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Abstract. We present a rigorous framework to obtain evolution equations for the momentum
distribution and higher order correlation functions in weakly interacting systems based on the
Projection Operator Technique. These equations can be numerically solved in an efficient way.
We compare the solution of the equations with known results for 1D models and find an excellent
agreement.

1. Introduction
The out-of-equilibrium dynamics of closed quantum systems is nowadays a very active field
of research (see [1] for a review). The central question behind these efforts is to describe the
dynamics of an isolated many-body system towards an eventual stationary state after it has
been driven out of equilibrium. Of particular interest are the properties of the equilibrium state
itself. If simple correlation functions in this equilibrium state can be reproduced by means of a
canonical ensemble the system is said to thermalize, which, interestingly, has been shown not
to occur in certain situations [2, 3]. These issues, that lie at the heart of statistical mechanics,
have recently received a very strong impulse from the experiments with cold atomic gases. These
systems are almost perfectly isolated from the environment and can remain quantum coherent for
a long time compared with typical experiments duration allowing to study in situ the dynamics
of large aggregates of interacting quantum particles [2].

From the theoretical perspective, the non-equilibrium dynamics of large, interacting many-
body systems settles a formidable challenge. Among the several theoretical approaches at
disposal, different kinds of evolution equations for few-body correlations are being widely
employed in the contemporary literature (see, for example [4, 5, 6, 7]). In contrast to numerical
methods, which are confined either to small systems or short times, as for instance exact
diagonalization or time-dependent density matrix renormalization group (t-DMRG), the solution
of evolution equations allows to investigate the dynamics of large systems for relatively long
times and usually demands a rather modest numerical effort. However, the deduction of these
kind of equations starting from first principles, i.e., the many-body Schrödinger equation or its
equivalents, often involves a series of uncontrolled approximations [7, 8] that, although routinely
utilized, cannot be justified in all cases.
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On the other hand, the most studied type of evolution equations are kinetic equations, which
are markovian, i.e. memoryless, equations for one-particle distribution functions, a typical
example being the Boltzmann equation. Even though the markovian limit is well defined in
some situations [9, 10] it may not be always justified. In particular, in situations in which
the system is reluctant to loose memory of the initial conditions (such as integrable models)
markovian kinetic equations may be loosing important features of the relaxation dynamics.

In this work we present a method for constructing evolution equations for few body correlation
functions in weakly interacting systems that involves no approximations beyond a series
expansion in the small parameter quantifying the strength of the interaction. The resulting
equations of motion are inherently non-markovian. The approach is based on the Projection
Operator Technique (POT) [9, 10, 11]. We benchmark the method by comparing the solution
of the equations with known results from one dimensional (1D) systems.

2. Model and statement of the problem
We consider a system of interacting spinless fermions with Hamiltonian H = H0 + αH1 with

H = H0 + αH1 =
∑
k

ε(k)n(k) + α
∑

k1,k2,k3,k4

V k1,k2

k3,k4
c†(k1)c

†(k2)c(k3)c(k4), (1)

where c†(k) and c(k) are fermionic creation and annihilation operators satisfying canonical

anticommutation relations, V k1,k2

k3,k4
is the momentum-space matrix element of the interaction,

ε(k) is the dispersion relation, n(k) = c†(k)c(k) is the number operator and α is the strength
of the interaction. Our results can be easily extended to the bosonic case. The hermiticity of

the Hamiltonian and the symmetry in the sum indices impose V k1,k2

k3,k4
= −V k2,k1

k3,k4
= −V k1,k2

k4,k3
=

V̄ k4,k3

k2,k1
, where V̄ denotes the complex conjugate.

Furthermore, we will be interested in the special case of a translationally invariant
Hamiltonian in which the particles interact via a pair potential v(x− y). In such case

V k1,k2

k3,k4
=

1

4V
δk1+k2,k3+k4 (v̂(k1 − k4)− v̂(k2 − k4)− v̂(k1 − k3) + v̂(k2 − k3)) , (2)

where v̂(k) =
∫
dr v(r)eik·r is the Fourier transform of the potential and we have written the

antisymmetrized version in order to respect the symmetry conditions of the potential. We are
interested in the evolution of the system starting from an arbitrary initial condition given by a
density matrix ρ(0) which we leave unspecified until the next section.

