
Int. J. Space-Based and Situated Computing, Vol. x, No. x, 2019 1

Design and implementation of hiding method for
file manipulation of essential services by system
call proxy using virtual machine monitor

Masaya Sato*

Graduate School of Natural Science and Technology, Okayama University,
Okayama, JAPAN
E-mail: sato@cs.okayama-u.ac.jp
* Corresponding author

Hideo Taniguchi

Graduate School of Natural Science and Technology, Okayama University,
Okayama, JAPAN
E-mail: tani@cs.okayama-u.ac.jp

Toshihiro Yamauchi
Graduate School of Natural Science and Technology, Okayama University,
Okayama, JAPAN
E-mail: yamauchi@cs.okayama-u.ac.jp

Abstract: Security or system management software is essential for keeping systems
secure. If these essential services are stopped or disabled by attackers, damages to the
system increase. Therefore, protecting essential services is crucial for preventing and
mitigating attacks. To deter attacks on essential services, hiding information related to
essential services is helpful. This paper describes design and implementation of a method
to make files invisible to all services except their corresponding essential services and
provides access methods to those files in a virtual machine (VM) environment. The
proposed method consists of interposition and proxy execution of the system call function.
In the proposed method, the virtual machine monitor (VMM) monitors system calls
invoked in a protection target VM. If an essential process invokes system calls related to
file manipulation, the VMM interposes the system call and collects information from the
protection target VM. If the file is an essential file, the VMM requests proxy execution
to the proxy VM on another VM. After proxy-execution of the system call, the proxy
process returns the result to the VMM. Finally, the VMM returns the result and skips the
execution of the original system call on the protection target VM. Thus, access to essential
files by the essential service is skipped on the protection target VM, but the essential
service can access the file content. With this mechanism, it is difficult for attackers to
monitor access to essential files. In this paper, we describe the design, implementation,
and evaluation of the proposed method.

Keywords: virtual machine monitor; file manipulation; system call proxy; essential
services

Reference to this paper should be made as follows: Masaya Sato, Hideo Taniguchi,
and Toshihiro Yamauchi. (2019) ‘Design and Implementation of Hiding Method for File
Manipulation of Essential Services by System Call Proxy using Virtual Machine Monitor’,
International Journal of Space-Based and Situated Computing, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Masaya Sato received his B.E., M.E. and Ph.D. degrees from
Okayama University, Japan in 2010, 2012 and 2014, respectively. In 2013 and 2014 he
was a Research Fellow of the Japan Society for the Promotion of Science. He has been
an Assistant Professor of the Graduate School of Natural Science and Technology at
Okayama University. His research interests include computer security and virtualization
technology. He is a member of IEICE and IPSJ.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/237475396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Int. J. Space-Based and Situated Computing, Vol. x, No. x, 2019 2

Hideo Taniguchi received a B.E. degree in 1978, a M.E. degree in 1980 and a Ph.D.
degree in 1991, all from Kyushu University, Fukuoka, Japan. In 1980, he joined NTT
Electrical Communication Laboratories. In 1988, he moved to Research and Development
Headquarters, NTT DATA Communications Systems Corporation. He has been an
Associate Professor of Computer Science at Kyushu University since 1993 and a Professor
of the Faculty of Engineering at Okayama University since 2003. He has been a Dean
of Faculty of Engineering from April 2010 to March 2014 and a Vice President from
April 2014 to March 2017 at Okayama University. His research interests include operating
systems, real-time processing and distributed processing. He is a fellow of IPSJ. He is a
member of IEICE and ACM.

Toshihiro Yamauchi received his B.E., M.E. and Ph.D. degrees in computer science
from Kyushu University, Japan in 1998, 2000 and 2002, respectively. In 2001 he was a
Research Fellow of the Japan Society for the Promotion of Science. In 2002 he became
a Research Associate in Faculty of Information Science and Electrical Engineering at
Kyushu University. He has been serving as an Associate Professor of the Graduate
School of Natural Science and Technology at Okayama University since 2005. His research
interests include operating systems and computer security. He is a member of IPSJ,
IEICE, ACM, USENIX and IEEE.

1 Introduction

Security software plays an important role in computer
system operation. Malicious software, or malware,
disables functionality of the system or may cause leaks
of classified information. Stopping a system or leaks
of sensitive information, including personal information,
cause serious damage to services and companies.
Therefore, security software is one of the most important
tools in computer system operation. Logging tools are
also important for system operation because they record
logs of systems, which are beneficial for efficient and
secure operation of the system. Monitoring tools are
critical because they detect illegal behavior within the
system to keep it stable. These tools are also used for
system security. Detecting illegal activities may lead to
detection of attacks, and immediate attack detection
prevents the damage to the system. In this paper, we
define these software tools as essential services. As stated
by Min et al. (2014) and Gregio et al. (2015), protecting
essential services is crucial to preventing attacks and
limiting the spread of damage caused by malware.

Attackers target essential services and prepare
the attack during a reconnaissance phase. Although
some methods to protect essential software have been
proposed by Hsu et al. (2012), Garfinkel et al.
(2003), and Srinivasan et al. (2011), none consider the
identification of essential services. This paper asserts
that if the identification of essential services were more
difficult, then attacking essential services would also
become more difficult.

