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Abstract: Most authors apply the Granger causality-VECM (vector error correction model), and
Toda–Yamamoto procedures to investigate the relationships among fossil fuel consumption, CO2

emissions, and economic growth, though they ignore the group joint effects and nonlinear behaviour
among the variables. In order to circumvent the limitations and bridge the gap in the literature, this
paper combines cointegration and linear and nonlinear Granger causality in multivariate settings to
investigate the long-run equilibrium, short-run impact, and dynamic causality relationships among
economic growth, CO2 emissions, and fossil fuel consumption in China from 1965–2016. Using
the combination of the newly developed econometric techniques, we obtain many novel empirical
findings that are useful for policy makers. For example, cointegration and causality analysis imply
that increasing CO2 emissions not only leads to immediate economic growth, but also future economic
growth, both linearly and nonlinearly. In addition, the findings from cointegration and causality
analysis in multivariate settings do not support the argument that reducing CO2 emissions and/or
fossil fuel consumption does not lead to a slowdown in economic growth in China. The novel
empirical findings are useful for policy makers in relation to fossil fuel consumption, CO2 emissions,
and economic growth. Using the novel findings, governments can make better decisions regarding
energy conservation and emission reductions policies without undermining the pace of economic
growth in the long run.

Keywords: energy consumption; economic growth; gross domestic product; CO2 emissions; granger
causality; China

Int. J. Environ. Res. Public Health 2019, 16, 4176; doi:10.3390/ijerph16214176 www.mdpi.com/journal/ijerph

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/237477575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-1158-465X
https://orcid.org/0000-0002-9543-747X
https://orcid.org/0000-0003-2707-3835
https://orcid.org/0000-0001-6755-572X
http://dx.doi.org/10.3390/ijerph16214176
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/16/21/4176?type=check_update&version=2


Int. J. Environ. Res. Public Health 2019, 16, 4176 2 of 35

1. Introduction

Fossil fuel consumption is an important topic because it is a symbol of modern civilization.
Nonetheless, fossil fuel consumption could increase pollution and make a significant impact on the
global natural ecosystem. On the other hand, overuse of fossil energy could make the problems of
both energy shortage and climate change becomes more serious, threatening the sustainability of the
Earth, and the development of humankind. Thus, to reduce fossil fuel consumption, control carbon
dioxide emissions, and retain economic growth is a common task for countries worldwide.

In addition, academics have demonstrated the relationships between environmental pollutants
and economic growth nexus. For example, Kuznets [1] has postulated that environmental degradation
increases with per capita income at the beginning of economic growth, and decrease thereafter, which
is known as the environmental Kuznets Curve (EKC). The emissions of CO2 have been used as a
proxy for environmental pollution because CO2 emissions have been increasing sharply every year,
thereby resulting in greenhouse gas effects and global warming, which affects the environment (see,
for example, References [2–5]). Thus, it is interesting to study the relationships among fossil fuel
consumption, environmental pollutants, and economic growth.

Many developed countries have been taking a lead on mitigating carbon emissions, providing
financial resources, and transferring technology to developing countries to address CO2 emissions
and climate change in recent decades. Tol [6,7] study the marginal cost and damage costs of CO2

emissions. To date, China has been cooperating with other countries and making an effort to control
CO2 emissions and contribute to mitigating climate change.

In 2007, China introduced the National Climate Change Program, the first national policy to
address climate change, and the first national program for developing countries in this field, to integrate
climate change policies into the national development strategy. In 2009, the China State Council set
the target of reducing 40–45% of its carbon intensity (unit GDP CO2 emissions) before 2020 [8]. In
the “Thirteenth Five-Year Plan”, the Chinese Government introduced a range of targets and policies
related to reducing both CO2 emissions and fossil fuel consumption, including reducing its carbon
intensity by 18%, reducing energy intensity by 15%, increasing non-fossil energy accounts by 15%,
and reducing a coal consumption cap target of 4.2 billion tons by 2020 (National Program on Climate
Change, 2014–2020 [9].

Meanwhile, the Chinese Government confirmed that it will reach the peak of CO2 emissions by
2030 and undertake best efforts to reduce it. However, as a country with development via the path
of “high energy consumption, high greenhouse gas emissions”, and once the highest total emissions
in the world, China is now facing a huge challenge to reduce its fossil fuel consumption and CO2

emissions. In addition, as the per capita GDP in China is still quite low, the Chinese Government will
continue to emphasize economic development as a top priority task for a long time. Thus, to realize the
targets of energy conservation and emission reduction, while ensuring its economic development, it is
important for the Chinese Government to examine the relationships among fossil fuel consumption,
environmental pollutants, and economic growth, and look for new and alternative development paths.

There are many papers using different methodologies to study the relationships among fossil fuel
consumption, CO2 emissions, and economic growth. To the best of our knowledge, the literature has
applied the following methods, including the Toda and Yamamoto procedure, bivariate linear causality,
multivariate linear causality, and vector error correction model (VECM) to study the relationships
among fossil fuel consumption, CO2 emissions, and economic growth.

However, there are some limitations to the approaches that have been used in the literature. First,
the tests may not be able to detect any nonlinear causal relationship among the variables. Second, the
tests may not be able to measure the independent, dependent, and joint effects together, so that testing
a series of single hypotheses is different from testing all hypotheses jointly. Even though some research
in the literature has studied the joint effects among the variables and/or the error-correction terms by
constructing the F-statistic, if the variables do not have any cointegration relationship, determining the
joint effects can become problematic.
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Nonethelss, there is evidence supporting the existence of nonlinear behaviour among fossil
fuel consumption, CO2 emissions, and economic growth. For example, according to the changes
in economic environment, changes in energy policies, and fluctuations in energy prices, Lee and
Chang [10], show that economic events and regime changes can lead to structural changes in energy
consumption patterns for a given time period, which creates a nonlinear rather than linear relationship
between energy consumption and economic growth.

In order to circumvent these limitations, we use the Granger test proposed by Hiemstra and
Jones [11], Bai et al. [12–14], and others to examine multivariate linear and nonlinear Granger
causal relationships among fossil fuel consumption, CO2 emissions, and economic growth for China.
This approach not only enables obtaining linear and nonlinear, but also examines the independent,
dependent, and joint effects among fossil fuel consumption, CO2 emissions, and economic growth
for China. These multivariate linear and nonlinear Granger causality findings are not only more
interesting and thought-provoking than in the existing literature, but are also useful to government and
independent policy makers in their decision making related to fossil fuel consumption, CO2 emissions,
and economic growth.

In order to draw a better picture regarding the issue, together with using linear and nonlinear
Granger causality analysis, we conduct the cointegration analysis by applying both the Johansen
cointegration and ARDL bounds tests to examine the cointegration relationships among fossil fuel
consumption, CO2 emissions, and economic growth for China. In addition, we strongly recommend that
academics and practitioners use the multivariate nonlinear causality tests proposed by Bai et al. [12–14],
as these methods can examine the multivariate nonlinear causality tests regardless of whether the
cointegration relationship exists or not, while the other literature checks the multivariate causality
depending on the existence of cointegration.

This paper provides many novel findings and inferences for China. For example, as shown in
Table A1, only considering these three variables, we can conclude that if the government expands fossil
fuel consumption, it will have two impacts on economic: first, it will expand GDP with immediate
effect and, second, the increase in the rate of fossil fuel consumption will expand China’s economy
to grow both linearly and nonlinearly in the future. The inference is useful for government and
independent policy makers in their consideration of which policy they should choose to reduce fossil
fuel consumption or carry out any policy regarding energy conservation so that its economy will be
damaged as little as possible.

We also conclude that if the government carries out policies of energy conservation and emission
reduction, it will significantly slow down economic growth with immediate effect, cause it to fall
nonlinearly and not linearly in the future. We note that the current research is the first paper to
draw such a significant conclusion. In addition, these conclusions show the advantages of combining
cointegration and linear and nonlinear causality at the multivariate level. Thus, we recommend
that academics, practitioners, and policy makers use both cointegration and causality analysis in
multivariate settings in their analysis. The novel findings in the paper are useful for policy makers in
relation to fossil fuel consumption, CO2 emissions, and economic growth. Using the novel findings,
governments can reach better decisions regarding energy conservation and emissions reduction without
undermining the pace of economic growth in the long run.

The remainder of the paper is organized as follows. Section 2 provides a review of the related
extant literature. Section 3 presents the theoretical foundation. Section 4 describes the data and
empirical methodology. Section 5 discusses the empirical results. Finally, Section 6 draws inference
from the novel empirical findings, and proposes some policy implications. Section 7 concludes
the paper.
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2. Literature Review

In this section, we review research directions, methodologies, and findings in the literature on the
relationships among energy consumption, CO2 emissions, and economic growth. The first strands in
the literature focus on investigating the relationships between CO2 emissions and economic growth.

The relationship between CO2 emissions and economic growth is one of the most important
research areas that have become the focus of numerous theoretical developments and many empirical
applications. For example, Apergis and Payne [15], Soytas and Sari [16], Zhang and Cheng [17],
and Menyah and Wolde-Rufael [18] examine the relationships between economic growth and CO2

emissions. They examine the relationships between environmental pollutants and economic growth
nexus as the environmental Kuznets Curve (EKC). Selden and Song [19], Grossman and Krueger [20],
List and Gallet [21], Stern and Common [22] and Song et al. [23] point out that the Kuznets Curve fits
empirical cases well in many developed countries. However, Harbaugh et al. [24] and List et al. [25]
show that the relationships between economic growth and environmental pollutants may be not robust
for several emission pollutants.

In addition, different methods of analysis have been used to investigate the relationship between
CO2 emissions and economic growth in different countries and regions. For example, Holtz-Eakin
and Selden [26] and Heil and Selden [27] obtain a U-shaped EKC for CO2 per capita emissions by
using parametric models with pooled data. Bertinelli and Strobl [28], Azomahou et al. [29], Bertinelli
et al. [30], and Saboori et al. [31] investigate the relationships between CO2 emissions and economic
growth by using nonparametric estimation techniques. Recently, Yeh and Liao [32] use an analytical
tool of stochastic impacts on population, affluence, and technology to investigate the relationships
between CO2 emissions and economic growth in Taiwan. Sadorsky [33], Heidari et al. [34], and Saidi
and Hammami [35] apply the panel regression techniques to investigate the relationships between
CO2 emissions and economic growth in other countries.

Many recent papers investigate the causality between CO2 emissions and economic growth,
and obtain mixed results. For example, Salahuddin [36] finds no significant causality between CO2

emissions and economic growth in Gulf Cooperation Council countries. Alshehry and Belloumi [37]
show bidirectional causality between CO2 emissions and economic growth in Saudi Arabia. Using
the Granger-VECM approach, Ahmad et al. [38] show bidirectional causality between CO2 emissions
and economic growth in the short run, and unidirectional causality from economic growth to CO2

emissions in the long run in Croatia. Cowan et al. [39], Wang et al. [40], Kasman and Duman [41], Bento
and Moutinho [42], and Antonakakis et al. [43] include other variables in the analysis to investigate the
causality between CO2 emissions and economic growth.

The relationship between energy consumption and economic growth is also one of the most
important research areas in climatology, environmental science, and other areas after Kraft and
Kraft [44] and others established the relationship between energy consumption and economic growth.
For example, Tugcu et al. [45] show the renewable and non-renewable energy consumption and
economic growth relationships for G7 countries. Bhattacharya et al. [46] investigate the effect of
renewable energy consumption on economic growth for the top 38 countries. Empirical evidence
shows that the relationships could be uni-directional, bi-directional causality, or no causality at all.
For example, Stern [47,48], Masih and Masih [49], Soytas and Sari [50], Wolde-Rufael [51,52], Lee [53],
Tsani [54], and Alam et al. [55] show that energy consumption causes economic growth. On the
other hand, Mozumder and Marathe [56], Erdal et al. [57], and Payne [58] conclude that there exists
bi-directional causal relationship between energy consumption and economic growth. Nonetheless,
Altinay and Karagol [59], Jobert and Karanfil [60], Chiou-Wei et al. [61], Chontanawat et al. [62], and
Halicioglu [63] conclude that there is no causality between energy consumption and economic growth
for some countries.

