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Aquaculture is a growing industry, and its sustainability is crucial. One of its major environmental impacts is the uneaten feed that
pollutes the water. To minimize the uneaten feed, many systems have been developed. Nevertheless, current systems can be
improved by considering the fish position in the tank and the falling feed. In this paper, we propose a system based on fish
presence sensors set at different tank heights and a feed detection sensor located in the drainage tubes. The fish presence sensor
is based on light-dependent resistor (LDR). The calibration of these sensors is shown. When the output voltage is higher than
1.467 V, we can consider that fish are present. On the other side, the falling feed sensor is based on a CMOS sensor. The
calibration process is performed with 40 pictures. The summation of pixels, with brightness value between 0 and 15 in the blue
histogram, is used as an indicator of feed presence. If this value is higher than 520 pixels, we can consider that there is feed in
the picture. Moreover, a verification process of both sensors is done. The results of the verification confirm the calibration.

Finally, the operation of the system is shown.

1. Introduction

Sustainability of aquaculture is a pressing matter as the
demand of fish and seafood is constantly increasing. A pro-
duction of 59.9 MT/year was obtained in 2010, and in 2030,
it is expected to reach 85MT/year [1]. Fish farms can be
implemented both in the sea and inland. Sea facilities are
comprised of cages where fish are kept separated from other
wildlife. Inland facilities build tanks where the conditions
that affect the performance of fish are controlled. Illumina-
tion, turbidity, temperature, are salinity are an example of
the factors that can influence the behavior of fish and must
be monitored [2]. Principally, sustainable aquaculture facili-
ties should not disrupt the ecosystem where they are placed.
Business and social factors, such as being profitable and
aiding in the well-being of the community surrounding the
facilities, are considered as well [3]. Therefore, if only the
environmental factors are considered, the key factors to
evaluate a sustainable aquaculture facility are land use, water
use, energy use, feed use, and freshwater seed. Moreover,

diverse technological systems have been developed in order
to assess the sustainability of fish farms. Some of these
solutions are designed as fixed tanks and filters that measure
specific values of water quality [4]; other solutions can be
implemented in existing aquaculture facilities incorporating
wireless functionalities that allow visualizing the information
on a PC or smartphone [5]. The information available on
sustainable aquaculture allows implementing environment-
conscious fish farms. However, although aquaculture allows
providing access to food for a large part of the population,
several side effects have been noticed.

Aquaculture can introduce a set of problems to the envi-
ronment [6]. Particularly, excess feeding is the cause of some
of the side effects of fish farming. Eutrophication is an
increase in nitrogen and phosphorous in the water as a result
of overfeeding fish [7]. Moreover, an increase in inorganic
nitrogen can derive in acidification of freshwater ecosystems
and survival, growth, and reproduction impairments when
toxic levels are reached. This contaminated water affects
not only the fish consumed by end users but can also affect
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the environment where said water is discarded. In addition,
consumers of polluted water may develop methemoglobine-
mia, cancer in the digestive tract, birth defects, mutagenicity,
and teratogenicity. Nausea, diarrhea, vomiting, muscular
cramps, gastroenteritis, or pneumonia can be caused by algal
toxins. Furthermore, the lack of consistent regulation does
not contribute to the solution of these problems [8]. Differ-
ent countries implement different regulations, so even in
places with stricter regulations, fish with toxicity problems
produced in other areas can be commercialized to other
countries spreading the health problems derived from it.
Although guidelines have been provided in order to reduce
the amount of pollution, there is a great need of imple-
menting solutions to control the feeding process performed
in fish farms [9]. These solutions are not only of interest
for the environment but also to the producers as reducing
the amount of feed results in a reduction of the cost on
their commercialization.

For the detection of excess feeding, it is necessary to
determine the behavior of fish in the cage during the feeding
process. When fish are hungry, their behavior is to rush to the
feeding area to ingest the food [10]. However, when excess
feeding is provided, a big part of the fish in the cage
may continue with the usual behavior they have when feed
is not provided, letting it drops to the bottom of the cage.
This feed is not consumed later on, resulting in the pollution
of the water and the subsequent dangers to the environment
and human health. For that reason, detecting when feed is
not being eaten is of great importance.

In this paper, we present a system that automatically
adjusts the amount of dispensed feed. In order to do so, the
system detects when feed reaches the drainage system. The
feed detection is done using a CMOS sensor. From the data
gathered by the CMOS sensor, we obtain the histograms.
After analyzing them, we can find a correlation between the
number of pixels with certain brightness value and the pres-
ence of feed. Moreover, the height at which fish are swim-
ming is detected by employing light-dependent resistor
(LDR) strips deployed from the top to the bottom of the cage.
The fish are detected due to the changes in the incident light
in the LDR caused by the fish swimming behavior. The fish
covered by scales acts as mirrors, reflecting the light and
some of the flashes inside in the LDRs placed in the tanks.
We show the calibration and verification process of both
sensors. In addition, we present the results of the simulated
teeding process with our proposed system and how the feed
supply velocity changes. Our system allows saving feed
during feeding time and ensures that all the fish have time
to eat, making aquacultural facilities more economically
profitable as well as more sustainable. Although the system
has been designed for fish tanks, this paper is the first step
of the development of a fish feeding system that can be uti-
lized in both inland fish tanks and sea cages. In future
research, the system will be developed for sea cages as well,
where the benefits of the presented system will be substantial.

