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‘[...I]n our philosophical reflections upon science, we should by now have learned

explicitly—that successful scientific theories are to be taken very seriously as

clues to the deeper understanding of phenomena: i.e., clues in the search for better

and more fundamental theories.’

— H. Stein ([1989], p. 57), ‘Yes, but...’

Abstract

I argue that philosophical issues concerning reductive explanations help constrain the

construction of quantum theories with appropriate state spaces. I illustrate this general

proposal with two examples of restricting attention to physical states in quantum theories:

regular states and symmetry-invariant states.
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1 Introduction

It is common to require that a newly constructed physical theory be able to explain the success

of the theory it supersedes. In the context of quantization, or the construction of quantum

theories, this becomes the requirement that a quantum theory explain the success of its

corresponding classical theory in the classical limit. But this requirement is vague as it

stands—what could count as an explanation of past success? And how could this guide us in

the construction of new theories? The purpose of this paper is to make a part of this

requirement precise and to show that it puts substantive constraints on theory construction.

I will focus on just one aspect of explaining the success of a past physical theory: the state

space. The state space of a physical theory often contains states that are not used to represent

genuine physical possibilities. I will call these states, which are sometimes said to be ‘mere

artifacts’, unphysical states. As I see it, an explanation of the state space involves explaining

why only certain parts of the mathematical structure of the theory—the physical states—are

required for successful application of the theory. I will not be concerned with the ontological

status of the physical and unphysical states, but rather their methodological role in these

successful applications. I will assume that there is at least a normative ideal, whether or not it

is actually achievable, to construct physical theories that allow only for physical states and

rule out unphysical states. Feintzeig ([2018a]) establishes a general procedure for adapting

quantum theories to allow for only physical states once a physical state space has been

specified, but leaves open how one might go about figuring out which states to deem physical.

I will argue that what I call the requirement of reductive explanations provides a way of filling

this gap and deciding which states to consider as physical.

The central contribution of this paper is thus the proposal of a philosophically significant

heuristic method for constructing quantum theories. The proposal is, roughly, that we should
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aim to construct quantum theories in which the classical limits of physical quantum states are

physical classical states. In §2, I will provide some background to the proposal from

discussions of physical possibility and reductive explanations in the literature. In §3, I will

state the central proposal in a schematic form and provide a general, context-independent

argument in an attempt to justify it. However, I will argue that the general formulation of the

proposal is significantly limited and one should instead take up the proposal on a case by case

basis. This motivates further discussion of two context-specific applications in the following

sections. In §4, I discuss recent work by Feintzeig ([2018b]) showing that the proposal leads

to the appropriate answer for systems of finitely many free particles, in which the quantum

theory can be understood through a regular representation of the Weyl algebra. In §5, I discuss

recent work by Browning and Feintzeig ([2019]) showing that the proposal leads to the

appropriate answer for systems of particles moving in an external gauge field, in which the

quantum theory can be understood through the charge superselection structure of an algebra of

observables. Finally, in §6 I will draw some conclusions from what has been said for

discussions in philosophy of science concerning heuristics and scientific discovery.

2 Background

To begin, I introduce the conceptual issues that play a role in the main proposal of the paper:

the notion of physical reasonableness and the requirement of reductive explanations.

2.1 Physical states

This paper aims to leverage the following fact: we often do not treat all states allowed by a

physical theory as physically possible in the same way.1 For example, it is common practice in

general relativity to rule out as physically unreasonable models of spacetime that have certain

kinds of singularities, extensions, or violations of determinism. 2 Similarly, in quantum

1I will use the terms ‘physical’, ‘physically possible’, and ‘physically reasonable’

synonymously.
2For an overview, see Earman ([1995]) or Manchak ([2013]); for a sampling of recent

work, see Manchak ([2009], [2011], [2014], [2016]).
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theories a variety of necessary conditions have been proposed for a quantum state to be

physically reasonable—for example, we might restrict attention to locally definite states

(Arageorgis [1995], p. 168), states accessible from Fock states (Petz [1990], p. 29), DHR

states (Haag [1992]; Halvorson [2007]), normal states (Halvorson [2001]; Ruetsche [2011b];

Arageorgis et al. [2017]), locally normal states (Dell’Antonio et al. [1966]; Hugenholtz and

Wieringa [1969]; Takesaki and Winnink [1973]), or regular states (Halvorson [2004];

Feintzeig et al. [2019]; Feintzeig and Weatherall [2019]). The details of the last condition will

play a role in what follows, but before discussing any particular cases, I want to first try to

make sense of this somewhat curious practice.

The practice of restricting what we consider the physically reasonable states is particularly

puzzling when viewed from the perspective of what Ruetsche ([2011a], p. 6) calls ‘the

standard account’ of interpreting physical theories. According to the standard account, the

content of a physical theory is a specification of the worlds it deems physically possible, as

distinguished from the vast background of logical or metaphysical possibilities. If a physical

theory, by specifying a collection of states that satisfy its laws, already fixes what it deems

physically possible, one might wonder what further we might be doing when restricting to a

collection of physical states that form a subset of those allowed by a physical theory. On the

standard account, the collection of states allowed by a physical theory already specifies the

physical possibilities, so what further restriction could be required?

I believe one can understand the practice of restricting attention to a collection of physical

states through an alternative to ‘the standard account’ proposed by Ruetsche ([2003], [2011a])

herself. Ruetsche opposes the standard account by arguing that the notion of physical

possibility is context-dependent, which implies that the collection of worlds a theory deems

possible cannot be specified once and for all.3 This leaves room for one to restrict attention to

a subspace of physical states if the context calls for it. I won’t commit to Ruetsche’s particular

view of physical possibility, but I will argue later that the way we apply heuristics for theory

construction based on physical state spaces should be sensitive to contextual details. So it is

3Similar themes are familiar from elsewhere in the literature—e.g., Wilson ([2006],

[2013]). See also, e.g., Williams ([2018]) for other reasons to reject the standard account.
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worth exploring a view like Ruetsche’s in some detail to start.

On Ruetsche’s view, one can associate many different notions of physical possibility with a

given theory. One notion of physical possibility might be the most general kind compatible

with the kinematics of the theory, while another notion of physical possibility might be

specific to a class of states that we think the actual world lies in. For example, we might think

that while certain singular spacetimes are possible in the most general sense, they are not in

the more specific sense of possibility governing cosmological models with a well-defined time

evolution. Or, while we might think that distinct ground states breaking the electroweak

symmetry in the standard model of particle physics are equipossible in a general sense, only

one of these states is possible in the more specific sense of being dynamically accessible from

the actual world. On Ruetsche’s alternative view, then, it makes sense to distinguish a class of

physical states from all of the states allowed by a physical theory because the physical states

are possible according to a more specific notion of possibility than the notion of possibility for

all states of the theory.

In the rest of this paper, I hope to understand the vague phrase ‘physically reasonable state’

in a way that at least allows it to be made precise in various context-dependent ways. This

should not be taken to mean that I endorse Ruetsche’s controversial arguments for her

conclusion, although I do find the conclusion attractive. Instead, I hope to remain agnostic

about what it means in general for a state to be physically reasonable. I will do so by allowing

the notion to be specified in a variety of context-dependent ways.

One might wonder whether one can say anything interesting in general about physical states

prior to focusing on a specific context. I think one can, with the aim of discovering what kinds

of tools or strategies one might employ in the context-specific cases, as I will do in the

examples of §4 and §5. Ultimately, the central proposal of this paper aims at describing how

considerations about physical states provide a heuristic for theory construction. As a heuristic,

the best we can hope for is an understanding of how and why it might be applied in possibly

different ways in different contexts to yield fruitful, but defeasible results.

