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Abstract 

Traditional food packaging objective is the isolation of products from the outer 

atmosphere to extend their shelf life. In response to current necessities, traditional food 

packaging has led to smart packaging. 

CO2 inside food packages is a key factor to control. CO2 sensors can give information 

about the modified atmosphere integrity, indicating that the inner atmosphere is intact or 

if it has been broken and therefore the used by date must not be trusted, or about how 

fresh is the packaged product.  

This article briefly describes the types of packaging (traditional and smart) and how CO2 

sensors can be used in the food industry. Different approaches for their integration in 

packaged food are described and the characteristics that must comply in order to be 

integrated in the agro-alimentary industry.  
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Introduction 

Nowadays, the most usual way to find food is packaged. The mission of the package is to 

isolate products from the outer atmosphere to extend their shelf life, although it fulfils 

more functions such as:  protection, communication, convenience, and containment [1]. 

Traditional packaging has helped to improve the food industry, although in today’s fast 

paced world, where the industry devoted to food is one of the most important and largest 

around the world, there is a competition to gain the market. One of the strategies carried 

out to succeed in the competition is to improve their products in terms of keeping the 

safety of the produce, the use of environmentally friendly materials or the implementation 

of new technologies [2]. 

In response to the new necessities, traditional food packaging has led to smart packaging. 

Smart packaging accomplishes the four main functions of traditional packaging but it 

goes further, this means that is capable of giving information about the product or is able 

to extend their shelf life. Smart packaging covers two kinds of packaging: intelligent 

packaging and active packaging [3]. 

Active packaging is defined as packaging where different elements have been integrated 

on purpose to enhance the system operation [4], this includes keeping or extending the 

product shelf life. Some examples can be components that absorb ethylene, carbon 

dioxide, or moisture, as well as oxygen scavengers, or ethanol emitters [5]. 

Intelligent packaging is a term related to packaging that contains external or internal 

indicators able to give information about the continent and content, such as history of the 

package and/or the quality of food packaged [4]. Therefore many examples can be found, 

it can be a sensor informing about ripeness grade of fruit  [6], temperature history [7] or 

quality of food [8]. Intelligent packaging encompasses packages that are able to sense 

some properties of the food enclosed or the inner environment, besides this information 

has to be accessible from the manufacturer to the consumer. 

Inside intelligent packaging research, one of the growing areas is the development of CO2 

sensors. According to Puligundla et al. “The development of efficient CO2 sensors that 

can intelligently monitor the gas concentration changes inside a food package and specific 

to food packaging applications is essential [9]”. Therefore, CO2 sensors capable of being 

integrated into food packages as freshness indicators that ensure the quality of food are 

being studied in depth due to the current society's demand for new forms of packaging 

with improved functions [10].  
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Implemented CO2 sensors in food trays can give information about the state of the food 

being packaged (spoiled or fresh) as this gas is released because of bacterial respiration. 

Moreover, determination of CO2 can be used as control of MAP integrity [11]. 

Commercially CO2 sensors are not found yet in food packaging because manufacturing 

costs / implementation and physical size of the sensors inhibit their market value [12]. 

 

Role of CO2 in food industry 

The main gases used in the food industry are CO2 and O2 in addition to N2. They are used 

in the preparation of modified atmospheres inside food packages. CO2 is the main 

antimicrobial factor in MAP [13]. Each fresh food has its own optimal gas composition 

that needs to be studied for the correct design of the optimal packaging conditions [14].  

The concentration of CO2 inside food packages is a key factor to control, mainly for two 

reasons (Figure 1): 

1. MAP integrity: Normally, high concentrations of CO2 are used in MAP or at least 

concentrations higher than the atmospheric CO2. If the concentration of CO2 is 

monitored and thus, decreases over time this means that the modified atmosphere 

has been broken and therefore the shelf by date cannot be trusted. 

The control of the integrity of packages is carried out by means invasive methods 

(the biotest, the electrolytic test, the dye penetration test or the bubble test) that 

are long and arduous.  Some samples randomly selected of each lot are analysed 

and therefore compromised. If the results show the integrity of the package is not 

well, all the packages from that batch are disposed without knowing the actual 

state of them producing an elevated waste. This is not the best way to do it as not 

the whole lot is studied and can result in compromised packages not analysed [15]. 