The rest of the paper is organized as follows. In Section 2,
the related work is presented. Section 3 details the proposed
system, including the scenario description and the hardware
employed to gather the data. The results of the calibration
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and verification process and discursion of the proposed sys-
tem are presented in Section 4. Finally, Section 5 shows the
conclusion and future work.

2. Related Work

In this section, the related work on water quality monitoring
systems and fish feeding solutions is presented.

Fish behavior is a crucial factor in determining the
performance of the fish in aquacultural facilities. Therefore,
various researches have been performed on this matter. A
fish behavior monitoring system was implemented by Papa-
dakis et al. in [11]. It employed computer vision in order to
monitor 9 fish tanks simultaneously. Stock density was eval-
uated as a stress factor for fish in fish farms. Real-time images
were provided to a remote control application. Only the
experiment with the undamaged mesh obtained a significant
statistical difference. Saberioon et al. performed in [12] a sur-
vey on vision-based fish behavior monitoring systems.
Machine vision, thermal imaging, hyperspectral imaging,
and X-rays were the technologies for fish monitoring dis-
cussed by the authors. They also divided the applications of
optical sensors into preharvesting and during cultivation
conditions and postharvesting conditions. Moreover, they
defined five applications for optical sensors in fish monitor-
ing systems. These applications were physical attributes,
chemical attributes, fish sorting, fish quality, and food secu-
rity. Armstrong et al. presented in [13] a flat passive inte-
grated transponder antenna array that monitored fish
behavior by recording the movements performed by salmon
shoals. The antenna array did not incite any unusual behav-
ior on fish. Furthermore, a 99% success rate was obtained
in the experiments. They were done by varying the number
of salmons in each one of the experiments. Fish growth, den-
sity, and fish behavior were monitored by Conti et al. in [14].
Fish behavior was detected employing the scattering cross. If
an anomaly was detected, an alarm was triggered. Moreover,
first-order and second-order polynomial equations were
utilized in order to monitor growth. The behavior of sardines,
sea bass, and rockfish were studied to perform the experi-
ments. Zhang et al. employed in [15] an imaging sonar called
DIDSON (dual-frequency identification sonar) to monitor
Chinese sturgeons. Swimming patterns and the length of
over 2500 targets were studied in the experiments. Results
showed a relation between the body length and swimming
pattern and a 35.6% decrease in the length measured by DID-
SON in comparison to manual measurements. Fish were
found to swim close to the net and in circular motions.

Feeding is another important factor to owners of fish
farms as excess feed increases the production cost and
contaminates the water. For that reason, the number of
researches on fish feeding solutions is constantly increasing.
A fish feeding system that considered the behavior of fish in
order to determine the best time to provide the food was pre-
sented by AlZubi et al. in [10]. The hardware design included
an automatic dispenser, a webcam, and an interface circuit.
The camera detected the number of fish that went to the feed-
ing area; when the fish learning index (FLI) was higher than
the threshold, the system provided food. Results showed the
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variation of the number of times food is provided for eight
days. Atoum et al. introduced in [16] a feeding system for
aquaculture tanks that employs visual signal processing.
The system included a decision-making process to determine
whether fish are eating or not and detection of excess feed.
Excess feed was detected employing two different methods,
being a support vector machine- (SVM-) based refinement
classifier and a correlation filter. Bérquez-Lopez et al. per-
formed in [17] a comparison between mathematical func-
tions and fuzzy logic (FL) feeding techniques for shrimp
farming. Authors determined that dissolved oxygen influ-
ences the feeding rate the most (74%), and temperature influ-
ences it in a 26%. Moreover, they concluded that FL is the
better strategy saving up to a 35% of feed without affecting
growth or survival. Papandroulakis et al. presented in [18]
an automated feeding system for intensive fish farms. The
system considered the necessary amount of plankton that
had to be distributed to each tank. Experiments were per-
formed by applying the proposed method to four groups of
sea bream and comparing it with the results obtained from
two groups fed with the standard method. A reduction
between 30% and 40% in labor was achieved, and the use of
Artemia nauplii decreased by 40%. Garcia et al. presented
in [19] a fish feeding system that employed sensors that
determine when fish need feed. Sensors were deployed both
inside and outside the cage. These were temperature, oxygen,
displacement speed, biomass distribution placement, and
pellet detection sensors for the internal part of the cage and
presence and water current sensors for the outside. Coves
et al. performed in [20] a set of experiments were an on-
demand feeding system was employed to provide feed to 50
sea bass. The two experiments were conducted during 55
and 69 days, respectively. Moreover, a PIT tag was utilized
to determine whether fish activated the trigger or not. Results
showed that a 67% and 74% of the fish in experiments 1 and 2
activated the trigger at least once. Furthermore, two fish in
experiment 1 were responsible for 82% of the triggers and
one fish in experiment 2 was responsible of 77% of the trig-
gers. Zhou et al. present in [21] a feeding decision system
based on a neuro-fuzzy model and infrared computer vision.
Fish feeding behavior was quantized employing an algorithm
that obtains an index as a result by employing image texture
and Delaunay triangulation. Another algorithm performed
the decision of feeding or stop feeding the fish during the
feeding process. It employed an adaptive network-based
tuzzy inference system (ANFIS). Finally, weight gain, growth
and feed conversion rate, and water quality were measured to
evaluate the performance of the system. Results show a 98%
of ANFIS decision accuracy and a reduction of the feed con-
version rate of 10.77%. Lastly, Zhou et al. also present in [22]
a near infrared fish feeing behavior system based on imaging
techniques that employ the gray-level gradient cooccurrence
matrix, the support vector machine, and the Delaunay trian-
gulation. As a result, the flocking index of fish feeding
behavior (FIFFB) was obtained. The obtained linear correla-
tion of the FIFFB was 0.945 confirming that the FIFFB can
be employed to quantify feeding behavior.

