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Variants in the fetal genome near pro-inflammatory
cytokine genes on 2q13 associate with gestational
duration
Xueping Liu et al.#

The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic

factors. Here we report a fetal genome-wide association meta-analysis of gestational dura-

tion, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chro-

mosome 2q13 is associated with gestational duration; the association is replicated in 9,291

additional infants (combined P= 3.96 × 10−14). Analysis of 15,588 mother-child pairs shows

that the association is driven by fetal rather than maternal genotype. Functional experiments

show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor.

Genes at the locus include several interleukin 1 family members with roles in pro-

inflammatory pathways that are central to the process of parturition. Further understanding

of the underlying mechanisms will be of great public health importance, since giving birth

either before or after the window of term gestation is associated with increased morbidity

and mortality.
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Pregnancy in eutherian mammals is characterized by tightly
regulated physiological processes to ensure normal fetal
development and delivery after a narrowly defined period of

gestation1,2. A conundrum first posed by Sir Peter Medawar3

more than 60 years ago is how the semi-allogeneic fetus is pro-
tected from attack by the mother’s immune system. Compared to
many other mammals, humans have a highly invasive placenta-
tion process with direct contact with the maternal circulation1,4,
and the immunological paradox of pregnancy continues to be an
important research topic. It is well-established that successful
gestation depends on numerous mechanisms, some of which
involve inflammatory pathways5. After conception, an inflam-
matory phase ensures implantation of the blastocyst in the uterine
wall6. This is followed by a long anti-inflammatory phase in
which the maternal adaptive immune response is dampened to
allow the development, growth, and maturation of the fetus.
Eventually, a second inflammatory phase results in gradual
ripening of gestational tissues, followed by parturition6. Many
other pathways are dynamically regulated over the course of a
pregnancy and are required for the successful completion of
pregnancy and timely parturition7.

Correct timing of parturition is critical for the health of the
newborn. Preterm birth, defined as birth before 37 completed
weeks of gestation, is not only a major cause of perinatal mortality
and morbidity8, but is also associated with long-term adverse
health outcomes including neurodevelopmental delay9, cerebral
palsy10, diabetes11, increased blood pressure12, and various psy-
chiatric disorders13. Postterm birth, defined as birth after a
gestation of 42 completed weeks (hereafter weeks) or more is
associated with increased risks of fetal and neonatal mortality and
morbidity plus increased maternal morbidity14. Each of these
outcomes affects approximately 5% to 10% of all births in high
income countries15,16 and preterm birth rates are considerably
higher in some low- and middle-income countries17.

Although timing of parturition is influenced by many non-
genetic risk factors, including parity, maternal stress, smoking,
urogenital infection, educational attainment, and socioeconomic
status, there is compelling evidence for a substantial genetic
impact18,19. For example, twin and family studies have estimated
that the heritability of gestational duration ranges from 25% to
40%20. Several studies have shown that the duration of pregnancy
has both heritable maternal and fetal components21,22. Estimates
from a Swedish family study analyzing 244,000 births indicated
that fetal genetic factors explained about 10% of the variation in
gestational duration, whereas maternal factors accounted for
about 20%22.

Little is known about specific fetal and maternal genetic con-
tributions to gestational duration. Most genome-wide association
studies (GWAS) of birth timing have been limited in sample size
and have not identified robustly associated genetic loci23–27.
Recently, however, a GWAS based on samples from 43,568
women of European ancestries identified maternal genetic variants
at six loci associated with gestational duration at P < 5 × 10−8 with
replication in three independent data sets28. Three of these loci
were also associated with preterm birth as a dichotomous
outcome.

In the current study, our goal is to identify fetal genetic variants
associated with timing of parturition. We conduct a GWAS meta-
analysis of gestational duration as a quantitative trait and of the
clinically relevant dichotomous outcomes early preterm
(<34 weeks), preterm (<37 weeks), and postterm (≥42 weeks)
birth, in 84,689 infants from cohorts included in the Early
Growth Genetics (EGG) Consortium, the Initiative for Integrative
Psychiatric Research (iPSYCH) study, and the Genomic and
Proteomic Network for Preterm Birth Research (GPN), with
replication analyses in 9291 infants from additional cohorts. Since

a child inherits half of its genetic material from its mother, their
genotypes at a given locus are highly correlated, and it may not be
clear whether a genetic association reflects the effect of the child’s
own genotype on the timing of their delivery, or an effect of their
mother’s genotype on the timing of parturition. For 15,588 of the
infants, maternal genetic data are also available, allowing us to
address whether identified genetic effects are of fetal or maternal
origin.

Results
Discovery stage. Characteristics of the 20 studies included in the
discovery stage are presented in Supplementary Data 1. The
discovery data set included information on 84,689 infants, 4775
of whom were born preterm (<37 weeks), with 1139 of these
considered early preterm infants (<34 weeks). A further 60,148
infants were born ≥39 weeks and <42 weeks of gestation and were
used as term controls. Finally, 7888 infants were born postterm
(≥42 weeks). Our study design is illustrated in Supplementary Fig.
1. After imputation using reference data from the Haplotype
Reference Consortium release 1.1 (ref. 29) or the integrated phase
III release of the 1000 Genomes Project30, each contributing study
performed GWAS analyses for at least one of the four study traits,
assuming an additive genetic model (see Methods for details).
Final meta-analysis results were obtained for >7.5 million SNPs
for each of gestational duration, early preterm birth, preterm
birth, and postterm birth, with genomic inflation factors <1.05.
Quantile–quantile and Manhattan plots for the four phenotypes
are shown in Supplementary Fig. 2. In the discovery GWAS meta-
analysis, one locus (on chromosome 2q13) was associated with
gestational duration and postterm birth at genome-wide sig-
nificance (P < 5 × 10−8) (Supplementary Fig. 2A, B), and two loci
(on chromosomes 1p33 and 3q28) were significantly associated
with early preterm birth (Supplementary Fig. 2C). No locus
reached genome-wide significance for preterm birth (Supple-
mentary Fig. 2D). We selected one lead SNP for each of the three
loci reaching genome-wide significance for analysis in the
replication stage.

A locus harboring pro-inflammatory cytokine genes. At the
2q13 locus, rs7594852 was the SNP most significantly associated
with gestational duration (P= 1.88 × 10−12; Fig. 1a) and was
selected as the lead SNP for replication stage analysis. For post-
term birth, we also selected rs7594852 (P= 4.64 × 10−8, Fig. 1b)
as the lead SNP for the replication analyses from a set of highly
correlated SNPs (r2 > 0.98) with very similar P values. The asso-
ciation of rs7594852 with gestational duration was replicated,
with a P value of 3.69 × 10−3 in the replication sample and an
overall P value of 3.96 × 10−14 in the combined discovery and
replication analysis (Table 1). In the combined analysis, each
additional fetal rs7594852-C allele was associated with an addi-
tional 0.37 days (95% confidence interval (CI)= 0.22−0.51) of
gestational duration. For postterm birth the statistical power to
replicate the association was modest at 40% (Supplementary
Table 1) and the SNP did not reach nominal significance in the
replication stage analysis, although the direction of the effect was
consistent with the discovery stage (Table 1). rs7594852 is
intronic in CKAP2L and is located in a linkage disequilibrium
(LD) block that encompasses IL1A, IL1B, and several other genes
encoding proteins in the interleukin 1 cytokine family (Fig. 1a, b).
In an additional analysis conditioning on rs7594852, we found no
evidence for multiple independent signals at the locus (Supple-
mentary Fig. 3). Figure 2 shows a forest plot of association results
for rs7594852 across all studies. The estimated variance in
gestational duration explained by rs7594852 was 0.066%.
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No association was seen at the 2q13 locus in case–control
analyses of early preterm birth (odds ratio (OR)= 1.02, 95%
CI= 0.93–1.12, P= 0.68 for rs7594852-C) or preterm birth (OR
= 0.96, 95% CI= 0.92–1.00, P= 0.07 for rs7594852-C; see also
Supplementary Fig. 4). This may suggest that other mechanisms
could be playing a role in causing early parturition before the
mechanisms mediating the effect of the locus get the opportunity
to influence the phenotype. To further investigate this question,
we binned the 51,357 births from the largest contributing study
(iPSYCH) in five groups by gestational duration. We then
estimated the frequency of the rs7594852-C allele in each group
and in the whole sample. In the overall meta-analysis, each
additional fetal rs7594852-C allele was associated with increased