In fact, the results of Feintzeig ([2018a]) show us one way in which a choice of physical

states might be employed to aid theory construction. Feintzeig shows that if one is given a
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physical theory formulated in an algebraic framework, and then one specifies a subspace of

the state space corresponding to the physical states, there is a general procedure for

constructing a new theory that allows for only physical states. I will describe this procedure in

some detail because I refer to it throughout this paper.

The background to the procedure for restricting state spaces is the algebraic framework for

physical theories. A theory formulated in the algebraic framework specifies a C*-algebra A of

physical quantities.4 This framework is flexible enough to encompass both classical and

quantum theories. In classical theories, we use commutative C*-algebras corresponding to

collections of functions on a system’s phase space with pointwise algebraic operations. In

quantum theories, we use non-commutative C*-algebras corresponding to collections of

operators on a Hilbert space. States in both theories can be understood as positive, normalized

linear functionals on the C*-algebra of physical quantities. The state space S(A) forms a

subset of the dual space A∗ of bounded linear functionals on A.

Suppose that one has reason to take only a subset of S(A) to represent the physically

reasonable states. The subset of physically reasonable states will generate a subspace V of the

space A∗ of linear functionals. Feintzeig ([2018a]) shows that under very general conditions

on V (namely, V is weak* closed, and its annihilator N(V) forms a closed two-sided ideal in

A),5 one can construct another C*-algebra A/N(V) that allows for a natural identification of

the physical states in V with the entire state space of this new algebra. This construction is

indeed employed in mathematical physics when dealing with constrained systems (Grundling

and Hurst [1998]; Grundling [2006]).

The construction Feintzeig describes leads to a new kinematical framework of physical

quantities in the C*-algebra A/N(V) and a new, restricted collection of possible states in the

4For mathematical background on C*-algebras, see, e.g., Kadison and Ringrose ([1997]),

Sakai ([1971]). For applications of C*-algebraic tools to quantum theory, see, e.g., Emch

([1972]), Haag ([1992]), Bratteli and Robinson ([1987]), Bratteli and Robinson ([1996]). For

philosophical introductions to algebraic quantum theory, see, e.g., Arageorgis ([1995]),

Halvorson ([2007]), Ruetsche ([2011a]).
5Actually, the second example in §5 demonstrates that these conditions on V just stated

need not even be satisfied for this construction to be possible.

6



dual space (A/N(V))∗ � V , corresponding to precisely the states that were initially deemed

physically reasonable. This construction provides a tool that one can employ in quite general

circumstances for the construction of quantum theories. Thus, even without a definitive

statement of what counts as a physically reasonable state, we know that however one specifies

a collection of physical states (subject to a few technical restrictions), one can use this

information to aid theory construction.

2.2 Reductive explanations

Now that we’ve narrowed our goal to discerning a collection of physically reasonable states,

the next task is to investigate what kind of information might help us achieve this goal. For

this, I turn to constraints of intertheoretic reduction.

Although some classical accounts (e.g., Nagel ([1961], [1998])) present intertheoretic

reduction as a relation deriving a higher level theory from a lower level theory, Nickles

([1973]) argues that there is a different notion of reduction at play when previous theories are

obtained as limiting cases of new theories. One example of this kind of limiting relation

appears in the reduction of general relativity to Newtonian gravitation in the limit where

v/c << 1. According to Nickles, these limiting reductions ‘might be said to explain why the

predecessor theory worked as well as it did’ (Nickles [1973], p. 185, fn. 4). Although Nickles

(p. 201) is skeptical of the significance of limiting relations in which physical constants vary

(of which the classical ~→ 0 limit analyzed in this paper is one example), Fletcher ([2019])

argues to the contrary that the c→ ∞ limit of general relativity may be interpreted as the same

approximation of low relative velocities just mentioned (see also Ehlers [1998]). On Fletcher’s

account, limiting relations can be understood to capture a sense in which the reduced theory

approximates the reducing theory.6

In these limiting explanations, the phenomenon to be explained is the success of the

predecessor theory. If we desire that newly constructed theories have explanatory power, it is

natural to hope that new theories have the ability to explain this success; that is, one might

consider it a constraint on any proposed successor theory that it explain the success of its

6Cf. Nickles ([1973], p. 194-6); Schaffner ([1967]).
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predecessor theory. I call this constraint the requirement of reductive explanations.

Some authors have explicitly proposed principles for theory construction that resemble this

requirement of reductive explanations. For example, Post ([1971]) proposes this requirement

as the heuristic he calls the ‘generalized correspondence principle’ (p. 228-235). And Hesse

([1961], [1970]) argues for the necessity of correspondences between new and old theories in

terms of analogies between models. In the case at hand, the ~→ 0 limit provides one kind of

analogy or correspondence between classical and quantum theories by establishing that the

theoretical or mathematical structures are similar with respect to the notion of similarity

implicitly encoded in the limit (cf. Fletcher [2016]).

There is ambiguity, however, regarding what it means to understand the requirement of

reductive explanations as a heuristic for theory construction. On the one hand, this means that

we can and ought to use the principle to guide the construction of new theories. But Hesse

([1961], p. 55-56) argues that the existence of an appropriate analogy or correspondence is not

sufficient to justify the newly constructed theory. One reason is that any procedure for

constructing new theories is fallible; if a new theory makes a prediction that is not borne out

by experiment, then this could overrule the heuristics that led to the theory. However, I think

we have some reason to prefer or pursue theories that satisfy the requirement of reductive

explanations, even if these reasons are defeasible. To capture the heuristic value of the

requirement of reductive explanations, I’ll say that satisfying the requirement makes a

candidate theory more plausible.7

These ideas about reductive explanations, correspondence, and analogies have also been

taken up in the literature already specifically in connection with the construction of quantum

theories. For example, Hesse ([1952]) uses analogies between quantum mechanics and

classical physics to illustrate her ideas about models and contrast her view with

operationalism. Further, Post’s ideas about correspondence are taken up by Radder ([1991]) in

connection with the construction of quantum theories. Since explanations of the success of

previous theories might take many different forms in different domains or different contexts,

7See Bertolaso and Sterpetti ([2017]) for discussion of plausibility and evidence, and see

Fraser ([2019], p. 12) for discussion of plausibility and analogies.
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we learn something by analyzing whether and how quantum theories explain the success of

their classical predecessors.