To identify an essential service, process, file, and
communication information may be used. Process
information includes process name, process ID (PID),
or other information managed by the operating
system (OS). File information includes files and file
manipulation information. If an attacker can monitor
file access, file manipulations will provide strong clues
to identify what service is provided by the process. For
example, an attacker can discover that a process is an

Copyright c© 2019 Inderscience Enterprises Ltd.

essential service if it accesses configuration files or a
database related to essential services. Communication
information includes host name, IP addresses, port
numbers, and communication content. An attacker could
determine that a process is security software if that
process accesses to a vendor’s servers to update their
signature for malware detection.

Sato et al. (2015) previously proposed method to
complicate the identification of essential services based
on process information. Thr prior method involves
monitoring context switches and replacing process
information while the process is not running. Then,
other processes cannot identify the process as an
essential service because they cannot view the original
information. The other processes view the process
providing the essential service (essential process) as
simply providing other dummy services.

We propose a hiding method for file manipulation
by system call proxy. Though the prior method makes
process information invisible from attackers, files and
communication remain visible. The proposed method
hides files related to essential services (essential files) and
access to essential files by the processes providing the
essential services. With the proposed method, essential
files are only visible to essential processes, so other
processes cannot find essential files. The proposed
method employs a virtual machine monitor (VMM) and
another proxy virtual machine (VM) which provides
proxy access to essential files. The VMM monitors
system calls related to file manipulation on a target VM.
If the process that invokes a system call is an essential
process, the VMM copies information of the system call
from the target VM and transfers it to the proxy VM.
The proxy process on the proxy VM invokes the system
call and returns the result to the VMM. The VMM sets
the result and returns processing to the starting point of
the function to return to user mode. With this protocol,
the essential process resumes as if it had accessed the
required file in local storage, but other processes cannot
interpose or monitor system calls. As a result, it is much



Design and implementation of hiding method for file manipulation of essential services 3

more difficult for attackers to identify essential services
by monitoring file access.

This paper describes design, implementation, and
evaluation of the proposed method. Design and
implementation assume Linux as a guest OS and Xen as
a VMM. We also evaluated the overhead of the proposed
method for basic system calls and security software.

2 Related Work

Protecting security software is crucial, therefore
researchers have proposed protection methods. Hsu
et al. (2012) analyzed attacks on security software
and proposed an attack-tolerant method for protecting
security software called Antivirus Software Shield
(ANSS). This method prevents termination of security
software by monitoring and controlling system calls
that attempt to terminate the security software. ANSS
is implemented as a kernel mode driver of Windows
OS. Placing protectoin inside the OS is more secure
than implementing as an application program. However,
certain malware, including rootkits, exploit kernels to
achieve their goal. In contrast, the proposed method
uses a VMM and another VM. Implementing a security
mechanism at a VMM is even more secure than
implementing it within the OS kernel.

Next, malware analysis methods using a VM are
reviewed and compared with the proposed mthod.
Garfinkel et al. (2003) proposed virtual machine
introspection (VMI) to monitor inside the VM from
the outside. In VMI, security software on one VM
monitors the other VM from the outside. Dinaburg
et al. (2008) proposed Ether, which is a method
that analyzes the behavior of malware on one VM
from another VM. Ether monitors system calls and
memory access on the monitored VM. Ether requires
no modification to the guest OS and thus can analyze
Linux and Windows. Srinivasan et al. (2011) proposed
the process out-grafting as a method to analyze malware
while keeping the monitoring environment secure. This
method extracts the user mode execution of the target
process to a security monitoring VM. The security
monitoring applications run on the security monitoring
VM and analyzes user mode execution. These methods
focus on the secure analysis of malware, where we
focus on protection of security software on a VM that
attackers want to compromise. Because information can
be collected inside the VM, this method is more efficient
for analysis and protection than performed outside the
VM. We do not focus on moving security mechanisms
from inside the VM to outside, but on protecting security
mechanisms remaining inside the VM. System calls of
the monitoring target process are returned back to
the original VM, so the behavior of the process does
not affect the behavior of processes on the security
monitoring VM.

Wang et al. (2012) proposed Filesafe, which is a
method to protect files by a VMM. Filesafe controls file

access according to a policy held by the VMM. Filesafe
is similar to the proposed method in terms of access
control. However, the proposed method also hides the
existence of files used by essential services. Hegarty et al.
(2015) proposed XDet, a method for extrusion detection
of illegal files in cloud-based systems. Hegarty et al.
pointed out privacy and trust issues for cloud providers
in that the files in the cloud environment can be
related to malicious activities or geographical legalities.
Both XDet and our approach focus on protection of
environment, but the approach to files is different.
Hegarty et al. focused on detection of problematic files
in the cloud network environment. In contrast, we focus
on the hiding of specific files from attackers in order to
hide essential services.

