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A B S T R A C T

Purpose: To reduce artifacts and scan time of GRASE imaging by selecting an optimal sampling pattern and
jointly reconstructing gradient echo and spin echo images.
Methods: We jointly reconstruct images for the different echo types by considering these as additional virtual
coil channels in the novel Autocalibrated Parallel Imaging Reconstruction with Sampling Pattern Optimization
for GRASE (APIR4GRASE) method. Besides image reconstruction, we identify optimal sampling patterns for the
acquisition. The selected optimal patterns were validated on phantom and in-vivo acquisitions. Comparison to
the conventional GRASE without acceleration, and to the GRAPPA reconstruction with a single echo type was
also performed.
Results: Using identified optimal sampling patterns, APIR4GRASE eliminated modulation artifacts in both
phantom and in-vivo experiments; mean square error (MSE) was reduced by 78% and 94%, respectively,
compared to the conventional GRASE with similar scan time. Both artifacts and g-factor were reduced compared
to the GRAPPA reconstruction with a single echo type.
Conclusion: APIR4GRASE substantially improves the speed and quality of GRASE imaging over the state-of-the-
art, and is able to reconstruct both spin echo and gradient echo images.

1. Introduction

Reduction of MRI acquisition time is important for increasing pa-
tient comfort and lowering scanning costs. To this end, fast imaging
techniques have been developed such as Rapid Acquisition with
Relaxation Enhancement (RARE), also known as Turbo-Spin-Echo (TSE)
or Fast-Spin-Echo (FSE). They acquire multiple spin echoes (SE) during
each repetition time (TR) [1]. However, Specific Absorption Rate (SAR)
constraints at high magnetic field (3T or higher) limit the speed of FSE
due to the large number of refocusing pulses played along each echo
train (ET).

The Gradient- and Spin-Echo (GRASE) imaging method can alleviate
the SAR constraints of FSE, by performing an Echo-planar imaging
(EPI) [2] sampling of gradient echoes (GRE) around each SE [3] be-
tween radiofrequency (RF) refocusing pulses. This can also reduce
scanning time because gradient polarity switching of EPI requires less
time than a RF refocusing pulse with surrounding crusher gradients.
However, T*2 decay and off-resonance effects cause phase and amplitude

modulation, respectively, between SE and GRE, as illustrated in Fig. 1.
Both can result in blurring and artifacts, depending on the time or-
dering of echoes over the k-space phase encoding (PE) positions, called
trajectory. Some trajectories, such as vGRASE [4], PROPELLER [5] and
cylindrical [6], were proposed to alleviate artifacts for specific appli-
cations. In general, for 3D-GRASE imaging, trajectories clustering SE
and GRE in k-space separately reduce artifacts to some extent. Speci-
fically, the conventional GRASE with the SORT phase encoding
strategy [7] (SORT GRASE), including its extensions to parallel imaging
and proton density or T1 weighted imaging [8], clusters SE in the center
and GRE in the edges of k-space, producing SE-dominant contrast.
Nevertheless, some signal modulation can remain [7,8]. Moreover, the
large PE steps between SE and GRE in a SORT GRASE acquisition may
introduce eddy currents, introducing additional artifacts [9,10].

To correct amplitude and phase modulation between echoes, the
independent phase reconstruction of single-slab 3D variable flip angle
(VFA) GRASE method has been proposed [11,12]. This method fills the
full k-space with interleaved SE and GRE measurements, so that the
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different echoes provide complementary spatially information. Subse-
quently, it compensates the phase differences between echo types and
reconstructs the image without modulation artifacts. However, in
[11,12] the acceleration capability being evaluated is only the EPI
factor, as in the entire acquisition all k-space positions are acquired.

Parallel imaging is able to accelerate scanning by regularly sub-
sampling k-space and using a multi-channel (parallel) coil set in which
the coil channels differ in spatial sensitivity. The sensitivity maps can be
either used to unwrap the aliasing of the reconstructed image from the
subsampled k-space (SENSE [13]) or to predict the unsampled data in
the k-space (GRAPPA [14] or ARC [15]). Recently, JVC-GRAPPA [16]
was proposed to treat all echoes in FSE-like sequences, or phase cycles
in balanced stead-state free precession, along one ET as virtual coils,
and jointly reconstruct the image for each of them with a unique con-
trast.