Most feeding management systems rely on fish behavior
in order to determine whether fish are eating or not. In this

paper, we present a system for automatic detection of excess
feeding that determines if the feed is being dropped to the
bottom of the cage. Moreover, the height of the cage where
fish are swimming can also be detected by employing LED
strips on the water tanks.

3. Materials and Methods

In this section, we show the system description. First, we
describe the scenario where our system is calibrated and
tested. In addition, we detail the hardware part of our system
including the employed sensors, node, and connections.

3.1. Scenario Description. In this subsection, we present the
scenario where our system is proposed and where the sen-
sors were calibrated. First, we describe the system and its
operation. Then, we detail how we test the sensors for
the calibration.

The proposed system is able to change the feed supply
velocity according to the data gathered by the fish presence
sensors and falling feed detector. The system is comprised
of an automatic feeder tube, which allows changing the feed
supply velocity, see Figure 1. Four different velocities can
be selected: 100%, 50%, 25%, and 5% of the usual feed
supply velocity. The system always starts to feed with the
100% of the velocity. During the feeding process, the
velocity will decrease according to the sensor signals. The
system is controlled by the Arduino which is placed in the
exterior of the tank.

The fish presence sensors are placed inside a Plexiglas
tube as it was presented in [2]. A total of 9 sensors are located
along the tank at different depths. The fish presence sensor is
comprised of LDRs that are able to detect the changes in the
received illumination due to the moving fish. The first LDR,
LDR 1, is placed at 5cm below the water surface. This is the
area where the fish used to be during the feeding process.
The second LDR, LDR 2, is located at 30 cm from the water
surface. The rest of the LDRs, LDR 2 to LDR 9, are spaced
15cm apart. The Plexiglas tube with the LDRs is fixed to
the tank walls in the same side where the feeder tube dis-
penses the feed. The Plexiglas tube is sealed in both extremes.

Finally, the falling feed detector is located at the bottom
of the tank in the drainage tube. This sensor is comprised
by a pellet detector sensor, and illumination is provided
by a white LED. The first part of the drainage systems,
which is usually comprised of an elbow pipe, will be chan-
ged to a T-shaped one, and a methacrylate separator will be
added in one of the shorter sides. Thus, the camera can
have full vision of the drainage system without changing
the water flow.

3.2. Node and Sensor Description. In this subsection, we
present the employed sensors and the selected node are
described.

One of the main elements that forms this system is the
control node in charge of monitoring the swimming height
of the fish. As Figure 2 shows, to develop our control node,
we use an Arduino Mega 2560 Rev. 3 board. This board is
based on the ATmega2560 microcontroller. It has 54 digital
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FIGURE 1: Proposed system for feed supply.
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FiGgure 2: Control node description.

input/output pins (where 14 of them can be used as PWM
outputs), 16 analog inputs, 4 UARTs (hardware ports), and
a 16 MHz crystal oscillator. In addition, the board contains
256kB of flash memory, 8kB of SRAM, and 4kB of
EEPROM. The board can be powered by batteries (which is
our case) or with an AC-DC adapter.