Deception technique has also been applied to malware
analysis. A method using deception to analyze and
protect attacks was proposed by Almeshekah et al.
(2014). Specifically, this method uses deception to
inpel attackers toward honeypots, that is, analysis
environments that mimic the production environment.
Araujo et al. (2014) proposed an advanced analysis
method targeting attacks aiming at vulnerabilities. This
method responds as if the attack were successful and
transfers the request to a honeypot to monitor and
analyze advanced attacks. Our approach is similar to
the deception technique, however the proposed method
uses avoidance to hide the security software to protect
systems from attack.

3 Attacks to Essential Services

3.1 Essential Services

As previously mentioned, we define security software
and system management tools as essential services.
Correspondingly, a process providing an essential service
is defined as an essential process and a file holding
sensitive information used by an essential process is
an essential file. Security software is an example of a
typical essential service. Per the preceding definitions,
each process run by security software is an essential
process, and the configuration files or white-list files used
by the service are considered to be essential files. If an
attacker modifies configuration files or white-list files, the
security software cannot detect malware because these
files are not scanned for malware. This compromises
the computer, making the system vulnerable to further
attacks. Furthermore, if files for security software are
visible to attackers, attackers may be able to identify the
security software and invoke additional exploits. Because
attackers often start by detecting and preparing attacks
based on essential services, hiding essential services from
attackers reduces the possibility of attacks. Although
hiding the existence of a process reduces the possibility
of the discovery of essential services, the existence of
essential files remains a problem. Because attackers can
discover the existence and extent of essential services



4 M. Sato et al.

from the essential files, hiding these files and the
processes that manipulate them would provide a valuable
enhancement to system security.

3.2 Existing Protection Method of Security

Software

As stated in Section 2, Hsu et al. (2012) proposed the
ANSS, which protects security software by monitoring
and controlling application programming interfaces
(API) on Windows. This method adds a kernel-mode
driver into Windows and monitors API calls. If an API
call attempts to terminate the security software, the
driver fails the call and protects the security software
from termination by attackers.

Another method for protecting security software
uses virtualization technology. Srinivasan et al. (2011)
proposed a method to monitor the behavior of a process
inside a VM from the outside. This method relies on the
assumption that the VM and the VMM are isolated from
each other. The security software runs on one VM and
monitors the other VM. Because each VM is isolated,
the security software is safe from attacks on the other
VMs. However, integrating the existing security software
with the outside VM causes a semantic gap, which is the
difference in perspective between the inside and outside
of the VM.

Wang et al. (2012) proposed Filesafe to protect
classified files using virtualization technology. Filesafe
is implemented as a VMM and enforces security policy
to the guest OS. If Filesafe restricts access to specific
files, processes cannot access the file even though it is
permitted by the guest OS. Because Filesafe is resistant
to attacks on the OS, it can prevent leaks of sensitive
information.

3.3 Problems

Many of the previously discussed methods introduce
security mechanisms into the OS kernel. This can make
the system vulnerable to attackers who have kernel
data access privilege. Sophisticated attackers exploit
kernel vulnerabilities to disable functionalities in order
to take further control. VMs are widely used in currently,
so utilizing virtualization technologies for security is
a practical approach. Some methods are implemented
using a VMM but do not focus on protecting the software
inside the VM. This approach also requires integration
of security software the outside the VM. To utilize
existing security software, integration and modification
to existing security software is undesirable.

We also consider the visibility of files related to
essential services. Visibility is defined as the possibility
of attackers discovering the files, so preventing attackers
from knowing the names of essential files can impede
attacks. Once essential files are identified, attackers
can discover the existence of essential processes by
monitoring essential files and their manipulation.
Thus, hiding the existence of those files may reduce

the detection of essential services. Although Filesafe
effectively protects files from unauthorized access, but
the files remain visible to attackers. If these files and their
manipulation are visible to attackers, a process accessing
those files could be flagged as a potential essential
process. Unlike existing access control approaches, the
proposed method considers visibility.

4 File Manipulation Hiding

4.1 Purpose

The purpose of this paper is to complicate identification
based on file information of essential services from
attackers. Although a hiding method for process
information, which includes process ID or process name,
is proposed, file information is still visible to attackers.
The file information includes the files themselves and file
manipulation. For example, even though access to files
related to essential services is restricted, an attacker can
conclude that a process which accesses them is a part
of essential services. Thus, monitoring file access enables
attackers to identify the essential service. One example
of an essential file is a white-list for antivirus software.
Antivirus software scans files and compares them with
signatures to detect known malicious files. However, a
white-list is used to exclude specific directories or files
from scanning because of performance and operational
issues. If an attacker exploits this functionality, he can
identify a process which read a white-list file as an
essential service. Therefore, file manipulations also need
to be invisible to attackers. The Linux kernel provides
some methods to monitor file access by a process from
other processes. ptrace is one example of an access
monitoring method provided by Linux.

To address these problems, we propose a method
to prevent the identification of an essential service by
monitoring essential files. This approach makes files
invisible to attackers and only allows essential processes
access to the files. The proposed method executes
without modifying the essential service. This attribute
addresses the problem in existing methods which require
the modification or integration of existing security
software.