Building further on the ideas presented in [11,12,16], we propose a

rapid GRASE imaging technique that acquires sparse SE and GRE
measurements according to an optimized sampling pattern, and sub-
sequently uses autocalibrated parallel imaging reconstruction (APIR) to
reconstruct the full k-space from these highly subsampled SE and GRE
k-spaces. In this method, henceforth called “APIR4GRASE”, the dif-
ferent echo types (SE and GRE) are included as virtual coil channels,
but, like normal FSE, the echoes along the echo train are distributed in a
single k-space. Optimal k-space patterns are established retrospectively
through an exhaustive search, and validated prospectively. By ex-
ploiting both SE and GRE measurements and using these optimized
subsampling patterns, we obtain a highly accelerated MRI protocol.

2. Materials and methods

2.1. k-Space sampling pattern

APIR4GRASE aims to compensate differences in amplitude and
phase among echo types by treating these as virtual coil channels. First,
for the SE, a uniformly subsampled k-space grid with echo ordering
similar to FSE trajectories is constructed. Next, the sampling grid of
GRE is obtained by shifting the SE grid by v ∈ℤ2 in the PE directions.
Similar to conventional parallel imaging techniques, the center of each
k-space is fully sampled as the auto-calibration signal (ACS) region.

Specifically, the sampled PE positions in SE k-space of APIR4GRASE
are defined as kSE:
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where s= [s1,s2] with +si contains the subsampling factors in two
PE directions, and shr= [shr1,shr2] ∈ℕ2 is the grid shearing, which is
similar to CAIPIRINHA [17]. ACS1 and ACS2 define the size of the ACS
region in the PE1 and PE2 directions. The number of echoes between
successive refocusing pulses is defined as the EPI factor E. The sampled
positions of GRE are shifted relative to the SE positions as

= +k k v j E j j, | | /2 , 0,GRE SE jj .
Fig. 2 shows one example of a sampling pattern for APIR4GRASE

with E = 3 with echo types GRE−1, SE and GRE+1; ky and kz are in PE1
and PE2 directions respectively; s= [2,2], shr= [0,1], v−1 = [1,1],
v+1 = [0,1] and ACS1 = ACS2 = 1. Note that the position of the ACS

Fig. 1. Signal evolution during a FSE acquisition, showing contributions from
T2 and T*2 decay. The time offset between GRE and SE within one refocusing
period witnesses an amplitude modulation by T*2 decay and a phase modulation
by off-resonance in GRASE acquisition.

Fig. 2. An example of the proposed APIR4GRASE sampling pattern. Note the position of the ACS region is shifted along with the whole k-space.
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region is shifted along with the whole k-space.

2.2. APIR4GRASE reconstruction

2.2.1. Kernel computation and signal calibration
As each echo type has the same k-space pattern, a periodic cell with

the size s in two PE directions can be extracted, as shown in the dotted
square in Fig. 2. For reconstruction, each relative index p in one unit
cell has to be considered separately. The k-space position in PE1, PE2
and frequency encoding (FE) dimensions is represented by
k= [kPE1,kPE2,kFE] ∈ℤ3. For each k, p can be computed as follows:
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Here, ⌊A⌋ represents the floor operation on each element of vector A.
For echo type j and channel c, the signal Sj,c at an unsampled position k
can be computed as [14,11]

=k b k bS n j c S( ) ( , , ) ( ),
b B
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where j′ and c′ loop over all possible j and c, respectively; nj,c,p(k) en-
codes the convolution kernels; Bj′,p(k) is the set of offsets b ∈ℤ3 from k to
the regularly sampled positions included in the kernel nj,c,p(k).

Substituting the lines in the ACS region for Sj,c in Eq. (3) results, for
each j,c,p, in a system of equations linear in n(j′,c′,b) which can be
solved with linear least squares [14] possibly with Tikhonov regular-
ization. Subsequently, all unsampled positions are reconstructed by Eq.
(3), using these n and all acquired data S [14].

