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Abstract

The leading account of several salient observable features of our universe today is provided by
the theory of cosmic inflation. But an important and thus far intractable question is whether
inflation is generic, or whether it is finely tuned—requiring very precisely specified initial con-
ditions. In this paper I argue that a recent, model-independent characterization of inflation,
known as the ‘effective field theory (EFT) of inflation’, promises to address this question in a
thoroughly modern and significantly more comprehensive way than in the existing literature.

To motivate and provide context for this claim, I distill three core problems with the theory
of inflation, which I dub the permissiveness problem, the initial conditions problem, and the
multiverse problem. I argue that the initial conditions problem lies within the scope of EFTs
of inflation as they are currently conceived, whereas the other two problems remain largely
intractable: their solution must await a more complete description of the very early universe.
I highlight recent work that addresses the initial conditions problem within the context of a
dynamical systems analysis of a specific (state-of-the-art) EFT of inflation, and conclude with
a roadmap for how such work might be extended to realize the promise claimed above.
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1. Introduction

The most influential idea about the dynamics of the very early universe is described by
the theory of cosmic inflation (Guth, 1981). [See also: Brout, Englert, and Gunzig (1978);
Starobinsky (1980); Kazanas (1980); Sato (1981); Linde (1982); Albrecht and Steinhardt (1982);
Linde (1983).] “Very early” here means before about 10−10 seconds after the putative big-bang
singularity—a time that (arguably) constitutes the boundary between known and speculative
physics.1 This theory claims that for some period of time, ending at roughly 10−34 seconds after
the big-bang singularity, the universe underwent accelerating expansion in which the size of the
universe increased by a factor of (at least) about e60 ∼ 1026. Preeminent among the empirical
successes of inflation is its ability to provide a dynamical mechanism that can account for small
anisotropies in the cosmic microwave background (CMB): more specifically and most promi-
nently, it can account for angular dependences of temperature fluctuations in the CMB. Such
successes have been instrumental in establishing inflation as the most popular account of very
early universe cosmology (I will highlight further successes below). But, as one distinguished
commentator says:

“. . . the details of inflation are unknown, and the whole idea of inflation remains a
speculation, though one that is increasingly plausible” (Weinberg, 2008a, p. 202).

And so the question arises, how plausible is inflation? Given that inflation probes energy scales
that lie beyond established physics, one way to phrase this question is to ask how probable it is
for a suitable inflationary period to arise from initial conditions that we believe were possible?

Such problems of fine-tuning (as they will indeed come to be characterized in this paper)
provide a rich set of open conceptual (and technical) questions that have attracted a significant
amount of attention. This is partly because the fine-tuning of our existence, as encoded in our
current best (effective) physical theories, is a striking putative fact. Underlying such a claim
are two important foundational questions about fine-tuning that will be relevant for this paper:
(i) precisely what do we mean (especially quantitatively) by fine-tuning and (ii) how might we
deal with theories that predict phenomena that are finely tuned?

About (i), broadly speaking, one can identify the fine-tuning of some salient phenomenon
F , that arises in the context of some theory T , by the condition: were circumstances in theory
T a little different, F would change significantly (for example, it would not arise at all). Of
course, there is much in this characterization of fine-tuning that needs to be identified and/or
made precise, for example, “circumstances”, “a little different”, and “salient phenomenon F”:
in general, this can be a difficult task [see Azhar and Loeb (2018, 2019) for further context and
discussion]. In this paper I will largely interpret “circumstances” to refer to initial conditions
for dynamical variables of a theory. A colloquial understanding of “a little different” will mostly
suffice in these introductory remarks, but I will go on to endorse a more measure-theoretic (or,
with appropriate modifications, probabilistic) interpretation of this phrase—so that fine-tuning
of F occurs when the measure over initial conditions that give rise to F are, in some sense,
small (relative to, for example, the measure over the space of all initial conditions). A theory
containing finely tuned phenomena will be referred to as a ‘finely tuned theory’.

About (ii), one response that I generally endorse, is that finely tuned theories seem to
call for a replacement, namely, a less-finely tuned theory, where salient phenomena do not
change significantly under small changes in circumstances. Indeed, cosmic inflation provides
an example of a putatively less-finely tuned theory supplanting a more-finely tuned theory,

1Note that I will refer, in this paper, to times after some initial ‘big-bang singularity’. Such descriptions are,
of course, imprecise. It is thought that our description of spacetime, according to general relativity, breaks down
at some point in the past so as to render such times (and perhaps even the concept of a singularity) ill-defined.
But I will set aside such issues for the sake of keeping the discussion self-contained.
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since inflation is thought to solve alleged fine-tuning problems confronting the big-bang model
(BBM) of cosmology.2 [See McCoy (2015) for another perspective on this claim.] Two such
problems (that I will describe in a little more detail in the following section) are the horizon
problem [see Misner (1969)] and the flatness problem [see, for example, Dicke and Peebles
(1979)]. These problems are thought to be explanatory deficiencies in the BBM’s account of
certain observable features of our universe today. At the heart of these explanatory deficiencies
lies the contention that in the BBM, initial conditions need to be very precisely specified in
order to account for these observable features. And, to be clear, it is the reliance on fine-tuning
that is seen as objectionable.

Now, the question of the degree of fine-tuning of a suitable inflationary period remains
an open question that has recently generated controversy—see, especially, the debate between
skeptics of inflation, for example, Ijjas, Steinhardt, and Loeb (2013, 2014) and those who remain
unperturbed by such skepticism, for example, Guth, Kaiser, and Nomura (2014) and Linde
(2015). This paper clarifies issues raised in such debates and introduces a novel program that
aims to resolve the controversy that surrounds one of three issues I identify, namely, the question
of fine-tuning of a suitable inflationary period.

More specifically, I will describe and endorse a new method for computing the degree of fine-
tuning of cosmic inflation: a method that employs effective field theories (EFTs) to characterize
inflation. I argue that this method promises to address the question of the degree of fine-tuning
of inflation in a significantly more comprehensive way than in the existing literature. In order
to set the stage for this argument, I review, in Sec. 2.1, putative virtues of cosmic inflation,
including aspects of the solutions provided by inflation to alleged fine-tuning problems of the
BBM. I distill, in Sec. 2.2, three issues with the theory that have come to light in the recent
literature, especially as a result of the debate between Ijjas, Steinhardt, and Loeb (2013, 2014)
and Guth, Kaiser, and Nomura (2014). I dub these problems the permissiveness problem, the
initial conditions problem, and the multiverse problem. I contend that the initial conditions
problem lies within the scope of EFTs of inflation, whereas the other two problems remain
largely intractable—their resolution must await a more complete description of the very early
universe. In Sec. 3.1, I provide a brief introduction to EFTs of inflation and discuss, in Sec. 3.2,
how they can be interpreted to address the initial conditions problem. In Sec. 3.3, I highlight
recent work by Azhar and Kaiser (2018) that provides a means to think about the onset of
inflationary dynamics within the context of a (state-of-the-art) EFT of inflation. In Sec. 4, I
outline a roadmap for how such work may be extended to realize the promise I ascribe to EFTs
of inflation. Concluding remarks follow in Sec. 5.