3. Evolution equation for the momentum distribution
Our starting point is the Liouville equation in the interaction representation (h̄=1):

∂tρ̃(t) = −iα[H̃1(t), ρ̃(t)] = αL(t)ρ̃(t), (3)

where Õ(t) = eiH0tOe−iH0t is the interaction representation of the operator O and we have
introduced the Liouville superoperator L(t)O = −i[H̃1(t), O]. Our task is to find approximate
solutions to the microscopic dynamics described by the Liouville equation. The POT defines
a program for achieving this. We need to first identify the “slow” or “macroscopic” variables
in our system and then project the dynamics into the subspace of these slow variables. In a
weakly interacting system the occupation number operators emerge as natural slow variables
since [H,n(k)] = O(α). To perform the projection we first introduce the “relevant” density
matrix

σ(t) =
1

Z(t)
exp

[
−
∑
k

λ(k, t)n(k)

]
, (4)
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where the time-dependent partition function is given by Z(t) = Tr [exp (−
∑

k λ(k, t)n(k))].
Note that σ̃(t) = σ(t). The Lagrange multipliers λ(k, t) enforce the relation:

〈n(k)〉t ≡ Tr[n(k)σ(t)] = Tr[n(k)ρ(t)]. (5)

In other words, σ(t) is the density matrix that maximizes the Von Neumann entropy subject to
the constraints (5). We note that although the dynamics of ρ̃(t) is generated by the Liouville
equation, the relevant density matrix σ(t) is time-dependent independently of the representation.
The projection of the dynamics consists in finding an equation of motion for σ(t). To this
end we introduce a projection super-operator P (t) that projects the relevant density matrix
P (t)ρ̃(t) = σ̃(t). We refer the interested reader to the literature to find an explicit expression for
P (t) [9, 10, 11, 12, 13]. It is also useful to define the complementary projector Q(t) = 1− P (t).

Following the usual steps [9, 10, 11, 12], from the Liouville equation we obtain an equation
for the slow dynamics

∂tσ̃(t) = αP (t)L(t)σ̃(t) + α2

∫ t

0
dsP (t)L(t)G(t, s)Q(s)L(s)σ̃(s) + αP (t)L(t)G(t, 0)Q(0)ρ̃(0),

(6)

where G(s, t) = T→ exp
[
−α

∫ t
s ds

′Q(s′)L(s′)
]

is an anti-chronologically ordered exponential.

The first term in Eq. (6) is a mean-field term that vanishes due to momentum conservation, the
second one is a memory term that can be completely expressed in terms of the past history of
the 〈n(k)〉t’s and the third term is a microscopic noise term that cannot be expressed solely as a
function of the slow variables. This last term vanishes if we choose an initial condition that has
the same form as the relevant density matrices, i.e., if ρ(0) = σ(0), and we shall in the following
circumscribe to this case.

Eq. (6) is equivalent to the Liouville dynamics and, in general, as difficult to solve as
the original problem. It sets, however, a good starting point for approximations. To render
Eq. (6) tractable we perform a perturbative expansion in the interaction strength using that
G(t, s) = I +O(α). Taking the trace 〈n(k)〉t = Tr[n(k)σ(t)] we finally obtain

∂t〈n(k)〉t = α2

∫ t

0
dsTr [n(k)L(t)L(s)σ̃(s)] +O(α3). (7)

A great simplification arises since, given the Gaussian structure of σ(t), we can use the Wick
pairing rule to evaluate the trace in (7). After a straightforward (but potentially tedious)
calculation we obtain the explicit equation of motion

f(k, t) = f(k, 0)− 16α2
∑

k2,k3,k4

|V k,k2

k3,k4
|2
∫ t

0
ds

sin
[
(t− s)∆ek,k2

k3,k4

]
∆ek,k2

k3,k4

×
(
f(k, s)f(k2, s)f̄(k3, s)f̄(k4, s)− f(k3, s)f(k4, s)f̄(k, s)f̄(k2, s)