gestational duration (Table 1). The frequency of the rs7594852-C
allele in the group with the shortest gestational duration was only
slightly lower than the frequency in the whole sample
(Supplementary Fig. 5). The lowest allele frequency (0.518) was
seen in the second group, representing a mean gestational
duration of 276.5 days. The allele frequency then gradually
increased in the next groups with the highest frequency (0.555)
observed for the group representing the longest gestational
duration (mean of 298.3 days) (Supplementary Fig. 5). This
pattern in allele frequencies deviates from what is expected under
the hypothesis that the strength of the association is independent
of gestational duration (P= 0.0013, semi-parametric bootstrap,
see Supplementary Methods for details).
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Fig. 1 Discovery stage results at the 2q13 locus. Regional association plots for a gestational duration and b postterm birth. SNP position is shown on the x-
axis and association (−log10 P value) with gestational duration and postterm birth, respectively, on the left y-axis. The lead SNP, rs7594852, from the
gestational duration analysis is represented by a purple diamond, and the other SNPs are colored to reflect their LD with the lead SNP (based on pairwise r2

values from the Danish National Birth Cohort). In the postterm birth analysis, rs7607470 had a slightly lower P value, but this SNP is highly correlated with
rs7594852 (r2 > 0.99), and the latter SNP was selected for the replication stage analyses of both gestational duration and postterm birth. Estimated
recombination rates are from HapMap (right y-axis)

Table 1 Discovery, replication, and combined results for the lead SNP rs7594852 at the 2q13 locus

rs7594852 effect
allele (C)
frequency

Number

Phenotype Sample sets Cases Controls Cases Controls Beta/ORa (95% CI) P I2 (95% CI) Phet
Gestational duration Combined discovery 0.53 84,689 0.034 (0.024−0.043) 1.88 × 10−12 0 (0.0−13.4) 0.97

MoBa_HARVEST 0.54 7072 0.049 (0.016−0.082) 3.78 × 10−3

BiB 0.51 1354 0.058 (−0.028−0.144) 0.18
FIN 0.58 865 0.004 (−0.056−0.065) 0.89
Combined replication 9291 0.041 (0.013−0.068) 3.69 × 10−3 0 (0.0−97.4) 0.41
All combined 93,980 0.034 (0.025−0.043) 3.96 × 10−14 0 (0.0−99.6) 0.64

Postterm birth Combined discovery 0.55 0.53 7888 52,807 1.1 (1.06−1.14) 4.64 × 10−8 7.3 (0.0−88.1) 0.37
MoBa_HARVEST 0.55 0.54 670 5626 1.05 (0.89−1.24) 0.39
All combined 8558 58,433 1.1 (1.06−1.14) 4.34 × 10−8 0 (0.0−99.7) 0.58

aFor the quantitative trait of quantile transformed gestational duration, the column reports beta estimates. For the dichotomous trait postterm birth, odds ratio (OR) estimates are given; CI, confidence
interval; I2, heterogeneity estimate (proportion of variance that is due to between study differences); Phet, P value from the Cochran Q test of between study heterogeneity. Individual study association P
values are two-sided and obtained by linear regression (for quantile transformed gestational duration) or logistic regression (for postterm birth). Combined P values are also two-sided and obtained from
fixed-effects inverse-variance-weighted meta-analysis
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To explore possible functional mechanisms underlying the
association signal at the 2q13 locus, we annotated the 283 variants
within 1Mb of the lead SNP that were associated with gestational
duration with P < 1 × 10−4 (Supplementary Data 2). Among
these, six variants were categorized as exonic (two synonymous
(in CKAP2L and IL1RN) and four missense variants (all in
CKAP2L), see Supplementary Data 3). Additionally, 190 of the
283 variants have been reported by the GTEx31 and GEUVA-
DIS32 consortia as cis-eQTLs (P < 1 × 10−4) for several nearby
genes, including IL1A, IL1B, IL36B, and IL1RN, in different
tissues. Of note, the lead variant rs7594852-C allele is associated
with decreased expression of IL1A in skin (P= 7.36 × 10−6) and
decreased expression of IL1B in lymphoblastoid cell lines (P=
4.41 × 10−6). Among the 283 top variants at the 2q13 locus, 104
are located in likely enhancer regions of (mainly) cytokine genes
(see Methods). GWAS Catalog33 annotation revealed that the
variant rs10167914 (P= 2.66 × 10−7 for gestational duration,
r2= 0.64 with rs7594852) has been reported to be associated with
endometriosis34 (P < 5 × 10−8), with the risk allele for endome-
triosis corresponding to increased gestational duration in our data
(Supplementary Data 2).

Exome sequencing data were available for 18,382 subjects from
the iPSYCH study. To investigate whether any single exonic
variant could explain the observed association at the 2q13 locus,
we tested all exonic variants with allele count larger than two in a
1 MB region around the lead SNP rs7594852 for association with
gestational duration (see Methods). Among 272 exonic variants
tested, seven were associated with gestational duration at P < 0.01,
with the lowest P= 0.00018. These variants were, however, either
not in very high LD with rs7594852 (r2 < 0.1) or did not remain
associated after conditioning on rs7594852 genotype (Supple-
mentary Data 4). For all genes in the same 1 MB region, we
further carried out gene-based tests for aggregated effects of rare
coding variants (optimal sequence kernel association test, SKAT-
O; see Methods) now also including variants only observed with
allele counts of one or two. Among the 18 genes tested, we were
not able to detect any significant gene-based rare-variant
association to gestational duration (Supplementary Data 4).

Thus, we found no exonic variants likely to explain the observed
association.

Early preterm birth associations. Our early preterm birth meta-
analysis revealed two genome-wide significant loci in the dis-
covery stage. At the first locus on chromosome 3q28,
rs112912841 yielded the lowest P value (OR= 1.64, 95% CI=
1.38−1.94, P= 9.85 × 10−9). This SNP is intronic in LPP (Sup-
plementary Fig. 6A) and was nominally significantly associated
with preterm birth (OR= 1.12, 95% CI= 1.02–1.23, P= 0.02)
but not with gestational duration (P= 0.24). The most significant
SNP at the second locus on chromosome 1p33, rs1877720 (OR=
1.64, 95% CI= 1.37−1.96, P= 4.33 × 10−8), is intronic in
SPATA6 (Supplementary Fig. 6B) and was nominally significantly
associated with preterm birth (OR= 1.22, 95% CI= 1.11–1.34,
P= 4.31 × 10−5) and gestational duration (P= 2.95 × 10−5).
There was no evidence for multiple independent signals at these
loci when the lead SNP was included as a covariate in conditional
regression analyses (Supplementary Fig. 7). We conducted
replication analyses for the two lead SNPs (rs112912841 and
rs1877720) in an independent Finnish case–control study (107
infants born early preterm and 865 born at term), but statistical
power was low (Supplementary Table 1) and we could not con-
firm the associations (Supplementary Fig. 8 and Supplementary
Table 2). We also conducted family-based association tests of the
lead SNPs at these two loci in a set of 276 early preterm birth trios
of European ancestries from Iowa, but could not find support for
the signals in that data set either (Supplementary Table 3).