In addition, global warming and the energy crunch have become very important topics in
recent decades. This extends the relationship between energy consumption and CO2 emissions that
has become a topical subject for academics and practitioners. Many studies have investigated the



Int. J. Environ. Res. Public Health 2019, 16, 4176 5 of 35

relationships and obtained mixed results. For example, Soytas et al. [64], Soytas and Sari [16], Lean
and Smyth [65], and Alshehry and Belloumi [37] find the uni-directional causal relationships from
CO2 emissions to energy consumption. Using simultaneous-equations models with panel data of
14 MENA (Middle East and North Africa) countries, Omri [66] documents uni-directional causality
from energy consumption to CO2 emissions without any feedback effects. However, Halicioglu [63]
finds bi-directional causality between CO2 emissions and energy consumption in Turkey, while Zhang
and Cheng [17] find uni-directional causal relationships from energy consumption to CO2 emissions
in China. Using the panel smooth transition regression (PSTR) model, Heidari et al. [34] show that
energy consumption increases CO2 emissions when GDP capita exceeds 4686 USD or falls below
4686 USD in five ASEAN (Association of Southeast Asian Nations) countries. Other studies for
the causal relationships include Ang [67], Apergis and Payne [15], Menyah and Wolde-Rutael [18],
Alam et al. [55], and Pao and Tsai [68].

In the energy literature discussed above, cointegration and causality tests have been widely
adopted to examine the underlying relationships among fossil fuel consumption, CO2 emissions, and
economic growth. There are two principal cointegration tests: the Johansen cointegration test and the
autoregressive distribution lag (ARDL) bounds test proposed by Pesaran et al. [69]. Fatai et al. [70],
Narayan and Smyth [71], Wolde-Rufael [72], Narayan and Singh [73], Odhiambo [74], Acaravci and
Ozturk [75] and Begum et al. [76] apply the ARDL bounds test, while Halicioglu [63], Odhiambo [77],
and Chang [78] prefer to use Johansen’s maximum likelihood test in their analyses. Ang [3], Chandran
et al. [79], and Lean and Smyth [65] use both approaches in their analyses. There are advantages
and disadvantages for each method. For example, Gonzalo [80] uses the Monte Carlo approach
to investigate the Johansen test, and concludes that the Johansen test performs better with the full
information maximum likelihood procedure, and the test is appropriate when the identification of the
exogenous variable is not possible a priori.

However, Odhiambo [77] finds that the Johansen test is sensitive to different sample sizes and
different lag lengths. On the other hand, Narayan and Narayan [81,82] and Narayan and Smyth [83,84]
demonstrate the advantages of using the ARDL test for small sample sizes and different lag lengths in
that it does not demand all variables to be integrated of the same order. In addition, Harris and Sollis [85]
point out that the approach always provides, not only unbiased estimates of the long-run model, but also
valid t-statistics even when some of the regressors are endogenous. There are two widely-used causality
tests, namely the Toda–Yamamoto procedure (TY procedure) and the error-correction modelling (ECM)
procedure. The ECM procedure investigates causality from the short-run and long-run perspectives.
Belloumi [86], Odhiambo [77], Chang [78], and Alam et al. [5] apply the ECM procedure, while Zhang
and Chang [17], Tsani [54] and Rahman [87] use the TY procedure to examine the causality among
economic growth, environmental pollutants, and energy consumption.

Similar to different cointegration tests, there are advantages and disadvantages between the TY
method and ECM procedure. Toda [88] argues that the causality test employing Johansen-type ECM
may suffer from severe pre-test biases as the pre-tests for cointegration ranks of this model are very
sensitive to the values of the nuisance parameters in the finite sample. Toda and Yamamoto [89]
propose a VAR (Vector autoregression) approach applied to any arbitrary level of integration. Zapata
and Rambaldi [90] point out that the TY procedure has high power of the test in moderate to large
samples. However, Yamada and Toda [91] show the FM-VAR test proposed by Phillips [92] and the
ECM procedures are more powerful than the TY procedure.

However, in all related studies for China, as shown in Tables A1 and A2 in the appendices, there
are only a few papers that have investigated the relationships for China. In addition, there are some
limitations on the approaches, including the TY and ECM procedures that examine the causality
relationship in the literature. First, the tests may not be able to detect any nonlinear causal relationship
among the variables. Second, the tests may not be able to measure the independent, dependent, and
joint effects together. Testing a series of single hypotheses is different from testing all hypotheses jointly.
Even though a few studies in the literature have considered the joint effects among the variables and/or
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the error-correction terms by constructing the F-statistic, if the variables do not have any cointegration
relationship, determining the joint effects could become problematic.

Nonetheless, many studies, for example, Lee and Chang [10], support the existence of nonlinear
behaviour among fossil fuel consumption, CO2 emissions, and economic growth, because economic
events and regime changes can lead to structural changes in energy consumption patterns for a given
time period. Consequently, this could create a nonlinear rather than linear relationship between energy
consumption and economic growth. In order to circumvent these limitations, we use the Granger
test proposed by Hiemstra and Jones [11], and Bai et al. [12–14] to examine multivariate linear and
nonlinear Granger causal relationships among fossil fuel consumption, CO2 emissions, and economic
growth for China. This approach not only enables linear and nonlinear relationships among the
variables, but also examines the independent, dependent, and joint causalty effects among fossil fuel
consumption, CO2 emissions, and economic growth for China.

In order to draw a more accurate analysis of the issue, together with linear and nonlinear
Granger causality, we conduct cointegration analysis by applying both the Johansen cointegration and
ARDL bounds tests to examine the cointegration relationships among fossil fuel consumption, CO2

emissions, and economic growth for China. The empirical findings are not only more interesting and
thought-provoking than those obtained in the existing literature, but also more useful for government
and independent private policy makers in their decision making related to fossil fuel consumption,
CO2 emissions, and economic growth.

In addition, we strongly recommend academics and practitioners to use the multivariate nonlinear
causality tests proposed by Bai et al. [12–14] because the methods allow scholars to examine the
multivariate nonlinear causality tests regardless of the existence of cointegration relationships, while
the other studies in the literature check the multivariate causality depending on the existence of
cointegration relationships.

3. Theory

In this section, we present the theory underlying the relationships among economic growth, CO2

emissions and environmental pollutants. We first discuss the theory for the relationship between
economic growth and CO2 emissions.

3.1. Economic Growth and CO2 Emissions

Fossil fuel consumption is an important topic because it is a symbol of modern civilization.
Nonetheless, fossil fuel consumption could increase pollution and make a significantly impact on
global natural ecosystem. On the other hand, overuse of fossil energy could make the problems of both
energy shortage and climate change become more serious, threatening the sustainability of the Earth
and development of humankind. Thus, to reduce carbon dioxide emissions and control climate change,
yet retain economic growth at present levels, is a common task for countries worldwide. Therefore, it
is important to study the relationships between economic growth and carbon dioxide emissions.

Academics have demonstrated the relationships between environmental pollutants and the
economic growth nexus. For example, Kuznets [1] has postulated that environmental degradation
increases with per capita income at the beginning of economic growth, and decreases thereafter, known
as the environmental Kuznets Curve (EKC). However, the relationships between economic growth and
environmental pollutants may be not robust for the number of emission pollutants. The emissions
of CO2 have been used as a proxy for environmental pollution because CO2 emissions have been
increasing sharply every year, resulting in the greenhouse effect and global warming, and affecting
economic growth. In this paper, we hypothesize Gross Domestic Product (GDP) to be a function of
CO2 emissions, as shown in the following equation:

GDPt = f1(CO2t) (1)
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3.2. Energy Consumption and Economic Growth

We turn to discuss the relationships between economic output and energy consumption. The
relationship between energy consumption and economic growth is one of the most important areas in
research in climatology, environmental science, and other areas after Kraft and Kraft [44] and others
have established the relationship. However, the empirical evidence shows that their relationships
could be uni-directional, bi-directional causality, or no causality at all.

The reasons that empirical results vary across different countries depend on the country’s
development path, development stage, sources of energy used, energy policies applied, energy
consumption levesl, institutional arrangementss and so on. The relationship between energy
consumption and economic growth plays an important role for policy makers in both developing
and developed countries. In addition, fossil fuel consumption, including coal consumption, oil
consumption and natural gas consumption, is the main energy consumption at the present stage in
China. We use Totalt to denote fossil fuel consumption. Therefore, it is important and necessary to
investigate the relationship between economic growth and energy consumption, as shown in the
following:

Totalt = f2(GDPt) (2)

3.3. Energy Consumption and CO2 Emissions

Global warming and energy crunch are the main subjects in recentdecades because the causal
relationship between energy consumption and CO2 emissions is a major problem. Some studies
have found the uni-directional causal relationship from CO2 emissions to energy consumption, some
document the uni-directional causal relationship from energy consumption to CO2 emissions, and
others find bi-directional causality between CO2 emissions and energy consumption. In this paper,
we hypothesize that the relationship between CO2 emissions and energy consumption satisfies the
following equation:

CO2t = f3(Totalt). (3)

Thus, from Equations (1)–(3), we explore the cointegration and causal relationships among
economic output, energy consumption and CO2 emissions, especially cointegration and causality
relationship, as expressed in the following:

GDPt = f4(CO2t, Totalt) (4)

Totalt = f5(CO2t, GDPt) (5)

CO2t = f6(GDPt, Totalt) (6)

4. Data and Methodology

In this section, we present data and the methodology used in the empirical analysis.

4.1. Data

In the empirical analysis, we use annual time series data for China from the world development
indicators data base [93], the World Bank [94], and Our World in Data [95]. The problem of the data is
that countries with large populations, large economics, or both, tend to be the largest total fossil fuel
consumption and CO2 emissions countries. In order to circumvent this limit, per capita data are used.
Using per capita Gross Domestic Product (GDP) to measure economic growth will be better in order to
be able to respond to the situation of behavioral preferences and personal energy consumption.

All data covering the period 1965–2016 are used in the paper. We have a total of 53 annual data
observations, and the dataset is selected in order to have the maximum number of observations
depending on data availability in China. During this period, certain important economic and
environment policies took place, so that it is meaningful to examine the period selected. Per capita GDP
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(current US$) is used as a proxy for economic growth and is denoted by GDPt. Per capita data on fossil
fuel consumption are measured as megawatt-hours, and denoted by Totalt. Per capita CO2 emissions
are denoted by CO2t, and measured in metric tons to be used as a proxy for environmental pollution.
All data covering the period 1965–2016 are used in natural logarithms to reduce heteroscedasticity,
such that the elasticity can be interpreted, and the logarithmic variables have economic meaning as
they are approximately the growth rates in the respective variables.

Another reason we use natural logarithms for all the variables is because the difference of the
two consecutive natural logarithms of any variable is the return of the variable. In this paper, we will
study the behavior of the returns for all the variables. We denote GDPt, Totalt, and CO2t for ln(GDPt),
ln(Totalt) and ln(CO2t) without causing confusion.

In order to illustrate the trend in each series in the same scale, we use 1965 as a base year. Figures 1
and 2 exhibit all the series analyzed in the paper. From the figure, we find that all series grow quickly
from late 1990s. Both fossil fuel consumption and CO2 emissions per capita drop slightly after 2013,
and coal consumption decreases sharply after 2013. However, GDP, natural gas consumption, and oil
consumption continue to increase after 2013. The change in fossil fuel consumption shows that the
energy structural reform has made significant advances in China. However, from Figures 1 and 2, it is
observed that, in general, all the series are moving together with similar trends, so that there should be
cointegration relationships among the variables.