Automatic non-destructive methods, such as CO2 sensors would be the best way 

to do it, this way would allow reducing food waste and the whole inspection to be 

performed on line [16]. 

 

2. Freshness indication: Fresh products consume the O2 present in the headspace of 

the package and the CO2 concentration increases overtime due to bacterial active 

breath. Therefore, the inner atmosphere of fresh food packages constantly changes 

due to metabolic processes. Increases in the concentration of CO2 overtime are 
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expected in packaged fresh food [17, 18]. This concentration can be correlated 

with the state of food, and thus bacterial counts has been correlated with the 

concentration of this gas for chicken [19] and pork meat [20]. 

Changes in the CO2 concentration overtime inside food packages depend on 

different factors such as size of the package, packaged produce, packaging 

material, temperature, moisture, quantity of product, etc. Therefore, all these 

variables should be taken into account when preparing a CO2 sensor for intelligent 

packaging applications [21]. 

 

 

 
Figure 1. CO2 sensor applications in packaged food 

CO2 Sensors 

The IUPAC defines a chemical sensor as a device that transforms chemical information, 

ranging from the concentration of a specific sample component to total composition 

analysis, into an analytically useful signal. The chemical information, mentioned above, 

may originate from a chemical reaction of the analyte or from a physical property of the 

system investigated [22]. 

Chemical sensors are composed of various elements that can be combined in three main 

parts: a receptor part, where there is an interaction with the analyte, a transducer part able 

to convert the chemical signal into an electrical signal that contains useful analytical 

information and the amplification and signal processing which permits getting the results 

in the required units.  
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The conventional techniques used to analyse CO2  are gas chromatography [23], infrared 

spectroscopy and Severinghaus type electrode [24]. These techniques are invasive and 

hence, totally or partially destructive being not desirable for implementation in the food 

industry. The main disadvantages of these techniques are among others: high price, 

requirement of sampling and technical manipulation and large size. 

IR spectroscopy has been highly employed for CO2 detection because this gas presents an 

absorption band around 4.2-4.4 µm, therefore the concentration of CO2 can be measured. 

in the IR region. The drawback is that other substances absorb at the same region, 

especially water vapour. High humidity is expected inside packaged food and therefore 

this technique is not useful for applications in the food sector. 

Consequently, researchers are doing great efforts to improve CO2 analysis by the use of 

sensors simplifying the whole process, fabricating cheap, fast, sensitive, in situ, user 

friendly and miniaturised CO2 sensors [25]. 

In general, CO2 sensors are classified into electrochemical, mainly amperometric and 

potentiometric, and optical sensors depending on the operating principle of the transducer 

[26] . 

Electrochemical sensors are not found in food applications because they would be 

difficult to implement in food packages and would require the breaking of the package. 

Only a few examples can be found [24, 27] therefore we would focus on optical sensors 

for CO2.  

Optical CO2 sensors are based typically on the acidic properties of this gas.  Gaseous CO2 

dissolves in water (Figure 2) modifying the pH that can be highlighted with acid-base 

indicators or using substances, which solubility depends on the pH. 
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Figure 2. Equilibrium of CO2 in water. 

 

Different pH indicators have been used to detect CO2 such as meta cresol purple, thymol 

blue, α-naphtholphthalein, or bromothymol blue [28-30]. The pKa of the optimal 

indicator to detect CO2 must be ca. 6.8. Common colorimetric CO2 optical sensors are 

solvent based (THF, toluene among others), and contain a phase transfer agent, a 

lipophilic dye and a base. The drawback of these solvent based sensors are their poor 

stability under ambient conditions thus to increase the lifetime, especial storage 

conditions like high humidity, vacuum or/and darkness are always needed [31, 32].  

Improvement on stability have been achieved using water based sensors, obtaining 

stability that makes their use in food applications possible [33]. 

Generally, these sensors are prepared by forming a membrane deposited on an inert 

support such as Mylar or other polymeric materials. Other examples can be found with 

the membranes directly deposited over other surfaces i.e. LED [34], digital color detector 

[35] or plastic fiber [36]. 

Based on this acidic properties, luminescence can be measured instead of absorbance or 

color by means the quenching of the signal of a luminescent substance inert to CO2, whose 

emission spectrum overlaps with the absorbance spectra of one of the forms of the 

colorimetric pH indicator by  resonance energy transfer (FRET) [37-39] that implies 

changes in the lifetime of the emission or by inner-filter effects [40, 41]. 