4.2 Requirements

The followings requirements are defined to address the
previously mentioned problems:

R1 Essential files are made invisible to attackers.

R2 The method that satisfies R1 is also invisible to
normal processes or kernel modules, and thus
invisible to attackers as well.

If the method were detected, attackers could discover
the essential service by monitoring the detected method.
We assume that attackers insert their programs into



Design and implementation of hiding method for file manipulation of essential services 5

normal processes. A normal process is any process other
than an essential process or kernel modules. Therefore,
hiding the method from normal processes and kernel
modules is an important aspect of R2.

4.3 Hiding Method for File Manipulation

4.3.1 Challenges

To fulfill the requirements, the following challenges
should be addressed:

C1 Interposition of file access related to essential
services.

C2 Control of interposed file access.

C3 Addressing C1 and C2 is undetectable by normal
processes or kernel modules.

C1 and C2 are required satisfy R1. In addition, to
satisfy R2, hiding the method addressing C1 and C2 from
attackers is required.

4.3.2 Interposition of file access for essential files

The following methods are considered for the approach
of interposing file access: library call, system call, the
processing of a file system and the processing of device
access. In a normal file access procedure, a process
calls library functions, the library functions request
processing to the kernel by invoking system calls, and
finally the kernel accesses the files.

We monitored file access by interposing system calls.
To hide essential files from attackers, interposing library
calls is ideal. This is because we can reduce the chance of
file manipulation monitoring as fast as we can interpose.
However, it is difficult to interpose all library calls related
to file access. Libraries may be dynamically or statically
linked to a program. If a library is dynamically linked,
we can interpose file access by monitoring function calls
to specified memory regions. However, if a library is
statically linked, the relevant memory regions differ for
each program. Identifying all the library calls to monitor
of all programs is impractical. In contrast, it is possible
to monitor all access by monitoring file systems or device
drivers. However, these procedures occur in the latter
part of file access. If an attacker monitors or modifies
a file manipulation before it reaches the latter part,
essential services may be identified. For this reason, our
method interposes system calls for file access.

To handle C3, we implement the solution using a
VMM. The VMM and VMs are isolated from each
other. Thus, non-intrusively interposing file access of a
VM from a VMM helps hide the mechanism itself from
attackers on the VM.

4.3.3 Control of file access

As the previous section stated, the proposed
method interposes system calls to hide files and file

manipulations. This section details the control method.
File access is made by file handlers, and processes use file
handlers to manipulate files. Accordingly, file access is
regulated by controlling the acquisition of file handlers.
The proposed method interposes a system call to obtain
a file handler. If the target file of the system call is an
essential file, the proposed method checks the process.
If the process is an essential process, the proposed
method returns a file handler. If the process is a normal
process, the proposed method returns a failure response.
To continue the file access related to the returned file
handlers, the proposed method controls the file access
via the handlers. Thus, only an essential process can
access essential files.

4.3.4 File placement on the outside the VM

To address C3, we employ a VM. While essential
processes run on the OS on one VM, essential files are
placed on another VM. Because essential files are placed
on the other VM, it is difficult to identify or modify the
files even if an attacker has root privilege. In addition,
an attacker cannot find the essential files by raw device
access because the files are not located on the same
virtual disk. In this architecture, an essential process
cannot access essential files. To enable an essential
process to access the essential files, we propose a system
call proxy, which is a method to transfer file access to
the other VM. Section 5.5 details the system call proxy
mechanism. Because we assume that essential files are
files that are only required for essential services, hiding
these files from normal processes does not obstruct the
normal processes.

5 Implementation

5.1 Environment

We used Xen proposed by Barham et al. (2003) as
a VMM and the VMs were fully virtualized with
Intel VT-x. We assumed Linux as a guest OS and
system calls were invoked with SYSENTER instruction
in the 32bit and SYSCALL instruction in the 64bit
environments. Figure 1 provides an overview of the
proposed architecture. The VMM monitors system calls
invoked in the protection target VM. If the system
call invoked by the essential process is related to file
manipulation, the VMM transfers the information to
the proxy process on the proxy VM. The proxy process
executes the system call based on the information and
returns the result to the VMM. Finally, the VMM
returns the processing to the protection target VM.

5.2 System Call Interposition

We used a debug exception to detect invocation of
system calls in the VM from the VMM. In the proposed
method, the VMM set a hardware breakpoint at the



6 M. Sato et al.

���������� �
���� �
����� �


�������
�
�������

�



���� ��
��
������ ��
��

�����
� ���� ���
��� ���������� �
���� �


�����
� ���� ���
��� ����� �


�����
�������

�������
� ����� ����� ��������
���� ������ �
�����
����� ��� 
�������� �����
�� 

!����� �� ���
�������
� �����

"������������ 
��
��
����� �� �����# �
��

����� ���������
�� �����# �
���

$��#
�
�������

!����� �� �����

$��#
� �����

Figure 1 Overview of the hiding method of file
manipulation by system call proxy.

starting address of the system call routine. In addition,
the VMM manipulated the VM execution control field
to cause VM exit when a debug exception occurred.
In this case, when an instruction at the address was
executed, a debug exception caused a VM exit. The
VMM interposed the system call by managing the VM
exit at the designated address.