Figure 3 presents the trends in the time series in logarithms. It is interesting to note from Figure 3
that the differences in the logarithmic series also seem to be moving together. Nevertheless, to draw
such conclusion, one has to conduct a proper statistical analysis. We will discuss this in the next section.
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4.2. Methodology

In this section, we will apply the Johansen cointegration test, autoregressive distributed lag
(ARDL) bounds test, and linear and nonlinear causality test, and use the vector error correction model
(VECM) or VAR model to examine the relationships among fossil fuel consumption (Totalt), CO2

emissions (CO2t), and GDP (GDPt).

4.2.1. Cointegration Test

An examination of the properties of the cointegration relationships among non-stationary time
series is an important topic in economics. According to the cointegration method developed by
Granger [96], Engle and Granger [97], Johansen [98,99], and Johansen and Juselius [100], if the series of
fossil fuel consumption, CO2 emissions, and GDP are integrated of order d, denoted by I(d), each of
the three series has a stationary, invertiable and ARMA representation after differencing d times. If
there exists a cointegration relationship among the variables, then there could exist a cointegrating
vector α (, 0) to satisfy α′xt ∼ I(d− b), b > 0 and xt = (CO2t, GDPt, Totalt)

′. If the variables satisfy
these two conditions, we can apply a cointegration test to examine whether there exists any stable
long-run relationship among fossil fuel consumption, CO2 emissions, and GDP.

Johansen Cointegration Test

There are two commonly used cointegration tests: the Johansen cointegration test and the
autoregressive distribution lag (ARDL) bounds test. We first apply the Johansen cointegration test to
check whether there exist any long-run relationships among fossil fuel consumption, CO2 emissions,
and GDP. According to Johansen [98,99], Johansen and Juselius [100] and Johansen [101], we use the
following unrestricted VAR model with p lags:

Zt = α+

p∑
i=1

πiZt−i +ϕDt + µt (7)

where Zt is the vector of each component denoted by I(d), Zt = (CO2t, GDPt, Totalt)
′, Dt denotes a

vector of dummies, and πi (i = 1, 2, . . . , p) are matrices of lag polynomials. Model in Equation (8) can
be presented in the following equaiton after differencing the time series of Zt:

∆Zt =

p−1∑
i=1

Φi∆Zt−i + ΠZt−1 +ϕDt + εt , (8)

where ∆ denotes the first difference operator. There exist r cointegration relationships if the rank
of Π is greater than zero and less than 3, namely, R(Π) = r, (0 < r < 3), since, in this situation,
Π = αβ′ and matrix α and β are the matrix of 3 × r, and R(α) = R(β) = r. Thus, to examine the
cointegration relation of Zt is equal to analysis the matrix of Π, this is the fundamental issue of the
Johansen cointegration test.
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There are two types of statistics of the Johansen cointegration test, namely the trace statistic and
max-eigenvalue statistic. The null hypothesis of the trace test and the maximum eigenvalue test are
the same, namely that the number of cointegration vectors is r = r∗ < k, but the alternative hypotheses
of two tests are not the same, one is r = k and the other is r = k + 1. The two statistics are given,
respectively, as follows:

λmax(r, r + 1) = −T ln(1− λr+1) and λtrace(r) = −T
∑n

i=r+1
ln(1− λi) (9)

where n is the maximum number of possible cointegrating vectors: n = 3 in this paper, r =

0, 1, 2, λ1,λ2,λ3 are the eigenvalues and λ1 > λ2 > λ3. For greater applicability forsmall samples,
Cheung and Lai [102] argue that the critical values of the Johansen cointegration test should be scaled by

T
(T−np) , where T denotes the effective number of observations, n the number of variables in the estimated
system, and p is the lag parameter. Readers may refer to Johansen [98,99], Johansen and Juselius [100],
Cheung and Lai [102] and Johansen [101] for further details of the Johansen cointegration test.

Autoregressive Distributed Lag (ARDL) Bound Test

In order to circumvent the limitation that the Johansen model could be sensitive to small sample
sizes [77] and improve power of our results, we also use the ARDL test in the empirical analysis.
The ARDL test proposed by Pesaran and Shin [103], and extended by Pesaran et al. [69], performs
statistically better than the other cointegration tests, including the Johansen test and Engle and
Granger [97] test. In addition, Narayan [104] provides sets of asymptotic critical values for the ARDL
test for sample sizes from 30–80, such that the test is suitable for analysis with smaller sample sizes.
Narayan and Narayan [81,82] and Narayan and Smyth [83,84] also demonstrate the advantages of
using the ARDL test for small sample sizes.

Thus, we apply the ARDL test to investigate the long-run relationships for the following
unrestricted error correction models (UECMs), in which ∆ denotes the first difference operator:

Model 1: CO2t and GDPt:

∆CO2t = α1 +
n∑

i=1

βi∆CO2t−i +
n∑

j=0

β j∆GDPt− j + γ1CO2t−1 + γ2GDPt−1 + ε1,t (10)

∆GDPt = α1 +
n∑

i=1

βi∆GDPt−i +
n∑

j=0

β j∆CO2t− j + γ1GDPt−1 + γ2CO2t−1 + ε2,t (11)

Model 2: CO2t and Totalt:

∆CO2t = α1 +
n∑

i=1

βi∆CO2t−i +
n∑

j=0

β j∆Totalt− j + γ1CO2t−1 + γ2Totalt−1 + ε1,t (12)

∆Totalt = α1 +
n∑

i=1

βi∆Totalt−i +
n∑

j=0

β j∆CO2t− j + γ1Totalt−1 + γ2CO2t−1 + ε2,t (13)

Model 3: GDPt and Totalt:

∆GDPt = α1 +
n∑

i=1

βi∆GDPt−i +
n∑

j=0

β j∆Totalt− j + γ1GDPt−1 + γ2Totalt−1 + ε1,t (14)

∆Totalt = α1 +
n∑

i=1

βi∆Totalt−i +
n∑

j=0

β j∆GDPt− j + γ1Totalt−1 + γ2GDPt−1 + ε2,t. (15)
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Model 4: CO2t, GDPt and Totalt:

∆GDPt = α1 +
n∑

i=1
βi∆GDPt−i +

n∑
j=0

β j∆Totalt− j +
n∑

k=0
βk∆CO2t−k + γ1GDPt−1 + γ2Totalt−1 + γ3CO2t−1 + ε1,t (16)

∆Totalt = α1 +
n∑

i=1
βi∆Totalt−i +

n∑
j=0

β j∆GDPt− j +
n∑

k=0
βk∆CO2t−k + γ1Totalt−1 + γ2GDPt−1 + γ3CO2t−1 + ε2,t (17)

∆CO2t = α1 +
n∑

i=1
βi∆CO2t−i +

n∑
j=0

β j∆Totalt− j +
n∑

k=0
β j∆GDPt−k + γ1CO2t−1 + γ2Totalt−1 + γ3GDPt−1 + ε3,t (18)

The asymptotic distribution of the F-statistic under the null hypothesis H0 : γ1 = γ2(= γ3) = 0
has a non-standard distribution, which depends on many factors, including the number of regressors,
the sample sizes, among others. In addition, Pesaran et al. [69] and Narayan [104] provide two sets of
asymptotic critical values for a given significance level for the fixed sample size. One set assumes that
all regressors are I(0) and the other assumes that all regressors are I(1). They also provide two sets of
bands generated by the critical values. If the calculated F-statistics fall outside the bounds, a conclusive
decision can be obtained without knowing the order of integration of the regressors; if the calculated
F-statistic is higher than the upper bounds of I(1), then the null hypothesis of no cointegration is
rejected; and if the estimated F-statistic is smaller than the lower bounds of I(0), the null hypothesis of
no cointegration cannot be rejected. The test becomes inclusive if the calculated F-statistic falls inside
the bounds. Readers may refer to Pesaran and Shin [101], Pesaran et al. [67], Narayan [104], Narayan
and Narayan [81,82], and Narayan and Smyth [83,84] for further information.

In this paper, since the time series of Totalt, CO2t, and GDPt are non-stationary in levels and are
in one order of cointegration, we use both the Johansen cointegration and ARDL tests to determine
whether there is any cointegration relationship for any pair of variables, or for all variables together.
The results shown in the next section confirm that there is a cointegration relationship for any pair of
variables and for all the variables together.

Therefore, we suggest estimating the following cointegration equations:

CO2t = β0 + β1Totalt (19)

GDPt = α0 +α1Totalt (20)

GDPt = θ0 + θ1CO2t (21)

CO2t = δ0 + δ1Totalt + δ2GDPt (22)

In addition, as proposed by Enders [105] and Feasel et al. [106], we will use these equations to
estimate the long-run dynamic relationships and reconcile the short-run behaviour among fossil fuel
consumption, CO2 emissions, and GDP.

4.2.2. Granger Causality

In the literature of testing causality among the rate of fossil fuel consumption, the rate of CO2

emissions and economic growth, most authors have used the Granger causality test on the vector error
correction model (VECM). This approach is called the Granger causality-VECM approach. Others have
used the Toda-Yamamoto (TY) procedure, Hsiao’s Granger causality test, and Granger causality test.
All these methods depend on the VAR model.

For example, the causality test between the rate of fossil fuel consumption and economic growth
is equivalent to testing the following two hypotheses:

H1
0: the rate of fossil fuel consumption does not cause economic growth,

H2
0: economic growth does not cause the rate of fossil fuel consumption.
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Granger [107] proposes Granger causality, while Granger [108] showed that the real world is
“almost certainly nonlinear”. Baek and Brock [109] extend the linear causality test to the nonlinear
causality test, which was further modified by Hiemstra and Jones [11] to process the nonlinearity
issues. Compared with the linear and nonlinear causality test proposed by Hiemstra and Jones [11], the
Granger causality-VECM, TY procedure, and the linear causality test all ignore any nonlinear behavior.

There is substantial evidence supporting the existence of nonlinear behaviour among the rate of
fossil fuel consumption, the rate of CO2 emissions, and economic growth. For example, according to
the changes in the economic environment, changes in energy policies, and fluctuations in energy prices,
Lee and Chang [10] show that economic events and regime changes can lead to structural changes
of energy consumption patterns for a given time period. This creates a nonlinear rather than linear
relationship between energy consumption and economic growth.

Owing to a series of published policies for China, such as the National Climate Change Program
in 2007; in 2009, the China State Council sets the target of reducing its carbon intensity (unit GDP
CO2 emissions) by 40–45% before 2020, and “Thirteenth Five-Year Plan“. Thus, it is necessary to
investigate both linear and nonlinear relationships among energy consumption, CO2 emissions, and
economic growth.

In order to circumvent the limitations of both H1
0 and H2

0, we use the causality test between the
rate of fossil fuel consumption and economic growth as an example to test the following hypotheses:

H1′
0 : the rate of fossil fuel consumption does not cause economic growth if there are no linear and no

nonlinear causalities from the rate of fossil fuel consumption to economic growth,
H2′

0 : economic growth does not cause the rate of fossil fuel consumption if there are no linear and no
nonlinear causalities from economic growth to the rate of fossil fuel consumption.

Chiou-Wei et al. [61] only provide evidence from linear and nonlinear bivariate Granger causality
tests about energy consumption and economic growth, and do not include CO2 emissions. Thus, to the
best of our knowledge, this paper is the first to apply (multivariate) linear causality to examine whether
there is any uni-directional or bi-directional causality among energy consumption, CO2 emissions,
and economic growth in China. The paper also applies the (multivariate) nonlinear causality test to
examine whether there is any uni-directional or bi-directional causality among energy consumption,
CO2 emissions, and economic growth in China, and examines whether there is any multivariate linear
and nonlinear causality among energy consumption, CO2 emissions and economic growth.

