . . . Rk) is a partition of K . Since hs is a private neighbor of s, if s0 ∈ S and
s0 6= s then Rs 6= Rs0 .

For every s ∈ S , we call Is the set {i: 1 6 i 6 k such that Ri ⊆ N(s)}. Let F be the family of complete sets of G whose
members are: K ; Fs,i = Rs ∪ Ri ∪ {s}, for each s ∈ S, Is 6= ∅ and i ∈ Is; Fs = Rs ∪ {s}, for each s ∈ S, Is = ∅. We claim that F
is an RS-family of G , and so G is a clique graph.

Let e ∈ EG . If both end vertices of e are in K then e is covered by K which is a member of F . If not, since S is a stable
set, then e = sx with s ∈ S and x ∈ K . If there exists i, 1 6 i 6 k, such that x ∈ Ri , since every vertex in Ri is a twin of x and
x is adjacent to s, then Ri ⊆ N(s). It follows that Fs,i covers e = sx.

If such i does not exist, there must exist s0 ∈ S such that x ∈ Rs0 . Then N[x] = N[s0] and, since sx ∈ E , it follows that
s = s0 , and so x ∈ Rs . Thus e is covered by Fs or by Fs,i for any i such that Ri ⊆ N(s).

To prove that F has the Helly property, notice the following facts:

(1) Fs is not a member of F if and only if there exists i such that Fs,i is a member of F .
(2) Fs,i ∩ Fs0,i0 6= ∅ implies i = i0 or s = s0 .
(3) Fs has empty intersection with all members of F except K .

Now, assume F 0 is a pairwise intersecting subfamily with at least three members. Consider the members that are not K .
By fact (3), all of them must be of type Fs,i . Moreover, by fact (2), there must exist i such that all these members have the
same subindex i; or there must exist s such that all of them have the same subindex s. In the first case, all members of F 0
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Fig. 8. Case in which w is a private neighbor of s1.

Fig. 9. Case in which w is not a private neighbor.

have the vertices of Ri in common. In the second case, all members of F 0 have the vertices of Rs in common. It follows
that F 0 has nonempty total intersection. This completes the proof. ✷
Theorem 12. Let G be a split graph with |S| 6 3. Graph G is not a clique graph if and only if there exist three 2-cones whose bases
form a triangle.

Proof. Lemma 4 shows that if such three 2-cones exist then the graph G is not a clique graph.
To prove the direct implication assume that G is not a clique graph, thus the family of cliques of G does not satisfy

the Helly property. This implies that |S| = 3, say S = {s1, s2, s3}, and that N[s1], N[s2] and N[s3] is a family of pairwise
intersecting cliques of G without a common vertex. Let x, y and z be vertices of K such that x ∈ N[s1] ∩ N[s3], y ∈ N[s1] ∩
N[s2] and z ∈ N[s2] ∩ N[s3]. If each N[si] is a 2-cone then their bases form the triangle {x, y, z} and the proof follows;
otherwise, at least one of the N[si] contains a third vertex w of K ; we will prove that this contradicts the fact that G is not
a clique graph.

Indeed, if w is a private neighbor, without loss of generality assume of s1, then it is easy to check that the complete set
family

N[s1] \ N[s2], N[s1] \ N[s3], N[s2], N[s3] and K

(see Fig. 8) satisfies the conditions of Theorem 1, thus G is a clique graph.
If w is not a private neighbor, without loss of generality assume w ∈ N(s1) ∩ N(s2) and N(si) \ (N(s j) ∪ N(sk)) = ∅ for

the three different possible sub-indices. In this case, the complete set family

N[s1] \ ¡
N[s2] − {w}¢, N[s1] \ N[s3], N[s2] \ ¡

N[s1] − {y}¢

N[s2] \ N[s3], N[s3] and K

(see Fig. 9) satisfies the conditions given by Theorem 1, so G is a clique graph. Observe that if N[s1] \ (N[s2] − {w})
(Fig. 9(b)) belongs to a pairwise intersecting family F 0 , then N[s2] \ (N[s1] − {y}) /∈F 0 (Fig. 9(d)). The same occurs between
N[s1] \ N[s3] (Fig. 9(c)) and N[s3] (Fig. 9(f)). Hence, three intersecting complete sets of F 0 have x, or z, or w as a common
element. The proof is complete. ✷
Theorem 13. Let G be a split graph with |K |6 4. Graph G is not a clique graph if and only if : (i) there exist three 2-cones whose bases
form a triangle; or (ii) there exist one 3-cone and three 2-cones whose bases are respectively {x, y, w}, {x, z}, {y, z} and {z, w}, being
x, y, z, w vertices of K .

Proof. Lemma 4 shows that each one of the conditions (i) and (ii) implies G is not a clique graph.
To prove the direct implication assume that G is not a clique graph. Therefore, the clique family of G has not the Helly

property, which implies that some of the four ocular graphs in Fig. 10 is an induced subgraph of G [16]. Since G is split, G
has no induced cycles of size at least 4, it follows that none of the graphs H1, H2, H3 is an induced subgraph of G . Thus,
H4 is an induced subgraph of G . Label the vertices of H4 as in Fig. 7 (b); it is clear that s1, s2 and s3 belong to S and that
x, y and z belong to K . If N(s1) = {x, y}, N(s2) = {y, z} and N(s3) = {x, z}, then there are three 2-cones satisfying (i) and the
proof follows. Otherwise, without loss of generality, we can assume that there exists a vertex w ∈ K \ {x, y, z} such that s1
is adjacent to w; even more, we can assume that every vertex of S adjacent to x and y and non-adjacent to z is adjacent
to w , see Fig. 7(a).
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Fig. 10. Forbidden induced subgraphs for the class hereditary clique Helly.