The operation of the node is as follows. On the one hand,
it is not necessary that the set of LDRs is always in operation;
it is only required when the process of feeding fish is carried
out. Therefore, when the feeder starts pouring food into
the water, the node receives a signal to start monitoring.
As the fish descends, the node will send different orders

to the feeder in order to reduce the speed of food pouring
into the water. In this way, the amount of food thrown
into the water is adapted to the amount of fish available
to eat it. The other important element is the OV7670 cam-
era which controls the point in time the feed starts to
reach the floor. The OV7670 camera takes pictures with
a resolution of 640 x 480 VGA and presents a high sensitivity
for low-light operation. Due to its low energy requirements,
the OV7670 camera module is suitable for embedded porta-
ble applications. Finally, this implies a lower waste of food
which entails important economic improvements in the
aquaculture production.



Journal of Sensors

TaBLE 1: Code for obtaining the histograms.

Function Analyze_image (){
Read picture (‘picturel.png');
Divide image into RGB components;
Define brightness levels [1 to 256];
Count pixels in each brightness level;
Show RGB histograms:
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FIGURE 3: Red histogram of pictures without feed.
4. Results and Discussion

In this section, we are going to present the results. First, we
show the tests done with the camera for feed detection. Then,
the calibration of a system for locating the fish in the tank is
presented. Following this, the verification process of both
systems is shown. Finally, we present the operation of the sys-
tem during a feeding process in aquaculture tanks.

4.1. Calibration of the Feed Detection System. In this subsec-
tion, the calibration of the feed detection system is presented.
We gathered 20 pictures without feed in the water and 20 pic-
tures with feed in controlled conditions. The pictures have a
size of 640 x 480 pixels. In order to obtain the histograms, the
following code is used, see Table 1.

In order to find in which part of the histogram it is pos-
sible to identify the presence of feed in the water, we repre-
sent in Figure 3 the red histogram of the pictures with feed
and in Figure 4, the red histogram of pictures without feed.
Figure 5 presents the green histogram of the pictures with
feed, and in Figure 6, the green histogram of pictures without
feed is displayed. Lastly, Figure 7 presents the blue histogram
of the pictures with feed and in Figure 8, the blue histogram
of pictures without feed is presented. From Figures 3 to 8, we
can highlight the following items. First, the histograms of the
pictures without feed are much more similar to each other
than the pictures with feed. This is due to the pictures with-
out feed being almost the same. However, the pictures with
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FIGURE 4: Red histogram of pictures with feed.
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FIGURE 5: Green histogram of pictures without feed.

feed can be very different. In some cases, as in the pictures
28, 31, 33, 34, or 35, the feed pellets cover almost the 20%
of the picture. While in other cases as 21, 24, 26, 29, or 38,
the pellets cover less than 1% of the picture. Thus, there is a
high heterogeneity in the pictures with pellets, which will
make the correct detection of pellets in the pictures difficult.
The second idea that must be highlighted is that, in general
terms, the red, green, and blue histograms are quite similar.
This is because the main part of the picture (the PVC tube)
is dark grey and the water illuminated by the LED system is
light grey. In the histograms of the pictures without pellets,
we find two main groups of pixels. The first one is formed
by pixels with values between 16 and 157. This part of the his-
tograms represents the PVC tube. The second group of pixels
has values between 182 and 205, which represents the water
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FIGURE 7: Blue histogram of pictures without feed.

illuminated by the flash. Lastly, in Figures 9 to 11, we can
observe that in the pictures with feed, there are more pixels
in the darkest tones, with low values of brightness (between
0 and 15) than in the pictures without feed. This pattern is
found in the three colors. Nevertheless, the difference
between the histogram with feed and histogram without feed
is greater in the blue histograms.

The next step is to represent the summation of the pixels
with lower values of brightness. The summation is done with
pixels that present values between 0 and 15. The reason to
select those values is due to the pictures without feed which,
in general, have a low number of pixels with brightness values
lower than 15. The pictures 1 to 20 represent the pictures
without pellets that appear in Figures 3, 5, and 7. The pictures
21 to 40 are the pictures with pellets represented in Figures 4,
6, and 8. In Figure 9, we present the summation of pixels with
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FI1GURE 8: Blue histogram of pictures with feed.

low brightness values for red histograms. The summation for
green and blue histograms is presented in Figures 10 and 11.
In Figures 9 to 11, we present the summation of the pictures
with and without feed pellets. In Figure 9, it is possible to see
that the pictures 1 to 20 have a mean value of 937 pixels with
brightness values between 0 and 15. The minimum and max-
imum values in pictures 1 to 20 are 672 (picture 6) and 1219
(picture 4), respectively. On the other hand, the mean value
in the pictures 21 to 40 is 5038 pixels. Picture 31 presents
the minimum value, 42 pixels. The maximum value of pixels,
41134 pixels, is found in picture 40.