2. Cosmic inflation: Claimed virtues and present shortcomings

By the late 1970s it had been recognized by some that there was an explanatory crisis in
our understanding of the very early universe. The BBM of cosmology appeared to be extremely
finely tuned. That is, initial conditions needed to be very precisely specified in order to give
rise to the homogeneous, isotropic, and spatially flat universe we observe today. Such initial
conditions consisted of (i) high degrees of initial homogeneity among patches of the universe
that were, according to the BBM, causally disconnected, and (ii) a universe that was initially
very close to being spatially flat. The fine-tuning inherent in (ii) arises because spatial flatness
corresponds to a very special state: if the universe is initially spatially flat then it remains so, but
if it begins in a spatially non-flat state (even slightly away from spatial flatness) then it rapidly
diverges from flatness. The universe we observe today is thought to be spatially flat to within
0.5%. For this to now obtain, according to the BBM, the universe needs to be extraordinarily

2I refer here to the model that was well-established by the late 1970s, which traces the history of the universe
back to an initial singularity without invoking an early inflationary period.
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spatially flat early on: at roughly one second after the putative big-bang singularity, it must be
flat to within 10−14%.3

2.1. Claimed virtues

In 1980, Alan Guth introduced an idea that promised to ameliorate the fine-tuning inherent
in (i) and (ii) above, through a process in which the universe underwent accelerated expansion
for a very short period of time, wherein space was stretched by a factor of at least about
e60 ∼ 1026 (Guth, 1981). [Indeed, the title of Guth’s original paper explicitly refers to the
problems in (i) and (ii).] The manner in which the expansion solves these problems is well
known [see, for example, Kolb and Turner (1990) and Linde (1990)], and the solutions have also
attracted philosophical attention (Earman, 1995; Earman and Mosterin, 1999; Smeenk, 2013;
Butterfield, 2014; McCoy, 2015; Azhar and Loeb, 2019).

If all that the theory of inflation provided was a solution to fine-tuning problems with
the BBM, it would probably not have the following among cosmologists that it does today.
Arguably the most impressive success of the theory is its ability to provide a mechanism for
understanding the origin of subtle features of the CMB—more concretely, it provides a mecha-
nism that accounts for anisotropies in the temperature of the CMB. These anisotropies reflect
inhomogeneities in the density of the universe at the time at which photons in the CMB last
interacted with matter. Such inhomogeneities are thought to seed the evolution of the large-
scale structures we observe today. Inflation proposes that these inhomogeneities ultimately
come from small perturbations generated toward the end of inflation, arising from quantum
fluctuations. [See Guth (2013), for a review.] It is a remarkable story, spanning a complex
sequence of cosmological events and, if true, provides a foundation for a dynamical account
of the origin of clusters of galaxies, galaxies, solar systems, stars, planets, and carbon-based
life. Recent results from the Planck Collaboration provide (continued) striking confirmation
of particular models that instantiate the theory of inflation in the simplest general-relativistic
settings (Planck Collaboration, 2016b, 2018).

Thus, the theory of inflation has the following two claimed virtues, which I denote with
mnemonic labels since they will recur below.

(Tuning): The theory of inflation ameliorates fine-tuning problems with the BBM
of cosmology, providing a dynamical mechanism to account for the high degree of
homogeneity and the high degree of spatial flatness of the observable universe today.4

(Structure): The theory of inflation provides a dynamical mechanism for the origin of
density perturbations in the very early universe (namely, small variations in energy
density from one spatial region to another)—perturbations that are thought to grow
into the large-scale structures we observe today.5

3In a little more detail: spatial flatness refers to a lack of curvature of the three-dimensional spatial slices
that correspond to ‘instants’ in time. It can be measured by the dimensionless ratio, Ωtot ≡ ρtot/ρc, of the total
mass density in the universe, ρtot, to the critical density, ρc ≡ 3H2/(8πG) (H is a measure of the expansion
rate of the universe known as the Hubble parameter and G is Newton’s gravitational constant). Spatial flatness
corresponds to Ωtot = 1 (wherein the parameter in Einstein’s field equations that expresses the curvature of the
above-mentioned three-dimensional spatial slices, vanishes). Its present-day value has been measured to be very
close to unity: Ωtot = 0.999± 0.002 (Planck Collaboration, 2018). To obtain such a value, Ωtot needs to satisfy—
at the time of big-bang nucleosynthesis (roughly one second after the big-bang singularity)—Ωtot . 1±O(10−16)
[based on a previous estimate in Baumann (2009)].

4There are other such problems that inflation provides a solution for, such as the monopole problem, but I
set this aside since (Tuning), as stated, sufficiently captures features of inflation I wish to highlight.

5Note that for the BBM of cosmology, initial conditions that could account for CMB anisotropies, mentioned
above, would also need to be put in by hand—and so (Structure) can be connected to (Tuning). See Smeenk
(2018) for a discussion of related issues including, in particular, the role of inflation in generating initial density
perturbations that can account for CMB anisotropies, as well as large-scale structure.
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2.2. Present shortcomings

Despite the evidence that confirms certain models of inflation, the theory remains speculative—
and there is a relatively small band of physicists (and philosophers) who remain skeptical of
the theory. [See, for example: Earman and Mosterin (1999); Hollands and Wald (2002); Ellis
(2007); Ijjas, Steinhardt, and Loeb (2013, 2014).] I propose to characterize such skepticism via
the identification of three main problems.6

2.2.1. The permissiveness problem

The first problem, which I dub the permissiveness problem, amounts to an underdetermi-
nation of inflationary model by data. This underdetermination is daunting due to the inacces-
sibility of the energy scales involved and there are no agreed-upon theoretical clues about how
to constrain inflationary models.7

The underdetermination manifests for even the simplest realizations of inflation, for which
the action, S, can be written in the following way (where the reduced Planck mass, Mpl, is
given by Mpl ≡ 1/

√
8πG ≈ 2.4× 1018 GeV, in units where ~ = c = 1):

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (1)

This action contains five salient features [see, for example, Pieroni (2016, Ch. 2)]:

(i) a single-scalar field, φ(t, ~x), known as the ‘inflaton field’, or simply the ‘inflaton’ (rep-
resented here as a function of a cosmic time coordinate, t, and, implicitly, three spatial
coordinates, ~x);

(ii) a potential term, V (φ), that plays a key role in determining dynamical properties of the
inflaton;

(iii) the use of a canonical form for kinetic degrees of freedom for the inflaton [as in the second
term in brackets in Eq. (1)];

(iv) an account of gravitational degrees of freedom via the Einstein-Hilbert action [that is, the
first term in brackets in Eq. (1)];

(v) minimal coupling between the inflaton and the gravitational degrees of freedom as repre-
sented in (iv) [in effect, no term in the action that conjoins functions of the Ricci scalar,
R, and the inflaton (and/or functions of their derivatives)].

Inflationary models that invoke all five features will be referred to as ‘SSF’ (for ‘single-scalar
field’) models of inflation.

Different SSF models of inflation can be constructed through different choices for the po-
tential V (φ); it turns out that there are a plethora of such models that realize (Tuning) and

6Note that there are other possible problems with inflation that have received varying amounts of attention,
which are not quite covered by the tripartite classification that I will develop below. Two such problems, that
indeed lie outside the scope of the issues addressed in this paper, are (i) the transplanckian problem [which could
be interpreted as a problem about initial conditions—but I will resist including this problem in that category (in
Sec. 2.2.2) for I have a more modest aim for the scope of that category] and (ii) issues to do with interpretative
aspects of quantum mechanics and their impact on how we understand (Structure). See Chowdhury et al. (2019)
(and references therein) for more discussion of both of these issues.