One can attempt to explain the success of a classical theory from a quantum theory by

employing the ~→ 0 limit.8 In order to satisfy the requirement of reductive explanations, this

limit would need to give rise to explanations of the success of the mathematical and

theoretical structure of the classical theory (more in §3). Radder argues that the ~→ 0 limit

cannot accomplish this task because it gives rise to a merely formal correspondence. In the

same spirit, Rosaler ([2015b], [2015a], [2016]) has argued that quantum theories should only

be thought of as explaining the empirical success of classical theories in a roughly

instrumentalist fashion. If Radder and Rosaler were correct, then one might worry about

whether the requirement of reductive explanations could or should be used as a heuristic tool

to obtain substantive constraints on the construction of new theories. However, Feintzeig

([2019b]) argues that one can explain some aspects of the theoretical structure of classical

theories from quantum theories by employing the tools of strict deformation quantization to

analyze the ~→ 0 limit. Thus, while historically there is little doubt that the ~→ 0 limit has

been employed during the construction of quantum theories, there is some disagreement about

its significance.9

In this paper, I follow Feintzeig ([2019b]) and pursue the requirement of reductive

explanations in quantum theories under the assumption that the ~→ 0 limit can be used to

provide explanations of the theoretical or mathematical structure of corresponding classical

theories by using strict deformation quantization. Although many of the technical details will

not be relevant to the discussion of this paper, it is important to know that a strict deformation

quantization provides precisely the mathematical tools needed to analyze the classical limits

8I analyze the ~→ 0 limit, but there are other limits that may also be relevant—for

example, N → ∞. Landsman ([2007]) argues that multiple limits might be required to explain

the success of classical physics.
9A recent reference that discusses the history of the construction of quantum theories with

attention to the role and context-dependence of scientific understanding is De Regt ([2017],

especially Ch. 4 & 7).
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of quantities and states in quantum theories in the C*-algebraic framework.10

A strict deformation quantization consists in a family {A~}~∈[0,1] of C*-algebras and a family

of quantization maps {Q~ : P → A~}~∈[0,1] on a dense (Poisson) subalgebra P of A0, which is

required to be commutative. Here, the algebra A0 represents the collection of quantities in a

classical theory while the (non-commutative) algebras A~ for ~ > 0 represent the collection of

quantities in a corresponding quantum theory. Furthermore, for such a structure to be a strict

deformation quantization, the quantization maps are required to satisfy axioms that ensure the

continuity of algebraic operations as ~→ 0 and encode the approximate satisfaction of the

canonical commutation relations. Within this framework, the classical limit of a family of

quantities {Q~(A)}~∈[0,1] will be understood to be the classical quantity A ∈ A0. Feintzeig

([2019b]) argues that this understanding of the classical limits of quantities is appropriate for

explaining the success of classical theories. Moreover, this notion of classical limits of

quantities gives rise to a notion of classical limits of states. A family of states

{ω~ ∈ S(A~)}~∈[0,1], is called a continuous fields of states when for each A ∈ A0, the map

~ 7→ ω~(Q~(A)) is continuous. The classical limit of a continuous field of states will be

understood to be the classical state ω0.

In what follows, I will take on this framework for analyzing the classical ~→ 0 limit in

quantum theories via strict deformation quantization, and I will assume that the classical limit,

when understood in this way, can provide genuine explanations of the mathematical and

theoretical structures of classical physics. The remaining task is now to investigate the extent

of the theoretical structures in classical physics that one can explain, and how requiring such

explanations constrains theory construction.

This at last puts us in a position to bring together the two philosophical strands of

background that are required to state the main proposal of the paper. One of the theoretical

structures in a classical theory is its collection of physically reasonable states, understood as a

subset of the entire state space. A reductive explanation of the success of a classical theory

from a quantum theory ought to explain why the classical theory contains the physical state

10For a mathematical introduction to strict deformation quantization, see Rieffel ([1989],

[1993], [1994]) or Landsman ([1993a], [1998], [2007], [2017]).
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space that it does. Enforcing the requirement of reductive explanations as a heuristic for

theory construction places the constraint that a newly constructed quantum theory give an

explanation of the physical state space of its preceding classical theory. The central proposal

of the paper, which we state next in the following section, is an analysis of the conditions

under which one can give such an explanation of the physical state space of a classical theory

from a quantum theory using the ~→ 0 limit.

3 The proposed ‘correspondence principle’

The central proposal of this paper provides necessary (but not sufficient) conditions for a

quantum theory to be able to explain the success of its predecessor:

Proposal. A necessary condition for a quantum theory to explain the success of its classical

predecessor is that:

(i) every physical classical state is the classical limit of some appropriate family of physical

quantum states; and

(ii) the classical limit of every appropriate family of physical quantum states is a physical

classical state.

I claim only that conditions (i) and (ii) are required for a quantum theory to explain the

success of one theoretical structure in the classical theory—its collection of physically

reasonable states. Further resources may be required to explain other aspects of the theory.

I will attempt to provide a general argument to motivate each of these conditions in this

section; however, I do not believe this general motivation suffices. Instead, I will argue it is

best to take up the proposal in specified contexts where further information helps determine

what is meant by a physically reasonable state and an appropriate family of states. I think it is

worth first considering the motivation for conditions (i) and (ii) in a context-independent

manner. But it is even more important to analyze these conditions in the context of specific

examples, as I will do in the following sections.

Condition (i) is the more familiar constraint, stating that for a quantum theory to explain the

success of its classical predecessor, it must be able to recover every physical classical state as
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the classical limit of some physical quantum state. To motivate this condition, notice that part

of the explanatory burden of the newly constructed quantum theory is to show why the

predictions and explanations given using each physical classical state are at least

approximately accurate. If (i) were not satisfied, then the quantum theory would not be able to

discharge this explanatory burden—there would be physical classical states that could not be

recovered even approximately in the ~→ 0 limit from physical quantum states. The quantum

theory would not be able to explain why the predictions and explanations given using those

missing physical classical states were successful, and hence, would not be able to explain the

success of the classical theory. Therefore, condition (i) is required for a quantum theory to

explain the success of its classical predecessor.

The perhaps more controversial condition (ii) states that for a quantum theory to explain the

success of its classical predecessor, it must recover no more than the physical classical states

as the classical limits of physical quantum states. Condition (ii) has a different character; it is

not concerned with whether the quantum theory can provide local explanations of the success

of individual physical classical states. Instead, condition (ii) is motivated by considering how a

quantum theory might give a global explanation of why a certain subcollection of states in the

classical theory is deemed physically reasonable. I think that for a quantum theory to give an

explanation of the success of its classical predecessor, it must explain why the classical theory

employed the mathematical and theoretical structure it did. Part of the theoretical structure of

the classical theory is the collection of states it deems physically reasonable. Thus, it is

incumbent upon the quantum theory to explain why the classical theory has the physical state

space it has. If the quantum theory could recover unphysical classical states—ones lying

outside the physical state space—as the classical limit of physical quantum states, then the

quantum theory would seem to allow these states as approximations to the states the quantum

theory deems physically possible. In order to explain why the classical theory has the physical

state space it has, the quantum theory must only allow the physical classical states to be

obtainable as approximations to physical quantum states in the classical limit.

One might object to condition (ii) on the grounds that once one has recovered from a new

theory all of the empirical predictions of the old theory, one has captured all one needs to
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explain. If this were correct, condition (i) would suffice on its own. I believe, however, that

condition (ii) is necessary because there are more phenomena the new theory needs to capture

than just the predictions of the old theory. It is also an empirical phenomenon that researchers

using the mathematical and theoretical framework of the old theory have arrived at accurate

predictions and useful applications. I believe this phenomenon—that scientists using the

theoretical tools of the old theory have been successful—also ought to be explained. The

particular tools that scientists used as part of the old theory may be historically contingent, and

the explanation may involve appeal to pragmatic features, but nonetheless I think an

explanation is needed of why these tools have been successful. One of the theoretical tools of

the old theory whose success must be explained is the splitting of the state space into physical

and unphysical states. Satisfying condition (ii) amounts to providing an explanation of why

scientists have been successful when employing the theoretical tool of a physical subspace of

the state space of the old theory.

For this motivation of condition (ii) to be plausible, one must already accept the assumption

made in §2.2 that explanations of the success of classical theories involve the explanation of

the theoretical structure of those theories. Only on this assumption does it make sense to

require that a quantum theory be able to explain the success of the theoretical structure given

by the physical state space of a classical theory. If one thought to the contrary that quantum

theories could only explain the empirical predictions of their corresponding classical theories,

as Rosaler ([2015a]) seems to, then such a requirement would not make sense. However, on

the assumption that genuine explanations of the theoretical structure of classical theories are

possible and desirable, I believe condition (ii) is well motivated.

