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Abstract
Reverse correlation is an influential psychophysical paradigm that uses a participant’s responses to randomly varying images to
build a classification image (CI), which is commonly interpreted as a visualization of the participant’s mental representation. It is
unclear, however, how to statistically quantify the amount of signal present in CIs, which limits the interpretability of these
images. In this article, we propose a novel metric, infoVal, which assesses informational value relative to a resampled random
distribution and can be interpreted like a z score. In the first part, we define the infoVal metric and show, through simulations, that
it adheres to typical Type I error rates under various task conditions (internal validity). In the second part, we show that the metric
correlates with markers of data quality in empirical reverse-correlation data, such as the subjective recognizability, objective
discriminability, and test–retest reliability of the CIs (convergent validity). In the final part, we demonstrate how the infoVal
metric can be used to compare the informational value of reverse-correlation datasets, by comparing data acquired online with
data acquired in a controlled lab environment. We recommend a new standard of good practice in which researchers assess the
infoVal scores of reverse-correlation data in order to ensure that they do not read signal in CIs where no signal is present. The
infoVal metric is implemented in the open-source rcicr R package, to facilitate its adoption.
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Reverse correlation is an influential data-driven paradigm de-
signed to uncover information used for the identification and
classification of stimulus materials. The paradigm originated in
the field of psychophysics and had its roots in signal-detection
theory (Ahumada & Lovell, 1971; Beard & Ahumada, 1998;

Eckstein & Ahumada, 2002). In recent years the paradigm has
become increasingly popular, in particular in the domain of
social psychology. In this field, the technique is being used to
visualize that information used for social judgments—for ex-
ample, in the context of gender, race, ethnicity, stereotypes, and
personality traits (reviewed in Brinkman, Todorov, & Dotsch,
2017; Jack & Schyns, 2017; Sutherland, Oldmeadow, &
Young, 2016; Todorov, Dotsch, Wigboldus, & Said, 2011).
The obtained images are commonly regarded as visual proxies
of mental representations and allow research to uncover infor-
mation use and biases in social judgments that otherwise might
have remained hidden. The technique may also prove valuable
for clinical psychology and psychiatry, as a tool to identify
aberrant mental representations and differences in information
use in various mental illnesses (Brinkman et al., 2017; Richoz,
Jack, Garrod, Schyns, & Caldara, 2015). One prevalent and
accessible implementation of the reverse-correlation paradigm
is noise-based reverse correlation (Brinkman et al., 2017;
Dotsch & Todorov, 2012;Mangini & Biederman, 2004). In this
implementation, stimuli are created by overlaying random
noise patterns over one and the same base image (Fig. 1A;
see Dotsch & Todorov, 2012; Mangini & Biederman, 2004,
for details). Participants judge or classify these stimuli on some
social construct—for example, trustworthiness, masculinity, or
criminality (Fig. 1B). Classification images (CIs) are computed
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by averaging the noise patterns of the stimuli that participants
indicated as being representative of the construct of interest
(Fig. 1C). CIs visualize the features that are diagnostic for a
given social judgment, and as such may reveal biases in mental
representations. For instance, Dotsch,Wigboldus, Langner, and
van Knippenberg (2008) used a reverse-correlation task to vi-
sualize what Dutch participants thought a typical Moroccan
face looks like. The visualizations of Moroccan faces created
on the basis of the data of more negatively prejudiced partici-
pants contained more criminal features, which was taken as
evidence of a bias in these participants’ mental representation
of Moroccans. The possibility that reverse correlation provides
visual proxies of mental representations—which are otherwise
hard to verbalize or are inaccessible—is intriguing. However,
because reverse-correlation experiments always yield a CI,
whether it is meaningful or based on pure random responses,
the technique has a potential danger of false positives.
Specifically, it is unclear how to statistically estimate whether
signal is present in these images’ or whether a researcher is
looking at pure noise. This is problematic, because researchers
may easily trick themselves into interpreting CIs based on ran-
dom data as containing a meaningful signal, essentially
resulting in a Type I error.

The information contained in CIs is commonly validated
subjectively—that is, by asking independent raters to judge
the CIs on some construct or dimension of interest (e.g., trust-
worthiness or masculinity). Although these measures are the
current norm (Dotsch & Todorov, 2012; Dotsch et al., 2008;
Imhoff, Dotsch, Bianchi, Banse, & Wigboldus, 2011), these
judgments are problematic for at least two reasons. First, they

are context-sensitive. For example, CIs of male faces will be
rated differently when they are embedded in CIs of female
faces than when they are embedded exclusively in CIs of male
faces. Second, raters may fall prey to the same problems noted
above for researchers. That is, independent raters may judge
CIs containing only random noise as being informative.
Researchers would therefore benefit from objective measures
to assess the amount of signal in CIs.

To date, objective metrics available to assess signal in CIs
are pixel and cluster tests (Chauvin, Worsley, Schyns, Arguin,
& Gosselin, 2005), which identify where in the CI signal is
present. Although these tests are useful, they require the spec-
ification of parameters, reflecting assumptions on the strength
and distribution of the signal across the pixels in the CI.
Specifically, adequate filters must be chosen to smooth CIs
before testing and the cluster test hinges on the specification
of a threshold value that determines cluster size.Moreover, the
choice of the test itself, whether a pixel or a cluster test is used,
reflects an assumption on whether the underlying signal is
focal or widespread, respectively.

In the present article, we introduce an easy-to-use objective
metric to assess the informational value of CIs that does not
require any parameters to be specified: infoVal (short for infor-
mational value). The infoVal metric quantifies the probability
that an observed CI has not been generated by a random pro-
cess and is equivalent to a modified z score. Because the metric
solely relies on the consistencies in the data, it is robust against
the aforementioned context effects. In the first section of this
article, we introduce the metric and test in two simulation stud-
ies whether it adheres to typical Type I error rates rated under
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Fig. 1 Overview of a reverse-correlation task. (A) Stimuli are generated
by superimposing random noise patterns (or their inverse) on a base
image (here, a morph of male and female faces). (B) In a two-image
forced choice paradigm, two stimuli are presented on each trial, where
the noise pattern of the stimulus on the left is the inverse of the noise
pattern of the stimulus on the right. Participants choose on each trial the

stimulus that best reflects the mental image that is being investigated
(here, the face that is most female). (C) Individual classification images
(CIs) are generated by averaging the noise patterns of the chosen stimuli
and superimposing them on the base image. The individual CIs can then
be averaged to obtain group-level CIs
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various task conditions (internal validity). In the second sec-
tion, we test whether and how the metric correlates with
markers of data quality in empirical data, such as the subjective
recognizability, objective discriminability and test–retest reli-
ability of CIs (convergent validity). In the third and final sec-
tion, we showcase how infoVal can be used to compare the
informational value of datasets, comparing data acquired online
with data acquired in a controlled lab environment. Data, code,
and materials are available on the Open Science Framework
(https://osf.io/v3y5e/).