7There have been various attempts to understand inflationary models in the context of theories that describe
physics at higher energies, including supergravity [see, for example, Kawasaki, Yamaguchi and Yanagida (2000);
Kallosh and Linde (2010); Kallosh, Linde and Roest (2013); Ellis, Nanopoulos and Olive (2013)] and string theory
[see, for example, Kachru et al. (2003); Baumann and McAllister (2015)]: such theories—and the manner in which
they realize inflation—remain speculative.
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(Structure). A particularly striking account of the multiplicity of these models is provided
by Martin et al. (2014a) who analyzed 74 distinct inflaton potentials that have been proposed
in the literature: again, each of them corresponding to an SSF model of inflation. In a Bayesian
study comparing such models with the Planck satellite’s 2013 data about the CMB (Martin
et al., 2014b), a total of 15 different potentials are favored by the data; this number can be
reduced to 9 different potentials if a particular measure of complexity is invoked. So although
this represents a significant reduction in the total number of SSF models that are consistent
with data, an underdetermination problem remains.

And it is important to note that SSF models belong to just one class of models of inflation.
For instead of probing different potentials [namely, different choices for (ii) above], one could look
to vary each of the other components. Such an exploration is more than just an exercise in listing
possibilities generated by denying some combination of (i), (iii), (iv), and (v): such possibilities
do indeed arise when one looks to embed inflationary models in (admittedly, speculative) higher-
energy theories. [See, for example: Amendola (1993); Wands (2008); De Felice and Tsujikawa
(2010); Kaiser (2016).]

I’ll mention two such examples that focus on different aspects of the assumptions that
underlie SSF models. First, one may look to modify the matter content of the early universe
in such a way as to relax the choice in (i). That is, it is thought that around the time of
inflation, there may have existed multiple scalar fields. One is thus led to models of ‘multi-
field inflation’, which can have consequences for observables today that are distinct from those
derived from models involving single-scalar fields (Wands, 2008).8 Second, one may look to
modify gravitational degrees of freedom, that is, to modify the Einstein-Hilbert action. One
class of such modifications introduces higher-order curvature invariants in the action. A well-
known modification of this form is that of f(R) gravity, where some (for example, nonlinear)
function of the Ricci scalar appears in the action (De Felice and Tsujikawa, 2010). Indeed one of
the earliest inflationary models was of this type, based on a modification of the Einstein-Hilbert
action by Starobinsky (1980), with f(R) = R + αR2 (where α is a constant). Strikingly, this
model furnishes predictions for observational parameters that are in excellent agreement with
the Planck data.9 And, as suggested above, these two types of modifications to SSF models
of inflation don’t include other possibilities that could be considered (and have indeed been
pursued), such as noncanonical forms for kinetic degrees of freedom, or single- or multi-field
models that are nonminimally coupled to gravitational degrees of freedom10.

The upshot is that there is, at present—whether one focuses on the simplest realizations of
inflation or on extensions of such realizations—a severe underdetermination problem of infla-
tionary model by the best cosmological data that we have available.

One of the motivations for studying EFTs of inflation is as a response to the permissiveness
problem. EFTs of inflation describe an inflationary phase in a way that is common to the class
of inflationary models over which they are agnostic: as such, they may be able to ameliorate
the permissiveness problem (I will touch upon this again in Sec. 3.2).

8See also Senatore and Zaldarriaga (2012), who describe novel features of the inferred statistical description
of density perturbations generated during inflation—in particular, novel aspects of non-Gaussianities.

9In particular, this model is in agreement with data on the scalar spectral index ns and the tensor-to-scalar
ratio r. Note also that one can perform a conformal transformation that reinterprets this modification of the
Einstein-Hilbert action in terms of a scalar degree of freedom subject to a potential [which I’ll denote by VS(φ)].
An analysis of interpretational issues that arise for such a mapping—namely, between the ‘Jordan frame’ and
the ‘Einstein frame’—lies outside the scope of this paper.

10A particularly interesting inflationary model, known as ‘Higgs Inflation’, is of precisely this character. Here
a single-scalar field is nonminimally coupled to the Ricci scalar, with a (Jordan-frame) potential that is of the
familiar Higgs variety. Under a conformal transformation, one can derive a model (in the Einstein frame) with
a minimally coupled single-scalar field and a potential that corresponds (in a certain limit) to VS(φ) (in fn. 9).
[See, for example, Bezrukov and Shaposhnikov (2008).]
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2.2.2. The initial conditions problem

The second problem amounts to the question of whether inflation is finely tuned.11 Indeed,
the question of whether inflation requires very precisely specified initial conditions (that is,
whether inflation is finely tuned with respect to initial conditions)—what I will call the ini-
tial conditions problem—is controversial [Brandenberger (2017) provides an overview of recent
progress; see also Linde (2015, 2018)].12 There are two natural issues relevant to the initial
conditions problem: first, an issue related to when inflation began (in a sense, the issue con-
cerns how we specify “initial”) and secondly, the issue of how we characterize the “conditions”
in which we are interested.

With regard to the first issue, consider the following two possible scenarios.

(I) Inflation began immediately after the universe emerged from the Planck era, namely, at
the Planck time of about 10−43 seconds after the big-bang singularity. In this case, ‘initial
conditions for inflation’ refers to conditions of the universe at the Planck time.

(II) There was a delay after the universe emerged from the Planck era, before inflation began.
In this case, ‘initial conditions for inflation’ could refer to: (a) the same initial conditions
as for (I), namely, conditions of the universe at the Planck time; or (b) conditions of the
universe just before inflation indeed begins.

In the simplest (that is, SSF) realizations of inflation (as described above)—where the potential
V (φ) is assumed to govern the potential-energy density of the universe immediately after the
Planck era—general arguments show that scenario (I) renders inflation less-finely tuned than
in scenario II(a). In particular, a smaller initial patch of homogeneity is required to initiate in-
flation in (I). Inflation “protects” patches of homogeneity against surrounding inhomogeneities,
which can evolve to overwhelm the homogeneous patch and prevent it from inflating [see, for
example, Liddle and Lyth (2000, Sec. 3.4.4)]. Option II(b) can naturally be interpreted as
treating inflation as an EFT (as we will in Sec. 3), in which the details of the theory are
somewhat independent of higher-energy (for example, Planck-energy-scale) completions of the
theory (Weinberg, 2008b; Cheung et al., 2008a).

With regard to the second issue, for SSF models of inflation (setting aside where one stands
on claims related to the first issue as described in the previous paragraph), there are two main
classes of “conditions” that have been probed in the investigation of how inflation depends on
initial conditions.13

(i) The first approach investigates how precisely initial conditions need to be set to yield suf-
ficient amounts of inflation starting from cosmological settings that are homogeneous and
isotropic [namely, Fredmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes]. In this
case, one typically considers the standard FLRW metric in the context of a homogeneous
scalar field: φ(t, ~x) = φ(t). A further simplification can be made where one assumes that
spatial sections (as encoded in the FLRW metric) are initially flat. This approach, in
effect, sets aside some of the motivations for inflation described above [for example, in
(Tuning)].

(ii) The second approach—which addresses a larger challenge—investigates how precisely ini-
tial conditions need to be to set to yield sufficient amounts of inflation starting from

11One can (but, strictly speaking, one does not have to) reframe this question as one that probes whether
inflation is less-finely tuned than the BBM—thereby calling into question one aspect of (Tuning).

12Penrose (1989) characterizes the fine-tuning problem for inflation in terms of entropy considerations.
13I set aside related issues concerning the (classical) stability of de Sitter space (to perturbations)—as addressed

in cosmic ‘no-hair’ conjectures—see, for example: Gibbons and Hawking (1977), Hawking and Moss (1982), Wald
(1983), Barrow (1983), Boucher and Gibbons (1983), Starobinsky (1983), Jensen and Stein-Schabes (1987), Bar-
row (1987), Kleban and Senatore (2016); for a concise conceptual overview, see Barrow (2017, Sec. 5.3.4).
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cosmological settings that are inhomogeneous and/or anisotropic. This second line of
attack has the potential to address the more conceptual question of whether inflation pro-
vides a better explanation of observed features of our universe today (by virtue of it being
less-finely tuned) than the BBM. [See Azhar and Loeb (2019) for a recent discussion of
the relationship between fine-tuning and explanatory depth.]