Now, we analyze the data from Figure 10. In this case, the
mean value of pictures 1 to 20 is 285. The mean value of
pixels with brightness values between 0 and 15 in pictures
without pellets in the green histogram is lower than in the
red histogram. The minimum and maximum values in the
summation are 154 (picture 20) and 349 (picture 5), respec-
tively. Secondly, the pictures 21 to 40 present a mean value
of 14645 pixels. The minimum value is found in picture 21
with 236 pixels, and the maximum value is in picture 31 with
62594 pixels.

Lastly, we present the summation of pixels with bright-
ness values between 0 and 15 from the blue histogram in
Figure 11. The mean value of pictures 1 to 20 is 279 pixels.
The maximum and minimum values in the pictures without
pellets are 105 (picture 20) and 473 (picture 2), respectively.
On the other hand, the mean values of pictures 21 to 40 is
18228 pixels. Picture 40 is the one that presents the lower
value, 683 pixels. On the contrary, picture 31 presents the
maximum value of pixels with brightness values between 0
and 15, 74005 pixels.

As the maximum differences are found in the blue histo-
gram, we use this histogram for further analysis with statisti-
cal software [23]. The first test is a descriptive analysis to
confirm or diminish if the data follows a normal distribution.
The data is divided into two variables. The variable A repre-
sents the data from pictures 1 to 20, and the variable B is the
data from pictures 21 to 40. The descriptive analysis of
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variable A gives resulting skewness and kurtosis values of
0.876 and 0.417, respectively. Thus, it follows a normal distri-
bution. On the contrary, the results of the test with variable B
are 2.706 and 0.647 as skewness and kurtosis values, respec-
tively. Therefore, the variable B does not follow a normal dis-
tribution. Consequently, to compare both variables, it is
necessary to use nonparametric tests. To compare the
medians of both variables, the W of the Mann-Whitney test
is employed. The obtained p value of this test is 6.77268E - 8;
as it is lower than 0.05, the test concludes that the median of
both variables is different. Then, the Kolmogorov-Smirnov
test is applied to compare the distribution of both variables.
The result of the test is a p value of 0. Thus, it indicates that

the distribution of both variables is different. Finally, the
Kruskal-Wallis test is done to diminish if the observed differ-
ences are due to the randomness of the data or if it is because
the data in both situations is statistically different. The result
of the Kruskal-Wallis test is a p value of 6.266E - 8. As it is
lower than 0.05, it indicates that the observed differences
are statistically significant. Thus, the proposed system can
be used to identify the presence of feed in the water. Based
on the obtained values, we will consider as a threshold value,
in order to decide whether there is feed in the water or not, a
summation of 520 pixels. This value comes from increment-
ing 10% of the maximum value of summation in the pictures
without feed (picture 2, 473 pixels).
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F1GURE 12: Gathered Vout values in the calibration test.

4.2. Calibration of the Fish Presence Sensor. In this subsec-
tion, the calibration of the fish presence sensor is shown. This
sensor is based on the use of several LDRs placed along the
tank. For the calibration of the sensor, a small aquaculture
tank is employed. A juvenile of Sparus aurata is introduced
in the tank, and the values gathered by the LDR and the fish
movement are recorded. After processing the video, we can
identify the periods where the fish is in the area of the LDR.
The data of the LDR during the test is presented in
Figure 12. In blue, the voltage of the sensor (Vout) in each
second is represented. The periods when the fish are in the
area covered by the LDR are marked in red. We can see in
Figure 12 that in the periods when the fish is not present,
Vout is lower than in the periods when the fish is present.
When fish are not present, the values are similar, but when
fish are present, the values present high heterogeneity. How-
ever, they are always higher than when the fish is not present.
The data shown is gathered by the LDR placed in the upper
part of the tank. The data when fish are not present have a
mean value of 1.390V and a standard deviation of 0.021.
The minimum value is 1.371V, and the maximum value is
1.467V. When the fish are present, the mean Vout is
1.624 V, with a standard deviation of 0.096. The minimum
value when fish are present is 1.479V, and the maximum is
1.853 V. As the maximum Vout in the fish presence is lower
than the minimum value when the fish is present, it is possi-
ble to use this Vout to determine the presence of fish. Now,
using the statistical analysis, we are going to evaluate if the
values when the fish is present are different from the values
when fish are not present. The first step is to assess if the data
follows a normal distribution or not. We divide the gathered
data into two variables; the first one, variable A, corresponds
to the Vout values when the fish is present. On the other
hand, the Vout gathered when the fish is not present is con-
sidered to be the data of variable B. Variable A has 46 data in
total, and variable B has 55. The descriptive analysis of vari-
able A gives resulting skewness and kurtosis values of 2.008
and 0.316, respectively. Thus, it does not follow a normal dis-
tribution. The results of the test with variable B for skewness
and kurtosis are 6.3094 and 5.696, respectively. In order to
evaluate if the observed differences are statistically signifi-
cant, nonparametric tests must be used. With the W of the
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FiGure 13: Effects of light attenuation in the Vout of the LDR at
different depths.