Part I—infoVal and internal validity

The infoVal metric is based on a CI’s vector length. Avector is
an object with a magnitude and a direction. In a 2-D or 3-D
space, a vector can be represented as line segment or arrow,
where the length of the line represents the magnitude of the
vector, and the angle of the line represents its direction. In a 2-
D or a 3-D space, a vector is described by two (x, y) or three (x,
y, z) dimensions, respectively, where the vector is the line
segment that starts at the origin of the graph and points toward
the coordinates indicated by the values of the dimensions. By
increasing the number of dimensions, a vector can be de-
scribed in a multidimensional space with any number of di-
mensions. As such, a multidimensional vector can describe a
grayscale image, such as a CI, in which each pixel of the
image corresponds to a dimension. The direction of the vector
describes the relative configuration of pixel intensities in the
image. In the case of a CI, it might describe that the eyebrow
areas are darker than the rest of the face. The CI’s vector
length quantifies the extent to which ta CI deviates from the
base image. The longer the vector, the more intense the chang-
es are that are applied to the base image to get to the resulting
CI. In the example above, the vector length corresponds to the
extent to which the eyebrow areas are dark relative to the face.
Importantly, vector length of a CI is a direct function of the
similarity of the stimuli that were used to compute the CI.
When participants adopt a consistent strategy for their re-
sponses and select stimuli that are more similar to each other,
the resulting CI will have a longer vector length, as opposed to
when responses are random. The infoVal metric quantifies the
CI’s vector length relative to a reference distribution of simu-
lated vector lengths based on random responses.

Consider a reverse-correlation task with T = 1,000 trials
(t = 1, . . . , T), of I = 512 × 512 pixels (i = 1, . . . , I). On
each trial, a participant sees two stimuli, both consisting of
the base face with superimposed random noise patterns,
and selects which of the two best reflects the targeted men-
tal representation (Fig. 1B). The CI is computed by aver-
aging the 1,000 selected noise patterns, so that the value of
each pixel of the CI, pi, is the average of the 1,000 selected
stimuli for that pixel i. The vector length x of the CI is

computed as the square root of the sum of squares over
all pixel of the CIs, as in

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

∑
I

i¼1
p
2

i :

s

ð1Þ

Equation 1 is used to compute both the vector lengths of an
empirically observed CI, xobs, and of simulated CIs, xsim. For
xobs, the images selected by the participants are used to com-
pute pi. For xsim, we simulate a participant that randomly
chooses one of the two images on each trial, and these ran-
domly selected images are used to compute pi for xsim. A
reference distribution of simulated vector lengths is obtained
by performing 10,000 iterations of the simulation. Critically,
the simulated CIs are based on the same task parameters as
used in the empirical task that yielded the observed CI. This
means that the simulated CIs should be based on the identical
set of stimuli, including resolution, noise type, and number of
stimuli. An example of such a reference distribution is
depicted in Fig. 2. Note that the reference distribution is most-
ly normal but slightly left-skewed. The infoVal score of the
observed CI is obtained by relating the vector length of the
observed CI to the reference distribution of simulated vector
lengths, as a modified z score (Iglewicz & Hoaglin, 1993). We
use the modified z score to accommodate for the nonnormality
of the reference distribution. The infoVal metric is computed
as

infoVal ¼ xobs−~xsim
σsim

; ð2Þ

where ~xsim is the median of the simulated vector lengths, and
σsim is the approximated standard deviation of the reference
distribution, computed as

σsim ¼ k∙MAD
~xsim

; ð3Þ

where MAD~xsim is the median absolute deviation of the simu-
lated reference distribution of vector lengths, and k is a scaling
factor with a standard value (k = 1.4826) for which σsim ap-
proximates the standard deviation for distributions that are
close to normal (Iglewicz & Hoaglin, 1993). The vertical
and horizontal dashed lines in Fig. 2 represent the median of
the reference distribution and 1.96 units of the approximated
standard deviation, respectively. The red dot represents an
example of a vector length of an empirically observed CI with
an infoVal score of 3.

Assessment of infoVal’s internal validity
through simulations

To investigate how well the infoVal metric distinguish be-
tween CIs with signal and CIs that are pure noise, we
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performed two simulations to establish the validity and behav-
ior of the metric under varying circumstances. In all cases, we
simulated a situation in which a participant completes a two-
image forced choice (2IFC) reverse-correlation task, typical
within social psychology (Brinkman et al., 2017; Dotsch &
Todorov, 2012). The simulated participant’s task was to select
from two random noise patterns the pattern that appeared the
brightest.1 After doing so for a certain number of trials, a CI
was constructed by using the standard approach to average all
selected noise patterns, and the infoVal metric was computed
as described above. In the simplest case, the simulated partic-
ipant was an ideal observer who could complete the task per-
fectly by selecting the stimulus that had the highest average
intensity value across pixels (higher intensities are brighter).
Across runs, we varied the probability of random responding,
P[random], between 0 and 1. Simulation runs in which
P[random] equals 0 should yield identical results across runs,
since the ideal observer will always make the same decisions
for the same set of stimuli, providing an upper boundary for
the infoVal score. This bound answers the question: What
is the highest possible infoVal score if participants com-
plete the task perfectly given the task parameters? These
values should all be well above the critical value of 1.96
for an alpha of .05. The simulation runs in which
P[random] equals 1 reflect a situation of pure noise, in
which participants just select one or the other stimulus at
a chance level. The CIs in the latter runs should contain

no signal, because for these runs the null hypothesis of
fully random responses is true. In these cases, the infoVal
score should be between 0 and 1.96 in 95% of the runs. In
about 5% of the runs, infoVal should be above 1.96,
reflecting a Type I error rate corresponding to an alpha
of .05. In Simulation 1, we simulated several other levels
of P[random] in order to establish the general relationship
between the infoVal metric and P[random], which can be
interpreted as a combination of effect size (larger effects
have smaller P[random]), participant motivation, and/or
noise due to uncontrolled circumstances. The proportion
of values that fall above the critical value of 1.96 in these
cells reflects the statistical power of our metric to detect
signal under these circumstances. In Simulation 2, we
additionally varied the number of trials in the reverse-
correlation task and the signal size (signal spanning the
full image vs. some smaller part of the image). The R
code for all simulations is available at http://osf.io/v3y5e.