According to the cointegration relationships among fossil fuel consumption, CO2 emissions, and
GDP, we use the linear and nonlinear Granger causality test to examine whether past information of
the variable could contribute to the prediction of others in bivariate and multivariate situations. We
will discuss the methodology of the linear and nonlinear causality in the following subsections.

Granger Linear Causality Test

In order to test the linear causality relationships among the difference series of Totalt, CO2t, and
GDPt, there are commonly two models used–one is the Vector Autoregression (VAR) model and
the other is the vector error correction model (VECM). Without loss of generality, we let two vector
time series be Xt = (X1,t, . . . , Xn1,t)

′ and Yt = (Y1,t, . . . , Yn2,t)
′. In testing the causality relationships

between two vectors of I(1) time series, such as the variables of Totalt, CO2t, and GDPt in this paper, we
use the first differenced series, ∆Xt = (∆X1,t, . . . , ∆Xn1,t)

′ and ∆Yt = (∆Y1,t, . . . , ∆Yn2,t)
′, to construct

the VAR model and VECM.
If two vectors of I(1) time series Xt = (X1,t, . . . , Xn1,t)

′ and Yt = (Y1,t, . . . , Yn2,t)′ are cointegrated,
then we can construct the following VECM model to estimate the linear causality relationship:(

∆Xt

∆Yt

)
=

(
Ax[n1×1]
Ay[n2×1]

)
+

 Axx(L)[n1×n1]
Axy(L)[n1×n2]

Ayx(L)[n2×n1]
Ayy(L)[n2×n2]

( ∆Xt−1

∆Yt−1

)
+

(
αx[n1×1]
αy[n2×1]

)
·ecmt−1 +

(
ex,t

ey,t

)
(23)
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to test whether there is any the linear causal relationship between the vectors of the stationary time
series ∆Xt = (∆X1,t, . . . , ∆Xn1,t)

′ and ∆Yt = (∆Y1,t, . . . , ∆Yn2,t)
′, where Ax[n1×1] and Ay[n2×1] are two

vectors of intercept terms, Axx(L)[n1×n1]
, Axy(L)[n1×n2]

, Ayx(L)[n2×n1]
and Ayy(L)[n2×n2]

are matrices
of lag polynomials, ecmt−1 is lag one of the error correction term, and αx[n1×1] and αy[n2×1] are the
coefficient vectors for the error correction term ecmt−1.

We examine whether there exists a causal relationship from ∆yt(∆xt) to ∆xt
(
∆yt

)
, which is

equivalent to examining whether to accept the null hypothesis H01: Axy(L) = 0
(
H02 : Ayx(L) = 0

)
and/or H03 : αx = 0

(
H04 : αy = 0

)
. If the null hypothesis is true, the statistic (T − c)

(
log

∣∣∣∑0

∣∣∣− log|
∑
|

)
follows an asymptotic χ2 distribution with the degree of freedom equal to the number of restrictions
on the coefficients in the system. Readers can refer to Hiemstra and Jones [11], Bai et al. [12–14], and
Chow et al. [110], and the references given therein, for further information regarding the test statistics.

Granger Nonlinear Causality Test

After applying the VECM to Totalt, CO2t, and GDPt, we obtain their corresponding residuals {ε̂1t}

and {ε̂2t} to test nonlinear causality based on the residual series. For simplicity, in this section we
denote Xt = (X1,t, . . . , Xn1,t)′ and Yt = (Y1,t, . . . , Yn1,t)′ to be the corresponding residuals of any two
vectors of variables to be examined. We let the lead vector and lag vector of a time series, say Xi,t, as
follows: for Xi,t, i = 1, . . . , n, the mxi -length lead vector, and the Lxi -length lag vector of Xi,t are:

X
mxi
i,t ≡

(
Xi,t, Xi,t+1, . . . , Xi,t+mxi−1

)
, mxi = 1, 2, . . . , t = 1, 2, . . . ,

X
Lxi
i,t−Lxi

≡

(
Xi,t−Lxi

, Xi,t−Lxi+1, . . . , Xi,t−1
)
, Lxi = 1, 2, . . . , t = Lxi + 1, Lxi + 2, . . . ,

respectively. We denote Mx =
(
mx1, . . . , mxn1

)
, Lx =

(
Lx1, . . . , Lxn1

)
, mx = max(mx1, . . . , mn1), and

lx = max
(
Lx1, . . . , Lxn1

)
. The myi

-length lead vector, Y
myi
i,t , the Lyi

-length lag vector, Y
Lyi
i,t−Lyi

, of Yi,t, and

My, Ly, my, and ly can be defined similarly.
In order to test the null hypothesis, H0, that Yt = (Y1,t, . . . , Yn1,t)

′ does not strictly Granger cause
Xt = (X1,t, . . . , Xn1,t)

′ under the assumptions that the time series vector variables Xt = (X1,t, . . . , Xn1,t)
′

and Yt = (Y1,t, . . . , Yn1,t)
′ are strictly stationary, weakly dependent, and satisfy the mixing conditions

stated in Denker and Keller [111], we first define the following four events, given that mx, my, Lx, Ly,
and e > 0:

{‖XMx
t −XMx

s ‖ < e} ≡ {‖X
Mxi
i,t −X

mxi
i,s ‖ < e, for any i = 1, . . . , n1};

{‖XLx
t−Lx
−XLx

s−Lx
‖ < e} ≡ {‖X

Lxi
i,t−Lxi

−X
Lxi
i,s−Lxi

‖ < e, for any i = 1, . . . , n1};

{‖Y
My
t −Y

My
s ‖ < e} ≡ {‖Y

myi
i,t −Y

myi
i,s ‖ < e, for any i = 1, . . . , n2};

and
{‖Y

Ly
t−Ly
−Y

Ly
s−Ly
‖ < e} ≡ {‖Y

Lyi
i,t−Lyi

−Y
Lyi
i,s−Lyi

‖ < e, for any i = 1, . . . , n2};

where ‖·‖ denotes the maximum norm which is defined as ‖X−Y‖ = max(
∣∣∣x1 − y1

∣∣∣, ∣∣∣x2 − y2
∣∣∣, . . . , ∣∣∣xn − yn

∣∣∣)
for any two vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn). The vector series {Yt} is said not to strictly
Granger cause another vector series {Xt} if:

Pr
(
‖XMx

t −XMx
s ‖ < e

∣∣∣∣‖XLx
t−Lx
−XLx

s−Lx
‖ < e, ‖Y

Ly
t−Ly
−Y

Ly
s−Ly
‖ < e,

)
= Pr

(
‖XMx

t −XMx
s ‖ < e

∣∣∣∣‖XLx
t−Lx
−XLx

s−Lx
‖ < e

)
, (24)

where Pr(·
∣∣∣·) denotes conditional probability.
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If the null hypothesis, H0, is true, the test statistic:

√
n

C1
(
Mx + Lx, Ly, e, n

)
C2

(
Lx, Ly, e, n

) C3(Mx + Lx, e, n)
C4(Lx, e, n)

 (25)

is distributed as N
(
0,σ2

(
Mx, Lx, Ly, e

))
. When the test statistic is too far away from zero, we reject the

null hypothesis. Readers may refer to Bai et al. [12–14] and Chow et al. [110] for the definitions of C1,
C2, C3, and C4, and further information on the estimates of Equation (25).

4.3. Nonlinearity Test

In order to complement the nonlinear causality analysis, we conduct a nonlinearity test on the
residuals from the VECM of GDPt, Totalt, and CO2t. It is necessary to conduct non-linearity analysis
for the residuals because we believe that the residuals obtained from performing the linear causality
test could cause nonlinear causality. In this paper, we conduct the nonlinearity test on GDPt, Totalt,
and CO2t. In order to do so, we let Yt represents the residuals from each of the VECM of GDPt, Totalt,
and CO2t.

The series {Yt} does not possess any nonlinearity if and only if, for any t, the law of corresponding
residuals {Yt} satisfies L(Yt |Y t−1) = L(Yt), and we define C1(τ) ≡ Pr(Yt−1 < τ, Yt < τ), C2(τ) ≡

Pr(Yt−1 < τ), and C3(τ) ≡ Pr(Yt < τ). As:

Pr(Yt < τ |Y t−1 < τ) =
C1(τ)

C2(τ)
(26)

When testing the existence of the nonlinear of a sequence {Yt}, we can test the following hypothesis:

H0 :
C1(τ)

C2(τ)
−C3(τ) = 0 (27)

For a residual sequence {Yt}, the dependence test statistic is given by:

Tn =
√

n
(

C1(τ, n)
C2(τ, n)

−C3(τ, n)
)

(28)

where C1(τ, n) ≡ 1
n
∑T

t=2 I(yt−1<τ)
·I(yt<τ)

, C2(τ, n) ≡ 1
n
∑T

t=2 I(yt−1<τ)
, C1(τ, n) ≡ 1

n
∑T

t=2 I(yt<τ)
, n = T − 1,

and T is the length of residual {Yt}. Under this condition, if the residual {Yt} is iid, then the test statistic

Tn → N
(
0,σ2(τ)

)
, as n is large enough and the hypothesis:H0 : C1(τ)

C2(τ)
−C3(τ) = 0 is rejected at level α

if |Tn|/σ̂2(τ) > zα
2

. In this situation, series GDPt, Totalt, and CO2t possess nonlinearity. The reader is
referred to Hui et al. [112] and the references given therein for further details.

5. Empirical Analysis

In this paper, we apply the cointegration analysis, and multivariate linear and nonlinear causality
tests, to examine whether there exists any long-term comovement, short-term impact, and multivariate
linear and nonlinear causality among GDP, CO2 emissions, and fossil fuels consumption. Thereafter,
we will check whether previous values of differences in the index can be used to predict future values
of other variables. We start by examining the basic statistics to reveal the properties for all the variables
examined in this paper. All the variables are defined in Section 3.

5.1. Basic Statistics

Before we conduct the analysis to examine cointegration and causality among the logarithms of
GDPt, Totalt, and CO2t, we will discuss some basic descriptive statistics for each variable and display
the results in Table 1.
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Table 1. Descriptive statistics for the variables.

Variables Mean Variance S.d. Medium Range IQR CV Skewness Kurtosis J–B

GDPt 6.2959 *** 1.9486 1.3959 5.785129 4.4864 1.9937 0.2217 0.6010 * −0.9530 4.9657 *
CO2t 0.8249 *** 0.5267 0.7257 0.784208 2.5773 0.9277 0.8798 0.0653 −0.8655 1.3606
Totalt 1.9449 *** 0.5211 0.7219 1.892771 2.4836 0.9642 0.3712 0.0596 −0.9421 1.6374

This table reports the summary statistics including mean, variance, standard deviation (s.d.), medium, range,
interquartile range (IQR), coefficient of variation (CV), skewness, excess kurtosis and Jarque–Bera (J–B) test for
normality. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table 1 displays some basic descriptive statistics, including mean, variance, standard deviation
(s.d.), medium, range, interquartile range (IQR), coefficient of variation (CV), skewness, excess kurtosis
and Jarque–Bera (J–B) test of normality for the logarithms of GDPt, Totalt, and CO2t. From the table,
we find that the means of all the variables are significantly positive at a 1% level, CO2t is more volatile
than all the other variables, according to the value of CV, whereas GDPt is more dispersed than all the
other variables, according to the value of range and IQR as GDPt has the highest range and the highest
value of IQR among the variables.

It is also found that that skewness, excess kurtosis, and the Jarque–Bera (J–B) test of all the
variables are not significantly different from zero, except GDPt. The skewness of GDPt is significantly
positive at the 10% level, implying that GDPt is skewed to the right. Moreover, the estimates of the
skewness, kurtosis, and the Jarque–Bera (J–B) test show that all the time series are not rejected as being
normally distributed, except GDPt. In addition, by adapting both the univariate approach and outliers
test, we conclude that there are no outlier or aberrant observations in the sample.