Mann-Whitney test, we can assess if the medians of both dis-
tributions are different. The obtained p value of the test is 0;
as it is lower than 0.05, the test concludes that the median
of both variables is different. Then, the Kolmogorov-
Smirnov test is performed in order to compare the distribu-
tion of variables A and B. The result of the test is a p value
of 0.037. Thus, it indicates that the distribution of both vari-
ables is different. Finally, a Kruskal-Wallis test is done to
evaluate the differences in the variance of both variables.
The test result gives a p value of 0. Consequently, we can con-
clude that the differences found in the data when the fish is
present and the data when the fish is not present are statisti-
cally significant and the sensor can be used to detect the pres-
ence of fish. Based on the obtained values, we will consider a
threshold value, in order to decide whether or not fish are
present, a Vout of 1.467. In this case, it is not possible to
increment in a 10% the maximum Vout in the pictures
because the maximum Vout without fish presence is similar
to the minimum Vout with fish presence.

We need to consider the effect of light attenuation caused
by the water. Nevertheless, it is important to note that on the
surface there is a direct light and the water presents null tur-
bidity. Bearing this in mind, we expect low light attenuation.
In addition, in other papers [2], a similar assembly with LDR
in other depths, the light attenuation observed is less than
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FiGUure 14: Employed pictures for the verification test.
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FIGURE 15: Summation of pixels with brightness values between 0 and 15 in the blue histogram in the verification test.

0.05V. The values of Vout gathered by the LDR at different
depths in a tank without fish are shown in Figure 13. The
maximum Vout is 1.388 V at a depth of 15 cm, and the min-
imum Vout is 1.355V at 135 cm of depth. On the other side,
the light increases when fish presence is higher than 0.2'V.
Thus, the set threshold is useful in all the cases, for all the
depths. The Vout variation in one LDR (see data in the pre-
vious paragraph) due to changes in the light source, the var-
iation in the water surface caused by the water current and
fish movement, is higher than the variation caused by the
light attenuation at different depths. The effect of light atten-
uation in tanks can be despised, but this effect will be studied
in future applications in cages in the sea.

4.3. Verification Process. In this subsection, we detail the ver-
ification process for the two sensors developed in the

previous subsections. Firstly, we will show the verification
process of the feed sensors and then the verification of the
fish presence sensor.

For the verification of the feed sensor, 30 new pictures
were used (see Figure 14). From these 30 pictures, 15 of them,
from pictures 1 to 15, were taken without feed and the other
15, from pictures 16 to 30, were taken with feed. When the
selection of the 15 pictures with feed is performed, pictures
with a big area covered by the feed as in 21 and 28 and pic-
tures with a small area covered by feed as in 20, 22, and 26
are sought. After applying the same methodology, obtaining
the blue histogram, and doing the summation of pixels with
the brightness value between 0 and 15, the data shown in
Figure 15 was obtained. In Figure 15, the blue bars indicate
the summation of pixels with brightness values between 0
and 15 and the orange line marks indicate the threshold value
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established in Section 4.1, being 520. The first idea that we
want to highlight is that all the pictures are correctly classified
according to the preset threshold value. The pictures with-
out feed, 1 to 15, present a mean value of 205 pixels. The
maximum and minimum values are 292 pixels and 108
pixels, respectively. On the other side, the pictures with feed
have a mean value of 14427 pixels. Picture 26 presents the
minimum value, 3153 pixels, and picture 28 presents the
maximum value, 39112 pixels. If we compare the values in
the calibration and in the verification test, we can see that,
in general terms, the data from the verification test follows
the same distribution with the data from the calibration test.

To facilitate the analysis of the distributions of pictures in
both the calibration test and verification test, we represent in
Figure 16 the box-whisker graphics. Firstly, we see the repre-
sentation of the data from the calibration test with and with-
out feed and then the data from the verification test with and
without feed. In this graph, we can see a summary of the data
distribution. Primarily, we want to highlight that, once more,
the distribution of the data from the pictures without feed in
both tests is almost the same due to the low heterogeneity of
these pictures. Moreover, from the distribution of the data of
the pictures with feed, we want to foreground that only in the
calibration test we found outlier values. The means of both
tests are very similar both for the values of pictures with feed,
279 and 205 pixels, and for the pictures without feed, 18228
and 14126 pixels. In addition, the medians are similar, 251
and 218 for pictures without feed and 8393 and 9658 for pic-
tures with feed. We can note that the medians are much more
similar than the means due to the outlier values. Finally, a
median test of mood is done in order to assess if the medians
of the variables from the four samples are identical or not.
The result is a p value of 0. Thus, we can conclude that the
medians are different. Therefore, we can conclude that the
verification test confirms that the proposed sensor can be
used to differentiate the presence or absence of feed and the
value of 520 pixels is an optimal threshold value.