)
+O(α3), (8)

where ∆ek,k2

k3,k4
= ε(k) + ε(k2)− ε(k3)− ε(k4) and, in order to ease the notation, we have defined

f(k, t) ≡ 〈n(k)〉t and f̄(k, t) ≡ 1 − 〈n(k)〉t. This equation, in slightly different versions, has
appeared many times in the literature. In Ref. [10] it was derived using the same tools that
we present here but it was used only as an intermediate step to derive the Boltzmann equation
whereas in Refs. [6, 14] it was heuristically derived and used to study the dynamics of infinite
dimensional models and to derive a quantum version of the Boltzmann equation, respectively.
We want to stress that (8) is valid also for lattice systems in which only quasi-momentum is
conserved.
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Although the approach is clearly perturbative, the results go beyond conventional lowest
order perturbation theory because the perturbation expansion is performed inside the integro-
differential equations and, therefore, the coupling is involved in a highly non-linear way in the
final expressions. To asses the accuracy of the approximation is thus not a straightforward
task. One possible alternative is to calculate higher order corrections to Eq. (8), which can be
done systematically within the context of the projection operator technique. Then, the error
could be calculated as the relative difference between the lowest order and the next-to-leading
order solutions [11]. We relegate such error analysis to future work. An alternative approach
is to compare results with other techniques. For instance, performing a suitable short-times
approximation on (8) (details can be found in [6]) it is possible to rederive results first obtained by
Moeckel and Kehrein using the flow-equation approach in lowest order perturbation theory [15].
Moreover, in [6] it was found that the solution of Eq. (8) compares well on the accessible
timescales with dynamical mean-field theory results for the infinite dimensional Hubbard model.
Below we provide an example for a 1D model in which the solution of the equation (8) captures
highly non trivial features of the short-to-intermediate times relaxation. Regarding the validity
of the approach for longer timescales than those accessible for current numerical techniques,
we should mention that under certain assumptions it can be shown [14] that Eq. (8) reduces,
for long enough times, to the quantum Boltzmann equation, which is expected to successfully
describe the thermalization of isolated weakly interacting quantum systems after the system has
effectively lost the information about the details of the initial conditions [8].

With respect to implementation details, Eq. (8) can be solved using standard techniques for
systems of Volterra integral equations [19]. A straightforward algorithm for the solution using,
for instance, the trapezoidal rule to perform the time integral, implies a calculation time that
scales as L3D ×N2, where N is the number of times steps and D the space dimension. We have
found an algorithm whose execution time scales as L3D×N allowing us to reach large sizes and
times. We finally note that the evolution equations are very suitable for parallel computing.

3.1. Results for a 1D model
Now we present results obtained using (8) in a 1D model of spinless fermions with nearest-
neighbor hopping and interactions

H = −J
∑
j

(c†jcj+1 + c†j+1cj) + α
∑
j

njnj+1, (9)

where nj = c†jcj and sums run for j = 0, L − 1 (L is the length of the system) and we impose
periodic boundary conditions. This model can be mapped on to the XXZ model by means
of a Jordan-Wigner transformation and, in equilibrium, exhibits a Luttinger liquid phase for
α < 2J . We study a system at half-filling (kF = π

2 ) and take as initial state the ground state
of the Hamiltonian with α = 0, i.e., we consider the “quantum quench” scenario. The same
situation was studied in Ref. [16] using t-DMRG where, remarkably, it was found that the
short time dynamics were accurately described by the quench dynamics of the Luttinger model
(LM) [17, 18], raising the question of to what extent the equilibrium low energy fixed point
of a given model can describe the out of equilibrium dynamics. In Fig. 1 we show results for
two different observables, the jump Z(t) of the momentum distribution at kF and the kinetic
energy ekin(t), and compare them with the LM predictions. For Z(t) we find that, after an
initial Gaussian decay at very short times, the intermediate time decay is well described by a
power law whose exponent is given precisely by the LM predictions. At longer times, beyond
an α-dependent time scale t∗, deviations occur. These deviations will be studied in detail in a
future publication. For ekin(t) we find that the LM prediction works well even beyond the time
scale t∗ associated with Z(t).
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Figure 1. Right panel: Discontinuity in momentum distribution at the Fermi momentum, Z(t).
Solid lines are power laws with the exponent given by the LM predictions Z(t) ∼ t−γ , with

γ = 1
4(K2 +K−2 − 2). The Luttinger parameter is obtained from bosonization, K =

√
πvF−α
πvF+3α .