Before proceeding, it is worth dealing with an apparent objection to condition (ii).11 One

might worry that there is an obvious counterexample in the case of spontaneous symmetry

breaking in many-body spin systems or in the analogous case of the measurement problem.

Landsman ([2013], [2017]) discusses models for each of these examples, and at first glance,

the classical or thermodynamic limit of the physical quantum ground state may appear to be

an unphysical classical state. In the case of a many-body spin system on a one-dimensional

11I am grateful to an anonymous referee for pointing out this objection.
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lattice, there are two states of broken symmetry in which the spins all align pointing ‘up’ or all

align pointing ‘down’, but the ground state is a superposition of these two aligned states. The

thermodynamic limit of this pure quantum state is, however, the mixture of the two

corresponding states with aligned spins. Similarly, in the simple model for measurement with

a double-well potential, there are two states in which the wavefunction is centered in the left

and right potential wells, respectively, but the ground state is a superposition of the

wavefunctions in each well. Further, the classical limit of this pure quantum state is again the

mixture of the two classical states located at the minima of each potential well. If one thought

these mixtures obtained in the limit were unphysical, then one might have reason to reject

condition (ii) of the proposal because they are classical limits of physical states.

I do not believe, however, that this objection succeeds. First, as far as I can tell, this

objection relies on the premise that a mixture of two physical states is not a physical state.

This assumption seems, at least to me, to be very counterintuitive. Of course, whether one

accepts this premise may depend on how exactly one makes precise the notion of a physical

state, but I believe that, at least in some contexts, mixed states should be countenanced as

physical because of their usefulness in both classical and quantum statistical mechanics.

Moreover, in all of the examples and results discussed in this paper, I focus only on the linear

space V generated by the physical states, which of course contains all mixtures of the physical

states. Second, Landsman and Reuvers ([2013]) and Landsman ([2013], [2017]) establish that

almost any small external perturbation will force an ‘effective collapse’ of these systems into

one of the symmetry breaking states on the way to the limit, which results in a pure state at the

limit. This further technical result shows that the limit of the physical ground states can, when

understood with external perturbations, lead to a physical state. This shows the importance of

thinking of the classical limit as a limit of an entire family of states. The appropriate family of

states is influenced by contextual details including the possibility of external perturbations. It

is only when one thinks of appropriate families of states with external perturbations that one

can see the instability of the mixed ground state in the limit. Thus, when one takes into

account further contextual information about the systems of interest to determine the

appropriate families of states, one finds that that the central proposal is vindicated. Indeed,
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this same point is a theme I hope to illustrate and emphasize in the examples of the following

sections.

My contention in this paper is that the central proposal stated above can and should be used

to constrain the construction of quantum theories, as follows. Suppose we have constructed a

quantum theory whose algebra of quantities is given by A. Let V ⊂ A∗ be the subspace

generated by the collection of states whose classical limits are physical states according to the

corresponding classical theory. These are the states of the quantum theory that should be

deemed physical quantum states in order to explain the success of the classical theory,

according to the central proposal. So with the aim of constructing a quantum theory whose

entire state space consists in physical states, we should replace the original algebra of

quantities A with A/N(V) in order to restrict attention to physical states.

Notice that using the central proposal in this way to constrain theory construction is only

possible if we have antecedent knowledge of what states in the corresponding classical theory

are physically reasonable. This is acceptable because we typically have a better grasp on the

interpretation and significance of states in classical theories than in quantum theories, or new

theories we are constructing. But if we do not antecedently know which classical states are

physically reasonable, we might discern this by deeming a classical state physical when it is

obtained as the classical limit of a physical quantum state. Likewise, we might decide that a

classical state is unphysical when it cannot be obtained as the classical limit of a physical

quantum state. This is another genuine function of the classical limit—to help us better

understand existing classical theories. However, this function of the classical limit in

informing interpretations of classical physics is distinct from the role the classical limit can

play in theory construction. The use of the central proposal in theory construction projects

forward an understanding of which states are physically reasonable in an existing classical

theory. Projecting forward in this fashion, as the quote from Stein ([1989]) in the epigraph of

this paper suggests, makes sense only when we are more confident about our understanding of

the existing classical theory than the quantum theory we are in the process of constructing.

Recognizing this helps us see one way in which using the central proposal to constrain

theory construction is defeasible. Our confidence in this heuristic can at best be as high as our
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confidence that we have picked out the appropriate collection of physically reasonable states

in the existing classical theory. To the extent that the classical states we consider physically

reasonable might be revised, the procedure for constructing a quantum theory based on the

existing classical theory might also be revised. In this sense, the requirement of reductive

explanations, when applied to explanations of physical state spaces, should not be understood

to produce certainty in the theories we construct.

This form of the requirement of reductive explanations is also subject to the subtleties

mentioned in §2—namely, it is a heuristic principle whose satisfaction does not justify a new

theory, but rather makes it more plausible. Further, the notion of physical reasonableness in

both classical and quantum theories should be understood contextually. Thus, the proposal

should be understood to provide a defeasible tool that might be applied in different

context-sensitive ways.

It might be surprising, then, that the arguments I have just provided for conditions (i) and

(ii) are completely context-independent. I think this shows a severe limitation of those

arguments because they do not take into account the context-specific details concerning why

certain states are deemed physically reasonable for certain systems. For the proposal to be

well-motivated, the ~→ 0 limit must teach us that unphysical quantum states fail to be

physically reasonable for the same reasons the corresponding classical states fail to be

physically reasonable. The success of the proposal thus depends on context-specific notions of

physical possibility. As such, the main proposal and the arguments for it should be understood

only schematically, so that they are to be filled in for specific systems of interest.

I will now take up two such specific examples in the remainder of this paper. The examples

illustrate the main proposal, and how further contextual information helps us make sense of

when certain collections of states are deemed physically reasonable. In the two examples

presented in §4 and §5, when the requirement of reductive explanations is implemented in

conjunction with the main proposal, it gives rise to the construction of an appropriate quantum

theory for the system of interest. These successful results provide some evidence in favor of

the main proposal and its heuristic use for theory construction. This evidence should not be

understood as underlying an inductive inference because I will only consider two examples,
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which forms a sample size that is much too small. Instead, I take the examples to show the

promise of the main proposal when it is treated with care in specific contexts.

4 Example: regularity

My first example to illustrate the usefulness of the main proposal is the quantization of the

theory of a finite collection of free particles via the Weyl algebra (Manuceau et al. [1974];

Petz [1990]; Clifton and Halvorson [2001]). In this case, it is standard practice in

mathematical physics to restrict attention to regular states on the Weyl algebra to represent

physically reasonable quantum states. However, this orthodoxy has been challenged, for

example, by Halvorson ([2004]), and some have even pursued the construction of physical

theories involving non-regular states (Ashtekar [2009]; Corichi et al. [2007]).12 Here, I will

argue that recent work of Feintzeig ([2018b]) illustrates an application of the main proposal to

rule out non-regular states in quantum theories, motivating the construction of quantum

theories that allow for only regular states by using a different algebra than the Weyl algebra.