The consensus amongst studies that address both (i) and (ii) appears to be that large-
field inflation models—that is, those in which the excursion of the scalar field during inflation,
δφ, is greater than the Planck mass (mPl), δφ & mPl, are more robust to changes in initial
conditions than are small-field inflation models (where δφ � mPl during inflation). In the
case of (i), for example, Remmen and Carroll (2014) show by explicitly constructing a measure
on the space of trajectories for flat FLRW spacetimes, that if the initial energy density of the
universe is the Planck energy density, then for a quadratic potential, V (φ) = 1

2m
2φ2 (an example

of a potential consistent with large-field inflation), nearly all trajectories undergo sufficient
amounts of inflation. For cosine inflation, V (φ) = Λ4 [1− cos(φ/f)] (an example of a potential
consistent with small-field inflation), one finds the opposite conclusion.14 In the case of (ii)
above, recent numerical work (in the context of 3+1-dimensional Einstein gravity) establishes
a similar conclusion in the case where inhomogeneities are included [see: East et al. (2016);
Clough et al. (2016, 2018); Marsh et al. (2018); Bloomfield et al. (2019); Aurrekoetxea et al.
(2019)]. [See also Chowdhury et al. (2019), for a discussion of the above issues.]

Note however that these results generally relate to just one way in which inflation can be
realized (that is, via SSF models), and the size and nature of the inhomogeneities probed have
limitations. I will argue below that there are decidedly distinct ways to supplement and extend
such results so as to provide a more complete picture of the severity of the initial conditions
problem for inflation.

2.2.3. The multiverse problem

The third problem is related to a striking prediction of inflation, if it is extended to energy
scales higher than those involved in the dynamical imprinting of density perturbations in the
very early universe [as mentioned in (Structure)]. Namely, it is thought that under such an
extension, inflation is future-eternal and gives rise to a multiverse: a vast (typically infinite)
causally disconnected set of ‘pocket universes’ in which the parameters of the standard models
of particle physics and cosmology vary from one pocket universe to the next (Vilenkin, 1983;
Linde, 1986a,b; Guth, 2007, 2013).15 The theories that include such extensions are known as
theories of ‘eternal inflation’.

A question that arises in this context is: how do we test some theory that describes a mul-
tiverse? The natural approach is to determine predictions, extracted from the theory, for what
we would observe (in our pocket universe). Such a test can be operationalized through a com-
parison between probability distributions, as constructed from the theory, and our observations.
But in constructing such distributions one must confront a variety of challenges that span both
technical and conceptual issues. One can parse these challenges into three sub-problems: the
measure problem, the conditionalization problem, and the typicality problem. The conjunction
of these three sub-problems will be referred to as the multiverse problem.16

14In the case of cosine inflation, this conclusion is sensitive to the value of f . Their conclusions, as reported
above, assume that relevant parameters for the two potentials are consistent with observational data (that is,
data from the Planck Collaboration).

15Here, by the ‘standard model of cosmology’ I am referring to the ΛCDM model of cosmology—so named
after the components that are thought to dominate the energy density of the universe, namely, the cosmological
constant (represented by Λ) and cold dark matter (CDM).

16See Aguirre (2007) and Azhar and Butterfield (2018) for more detailed discussion. In what follows I will
summarize key aspects of this problem.
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The measure problem amounts to two issues. First, one needs to specify the sample space,
that is, the collection of ‘outcomes’—sets of which can receive a measure. But there is no a
priori best way of selecting the sample space. Secondly, even if one has specified a reasonable
sample space, natural measures over appropriate sets of outcomes can be infinite, making it
difficult to define probabilities (such as when probabilities are taken as ratios of measures).
Regularization schemes have indeed been introduced with the goal of taming such infinities
but there is no single agreed-upon scheme, and resulting probabilities indeed depend upon the
scheme employed. [See, for a discussion of these as well as other challenges: Aguirre (2007);
Aguirre, Gratton, and Johnson (2007); Guth (2007); De Simone et al. (2008); Freivogel (2011);
Smeenk (2014).]

Now, it is likely that even with a solution to the measure problem in hand, probabilities for
physical quantities taking the values that we measure will be small: for generic models of eternal
inflation, much of the multiverse is not likely to resemble our pocket universe. So instead of sim-
ply rejecting some such model of eternal inflation on the grounds that it does not predict, with
high probability, (our) observed values for salient physical quantities, one conditionalizes the
relevant probability distribution with respect to some set of criteria C (that is, one implements
a ‘conditionalization scheme’). Such criteria are meant to reflect our ‘observational situation’
or perhaps ‘us’, but it is not clear how to do this. A natural choice for C is that it comprises a
comprehensive account of, for example, our observational situation, as in all the data we have
thus far accumulated, but it is not clear how we can practically implement such a choice. Of
course, different choices for C lead to different probabilities for physical quantities and thus to
different predictions for what we should expect to observe [viz. a version of the ‘problem of
the reference class’: see Hájek (2007)]. This problem, of which criteria C to choose and then
how to practically conditionalize the relevant probability distribution based on this choice is
the conditionalization problem (Aguirre and Tegmark, 2005).

Finally, to elicit a precise prediction—even if one has determined a measure and a condi-
tionalization scheme—one must confront the question of how typical we should expect to be
of spacetime regions so delineated (that is, spacetime regions in which we might arise), and
therefore how typical we should expect the values of our observed physical quantities to be.
The assumption that we are typical is known as the principle of mediocrity (Vilenkin, 1995).
But this assumption has been controversial. Precisely what assumption we should adopt is the
‘typicality problem’. A more complete discussion of these interesting sub-problems will take us
too far afield, but for a growing literature on such issues (and especially the typicality problem),
see: Weinstein (2006), Hartle and Srednicki (2007), Garriga and Vilenkin (2008), Srednicki and
Hartle (2010), Azhar (2014, 2015, 2016, 2017), Azhar and Butterfield (2018).

Of the three present shortcomings described above—namely, the permissiveness problem, the
initial conditions problem, and the multiverse problem—I contend that the initial conditions
problem is the most pressing. Namely, the possibility that inflation is finely tuned presents
a significant problem for the theory. With regard to the permissiveness problem there is a
hope (which I generally endorse) that future observational evidence and theoretical advances
will discriminate between various possible realizations of inflation. Furthermore, the fact that
different ways of realizing inflation can account for different (future) observational outcomes
points to a robustness (rather than a failing) of the theory. [See, for example, Guth et al.
(2017), for thoughts along these lines.] The multiverse problem pushes back our description of
the very early universe to energy scales that outstrip those of the last phase of inflation itself
[the phase that has observable consequences encapsulated especially in (Structure)], and is thus
arguably less pressing (for now) than the other two.
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3. The promise of effective field theories of inflation

In the past decade or so, a promising body of work has been developed that probes the idea
of cosmic inflation in a way that is significantly different from earlier characterizations. As I
will argue below, this new perspective on inflation as an effective field theory (EFT) (Cheung
et al., 2008a; Weinberg, 2008b) may well provide a novel way to tackle the initial conditions
problem.