5.2. Stationarity Test Results

In order to test whether GDPt, Totalt, and CO2t are cointegrated and have any causal
relationship, we first conduct the unit root test to examine the integration order of the variables,
and display the results in Table 2. The unit root and stationary tests, such as the Augmented
Dickey–Fuller (ADF), Phillips–Perron (PP), DF-GLS, Kwiatkowski–Phillips–Schmidt–Shin (KPSS),
Elliott, Rothenberg and Stock (ERS), Kapetanios–Shin (KS), and Kapetanios–Shin–Snell (KSS) tests, and
the Leybourne–Newbold–Vougus (LNV) stationarity test, However, due to limitations in the sample
size and the linear (UECMs, VECM, and VAR) models used in the paper, all the tests generally lead to
similar conclusions.

We apply the ADF, PP, DF-GLS, KPSS, and ERS unit root tests in this paper to examine whether
there are any unit roots, and examine the order of integration for all the variables used in this paper.
The results are shown in Table 2. From the table, it is clear that all the tests draw the same conclusion,
namely that all the series are nonstationary and their differences are stationary, inferring that all the
variables are I(1).

Table 2. Unit root tests.

Variables
ADF Test PP Test DF-GLS KPSS ERS Test

Level 1st
Difference Level 1st

Difference Level 1st
Difference Level 1st

Difference Level 1st
Difference

CO2t 2.9019 −4.6426 *** −2.2674 −4.2563 *** −1.7346 −3.5359 *** 1.4160 *** 0.0551 0.8268 8.8529 ***

GDPt −1.2189 −5.2370 *** −1.2747 −5.2555 *** −1.085349 −3.437260
*** 0.2400 *** 0.5621 1.186 15.8102 ***

Totalt −3.1225 −3.8970 *** −2.0409 −3.2971** −3.1822 * −3.9227 *** 0.4772 *** 0.1337 0.7813 3.1511 ***

The table presents the results of Augmented Dickey–Fuller (ADF), Phillips–Perron (PP), DF-GLS,
Kwiatkowski–Phillips–Schmidt–Shin (KPSS), Elliott, Rothenberg and Stock (ERS), Kapetanios–Shin (KS), and
Kapetanios–Shin–Snell (KSS) tests, and the Leybourne–Newbold–Vougus (LNV) stationarity test. *, ** and *** denote
significance at the 10%, 5%, and 1% levels, respectively.
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5.3. Cointegration Test Results

As the results from Table 2 show that all the time series are I(1), we apply both the Johansen
cointegration and ARDL tests to check whether there is any long-run relationship among GDPt, Totalt,
and CO2t. To do so, we examine the following four relationships between: (a) GDP and fossil fuel
consumption; (b) CO2 emissions and fossil fuel consumption; (c) CO2 emissions and GDP; and (d)
fossil fuel consumption, CO2 emissions, and GDP. We conduct both the Johansen cointegration and
ARDL tests for (a) to (d), and show the test results in Tables 3 and 4, respectively.

Table 3. Johansen Cointegration Test for GDPt, Totalt, and CO2t.

Variables Hypothesized No. of Coinegrating Equations Trace Statistic Max-Eigen Statistic

GDPt and Totalt
None 16.8749 ** 16.0207 **

At most 1 0.8542 0.8542

CO2t and Totalt
None 30.9314 *** 28.4324 ***

At most 1 2.4991 2.4991

CO2t and GDPt
None 21.5744 *** 20.3308 ***

At most 1 1.2435 1.2435

CO2t, GDPt and Totalt
None 46.7777 *** 35.0982 ***

At most 1 11.6795 10.1707

Note: *, ** and *** denote significance at 10%, 5%, and 1% levels, respectively.

Table 4. ARDL bound test results for GDPt, Totalt, and CO2t

Dependent Variable F-Statistics Dependent Variable F-Statistics

GDPt and Totalt CO2t and Totalt
GDPt 7.1840 *** CO2t 7.3135 ***
Totalt 2.0756 Totalt 1.9180

CO2t and GDPt CO2t, GDPt and Totalt
CO2t 2338 CO2t 4.9157 **
GDPt 6.5126 *** GDPt 2.0197

Totalt 1.7055

Bound critical values

1% significance level 5% significance level 10% significance level
k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

n I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)
50 5.503 6.240 4.695 5.758 3.860 4.440 3.368 4.178 3.177 3.653 2.788 3.513
55 5.377 6.047 4.610 5.563 3.790 4.393 3.303 4.100 3.143 3.670 2.748 3.495

Note: Asymptotic critical value bounds are obtained from Narayan [99]. k denotes the number of exogenous
variables. *, ** and *** denote significance at 10%, 5%, and 1% levels, respectively.

From Tables 3 and 4, we conclude the following: (a) there is one cointegration relationship between
fossil fuel consumption and GDP, (b) there is one cointegration relationship between CO2 emissions
and fossil fuel consumption, (c) there is one cointegration relationship between CO2 emissions and
GDP, and (d) there is one cointegration relationships among GDP, CO2 emissions, and fossil fuel
consumption. The existence of cointegration relationships implies that there is at least one linear
combination among the variables that is stationary. We estimate all the cointegration relationships and
show the results in Table 5.
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Table 5. Cointegration relationship for CO2t and GDPt.

Cointegrating Equation: CO2t GDPt GDPt CO2t

Totalt
0.9821 *** 2.3200 *** 0.8717 ***
(109.8270) (13.3722) (21.5338)

CO2t
2.2786 ***
(15.0931)

GDPt
0.0573 ***
(2.7700)

C
−1.0857 *** 1.7370 *** 4.3729 *** 1.2299 ***
(−65.0275) (9.3092) (45.3794) (22.5919)

Adj.R-squared 0.9967 0.8883 0.8921 0.9959

F-statistic 7452.8760 *** 194.7932 *** 202.5335 *** 5710.684 ***

ADF test for residual −3.0546 *** −4.1793 *** −2.6642 *** −2.3912 **

Note: *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively. The upper entries are the estimated
coefficients, and the lower entries are T-statistics in ( ).

From Table 5, we obtain the following estimated cointegration relationships:

CO2t = −1.0857 + 0.9821Totalt (29)

(−65.0275) (109.8270)

GDPt = 1.7370 + 2.3200Totalt (30)

(9.3092) (13.3722)

GDPt = 4.3729 + 2.2786CO2t (31)

(45.3794) (15.0931)

CO2t = 1.2299 + 0.0573GDPt + 0.8717Totalt (32)

(22.5919) (2.7700) (21.5338)

Equations (29)–(32) demonstrate the long-run relationship between CO2 emissions and fossil fuel
consumption, between GDP and fossil fuel consumption, between CO2 emissions and GDP, and among
CO2 emissions, fossil fuel consumption, and GDP, respectively. From Equation (29), we find that fossil
fuel consumption has a significant positive impact on CO2 emissions, with a one percent increase in
fossil fuel consumption leading to around a one percent increase in CO2 emissions. From Equation
(30), we find that fossil fuel consumption has a significant positive impact on GDP, with a one percent
increase in fossil fuel consumption significantly leading to around 2.32 percent increase in GDP.

From Equation (31), we find that CO2 emissions have a significantly positive impact on GDP, with
a one percent increase in CO2 emissions significantly leading to around 2.2786 percent increase in GDP.
In addition, all the equations show that GDP is more sensitive to fossil fuel consumption than CO2

emissions which are, in turn, more sensitive to fossil fuel consumption than GDP.
Similarly, from Equation (32), we find that both GDP and fossil fuel consumption have significant

impacts on CO2 emissions. The estimates show that a one percent increases in fossil fuel consumption
will significantly lead to around a 0.9 percent increase in CO2 emissions, and a one percent increase
in GDP will significantly lead to around a 0.06 percent increase in CO2 emissions. However, the
cointegration relationship alone cannot determine the existence of any causality relationship. In
order to circumvent the limitation, we discuss the causality relationships among the variables in the
next subsection.
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5.4. Causality Test

The cointegration results show that there exist long-run relationships between CO2 emissions
and fossil fuel consumption, between GDP and fossil fuel consumption, between CO2 emissions and
GDP, and among CO2 emissions, fossil fuel consumption, and GDP, respectively. We now check
whether there is any short-run linear and nonlinear causality among ∆GDPt, ∆CO2t, and ∆Totalt in
both multivariate and bivariate situations. As the data used in the paper are expressed in logarithms,
∆CO2t, ∆Totalt, and ∆GDPt are the growth rates or returns in the corresponding variables.

We test whether there is any: (a) multivariate linear Granger causality, (b) bivariate linear Granger
causality, (c) multivariate nonlinear Granger causality, and (d) bivariate nonlinear Granger causality
among ∆GDPt, ∆CO2t, and ∆Totalt. In addition, we examine whether there is any (e) nonlinearity
associated with each variable. We explain (a) to (e) in the following subsections.

5.4.1. Multivariate Linear Causality

We first conduct a multivariate linear Granger causality test among ∆CO2t, ∆Totalt, and ∆GDPt

to check whether there is any linear causality among the variables, and whether any variable could
influence another variable linearly. The results are presented in Table 6.

Table 6. Multivariate Linear Granger Causality Test.

∆GDPt,∆CO2t→∆Totalt ∆Totalt,∆CO2t→∆GDPt ∆GDPt,∆Totalt→∆CO2t

Lags 2 2 2
F-Stat 7.1280 *** 0.6737 9.5789 ***

*, ** and *** denote significance at 10%, 5%, and 1% levels, respectively, and the symbol ∆ denotes first-order
difference. The notation “→” indicates the direction of causality, such that “A→ B” indicates causality from A to B.

From Table 6, we conclude that there exists a strong multivariate linear causal relationship
from both ∆GDPt and ∆CO2t to ∆Totalt at the 1% significance level. Similarly, there exists a strong
multivariate linear causality relationship from both ∆GDPt and ∆Totalt to ∆CO2t, while there is
no significant multivariate linear causal relationship from both ∆CO2t and ∆Totalt to ∆GDPt. The
empirical findings imply that, at the current stage in the economic development of China: (a) the rate
of fossil fuel consumption is significantly related with both economic growth and the rate of CO2

emissions; and (b) the rate of CO2 emissions is significantly related with both economic growth and
the rate of fossil fuel consumption. However, (c) economic growth cannot be linearly predicted by the
rates of fossil fuel consumption and CO2 emissions.

5.4.2. Bivariate Linear Causality

The multivariate linear causality results cannot determine whether there is any linear causal
relationship between the variables in each pair from three variables. Thus, we conduct the bivariate
linear causality test between pairs of variables from ∆CO2t, ∆Totalt, and ∆GDPt in the next subsection,
and present the results in Table 7.

Table 7. Bivariate Linear Granger Causality Test.

∆GDPt→∆Totalt ∆Totalt→∆GDPt ∆GDPt→∆CO2t ∆CO2t→∆GDPt ∆Totalt→∆CO2t ∆CO2t→∆Totalt

Lags 2 2 2 2 2 2
F-Stat 5.7921 *** 3.0693 * 8.5011 *** 2.5480 * 16.9340 *** 9.6853 ***

*, ** and *** denote significance at 10%, 5%, and 1% levels, respectively, and the symbol ∆ denotes first-order
difference. The notation “→” indicates the direction of causality, such that “A→ B” indicates causality from A to B.

From Table 7, we conclude that there exists a significant linear causal relationship between any
pair of variables from ∆CO2t, ∆Totalt, and ∆GDPt. All are significant at the 1% level, except the pairs
∆CO2t to ∆GDPt and ∆Totalt to ∆GDPt that are significant at the 10% level. The empirical findings
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imply that the previous returns in any variable can be used to predict linearly another variable from
among ∆CO2t, ∆Totalt, and ∆GDPt.