We aim to construct a quantum theory corresponding to a classical system whose

Hamiltonian formulation is given by the phase space R2n, understood as a symplectic vector

space with the standard symplectic form σ. The algebra of quantities for the corresponding

quantum theory is specified by the Weyl algebraW(R2n, ~σ), defined as the smallest

C*-algebra containing the elements W~(x) for each x ∈ R2n with

W~(x)W~(y) := e−
i~
2 σ(x,y)W~(x + y)

W~(x)∗ := W~(−x)

for all x, y ∈ R2n. It is known that there is a unique C*-algebra picked out by these conditions

which corresponds to the completion of the algebra generated by the linearly independent

elements W~(x) in the so-called minimal regular norm (Manuceau et al. [1974]). The algebra

A~ :=W(R2n, ~σ) specifies the kinematical framework of a quantum theory for each

12See also Beaume et al. ([1974]), Fannes et al. ([1974]), Acerbi et al. ([1993]) for

mathematical investigations of non-regular states.
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numerical value ~ ∈ [0, 1] of Planck’s constant.

The classical limit of this quantum theory is specified by the algebra A0 :=W(R2n, 0),

which is known to be *-isomorphic to the collection of almost periodic functions on R2n (Binz

et al. [2004a]). The C*-algebra of almost periodic functions is the uniform closure of the

collection of all finite linear combinations of functions of the form W0(x) : R2n → C for each

x ∈ R2n defined by

W0(x)(y) := eix·y

for all y ∈ R2n, where · signifies the standard inner product on R2n.

That A0 should be understood as the classical limit of a quantum theory specified by the

Weyl algebra is justified by the fact that the family of algebras {A~}~∈[0,1] forms a strict

deformation quantization (Binz et al. [2004b]; Honegger and Rieckers [2005]; Honegger et al.

[2008]) with the quantization maps {Q~ : A0 → A~}~∈[0,1] defined as the norm continuous linear

extension of13

Q~(W0(x)) := e−
~
4 ‖x‖

2
W~(x)

where ‖x‖2 := x · x. These maps define the restriction of Berezin quantization to the almost

periodic functions (Berezin [1975]; Berger and Coburn [1986]). Since this structure forms a

strict deformation quantization, we can analyze classical limits of states by specifying

continuous fields of states. There is a natural way to specify a continuous field of states given

a quantum state ω~ ∈ S(A~). Namely, ω0 := ω~ ◦ Q~ defines a classical state on A0 since Q~ is

positive. And further, the map ω~′ : A~′ → C defined as the continuous extension of

ω~′(Q~′(A)) = ω0(A) for all A ∈ P specifies a quantum state for any alternative numerical value

~′ , ~ of Planck’s constant. The collection {ω~}~∈[0,1] then forms a continuous field of states,

13There is actually a mistake in Feintzeig ([2018b]) who is missing the exponential factor,

which makes the quantization maps positive, and hence norm continuous, as he claims.

Positivity allows for the continuous extension of the quantization map to the domain A0 and

for the analysis of classical limits of states below.
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which we will call the constant field defined by ω~, and so the classical state ω0 can be

understood as the classical limit of the quantum state ω~. Of course, one might define other

classical limits of the state ω~ through different continuous fields of states, and one hopes that

the results below generalize to other such classical limits.

In this setup, the algebra A0 of the classical theory has a plethora of states that would

ordinarily be considered unphysical classical states. The countably additive probability

measures on the phase space R2n form a natural collection of physical states that can be treated

using the ordinary methods of classical Hamiltonian mechanics. These states represent either

definite positions and momenta specified by a single point in the phase space, or else

probabilistic mixtures of such definite phase space points. However, there are other states on

A0 called ‘states at infinity’ that cannot be represented by any countably additive probability

measure on R2n. I think it is natural to call the countably additive probability measures the

physically reasonable states and deem all other states unphysical. For example, one indication

the classical states at infinity are unphysical is that it is not clear how to understand their

dynamical evolution. Given that these states cannot be represented as countably additive

probability measures on phase space, one cannot use them as initial conditions for the

standard differential equations of Hamiltonian mechanics.

Given this collection of physical states, we can apply the procedure of §2.1 to reduce the

state space of the classical theory. Let VC ⊆ A
∗
0 consist in the subspace generated by the

collection of states that can be represented as countably additive probability measures on R2n.

For technical reasons, one needs to first enlarge the algebra A0 to the universal enveloping

W*-algebra or bidual A∗∗0 , which can be understood as its bounded completion in the weak*

topology (Feintzeig [2019a]). Then the algebra A∗∗0 /N(VC) obtained by restricting attention to

the collection of physical states is *-isomorphic to the collection of all bounded measurable

functions14 on R2n, which is a W*-algebra whose normal state space consists in all and only

the countably additive probability measures on R2n. The algebra of measurable functions is

itself the bidual or bounded completion of the algebra C0(R2n) of continuous functions on R2n

14Specifically, one must consider functions that are measurable with respect to the

σ-algebra of universally Radon measurable sets (Fremlin [2003]).
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vanishing at infinity. Every state on this algebra can be represented by a countably additive

probability measure on R2n. Thus, there is an alternative algebra of classical quantities in

which we can understand the standard formulation of the theory allowing for only the physical

states, which are the countably additive probability measures.

We can use the collection VC of physical classical states to constrain the construction of our

quantum theory. Let VQ ⊆ A
∗
~ be the subspace of the dual to the algebra of quantities for the

quantum theory generated by the quantum states whose classical limits, understood in the

sense of the constant fields of states defined above, lie in VC. Feintzeig ([2018b]) proves that

when we take the classical limit via a constant field of states, the classical limit of a quantum

state ω~ on A~ lies in VC if and only if ω~ is regular. For fixed ~, a state ω~ ∈ S(A~) is defined

to be regular just in case the map

t ∈ R 7→ ω~(W~(tx))

is continuous for each x ∈ R2n. Regular states may be familiar from the Stone-von Neumann

theorem (see, e.g., Summers [1999]; Ruetsche [2011a]), which states that the GNS

representation of any regular state is quasi-equivalent to the Schrödinger representation on the

Hilbert spaceH = L2(Rn). Since the classical limit of a state on A~ is physical just in case that

state is regular, the central proposal suggests that to explain the success of the physical state

space of the classical theory, we should understand the physical states on the Weyl algebra to

be precisely the regular states.

This constrains theory construction by guiding us to use a different algebra whose

irreducible representations are all unitarily equivalent to the Schrödinger representation. As in

the classical case, for technical reasons we first need to enlarge the algebra A~ to the bidual or

bounded completion A∗∗~ . Then restricting attention to regular quantum states, we find

A∗∗~ /N(VQ) is *-isomorphic to the W*-algebra B(H), which is the bidual or bounded

completion of the algebra K(H) of compact operators. Every normal state on B(H), or

equivalently every state on K(H), can be represented by a density operator onH . Thus,

restricting our attention to regular states leads us to an alternative algebra, which specifies the

standard formulation of the quantum theory of a finite number of free particles in terms of
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density operators in the Schrödinger representation. In other words, the requirement of

reductive explanations and the central proposal of this paper lead to the appropriate theory.

I believe that in this example, there is additional contextual information that helps us

understand why the collection of regular states, whose classical limits are countably additive

probability measures, should be understood as the physical quantum states. As I will now

argue, the central proposal draws our attention to analogies between states in classical and

quantum theories, so that we can understand non-regular quantum states as unphysical in the

same way we understand classical states at infinity as unphysical.