Following this, we present the verification process of the
fish presence sensor. We repeat the same set up as in the cal-
ibration process. The data gathered in the verification test can
be seen in Figure 17. Vout values are represented in blue, and
the periods when fish are present are indicated in red. The set
threshold in Section 4.3, 1.467 V, is shown as a black line. In
general terms, we can see that the data from the verification
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test confirms the conclusions of the calibration test. From
the 45 gathered values, 10 of them are gathered in the pres-
ence of fish. Those 10 values have a mean of 1.615V. The
maximum value is 1.802V, and the minimum value is
1.490 V. On the other hand, the values gathered without the
presence of fish have a mean Vout of 1.368 V. The minimum
and maximum gathered values of Vout are 1.388V and
1.354V, respectively. After comparing the values of the cali-
bration and verification tests, it seems that the data follows
a similar distribution.

With the purpose of facilitating the comparison of the
distributions of the gathered Vout in both the calibration test
and the verification test, we represent the box-whisker
graphic of these data in Figure 18. We represent the data
from the calibration test with and without fish presence and
then the data from the verification test with and without fish
presence. The first idea that we want to highlight is that the
distribution of the data from the verification test and the
calibration test gathered with fish is much more similar to
each other than the data without fish. The means of the
gathered Vout without fish are 1.390V and 1.368V for
the calibration test and the verification test, respectively.
On the contrary, the means of Vout with fish presence
are 1.624V for the calibration test and 1.623V for the ver-
ification test. Moreover, the medians are also similar in the
verification and calibration tests. The medians of Vout with
fish presence are 1.381 V and 1.369 V, and the medians with-
out fish are 1.607 V and 1.602 V for the calibration test and
the verification test, respectively. Finally, a median test of
mood is done in order to assess if the medians of the variables
from the four samples are identical or not. The result is a
p value of 0. Thus, we can conclude that the medians are
different. Therefore, we can conclude that the verification
test confirms that the proposed sensor can be used to dif-
ferentiate the presence or absence of fish and the value of
1.467 pixels is an optimal threshold value.

4.4. Simulation of the Feeding Process. In this subsection, we
show the gathered data during a simulated feeding process.
It is known that during the feeding process, the fish shoal
rises to the water surface to eat [10]. Thus, when the feed pro-
cess starts, the fish presence will change, and this change will
be detected by the presence sensors. During the first minutes,
the fish eats all the supplied feed. However, not all the fish
eat at the same time and in the same way. The bigger and
more aggressive fish are the first to consume the feed. A few
minutes later, when those fish are satiated, the rest of the fish
start to eat. At this moment, part of the feed may start to fall.
Therefore, it may be necessary to reduce the velocity of the
supplied feed to avoid feed waste. Nevertheless, usually the
feed is supplied with the same velocity all the time. Our sys-
tem can detect the falling feed in order to reduce the velocity
of feed supply.

For our system, the data from the feed presence and the
falling feed is used. The purpose of using both data is due
to the data of the fish presence indicating if they are eating
or not. However, the data from the falling feed indicates the
amount of eaten feed. Therefore, for an optimal monitoring,
both data are needed. The data from fish presence acts as a
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trigger for turning off the system while the data from falling
feed will trigger the changes in feed supply velocity. The
operation algorithm can be seen in Figure 19.

When the feeding monitoring system turns on, the first
step is to define the order of the analog inputs 1 to 9, which
represent from Vout 1 to Vout 9. The Vout 1 is the Vout of
the LDR placed at 5cm above the water surface. Then, the
system starts to gather values from the LDRs. If the Vout 2
to 9 are lower than 1.467V, it means that the whole shoal is
in the upper part of the tank and all of them are eating. Thus,
the feed velocity must be maintained in 100% and new data
must be gathered to continue with the monitoring. Neverthe-
less, when Vout 2 to 9 are higher than 1.467V, it means that
the whole shoal is not in the upper part of the tank and not all
of them are eating. To be sure if all the supplied feed is being
consumed, the falling feed system is turned on at 30s. Then,
the pictures are analyzed; if none of the pictures has a sum-
mation of pixels greater than 520 pixels, it means that the
feed is being consumed, no changes are done, and new data
is gathered from the LDR. However, if any of the pictures
present a summation of pixels higher than 520 pixels, it
indicates that not all the feed is being consumed. Therefore,
the feed supply velocity must be reduced to 50% of the ini-
tial velocity. Again, the data from the LDR is gathered; if
the Vout 1 is higher than 1.467V, it means that none one
fish is in the upper part of tanks and we stop the feeding
process. However, the expected situation is that some fish

may still be eating in the upper part, resulting in the Vout 1
being higher than 1.467 V. After 1 minute, the camera system
is turned on again for 30 seconds. If any of the pictures detect
falling feed, the velocity of feed supply will change to a 25% of
the initial velocity.