In addition to the mechanism for system call
interposition, classification of system calls is required.
The VMM interposes all system calls invoked in a VM,
however the proposed method requires knowledge of the
system calls related to file manipulation. To classify
the system calls, the VMM chooses system calls by a
system call number. The VMM acquires the system call
number from the RAX register. Accordingly, the VMM
can interposes system calls of the protection target VM
that are specifically related to file manipulation.

5.3 Control of System Calls Related to File

Manipulation

Figure 2 shows the flow and mode transition in the
proxy execution of system calls. When system calls are
invoked by processes on the protection target VM, VM
exit occurs. If it needs to request proxy execution, the
VMM requests proxy execution to the proxy process on
the proxy VM, and mode transition occurs. The proxy
process invokes system calls as proxy and returns the
result to the VMM. The VMM returns the processing to
the starting point of the returning system call routine in
the kernel of the protection target VM. This causes the
original system call routine to be bypassed and return
value and buffers are passed to the essential process.

Figure 3 shows the detailed flow of VMM to control
system calls and request proxy execution. The following
steps lay out thte control flow of the interposed system
call.

1. The VMM detects system call invocation on the
protection target VM by checking VM exit reason
and register states. If the VM exit occurred by
a debug exception and the address is the address
previously set by the VMM, the VM exit was
caused by system call invocation.

�	%&'()*++ ,-.&/0'

�	%&'()*++ %',1/)' ,-.&/0'

2,-)'%%/03 &- ,'&.,0 &-
.%', %4*)'

5%', %4*)'

5%', %4*)'

6',0'+ %4*)'

78' 4,-&')&/-0 &*,3'& 9: 9::

%	%)*++ /01-)*&/-0

�	%&'()*++ 4,-;	

78' 4,-;	9:

<)=./%/&/-0-> %	%&'(
)*++ /0>-,(*&/-0

<)=./%/&/-0-> &8'
,'%.+&-> %	%&'()*++

,'&?>,-(?%	%?)*++

9: ';/&
@A'B.3
';)'4&/-0C

Figure 2 The flow and mode transition in the proxy
execution of system calls.

2. The VMM distinguishes the current process as an
essential process or not. The VMM holds a table for
managing essential services, and the table contains
the value of CR3 register for each essential process.
At start time, the manager of the proxy VM
designates which process is an essential process.
Then, the value of CR3 is stored into the table.

3. The VMM classifies the interposed system call. If
the system call is related to file manipulation, the
VMM proceeds to Step (4). If not, the VMMmoves
to Step (14). Because this paper focuses on file
manipulation, network communication is omitted
from the flow. Network communication issues will
be addresses in our future work.

4. The VMM gets arguments of the system call from
the protection target VM to the VMM. In this step,
if the arguments contain pointers, the VMM needs
to copy the data from the pointed area of the VM
to the VMM.

5. The flow branches based on the type of file
manipulation: open (Step (6)) or read/write/close
(Step (7)).

6. The VMM distinguishes the files to open as an
essential file or not. Because the VMM holds the
table of essential files, the file and the entries of the
table are compared. If the file is not an essential
file, the VMM moves to Step (14).

7. If the file descriptor (FD) is already registered to
the FD list held by the VMM, the VMM proceeds
to Step (8). If not, the VMM moves to Step (14).

8. The VMM requests proxy execution of the
interposed system call to the proxy. Figure 6 details
proxy execution.

9. The VMM receives the result of the proxy
execution list from the proxy process.

10. If the result is successful, the VMM proceeds to
Step (11). If not, the VMM moves to Step (15).

11. The flow branches based on file manipulation: open
(Step (12)), read/write (skipping FDmanagements
and moves to Step (15)), and close (Step (13)).



Design and implementation of hiding method for file manipulation of essential services 7

DEF GHIJKL MINOP QJ

NRNSOT KIUU SRVOW

X

DYZF [OS SLO NSIHS\J] IPPHONN Q^

NRNSOT KIUU HQ_S\JO SQ SLO

\JNSH_KS\QJ VQ\JSOHW

DYF `OSOKS \JaQKIS\QJ Q^ NRNSOT KIUU

QJ SLO VHQSOKS\QJ SIH]OS bcW

DYdF eOS_HJ SQ SLO VHQSOKS\QJ SIH]OS bcW

DZF fOS IH]_TOJSN

g\UO TIJ\V_UIS\QJ hOSiQHj kSLOHN

DlF fOS SLO HON_US Q^ DmFW

DYnF [OS SLO NSIHS\J] IPPHONN Q^ SLO UINS VIHS Q^

SLO NRNSOT KIUU HQ_S\JO SQ SLO \JNSH_KS\QJ VQ\JSOHW

DYoF [OS SLO HON_US SQ I HO]\NSOH IJP M_^^OHN

DoF GHIJKL MINOP

QJ TIJ\V_UIS\QJW

DdF g` \N IUHOIPR

HO]\NSOHOP SQ g`U\NSp
DnF qNNOJS\IU ^\UOp

DYrF eO]\NSOH g`SQ g`

U\NSW

HOIPsiH\SOt

KUQNOQVOJ

uON

hQ hQ

uON

DYvF [_KKONNp

QVOJ KUQNO

DYEF eOTQaO g`^HQT g`

U\NSW

hQ

DYYF GHIJKL MINOP

QJ TIJ\V_UIS\QJW

uON

HOIPs

iH\SO

DmF wHQxR OxOK_S\QJW

DrF qNNOJS\IU VHQKONNp
hQ

uON

Figure 3 The flow of VMM to control system calls and requesting proxy execution.