2.2.2. Image reconstruction
After reconstruction of the unsampled positions, the k-space of each

echo type j and each channel c is reconstructed individually by

= kI x S( ) iFFT ( ( )),kj c j c, , (4)

where iFFT is the inverse Fourier transform and x ∈ℤ3 is the voxel
index. Image Ij is computed as the root mean squares (RMS) of its
channel images [14]:
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where Nc is the number of channels. Additionally, a combined RMS
image is reconstructed by [11]
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2.2.3. Theoretical support
An APIR method, such as GRAPPA/ARC, obtains coil sensitivity

information from a fully sampled autocalibration region in the center of
k-space. As coil relative sensitivities are smoothly changing in the
image domain, they can be modelled as small convolution kernels in k-
space. Below, we argue that the differences between SE and GREs can
also be encoded into the kernels and the assumptions will be in-
vestigated in the experiments.

The GREs acquired next to the SE in GRASE are attenuated by T2*
decay and off-resonance effects. Specifically, the magnetization of echo
type j with the time offset Tj (see Fig. 1) from the SE in channel c can be
approximated as

=S M C ex x x( ) ( ) ( ) ,j c c
T T i Tx x

,
| |/ *( ) ( )j j2 0 (7)

where M(x) is the transverse magnetization, Cc is the coil sensitivity of
channel c, and ω0 is the off-resonance frequency.

When we regard the additional contrast images as virtual coil
channels [16] with =C C ex x( ) ( )j c c

T T i Tx x
,

| |/ *( ) ( )j j2 0 as the sensitivity of
the echo type j in channel c, the signal of echo type j in channel c can be
rewritten as

=S M Cx x x( ) ( ) ( ),j c j c, , (8)

therefore, just like the coil relative sensitivities, the T2* decay and off-
resonance effects can be encoded by the learned convolution kernels
nj,c,p(k) in Eq. (3). Note that the assumed spatial smoothness of Cj is
typically preserved when T T| | *j 2 because ω0 is smoothly varying.

2.3. Optimal patterns searching using phantom acquisition

We propose the optimal k-space patterns of APIR4GRASE with dif-
ferent subsampling factors from retrospective exhaustive searching.
Two full k-spaces (E = 3, s= [1,1], shr= [0,0], vi = [0,0] ∀i) of the
ACR-NEMA MRI Phantom [18] were acquired by two acquisitions in
the same session with the 3D-GRASE sequence. A 3T General Electric
Discovery MR750 clinical scanner (General Electric Medical Systems,
Waukesha, WI) and an eight-channel birdcage-like receive brain coil
(8HRBRAIN) were used. The scan parameters are shown in the left
column of Table 1. The scan time for each full acquisition is 19.0 min. A
variable flip angle algorithm [11] was used to stabilize the amplitude of
the magnetization along the ET. For each echo type, the view ordering
follows a T2 weighted linear encoding trajectory as described by [7,8].
The cylindrical phantom was placed axially in the coil array, with S/I
the frequency encoding direction.

All possible k-space patterns with s|| || 4, shr1 < s1, shr2 < s2 and
shr|| || 10 , v|| || 2 for both GRE−1 and GRE+1, ACS1 = ACS2 = 12

were retrospectively constructed from the first full acquisition, and

Table 1
Acquisition parameters. Note that the echo train length includes several skipped echoes at the beginning of each ET. The number of skipped echoes are specified in
this table.

Full acquisition of phantom for retrospective experiment Prospective optimal patterns acquisition of phantom In-vivo acquisition