The luminescent substances that have been mainly used are porphyrins [42, 43] but other 

examples can be found such as upconverting nanoparticles [44] and ruthenium complexes 

[45].  
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The pH-sensitive fluorescent reagent 8-hydroxypyrene-1,3,6-trisulfonic acid  (HPTS) has 

been highly employed in the preparation of CO2 optical sensors [46-48]. Its absorption 

and emission bands differ between the protonated and the deprotonated form. The 

protonated form the HPTS shows the excitation and emission peaks at 396 and 430 nm 

and the deprotonated form exhibits the excitation and emission peaks at 460 and 515 nm, 

respectively. Therefore, when the concentration of CO2 increases,  a decrease in the green 

fluorescence is observed [49]. 

Another strategy for CO2 sensing is based on the formation of carbamic acid derivatives. 

Neutral organic bases that contain N-H bonds can lead to the formation of carbamic acid 

and carbamate salts in addition to hydrogencarbonate when exposed to CO2 according to 

the equation 2 [50]. This causes a variation on the pH, which can be highlighted by a pH 

dye.  

𝑅𝑅2𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑂𝑂2       ↔     𝑅𝑅2𝑁𝑁𝐶𝐶𝑂𝑂𝑂𝑂𝑁𝑁                          (Eq. 2) 

It is also reported that substituted amidines reacts with CO2 via acid-base reaction 

changing the hydrophilicity of the compound [51], being able to highlight the presence 

of CO2 using a solvatochromic dye such as Nile red [52]. 

 

Integration of CO2 sensors in packaged food 

Several requirements must be met for the design of CO2 sensors  to be applied in the food 

industry, such as being non-toxic [25]. They must comply the Commission regulation 

(EC) 450/2009 [53] on active and intelligent materials and articles intended to come into 

contact with food. Moreover, apart of the toxicity grade of the components of the sensor, 

the detection system is also highly important. It must be simple, reliable and must leave 

the package undamaged. Several ways, that have been described in literature, can be 

applied. For example the use of the naked eye , in which the sensor can alert of changes 

in the packaged food by means of color changes; in this case a color chart must be also 

provided as color depends on receptor and illumination conditions [54]. Consumer 

electronic digital devices such as conventional cameras or Smartphone cameras can be 

used to detect changes in the color of the sensor, providing more accurate measurements 

than the use of color charts. The advantage of using Smartphones is the possibility of the 

use of apps, allowing the detection any moment, anywhere needed [55]. Radio frequency 

identification (RFID) technology allows the transmission of data using a RFID reader. 

+ CO2 

 
-  CO2 
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The CO2 sensor can be included in a tag inside the packaged food. The disadvantage of 

this system is the necessity of an RFID reader [56], therefore it could offer a good solution 

for companies but not for consumers. There is a new research area that combines 

alternative sources of energy harvesting with RFID technology, avoiding the use of RFID 

readers. It is described a passive tag for O2 and CO2 determination based on optical 

chemical sensors powered by means of two miniaturized solar cells [35]. In that regard 

and also with the use of smartphones, near-field communication (NFC) can be utilised. 

NFC is a set of low speed and low range communication protocols that is included in the 

latest smartphones. It is used for example for contactless payment. Thanks to NFC 

technology, Smartphones can be used to power and exchange information using a 

radiofrequency signal between the NFC device and an NFC passive tag [57], this 

technology is very attractive for future applications. 

Next, the most recent CO2 sensors applied to food packaging found in literature are 

described.  

Color- based CO2 sensors:  

A mixture of lysine, ε-polylysine and anthocyanins was investigated as colorimetric 

indicator of CO2 capable to respond to small variations of gaseous CO2 (up to 2.5%) and 

to detect direct and reverse transitions. This sensor lasted for various weeks in refrigerated 

conditions. Evaluations of color was carried out by the naked eye varying from azure to 

intense purple when the concentration of CO2 increased. The mechanism was based on 

the formation of the carbamic acid for the reaction of the lysine with CO2 and as pH 

indicator anthocyanin was used that is a natural compound extracted from red cabbage, 

which makes the sensor very attractive for its food grade condition  [58]. ε-polylysine 

was used as antimicrobial agent and to provide color stability. This sensor was applied in 

poultry samples and showed good correlation with microbial growth patterns, however 

no reference method was used to validate the results of the sensor. 