However, the results from Tables 6 and 7 show the existence of linear causality but not any
nonlinear causal relationship among the three variables in multivariate and bivariate settings. It is well
known that the existence of linear and nonlinear causal relationships are independent, as shown in,
for example, Chiang et al. [113], Qiao et al. [114], and Chow et al. [110,115]. Thus, to examine more
comprehensive relationships among the variables, we will examine nonlinear causality relationships
in both multivariate and bivariate settings. In order to do so, we first examine whether there is any
nonlinearity in the residuals from fitting linear causality, as discussed in the next subsection.

5.4.3. Nonlinearity

Before we examine whether there is any nonlinear causal relationship among the variables in both
multivariate and bivariate settings, we will examine whether there is any nonlinearity in the residuals
from VECM and show the results in Table 8.

Table 8. Nonlinearity Test.

Parameter
∆CO2t and ∆GDPt ∆Totalt and ∆GDPt ∆Totalt and ∆CO2t ∆GDPt, ∆Totalt, and ∆CO2t

∆CO2t ∆GDPt ∆Totalt ∆GDPt ∆Totalt ∆CO2t ∆CO2t ∆GDPt ∆Totalt

e = 1 2.4057
** 0.4066 −0.4678 0.3109 0.1732 0.8133 −0.03420 0.5552 −0.0342

e = 1.5 1.4058 0.3873 0.3888 −0.2629 0.1261 1.1880 0.4965 0.9408 0.4967

*, ** and *** denote significance at 10%, 5%, and 1% levels, respectively. The symbol ∆ denotes first-order difference.

From Table 8, we conclude that there is no nonlinearity in the residuals from the VECM models,
except the residuals of ∆CO2t from ∆GDPt at the 5% significance level. The results imply that the
VECM models fit all the equations very well, except the VECM model of ∆CO2t from ∆GDPt. We
discuss the issue in the next subsection.

5.4.4. Multivariate Nonlinear Granger Causality

In order to test whether there is any nonlinear Granger causality among ∆CO2t, ∆Totalt, and
∆GDPt, we check both multivariate and bivariate nonlinear causal relationships among ∆CO2t and
∆Totalt to ∆GDPt. We first test whether there is any multivariate nonlinear causal relationship among
∆CO2t and ∆Totalt to ∆GDPt, and show the results in Table 9.

Table 9. Multivariate Nonlinear Granger Causality Test.

Lags ∆GDPt,∆CO2t →∆Totalt ∆Totalt,∆CO2t →∆GDPt ∆GDPt,∆Totalt→∆CO2t

1 −1.4705 * 1.0328 1.4537 *
2 −2.2147 ** 1.9151 ** 1.6529 **
3 −1.1186 0.1516 1.9197 **
4 −0.4571 −1.0864 0.5101

*, ** and *** denote significance at 10%, 5%, and 1% levels, respectively, and the symbol ∆ denotes first-order
difference. The notation “→” indicates the direction of causality, such that “A→ B” indicates causality from A to B.

The findings in Table 9 lead us conclude that there exist strong (5%) multivariate linear causality
relationships: (a) from both ∆GDPt and ∆CO2t to ∆Totalt, (b) from both ∆GDPt and ∆Totalt to ∆CO2t,
and (c) from both ∆CO2t and ∆Totalt to ∆GDPt. The empirical findings imply that there exist at
least one nonlinear component: (i) from economic growth and the rate of CO2 emissions that can
strongly predict the rate of fossil fuel consumption, (ii) from economic growth and the rate of fossil
fuel consumption that can strongly predict the rate of CO2 emissions, and (iii) from the rates of both
CO2 emissions and fossil fuel consumption that can strongly predict economic growth.
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5.4.5. Bivariate Nonlinear Granger Causality

The results of the multivariate nonlinear causal relationships from both ∆CO2t and ∆Totalt to
∆GDPt discussed in Section 5.4.4 cannot lead us to conclude the existence of any nonlinear causal
relationship between any pair of variables from ∆CO2t and ∆Totalt to ∆GDPt. In order to draw
conclusions on the existence of any bivariate nonlinear causal relationship among the variables, we
will conduct a bivariate nonlinear causality test between any pair of ∆CO2t, ∆Totalt, and ∆GDPt in this
subsection, and show the results in Table 10.

Table 10. Bivariate Nonlinear Granger Causality Test.

Lags ∆GDPt→∆Totalt ∆Totalt→∆GDPt ∆GDPt→∆CO2t ∆CO2t→∆GDPt ∆Totalt→∆CO2t ∆CO2t →∆Totalt

1 −0.3083 −0.0994 0.6379 0.0383 1.2988 * −0.4053
2 −0.4359 −0.5058 0.8255 −0.5622 1.3347 * −0.4525
3 −0.5472 −0.3906 0.3553 −0.3940 0.6415 0.2063
4 −1.0020 −1.3324 * 0.0986 3.7040 *** 0.5571 0.0123

*, ** and *** denote significance at 10%, 5%, and 1% levels, respectively, and the symbol ∆ denotes first-order
difference. The notation “→” indicates the direction of causality, such that “A→ B” indicates causality from A to B.

From Table 10, the empirical results show that there is not any significant nonlinear Granger
causal relationship from ∆GDPt to ∆Totalt, from ∆GDPt to ∆CO2t, and from ∆CO2t to ∆Totalt, while
there are significant nonlinear Granger causal relationships from ∆Totalt to ∆GDPt at the 10% level at
Lag 4, from ∆CO2t to ∆GDPt at the 1% level at Lag 4, and from ∆Totalt to ∆CO2t at the 10% level at
both Lags 1 and 2. This implies that: (a) there is at least one nonlinear component in Lag 4 of the rate of
fossil fuel consumption that can weakly predict the economic growth; (b) there is at least one nonlinear
component in Lag 4 of the rate of CO2 emissions that can strongly predict economic growth; (c) there
exists at least one nonlinear component in both Lags 1 and 2 of the rate of fossil fuel consumption that
can weakly predict the rate of CO2 emissions; and (d) there is no other nonlinear component for any
lag of any variable that can predict another variable from among ∆CO2t, ∆Totalt, and ∆GDPt.

5.4.6. Summary of Multivariate and Bivariate Cointegration and Causality

We can summarize the empirical findings in the paper by showing the multivariate (bivariate)
cointegration and linear and nonlinear Granger causality results in Tables 11 and 12.

Table 11. Summary of multivariate cointegration and causality results.

Independent Variable Dependent Variable Cointegration Causality

Linear Nonlinear

GDPt and Totalt CO2t
√

***
√

***
√

**
CO2t and Totalt GDPt

√
*** ×

√
**

CO2t and GDPt Totalt
√

***
√

***
√

**
√

indicates that there is relationship, while × indicates that there is no relationship. *, ** and *** denote significance
at 10%, 5%, and 1% levels, respectively.

We first discuss the summary of the multivariate cointegration and linear and nonlinear Granger
causal relationships, as shown in Table 11. The table shows that there is a strong cointegration
relationship among GDP, CO2 emissions, and fossil fuel consumption. There are also strong significant
linear Granger causal relationships from both economic growth and the rate of CO2 emissions to the
rate of fossil fuel consumption, and from both economic growth and the rate of fossil fuel consumption
to the rate of CO2 emissions at the 1% significance level, respectively.

The empirical results also show that there exists a significant nonlinear Granger causal relationship
from both economic growth and the rate of CO2 emissions to the rate of fossil fuel consumption at
the 5% significance level, and a significant nonlinear Granger causal relationship from both economic
growth and the rate of fossil fuel consumption to the rate of CO2 emissions at the 5% significance level.
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However, there exists significant nonlinear, but not significant linear, causality from the rates of both
fossil fuel consumption and CO2 emissions to economic growth.

Table 12. Summary of bivariate cointegration and causality results.

Independent Variable Dependent Variable Cointegration Causality

Linear Nonlinear

GDPt CO2t
√

***
√

*** ×

Totalt CO2t
√

***
√

***
√

*
CO2t GDPt

√
***

√
*

√
***

Totalt GDPt
√

**
√

*
√

*
CO2t Totalt

√
***

√
*** ×

GDPt Totalt
√

**
√

*** ×

√
indicates that there is relationship, while × indicates that there is no relationship. *, ** and *** denote significance

at 10%, 5%, and 1% levels, respectively.

We now discuss the summary of the bivariate cointegration and linear and nonlinear Granger
causal relationships, as shown in Table 12. We conclude that there are cointegration relationships
between CO2 emissions and fossil fuel consumption, between GDP and fossil fuel consumption, and
between CO2 emissions and GDP. It is also found that there exists a significant linear Granger causal
relationship for any pair among the rate of CO2 emissions, the rate of fossil fuel consumption, and
economic growth at the 1% significance level, except for the pairs from the rate of CO2 emissions to
economic growth, and from the rate of fossil fuel consumption to economic growth, that are significant
at the 10% level.

There is no nonlinear causal relationship of each pair of variables among the rate of fossil fuel
consumption, the rate of CO2 emissions, and economic growth, except for the pairs from the rate
of CO2 emissions to economic growth at the 1% significance level, and from the rate of fossil fuel
consumption to both economic growth and CO2 emissions at the 10% significance level.

6. Inference

In this section, we draw inferences based on the empirical findings of the relationships among
CO2 emissions, fossil fuel consumption, and economic growth in China. We first draw inferences from
the cointegration relationships among CO2 emissions, fossil fuel consumption, and economic growth.

6.1. Cointegration Relationships among Fossil Fuel Consumption, CO2 Emissions, and GDP

In this section, we first make the following conjectures:

Conjecture 1. high fossil fuel consumption and high GDP move together positively.

Conjecture 1′. high CO2 emissions and high GDP move together positively.

In order to check whether Conjectures 1 and 1′ have any empirical validity, we establish the
following hypotheses:

H3
0 : fossil fuel consumption and GDP are not positively cointegrated;

H3
1 : fossil fuel consumption and GDP are positively cointegrated;

H3′
0 : CO2 emissions and GDP are not positively cointegrated;

H3′
1 : CO2 emissions and GDP are positively cointegrated.

Using GDPt and Totalt as proxies for both GDP and fossil fuel consumption, respectively, the
results of both the Johansen cointegration and ARDL tests show that we do not reject both H3

1 and
H3′

1 , and conclude that there exist significant positive cointegration relationships between fossil fuel
consumption and GDP, and between CO2 emissions and GDP. This leads to empirical support for both
Conjectures 1 and 1′.
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In addition, we examine whether it is possible to reduce both CO2 emissions and fossil fuel
consumption, but not retard economic growth in China. In other words, under the condition of not
sacrificing economic growth, is it plausible to establish public policy to yield energy conservation and
emission reduction? In order to check whether this is possible, we establish the following conjecture:

Conjecture 2. It is possible to reduce both CO2 emissions and fossil fuel consumption, but not retard economic
growth in China.

In order to check whether Conjecture 2 has empirical support, we establish the following
hypothesis:

H4
1 : CO2 emissions, fossil fuel consumption, and GDP are not cointegrated.

The findings from Tables 3 and 4 lead us conclude that H4
1 is rejected, implying that there exists a

significant cointegration relationship among fossil fuel consumption, CO2 emissions, and economic
growth, which implies that Conjecture 2 is rejected.

Academics, practitioners, and policy makers are interested in knowing whether the policy of
both energy conservation and emission reduction should be implemented. They are also interested
in knowing whether regulating policies for energy conservation and emission reduction will affect
economic growth. The empirical analysis suggests that implementing public policy of energy
conservation and emission reduction will retard economic growth.

In the next subsection, we discuss inferences from the causal relationships among the rate of
fossil fuel consumption, the rate of CO2 emissions, and economic growth, and discuss inferences from
both the cointegration and causal relationships among fossil fuel consumption, CO2 emissions, and
economic growth.