RF pulses Non-slice selective Non-slice selective Non-slice selective
Repetition time (TR) (ms) 400 1000 2800
Effective echo time (TE) (ms) 126.1 205.4 122.2
Effective TE for GRE (ms) 2.796 1.976 1.104
Echo train length (ETL) 26 56 56
Number of skipped echoes 3 3 3
Echo spacing (ESP) (ms) 9.7 7.9 4.7
EPI factor (E) 3 3 3
Acquisition matrix 256 × 256 × 256 256 × 256 × 256 128 × 128 × 128
FOV (mm3) 205 × 205 × 205 205 × 205 × 205 205 × 205 × 205
Voxel size (mm3) 0.8 × 0.8 × 0.8 0.8 × 0.8 × 0.8 1.6 × 1.6 × 1.6
Receive bandwidth (kHz) ± 83.33 ± 83.33 ± 83.33
Scan time with full k-space pattern (min) 19.0 20.6 14.4
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subsequently reconstructed by APIR4GRASE; hence, evaluating 40,000
patterns in total. Note that not all patterns are unique, but we did not
remove these duplications in the evaluation. For the pattern search the
size of the convolution kernel of APIR4GRASE was [5,5,1] in PE1, PE2
and FE dimensions in k-space for every p.

The mean square error (MSE) of each reconstructed image was
evaluated. As reference, we used the image with the corresponding
contrast reconstructed from the second full acquisition. For SORT
GRASE, the reference is the an image reconstructed from the fully
sampled SE k-space of the second full acquisition. A small region in the
phantom with non-stationary bubbles was excluded in the MSE com-
putation by a manual mask. The MSE of the first full acquisition was
also computed with the reference of the second full acquisition to es-
timate the noise contribution. Under each distinct subsampling factor of
s, the k-space pattern with the lowest mean of MSE of all echo types was
selected as the optimal pattern.

2.4. Prospective evaluation of optimal patterns with phantom acquisition

To prospectively verify the reconstruction quality of the selected
optimal k-space patterns, each of them was used in a second scan ses-
sion, with the same scanner and coil, using the same phantom as in the
first experiment. The scan parameters in this session are shown in the
middle column of Table 1. As reference, two full k-spaces were acquired
as well. The scan time for the full acquisition is 20.6 min. For each
optimal pattern, the total subsampling factor and the scan time are
shown in Table 2.

Besides the APIR4GRASE reconstruction, the GRAPPA reconstruc-
tion was also performed on the k-space of each individual echo type for
comparison. The convolution kernel has a size of [5,5,5] for both
APIR4GRASE and GRAPPA. Tikhonov regularization [19] was added to
the kernel estimation to avoid excessive noise amplification with the
increased kernel size. The regularization parameter was firstly nar-
rowed from a wide range based on the MSE, and a single value, iden-
tical for all patterns, was selected based on visual inspection of the
reconstructed images, trying to avoid significant presence of both ar-
tifacts and noise.

For comparison, the conventional SORT GRASE k-space was retro-
spectively constructed from the first full acquisition. This avoids eddy
current induced artifacts due to larger phase encode steps between SE
and GRE of a prospective SORT acquisition.

To compare the performance of APIR4GRASE, GRAPPA and con-
ventional SORT GRASE, the MSE of their reconstructed images was
computed. To also compare the noise suppression ability of
APIR4GRASE and GRAPPA, the g-factor map was computed with the
pseudo multiple replica method [20] with 300 iterations by adding
Gaussian white noise in the acquired k-space. The magnitude level of

the simulated noise was estimated by the standard deviation in the
background area of the magnitude image of the first full acquisition.
Both APIR4GRASE and GRAPPA include the RMS reconstruction (Eq.
(5)) on the channel images, therefore, the g-factor map is also computed
on the RMS image of each echo type.

2.5. Retrospective in-vivo experiment

In-vivo performance of the optimal patterns was evaluated by ret-
rospectively subsampling fully acquired k-spaces of all echo types
(GRE−1, SE, and GRE+1). With Institutional Review Board approval
and after obtaining informed consent the brain of five volunteers was
scanned by the same sequence, with the same coil and scanner as in the
phantom experiment. The scan parameters are shown in the right
column of Table 1. The scan time for each full acquisition is 14.4 min.
The frequency encoding direction was S/I.

The k-spaces of the optimal patterns and the SORT pattern were
retrospectively constructed from the full acquisition. For reference, the
full k-space of each echo type was reconstructed into an image by iFFT.