Simulation 1

Method

We simulated a 2IFC reverse-correlation task of 1,000 trials.
The stimuli consisted of sinusoid noise patterns of 512 × 512
pixels generated with the R package rcicr (version 0.4.0
https://github.com/rdotsch/rcicr; Dotsch, 2017), using R
version 3.3.3 (R Core Team, 2015). For a precise description
of the noise, see Dotsch and Todorov (2012). Note that, as in
Dotsch and Todorov’s study, on each trial two stimuli were

1 Although this task is more artificial than the social tasks with faces that are
typically used, this should make no difference for the outcome of our simula-
tions, but comes with the advantage of simplification.

Fig. 2 Reference distribution of vector lengths of simulated CIs based on
100% random responses (10,000 iterations, using a task with 1,000 trials
with stimuli of 512 × 512 pixels). The dashed vertical line represents the
median of the reference distribution, and the dashed horizontal line (with

arrowheads) represents 1.96 units of the approximated standard deviation.
The red dot is an example of the empirically observed CI’s vector length
of 398, corresponding to an infoVal score of 3
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presented, one of which was the negative of the other, to
maximize visual differences. The task of the simulated partic-
ipant was to choose the brightest stimulus of the two. In our
first simulation, we varied the probability of random
responding, P[random], across nine levels, ranging from
0 (ideal observer, no random responding) to 1 (chance-
level responding), with equal intervals of .125. On trials
with random responding, each of the two stimuli had a
probability of .5 to be selected. On trials with no random
responding, the stimulus with the highest average intensi-
ty value across all pixels (higher is brighter) was selected.
In a single simulation run, one simulated participant com-
pleted 1,000 trials with its assigned P[random], after
which a CI was computed according to standard proce-
dures (Dotsch et al., 2008; Dotsch & Todorov, 2012):
That is, all selected stimuli were averaged pixel by pixel.
The end result was one CI per run, for which we then
computed the infoVal metric as described above. Our sim-
ulation consisted of 1,000 runs for each level of
P[random]. To compute the infoVal metric, we simulated
a reference distribution of vector lengths of 10,000 CIs
based on pure random responding using the same stimuli
and number of trials, as we described above (Fig. 2).

Results

Figure 3 shows the relationship between P[random] and the
infoVal metric. The gray dotted horizontal line indicates an
infoVal score of 1.96, above which the null hypothesis of
random responding should be rejected. As can be seen in the
figure, a greater probability of random responding leads to
lower informational values (r = – .97, p < .001), and a qua-
dratic fit explains more variance than a linear fit (R2s = .94 and
.95, respectively; p < .001). The relationship is mostly linear,
although for high levels of random responding (P[random] >
.75), the metric is less sensitive to differences in random
responding.

Importantly, the semitransparent points in Fig. 3 indicate
that for 50% (or less) random responding, a decision criterion
of infoVal = 1.96 has a 100% hit rate of identifying the CIs that
contain signal. Type II errors (incorrectly not rejecting the null
hypothesis of random responding) occur at 62.5% random
responding and higher. Table 1 shows the exact false positive
rates and statistical power of the infoVal metric for the various
levels of random responding, separately for critical values of
infoVal = 1.96 and 3. The Type I error rate is the proportion of
H0 rejections in the last row, where P[random] = 1. It

Fig. 3 Results of Simulation 1: Relationship between random responding
(P[Random]) and the infoVal metric. The individual runs (1,000 per level
of P[random]) are depicted as semitransparent black points. The gray

dotted line represents the critical value of infoVal = 1.96, above which
the null hypothesis of random responding is rejected
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represents the probability to conclude that the CI was not
generated by a random process, given that it actually was
generated by a completely random process. Indeed, that prob-
ability is .048 for infoVal > 1.96: that is, below .05, which is
the expected Type I error rate for this critical value. The Type I
error rate for infoVal > 3 is .006 (where .003 would be expect-
ed for a z score of > 3).2

Moreover, the other rows in Table 1 show the probability of
the correct inference that a classification was not the result of a
random process. In other words, they are estimates of statisti-
cal power, given the task parameters described above (e.g.,
1,000 trials, 512 × 512 pixels, and the specified noise pat-
terns). Importantly, the metric achieves greater than 80% pow-
er for CIs that are the results of up to 62.5% random responses.
This means that when, out of 1,000 trials, participants
responded with signal in (at least) 375 trials, the metric can
distinguish their CIs from simulated CIs based on 100% ran-
dom responding with a probability well above 80%.

Simulation 2

Method

In the second simulation, we explored the behavior of the
infoVal metric under different task parameters and signal
properties (different number of trials and different signal
sizes). We distinguished between three signal sizes: When
deciding between two stimuli in a reverse-correlation task,
participants might pay attention (1) to all pixels (as is the case
in holistic processing of the stimuli), (2) to a large number
pixels (e.g., to several large features), or (3) to a small number

of pixels (to some details at a very specific location—e.g., a
pupil or an eyebrow). The infoVal metric may be less sensitive
to a strong signal that is present only in a very small number of
pixels relative to the full CI, and it might also be less sensitive
to a weak signal distributed across many pixels.