12. The VMM registers the FD of the opened file to
the FD list held by the VMM. Then, the VMM
moves to Step (15).

13. The VMM removes the FD of the closed file from
the FD list held by the VMM. Then, the VMM
moves to Step (15).

14. The VMM sets the starting address of the system
call routine to the instruction pointer. This is
needed to restart the original system call routine as
if no interposition occurred in the protection target
VM.

15. The VMM sets the starting address of the last
part of the system call routine to the instruction
pointer. This operation enables skipping of the
original system call routine. This skip is key for
hiding file manipulation from attackers. Because
the original system call routine is bypassed with
this step, file access monitoring in the kernel

is also bypassed. For example, with hooks for
ptrace located in the original system call routine,
malicious processes cannot detect invocation
of proxy execution and invoked system calls
interposed by the proposed method.

16. Finally, the VMM returns the processing, and the
protection target VM resumes.

After the proxy execution, the proxy process must
return the result of proxy execution. To return the result
from the proxy process to the essential process, we
added a new hypercall to the Xen hypervisor. Hypercall
is an interface to request processing from a VM to a
VMM. The proxy process returns the result of the proxy
execution by the new hypercall. The VMM receives the
hypercall and manipulates the register of the protection
target VM to set the return value of the original system
call. Finally, the VMM manipulates the instruction
pointer of the protection target VM to skip original
system calls.



8 M. Sato et al.

Table 1 Required information for proxy execution.

Name Description

VMID VMID is required to identify the VM
Address of PD Address of PD is used to identify the essential process
Current directory Current directory is used to construct the full path of the target file when a

relative path is passed by the system calls
System call number System call number is used to determine whether the system call is related to file

manipulation or not
Arguments Arguments of the system call are required to request the proxy execution of the

system call. If the arguments include the address of the buffer, the VMM copies
the buffer between the VM and the VMM

yz{|

}{|

~|

� � � � ��

��� ���������� ������ ��� ���� �� ��� ����������

������ yz� |��������� ������ �� ��������� ��

����������������

�����

Figure 4 A table for managing file descriptors of essential
files.

5.4 Managing of Essential Files

In the proposed method, the essential processes
manipulates normal files and essential files. To use
the existing programs as an essential service with no
modification, the proposed method must transparently
provide normal files and essential files to the essential
processes. To address this requirement, we changed the
allocation rule of file descriptors (FD). It is ideal to
split the table for FD, however this approach requires
modifications to the OS of the protection target VM.
Therefore, the VMM allocates FDs for essential files in
descending order. Figure 4 shows the table layout for
managing FDs in the VMM. FD numbers for normal
files are allocated by the OS in ascending order (0, 1,
2, . . . ). Conversely, the VMM allocates the FD numbers
for essential files in descending order (1023, 1022, 1021,
. . . ). If the descriptor number for a normal file is within
the range of the numbers allocated to essential files,
the VMM aborts the process. Thus, normal files and
essential files are distinguished with no modification to
the essential service or the OS. However, we note that
the maximum number for the FD is reduced.

5.5 Proxy Execution of System Call

In the proposed approach, a proxy process is allocated
to each protection target VM. A proxy execution must
address the following two points: the information to be
passed to the proxy process and the structure of the
directory tree. Table 1 lists the information required

������������ ¡¢�£¤¥¦§¨�

¢©ª�

«�¬¢�

©¬��

­®��

����

¢©ª�

«�¬¢�

©¬��

­®��

����

£¯§¨�

£¯§¨�

Figure 5 Directory structure in Proxy VM.

for proxy execution. The virtual machine ID (VMID)
and the address of page directory (PD) are required to
classify the VM and the process. Because the address of
PD is unique to the process, and the value is already
saved in VMM when VM exit occurred, we can classify
the process without copying its PID. By classifying the
process by PD, we can reduce the overhead for copying
PID from the protection target VM. The current path of
the essential process is required to construct the full path
of the essential files. The system call number is required
to execute the system call, and the arguments are simply
passed to the system call. Only the path information is
changed by the proxy process, as the structure of the
directory tree differs from that of the protection target
VM.

In the proxy VM, essential files are stored as shown
in Figure 5. All essential files are stored under the
/var/proxy_file/ in proxy VM. To distinguish files of
the proxy VM and file of the protection target VMs,
proxy processes create directories, which are named by
VMID for each VM. In the same manner, a proxy process
creates directories for each essential process. Directories
for essential processes are distinguished by the address
of page directory (PD).