To compare the performance of APIR4GRASE, GRAPPA and the
conventional SORT GRASE on the in-vivo data, the MSE of their re-
constructed images was computed. For the MSE computation, the full k-
spaces of all volunteers are scaled to the same energy level as the first
volunteer. The size of the convolution kernel of both APIR4GRASE and
GRAPPA is [7,7,5]. Regularization was also used in the convolution
kernel computation with a single parameter for all patterns. The
parameter selection method was the same as in the phantom experi-
ment.

To validate the assumed spatial smoothness across echo types in
brain imaging, we performed a phase preserved reconstruction for each
echo type from Ij,c of the full acquisition using the Walsh combining
method [21], and performed voxel-wise division of the complex-valued
images between all echo type pairs.

2.6. Prospective in-vivo experiment

Using the same acquisition setting as the retrospective in-vivo ac-
quisition, the optimal patterns of s= [2,3], [2,4], and [3,3] were ac-
quired prospectively in one volunteer. To validate the image quality
with respect to the images of the retrospective acquisitions,
APIR4GRASE with the same convolution kernel size was performed to
reconstruct the images of the prospective acquisition.

To validate APIR4GRASE with high subsampling factor in high re-
solution in-vivo imaging, a prospective T2-weighted acquisition with
the optimal pattern of s= [3,3] was performed in one volunteer with
the settings the same with the prospective optimal patterns acquisition
of phantom (the middle column) in Table 1 except that TR = 2800 ms,
TE = 272.8 ms, ESP = 9.7 ms. The resolution was 0.8 mm isotropic.
This acquisition acquired an elliptical k-space by skipping the corners in
the PE plane and had scan time of 5.5 min. Image reconstruction was
performed identically to the retrospective acquisitions. For reference, a
GRASE SORT image with the same acquisition settings was also ac-
quired. This acquisition filled the rectangular k-space with acceleration
factor two in PE1 direction without skipping corners and took around
9.4 min. The image of this acquisition was reconstructed by ARC [15].

3. Results

3.1. Optimal patterns searching using phantom acquisition

Fig. 3 (a) presents the mean of the MSEs of the reconstructed
GRE−1, SE and GRE+1 images for all 40,000 tested patterns. Each block
in Fig. 3 (a) contains the MSEs of all 625 tested patterns under one
specific pair of subsampling factors in both PE directions and one
specific shearing condition. Fig. 3 (b) shows how the MSEs of all pat-
terns were organized in one block by zooming in on the block with

Table 2
shr, v−1, v+1, total subsampling factors, and scan times of the prospective
phantom acquisitions for the optimal patterns.

s shr v−1 v+1 Total subsampling factor Scan time (min)

[1,2] [0,1] [−2,2] [−2,1] 2 10.4
[1,3] [0,1] [2,2] [−2,2] 3 7.0
[1,4] [0,2] [2,2] [2,1] 4 5.3
[2,1] [1,0] [−2,2] [−2,1] 2 10.4
[2,2] [0,1] [1,−1] [1,−2] 4 5.3
[2,3] [1,0] [1,1] [2,2] 6 3.6
[2,4] [0,1] [0,2] [1,1] 8 2.7
[3,1] [1,0] [2,2] [−2,2] 3 7.0
[3,2] [1,0] [1,2] [0,2] 6 3.6
[3,3] [1,0] [2,2] [2,0] 9 2.5
[3,4] [0,0] [1,−2] [2,−1] 12 1.9
[4,1] [2,0] [2,1] [2,2] 4 5.3
[4,2] [1,0] [−1,2] [2,2] 8 2.7
[4,3] [0,2] [2,0] [1,1] 12 1.9
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s= [4,1] and shr= [0,0]. The MSEs of each individual echo type are
presented in Supplementary materials ( Figs. S1–S3).

Fig. 3 (a) shows that patterns with different shr or v differ in MSE.
The patterns with non-zero shearing mostly have lower MSE than their
counterparts with zero shearing when only one PE direction is highly
subsampled. The impact of v is higher in patterns with higher s1 × s2.