To simulate these three signal sizes, we varied the number
of pixels used to select the brightest stimulus. Specifically, to
select the stimulus with the highest average pixel intensity,
simulated participants computed the average pixel intensity
of a stimulus based on a specific region: the full 512 × 512
pixel image (signal size = 100%), the 256 × 256 pixels in the
middle of the image (signal size = 25%), or (3) the 32 × 32
pixels in the middle of the image (signal size = 0.39%).
Orthogonally, we varied the number of trials in the reverse-
correlation task (100, 300, 500, and 1,000 trials) and random
responding (P[random] = 0, .125, .25, .5, .75, and 1.0). Every
cell in the design of the simulation contained 1,000 runs. The
reference distribution of vector lengths needed to compute the
infoVal metric was generated using 10,000 runs separately for
100, 300, 500, and 1,000 trials, with identical stimuli, to match
the task parameters in the respective cell of the simulation
(four reference distributions with 10,000 samples each). The
rest of the procedure was identical to that of Simulation 1.

Results

Figure 4 shows the behavior of the infoValmetric as a function
of number of trials (x-axis), proportion of random responding
(line color), and signal size (panels). In all cases, the results of
Simulation 1 are replicated: infoVal scores are higher and well
above the critical value of 1.96 (gray dotted line) for lower
proportions of random responding (the lower P[random], the
stronger the signal in the CI). Moreover, we see that the metric
can better differentiate between CIs with signal (low
P[random]) and without (high P[random]) when more trials
are used, but evenwith as few as 100 trials, infoVal crosses the
threshold of 1.96 for CIs with up to 50% random responses.
Finally, we observe that the metric is most sensitive to signal
spanning 25% of the CI (256 × 256 pixels) rather than the full
image (512 × 512 pixels), and loses some (but not much)
sensitivity when the signal is restricted to an even smaller part
of the CI (0.39%, or 32 × 32 pixels). This means that even if
the signal in the CI is very small, the infoVal metric is still able
to detect its presence. We can also conclude from Fig. 4 that
the metric is more sensitive to a weak signal (high P[random])
contained in few pixels than to a strong signal (low
P[random]) distributed across many pixels.

Table 2 shows the exact Type I error rates (in bold) and
statistical power to detect signal in the CI of our metric, using
infoVal > 1.96 as the criterion (see Table 3 for infoVal > 3).
Importantly, irrespective of the number of trials and signal
size, the proportion of infoVal scores > 1.96 when
P[random] = 1 (no signal present) is very close to the nominal

2 Note that a higher number of simulation runs would yield a more precise
estimate of the Type I error rates. We had to limit our simulation to 1,000 runs
per cell in the design due to time and resource constraints. The R code has been
made available for those in need of more precise estimates (https://osf.io/
v3y5e/).

Table 1 Proportions of H0 rejections (H0 = CI generated by a random
process) out of 1,000 simulation runs per level of P[random] for two
different critical values (1.96 and 3)

P[random] infoVal > 1.96 infoVal > 3

.000 1.000 1.000

.125 1.000 1.000

.250 1.000 1.000

.375 1.000 1.000

.500 1.000 1.000

.625 .975 .873

.750 .558 .286

.875 .106 .031

1.000 .048 .006

The bold row represents the Type I error rate, and other rows represent the
power to detect signal
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Table 2 Proportions of H0 rejections (H0 = CI generated by a random
process) out of 1,000 simulation runs, by combinations of P[random],
signal size, and number of trials using infoVal > 1.96

Signal size
(pixels)

P[random] 100
trials

300
trials

500
trials

1,000
trials

32 .000 1.000 1.000 1.000 1.000

32 .125 .998 1.000 1.000 1.000

32 .250 .946 1.000 1.000 1.000

32 .500 .425 .994 1.000 1.000

32 .750 .107 .326 .616 .926

32 1.000 .044 .038 .030 .038

256 .000 1.000 1.000 1.000 1.000

256 .125 1.000 1.000 1.000 1.000

256 .250 .991 1.000 1.000 1.000

256 .500 .585 .998 1.000 1.000

256 .750 .137 .402 .743 .994

256 1.000 .032 .047 .039 .035

512 .000 1.000 1.000 1.000 1.000

512 .125 .982 1.000 1.000 1.000

512 .250 .825 1.000 1.000 1.000

512 .500 .327 .785 .978 1.000

512 .750 .106 .180 .303 .564

512 1.000 .054 .040 .048 .040

Bold rows represent Type I error rates, and the other rows represent
statistical power to detect signal
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Fig. 4 Results of Simulation 2: InfoVal scores as a function of number of trials (x-axis), proportion of random responding (different colored lines), and
signal size (panels, from left to right: signal in 0.39%, 25%, and 100% of pixels in the stimuli)

Table 3 Proportions of H0 rejections (H0 = CI generated by random
process) out of 1,000 simulation runs per combination of P[random],
signal size and number of trials using infoVal > 3

Signal size pixels P[random] 100
trials

300
trials

500
trials

1000
trials

32 .000 1.000 1.000 1.000 1.000

32 .125 .980 1.000 1.000 1.000

32 .250 .751 1.000 1.000 1.000

32 .500 .160 .930 1.000 1.000

32 .750 .022 .128 .331 .793

32 1.000 .003 .007 .005 .004

256 .000 1.000 1.000 1.000 1.000

256 .125 .999 1.000 1.000 1.000

256 .250 .930 1.000 1.000 1.000

256 .500 .289 .982 1.000 1.000

256 .750 .025 .167 .517 .963

256 1.000 .002 .007 .004 .005

512 .000 1.000 1.000 1.000 1.000

512 .125 .879 1.000 1.000 1.000

512 .250 .548 .998 1.000 1.000

512 .500 .125 .538 .869 1.000

512 .750 .030 .055 .102 .287

512 1.000 .008 .006 .008 .004

Bold rows represent Type I error rate, other rows represent statistical
power to detect signal
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Type I error rate of alpha = .05. It can be seen fromTable 3 that
a stricter criterion provides better Type I error control at the
cost of power to detect a signal.

Discussion

We established the internal validity of the infoVal metric in
two simulations, exploring its behavior under various param-
eters. The simulations showed that the metric is sensitive to
changes in the amount of signal in the CI, has a satisfactory
Type I error rate (close to .05 for infoVal > 1.96) and becomes
more powerful when more trials are used in the task. The
simulations also showed that the metric is more sensitive to
signals in the CI that are constrained to a part of the image,
than to signals that span the entire image, although it is suffi-
ciently sensitive to all simulated signal sizes.