Fetal or maternal genetic effects? Gestational duration is a
complex outcome influenced by both the maternal and fetal
genomes. To disentangle fetal and maternal genetic effects, we
first compared our fetal association results with those from a
recent maternal GWAS of gestational duration28. In our fetal
analysis, each C allele of the lead variant, rs7594852, was asso-
ciated with an additional 0.37 days (95% CI= 0.22−0.51) of
gestational duration (estimate based on 51,357 infants from the
iPSYCH study, see Methods). In the published maternal GWAS
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Fig. 2 Forest plots showing association results for rs7594852. a Gestational duration effect estimates with 95% CIs, and b postterm birth ORs with 95%
CIs. Source data are provided as a Source Data file
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(n= 43,568), the direction of effect was the same: each maternal
rs7594852-C allele was associated with an additional 0.22 days
(95% CI=−0.01−0.45) of gestational duration, though the
confidence intervals were wide and included the null value. The
fact that the maternal effect estimate was approximately half the
size of the fetal effect estimate (0.22 vs. 0.37 days) is as expected if
the association is of fetal origin. Also, we used a recently devel-
oped weighted linear model (WLM) approach35 to obtain an
estimate of the fetal effect adjusted for the maternal genotype and
vice versa (see Methods). The WLM-adjusted fetal effect was
0.34 days (95% CI= 0.09−0.59, P= 6.60 × 10−3, two-sided Z-
test) close to the unadjusted estimate of 0.37 days, whereas the
WLM-adjusted maternal effect was 0.05 days (95% CI=−0.27 to
0.37, P= 0.77). Next, we performed joint maternal–fetal genetic
association analyses of the lead variant, rs7594852, at the 2q13
locus in 15,588 mother–child pairs that met the inclusion criteria
from the discovery stage (see Methods for details). Here we found
that conditioning on maternal genotype did not attenuate the
fetal genetic association while the maternal genetic association
conditional on fetal genotype was non-significant (Table 2).
Taken together, these results indicate that the association signal
for gestational duration at the 2q13 locus represents a fetal genetic
effect. Conversely, we examined the lead variants at four of the six
loci, which were reported to be significant in the maternal GWAS
and were available in our meta-analysis (the remaining two were
not autosomal)28. We found evidence of association in the fetal
genome at the EBF1 (P= 1.18 × 10−6), EEFSEC (P= 0.05),
WNT4 (P= 5.37 × 10−5), and ADCY5 (P= 0.005) loci. For all
four loci, the direction of effects in the fetal GWAS was consistent
with the published maternal GWAS results, but fetal effect size
estimates were smaller (Supplementary Data 5). Conditional
analyses in the 15,588 mother–child pairs were also consistent
with effects at these four loci being attributable to the maternal
genome (Supplementary Data 5).

Heritability and genetic correlation with other traits. Based on
the gestational duration summary statistics for all common
autosomal SNPs (minor allele frequency, MAF >1%), the esti-
mated proportion of variance explained (SNP heritability) was
7.6% (SE= 0.8%). This estimate was based on the quantile
transformed phenotype, and when using results for gestational
duration in days (based on 51,357 infants from the iPSYCH
study) the variance explained was 4.5% (SE= 1.1%). For com-
parison, we analyzed summary statistics from a recent maternal
GWAS of gestational duration in days (based on 43,568 mothers)28

using the same SNP set and found that the proportion of variance
explained was 7.9% (SE= 1.5%). However, the above estimates
are all influenced by fetal as well as maternal genetic loci. To
obtain estimates of fetal effect adjusted for the maternal genotype
and vice versa for each SNP, we combined the unadjusted fetal
effects with unadjusted maternal effects (based on gestational
duration in days) using the WLM approach35. The proportion
of variance explained by WLM-adjusted fetal effects was 1.3%
(SE= 1.0%) and that of WLM-adjusted maternal effects was 4.9%
(SE= 1.3%).

As expected there was a strong positive correlation between
unadjusted fetal and maternal effects for gestational duration in
days (rg= 0.77, SE= 0.17, P= 4.29 × 10−6, two-sided Z-test).
When performing genetic correlation analyses between our meta-
analysis results for (quantile transformed) gestational duration
and 690 traits and diseases in LDHub36, we found that eight were
significant after correction for multiple testing (Supplementary
Data 6). These included positive genetic correlations with own
birth weight (rg= 0.21, SE= 0.04, P= 4.14 × 10−6) and birth
weight of first child (rg= 0.28, SE= 0.05, P= 1.23 × 10−8).

However, when instead using WLM-adjusted fetal effects, no
correlations remained significant after Bonferroni correction. For
WLM-adjusted maternal effects, there was a positive genetic
correlation with birth weight of first child (rg= 0.50, SE= 0.095,
P= 1.16 × 10−7; Supplementary Data 6), in line with recent
findings35.

Functional analyses. Exome sequencing data and variant anno-
tation of the 2q13 locus did not identify any exonic variants (alone
or combined by gene) likely to explain the association with
gestational duration, suggesting that the underlying mechanism
might instead involve altered gene regulatory mechanisms. To
investigate potential mechanisms, we conducted a series of func-
tional experiments and analyses. We first prioritized all SNPs in
the LD block containing the association signal based on their
overlap with functional genomics data sets from cell types relevant
to gestation (see Methods). The highest ranked variant was the
discovery lead variant rs7594852, which overlaps with 17 different
data sets, with no other variant intersecting more than three
(Supplementary Data 7). We then used the Cis-BP database37 to
identify transcription factors that might bind differentially to this
variant. These analyses revealed that the rs7594852-C allele might
alter the binding of the hypermethylated in cancer 1 (HIC1)
protein (Fig. 3a). The HIC1 protein is a C2H2 zinc-finger tran-
scriptional repressor with a consensus DNA binding sequence
containing a core GGCA motif38. Protein-binding microarray
enrichment scores (E-scores) indicate strong binding of HIC1 to
the cytosine C allele (E-score= 0.48), and only moderate binding
to the alternative thymidine (T) allele (E-score= 0.32). We con-
firmed the presence of multiple histone marks overlapping
rs7494852 in various fetal cell and tissue types (chorion, amnio-
cytes, trophoblasts)39, indicating that the chromatin in this locus is
likely accessible and active in these fetal cells (Fig. 3b). In parti-
cular, the fetal side of the placenta displays a strong H3K4me3
modification signal, a histone mark often found in active reg-
ulatory regions. Using an electrophoretic mobility shift assay, we
detected enhanced binding of HIC1 to the rs7594852- C allele
(Fig. 3c), as predicted. Densitometric analysis for HIC1 band
intensity demonstrated a statistically significant difference in
average intensity between the rs7594852-C (mean= 204.0, SD=
60.0) and rs7594852-T (mean= 76.6, SD= 42.3) alleles respec-
tively (P= 0.013, Student’s t-test, n= 4 per group). Additional
experiments are needed to investigate which of the genes at the
2q13 locus have altered transcriptional levels in relevant cell types
due to the enhanced binding of HIC1 to the rs7594852-C allele.

Next, we examined associations of the lead SNP, rs7594852
with gene expression using RNA sequencing data from 102
human placentas40. Here we found that among 118 genes/
transcripts with transcription start sites within 500 kb of
rs7594852, there were five nominally significant (P < 0.05) cis-
eQTL associations (Supplementary Table 4). Three of these genes
(IL1A, IL36G, IL36RN) encode proteins in the interleukin 1
cytokine family. The rs7594852-C allele, which in our data was
associated with increased gestational duration, corresponded to
decreased expression of the cytokine-encoding genes IL1A and
IL36G. Conversely, the rs7594852-C allele corresponded to
increased expression of IL36RN, which encodes an antagonist
to the interleukin-36-receptor.