The optimal patterns selected based on the mean of MSEs of GRE−1,
SE and GRE+1 images are shown in Fig. 4 (a–o). The conventional
SORT GRASE pattern is also shown in Fig. 4 (p). Note that the optimal
pattern with s= [1,2] is identical to the optimal pattern with s= [2,1],
and the optimal pattern with s= [1,3] is identical to the optimal pat-
tern with s= [3,1]. The detailed parameters of shr, v−1, v+1, and the
total subsampling factors for the optimal patterns are shown in Table 2.

Fig. 5 (a) shows the mean of the MSE of the three echo types with
the optimal pattern under each subsampling factor s1 × s2. Different
points under an identical total subsampling factor represent different
patterns (e.g. s= [2,3] vs s= [3,2]). The black line in Fig. 5 (a) shows
the theoretically expected lower bound on the MSE for each sub-
sampling factor, calculated by multiplying the MSE of the repeated full

acquisition, MSErep, by the subsampling factor, i.e., MSErep × s1 × s2.
However, as is well known for parallel imaging, MSE increases further
due to aliasing artifacts and noise amplification (g-factor) in practice.
Above the subsampling factor of four, the MSE of the optimal patterns
exceeds the black line, indicating that noise amplification or the in-
troduction of parallel imaging artifacts substantially contribute to the
MSE.

3.2. Prospective evaluation of optimal patterns with phantom acquisition

Fig. 6 (a–c) shows, for several optimal patterns (s1 ∈{1,2,3,4} and
s2 = 3), one slice in the two PE dimensions of the reconstructed com-
bined images, the SE images of the prospective phantom acquisition by
APIR4GRASE, and the SE images by GRAPPA. The corresponding g-
factor maps of the SE image reconstructions are shown in Fig. 6 (d, e).
The results of all echo types with all optimal patterns are presented in
Supplementary materials ( Figs. S4–S15). Fig. 6 (a–c) shows more ar-
tifacts for the higher subsampled patterns. Compared to the GRAPPA SE
image, the APIR4GRASE combined image and the SE image show less
artifacts under each subsampling factor. In Fig. 6 (d, e), the g-factor of
APIR4GRASE reconstruction is also lower than the GRAPPA re-
construction.

Fig. 5 (b) presents the mean of the MSE of the three echo types of
both APIR4GRASE and GRAPPA reconstructed images for each of the
optimal patterns. The black line in Fig. 5 (b) has the same meaning as in
Fig. 5 (a). As can be seen, the MSE of APIR4GRASE is lower than
GRAPPA, which is more obvious for subsampling factors ×s s 61 2 .
The overall better MSE of APIR4GRASE in Fig. 5 (b) than in Fig. 5 (a) is
probably due to the contribution of the Tikhonov regularization.

Fig. 7 (a) shows the SORT GRASE image and Fig. 7 (b) the APIR4-
GRASE combined image with the optimal k-space pattern of s1 = 1 and
s2 = 3, and their MSEs. The scan time of APIR4GRASE is 1% longer
than SORT GRASE due to the fully acquired ACS region. The modula-
tion artifacts present in SORT GRASE image are not present in APIR4-
GRASE images. Additionally, from the same data, APIR4GRASE re-
constructs the SE as well as the GRE images shown in Fig. 7 ( c–e). The
MSE of the APIR4GRASE combined image is 78% lower than the MSE of
the SORT GRASE image. The oscillatory pattern in the lower part of the
APIR4GRASE images, as shown inside the blue ellipse in Fig. 7 (b), is
also present in the fully sampled SE image. Hence this is not an artifact
introduced by the inclusion of gradient echoes nor the subsampling but
intrinsic in the VFA-FSE sequence and trajectory used. It is probably
caused by a strong structure pattern at few slice distance in the
phantom.

3.3. Retrospective in-vivo experiment

Fig. 8 shows one axial slice of the reconstructed APIR4GRASE
combined brain images (a), the APIR4GRASE SE images (b), and the
GRAPPA SE images (c), with several scanned optimal patterns (s1

∈{1,2,3,4} and s2 = 3) for the first retrospective volunteer scan. The
left half of these images contains the reconstructed image and the right
half the difference with the fully sampled reference image. The g-factor
maps of APIR4GRASE and GRAPPA on the SE image reconstruction are
shown in Fig. 8 (d, e). These maps clearly show that APIR4GRASE has a
lower noise amplification than GRAPPA when ×s s 61 2 . For this vo-
lunteer the results of all echo types with all optimal patterns are pre-
sented in Supplementary materials ( Figs. S16–S27) and the results of
the other volunteers are presented in the Supplementary material (Figs.
S28–S31).