We note that the strong relation between random
responding and infoVal makes it possible to decide on a crit-
ical infoVal score that corresponds with a priori stated exclu-
sion criteria described in terms of P[random]. For instance, a
researcher may want to include only participants who have
responded randomly to at most 50% of the trials. Our work
paves the way to decide on a critical value to reject the null
hypothesis that a process of P[random] > .5 generated the CI.

Another observation is that if we assume a dependency
between P[random] and number of trials—such that increas-
ing the number of trials in a task also increases random
responding, due to lack of participant motivation—adding
more trials will not necessarily make reverse correlation more
sensitive to signal (as is quantified by the infoVal metric). For
instance, assuming that a signal spans 25% of the image (256
× 256 pixels), participants performing a 300-trial task might
be very motivated for the first half of the task, and then after
Trial 150 start responding randomly (so the total P[random] =
.50), yielding a power of 100% to detect signal (see Table 2).
If these same participants were to perform a 500-trial task, but
kept on responding randomly onmost of these additional trials
because of the demotivation that kicks in after Trial 150,
P[random] might be somewhere close to .75, yielding a power
of around 74% to detect a true signal from the resulting CIs
(see Table 2). Therefore, our simulations confirm an informal
intuition of researchers, namely that it does not always pay to
add more trials to a reverse-correlation task, considering that
adding more trials also increases the probability of random
responding due to participant demotivation.

Part II—Convergent validity of the infoVal
metric

Having established the internal validity of the infoVal metric in
the previous section, we proceeded to examine its convergent
validity. To this end, we computed infoVal scores for empirical

data from a 2IFC task similar to the one used in the simulations
in Part I. Noise patterns were constructed using the same type of
noise as in Part I and were superimposed on a gender-neutral
base face. Participants were instructed to select from stimulus
pairs the stimuli that were either most male or female (instruc-
tion varied between participants). We tested how infoVal scores
relate to three markers of CI quality: (1) ACI should readily and
vividly reflect the target construct of interest (subjective recog-
nizability), (2) a CI should objectively be more similar to CIs of
the same category of target constructs, as opposed to the oppo-
site target construct (objective discriminability), and (3) similar
CIs should be obtained when the same participants repeat the
task (test–retest reliability). We hypothesized that the infoVal
metric should have a positive correlation with each of these
markers. In addition, we explored how infoVal scores relate to
response times, to verify the intuition that exceptionally fast
response times correspond to CIs with little to no signal.

Method

Participants

Data were collected in two samples of healthy human partic-
ipants. The first sample consisted of 62 university students
who were recruited at Utrecht University (The Netherlands)
and performed the experiment in a controlled lab environment
(Blab sample^: age = 22.3 ± 3.0 years, mean ± SD; 38 female,
24 male). The second sample consisted of 89 participants who
were recruited using the international online participant plat-
form Prolific (www.prolific.ac) who performed the
experiment at a location of their choice (Bonline sample^:
age = 30.4 ± 9.0 years, mean ± SD; 32 female, 57 male). An
overview of participants’ demographics and their
geographical locations can be found in the supplementary
material (Fig. S1 and Tables S1 and S2).

Experimental design and procedure

Session 1 All participants performed a 2IFC reverse-
correlation task on perceived gender, for which they received
a monetary reward or course credits. The experiment
consisted of a 2 (Bsample^: online vs. lab) × 2 (Bgender
instruction^: male vs. female) design. Four participants in
the online sample participated in multiple task conditions
(e.g., in both Bmale^ and Bfemale^ conditions). Of these par-
ticipants, only the first session was included in the subsequent
analyses. The task instructions and stimulus materials were
identical across samples.3 The reverse-correlation task

3 The only difference across samples was that in the lab sample the order of the
stimuli was pseudo-random, whereas in the online sample the order of the
stimuli was identical across participants (due to a programming error). We
have no indications that this difference affected the results in any way.
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consisted of 1,000 trials in which participants selected from
two stimuli the image that best represented their mental image
of a typical male or female face (varied between participants).
In the lab sample, 29 participants were in the Bmale^ condition
versus 33 in the Bfemale^ condition. In the online sample, 46
participants were in the Bmale^ condition versus 43 in the
Bfemale^ condition. The stimuli were constructed using the
rcicr R package version 0.3.4.1-44 (Dotsch, 2017), which en-
tails superimposing different random noise patterns on one
and the same base image (as in the simulation studies in Part
I). The base image was a greyscale image of a gender-neutral
face (512 × 512 pixels), which was obtained by averaging the
average male and female faces from the Karolinska face data-
base (Lundqvist & Litton, 1998). On each trial, two stimuli
were presented side by side, where the stimulus on the right
side of the screen was constructed using the inverse of the
noise pattern of the stimulus on the left side on the screen
(see Dotsch & Todorov, 2012). Participants were instructed
to use their first impression to choose the stimulus that was
either most male or most female (depending on condition).
Participants responded by pressing the BA^ or the BL^ button
on their keyboard and completed the task in one go, with short
breaks every 100 trials (mean time on task: 34 ± 20 min).

Participants of both lab and online samples also rated a set of
CIs after completing the reverse-correlation task. These ratings
focused on a different research question4 and are therefore not
presented here. After completing the subjective ratings task, par-
ticipant provided demographical information in a questionnaire.

Session 2 A total of 72 participants of the online sample were
invited to perform the task twice (3–5 days between sessions) to
assess test–retest reliability (35 were in the Bmale^ condition
and 37 were in the Bfemale^ condition). These participants were
selected according to the criterion that in the first session, at least
two-thirds of their response timeswere above 300ms (it was not
possible to perform the task at a faster pacewhile adhering to the
instructions of the task). One of the 72 participants did not
respond, and four others were excluded from the test–retest
analyses because they participated in multiple task conditions
(e.g., in both Bmale^ and Bfemale^ conditions), resulting in a
total sample of 67 participants for the test–retest analyses (34 in
the Bmale^ condition and 33 in the Bfemale^ condition).
Directly after completing the second session of the reverse-
correlation task, the participants in the retest sample also rated
the 72 CIs of the first session, as a measure of subjective recog-
nizability. The participants in the Bmale^ condition rated the
masculinity of 35 male CIs, and the participants in the Bfemale^
condition rated 37 female CIs, on a 9-point scale (for male CIs:
1 = not masculine, 9 = very masculine; for female CIs: 1 = not
feminine, 9 = very feminine).