6.2. Causal Relationships among Rate of Fossil Fuel Consumption, Rate of CO2 Emissions, and Economic
Growth

We now draw inferences from the causal relationships among CO2 emissions, fossil fuel
consumption, and economic growth in China.

6.2.1. The Advantages of Using Both Linear and Nonlinear Causality

We first discuss the advantages of using both linear and nonlinear causality. In order to do so, we
test the following hypotheses:

H5
0: the rate of fossil fuel consumption does not cause economic growth;

H6
0: the rate of CO2 emissions does not cause economic growth.

If one uses the Granger causality-VECM or TY procedure to test the above hypotheses, one could
only obtain the information of a linear causal relationship between the rate of CO2 emissions and
economic growth, and between the rate of fossil fuel consumption and economic growth. In this paper,
we modify the above hypotheses, as follows:

H5′
0 : the rate of fossil fuel consumption does not cause economic growth if there is no linear or nonlinear

causality from the rate of fossil fuel consumption to economic growth,
H5′

1 : the rate of fossil fuel consumption causes economic growth if there exist any linear and/or
nonlinear causality from the rate of fossil fuel consumption to economic growth,
H6′

0 : the rate of CO2 emissions does not cause economic growth if there is no linear and no nonlinear
causality from the rate of CO2 emissions to economic growth,
H6′

1 : the rate of CO2 emissions causes economic growth if there exist any linear and/or nonlinear
causality from the rate of CO2 emissions to economic growth.

According to the results displayed in Tables 7, 8, and 10 (and from Table 12), H5′
0 is rejected, H5′

1 is
not rejected, and we conclude that the rate of fossil fuel consumption causes economic growth both
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linearly and nonlinearly at the 5% significance level. Thus, if the government expands the rate of fossil
fuel consumption, it will significantly cause economic growth both linearly and nonlinearly in the
future. Similarly, from Tables 7, 8, and 10 (and from Table 12), one can reject H6′

0 , and not reject H6′
1 , and

conclude that the rate of CO2 emissions causes economic growth linearly at the 10% level, and causes
economic growth nonlinearly at the 1% level, implying that if the government expands the rate of CO2

emissions, it will significantly cause economic growth both linearly and nonlinearly in the future, with
the nonlinear effect being stronger.

The empirical findings suggest public policymakers should examine any linear and nonlinear
effects from the rates of both fossil fuel consumption and CO2 emissions that could cause economic
growth, so that public policymakers could adopt better policies in both energy conservation and
emission reduction, while expanding economic growth. This demonstrates the empirical advantages
of using both linear and nonlinear causality tests.

The findings and the inferences drawn from them provide additional information compared with
those who apply only one of linear or nonlinear causality test in their analyses. We note that many
studies, such as Chiang et al. [113], Qiao et al. [114], and Chow et al. [110,115], find only linear causality
between some pairs of variables, only nonlinear causality between other pairs of variables, both linear
and nonlinear causalities between some other pairs of variables, and no linear or nonlinear causality
between the remainder of the pairs. Thus, in this paper, we conjecture that the findings of linear and
nonlinear causalities are independent and suggest application of both linear and nonlinear causality
tests in all future empirical analyses.

6.2.2. The Advantages of Using Multivariate Causality

Next we discuss the advantages of using multivariate linear and nonlinear causality tests. In order
to do so, we compare the results of testing hypotheses H5′

0 , H5′
1 , H6′

0 and H6′
1 discussed in Section 6.2.1

with the results of testing the following hypotheses:

H7′
0 : the rates of both fossil fuel consumption and CO2 emissions do not cause economic growth

if there is no linear and no nonlinear causality from the rates of both fossil fuel consumption and
CO2 emissions,
H7′

1 : the rates of both fossil fuel consumption and CO2 emissions cause economic growth if there is any
linear and/or nonlinear causality from the rates of both fossil fuel consumption and CO2 emissions to
economic growth.

The conclusions drawn from testing hypotheses H5′
0 , H5′

1 , H6′
0 and H6′

1 have been discussed in
Section 6.2.1. Now we turn to discuss the conclusions from testing H7′

0 and H7′
1 . According to the

results shown in Tables 6 and 9 (and from Table 11), H7′
0 is rejected, H7′

1 is not rejected, and so we
conclude that the rates of both fossil fuel consumption and CO2 emissions cause economic growth
because there exists nonlinear but not linear causality from the rates of both fossil fuel consumption
and CO2 emissions to economic growth in China. This suggests that, if the government reduces the
rates of both fossil fuel consumption and CO2 emissions simultaneously, it will significantly cause
economic growth in China nonlinearly. In other words, if the government institutes any public policy
regarding both energy conservation and emission reduction, it will lead to China’s economy slowing
down significantly.

The inferences drawn from testing H7′
0 and H7′

1 show that there is no linear and no nonlinear
causality from the rates of both fossil fuel consumption and CO2 emissions to economic growth.
This is different from the conclusion drawn from testing hypotheses H5′

0 , H5′
1 , H6′

0 and H6′
1 that, if

the government expands the rate of fossil fuel consumption or expands the rate of CO2 emissions
separately, it will significantly cause economic growth to expand both linearly and nonlinearly in the
future. This demonstrates the advantages of using both multivariate linear and nonlinear causality tests
that can draw conclusions that using both bivariate linear and nonlinear causality tests cannot draw.
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6.3. Cointegration and Causality Relationship among Fossil Fuel Consumption, CO2 Emissions, and Economic
Growth

We now discuss the advantages of using both cointegration and causality analysis to examine the
relationships among fossil fuel consumption, CO2 emissions, and economic growth.

6.3.1. The Advantages of Using Both Cointegration and Causality

We first discuss the advantages of using both bivariate cointegration and causality analyses to
examine the relationships among fossil fuel consumption, CO2 emissions, and economic growth. In
order to do so, we test both H3

0 and H3
1, as stated in Section 6.1, and both H5′

0 and H5′
1 , as stated in

Section 6.2.
According to the discussion in Section 6.1, we do not reject H3

1 and conclude that there exists a
significant positive cointegration relationship between fossil fuel consumption and GDP, implying that
fossil fuel consumption and GDP are moving together positively and, if the government expands fossil
fuel consumption, it will significantly cause GDP with immediate effect.

On the other hand, according to the discussion in Section 6.2, we do not reject H5′
1 and conclude

that the rate of fossil fuel consumption causes economic growth, both linearly and nonlinearly, implying
that if the government expands the rate of fossil fuel consumption, it will significantly lead to growth
in China’s economy both linearly and nonlinearly in the future. Thus, if we apply both bivariate
cointegration and causality analyses to examine the relationship between fossil fuel consumption
and economic growth, we will conclude that fossil fuel consumption and GDP are moving together
positively, and the rate of fossil fuel consumption will cause economic growth both linearly and
nonlinearly. This further suggests that, if the government expands fossil fuel consumption, then
fossil fuel consumption will have two impacts on economic growth: first, it will expand GDP with
immediate effect and, second, increases in the rate of fossil fuel consumption will significantly lead
China’s economy to grow both linearly and nonlinearly in the future.

On the other hand, if the government reduces fossil fuel consumption or carries out any
public policy of energy conservation, it will significantly cause China’s economy to slow down with
immediate effect, and its rate will significantly lead China’s economy to decline further, both linearly
and nonlinearly, in the future. This inference is useful for government and public policy makers in
their consideration of policies they should choose to reduce fossil fuel consumption, or carry out any
policies regarding energy conservation, so that the economy will be negatively impacted as little as
possible. Similar inferences can be drawn between CO2 emissions and economic growth.

6.3.2. The Advantages of Using Both Multivariate Cointegration and Causality

We now discuss the advantages of using both multivariate cointegration and causality analysis to
examine the relationships among fossil fuel consumption, CO2 emissions, and economic growth. In
order to do so, we test H4

0, as stated in Section 6.1, and H7′
0 and H7′

1 , as stated in Section 6.2.
According to the discussion in Section 6.1, the empirical findings lead us to reject H4

0 and conclude
that there exists a significant cointegration relationship among fossil fuel consumption, CO2 emissions,
and GDP. On the other hand, according to the discussion in Section 6.2.2, the findings lead us to
conclude that the rates of both fossil fuel consumption and CO2 emissions causes economic growth
because there is nonlinear, but not linear, causality from the rates of both fossil fuel consumption and
CO2 emissions to economic growth in China.

Therefore, when applying both multivariate cointegration and causality analysis to examine the
relationships among fossil fuel consumption, CO2 emissions, and economic growth, we conclude that
if the government reduces both fossil fuel consumption and CO2 emissions simultaneously, there are
two impacts on economic growth: first, it will affect economic growth with immediate effect, and
second, the rates of both fossil fuel consumption and CO2 emissions will cause economic growth to fall
nonlinearly rather than not linearly in the future. In other words, if the government carries out public
policies regarding both energy conservation and emission reduction, it will significantly retard the
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economy with immediate effect, and cause economic growth to fall nonlinearly rather than linearly in
the future.

7. Conclusions

Energy crunch and global warming have become very serious issues in recent decades. In order
to circumvent the problem, some countries have developed new technology in order to reduce both
CO2 emissions and energy consumption, while not restricting economic growth. Thus, controlling
CO2 emissions, reducing fossil fuel consumption, and encouraging economic growth is an important
task for all countries worldwide, including China.

In order to work in this direction, many studies in the literature of energy have used either a
cointegration test or causality test to investigate the relationships among fossil fuel consumption, CO2

emissions, and economic growth in China. To the best of our knowledge, the literature has applied
methods, such as the Toda and Yamamoto procedure, bivariate linear causality, multivariate linear
causality, and VECM test to examine the causal relationships among fossil fuel consumption, CO2

emissions, and economic growth.
However, there are some limitations to these testing approaches. First, the tests may not be able

to detect any multivariate nonlinear causal relationship among the variables. Second, the tests do
not measure the independent, dependent and joint effects together, so that testing series of single
hypothesis is different from testing all the hypotheses jointly. Even though some research in the
literature has examined the joint effect and/or the error-correction term of the variables by constructing
appropriate F-statistics, if the variables do not have cointegration relationships, the joint effects and
long-term causality cannot be determined.

In order to circumvent the limitations of the approaches that have been used in the literature, this
paper recommends applying multivariate nonlinear causality tests, together with cointegration and
bivariate linear and nonlinear causality tests, to capture more inclusive information. The empirical
findings are more interesting and thought-provoking than those in the extant literature.

In this paper, we have obtained many novel findings that are useful to government and public
policy makers in their decision making related to fossil fuel consumption, CO2 emissions, and economic
growth. For example, we find that there exists causality from the rate of CO2 emissions to economic
growth for China. This finding is consistent with Halicioglu [63] for Turkey and Ghosh [116] for India.

A second new finding is that there exist not only linear joint causality from the rates of both fossil
fuel consumption and CO2 emissions to economic growth and from both the rate of CO2 emissions
and economic growth to the rate of fossil fuel consumption, but also nonlinear joint causality from
both fossil fuel consumption and CO2 emissions to economic growth, and from both the rate of CO2

emissions and economic growth to the rate of fossil fuel consumption. These empirical findings lead to
the conclusion that there exist joint causality from the rates of both fossil fuel consumption and CO2

emissions to economic growth, and from the rate of CO2 emissions and economic growth to the rate of
fossil fuel consumption, more pervasive.

A third novel empirical finding is that there exists joint causality from the rates of both fossil fuel
consumption and CO2 emissions to economic growth, and from both the rate of CO2 emissions and
economic growth to the rate of fossil fuel consumption. However, there is no linear joint causality
from both the rate of CO2 emissions and fossil fuel consumption to economic growth. The findings are
consistent with those in Wang et al. [117].