Broadly speaking, EFTs of inflation probe a general characterization of inflation around
a preferred energy scale, where details of a more fundamental theory that may underlie this
characterization are, in effect, suppressed. This energy scale turns out to be significantly lower
than the Planck energy scale [due to observational constraints, see Planck Collaboration (2016b,
2018)]. The approach, endorsed by Guth, Kaiser, and Nomura (2014), and developed by Cheung
et al. (2008a) and Weinberg (2008b) connects to one of the more consequential shifts across many
areas of theoretical physics over the past 45 years, namely, a shift toward description in terms of
EFTs—as has occurred in high-energy physics and condensed-matter physics. Thus, a promising
next step in developing an understanding of the very early universe could well be to think in
similar terms, about dynamics through effective degrees of freedom that are most relevant within
some energy range. Also, for very early universe cosmology, there is an additional reason to
adopt an EFT-style approach, which is that information about physics at considerably higher
energies would presumably be inaccessible to observation, even in principle. For if inflation
did occur, then information about how the universe behaved before the final phase of inflation
(namely, the phase that we can indeed probe through our observations today), would have been
stretched to length-scales that would now be much longer than those that describe the universe
today. [This last point, of course, sets aside the manner in which one might construe tests of
the multiverse (described in Sec. 2.2.3) as providing information about physics at such higher
energies.]

The adoption of the spirit promoted in the previous paragraph comes with the added fea-
ture that EFTs of inflation [especially as pioneered by Cheung et al. (2008a)] provide model-
independent characterizations of inflation (around the preferred energy scale). As I will argue
below, this perspective on inflation does not resolve the permissiveness problem (though there
is a sense in which it can address an aspect of the problem) or the multiverse problem, but it
does provide a novel angle on the initial conditions problem and, moreover, promises to address
this problem in a significantly more comprehensive way than in the existing literature.

3.1. Effective field theories of inflation: A brief introduction

EFTs of inflation achieve model-independence by characterizing inflation through symme-
tries of the underlying spacetime. In the language of classical physics, inflation is described as
a period of accelerating expansion of the universe—together with small fluctuations atop a ho-
mogeneous and isotropic background—where the universe is in a quasi-de Sitter state: it is not
in an exact de Sitter state because the accelerating expansion must end. In this way, there is a
symmetry of general relativity that must be broken, namely, time-translation invariance of the
dynamics, as encoded in the relevant action. In more practical (and yet still model-independent)
terms, the early universe contains a ‘clock’ that counts down time until the end of inflation.
Importantly, this clock does not have to correspond to the usual scalar field φ (as in the SSF
models described in Sec. 2.2.1), and thus EFTs of inflation probe realizations of inflation that
extend beyond the usual settings in which it has been studied. Inflation can thus be thought of
as a (particular) theory of 4-dimensional spacetime diffeomorphisms broken to time-dependent,
3-dimensional spatial diffeomorphisms. The construction of the action for such a scenario is
described in, for example, Cheung et al. (2008a) and Baumann and McAllister (2015, Appendix
B). Only the rudiments of such a construction will be needed for our discussion, to which I now
turn.
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One can write down the most general effective action respecting time-dependent spatial
diffeomorphisms using a particular time-slicing of the underlying spacetime. This time-slicing
is known as ‘unitary gauge’ and corresponds to a choice of coordinates such that fluctuations
in the clock at different spatial locations vanish (to first order), leaving only perturbations in
the metric. The action—assuming we expand around a spatially flat FLRW metric, where the
scale factor is denoted by a(t)—can be written in the following way:

S = S0 + ∆S, (2)

where

S0 =

∫
d4x
√
−g

[
M2

pl

2
R− L(t)− c(t)g00

]
. (3)

In Eq. (2), ∆S contains two expansions, that is, it contains (i) terms that are at least quadratic
in fluctuations of the metric and (ii) terms that contain higher-order derivatives of the metric.
These latter terms correspond to the types of terms that arise in more standard EFT settings
and (as in those settings) are assumed to be suppressed in the low-energy effective theory.
When one is interested in dynamical aspects of just the background spacetime (as indeed we
will be below, and especially in Sec. 3.3), one can ignore ∆S. In Eq. (3), the two functions,
L(t) and c(t), are (thus far) unspecified functions of cosmic time: they can be given a natural
interpretation (as I will develop shortly) and will play a crucial role in the dynamical analysis
of this EFT of inflation, as described in Sec. 3.3.

One can derive Einstein’s equations (that is, in this specific context, Friedmann’s equations),
which encode the dynamics of the background spacetime, in the usual way, by varying S0 with
respect to gµν . This yields

H2(t) =
1

3M2
pl

[c(t) + L(t)] , (4)

Ḣ(t) +H2(t) = − 1

3M2
pl

[2c(t)− L(t)] , (5)

where H(t) ≡ ȧ(t)/a(t) is the Hubble parameter (overdots denote derivatives with respect to
cosmic time). We thus have expressions that relate the dynamics of the background—namely,
of the scale factor a(t)—to the functions of cosmic time, L(t) and c(t), appearing in S0. We
also note that solving Eqs. (4) and (5) for c(t) and L(t) yields

c(t) = −M2
plḢ(t), L(t) = M2

pl

[
3H2(t) + Ḣ(t)

]
. (6)

To connect such a description of inflation with the simplest realizations of inflation, compare
the action in Eq. (3) with the action for SSF models of inflation [Eq. (1)] in unitary gauge. In
this gauge, fluctuations in the clock (now, the inflaton) vanish (to first order), so we can set
φ(t, ~x)→ φ0(t). Equation (1) becomes

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
g00φ̇20(t)− V (φ0(t))

]
. (7)

Equation (7) has precisely the same form as Eq. (3) if we identify

1

2
φ̇20(t)↔ c(t), V (φ0(t))↔ L(t). (8)

Thus the action for an SSF model, in unitary gauge, corresponds to the action displayed in
Eq. (3), though the action in Eq. (3) is not limited to the case of SSF models (Cheung et al.,
2008a).
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It is worth reiterating this point. That is, the EFT-of-inflation action for the background
spacetime, displayed in Eq. (3), contains functions of time, namely, L(t) and c(t), that are
agnostic about the underlying physical mechanism that gives rise to these functions—it is in
this sense that EFTs of inflation provide a model-independent characterization of inflation.17

3.2. Effective field theories of inflation and present shortcomings of inflation

A question that now arises is: how does such an EFT of inflation relate to the shortcomings
described in Sec. 2.2? I will provide brief responses for two of these problems—namely, the
multiverse problem and the permissiveness problem—before focusing on the initial conditions
problem.

EFTs of inflation, almost by construction, do not address the multiverse problem. This is
because EFTs of inflation apply at a preferred energy scale that is lower than that typically
employed to probe multiverse cosmological scenarios. Also, EFTs of inflation probe small
fluctuations atop an inflating background, whereas, at least in particular variants of eternal
inflation (namely, slow-roll eternal inflation), much larger fluctuations need to be addressed.
On both accounts—that of the preferred energy scale of the theory and the nature of the
fluctuations invoked—EFTs of inflation are not well-suited to an analysis of an inflationary
multiverse.

The relationship between EFTs of inflation and the permissiveness problem is more nuanced.
EFTs of inflation are model independent (in the sense specified at the end of Sec. 3.1) and thus
they aim to characterize what is common among models that are (partly) responsible for the
charge that inflation is too permissive. But this provides an opportunity in that, for example, if
one can generate a prediction from an EFT of inflation that is not borne out in experiments, then
one can disconfirm each model in the class of models captured by the EFT. In which case, EFTs
of inflation may be able to ameliorate the permissiveness problem. See, for example, Cheung et
al. (2008b), who describe such a possibility in the case of EFTs of inflation that invoke a single
clock.