Data processing

Classification images CIs were computed using standard pro-
cedure in R (version 3.2.3) using the rcicr package (version
0.3.4.1-44) with default settings (Dotsch, 2017). Per participant,
the selected noise patterns were averaged, scaled to match the
range of pixel intensities of the base image and then
superimposed onto the base image to obtain an individual-
level CI. Group-level CIs were computed per experimental con-
dition, by averaging the (unscaled) average noise patterns of all
participants in the respective condition, scaling the group aver-
age tomatch the range of pixel intensities of the base image, and
then superimpose it onto the base image (auto-scaling).

Measures of data quality

We computed infoVal scores for all individual CIs, as we
described in Part I. Subjective recognizability was quantified
by average masculinity and femininity ratings of the CIs.
Test–retest reliability was computed by correlating the pixel
intensities of the CIs of the first and second sessions (pixel-
wise correlations). Objective discriminability was operation-
alized as the ratio between a CI’s similarity to all other CIs
within the same gender category and its similarity to the CIs
within the other gender category: the objective discriminabil-
ity ratio (ODR). The similarity between two CIs can be quan-
tified by computing the Euclidean distance between the pixel
intensities of the two CIs: smaller Euclidean distance equals
greater similarity.5 The ODR is then computed as follows:

ODR ¼ dacross

dwithin
: ð4Þ

Here, dwithin is the average Euclidean distance of one CI to
all other CIs of the same category, and dacross is the average
Euclidian distance of a CI to all CIs of the opposite category.
In other words, we quantify the degree to which a male CI is
more similar to other male CIs, then it is to female CIs (and
vice versa). An ODR higher than 1 indicates that CIs can be
objectively discriminated between categories.

Data analysis

To test the relation of the infoVal metric with the three markers
of data quality we used polynomial regression, considering
linear and quadratic relations.

4 Namely, whether CIs generated by oneself are recognized and rated higher
than CIs generated by others.

5 Note that we used pixel-wise correlations to investigate similarities between
the CIs, but we used Euclidean distances to investigate dissimilarities between
the CIs.
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Results

As we described above, we computed for each participant
their CI, the corresponding infoVal score, three indicators of
data quality, and median response time. Here we present the
results of both lab and online sample pooled together (see Part
III and the supplementary material for a comparison of the
online and lab data, Fig. S2).

Visual inspection showed that CIs with high infoVal scores
could be readily recognized as depicting male or female faces,
whereas this was less clear for CIs with low infoVal scores
(illustrated in Fig. 5A). This observation was confirmed by the
subjective ratings of the participants, in which male and fe-
male CIs were associated more strongly with masculinity and
femininity, respectively, when infoVal scores were high (Fig.
6A), F(2, 67) = 20.03, p < .001, R2 = .36. A quadratic model
provided a significantly better fit than a linear model (R2s =
.36 and .32, respectively; p < .05).

Higher infoVal scores corresponded to male and female CIs
that weremore objectively discriminable. This is particularly clear
when theCIs are plotted in two-dimensional space (Fig. 5B) using
multidimensional scaling (Jaworska & Chupetlovska-
Anastasova, 2009). The scaling proceduremaximizes the distance
between CIs in two dimensions, based on the matrix of the
Euclidean distances of all CIs. The scaling is blind to the original
labels of the CIs (Bmale^ or Bfemale^); hence, the separation of

the data in two clusters is fully data-driven. The higher the infoVal
score, the more separated the male and female CIs are. Indeed,
with increasing infoVal scores, the ODR of the corresponding CI
increased (Fig. 6B), F(2, 148) = 117.80, p < 2.2×10–16, R2 = .61.
A quadratic model provided a significantly better fit than a
linear model (R2s = .61 and .58, respectively; p < .01).

InfoVal scores were highly correlated with test–retest reli-
ability, where higher scores corresponded to higher test–retest
reliability (Fig. 6C),F(2, 64) = 57.21, p < 1×10–13, R2 = .63. A
quadratic model provided a significantly better fit than a
linear model (R2s = .63 and .59, respectively; p < .001).

In addition, we explored whether and how infoVal scores
related to the median reaction times of participants (Fig. 6D).
The infoVal scores increasedwith increasing reaction times until
a plateau was reached around 1,500 ms (Fig. 6D), F(2, 148) =
40.2, p < 1×10–13, R2 = .34. Reaction times that were extraor-
dinarily fast (< 750ms)were associatedwith low infoVal scores.
A quadratic model provided a significantly better fit than a
linear model (R2s = .34 and .29, respectively; p < .001)

Discussion

In empirical reverse-correlation data on perceived gender, the
infoVal scores shows high levels of convergent validity. The
infoVal scores correlated with three indicators of data quality:
CIswith high infoVal scoreswere subjectively perceived asmore
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Fig. 5 (A) Examples of the classification images (CIs) of individual partic-
ipants with low and high informational value (inset in the lower-right corners
of the images). CIs from the female and from themale condition are presented
with a black or a red frame, respectively. (B)Multidimensional scaling plot of

the individual CIs. Each dot represents a CI, and its size represents the infor-
mational value. CIs from the female and from themale condition are present-
ed with blue and red dots, respectively. The CIs with significant amounts of
informational value (infoVal > 1.96) are indicated with black outlines
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masculine or feminine, were objectively more discriminable and
had higher test–retest reliability. The increases in the subjective
recognizability and objective separability was most pronounced
for the lower range of infoVal scores (approximately between 0
and 6), where the relation between infoVal scores and the corre-
sponding markers of data quality was close to linear. For higher
infoVal scores (approximately between 6 and 10), further in-
creases in test–retest reliability were observed, but the increases
in other markers of data quality were less pronounces (but still
increased). This suggests that CIs with high infoVal scores are
accurate visualization of what the participant had in mind—at
least, as accurate as possible within the constraints of the task.
But these higher scores do not necessarily lead to images that are
regarded as more typical for the targeted mental construct. This
exemplifies how infoVal scores can facilitate the interpretation of
CIs: it showswhether variance in CIs across participants is due to
random responding or whether it reflects the (lack of) consensus
between the mental images of participants.