A new fourth finding is that there exists nonlinear causality from the rate of CO2 emissions and
fossil fuel consumption to economic growth, though there is no linear causality from the rate of CO2

emissions and fossil fuel consumption to economic growth. Chiou-Wei et al. [61] provide evidence
from linear and nonlinear bivariate Granger causality testing about energy consumption and economic
growth, but they did not include CO2 emissions in their analysis.

In addition, the cointegration analysis provides solid support in favour of the development path of
“high fossil fuel consumption, high CO2 emissions, and high economic growth” over the past decade in
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China, by showing the long-run co-movement between fossil fuel consumption and GDP, and long-run
term co-movement between fossil fuel consumption and CO2 emissions. The empirical findings in the
paper provide public policymakers with a better understanding of the relationships among fossil fuel
consumption, CO2 emissions, and economic growth, so that they could formulate improved energy
and climate policies for China.

Discussion 1. If the government regulates any policy for energy conversation, will it significantly cause China’s
economy to slow down with immediate or future effect?

According to the scope and analysis in the paper, applying both bivariate cointegration and
causality analyses to examine the relationship between fossil fuel consumption and economic growth,
we conclude that fossil fuel consumption and GDP move together positively, and the rate of fossil fuel
consumption causes economic growth, both linearly and nonlinearly. This further implies that if the
government expands fossil fuel consumption, it will have two impacts on economic growth: first, it
will expand GDP with immediate effect, and second, an increase the rate of fossil fuel consumption
will significantly lead China’s economy to grow both linearly and nonlinearly in the future.

On the other hand, if the government reduces fossil fuel consumption or carries out any policy
of energy conversation, it will significantly cause China’s economy to slow down with immediate
effect, and its rate will significantly lead China’s economy to fall further, both linearly and nonlinearly,
in the future. The empirical findings also suggest that it is necessary to increase sustainable fossil
fuel consumption to expand economic growth. The lack of smooth fossil fuel supply could become
a serious constraint and undermine the pace of economic growth. This inference is useful for the
government and public policy makers in their consideration of which policies they should choose to
reduce fossil fuel consumption or regulate any policy of energy conversation so that economic growth
will be retarded as little as possisble.

It might be argued that there are many other factors, such as rebound effect and energy, as inputs
in order to power the economy. A strong trend in the reduction of energy consumption does not
hamper economic development in China, with late-2015 to early-2019 providing a good empirical
example. The findings only suggest that using our data and analysis support the conjecture and these
conclusions. In recent years, China has experienced a transition period of economic development. It
is obvious that China is developing a new economic path to replace the development path of “high
fossil fuel consumption, high emission and high growth”. However, it could also be because, for
example, our data set does not contain data with and without the development of new technology and
advanced products, and/or our tools cannot analyze the effects of the development of new technology
and advanced products.

Discussion 2. If one conducts cointegration analysis and concludes that there is no significant cointegration
relationship among fossil fuel consumption, CO2 emissions, and economic growth, could this finding imply that
it is possible to reduce both CO2 emissions and fossil fuel consumption without leading to restricting economic
growth in China?

Our answer is that it cannot do so. It is essential to conduct causality analysis. If causality
analysis concludes that reducing both fossil fuel consumption and CO2 emissions simultaneously will
not cause economic growth, then we cannot conclude that the government could reduce both CO2

emissions and fossil fuel consumption without leading to retardation of economic growth in China.
However, the results of the causality analysis reported in Table 10 suggest that reducing the rates of
both fossil fuel consumption and CO2 emissions simultaneously will nonlinear but not linear cause
economic growth.

Even if we were to apply cointegration analysis and conclude that there is a significant cointegration
relationship among fossil fuel consumption, CO2 emissions, and economic growth, as shown above, it
will still be necessary to conduct causality analysis because the inferences drawn from the cointegration
analysis are different from those drawn from the causality analysis, as discussed above.
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The use of both cointegration and causality analysis in both bivariate and multivariate settings
could not conclude that it is possible to reduce both CO2 emissions and fossil fuel consumption,
while simultaneously not economic growth in China. However, there could be other analyses that
might be used to draw the conclusion that it is possible to reduce both CO2 emissions and fossil fuel
consumption without retarding economic growth. This is beyond the scope of the present paper, and
is left foir future research.

Discussion 3. Might it be possible to reduce both CO2 emissions and fossil fuel consumption without retarding
economic growth?

By applying both multivariate cointegration and causality analysis to examine the relationships
among fossil fuel consumption, CO2 emissions, and economic growth, we conclude that if the
government reduces both fossil fuel consumption and CO2 emissions simultaneously, there are two
impacts on economic growth: first, it will affect economic growth with immediate effect, and second,
the rates of both fossil fuel consumption and CO2 emissions will cause economic growth to drop
nonlinearly rather than linearly in the future. In other words, if the government regulates policies
for both energy conservation and emissions reduction, it will significantly retard the economy with
immediate effect and cause economic growth to fall nonlinearly and not linearly in the future.

The above discussion could draw several policy implications that are very important for public
and private policy makers. For example, if the government reduces fossil fuel consumption or carries
out any public policy relating to energy conservation, it will significantly cause China’s economy to
slow down with immediate effect. In turn, the reduced rate of growth will significantly lead China’s
economy to decline both linearly and nonlinearly in the future. This inference is useful for government
and public policy makers in their decisions at to which policies they should choose: to reduce fossil
fuel consumption, or carry out any policies to get energy conservation, so that the economy will have
small negative repercussions as possible.

Therefore, when applying both multivariate cointegration and causality analysis to examine the
relationships among fossil fuel consumption, CO2 emissions, and economic growth, we conclude that
if the government reduces both fossil fuel consumption and CO2 emissions simultaneously, there are
two impacts on economic growth: first, it will affect economic growth with immediate effect, and
second, the rates of both fossil fuel consumption and CO2 emissions will cause economic growth to fall
nonlinearly rather than linearly in the future. In other words, if the government carries out public
policies regarding both energy conservation and emission reduction, it will significantly retard the
economy with immediate effect, and cause economic growth to fall nonlinearly, though not linearly, in
the future.

In addition, there have some arguments regarding the policies relating to both energy conservation
and emission reduction. Some academics, practitioners, and public policy makers may suggest that
consumers use energy more efficiently so that the government can reduce both CO2 emissions and
fossil fuel consumption, without restricting economic growth in the long run. Some might also suggest
that the Chinese Government should seek alternative clean energy sources, including solar, wind,
hydro, wave, geothermal, bio-mass, bio-agricultural, aquacultural, and renewable energy that have
fewer polluting effects, and do not harm the environment, while maintaining economic growth in the
long run.

Others have suggested that the Chinese Government should develop new technologies and
advanced products, and change from low technology production patterns to high technology production
patterns. In so doing, China can reduce both CO2 emissions and fossil fuel consumption, and not
restrict economic growth in the long run. However, the empirical findings in the paper do not support
the conjecture that reducing both CO2 emissions and fossil fuel consumption does not lead to a
reduction in economic growth. This does not imply that it is impossible to reduce both CO2 emissions
and fossil fuel consumption and yet restrict any slowdown in economic growth.
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On the contrary, the empirical findings suggest that, based on the data used in this paper, the
empirical analysis does not support the conjecture. However, it could be because the data set either
does not contain appropriate data that include the development of new technology and advanced
products, or the present techniques that were used in this paper do not include the effects of the
development of new technology and advanced products in the analysis, because such information is
not contained in the dataset used for the empirical analysis.

In the paper, we investigated long-run equilibrium, short-run impacts, and causality relationships
among fossil fuel consumption, CO2 emissions, and economic growth, by applying the cointegration
test, and linear and nonlinear causality tests in the bivariate and multivariate settings.

Extensions of these empirical results would include other related variables. We note that sensitivity
and uncertainty analyses examine how the uncertainty in the output of a mathematical model or
system can be decomposed and allocated to different sources of uncertainty in its inputs [118]. As we
only have one input of data, we did not conduct sensitivity and uncertainty analyses in this paper.
Further research might be able to access different sources of data so that one could include sensitivity
and uncertainty analyses in the empirical analysis.

Further research could also include other tools, for example, portfolio optimization (see, for
example, References [119–121]), stochastic dominance (see, for example, References [122–125]), and
risk measures (see, for example, References [126–131]) to analyze the relationships among fossil fuel
consumption, CO2 emissions, and economic growth for China as well as other countries.
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Appendix A

In the appendices, Table A1 provides a comparison of the conclusions drawn in this paper and
those in the literature that examine the relationships among fossil fuel consumption, Table A2 provides
a comparison of the methodologies used in this paper and those in the literature, CO2 emissions, and
economic growth in China.

Table A1 provides a comparison of the conclusions drawn in this paper and those in the literature
that examine the relationships among fossil fuel consumption, CO2 emissions, and economic growth
in China.
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Table A1. Comparison of the conclusions drawn in this paper and those in the literature.

Authors (Year) Period GDP→
EC

EC→
GDP

EC→
CE

CE→
EC

GDP→
CE

CE→
GDP Joint CLN COI MCLN

Wolde-Rufael [132] 1965–2005 √
× × ×

Zhang and Cheng
[17] 1960–2007 √ √

× × ×

Jalil and Mahmud
[133] 1979–2005 √

×
√

×

Wang et al. [40] 1990–2012 √ √ √
×

√
×

Zhao and Wang [134] 1980–2012 √ √
×

√
×

Yuan et al. [135] 1963–2005 √ √
×

√
×

Wang et al. [118] 1995–2007 √ √ √ √ √
×

√
×

Chang [78] 1981–2006 √ √ √
×

√
×

Wang et al. [136] 1972–2006 √ √
×

√
×

Govindaraju and
Tang [137] 1965–2009 √ √ √ √ √

×
√

×

Li and Leung [138] 1985–2008 √ √
×

√
×

Bloch et al. [139] 1965–2008 √ √ √ √
×

√
×

Our paper 1965–2016
√ √ √ √ √ √ √ √ √ √

√
denotes the relationship exists and × denotes otherwise. COI = cointegration. CLN = cointegration+ Linear and

nonlinear Causality, MCLN = Multivariate cointegration+ Multivariate Linear and nonlinear Causality.

Table A2. Comparison of the methodologies used in this paper and those in the literature.

Authors (Year) Period TYP ECM BLC MLC BNC MNC Nonlinearity COI CLN MCLN

Wolde-Rufael
[132] 1965–2005 √

× × × × × × × × ×

Zhang and
Cheng [17] 1960–2007 √

× × × × × × × × ×

Jalil and
Mahmud [133] 1979–2005 × ×

√
× × × ×

√
× ×

Wang et al. [40] 1990–2012 × ×
√

× × × ×
√

× ×

Zhao and
Wang [134] 1980–2012 × ×

√
× × × ×

√
× ×

Wang et al.
[118] 1995–2007 ×

√
×

√
× × ×

√
× ×

Li and Leung
[138] 1985–2008 × × ×

√
× × ×

√
× ×

Bloch et al.
[139] 1965–2008 ×

√
×

√
× × ×

√
× ×

Chang [78] 1981–2006 ×
√

× × × × ×
√

× ×

Govindaraju
and Tang [137] 1965–2009 ×

√
× × × × ×

√
× ×

Wang et al.
[136] 1972–2006 ×

√
× × × × ×

√
× ×

Yuan et al.
[135] 1963–2005 ×

√
×

√
× × ×

√
× ×

Our paper 1965–2016 ×
√ √ √ √ √ √ √ √ √

TYP = TY Procedure, BLC = Bivariate Linear Causality, PVECM = Panel VECM, PLC = Panel linear causality, BNC
= Bivariate non-linear causality, MNC = Multivariate non-linear causality, MLC = Multivariate linear causality. COI
= cointegration. CLN = cointegration + Linear and nonlinear Causality, MCLN = Multivariate cointegration +
Multivariate Linear and nonlinear Causality.
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