More generally, however, a resolution of the permissiveness problem and the multiverse
problem awaits a more complete theory of the very early universe. Indeed, if we were able to
formulate such a theory, it may pick out a particular model by which inflation was realized.
Additionally, such a theory would furnish an understanding of dynamics at higher energy scales
and thus may also contain an account of whether a multiverse can arise (along with an account,
for example, of its observable features). Of course, with due respect to a corresponding problem
of initial conditions for this more complete theory, it would also presumably provide insight into
the initial conditions problem for inflation at an energy scale that is accessible, in principle, to
observations today. However, we do not have such a complete theory, and part of my point in
this paper is that we do not have to wait for its development, in order to address the initial
conditions problem as it pertains to an inflationary period that could have yielded the observable
universe: EFTs of inflation promise to provide a rather comprehensive account of this issue.

Thus my main claim is that EFTs of inflation do provide an opportunity to address the
initial conditions problem for inflation—and they do so in a way that is significantly different
from all attempts to address this problem thus far. As mentioned above, EFTs of inflation
focus on preferred energy scales in such a way that they answer, by design, the preliminary
issue relevant to the initial conditions problem of inflation discussed in Sec. 2.2.2. Namely
“initial” in “initial conditions” is construed as “around the preferred energy scale for the EFT”.
Of course, this restricts the scope of an EFT of inflation in addressing the initial conditions
problem—for there remains the question of how precisely initial conditions need to be specified

17Note that there is a second sense of model-independence also in play, in that the full EFT expansion in Eq. (2)
is agnostic about details of a more fundamental theory that may describe inflation at higher energy scales. But
it is the sense of model-independence in the main text that will be important in what follows.
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at the Planck energy scale, regardless of what an EFT-of-inflation analysis reveals about the
nature of initial conditions at lower energy scales.

To further delineate the scope of EFTs of inflation in addressing the initial conditions prob-
lem, I highlight two aspects of this problem that were left implicit in the discussion in Sec. 2.2.2,
and give them mnemonic labels as they will recur.

(Characterize): First is the issue of how one characterizes inflation. On this score, every
attempt so far to probe the initial conditions problem [save for Azhar and Kaiser (2018)]
has assumed a specific functional form for the inflaton potential. In the scenarios summa-
rized in Sec. 2.2.2, the analytical work [by, for example, Remmen and Carroll (2013, 2014)]
as well as recent numerical work [by, for example, East et al. (2016); Clough et al. (2016,
2018); Marsh et al. (2018); Bloomfield et al. (2019); Aurrekoetxea et al. (2019)] invokes
specific potentials (admittedly, these potentials are generally taken to be representative of
one of two classes of potentials—that is, large-field models or small-field models). Their
conclusions are thus potential-dependent or, at best, depend on the classes into which the
potentials fall. [See also Chowdhury et al. (2019).]

(Measure): The second issue concerns how one would unambiguously verify the existence
of a problem in the first place, that is, how one would verify the existence of fine-tuning.
On this score—and in perhaps what is the least tractable aspect of the initial conditions
problem (regardless of how one characterizes inflation)—work generally focuses on choos-
ing a measure over initial conditions as they arise in some phase space for the theory.
From this measure, one would like to compute, for example, the probability of sufficient
amounts of inflation occurring. The problem here is that the choice of such a measure is
not uniquely selected by any underlying theory. Moreover, reasonable measures over ap-
propriate phase spaces are often infinite, making it difficult to define probabilities (as for
the measure problem that arises as part of attempts to extract predictions from theories
of the multiverse, as discussed in Sec. 2.2.3). [See Schiffrin and Wald (2012) and Smeenk
(2014) for further discussion.] The initial conditions problem, interpreted in a measure-
theoretic context, thus includes a very thorny measure problem.18

EFTs of inflation most naturally provide a novel perspective on the first of these two issues.
Namely, their model-independence provides a new way of characterizing inflation. As mentioned
above, the EFT of inflation developed by Cheung et al. (2008a) includes all models of inflation
that involve a single clock that counts down time until the end of inflation. This includes the
clock that is employed by the studies mentioned under (Characterize) above (that is, an SSF
φ), but also any other way that inflation might be realized via a single clock, including ways
for which we have not yet found any sort of physical underpinning. The promise of EFTs of
inflation is that one might be able to identify relevant phase spaces that are suitably agnostic
about the mechanism that underlies inflation [unlike each study, save for Azhar and Kaiser
(2018), mentioned in (Characterize)] so that measures over such phase spaces [that is, measures
that arise from a solution to the issue described in (Measure)] will be able to guide a more
comprehensive assessment of the nature and severity of the initial conditions problem.

If we are indeed able to identify suitable phase spaces that describe single-clock inflation
and also construct well-motivated measures over such phase spaces (not an easy task), the
conclusions we would reach about whether inflation, so characterized, is generic, would arguably
be an important guide to determining whether inflation is indeed generic. In the following
section, I describe and endorse an attempt to achieve rudiments of such a construction.

18And to be clear, this measure problem is distinct from the measure problem that arises in analyses of
multiverse scenarios.
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3.3. A dynamical systems analysis of an effective field theory of inflation

In Azhar and Kaiser (2018) we combine recent work on EFT approaches to inflation with a
dynamical-systems analysis originally formulated to characterize late-universe acceleration (Fr-
usciante, Raveri, and Silvestri, 2014). In short, we develop tools with which to address the flow
into inflationary states for the (general) single-clock descriptions of inflation detailed above—a
formulation that includes, but is not limited to, SSF models of inflation. In order to develop
the formalism, we restrict attention to background spacetimes that are (already) homogeneous,
isotropic, and spatially flat, focusing on the dynamical flow into inflationary states for initial
conditions that are not expressly geared to trigger inflation. We develop heuristic measures
over such initial conditions with which we estimate the probability that inflation will begin and
persist for at least 60 e-folds.

In more detail then, the physical system of interest is a flat background space together
with a clock that counts down time until the end of inflation, as described in Sec. 3.1. There
are, in principle, three key variables: the scale factor a(t), which characterizes the background
space; and two functions of cosmic time, c(t) and L(t), which characterize the clock (a further
interpretation of these functions of time, in the context of SSF models of inflation, appears
below). One can expressly convert the EFT-of-inflation formalism into a dynamical system by
adapting techniques described by Frusciante, Raveri, and Silvestri (2014). In particular, one
defines the following dimensionless variables (suppressing explicit time dependences from now
on), which serve as dynamical variables for the resultant dynamical system:

x ≡ c

3M2
plH

2
, y ≡ L

3M2
plH

2
, λm ≡ −

L(m+1)

HL(m)
, (9)

for m = 0, 1, 2, . . . . In the third expression in Eq. (9), (m) represents the mth derivative with
respect to time. This expression introduces an infinite tower of dimensionless variables that
encode implicit choices for the functional form of L, though, as I will describe below, in practice
we only consider a finite number of these terms for a given phase-space analysis.

Note that for the first Einstein equation to be satisfied [Eq. (4)] the dimensionless variables
x and y must satisfy a constraint:

1 = x+ y. (10)

A further feature of these dynamical variables follows from Eqs. (4) and (6), namely that the
Hubble slow-roll parameter ε, which delineates inflationary periods, is given by

ε ≡ − Ḣ

H2
=

3

2
(1 + x− y) = 3x, (11)

where I have used the constraint, Eq. (10), in the final equality in Eq. (11). Thus, since ε < 1
if and only if ä > 0 (which is the condition for inflation) we have that

inflation occurs if and only if x < 1/3. (12)

Thus x is the dynamical variable that will track the occurrence of inflation.
We can provide a useful interpretation for the variables displayed in Eq. (9) in the case where

the underlying inflationary model corresponds to an SSF model. Invoking the correspondences in
Eq. (8), and comparing these with the first Einstein equation [Eq. (4)], we see that x corresponds
to the fraction of the total energy density that is in the form of kinetic degrees of freedom,
whereas y corresponds to the fraction of the total energy density that is in the form of potential
degrees of freedom. The variable λm is the fractional change in the mth derivative of the
potential-energy density per unit Hubble time. Salient aspects of inflationary dynamics can
indeed be described through an interplay between kinetic and potential degrees of freedom, so
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these variables comprise a useful choice for an EFT dynamical system that aims to analyze
inflation.