The same system described to change from 50% to 25% of
the velocity is used to change from 25% to 5% of the initial
velocity. The 5% speed is the slower velocity that can be
offered by our system. In order to turn off the system, we
use the variable of fish presence. At the moment, when the
system detects that there are no fish in the upper part of the
tank, the feed suppliers stop feeding. Moreover, the system
sends all the gathered data, and then, the system is turned
off until the beginning of the new feeding period.

The system uses fish detection as the trigger because we
need to ensure that all of the fish have the possibility of eating
the feed that they need in order to maximize the fish growth.
And it is known that not all the fish eat at the same time. If we
do not consider the fish position, our system will stop feeding
before all the fish can be satiated. Thus, a decrement on the
fish growth will be caused resulting in a reduction in the pro-
ductivity. On the contrary, if we only use the fish position for
the monitoring system, we will not be able to know how to
diminish the feed supply velocity and much more feed will
not be consumed. Consequently, there will be a percentage
of feed waste, which will produce a reduction in the profit
of the fish production.

Now, we show the result of applying the algorithm to the
data of a simulated feeding period, see Figure 20. We can see
the data from the fish presence in Figure 20, feed presence
(0 or 1), and feed velocity (100% to 0%). The data from fish
presence represents the typical feeding behavior during a
normal feeding process. During the first part of the feeding
process, all the fish are in the upper part and the Vout of
the sensors 2 to 9 give values lower than 1.467 V. Then, the
fish presence in the positions 2 to 9 (fish presence 2 to 9) is
equal to 0. And the fish presence in the position 2 (fish pres-
ence 1) is equal to 1 because the Vout of this LDR is higher
than 1.467 V. Nevertheless, at second 450, some of the fish
move to the lower part of the tank. Thus, the fish presence
2 to 9 is equal to 1. At this moment, the camera system for
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feed detection turns on. During the first record, no picture
shows a summation of pixels higher than 520; thus, the feed
presence is 0. Therefore, the feed velocity remains at 100%.
After 1 minute, the camera test is repeated. In this case,
the pictures reveal that there is falling feed. Thus, the feed
velocity decreases to 50%. At second 720, the camera detects
again falling feed and the velocity is reduced to 25%, and at
second 810, the feed velocity decreases to 5%. The feed
period ends at second 990 when no fish are detected in the
upper part of the tank.

4.5. Comparison with Current Systems. Currently, the sys-
tems to optimize automatically the feed supply in fish farms
are very different from each other. First, we found systems
with the purpose of determining the best moment to feed
as in [10, 17]. Other systems are for on-demand feeding
[20] or are used for feeding with plankton [18]. There is
one paper that uses falling feed as the only measure to
decrease the feed velocity [19]. Finally, there is other pro-
posed system [16] that uses a combination of fish presence
and falling feed for adjusting the feed velocity. Nevertheless,
they use an overhead camera to determine the position of

the fish. Thus, this system is not able to differentiate when
the fish are in the upper part of the tank and are eating feed
or when they are in the lower part of the tank and they are
not eating.

The sensors and algorithm presented in this paper sup-
pose an improvement of the current methods for adjusting
the feed supply to the fish needs. Moreover, the low cost of
the employed components facilitates the possibility to
implant this system in aquaculture tanks.

5. Conclusions

In this paper, a system for automatic adjustment of feed sup-
ply velocity for aquaculture monitoring has been shown. The
system is comprised of a fish detector sensor based on mul-
tiple LDRs and a falling feed sensor based on a CMOS sen-
sor. The sensors shown in this paper can be used to
improve the efficiency of the aquaculture feeding process.
The sensors are comprised of simple electronic components
and can be connected to an Arduino node. The calibration
has been shown, and the threshold values for detecting fish
and feed presence have been found. Moreover, a verification
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test was done in order to ensure that the threshold value set
in the calibration are acceptable. Both verification processes
show that the calibrations were done correctly. In addition,
we show the operation of the proposed system during a sim-
ulated regular feeding process.

As future works, we want to test our fish presence sensor
with other fish species. Moreover, we want to test the system
for larvae fish, considering no systems are developed to
adjust the feed due to the small size of fish and the small size
of feed. In addition, we plan to use other light sources as color
LEDs to illuminate the drainage to differentiate pellets from
faeces. The possibility to use different light sources to differ-
entiate substances in the water has already been used for tur-
bidity [24]. In addition, the minimization of the nodes and
available sensors is facilitated to monitor the vital sings of fish
as it was already done with other animals [25]. The inclusion
of similar systems for fish monitoring will help to improve
the fish welfare.
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