Part III—Comparing data from lab and online
samples using infoVal

We now turn to an application of the infoVal metric to
comparing reverse-correlation datasets. More specifically,

we compared data acquired via online participant plat-
forms versus data acquired in a controlled lab environ-
ment. The use of online participant platforms has advan-
tages over experiments performed in a lab environment.
First, online data acquisition is highly efficient (i.e.,
cheaper, faster, and access to larger samples). Second,
online pools allow testing more heterogeneous samples,
improving generalizability of the findings. The drawback
of online data acquisition is the lack of control on the
setting in which the data is acquired. The lack of control
could jeopardize data quality, as participants may be less
motivated or more easily distracted. Online participant
platforms have been successfully used for numerous ex-
periments within social psychology (Peer, Brandimarte,
Samat, & Acquisti, 2017), but to date have not been used
for reverse-correlation experiments. We showcase the
comparison of infoVal scores in reverse-correlation data
acquired online versus in a controlled lab setting.

We start by comparing whether data from lab and on-
line samples provide similar CIs and compare the infoVal
scores of both samples. Finally, because participants in
the lab may be more experienced with long experiments
or have stronger incentives to stay motivated for a longer
period of time, we compare the relationship between num-
ber of trials and infoVal scores between samples.

Fig. 6 Informational value and measures of data quality. (A) Relation
between infoVal scores and subjective ratings of the individual CIs by
other participants. (B) Relation between infoVal and discriminability
scores, computed as the ratio of the average distance between categories
and the average distance within a category. (C) Relation between infoVal
scores and test–retest correlations, computed as the pixel-wise correlation
between the individual CIs from two sessions. (D) Relation between

infoVal scores and median reaction times. In panel D, one outlier was
removed for visualization purposes (median RT > 4,500 ms). This outlier
was not removed for any of the statistical analyses. In all plots, dots
indicate the data points of individual participants, the blue lines represent
polynomial regression lines, the dashed vertical lines indicate the thresh-
old for significant amounts of informational value (infoVal > 1.96), and
the gray shading represents 95% confidence intervals
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Procedure and data analysis

Using the same datasets and procedures as in Part II, the
group CI for Bmale^ and Bfemale^ conditions were com-
puted separately for the lab and online samples (using the
rcicr R package, version 0.4.0 https://github.com/rdotsch/
rcicr, default setting). The resulting images were
compared using pixel-wise correlation. The infoVal scores
of individual CIs was assessed in the online and lab sam-
ples according to the procedure described above and dif-
ferences were tested using a robust independent t test
(Mann–Whitney U test) to accommodate for the
nonnormal distribution of the infoVal scores. Next, we
investigated how the infoVal scores depended on the num-
ber of trials in both samples. We computed infoVal scores
using the data of subsets of the total number of trials, for
10, 300, 500, and 1,000 cumulative trials.

Results

The group CIs of the online and lab samples both depict vivid
images that can be readily recognized as male or female faces
and are very similar across samples (Fig. 7A;male groupCIs: r =
.84, p < .001; female group CIs: r = .87, p < .001, pixel-wise
correlations). The mean infoVal scores in the online sample were
lower than those in the lab sample (Fig. 7B; online sample: 2.9 ±
0.32, lab sample: 3.9 ± 0.4, mean infoVal scores ± SEs; U =

3,290, p < .05, r = .16). Note that the ranges of infoVal scores
for both the lab and online samples were large and quite similar
across samples (range in lab sample: – 1 to 12; range in online
sample: – 2 to 11); hence, both samples include both high- and
low-quality data. The difference in mean infoVal scores is also
reflected in a difference in the proportions of participants who
had infoVal scores > 1.96: 68%versus 54% for the lab and online
samples, respectively. In other words, to obtain the same number
of high-quality CIs, one would require roughly 25% more par-
ticipants when acquiring data online than when the experiment
was performed in a controlled lab environment.

Moreover, we investigated for both samples how the
mean infoVal scores and the proportions of CIs with
infoVal scores above critical thresholds (infoVal > 1.96 or
3) were related to the number of trials (Figs. 7C–E). The
relations were different for the online and lab samples. For
low numbers of trials (approximately < 500 trials), both the
lab and online samples show similar increases in both mean
infoVal scores and the proportions of CIs with significant
infoVal scores. When trial numbers are increased to 1,000
trials, both measures continue to increase, but the benefit of
additional trials is less pronounced in the online sample.
Also note that although the mean infoVal scores increase
(nearly) linear for the whole range of trial numbers, a ceiling
effect can be seen in the proportion of CIs with infoVal >
1.96. Such a ceiling effect is less pronounced for the pro-
portion with infoVal > 3.

Fig. 7 Comparison of lab and online samples. (A) Group CIs of male
(bottom row) and female (top row) faces, for lab (left column) and online
(right column) samples. (B) Distribution of infoVal scores for lab (orange)
and online (green) samples. Black dots represent individual data points.
The dashed line represents an infoVal score of 1.96. (C) Mean infoVal

scores for different numbers of trials for the lab and online samples (the
same conventions are followed as in panel B). Error bars represent stan-
dard errors of the means. (D + E) Proportions of infoVal scores > 1.96 (D)
and > 3 (E). The same conventions are followed as in panel C
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Discussion

Part III provided a showcase of the application of the infoVal
metric to compare the quality of reverse-correlation datasets. At
the level of individual CIs, the average infoVal scores of the
online sample were slightly lower than those of the lab sample.
Importantly, average infoVal scores were well above the critical
value of 1.96 for both samples, indicating that it is feasible to
conduct reverse-correlation experiments online, albeit with a
modest decrease of data quality. The feasibility of online reveres
correlation experiments was further supported by the vividness
and similarity of CIs obtained in lab and online samples.