Fig. 5 (c) presents the MSE results of both APIR4GRASE and
GRAPPA reconstructions on the in-vivo data for the five volunteer
scans. For each volunteer, the MSE of GRAPPA is increasingly higher
than APIR4GRASE when the subsampling factor increases, and the
difference is most clear when ×s s 81 2 .

Fig. 9 shows the in-vivo images of the SORT GRASE (a) and

Fig. 3. The mean of MSE of GRE−1, SE and GRE+1 images of all tested patterns
(a) and a zoomed-in version showing how the results are organized in each
block (b). Δ = v−1 and = +v 1.
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APIR4GRASE images (b–e) for the first volunteer and their corre-
sponding MSEs in the brain region. The MSE calculation excluded the
skull and background regions, since they are not essential for diagnosis.
In the brain region, segmented using FSL (version 5.0.2.2) [22], the
MSE was reduced by 94%. Despite lying outside the brain, it is worth
pointing out the modulation artifacts around the skull in the SORT
GRASE image, which were largely eliminated by APIR4GRASE.

Fig. 10 shows the real (first row) and imaginary (second row) part of
the logarithm of the voxel-wise division between the complex-valued
images of the different echo types. The real component represents the
magnitude ratio and the imaginary part represents the phase difference.
The sagittal plane, instead of the axial plane, is shown as it contains
more variation. Observe that these ratio images are spatially smooth in
the brain region.

3.4. Prospective in-vivo experiment

Fig. 11 shows the combined images of the retrospective acquisition
(first row) and the prospective acquisition (second row) with the op-
timal patterns of s= [2,3], [2,4], and [3,3] from left to right. The
images show similar subsampling artifacts.

Fig. 12 shows the images of the high resolution prospective acqui-
sitions for both APIR4GRASE (a) and the SORT GRASE (b). With

reduced scan time, APIR4GRASE achieved image quality similar to the
SORT GRASE.

4. Discussion

We proposed APIR4GRASE to reduce modulation artifacts in con-
ventional GRASE using the correlation among SE and GRE through
autocalibrated parallel imaging reconstruction [16,14]. The application
of the subsampling pattern search method showed substantial differ-
ences in MSE among patterns with identical subsampling factor. The
optimal patterns that were prospectively validated show that with si-
milar acquisition time, APIR4GRASE is able to avoid modulation arti-
facts in conventional SORT GRASE. Additionally, APIR4GRASE can si-
multaneously reconstruct GRE images with similar image quality. This
might be useful for detection of hemorrhage, microcalcifications or iron
deposits [23]. T*2 weighting can be enhanced by increasing E, which
increases the maximum |Tj|. By combining the SE and GRE images
using RMS, a combined image with better quality and lower MSE is
achieved.

A current limitation of APIR4GRASE is that phase images are not
reconstructed due to RMS reconstruction. Another limitation is the as-
sumption of small or spatially smooth T*2 decay during Tj, though this
assumption is typically satisfied in brain imaging. The potential of

Fig. 4. Optimal patterns for APIR4GRASE (a-o) and the conventional SORT GRASE pattern (p).
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(a) The lowest mean of the MSE of GRE-1, SE

and GRE+1 images of the phantom with retro-

spectively subsampled patterns under each total

subsampling factor.

(b) The mean of the MSE of GRE-1, SE and

GRE+1 images of the phantom with prospective

acquired optimal patterns.

(c) The mean of the MSE of GRE-1, SE and

GRE+1 images with retrospectively subsampled

optimal patterns on the in-vivo data. Different

colors indicate different volunteers.

Fig. 5. The MSE of the reconstructed images. Note that the subsampling factor is defined by s1 × s2, where the effect of the ACS region is neglected.