Equations of motion for these dynamical variables reveal an infinite tower of first-order,
coupled, nonlinear ordinary differential equations—one differential equation for each variable
[listed in Eq. (9)]. Of course, one must close the system of equations to obtain a well-defined,
finite-dimensional phase space, and there is a straightforward way to do this. For some M ≥ 0,
one can fix λM to be a constant, thereby obtaining a closed system of differential equations for
the dynamical variables x, y, λ0, λ1, . . . , λM−1. [In the case where we choose M = 0 (thereby
fixing λ0 = constant), a closed system of differential equations arises for just x and y.] The
resulting phase space is thus 2 + M -dimensional and the corresponding dynamical system is
known as the Mth-order system.

One can thus study the underlying physical system—one phase space at a time—where there
are phase spaces for each dimensionality greater than or equal to two. [Recall the existence of
a constraint, Eq. (10), so that the effective dimensionality of each phase space is reduced by
one.] Higher-dimensional phase spaces display richer dynamical behavior, but are also relatively
arbitrary. The arbitrariness arises from the fact that a higher-dimensional phase space is derived
by fixing λM = constant, for some large M . That is, one needs to precisely specify a quantity
related to a high derivative of one of the free functions in the action for the EFT of inflation
(namely, L), and one’s warrant for doing so is unclear. A natural way to proceed is to thus
probe the physical system by focusing on the simplest (that is, lowest-dimension) phase spaces
first.

In Fig. 1, I present some key results [from Azhar and Kaiser (2018)] as they relate to the
initial conditions problem for inflation for a first-order system (which is the next-to-simplest
system one can analyze). In particular, Figs. 1(a) and 1(b) show the first-order phase space
(that arises by fixing λ1 = 2) with two different types of trajectories (in black), distinguished
by two different choices of initial conditions. The gray surface corresponds to the constraint
surface (that is, where 1 = x + y). Each trajectory starts with (what one might interpret as)
kinetic-energy-density-dominated initial conditions, that is, initial conditions that do not favor
inflation (where, initially, x ≥ y) and then subsequently flows into an inflationary state [which
persists as long as x < 1/3—see Eq. (12)]. Both of the trajectories shown flow towards an
inflationary fixed point (the lower green dot, which is an attractor in each case). The purple
region shown in Fig. 1(c) corresponds to that part of the constraint surface that houses initial
conditions that satisfy two criteria: (i) initial conditions are kinetic-energy-density dominated
(namely, x ≥ y) and (ii) trajectories that start at those initial points give rise to at least 60
e-folds of inflation (note that the purple region extends to infinity in the negative λ0-direction).

In Fig. 1(d), I display the probability of flowing through sufficient amounts of inflation
(there labeled PrInf), starting from kinetic-energy-density dominated initial conditions. The
computation is largely heuristic (but instructive), in that we compute PrInf assuming a particular
functional form for the probability distribution over the portion of the phase space in Fig. 1(c)
that houses kinetic-energy-dominated initial conditions. This probability distribution is uniform
along planes parallel to the x-y plane, and Gaussian in the λ0-direction. This distribution thus
disfavors large values of λ0, namely, it disfavors large fractional changes in the first derivative
of L (per unit Hubble time). The five curves in Fig. 1(d) correspond to five different choices of
the minimum x-value over which the probability distribution is defined. This minimum value is
chosen to take five different values, namely, xmin = 0.5, 0.6, 0.7, 0.8 or 0.9, thereby giving rise to
five separate curves for the probability of flowing through sufficient amounts of inflation. Each
curve is a function of f , which is a parameter that determines the width of the Gaussian fall-off
along the λ0-direction [see Azhar and Kaiser (2018) for further details].

We find that the highest probabilities occur for lower values of xmin. That is, for initial
conditions such that the initial kinetic-energy density is less dominant, the probability of flow-
ing through sufficient amounts of inflation is higher. Moreover, for any xmin, the probability
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Figure 1: An illustrative first-order EFT dynamical system as derived by Azhar and Kaiser (2018). Further
details for each subplot are provided in the main text. Subplots (a)–(b) show representative trajectories for
background spacetimes that begin with initial conditions that do not favor inflation, which then subsequently
flow into inflationary states (where x < 1/3). The green dots represent inflationary fixed points, whereas the red
dots represent noninflationary fixed points. Each trajectory begins at the gray dot and moves along the constraint
surface (so that Einstein’s equation [Eq. (4)] is satisfied), towards an inflationary fixed point. The projection of
the trajectory onto the x–y plane is shown as a dotted line (with arrows indicating the direction of the flow).
The trajectory that starts from a negative initial value of λ0 [in (b)] corresponds to a physical setting that lies
outside the usual single-scalar-field models of inflation and so reveals novel dynamics—unique to the EFT of
inflation formalism. Subplot (c) displays the basin of sufficient inflation, namely, all those initial conditions on
the constraint surface that (i) begin dominated by kinetic-energy density and (ii) flow through at least 60 e-folds
of inflation. Subplot (d) displays the probability of inflation as described in the text and as computed from the
basin of sufficient inflation. The five separate curves correspond to five separate choices for the minimum initial
value of x. The parameter f controls the width of the probability distribution set down over initial conditions,
where a larger f corresponds to a broader probability distribution. In each case, there are values of f that lead
to a significant probability that sufficient amounts of inflation can occur.
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of sufficient inflation increases as f decreases. This is because the width of the probability
distribution over initial conditions becomes smaller as f does, in which case a relatively greater
amount of the support of the probability distribution comes from initial conditions that lead to
trajectories that flow through sufficient amounts of inflation [that is, more of the weight of the
probability distribution lies over the purple region in Fig. 1(c)].

This condensed description of results represents a small selection of the rather rich set of
phase spaces that one can indeed construct from the EFT of inflation described in Sec. 3.1.
The trajectories that one finds display a variety of distinct features, together with surprising
universality, when one focuses only on those trajectories that indeed can be mapped onto SSF
models of inflation. I leave a more complete account of such technical aspects to a closer
inspection of the work by Azhar and Kaiser (2018), save to reiterate the following important
conceptual feature. The dynamics as encoded in the EFT of inflation above go well beyond
SSF models. Indeed, one can show that trajectories such as those presented in Fig. 1(b), which
enter into (and remain in) a region where x < 0 have no analog in the SSF case. In fact, it
appears that each initial condition that lies below the x–y plane in Fig. 1(c), that is, where
the initial value of λ0 is less than zero, gives rise to a trajectory that does not have an analog
in the SSF case. The EFT of inflation combined with the above dynamical-systems analysis
encodes general features of single-clock inflationary systems, and thus such a characterization
of inflation presents a significantly more comprehensive setting in which to analyze the initial
conditions problem for inflation.

4. The road ahead

There remain a variety of issues that the EFT-of-inflation framework must confront before
results in the spirit of those in Sec. 3.3 can be used to make more definitive claims about the
initial conditions problem. In particular, corresponding to (Characterize) and (Measure) in
Sec. 3.2, there are two shortcomings that EFT-based analyses must overcome—both of which
are evident in the analysis presented in Sec. 3.3. The first relates to constraints on EFT-based
characterizations of inflation that have been developed thus far, in particular, to the degree of
homogeneity and isotropy that is built-in to such characterizations. The second is the persistent
problem of extracting a measure, from which probabilistic claims may be generated.