Notice that N(s1) = {x, y, w} is a 3-cone; we will prove that there exist three 2-cones with bases = {z, x}, {z, w} and
{z, y} respectively, thus (ii) holds. Without loss of generality, assume for a contradiction that there is no 2-cone with basis
{z, w}; thus every vertex s of S adjacent to z and w is also adjacent to x or to y. We claim that in such a case G is a clique
graph, a contradiction.

Indeed, we will show that the following set family F is an RS-family of G . The members of F are:

K ;
N[s] \ {x} and N[s] \ {y} whenever N[s] is a 3-cone and {x, y} ⊆ N[s];
N[s] \ {z} and N[s] \ {w} whenever N[s] is a 3-cone and {z, w} ⊆ N[s];
N[s] for any other s ∈ S.

Notice that

F ∈ F and z /∈ F ⇒ F ∩ K = {x, w} or F ∩ K = {y, w}, (1)

F ∈ F and w /∈ F ⇒ F ∩ K = {x, z} or F ∩ K = {y, z}, (2)

F ∈ F and x /∈ F ⇒ F ∩ K = {y, w} or F ∩ K = {y, z}, (3)

F , F 0 ∈ F and F ∩ F 0 6= ∅ ⇒ F ∩ F 0 ∩ K 6= ∅. (4)

It is clear that the members of F are complete sets of G and that they cover all the edges. Let us see that F has the
Helly property. Assume for a contradiction that there exists a pairwise intersecting subfamily F 0 without a common vertex.
Thus there exist members F1 and F2 such that

z /∈ F1 and w /∈ F2.

By the previous implication (1), F1 and F2 are two different members of F 0 and we can assume without loss of generality
that F1 ∩ K = {x, w}. Since w /∈ F2 and F1 ∩ F2 6= ∅, it follows from implications (4) and (2), that F2 ∩ K = {x, z}.

Finally, assume there exists a member F3 of F 0 such that x /∈ F3. Since F3 intersects F1 and F2, we obtain that {z, w} ⊆
F3 ∩ K which contradicts implication (3). It follows that every member of F 0 contains the vertex x. It contradicts the
assumption that the F 0 has not a common vertex. The proof is complete. ✷
4. Open related problems

We summarize in a table the results and open problems we have managed to state about the complexity of the problem
of recognizing clique graphs when restricted to split graphs. Denote by 3-split3 the class of 3-split graphs, where the vertices
of the independent set have degree exactly 3.

3-split 3-split3
∀s ∈ S, s has a

private neighbor
|S|

bounded
|K |

bounded

Split graph
G = (V , E)

partition (K , S).
NPC NPC P

|S| 6 3 general

P ?

|K | 6 4 general

P ?

The present work defines three distinct sufficient conditions for a split graph to be a clique graph that lead to three poly-
nomial split clique graph classes. The complexity of recognizing split clique graphs with |K | or |S| bounded remains open.

Several subclasses of clique graphs have been studied for which polynomial-time recognition is known. In particular, for
several classes of graphs the corresponding class of clique graphs is known [23]. Note that it is well known that the clique
graph of a chordal graph is a dually chordal graph [5,21] but the complexity of deciding whether a chordal graph is a clique
graph was a challenging open problem. We have proved that deciding whether a given chordal graph is a clique graph is an
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NP-complete problem since the class of split graphs is contained in the class of chordal graphs. clique graph was proposed
as a possible complexity-separating problem for the classes of chordal graphs and split graphs [8], and we have proved that
it is not.

The NP-completeness of clique graph [1,2] suggested the study of the problem restricted to classes of graphs not prop-
erly contained in the class of clique graphs. One such class is the class of split graphs, the object of the present paper, and
the recognition of split clique graphs is proved NP-complete. Another challenging still open problem is the recognition of
planar clique graphs [3].

Let G be a split graph with split partition (K , S). In case G is a 3-split graph, Theorem 5 says G admits an RS-family
containing K . We leave as open the complexity of deciding if a split clique graph with split partition (K , S) admits an
RS-family containing K .

Our NP-completeness result for split clique graph recognition is optimum in the sense that each vertex of the indepen-
dent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2
the problem is polynomial, since it is reduced to check whether the clique family of the graph satisfies the Helly property.
Actually, by Theorem 5 the problem is polynomial when the input is a 3-split graph such that the number of 3-cones is
bounded, which implies that 3-split clique graph recognition when |K | is bounded or when |S| is bounded is in P. Our ad-
ditional NP-completeness result proves that the problem is NP-complete even when each vertex of the independent set has
degree exactly 3. Note that the problem 3sat3 when restricted to having exactly three literals per clause is polynomial [14].
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