Left panel: Derivative of the kinetic energy ekin(t). Solid lines are power laws t−3 given by the
LM predictions. The system size is L = 256.

4. Evolution equation for higher order correlations
To climb another step in the hierarchy of correlations we must switch to the Heisenberg
representation:

∂tO = i[H,O] ≡ iLO. (10)

Note the difference with the Liouvillian defined in (3). The trace operation defines a dual
projection operator over the observables of the Hilbert space:

Tr [OP (t)µ] = Tr [µP(t)O] , (11)

where O is an observable, µ a density matrix and P(t) is the observable space projection operator.
In the Heisenberg representation the strategy is to separate the slow and fast components of the
evolution operator eiLt using the projector P(t) and its complement Q(t). This allows to find
an operator Langevin-like equation for the slow variables [9],

∂tδn(k, t) =

∫ t

0
ds
∑
k′

Φk,k′(s, t) δn(k′, s) + ηk(t), (12)

where δn(k, t) = eiLtn(k)− 〈n(k)〉t. The memory function Φk,k′(s, t) can be expressed in terms
of the 〈n(k)〉t’s. In particular, it is possible to show that [9]

Φk,k′(t, u) =
δ
∫ t
0 dsKk(t, s)

δ〈n(k′)〉u
, (13)

where
Kk(t, s) = −α2Tr

{
[H1, e

iH0(t−s)[H1, n(k)]e−iH0(t−s)]σ(s)
}

+O(α3). (14)

In the last equation a perturbative expansion analogous to that performed in the interaction
representation has been used. The microscopic noise term ηk(t) cannot be written entirely in
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terms of the 〈n(k)〉t’s. Again, we refer the interested reader to the literature to find an explicit
expression for ηk(t) [9] since for our immediate purposes we shall not need it. Using the Wick
rule and taking the functional derivative Eq. (13) we find an explicit evolution equation for the
time-correlation function of the slow variables Fk,k′(t) ≡ Tr [ρ(0)δn(k, t)δn(k′, 0)]

Fk,k′(t) = Fk,k′(0)− 16α2

∫ t

0
ds

{
Fk,k′(s)Ak(t, s) +

∑
q

Fq,k′(s) [Bk,q(t, s)− 2Ck,q(t, s)]

}
,

(15)
where

Bk,q(t, s) =
∑
k3,k4

|V k,q
k3,k4
|2

sin
[
(t− s)∆ek,qk3,k4

]
∆ek,qk3,k4

(
f(k, s)f̄(k3, s)f̄(k4, s) + f̄(k, s)f(k3, s)f(k4, s)

)
,

Ck,q(t, s) =
∑
k2,k4

|V k,k2

q,k4
|2

sin
[
(t− s)∆ek,k2

q,k4

]
∆ek,k2

q,k4

(
f(k, s)f(k2, s)f̄(k4, s) + f̄(k, s)f̄(k2, s)f(k4, s)

)
,

and Ak(t, s) =
∑

k′ Bk′,k(t, s). To the best of our knowledge, it is the first time that Eq. (15) is
derived. In order to solve Eq. (15) we need first to calculate the solution to Eq. (8) to determine
the coefficients Ak(t, s), Bk,q(t, s) and Ck,q(t, s). Once this is done, Eq. (15) is as amenable to
numerical solution as Eq. (8). Solutions of this equation for specific 1D models shall be presented
elsewhere. We remark here, however, that the Heisenberg representation POT could be useful
to obtain evolution equations for other correlation functions using the same scheme.

5. Conclusions
We have presented a rigorous framework to obtain evolution equations for various observables
and correlations functions in weakly interacting systems. These equations can be numerically
solved in an efficient way. We have put to test the accuracy of the approach comparing with
known results for 1D models. Moreover, the POT formalism could allow to obtain higher order
corrections to these equations. The inherent limitation of the approach is that it is valid only
in the perturbative regime.
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