Finally, to evaluate a possible general effect of the 2q13 locus
on inflammatory markers we tested for associations between the
lead SNP rs7594852 and levels of inflammatory markers in
peripheral blood from newborns, using data from the iPSYCH
study. None of the cytokines encoded by genes at the 2q13 locus
had been assayed, but measurements of the biomarkers BDNF,
CRP, EPO, IgA, IL8, IL-18, MCP1, S100B, TARC, and VEGFA
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were available for 8138 iPSYCH samples. However, we found no
significant associations between rs7594852 genotype and levels of
these biomarkers (Supplementary Table 5). We also used the
GWAS Catalog33 to identify 39 SNPs known from previous
studies to be associated with cytokine levels and examined
associations for these SNPs with gestational duration in our
discovery stage meta-analysis. These SNPs did not show more
evidence of association with gestational duration than expected
by chance (Supplementary Fig. 9).

Discussion
In this genome-wide meta-analysis including a total of 93,980
infants in the discovery and replication stages, we identified a fetal
locus on chromosome 2q13 that was robustly associated with
gestational duration. The lead SNP at the locus, rs7594852, was
also associated with postterm birth as a dichotomous outcome in
the discovery stage, but not with either preterm birth or early
preterm birth. An analysis of allele frequency in different strata of
the gestational duration distribution confirmed that genetic var-
iation at the locus was most strongly associated with timing of
parturition in later stages of pregnancy.

Gestational duration is a complex phenotype influenced by
both fetal and maternal genetic contributions, as well as envir-
onmental factors. Since mothers and children share half of their
genetic material, we investigated the possibility that the 2q13
association signal could represent a maternal, rather than a fetal,
effect. This was not the case: our analysis of more than 15,000
mother–child pairs showed that the association had a fetal origin
independent of the maternal genotype. Furthermore, the lead
SNP, rs7594852, was not significantly associated with gestational
duration in a maternal GWAS including more than 40,000
women28 and WLM-adjusted estimates also supported the fetal
origin of the association.

Looking across the genome, we found that common autosomal
fetal genetic variants explained 7.6% of the variance in (quantile
transformed) gestational duration. When instead analyzing
gestational duration in days (untransformed, based on 51,357
infants from the iPSYCH study), the fraction of variance
explained by common fetal variants was 4.5%. However, to fully
address the question of variance explained by fetal genetic

variation, the maternal genetic contribution needs to be
accounted for. Combining fetal results for gestational duration in
days with corresponding maternal results from an independent
sample28 using the WLM approach, the fraction of variance
explained was 1.3% for WLM-adjusted fetal effects and 4.9% for
WLM-adjusted maternal effects. The larger influence of maternal
compared to fetal genetic variation on gestational duration is
consistent with findings from large family studies in populations
of Scandinavian origin21,22, but our estimates of variance
explained are lower, both before and after WLM adjustment.
Such missing heritability has been observed for many traits and
diseases, and is often attributed to rare causal variants in low LD
with common SNPs as well as possible overestimation of herit-
ability in family studies due to shared environmental effects or
non-additive genetic variation41. Furthermore, we note that giv-
ing more weight to observations in the lower tail of the dis-
tribution (by going from the quantile transformed phenotype to
the untransformed phenotype) resulted in lower heritability
estimates. This was also observed in a large family study, which
therefore excluded births before week 35 when estimating herit-
ability21. A detailed dissection of fetal and maternal contributions
to the heritability of gestational duration lies beyond the scope of
the current study, but is an important topic for future research.

While the lead SNP at the new 2q13 locus is intronic in
CKAP2L, which encodes a mitotic spindle protein, the locus also
harbors a number of genes encoding proteins in the interleukin 1
family of pro-inflammatory cytokines. It is well-established that
IL-1 signaling plays a central role in the process leading to par-
turition in healthy term pregnancies42. However, infections or
trauma can also induce increased secretion of IL-1 and other pro-
inflammatory cytokines, provoking preterm birth42. In our data,
genetic variation at the 2q13 locus was most strongly associated
with gestational duration in later stages of pregnancy. We
hypothesize that this locus is involved in genetic regulation of a
pro-inflammatory cytokine signaling mechanism by which the
mature fetus communicates to the mother that it is ready to be
born. In a first step towards understanding the molecular
mechanisms underlying the genetic association, we found that the
rs7594852-C allele creates a strong binding site for the tran-
scriptional repressor HIC1. It is conceivable that the variant

Table 2 Associations in 15,588 mother–child pairs between rs7594852 genotype and gestational duration

Fetal effect (unadjusted for
maternal genotype)

Fetal effect (adjusted for
maternal genotype)

Maternal effect (unadjusted
for fetal genotype)

Maternal effect (adjusted
for fetal genotype)

Study N Beta (95% CI) P Beta (95% CI) P Beta (95% CI) P Beta (95% CI) P

MoBa_HARVEST 6362 0.041
(0.001, 0.076)

0.020 0.051 (0.011, 0.092) 0.013 0.0065
(−0.029, 0.041)

0.72 −0.020
(−0.060, 0.021)

0.34

ALSPAC 4305 0.028
(−0.013, 0.07)

0.18 0.021
(−0.027, 0.07)

0.39 0.025
(−0.017, 0.067)

0.24 0.014
(−0.034, 0.063)

0.57

DNBC 1396 −0.016
(−0.09, 0.059)

0.68 −0.009
(−0.094, 0.077)

0.84 −0.018
(−0.090, 0.054)

0.63 −0.014
(−0.097, 0.069)

0.75

BiB 1182 0.09
(−0.002, 0.18)

0.055 0.090
(−0.015, 0.19)

0.09 0.045
(−0.049, 0.14)

0.35 0.00065
(−0.11, 0.11)

0.99

MoBa_2008 854 −0.040
(−0.139, 0.058)

0.42 −0.026
(−0.138, 0.085)

0.64 −0.041
(−0.137, 0.056)

0.41 −0.029
(−0.138, 0.080)

0.61

FIN 833 −0.012
(−0.073, 0.050)

0.57 0.021
(−0.053, 0.094)

0.58 −0.005
(−0.057, 0.066)

0.88 −0.029
(−0.10, 0.045)

0.44

EFSOCH 656 −0.037
(−0.147, 0.073)

0.51 0.028
(−0.098, 0.154)

0.67 −0.114 (−0.221,
−0.007)

0.037 −0.128 (−0.251,
−0.005)

0.043

All combined 15588 0.022
(0.001, 0.044)

0.042 0.032
(0.007, 0.057)

0.012 0.004
(−0.018, 0.025)

0.73 −0.015
(−0.040, 0.010)

0.24

N indicates number of complete mother–child pairs (i.e. where genotype data were available for both mother and child); Beta is estimated under an additive model with rs7594852-C as the effect allele;
CI, confidence interval. Individual study P values are two-sided and obtained by linear regression of quantile transformed gestational duration. Combined P values are also two-sided and obtained from
fixed-effects inverse-variance-weighted meta-analysis
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thereby delays signaling from the fetus to the mother, thus
prolonging gestation, possibly until other (redundant) mechan-
isms stimulating parturition take effect. We had limited statistical
power to directly evaluate effects of the variant allele on expres-
sion levels of genes at the locus, but the results of eQTL analyses
in 102 placental samples collected after birth were compatible
with the hypothesis that the rs7594852-C allele may lead to
prolonged gestational duration through decreased gene expres-
sion of one or more members of the interleukin 1 cytokine family
genes. eQTL results from the GTEx and GEUVADIS databases
for skin tissue and lymphoblastoid cell lines, respectively, support
this suggestion. However, the possible link between enhanced
binding of HIC1 to the rs7594852-C allele and altered expression
of one or more genes at the 2q13 locus in relevant cell types still
needs to be investigated and our functional analyses do not rule
out other potential mechanisms. To fully illuminate the biological
mechanisms underlying our genetic association results larger

sample sizes and further functional follow-up experiments are
needed, including fine-mapping of the locus and characterization
of pro-inflammatory cytokine signaling shortly before parturition,
e.g., through non-invasive techniques allowing quantification of
cell-free fetal RNA43,44 and measurement of cytokine levels.