The proxy process executes the system call requested
from the VMM. Figure 6 shows the flow of proxy
execution by a proxy process.

1. The proxy process listens to the event channel for
proxy execution. When the VMM requests proxy
execution, an event is delivered to the channel.
The proxy process starts the proxy execution by
receiving the event.



Design and implementation of hiding method for file manipulation of essential services 9

°±² ³´µ µ¶´ ·´¸¹´ºµ »¼ ½·»¾¿

´¾´À¹µÁ»Â ¼·»Ã µ¶´ ÄÅÅÆ

°Ç² È´µ¹·Â µ» µ¶´ ÄÅÅÆ

°É² Å»Ê´ »Â µ» Ë ÌÁ·´Àµ»·¿ ¼»· ½·»¾¿

´¾´À¹µÁ»ÂÆ

°Í² ÎÀÀ´ºº µ» ¼ÁÏ´ºÆ

°Ð² Ñµ»·´ µ¶´ ·´º¹Ïµ »¼ ¼ÁÏ´ ËÀÀ´ºº µ» µ¶´

Ò¹¼¼´· ¼»· ·´º¹ÏµÆ

°Ó² ³´µ µ¶´ ÁÂ¼»·ÃËµÁ»Â ¼»· ½·»¾¿

´¾´À¹µÁ»Â ÁÂÀÏ¹ÌÁÂÔ µ¶´ º¿ºµ´Ã ÀËÏÏ

Â¹ÃÒ´·Õ Ë·Ô¹Ã´ÂµºÕ ËÂÌ µ¶´ À¹··´Âµ

ÌÁ·´Àµ»·¿Æ

Figure 6 The flow of proxy execution by a proxy process.

2. The proxy process gets the information for proxy
execution by invoking a hypercall to the VMM.
The information is detailed in Table 1.

3. The proxy process moves on to a directory for
proxy execution. To manage multiple protection
target VMs and essential processes, the proposed
method allocates directories for each VM and
process. Thus, the proxy process first moves to the
corresponding directory.

4. The proxy process accesses the requested file.

5. The proxy process sets the results to a data
structure for proxy execution. The data structure
is copied by the VMM after processing is returned
to the VMM. The return value and affected buffers
are stored in this area.

6. The proxy process returns processing to the VMM.
Then, the VMM start resuming the phase of the
original system call.

The VMM classifies whether the file is an essential
file or not, so it must hold the list of essential files.
However, it is difficult to determine which file is an
essential file because files are manipulated dynamically.
We addressed this problem using a policy. At first,
the VMM holds the list of essential files. The list
includes files which may be classified as static essential
files. Then, any file newly created by an essential
process is handled as an essential file because the file
probably includes information identifying the process as
an essential process. Finally, a file overwritten by the
essential process is also handled as an essential file using
the same logic applied to newly created files.

���� ���� ���� ����

�	�

�
�
��


���	




�


�



��


�



��


�



��
� �
�� ����
 ����


�
��
��
��
��
	

�
��

�



�
��
��
��
��
�
�
��
� �������������
������������

����������
������������

Figure 7 Performance overhead by system call proxy in
open, read, write, and close system calls.

6 Evaluation

6.1 Purpose and environment

To evaluate the performance of the proposed method,
we measured the processing time for system calls related
to file manipulation. Additionally, we also measured the
performance of the security software: ClamAV. Although
ClamAV has various functionalities for security, we used
clamscan command for evaluation. The computer used
had an Intel Core i7-2600 (3.4 GHz, 4 cores) and 16
GB RAM. The protection target VM had one virtual
CPU (VCPU) and 1 GB RAM. The proxy VM comprised
three VCPUs and 15 GB RAM. The VCPUs of VMs
were pinned to separate physical CPUs.

6.2 Basic Performance

The evaluation results for basic performance are
provided in Figure 7. We compared the performance of
open, read, write, and close system calls to a VMM
without interposition to those made to a VMM with
the system call proxy. In this evaluation, to clarify the
overhead of system calls that involved a system call
proxy, the essential process always accessed the essential
files. The size of buffer for both read and write was 10
bytes.

The performance degradation in open, read, and
write was greater than that of close. We observed
substantial degradation in the performance of open.
We suggest that the reason for the degradation was
memory copy. Read and write have buffers to read
or write. These buffers are copied from the protection
target VM to the proxy VM, and this copy causes
large overhead. The performance of open system call
was substantially degraded because of directory creation.
The proxy process creates directories for each protection
target VM and its essential processes. Thus, the first
access to the essential file by an essential process requires
the creation of a directory for the essential process in
the proxy VM. Also, to check whether the directory
already exists, additional system calls are invoked by
the proxy process. These additional system calls lead
to the large overhead. Thus, preserving the state of



10 M. Sato et al.

Table 2 Processing time for clamscan in seconds.

w/o System w/ System Call Proxy
Call Proxy No Essential File One Essential File

12.24 12.25 12.31

directory creation effectively improved the performance
of proxy execution. By preserving the states, it was
possible to reduce the number of the additional system
calls by the proxy process. Additionally, reducing the
number of buffer copies between the VMM and VMs also
reduced the overhead. These performance improvements
will make up our future work.