Since there are challenges to understanding the dynamical evolution of classical states

outside VC, the result that non-regular quantum states lying outside VQ have these unphysical

classical states at infinity as their limits suggests there may be challenges to understanding the

dynamical evolution of non-regular quantum states. Indeed, this is borne out by the fact that

one cannot straightforwardly apply the dynamics of the Schrödinger equation to non-regular

states. There have been suggestions concerning how to extend the Schrödinger dynamics to

non-regular states on the Weyl algebra (see, e.g, Fannes and Verbeure [1974]; Narnhofer and

Thirring [1993]), but Feintzeig et al. ([2019]) argue that any such attempt to deal with

dynamics for non-regular states will face interpretive difficulties. Thus, looking at the classical

limit helps us see that non-regular quantum states should be considered unphysical for

essentially the same reasons that classical states at infinity are considered unphysical. It also

helps us understand what we might mean by our notion of physical reasonableness in this

context: physical reasonableness in this case involves at least that dynamical evolution makes

sense (both mathematically and interpretively).

There is more to say about the boundaries of physical reasonableness in this case. Physical

reasonableness cannot be solely about making accurate predictions within the error bounds

specified by our measuring devices. What I mean by this is that if one only cares about having

states that make accurate predictions, then classical states at infinity are, in a sense, just as

good as classical countably additive probability measures. And likewise, regular quantum

states are, in a sense, just as good as non-regular quantum states. The reason is that in each

case the physical states are dense in the unphysical states in a relevant topology (Feintzeig and

21



Weatherall [2019]). Every classical state at infinity can be approximated within specified error

bounds for a finite number of measurements—that is, with the weak* topology given by

A∗∗0 /N(VC)—by countably additive probability measures. Similarly, every non-regular

quantum state can be approximated within specified error bounds for a finite number of

measurements—that is, with the weak* topology given by A∗∗~ /N(VQ)—by regular states. This

shows a sense in which no finite number of experiments can verify whether a system is in a

physical or unphysical state, and so one cannot infer from a finite set of data that the system is

in a physical or unphysical state. Thus, I believe we are left with the alternative that the notion

of physical reasonableness that distinguishes regular from non-regular states concerns their

theoretical role rather than their empirical predictions.

One way to understand what distinguishes physical from unphysical states in this case is

that states at infinity and non-regular states are unphysical in the sense that they are

idealizations from the physical states (Feintzeig and Weatherall [2019]). While the normal

state space of A∗∗0 /N(VC), which is the state space of C0(R2n), consists in only countably

additive probability measures, states at infinity can arise as weak* limits of these states.

Similarly, while the normal state space of A∗∗~ /N(VQ), which is the state space of K(H),

consists in only regular states, non-regular states can arise as weak*-limits of these states.

These approximations are weak enough that if our system is in a regular state and we use a

non-regular state to make predictions about future measurements, we have no guarantee that

these predictions will be accurate (see Summers [1999]; Ruetsche [2011a]). This connects to

my previous worries about the dynamical evolution of non-regular states; if we use a

non-regular state to model the dynamical evolution of a system, we may be led to inaccurate

results and predictions. This justifies our interpretation of states at infinity and non-regular

states as idealizations—specifically idealizations which are inappropriate for analyzing

dynamical evolution. This illustrates how contextual details about a system lead to a better

understanding of what we mean by calling some states physically reasonable.

We can also see in this example how the requirement of reductive explanations is a

defeasible heuristic principle. Some have proposed (Ashtekar [2009]; Corichi et al. [2007])

that non-regular states are important in the construction of quantum theories of gravity.
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Everything that I have said so far in this section only applies to systems containing a finite

number of particles and so does not strictly have implications for the gravitational field. Still,

the arguments of this section suggest that treating non-regular states as physical would be a

somewhat radical change of perspective in the sense that one does not have antecedent reason

to think that the quantum theories constructed with non-regular states are plausible just from

considering the classical theory they are constructed from. I think one would need further

information, such as confirming empirical evidence or other theoretical virtues, to make these

theories with non-regular states plausible. In fact, Ashtekar ([2009]) has argued that

non-regular states are plausible in quantum gravity because they are required to ensure

consistency with another theoretical principle in general relativity, the principle of

‘background independence’. If this is correct and the theories involving non-regular states are

successful, then we may have reason to revise our understanding of non-regular states, and

consequently to revise our understanding of the classical states at infinity that we obtain as

their classical limits. Thus, the conception of physically reasonable states that I have argued

for in this section—and the role it plays in the construction of new theories—is defeasible. It

can be overruled by other theoretical or evidential considerations. I think that our current

understanding of the classical physics of finite collections of particles gives us good reason to

interpret classical states at infinity and non-regular quantum states as unphysical, but I

recognize that this understanding is fallible.

In the next section, I will take to heart the lesson that we should aim to construct quantum

theories that do not allow for non-regular states, and thus we should not use the Weyl algebra.

It is well known how to implement this proposal for systems with finitely many degrees of

freedom using the compact operators,15 which form a C*-algebra whose bidual is the algebra

A∗∗~ /N(VQ) recommended above. For this reason, I will use the algebra of compact operators

in what follows as a solution to the problem of non-regular states.

15Further work has been done to extend similar constructions to systems even with

infinitely many degrees of freedom (Grundling [1997]; Grundling and Neeb [2009]).
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5 Example: symmetry-invariance

The next example I consider is the quantization of the theory of a particle moving in an

external field with gauge symmetry. In this case, the quantum theory has charge superselection

structure, which prevents coherent superpositions of different charges. This is encoded in the

theory mathematically by the presence of unitarily inequivalent representations of the algebra

of quantities for the quantum theory.16 Unlike some other cases of unitarily inequivalent

representations, I think the interpretation of charge superselection is somewhat

straightforward: states with different charges are all physically possible (in a quite general

sense) and genuinely distinct. So the inequivalent representations are all part of the theory and

physically inequivalent in an appropriate sense.

But why do charge superselection rules appear for even a single particle system? The

standard lore is that the Stone-von Neumann theorem rules out the existence of inequivalent

representations for systems with finitely many degrees of freedom, so one might wonder how

superselection rules are possible for a single particle. One way to understand the appearance

of these superselection rules is through analysis of how the quantum theory is constructed.

The superselection structure is made plausible by an application of the requirement of

reductive explanations with my central proposal. In this case, the physical states turn out to be

precisely those states that are invariant under gauge symmetry transformations.

We begin by formulating the classical theory for a single particle moving in an external

gauge field. This theory contains the geometrical background of a principal fiber bundle with

total space P, base space Q, and typical fiber given by a compact Lie group G, which acts

smoothly on P on the right by Rg for g ∈ G. The base space Q represents the configuration

space of the particle, while the symmetries of the field are encoded in G. Formulating the

theory in the total space P allows one to understand how the particle couples to the external

field (Sternberg [1977]). One could provide a Hamiltonian formulation of the theory using as

phase space the cotangent bundle of the total space T ∗P, but one typically instead formulates

the theory by applying the Marsden-Weinstein reduction procedure (Marsden and Weinstein

16For more on superselection rules in the algebraic approach, see Earman ([2008]),

Landsman ([1990b], [1990c]).