The fact that the 2q13 locus was not associated with preterm
birth or early preterm birth in our case–control analyses under-
lines that genetic triggers of parturition probably change as
gestation advances. Genetic analysis of preterm birth is further
complicated by the possible influence of a wide range of envir-
onmental factors. Population-based heritability analyses of
gestational duration demonstrate that inclusion of early preterm
births results in decreased estimates of the fetal genetic effect21

and previous GWAS efforts have not identified robust fetal
genetic associations with preterm birth23–25. To refine outcome
definitions, we applied a range of exclusion criteria, but although
our analyses were based on almost 5000 infants born preterm,
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Fig. 3 HIC1 binding at the 2q13 locus. a The rs7594852-C allele creates a stronger binding site for the hypermethylated in cancer 1 (HIC1) protein. The
sequence logo of the HIC1-binding motif shows the DNA binding preferences of HIC1. Tall nucleotides above the dashed line indicate DNA bases that are
preferred by HIC1, whereas bases below the dashed line are disfavored. The y-axis indicates the relative free energies of binding for each nucleotide at each
position. The height of each nucleotide can be interpreted as the free energy difference from the average (ΔΔG) in units of gas constant (R) and
temperature (T). The DNA sequence flanking the rs7594852-C allele is shown directly below, with the alternative rs7594852-T allele shown at the
bottom. The rs7594852-T allele changes the HIC1 binding site sequence from C (most favored) to T (less favored). b UC Santa Cruz Genome Browser
screenshot depicting the rs7594852 locus. The purple (CKAP2L) and black (IL1A) graphics at the top indicate the locations of exons (columns),
untranslated regions (rectangles), and introns (horizontal lines), with arrows indicating the direction of transcription. The red vertical line indicates the
position of rs7594852, which overlaps strong signals obtained from chromatin immunoprecipitation sequencing (ChIP-seq) experiments (indicating
histone modification by mono-, di-, or trimethylation of histone H3 on lysine 4; H3K4) in trophoblast cultured cells, placental amnion, or fetal placenta. c
Experimental validation of allele-dependent binding of human purified recombinant HIC1 protein with a c-Myc/DDK tag to rs7594852 and flanking
sequence via electrophoretic mobility shift assay (EMSA). Arrows indicate allele-dependent binding of HIC1 (bottom arrow) and a supershift of the
protein–DNA complex induced by the binding of the anti-DDK antibody to the complex (top arrow). The presence of multiple bands in lanes 3 and 4 is
likely due to the presence of multiple HIC1 isoforms. Source data are provided as a Source Data file
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with 1139 of these considered early preterm births, no loci were
robustly associated with preterm birth. Statistical power calcula-
tions suggested that our preterm birth analyses were well-
powered to detect associations with common (MAF > 0.1) fetal
genetic variants with odds ratios >1.25 (Supplementary Fig. 10).
Fetal genetic contributions to preterm birth may therefore involve
smaller effect sizes or less frequent variants. Studies with larger
sample sizes would be needed to address this question.

Our study had limitations, including the restriction to infants
of European descent. Further studies are therefore warranted to
delineate fetal and maternal genetic contributions to gestational
duration in populations of non-European ancestries. A second
limitation of our study was the differences in gestational duration
ascertainment from study to study. In many of the older cohorts
that recruited women who were pregnant prior to routine use of
ultrasound scan dating, gestational duration estimates were based
largely on maternal-reported last menstrual period at the time of
pregnancy, whereas estimates for infants born more recently were
predominantly based on first-trimester ultrasound screening
(Supplementary Data 1). Also, while the overall fraction of pre-
term births in the discovery stage was 4775/84,689= 5.6%, the
contributing studies included case/control studies of preterm
birth (with ~40–50% cases), birth cohorts (with more population
representative fractions of preterm births), and cohorts where
preterm births were not included (Supplementary Data 1). Fur-
thermore, the degree to which children were excluded based on
maternal conditions or pregnancy complications differed among
cohorts. However, while these sources of heterogeneity may have
caused some underestimation of effect sizes at genuinely asso-
ciated loci, it should not have resulted in increased false-positive
rates. Our extensive exclusion criteria aimed to focus on “natural”
gestational duration rather than specific causes such as preterm
birth due to pregnancy complications, assisted delivery, or con-
genital anomalies. Although such exclusions can result in selec-
tion bias45, the overall consistency between studies (Table 1, Fig. 2),
despite their varying ability to completely apply all of our pre-
specified exclusion criteria, provides some reassurance that any
such bias may not be large. One might also speculate as to
whether spurious signals could arise from the case groups of
various diseases that were included in the discovery stage ana-
lyses. However, we consider this unlikely since the association
analyses were stratified by disease group and since we did not
observe heterogeneity of effect estimates between studies of var-
ious design (including population-based cohorts) for the 2q13
lead variant (Table 1, Fig. 2).

In conclusion, parturition is a complex physiological process
involving multiple redundant mechanisms influenced by mater-
nal and fetal factors2. An enhanced understanding of these
mechanisms is of great public health importance, since giving
birth either before or after the window of term gestation is
associated with increased morbidity and mortality8,14. Our study
identified the first robustly associated fetal genetic locus for
gestational duration. The effect was observed in pregnancies that
went to term or beyond and our results raise the hypothesis that
variants at the associated locus influence the regulation of pro-
inflammatory cytokines in the IL-1 family. Our findings provide a
foundation for further functional studies that are required to
refine our understanding of the biology of the timing of
parturition.

Methods
Discovery stage cohorts. Analyses were performed among participants of studies
in the Early Growth Genetics (EGG) Consortium, the Initiative for Integrative
Psychiatric Research (iPSYCH) study, and the Genomic and Proteomic Network
for Preterm Birth Research (GPN). The iPSYCH sample (n= 51,357) included
patient groups of six mental disorders: autism, ADHD, schizophrenia, bipolar