6.3 ClamAV

The proposed method primarily focuses on the
protection of security software. Therefore, this section
describes performance evaluation of the proposed
method with ClamAV, which is a famous antivirus
software. Because the implementation of the proposed
method is currently focusing on Linux, we evaluated the
performance of clamscan, which is a command within
ClamAV that detects malicious files by comparing files
with signatures on Linux. To evaluate the performance
of the proposed method, we measured the performance
of clamscan with an essential file (the signature file) and
one hundred normal files (scan target). The size of the
signature file was 113 MB and of the size each normal file
was 4 KB. All normal files were stored in a directory, and
we measured the time for scanning the above directory.

Table 2 shows the result of scanning time of
clamscan. By comparing the time with and without
the proposed method, we can observe that performance
overhead with the proposed method is less than 1%.
The results also show that the performance changes if
the manipulated files include essential files. However,
performance degradation with an essential file is small
in this measurement. This is due to the workflow of
clamscan. Clamscan first loads the signature and then
scans target files. Because performance will degrade only
for loading the signature, overall performance was not
significantly degraded.

7 Conclusion

We have described the design, implementation, and
evaluation of a hiding method for the file manipulation of
essential services. The proposed method exploits virtual
machine monitor (VMM) for interposition and proxy
execution. Interposed system calls by essential services
on the protection target VM are executed by another
VM to hide files and file manipulation from attackers.
Because essential files are stored in the other VM and
inaccessible from normal processes on the protection
target VM, it is difficult for attackers exploiting normal
processes to identify essential services by monitoring files
and file manipulation. Therefore, the proposed method

is more resistant to attack than a mechanism inside the
VM. In addition, the proposed method is designed to
use a VMM and another VM without modification to
software on the protection target VM. With a design
requiring no modification to the protection target VM,
conventional security software is safe from attacks. The
evaluation results show that the performance of system
calls related to file manipulation is largely degraded.
However, performance evaluation of clamscan showed
that the performance degradation is less than 1% in a
standard case.

Acknowledgement

This work was partially supported by KAKENHI Grant
Numbers JP18K18051 and JP16H02829.

References

Min, B., Varadharajan, V., Tupakula, U. and Hitchens,
M. (2014) ‘Antivirus security: naked during updates’,
Softw. Pract. Exp., Vol. 44, No. 10, pp.1201–1222.

Gregio, A., Afonso, V., Filho, D., Geus, P. and Jino,
M. (2015) ‘Toward a taxonomy of malware behaviors’,
Comput. J., Vol. 58, No. 10, pp.2758–2777.

Hsu, F.H., Wu, M.H., Tso, C.K., Hsu, C.H. and
Chen, C.W. (2012) ‘Antivirus software shield against
antivirus terminators’, IEEE Trans. Inf. Forensics

Secur., Vol. 7, No. 5, pp.1439–1447.

Garfinkel, T. and Rosenblum, M. (2003) ‘A virtual
machine introspection based architecture for intrusion
detection’, in Network and Distributed Systems

Security Symposium, Vol. 3, pp.191–206.

Srinivasan, D., Wang, Z., Jiang, X. and Xu, D.
(2011) ‘Porcess out-grafting: an efficient “out-of-
VM” approach for fine-grained process execution
monitoring’, in Proceedings of 18th ACM Conference

on Computer and Communications Security, pp.363–
374.

Sato, M., Yamauchi, T. and Taniguchi, H. (2015)
‘Process hiding by virtual machine monitor for attack
avoidance’, J. Inf. Process., Vol. 23, No. 5, pp.673–682.

Dinaburg, A., Royal, P., Sharif, M. and Lee, W. (2008)
‘Ether: malware analysis via hardware virtualization
extensions’, in Proceedings of 15th ACM Conference

on Computer and Communications Security, pp.51–
62.

Hegarty, R. and Haggerty, J. (2015) ‘Extrusion detection
of illegal files in cloud-based systems’, IJSSC, Vol. 5,
No. 3, pp.150–158



Design and implementation of hiding method for file manipulation of essential services 11

Wang, J., Yu, M., Li, B., Qi, Z. and Guan, H. (2012)
‘Hypervisor-based protection of sensitive files in a
compromised system’, in Proceedings of 27th Annual

ACM Symposium on Applied Computing, pp.1765–
1770.

Almeshekah M.H. and Spafford, E.H. (2014) ‘Planning
and integrating deception into computer security
defenses’, in Proceedings of 2014 Workshop on New

Security Paradigms Workshop, pp.127–138.

Araujo, F., Hamlen, K.W., Biedermann, S. and
Katzenbeisser, S. (2014) ‘From patches to honey-
patches: lightweight attacker misdirection, deception,
and disinformation’, in Proceedings of 21st ACM

Conference on Computer and Communications

Security, pp.942–953.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I. and Warfield,
A. (2003) ‘Xen and the art of virtualization’, SIGOPS

Oper. Syst. Rev., Vol. 37, No. 5, pp.164–177.