Fig. 6. The images and the g-factor maps of some
prospectively acquired optimal patterns (s1

∈{1,2,3,4} and s2 = 3) of the phantom acquisition
with APIR4GRASE and GRAPPA reconstruction. For
each of them, one axial slice (the PE1×PE2 plane) is
shown. (a) The combined image of APIR4GRASE; (b)
The SE image of APIR4GRASE; (c) The SE image of
GRAPPA; (d) The g-factor map of APIR4GRASE on
SE; (e) The g-factor map of GRAPPA on SE.
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APIR4GRASE in anatomies with a relative short T*2 decay, e.g. knee,
requires further investigation.

For the subsampled patterns, besides the specific subsampling
factor, the k-space pattern also affects the performance of APIR4GRASE.
This effect is stronger for higher subsampling factors. To achieve

optimal reconstruction quality, the optimal patterns with ×s s 121 2
were selected by a full search over all possible patterns. By testing
sheared and shifted sampling grids of the different echo types, our ex-
haustive search identified optimal sampling patterns that covered the
unit cell more or less uniformly with low discrepancy. The optimal

Fig. 7. The comparison of the SORT GRASE image
(a) and the APIR4GRASE images (b–e) of the pro-
spective phantom acquisition with the optimal k-
space pattern with s= [1,3]. The red arrows point
to the modulation artifacts in the SORT GRASE
image. The blue ellipse indicates some ringing ar-
tifacts which are not introduced by the inclusion of
gradient echoes nor the subsampling but intrinsic
in the VFA-FSE sequence and trajectory used. (c–e)
show the APIR4GRASE image of each echo type.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

Fig. 8. The images and the g-factor maps of some retrospectively
constructed optimal patterns (s1 ∈{1,2,3,4} and s2 = 3) of the
first in-vivo acquisition with APIR4GRASE and GRAPPA re-
construction. For each of them, one axial slice (the PE1 × PE2
plane) is shown. (a) The combined image of APIR4GRASE; (b)
The SE image of APIR4GRASE; (c) The SE image of GRAPPA; (d)
The g-factor map of APIR4GRASE on SE; (e) The g-factor map of
GRAPPA on SE. In (a–c), the left half contains the reconstructed
image and the right half the difference with the fully sampled
reference image.
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patterns were validated on both phantom and in-vivo brain imaging
with settings in a very different range (TR, ETL, resolution, etc.). This
provides useful suggestions on the choice of k-space pattern for the
APIR4GRASE acquisition with E = 3 with a widely used eight-channel
head receive coil. Since the signal correlation that APIR4GRASE ex-
plored mainly comes from coil sensitivity and smoothness between
echo types, the selected patterns are expected to be nearly optimal for
all the listed protocols (e.g. TR, TE, ETL, Matrix size, etc.) with the
identical coil and echo types. For different E(> 3), or different receive
coils, the pattern optimization might have to be repeated.

5. Conclusions

By integrating autocalibrated parallel imaging reconstruction and
using selected optimized sampling patterns, APIR4GRASE enables
achieving better image quality with less aliasing artifacts and noise
amplification than conventional 3D-GRASE. Compared to GRAPPA
which reconstructs one image, APIR4GRASE includes all echo types as
virtual coil channels and reconstructs images for each echo type sepa-
rately. APIR4GRASE achieves 0.8 mm 3D isotropic T2-weighted brain
imaging with an acceleration factor of nine, i.e., s= [3,3], resulting in
an acquisition time of 5.5 min.

Fig. 9. The comparison of the SORT GRASE image
(a) and the APIR4GRASE images (b–e) of the first
retrospective in-vivo acquisition with the optimal
k-space pattern with s= [1,3]. The red arrows
point to the modulation artifacts in the SORT
GRASE image. Note the clearly visible ring of the
skull is the first lobe of a series of rings. (c–e) show
the APIR4GRASE image of each echo type. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

Fig. 10. The voxel-wise division of the phase reserved re-
construction between two different echo types in the low
resolution in-vivo full acquisition. (a) The spin echo image
over the first gradient echo image, (b) the spin echo image
over the second gradient echo image, and (c) the first gra-
dient echo image over the second gradient echo image.
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