disorder, depression, and anorexia46. Participating studies from the EGG Con-
sortium included the Avon Longitudinal Study of Parents and Children (ALSPAC,
n= 6072) study, the Children’s Hospital of Philadelphia (CHOP, n= 1445) cohort,
three sub-samples from the Copenhagen Prospective Studies on Asthma in
Childhood (COPSAC_REGISTRY, n= 933; COPSAC2000, n= 356; COP-
SAC2010, n= 618), a sub-sample from the Danish National Birth Cohort (DNBC,
n= 2,130), the Exeter Family Study of Children’s Health (EFSOCH, n= 699)
study, the GENERATION R (GenR, n= 1331) study, the Hyperglycemia and
Adverse Pregnancy Outcome (HAPO, n= 1347) study, the Infancia y Medio
Ambiente (INMA, n= 994) study, a sub-sample of the Norwegian Mother and
Child cohort study (MoBa_2008, n= 1064), two Northern Finland Birth Cohort
studies (NFBC1966, n= 5209, and NFBC1986, n= 2494), the Western Australian
Pregnancy Cohort Study (Raine Study, n= 334), a sub-sample of Statens Serum
Institut’s genetic epidemiology (SSI-GE, n= 3294) studies, the Special Turku
coronary Risk factor Intervention Project (STRIP, n= 441), the Diabetes and
Inflammation Laboratory (1958BC (DIL-T1DGC), n= 2168) cohort, and the
Wellcome Trust Case Control Consortium 1958 British Birth Cohort (1958BC
(WTCCC), n= 2403). Study protocols within the EGG Consortium were approved
at each study center by the local ethics committee and written informed consent
had been obtained from all participants and/or their parent(s) or legal guardians.
Regarding the iPSYCH and SSI-GE cohorts, GWAS data were generated based on
dried blood spot samples obtained during routine neonatal screening and stored in
the Danish Neonatal Screening Biobank, which is part of the Danish National
Biobank. Parents are informed in writing about the neonatal screening and that the
samples can later be used for research, pending approval from relevant autho-
rities46. The iPSYCH and SSI-GE studies were both approved by the Danish Sci-
entific Ethics Committees, the Danish Data Protection Agency and the Danish
Neonatal Screening Biobank Steering Committee. The GPN study genotype and
phenotype data were downloaded from dbGaP (https://www.ncbi.nlm.nih.gov/gap,
accession number: phs000714.v1.p1) and 190 early preterm cases and 274 term
infants were included in our early preterm and preterm birth meta-analysis. Study
descriptions, relevant sample sizes, and basic characteristics of samples in the
discovery stage are presented in Supplementary Data 1.

Replication stage cohorts. Three population-based cohorts with existing GWAS
data were used for replication stage analyses of the lead SNPs for gestational
duration and early preterm birth, namely an additional sub-sample of the Nor-
wegian Mother and Child cohort study (MoBa_HARVEST, n= 7072), the Born in
Bradford study (BiB, n= 1354), and a Finnish cohort from Helsinki (FIN, n=
865). We also included a set of mother–father–child trios from Iowa (n= 276 trios)
for family-based association testing of the lead SNPs for early preterm birth. For
these trios, genotyping was done using TaqMan (ThermoFisher Scientific) assays
for rs1877720 (assay ID: C__12110609_10) and rs2306375 (assay ID:
C__42774777_10). The study characteristics of the four replication stage cohorts
are described in Supplementary Data 1.

Exclusion criteria for cases and controls. We excluded pregnancies based on the
following criteria: (1) stillbirths; (2) twins or any multiple births; (3) ancestry
outliers using principal component analysis; (4) outliers in birth weight or birth
length (gestational duration possibly wrong); (5) Caesarian section, if due to
pregnancy complications; Caesarian sections due to complications during labor
were not excluded. Caesarian sections were allowed for cases in the postterm birth
analysis; (6) physician initiated births (induced births were allowed for cases in the
postterm birth analysis); (7) placental abruption, placenta previa, pre-eclampsia/
eclampsia, hydramnios, placental insufficiency, cervical insufficiency, iso-
immunization, gestational diabetes, cervical cerclage; (8) pre-existing medical
conditions in the mother, such as diabetes, hypertension, autoimmune diseases
(including systemic lupus erythematosus, rheumatoid arthritis and sclerodermia),
immuno-compromised patients; and (9) known congenital anomalies. Further, the
study sample was restricted to individuals of European ancestries, in most cohorts
by principal component analysis. Some cohorts were not able to perform exclusions
according to all criteria, but applied as many criteria as possible (see Supplemen-
tary Data 1 for details).

Data cleaning and imputation. Genotyping in each of the contributing studies
was conducted using various high-density SNP arrays (see Supplementary Data 1
for details). Data cleaning was done locally for each study, with sample level
exclusion criteria based on high genotype missing rate, high autosomal hetero-
zygosity rate, discrepancy between reported sex and the sex inferred from geno-
typing, and sample heterogeneity, as well as SNP-level exclusion criteria based on
call rate, Hardy–Weinberg disequilibrium, duplicate discordance, Mendelian
inconsistencies, and low minor allele frequency. Imputation was performed based
on reference data from the Haplotype Reference Consortium (HRC) release 1.1
(ref. 29) for most studies. The iPSYCH sample was imputed based on the integrated
phase III release of the 1000 Genomes Project30. Study-specific details on data
cleaning filters and imputation are given in Supplementary Data 1. SNP positions
were based on National Center for Biotechnology Information (NCBI) build 37
(hg19) and alleles were labeled on the positive strand of the reference genome.
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GWAS analysis. We analyzed four traits for association with fetal genotypes,
including three binary case–control traits (early preterm birth, preterm birth, and
postterm birth) and one quantitative trait (gestational duration). Early preterm
birth cases were defined as infants born before gestational week 34+0 (i.e.
<238 days of gestation); preterm birth cases were infants born before gestational
week 37+0 (i.e. <259 days of gestation, including the early cases); postterm birth
cases were infants born at or after gestational week 42+0 (i.e. ≥294 days of
gestation). The controls used in the analyses of these three traits were defined as
infants born at or after gestational week 39+0 and before gestational week 42+0
(i.e. ≥273 days of gestation, and <294 days of gestation). Case groups in each study
contributing to the discovery stage analyses were required to contain at least 50
individuals. The dichotomous trait analyses did not include additional individuals
compared to the gestational duration analysis. However, these traits are of high
clinical relevance and were therefore included in the study design. Also, including
the dichotomous trait tests makes the study sensitive to potentially changing
mechanisms influencing parturition at different pregnancy stages.

For the dichotomous traits early preterm birth, preterm birth, and postterm
birth, the genome-wide association analyses within discovery studies was done by
logistic regression using imputed allelic dosage data under an additive genetic
model. For the quantitative trait gestational duration, we applied a rank-based
inverse normal transformation. More specifically, in each cohort gestational
duration in days (in some cohorts converted from weeks; see Supplementary Data 1)
was regressed on infant sex and the resulting residuals were quantile transformed
to a standard normal distribution before being tested for association with fetal SNP
genotypes. The DNBC and MoBa_2008 samples represent case–control studies of
preterm birth, which means that the distribution of gestational duration is bimodal
for these studies. In these two cohorts, we transformed gestational duration to be
on the same scale as the population-based cohorts (see Supplementary Methods
and Supplementary Fig. 11 for details).

Some of the analyzed cohorts represent case–control studies of various diseases.
For these, the association analyses of the four outcomes of interest were done in
strata defined by disease group. Thus, the iPSYCH study was divided into six
patient groups (autism (n= 7147), ADHD (n= 8606), schizophrenia (n= 1101),
bipolar disorder (n= 864), depression (n= 13,836), and anorexia (n= 1924)) and
a population control group (n= 17,879), which were analyzed separately and
combined by fixed-effects meta-analysis. Similarly, the SSI-GE sample was split
into six patient groups (atrial septal defects (n= 368), febrile seizures (n= 1350),
hydrocephalus (n= 289), hypospadias (n= 301), opioid dependence (n= 685),
and postpartum depression (n= 301)) (see Supplementary Data 1 for details),
which were analyzed separately and combined by fixed-effects meta-analysis.
Genome-wide association analyses in each cohort/sub-sample was conducted using
PLINK47, SNPTEST48, or RVTESTS49.

We obtained effect size estimates of the lead variant for gestational duration in
the unit of days based on the iPSYCH study. Using a linear model, we regressed
gestational duration in days on SNP allele dosage within each iPSYCH disease
group, adjusting for infant sex. A combined estimate was obtained by fixed-effects
inverse-variance meta-analysis. The iPSYCH study was also used to obtain
frequency estimates for the lead variant for gestational duration within samples
grouped by gestational duration. In this case, iPSYCH disease status was omitted
from the model, since sample sizes would be too small if analyses were stratified by
gestational duration groups as well as iPSYCH disease groups.