Investigating the relation of infoVal scores to the number of
trials lead to several interesting observations. Both the mean
infoVal scores and the proportion of CIs with significant
infoVal scores increased with the amount of trials.
Interestingly, the benefit of adding additional trials above 500
was more pronounced for infoVal scores > 3 than for infoVal
scores > 1.96. This indicates the presence of two kind of par-
ticipants in the sample: motivated and less motivated partici-
pants. Motivated participant, which have infoVal scores > 1.96
after 500 trial, benefit from additional trials (500–1,000 trials),
with more participants reaching infoVal scores > 3 after 1,000
trials. At the same time, less motivated participants, who have
infoVal scores < 1.96 after 500 trials do not improve with ad-
ditional trials (500–1,000 trials).

Moreover, increasing the number of trials is more effective
in a lab setting than online, as reflected in both the mean
infoVal and the proportion of CIs with significant infoVal,
which indicates that adding more trials to a reverse-
correlation task does not necessarily increase the sensitivity
of the task. In fact, more trials may increase random
responding due to demotivation, which could lead to de-
creased sensitivity of the task. Demotivation may come about
quicker in participants of online samples, as the incentives to
remain focused on the task may be less strong. When design-
ing online reverse-correlation experiments, one should take
this into consideration. It might not be worthwhile to increase
trial numbers well above 500 trials. Instead, it could be more
efficient to increase the number of participants in order to
increase sensitivity.

General discussion

In this article, we introduced a quantitative metric, infoVal, to
quantify the amount of informational value of CIs.We showed
that making decisions about signal presence based on infoVal
scores adhered to expected Type I error rates in simulated
reverse-correlation data (internal validity) and that the
infoVal scores correlated with markers of data quality in em-
pirical reverse-correlation data (convergent validity). In the
final part, we demonstrated how infoVal scores can be applied

to compare reverse-correlation datasets, comparing in this
case reverse-correlation data acquired in a lab setting versus
data acquired online.

The analysis of the infoVal scores in the empirical data re-
veals several interesting features of reverse-correlation data and
inspires new practical recommendations. For instance, it shows
that empirical reverse-correlation data is quite noisy. Most par-
ticipants had infoVal scores in the range of 3–4. According to
our simulations, this corresponds to levels of random responses
of 50%–75%. By the same token, these observations indicate
that the reverse-correlationmethod is highly sensitive to pick up
even small amounts of signal in noisy data. It also shows that
for numbers of trials typical in the literature (300–500 trials)
large proportions of individual CIs may be unreliable. A prac-
tical recommendation is to include at least 500 trials in a
reverse-correlation experiment, until better ways of power anal-
ysis are established. This is applicable for reverse-correlation
experiments for perceived gender, in which the difference in
mental templates (male vs. female) is large. For other social
judgments, in which differences may be more subtle, the re-
quired number of trials is likely to be larger.

The implications for analysis and interpretation of CIs de-
pend on whether researchers are interested in individual-level
CIs or group CIs. Researchers who consider individual CIs
can adopt the infoVal metric to set a formal criterion to ex-
clude CIs from subsequent analysis if they fall below a certain
threshold (e.g., infoVal scores < 1.96). Researchers consider-
ing group CIs can apply the infoVal metric to assess the dis-
tribution of weights of individual CIs to the group CI. In other
words, it can be used to assess the proportion of participants
that contributed to the group CI. These applications improve
the interpretation and interpretability of current and future
reverse-correlation studies. Moreover, it is important to high-
light that the infoVal metric is a measure of the amount of
signal in the data, which is not necessarily identical to the
quality of the data. For instance, when a participant is asked
to perform a reverse-correlation task on a construct for which
he/she does not have a clear mental image, the resulting data
will contain little signal, which in this case is an accurate
description of the mental image of the participant. Therefore,
when low infoVal scores are obtained, it is worthwhile to
consider whether participants could have mental representa-
tions that are not well specified.

By the same token, this study shows the feasibility of on-
line data acquisition for reverse-correlation experiments; vivid
CIs were obtained for both lab and online samples that clearly
represented male and female faces. The group CIs of both the
lab and online samples were highly similar and readily recog-
nizable as male or female faces. In fact, the group CIs of the
online sample were at par with those of the lab sample. The
proportion of individual CIs with infoVal scores > 1.96 was
lower in the online sample and this difference was more pro-
nounced as the number of trials in the task increased. The
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difference in infoVal scores in lab and online samples is likely
because participants in the lab are more accustomed to long
(and often boring) tasks. Participants in the online sample may
be distractedmore easily and the threshold for rushing through
the experiment may be lower, as the participants remain anon-
ymous to the researcher. For online populations in particular,
designing experiment with more than 500 trials may not add
substantially to the proportion of CIs with infoVal scores >
1.96. Instead, it may be more efficient to increase the number
of participants.

Reverse correlation is becoming more and more popular
and has many potential applications (Brinkman et al., 2017).
However, to critically evaluate these and future findings and
to control false positive rate in this new and emerging method,
the robustness of signal in CIs needs to be assessed. The
infoVal metric was developed as an easy-to-use tool to com-
plement the few existing objective tests to assess signal in CIs,
such as the pixel and cluster tests by Chauvin et al. (2005).

Although the latter test answers where in the CI signal is
present by relying on assumptions about the underlying sig-
nal, infoVal scores show whether signal is present in a fully
data-driven manner (no assumptions about the underlying sig-
nal). The infoVal metric quantifies the amount of signal, irre-
spective of whether the information is clustered. As such, the
infoVal metric is also sensitive to (facial) features that are
more disperse, like differences in skin color. With the intro-
duction of the infoVal metric, we hope to have paved the way
for future reverse-correlation studies to provide many more
interesting findings, for which the reliability of those findings
is warranted by the infoVal metric. To facilitate implementa-
tion, the metric is currently part of the developer’s version of
the rcicr R package, which is freely available and has been
made as user-friendly as possible.

Conclusion

We have introduced and validated a quantitative objective
metric, infoVal, to assess the amount of signal in reverse-
correlation data. In addition, this study validates use of the
online participant platform Prolific for reverse-correlation
tasks and provides practical recommendations about obtaining
reliable proxies of mental representations (CIs).
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