24



[1974]; Belot [2003]; Butterfield [2007]) to construct the universal phase space (T ∗P)/G,

where G acts smoothly on T ∗P by the pullback R∗g. The idea of symplectic reduction is that P

contains redundant degrees of freedom that are eliminated by moving to the universal phase

space. Once these redundant degrees of freedom are removed, the universal phase space

(T ∗P)/G is merely a Poisson space, but not a symplectic space; it foliates into a collection of

disjoint symplectic leaves describing different possible charges (See Weinstein [1978];

Landsman [1993b], [1998]).17

To put this geometrical theory into an algebraic framework, one employs the algebra

C0((T ∗P)/G) of continuous functions vanishing at infinity on the universal phase space. The

classical state space corresponding to this algebra of quantities consists in the countably

additive probability measures on the universal phase space. This algebraic formulation does

not allow for states at infinity and so is compatible with the conclusions of the previous

section. However, the space (T ∗P)/G has a somewhat complicated structure, and it is useful to

formulate the construction of the quantum theory by starting from the space T ∗P. Thus, we

will take A0 := C0(T ∗P) as the algebra of quantities for our classical theory. If one starts with

the space T ∗P and uses the algebra C0(T ∗P) then one generally allows for far more states

corresponding to all countably additive probability measures on T ∗P. It is natural to call a

state on C0(T ∗P) physical just in case it is determined from a state on C0((T ∗P)/G) in the

universal phase space. The states ω0 on C0(T ∗P) that are determined by states on C0((T ∗P)/G)

are precisely the states that are symmetry-invariant in the sense that

ω0( f ◦ R∗g) = ω0( f )

for all f ∈ C0(T ∗P) and g ∈ G. Let VC be the collection of all symmetry-invariant states on

C0(T ∗P); this will form the collection of physical classical states. Applying the construction

from §2.1 to restrict attention to physical states produces the algebra A0/N(VC), which

Browning and Feintzeig ([2019]) show is *-isomorphic to C0((T ∗P)/G) and thus allows for

only states corresponding to countably additive probability measures on the universal phase

17This setup allows for more generality than the previous section because the phase space is

a manifold and not necessarily a linear space.
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space.18 Thus, A0/N(VC) provides the desired kinematical framework for the classical theory

with only physical states.

We can construct a quantum theory for this system by applying a generalized Weyl

quantization procedure developed by Landsman ([1993b, 1998]). We define the algebra of

quantities for our quantum theory to be A~ := K(L2(P)), the compact operators on the Hilbert

space L2(P), for all ~ ∈ (0, 1]. Landsman defines a family of quantization maps

Q~ : P → K(L2(P)) on a dense subalgebra P of C0(T ∗P). Using K(L2(P)) as the algebra of

physical quantities for the quantum theory is also compatible with the conclusions of the

previous section as this algebra does not allow for analogues of non-regular states; all states

on this algebra are density operators on L2(P). The family of algebras {A~}~∈[0,1] and

quantization maps {Q~}~∈[0,1] forms a strict deformation quantization, and so provides a way of

taking the classical limit of the quantum theory of a particle in an external gauge field.

We can use the collection VC of physical classical states to constrain the construction of our

quantum theory, just as in the previous example in §4. The key is to identify which quantum

states have classical limits in VC. Towards this end, consider quantum states that satisfy a

condition of symmetry-invariance in analogy with the physical states of the classical theory.

The symmetry group G has a natural unitary representation U(g) for each g ∈ G on the Hilbert

space L2(P) of the quantum theory given by

(U(g)ψ)(x) = ψ(Rg(x))

for all ψ ∈ L2(P). We will call a quantum state ω~ on A~ symmetry-invariant when

ω~(U(g)AU(g)∗) = ω~(A)

for all A ∈ A~ and g ∈ G. Let VQ be the subspace of A∗~ generated by the symmetry-invariant

18In this case, the procedure can be applied even though the technical conditions specified

by Feintzeig ([2018a]) are not satisfied. N(VC) is not a two-sided ideal and consequently the

canonical quotient projection A0 → A0/N(VC) is not a *-homomorphism, but A0/N(VC) is still

a C*-algebra.
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quantum states on A~.

In considering the classical limits of states of this system, we face a complication that did

not arise in the previous example; since Q~ is neither positive nor continuous in the current

case, there is no natural way to define the classical limit of a quantum state ω~ on A~ via a

constant field of states. So instead of specifying a unique classical limit, we will consider all

possible classical limits given by continuous fields of states {ω~}~∈[0,1] subject to just one

condition. If ω~ is a symmetry-invariant state, then {ω~}~∈[0,1] is an appropriate family for

specifying the classical limit of ω~ only if ω~′ is symmetry-invariant for each ~′ ∈ (0, 1]. The

motivation for this requirement is that we interpret the classical limit along the lines of

Feintzeig ([2019b]), who understands changing the numerical value ~ of Planck’s constant in a

quantum theory (where ~ > 0) as implementing a change of units and thereby changing the

extent to which states approximate one another numerically. On this interpretation, changing

the value of ~ otherwise leaves the physical interpretation of states and quantities the same.

Thus, on this interpretation the quantum states ω~ and ω~′ for ~, ~′ ∈ (0, 1] and ~ , ~′ should

represent the same physical situation in different systems of units. Our constraint then requires

that a quantum state ω~′ can represent the same physical situation as a symmetry-invariant

state ω~ only if ω~′ is also symmetry-invariant.

Notice that this constraint only explicitly governs the quantum states on the way to the limit

because it deals only with states ω~ for ~ > 0 and leaves open how the classical limits ω0 of

these states behave at ~ = 0. Thus, the constraint just mentioned only fills in some of the

context of this application of the main proposal by stating when a family of quantum states is

appropriate for representing the classical limit. However, with this constraint, Browning and

Feintzeig ([2019]) prove that the classical limit of an appropriate family of symmetry-invariant

quantum states in VQ must be a symmetry-invariant classical state in VC. Moreover, quantum

states that fail to be symmetry-invariant will in general have classical limits that fall outside of

VC. The requirement of reductive explanations and the central proposal of this paper suggest

that we consider only states in VQ to be physical quantum states.

We restrict attention to physical states in VQ in our quantum theory by replacing the algebra

of quantities A~ with A~/N(VQ). The results of Browning and Feintzeig ([2019]) and

27



Landsman ([1993b]) together show that the algebra A~/N(VQ) is *-isomorphic to

K(L2(Q)) ⊗C∗(G), where C∗(G) is the group algebra of G. This algebra has unitarily

inequivalent representations, which are in one-to-one correspondence with the unitary

representations of G (Landsman [1993b], p. 107-110 ). The algebra A~/N(VQ) is the one

advocated for by Landsman because it captures the superselection structure of the quantum

theory. Thus, we should understand the algebra A~/N(VQ) to afford an appropriate

mathematical formulation of the theory, which again illustrates the successful application of

the requirement of reductive explanations according to the central proposal of this paper.

In this context, what it means for classical states in VC or quantum states in VQ to be

physical is rather different from what it meant in the previous example of §4. What makes a

classical state unphysical when it fails to be symmetry-invariant (and hence lies outside of VC)

is that its expectation values depend on degrees of freedom that themselves do not represent

genuine physical properties. For example, a classical state that fails to be symmetry-invariant

for a particle moving in an external electromagnetic field with G = U(1) is one that depends

on the values of the electromagnetic potential over and above the values of the

electromagnetic field. States that fail to be symmetry-invariant are not consistent with our

understanding of the forces classical gauge fields produce on particles. A quantum state that

fails to be symmetry-invariant is unphysical in the same sense that it depends on degrees of

freedom that do not represent genuine physical properties.

One might worry that this understanding would rule out the dependence of quantum states

on the classical electromagnetic potential. This would be undesirable because it is known that

we can observe the dependence of quantum states on the classical electromagnetic potential in

the Aharanov-Bohm effect (Aharonov and Bohm [1959]).19 Certainly, it would be a problem

for my approach if it led to a theory inconsistent with empirical observations.