Meta-analysis. Prior to meta-analysis, SNPs with a minor allele frequency (MAF)
<0.01 and poorly imputed SNPs (r2hat <0.3 from MACH50 or info <0.4 from
SNPTEST48) were excluded. Furthermore, SNPs available in less than 50% of the
discovery cohorts for each trait were excluded. To adjust for inflation in test
statistics generated in each cohort, genomic control51 was applied once to each
individual study (see Supplementary Table 6 for λ values in each study). The sub-
samples within iPSYCH and SSI-GE were meta-analyzed separately first and
estimates were then adjusted by genomic control again. Finally, we combined
results from all discovery cohorts using fixed-effects inverse-variance-weighted
meta-analysis as implemented in METAL52. Final meta-analysis results were
obtained for 7,646,297 SNPs for gestational duration with a genomic inflation
factor (λ) of 1.049, 7,588,467 SNPs for early preterm birth (λ= 1.005), 7,545,601
SNPs for preterm birth (λ= 1.013), and 7,583,965 SNPs for postterm birth (λ=
1.026). Heterogeneity between studies was estimated using the I2 statistic53.
Combined analysis of the discovery and replication stage data was also conducted
by fixed-effects inverse-variance-weighted meta-analysis. We considered SNPs with
P < 0.05 in the replication stage and P < 5 × 10−8 in the combined analysis to
indicate robust evidence of association.

Power analysis. We assessed the statistical power of our study design by computer
simulations in R54. For gestational duration, we simulated a quantitative trait
influenced by an additive genetic effect and allowed the effect size and the effect
allele frequency to vary. For early preterm, preterm, and postterm birth, we
simulated disease state from a logistic regression model allowing the odds ratio for
a log-additive genetic effect and the frequency of the effect allele to vary. For each
combination of effect size and effect allele frequency, we simulated 5000 data sets
using the relevant sample size (e.g., for preterm birth: 4775 cases and 60,148
controls in the discovery stage). We then conducted association tests on the

simulated data sets and calculated power as the proportion of tests with a P value
lower than the relevant significance level (P < 5 × 10−8 for the discovery stage and
P < 0.05 for the replication stage).

Test of non-linear effect. At the 2q13 locus, the lead SNP was not associated with
early preterm birth or preterm birth suggesting that the association with gestational
duration was strongest in later stages of pregnancy. To address this question, we
put forward the null hypothesis H0: the variant contributes equally to higher
gestational duration no matter when the child was born. We used a semi-
parametric bootstrap approach to test the null hypothesis. First, we binned the
51,357 births from the largest contributing study (iPSYCH) in five groups by
gestational duration. We then calculated observed allele frequencies f1, …, f5 in the
five bins. Next, we regressed gestational duration on genotype and extracted the
empirical residuals. Gestational duration was now bootstrapped under the null
hypothesis with resampling of the empirical residuals. Our test statistic is based on
comparing allele frequencies in the five bins in 10,000 bootstrapped data sets. If the
variant does not influence gestational duration as much (relative to other factors)
in the early part of the distribution, then the observed allele frequency f1 in the first
bin will be closer to the overall frequency than expected under H0, while the allele
frequency in the second bin (f2) will be lower than expected under H0 and in the
fifth bin (f5) the allele frequency will be higher than expected under H0. The P
value for the test is calculated as the proportion of bootstrapped data sets with allele
frequencies that are more extreme than the observed allele frequencies, i.e.

P ¼ 1
10; 000

X10;000

boot¼1
1 f 1boot > f 1ð Þ � 1 f 2boot < f 2ð Þ � 1 f 5boot > f 5ð Þ: ð1Þ

A more detailed description of the approach is given in the Supplementary
Methods.

Bioinformatics analysis. To investigate the functional characteristics of our
findings, we annotated all variants with P < 1 × 10−4 at the 2q13 locus using
ANNOVAR55 (accessed 1 June 2017), a tool that retrieves variant and region-
specific functional annotations from several databases. We retrieved eQTL infor-
mation for these variants from the GTEx V6 (ref. 31) and GEUVADIS32 project
databases. We also queried GeneHancer56, a database of human enhancers and
their inferred target genes, which has integrated four different enhancer data sets,
including the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory
build, the functional annotation of the mammalian genome (FANTOM) project,
and the VISTA Enhancer Browser. Gene-enhancer scores (>5) were included in the
annotation of the variants. We further downloaded all reported variants in the
National Human Genome Research (NHGRI) GWAS Catalog33 (accessed 24
November 2017) associated with a trait or disease at P < 5 × 10−8, and searched for
SNPs in LD (r2 > 0.2) with the lead SNP at 2q13 locus. Further annotation of these
variants was performed with the Ensembl Variant Effect Predictor57.

To assess possible enrichment of cytokine-related variants in the association
results for gestational duration, we did a quantile–quantile plot of observed versus
expected –log10 P values of SNPs known to be associated with cytokine levels
(Supplementary Fig. 9). The cytokine-related SNPs were restricted to cytokine
GWAS publications58–60, in which the association had been reported in the GWAS
Catalog with P < 5 × 10−8.

Exome analysis. Exome sequencing data were available for a subset of samples in
the iPSYCH study and analysis was restricted to the overlap between iPSYCH
exome samples and the part of the iPSYCH cohort that were included in the
GWAS. In total, n= 18,382 individuals, sampled from either schizophrenia (n=
910), bipolar (n= 683), ADHD (n= 3793), autism (n= 5561), affective disorder
(n= 1), or controls (n= 7488) were analyzed. For these samples, variants within a
1 MB region (113–114MB) containing the 2q13 association signal were extracted
and combined with the genotype data for the lead variant rs7594852. For these
variants, association analysis was performed with gestational duration, transformed
as described above. We adjusted the regression model for sex and the first three
principal components obtained from the genotyping data. Due to small sample size
in the strata of inclusion diagnosis, we did not perform analyses within strata of
inclusion diagnosis but instead performed adjustment for four indicator variables
denoting whether the individual has schizophrenia, ADHD, bipolar disorder, or
autism. In addition, association analysis conditioned on rs7594852 was performed
by adding rs7594852 dosage as a covariate. Based on the same sequencing data, we
performed a gene-based test for rare-variant association to (quantile transformed)
gestational duration, using the optimal sequence kernel association test (SKAT-O)61

approach as implemented in EPACTS version 3.2.6, using default settings.

Estimating fetal and maternal genetic effects. For the 2q13 locus, we analyzed
15,588 mother–child pairs from seven studies with both fetal and maternal gen-
otypes available (ALSPAC, BiB, DNBC, EFSOCH, FIN, MoBa_2008, and
MoBa_HARVEST). We used linear regression to test the association between
quantile transformed gestational duration (same transformation as in the main
analysis) and fetal genotype conditional on maternal genotype and vice versa. In
the same complete mother–child pairs (i.e. where genotype data were available for
both mother and child), we estimated unconditional effects of fetal and maternal
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genotype, respectively. We combined the results from the individual studies using
fixed-effects meta-analysis. To further address the question of fetal versus maternal
effects, we combined unadjusted fetal effect estimates for gestational duration in
days (based on 51,357 infants from the iPSYCH study) with corresponding
maternal estimates from a recently published GWAS (based on 43,568 mothers)28

using a WLM approach recently described35. Briefly, the fetal effect adjusted for
maternal genotype is

β̂fadj ¼ � 2
3
β̂munadj

þ 4
3
β̂funadj : ð2Þ

And the standard error for the adjusted estimate is

SE β̂fadj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
9
var β̂munadj

� �
þ 16

9
var β̂funadj

� �r
: ð3Þ

Test statistics for the fetal adjusted effect were calculated as

Zfadj
¼

β̂fadj

SE β̂fadj

� � ð4Þ

and compared to a standard normal distribution to get two-sided P values.
Analogous formulae were used to obtain maternal results adjusted for fetal
genotype. Further details and full derivations can be found in the article by
Warrington et al.35.