A chitosan-based CO2 indicator was developed, based on the solubilisation of chitosan 

molecules in CO2-induced acidic conditions in aqueous medium. Chitosan solubility 

depends on the pH conditions, forming a transparent suspension under acidic conditions 

but opaque under neutral or alkaline conditions. Depending on the quantity of CO2, the 

dissolution of CO2 varied and therefore the transparency of the mixture. The compound 

2-amino-2-methyl-1-propanol was used to take advantage of the formation of the 
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carbamic acid, getting a more acidic solution when increasing the concentration of CO2 

[59], this sensor was employed packed in LDPE (low density polyethylene) film sachets 

and inserted in packages of kimchi to check the fermentation process. These packages 

were stored for two weeks observing a change in the transparency of the sachets from 

30% to 100% [60]. The liquid phase of the sensor is not the most desirable way to have a 

sensor for the food industry, because of the possibility of leakage and contamination of 

food. 

A chemical barcode was designed using a mixture of different pH indicators, obtaining 

the best results with bromothymol blue and methyl red. The sensor was based on the 

acidic properties of CO2. It was applied in the detection of spoilage of breast chicken, 

correlating the quantity of CO2 with the numbers of bacteria present overtime at different 

temperatures. The sensor demonstrated to be stable for sufficient time to be used 

commercially. Color changes were measured by a portable Chroma meter [19]. The 

drawback of this sensor was the transduction system sensor, meaning that for example a 

color chart should be given in order to get a sensor that could be used by any consumer. 

A water based ink was described by Mills et al. [33] containing m-cresol purple, sodium 

hydrogencarbonate, hydroxyethyl cellulose and glycerol, the sensitivity encountered was 

less than the solvent based sensors, but the stability was increased. Moreover, it was 

shown the possibility of being applied to a variety of different surfaces, using a simple 

applicator, which was an enormous advantage for food applications. A water based 

colorimetric sensor was prepared using metacresol purple as pH indicator. In this study 

the concentration of CO2 released over time was studied in correlation with bacteria 

counts for total viable counts, Pseudomonads and Enterobateriaceae. The sensor was 

studied under different conditions of light, humidity and temperature, concluding that was 

able to be stable for sufficient time given the intended application.  The detection was 

made by the use of a conventional camera analysing the H parameter of the sensor from 

the HSV color space [20]. This sensor was then integrated in meat packages showing the 

ability to detect spoilage before people showed rejection and being stable for the whole 

period of study. Moreover, an android app was created, therefore spoilage could be 

detected just using a smartphone [61].  

 

Luminescent-based sensors: 
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An optical sensor for CO2 based on FRET was reported [12]. The phosphorescent dye 

was a Pt-porphyrin and the colorimetric pH indicator α-naphtholphthalein. Thin films 

were prepared depositing 2 µL on an inert support. The sensor showed responses to CO2 

in the whole range (0-100% CO2) with an acceptable speed (response time 1 min and 

recovery time 4 min). The sensors were exposed to ready-to-eat mixed salad leaves at 

4ºC. During storage gas composition inside the packs was also controlled with a reference 

method (Checkmate 9900 O2/CO2 gas analyser). At certain time intervals the sensors 

were extracted from the packs and tested with conventional instrumentation, this system 

lacked of a non-destructive way to measure the concentration of CO2, as the sensor had 

to be taken out from the package to be measured, on the other hand they were stable under 

standard packaging conditions which made them promising for the food industry 

investigating the appropriate way for a non-destructive transduction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Examples of CO2 sensors integrated in packaged food. A) Barcode for chicken 

fillets spoilage detection b) CO sensors for pork meat freshness detection and C) Chitosan 

based CO2 sensor for kimchi fermentation. Figure adapted from A) [19]  B) [61] C) [60] 
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Conclusions 

Developments in sensor technology are getting closer to commercially viable sensors for 

food packaging applications, although their utilisation is very limited, each day we are 

one step closer to find these kinds of sensors in supply chains and supermarkets. To be 

implemented in the food industry, CO2 sensors must fulfil a list of requirements: 

simplicity, easy implementation, very low price, reliability, robustness and food grade. 

There are several reasons for the absence of commercially CO2 sensors, such as: cost of 

production and implementation, resistance of companies to new practices,  and a way to 

easily access  to the information;  but the most important reason is that the ideal CO2 

sensor for food applications has not been created yet.  
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