With respect to the first shortcoming, EFTs of inflation have thus far employed homogeneous
and isotropic background spacetimes, about which perturbative expansions are constructed.
These expansions incorporate (i) small metric fluctuations (that is, small variations in the
geometry of the background spacetime) and (ii) terms that systematically treat higher-order
derivatives of the metric—where terms with higher derivatives contribute successively smaller
amounts to the action (and thus have less of an influence on the dynamics). The concern here
is that if one wishes to probe how generic inflation is, the spacetimes that EFTs of inflation
probe do not sample a suitably general set of possible spacetimes.

Indeed, one of the early prominent criticisms of inflation, as emphasized by Penrose (1989),
was that a largely homogeneous and isotropic spacetime with small fluctuations is a very special
state. Penrose argues that a more generic spacetime would contain much larger inhomogeneities
that would presumably collapse into a sea of black holes as the universe evolved in time. And,
he claims, were inflation able to get started in such a setting, the resulting spacetime that would
obtain would not look like the one we observe today.

Now, the EFT of inflation framework was not expressly designed to probe the initial con-
ditions problem. Rather it was meant as a generic characterization of inflationary dynamics as
we believe they occurred. Nevertheless, Penrose’s concerns do apply. The spacetimes probed by
the EFT of inflation are a small set of possible spacetimes, and so for such model-independent
characterizations of inflation to furnish a more exhaustive exploration of the initial conditions
problem there remains much work to do. However, part of the promise of EFTs of inflation that
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I wish to highlight is that (a significant part of) this work may well be tractable. An analog of
recent numerical work by, for example, East et al. (2016) and Clough et al. (2016, 2018), but
for EFT-based approaches, would be an interesting next step. As would more analytical ap-
proaches that construct, for example, EFTs of inflation that include background spacetimes that
are anisotropic, for which there is already a useful classification scheme—namely, the Bianchi
classification scheme (Bianchi, 1898).

Regardless of the precise construction employed in some more generic EFT of inflation, the
measure problem over initial conditions for the underlying cosmological spacetime persists, as
introduced in (Measure) in Sec. 3.2. The probability distribution we invoked for the first-order
system in Sec. 3.3 was ad hoc. It was designed to provide a measure over initial conditions in
such a way as to allow one to examine, in a familiar way (that is, by varying the width of a
Gaussian), the dependence of the probability of flowing through sufficient amounts of inflation on
the effective size of the region of initial conditions considered. Of course, quantitatively different
probability distributions over initial conditions would give different values for this probability.19

And as stated in Sec. 3.2, there is no agreed-upon solution to this measure problem. Perhaps
the state of the art is represented by work by Remmen and Carroll (2013, 2014), which looks
at issues of measure in the context of SSF models of inflation. Their work builds on earlier
attempts to construct measures on spaces of trajectories, such as by Gibbons, Hawking, and
Stewart (1987). The measure of Gibbons, Hawking, and Stewart (1987), however, diverges for
flat FLRW universes [as indeed noted by: Hawking and Page (1988); Coule (1995); Gibbons
and Turok (2008); Carroll and Tam (2010); Remmen and Carroll (2013, 2014); Carroll (2014)],
and the work of Remmen and Carroll (2013, 2014) finds a way around this issue by explicitly
constructing measures over trajectories for flat FLRW universes in the context of specific SSF
potentials. Yet there remains much work to do in extending such measures to more generic
background spacetimes that involve SSF models of inflation (let alone to model-independent
EFT-based characterizations of inflation).

So a definitive statement about how generic inflation is, would be difficult to obtain even
if we could write down a model-independent EFT-based description of inflation that is more
general than those that have been currently developed. Of course, an important consideration
is the role such a statement would have in our assessment of the theory of inflation. This issue
touches upon a topic that I do not have space to enter into here, related to norms for the
assessment of theories in the sciences more generally. In particular, the key question is whether
a lack of fine-tuning is an important element in the assessment and development of theories in
physics. [See Azhar and Loeb (2018, 2019) for a treatment of such an issue for theories (and
models) considered broadly across the sciences, wherein we argue that a lack of fine-tuning is
an important consideration.]

And so, with a more operational approach in mind (for now), there are promising avenues
for further work that will help in determining how generic cosmic inflation may be. One such
avenue is to construct an expressly Hamiltonian formulation of an EFT of inflation. Such a
Hamiltonian formulation is, indeed, not the formulation described in Sec. 3.3, but does underlie
the work by Gibbons, Hawking, and Stewart (1987) and Remmen and Carroll (2013, 2014)
(for FLRW cosmologies). The goal would be to construct, then, a conserved measure over
the space of trajectories of an EFT of inflation that incorporates significant anisotropies and
inhomogeneities. Of course, infinite measures would need to be regulated in some way, that is, at
the very least some conventional solution to the measure problem would need to be established.
Were such a construction possible: (i) it would complement recent work that has been carried

19In Azhar and Kaiser (2018), we did probe another type of distribution (a boxlike distribution) that implements
a hard cut-off in the λ0-direction. Such a distribution gives weight to a smaller subset of initial conditions
(compared to a distribution with a similar width that is Gaussian in the λ0-direction) and, in particular, to a
smaller subset of initial conditions that don’t lead to inflation. This leads to modestly higher values for the
probability of sufficient inflation.
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out on the initial conditions problem, as described above [see (Characterize) in Sec. 3.2, and
Sec. 3.3]; but (ii) by virtue of the model-independent approach inherent in EFTs of inflation,
it would provide an important perspective on the question of the degree to which the theory of
inflation is finely tuned.

5. Envoi

I will conclude by emphasizing my central claim, starting with a brief summary of some of
the themes that underlie this claim.

An important guide to our assessment of a theory in the sciences more generally is the degree
of fine-tuning it exhibits. How we characterize a theory and how we conceptualize and compute
levels of fine-tuning are key elements of such an assessment. For cosmic inflation, recently
developed EFTs of inflation provide a thoroughly novel way to think about the theory. In
particular, inflation is characterized via the symmetries of the underlying spacetime that result
from considerations of fundamental physical facts about inflation: that inflation is a period of
accelerated expansion of the (observable) universe, where small density fluctuations arise, and
where inflation indeed ends at some point in time. Thus inflation is characterized as a theory
in which time-translation invariance is broken, and where there is a single clock that, in effect,
counts down time until the end of inflation. Crucially, the nature and physical underpinnings
of this single clock do not have to be specified. This allows one to construct an action for the
theory in very general terms, so as to include all SSF models of inflation. Then, as described
above [and especially in Azhar and Kaiser (2018)], there are ways in which one can specify
initial conditions for EFTs of inflation, so that one can analyze the flow into inflationary states
of such a model-independent characterization of inflation.

An obstacle to addressing the initial conditions problem for inflation (as introduced in
Sec. 2.2.2) is that characterizing fine-tuning—in particular, finding a quantitative account of
fine-tuning—is a difficult task (and this feature of the problem extends to characterizing fine-
tuning across the sciences more broadly). Thinking of fine-tuning in measure-theoretic terms
one generally runs into a measure problem, where a unique measure or probability distribution
over the initial conditions of the theory is not singled out (regardless of how one characterizes
inflation). However there may be measures that are at least well-motivated, rudiments of which
have been studied in the context of SSF models of inflation, which could be adapted for use in
the context of EFTs of inflation.

If such a measure problem has (at least) a conventional solution, then the central claim in
this paper would be established. For the combination of a new way of thinking about inflation
(via general EFTs of inflation—more general than those that have been constructed thus far),
with the adaptation of familiar (measure-theoretic) tools to this new context, would provide a
thoroughly original and relatively definitive way to characterize fine-tuning of cosmic inflation.
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