Variance explained and genetic correlation analyses. To estimate the fraction of
variance in gestational duration explained by the lead variant rs7594852 at the 2q13
locus, we fitted a linear regression model of quantile transformed gestational
duration in the iPSYCH cohort (n= 51,357) where the variant was genome-wide
significant. The model was corrected for the iPSYCH disease group and the fraction
of variance explained by rs7594852 genotype dosage was extracted. The estimate of
variance explained by all common (MAF >1%) autosomal SNPs (also known as
SNP heritability) was calculated based on the discovery stage meta-analysis results
using LD Score regression62. The main discovery stage meta-analysis was based on
quantile transformed gestational duration, but we also estimated the fraction of
variance explained for gestational duration in days (based on 51,357 infants from
the iPSYCH study). However, both of these estimates are influenced by fetal as well
as maternal genetic loci. We therefore used the WLM approach for all common
SNPs to obtain estimates of fetal effect adjusted for maternal genotype and vice
versa. We then estimated the fraction of variance explained based on the WLM-
adjusted results.

LD score regression62 was used to estimate the genetic correlation between fetal
effect estimates for (quantile transformed) gestational duration and effect estimates
for a 690 traits and diseases in LDHub36. In addition to the traits available in
LDHub, we calculated the genetic correlation between fetal effect estimates for
gestational duration in days and corresponding estimates from a maternal GWAS
of gestational duration28, also using LD score regression.

Computational prediction of gene regulatory mechanisms. In order to prioritize
genetic variants for experimental validation, we ranked all variants at the 2q13
locus with r2 > 0.8 to the lead SNP, rs7594852, by their likelihood of being func-
tional based on the strength of the supporting functional genomic data (e.g., ChIP-
seq peaks for transcription factors or histone marks, open chromatin as measured
by DNAse-seq, see Supplementary Data 7 for details). We used a wide range of
functional genomic data in our analysis obtained from sources such as the UCSC
Genome Browser63, Roadmap Epigenomics64, Cistrome65, and ReMap-ChIP66. By
restricting our analysis to studies performed in relevant cell lines (placenta,
chorion, amnion, trophoblasts, neutrophils, and macrophages), we prioritized
those variants likely to have regulatory function in these cells. Variants were ranked
based upon the total number of data sets they overlap, which is a similar strategic
scheme to that employed by RegulomeDB67.

Electrophoretic mobility shift assays. EMSAs were performed to determine
whether the rs7594852 polymorphism at the 2q13 locus differentially affected
HIC1 binding. Recombinant human HIC1 purified protein (ORIGENE
#TP322752) was obtained from ORIGENE (expressed in HEK293 using TrueORF
clone, RC222752) with a c-Myc/DDK tag. Double-stranded IRDye700 5′ end-
labeled 39 bp oligonucleotides, identical except for the nucleotide at rs7594852
(either the C or T allele), were obtained from IDT. The oligo sequence of the
common C allele is

5′-IRDye700/
GCCAGACCCCGCCTCCTGGCACAGAGGACCACGCCCGGC-3′.

The alternative T allele oligo sequence is
5′-IRDye700/

GCCAGACCCCGCCTCCTGGTACAGAGGACCACGCCCGGC-3′.
The DNA-binding reaction buffer contained 1× binding buffer, 1× DTT/Tw20,

1 μg poly(dI–dC), 0.05% NP-40 (LI-COR EMSA buffer kit), and 1 mM zinc acetate.
Binding reactions contained 435 ng of purified HIC1 protein. Fifty femtomoles
fluorescent oligo DNAs were then added to the appropriate protein/binding mix
and incubated for 20 min at room temperature. For supershift assays, 1 μg per lane
at a concentration of 0.05 μg/μL of mouse anti-DDK (FLAG) monoclonal antibody

(ORIGENE #TA50011-100) was incubated with the binding buffer for 20 min prior
to addition of and incubation with oligo DNA. In all, 1× orange loading dye (LI-
COR kit) was added to samples, which were then resolved on (pre-cast, pre-run at
100 V for 60 min) 6% TBE gels (Novex,13 ThermoFisher) in 0.5× TBE buffer for
120 min at 80 V (4C). Fluorescent bands were then imaged using a LI-COR
chemiluminescent imaging system. EMSA experiments display representative
panels of 2–3 replicates. Densitometric analysis for HIC1 band intensity was
performed using a Licor Odyssey scanner. The uncropped image underlying Fig. 3c
is shown in the Source Data File.

eQTL analysis in placental samples. eQTL analyses were conducted based on
existing RNA sequencing data in placental samples from the Rhode Island Child
Health Study. Placenta tissues were from singleton, term pregnancies without
pregnancy complications, and the original study reported eQTL results linking SNP
array data with genome-wide RNA sequencing data40. In the eQTL analyses of the
current study, the sample was restricted to 102 infants of European ancestries. Only
genes/transcripts with transcription start sites within 500 kb of the lead SNP
rs7594852 for gestational duration, with a total read count >50 across all samples,
and with >1 counts per million (cpm) in at least two samples, were considered.

Biomarker analysis. Measurement of the biomarkers BDNF, CRP, EPO, IgA, IL8,
IL-18, MCP1, S100B, TARC, and VEGFA was conducted based on infant dried
blood spot samples obtained a few days after birth during routine neonatal
screening. We tested each measured analyte for association with the lead SNP
rs7594852 for gestational duration. We first fitted a linear model with age as a
predictor and then normalized and log-transformed the residuals. The log-
transformed residuals were tested for association with rs7594852 dosage while
adjusting for infant sex, six principal components and iPSYCH disorders.

URLs. For 1000 Genomes Project, see http://www.1000genomes.org/; for ANNO-
VAR, see http://annovar.openbioinformatics.org/; for Cis-BP, see http://cisbp.ccbr.
utoronto.ca/; for dbGaP, see https://www.ncbi.nlm.nih.gov/gap; for EGG Con-
sortium, see http://egg-consortium.org/; for Ensembl Variant Effect Predictor, see
https://www.ensembl.org/vep; for EPACTS, see https://github.com/statgen/
EPACTS; for GeneHancer, see http://www.genecards.org/; for GEUVADIS data
browser, see http://www.ebi.ac.uk/Tools/geuvadis-das/; for GWAS Catalog, see
http://www.genome.gov/gwastudies/; for Haplotype Reference Consortium, see
http://www.haplotype-reference-consortium.org/; for iPSYCH, see http://ipsych.au.
dk/about-ipsych/; for LDHub, see http://ldsc.broadinstitute.org/; for LD Score
regression, see https://github.com/bulik/ldsc; for METAL, see http://www.sph.
umich.edu/csg/abecasis/metal/; for NCBI Genotype-Tissue Expression (GTEx)
eQTL database and browser, see http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/
index.cgi; for PLINK, see https://www.cog-genomics.org/plink2; for RVTESTS, see
https://github.com/zhanxw/rvtests; for SNPTEST, see https://mathgen.stats.ox.ac.
uk/genetics_software/snptest/snptest.html.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Individual cohorts contributing to the meta-analysis should be contacted directly as each
cohort has different data access policies. GWAS summary statistics from the meta-
analyses of the four outcomes are available via the EGG Consortium website (https://egg-
consortium.org/) and the iPSYCH website (https://ipsych.au.dk/downloads/). These
summary statistics include the source data underlying Fig. 1 and Supplementary Figs. 2,
3, 4, 6 and 7. The source data underlying Figs. 2 and 3 and Supplementary Figs. 5 and 8–
11 are provided as a Source Data File.
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