However, restricting attention to symmetry-invariant states in the sense of restricting

attention to VQ does not immediately appear to rule out this possibility. Landsman ([1990a],

[1990b], [1990c]) takes up the Aharanov-Bohm effect in a model containing the topological

19For philosophical discussions of the Aharanov-Bohm effect, see Nounou ([2003]),

Earman ([2019]), Shech ([2017]).
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idealization that the solenoid in the Aharanov-Bohm effect is infinitely long and its interior is

inaccessible to the electron. He shows the kinematical algebra one obtains by implementing

this constraint in the configuration space of the electron results in an algebra of the form

A~/N(VQ) with superselection sectors. Moreover, he shows that this provides a natural setting

for understanding the dynamics of the Aharanov-Bohm effect because when the free dynamics

is implemented in each superselection sector, the Hamiltonian generating time translations

contains so-called ‘topological terms’ that give rise to interference depending on the strength

of the electromagnetic potential. Thus, restricting attention to physical states in VQ might

actually be understood to give rise to novel predictions (through changes in the dynamics) for

experiments like the Aharanov-Bohm setup.

More work is required here to understand the relationship between the Aharanov-Bohm

effect and symmetry-invariant states; one would, for example, like to construct a model that

does not contain the topological idealization of an impenetrable solenoid and instead

represents the experiment with a non-trivial electromagnetic field in the interior of the

solenoid. It should be possible to analyze such a model with the quantization procedure

discussed above. It is also worth noting that historically the prediction of the Aharanov-Bohm

effect was, of course, not generated by thinking about reductive explanations and restricting

the collection of physically reasonable states. Still, I believe it is worth further investigation to

see the extent to which the foundation of the Aharanov-Bohm effect may be recovered from

the considerations of this paper.

Notice that the sense in which quantum states lying outside VQ are unphysical is different

than the sense in which non-regular quantum states were understood to be unphysical in §4.

Quantum states that fail to be symmetry-invariant should not be understood as idealizations,

but rather as states involving a dependence on artifactual or redundant degrees of freedom.

This demonstrates that what we mean when we call states physical or unphysical depends on

the context of the system under consideration. This does not imply that the requirement of

reductive explanations and the central proposal are idle, but shows that they must be applied

with care depending on the details of the situation at hand.

Moreover, this example demonstrates another way in which the procedure recommended

29



here for constructing quantum theories is defeasible. In this example, the construction

procedure leads to the use of a distinct dynamics in the quantum theory for setups like the

Aharanov-Bohm effect, which leads to novel predictions. If those predictions were not

confirmed by experiments, we would have reason to revise the kinematical framework of the

quantum theory. Thus, the requirement of reductive explanations serves only as a heuristic to

make theories plausible, but does not produce certainty. Still, when the requirement of

reductive explanations is understood as a heuristic and applied in a context-sensitive way, it

can lead to a deeper understanding of the foundation for the quantum theories we construct.

6 Conclusion: heuristics and discovery

I hope to have demonstrated that work on heuristics, like the requirement of reductive

explanations, can be of philosophical interest and of great importance to real scientific

examples. But little recent work in philosophy of science discusses heuristics and scientific

discovery. (For notable exceptions, see Crowther and Linnemann [2019]; Crowther [2018a],

[2018b].) In fact, there is some history in the philosophical community of skepticism about

whether heuristics and discovery are appropriate topics for philosophical investigation. The

distinction made by Reichenbach ([1938]) between the contexts of discovery and justification

led many positivists and empiricists to focus on justification as the only concept of epistemic

relevance. This trend is exemplified by the work of Popper ([1959]), whose view implies that

the epistemic attitude we should take toward theories is in some sense independent of the

methods used to generate them. Thus, it is worth closing with some remarks to situate my

conclusions within the recent history of philosophical discussions of heuristics.

Some aimed to revive issues concerning discovery and heuristics in the 1980’s (e.g., Nickles

[1980]), but lingering doubts about the possibility of a philosophy of discovery seem to have

overwhelmed these discussions by focusing on the question of whether theory generation is

epistemically relevant (e.g., Laudan [1980]). Nickles ([1985]) responds by arguing for a

connection between theory generation and justification, in part through considerations of

efficiency in the generation of knowledge; he argues that philosophers should be interested in

a logical relation he calls ‘discoverability’, rather than the contingent way in which a theory
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was actually discovered. Similarly, Zahar ([1983]) focuses on defending the concept of

rational heuristics from the challenges posed by Popper, arguing that discovery is not merely

subject to psychological or descriptive analysis. These defenders of the philosophical

relevance of theory construction distance themselves from the idea of a ‘logic of discovery’

leading us to new theories once and for all, but still attempt to give a general defense of the

epistemic relevance of methods for construction as forming something other than a logic.

In some sense, I am friendly to the ideas of Zahar and Nickles (among others) in their

attempts to revive philosophy of scientific discovery. I agree that heuristics can have normative

force, and I agree that the value of methods for theory construction can be understood

separately from historical contingencies associated with how theories were actually generated.

For example, my own investigation has taken place solely on the basis of mathematical

analysis with no consideration of history. However, I also differ in my approach from these

writers because I think that the philosophy of scientific discovery is best served by analyzing

the status of heuristics in particular cases, and I am skeptical that general considerations can

provide the kind of insight that is needed. Rather than attempting to give a general defense of

the epistemic relevance of methods for theory construction, I have focused on how particular

methods can be employed in particular contexts in the construction of quantum theories. My

reason is that the normative force of heuristic principles depends on details of the context one

is interested in, and I worry that one may miss philosophically relevant considerations if one

attempts to discuss theory construction at too high a level of generality.

My approach aligns even more closely with that of Post ([1971]) and Hesse ([1961],

[1970]), who consider specifically the heuristic role of correspondences between new and old

theories. I have argued that one can make at least one aspect of a ‘correspondence principle’

precise for the construction of new quantum theories as the requirement that a quantum theory

give a reductive explanation of the success of its classical predecessor. I have argued that in

order to achieve such an explanation, one must explain the structure of the physical state space

in the classical theory. I have shown that this requirement places nontrivial constraints on the

construction of new quantum theories, and in at least two examples leads to the appropriate

construction of the quantum theory. I think that the heuristic role of the requirement of
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reductive explanations is epistemically relevant in the sense that we have good reason to

pursue theories that can explain the success of their predecessors. However, I prefer to think

of these reasons slightly differently than the evidential reasons for accepting hypotheses that

come from empirical confirmation. I have argued along the lines of Hesse that satisfaction of

the requirement of reductive explanations makes newly constructed theories more plausible,

but that this plausibility can be overruled by other considerations including new empirical

results. The defeasibility of the epistemic and normative force of heuristics may not be so

different from empirical evidence, but I think it is worth emphasizing.

I think there are many open questions concerning the role of heuristics in theory

construction that are worth investigating. For example, in what ways can the requirement of

reductive explanations extend beyond considerations of physical state spaces? Does the

requirement of reductive explanations make a difference in other examples besides the models

I have considered? And can we understand the normative force behind other heuristics besides

those involving reductive explanations? These questions strike me as important in part

because they provide guides toward ways in which philosophical work might aid scientific

progress. This is especially true in quantum physics, where there is much ongoing and

open-ended work on constructing quantum field theories and quantum theories of gravity. I

hope more philosophers will take up the task of investigating the methods used in theory

construction because they have the potential to make a real impact in these areas.
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