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Abstract

The retail banking services are one of the pillars of the modern economic growth.
However, the evolution of the client’s habits in modern societies and the recent European
regulations promoting more competition mean the retail banks will encounter serious
challenges for the next few years, endangering their activities. They now face an
impossible compromise: maximizing the satisfaction of their hyper-connected clients
while avoiding any risk of default and being regulatory compliant. Therefore, advanced

and novel research concepts are a serious game-changer to gain a competitive advantage.

In this context, we investigate in this thesis different concepts bridging the gap between
persistent homology, neural networks, recommender engines and reinforcement learning
with the aim of improving the quality of the retail banking services. Our contribution is
threefold. First, we highlight how to overcome insufficient financial data by generating
artificial data using generative models and persistent homology. Then, we present
how to perform accurate financial recommendations in multi-dimensions. Finally, we
underline a reinforcement learning model-free approach to determine the optimal policy

of money management based on the aggregated financial transactions of the clients.

Our experimental data sets, extracted from well-known institutions where the privacy
and the confidentiality of the clients were not put at risk, support our contributions. In
this work, we provide the motivations of our retail banking research project, describe the
theory employed to improve the financial services quality and evaluate quantitatively

and qualitatively our methodologies for each of the proposed research scenarios.
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Chapter 1
Introduction

Eleven years after the biggest financial crisis of the twenty-first century, the financial
industry is facing a continuously increasing pressure from the European regulators.
Either new or revised European regulations are taking effect impacting all services
of the banking industry. For instance, the investment banks have to comply with
the revised Markets in Financial Instruments Directive [1], MIFID 2, which tries to
promote more transparency, more safety and more competition in financial markets.
Furthermore, to increase the safety of the financial sector, the International Financial
Reporting Standard 9, IFRS9, as adopted by the European Union [2] from the Interna-
tional Accounting Standards Board, TASB, and the third Basel accord [3], Basel 111,
are now mandatory requirements. The IFRS9 accounting standard forces the banks
to make provisions for future expected losses. The Basel III framework is an interna-
tional framework that promotes the evaluation of risk-weighted assets triggering the
amount of equity the banks should have to ensure a reliable capital strength. Directly
impacting the retail banking, the revised Payment Service Directive [4], PSD2, aims at
promoting more competition in the financial sector of retail banking services in the
European Union. Under this directive, the retail banks lost the exclusive privilege of
the distribution of payments solution such as credit cards or the confidential knowledge
of the clients’ financial situation. Financial companies can now challenge traditional
retail banks by proposing more attractive financial packages, regarding interest rate
loans or insurance policies, to gain new customers. Additionally, any bank can now
consult using an application program interface the financial information of any clients
from any other banks without limitation. Therefore, a bank having an aggressive
marketing strategy can consult the information of the clients of the other banks before

prototyping financial packages targeting the clients of the competitors. The banks will
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be able to further compete between each other. Straightforwardly, this directive will

have a major impact on the business opportunities and the benefits of retail banks.

Meanwhile, the society is going under a significant evolution with a new era of digi-
talization, contrasting the pace of evolution of the retail banking industry pictured
in Figure 1.1. For the past 150 years, the retail banking remained almost identical.
The survey [5] highlights that ninety-four percent of the people between eighteen and
seventy-five years old have access to a computer while eighty-eight percent have access
to a smartphone in thirty-one countries, either developed countries or countries in
development. Furthermore, in the US in 2018, Americans spent an average time of
more than eleven hours per day in front of a multimedia screen, either a smartphone,
a tablet, a computer or a television [6]. It represents a significant rise of thirty minutes
per day in comparison to 2017. These eleven hours are spent to watch, read, listen or

write multimedia content. These drastic evolution additionally are highly dependent of

Figure 1.1 The retail banking offices and services have remained almost identical for the
past 150 years. From left to right: the bank of England in the 19th century, the bank
of Montreal at the beginning of the 20th century and the bank of Montreal nowadays.




the generation. For instance, millennials, people born between 1980 and 2000, are avid
consumers of mobile technologies. Thirty percent of their multimedia time is spent on a
smartphone. This internet generation, which will shape the future of our society, have
opinions and spending habits that vary significantly from older generations [7]. Strongly
impacted by the 2008 financial crisis, the millenials underline that the retail banking is
at its highest risk of disruption, forcing a very conservative sector to reinvent itself. As
reported by the Millennial Disruption Index (MDI) in [8], one in three millennials are
effectively opened to switch to another bank in the next ninety days. Besides, the four
leading worldwide banks, JP Morgan Chase, Bank of America, Citigroup and Wells
Fargo, are among the ten least loved brands among millennials. Seventy-three percent
would be more excited by a new offering of financial services by Google, Amazon,
Apple, Paypal or Square than their national bank, illustrating their sympathy for
technology companies. A shocking number of thirty-three percent of millennials even
think they do not need a bank at all. These statistics are only the emerged part of
the iceberg for the retail banking services. When taking into consideration all adults
being more than eighteen years old, the interactions between the clients and the banks
have changed significantly for the past few years [9]. Between 2012 and 2018, visiting
a retail banking agency went down from few times per month to few times per year
while the mobile banking, relying on smartphones and tablets, skyrocketed from few
times per year to few times a month. We recall that mobile banking denotes the use of
a mobile device, such as a tablet or a smartphone, to connect online to the financial
accounts while the online banking uses a computer. The instantaneous access to bank-
ing services offered by the digital channels, using online banking and mobile banking,
is now more privileged by the clients than the traditional visit to the retail banking
agency. This trend is particularly observable in China, especially when considering
the mobile payments and the transactions market. For instance, Ant Financial, an
affiliate company of the Chinese group Alibaba, and Tencent, a Chinese internet-based
company, performed more than 22 trillion US dollars worth of mobile payments in
2018, outpacing the entire world’s debit and credit card payments volume [10]. Relying
on the latest digital innovations, WeBank, China’s first digital bank and affiliated
to Tencent, uses a real-time blockchain core allowing unique offers and solutions for
transaction payments and marketing campaigns [10]. WeBank has attracted more than
100 million clients since 2014 without the requirement of paper-based applications
[10]. The retail banking changes happening currently in China illustrates strongly the

future changes of retail banking activities in the next years to come for the rest of
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the world. Consequently, we can easily grasp the challenges facing the retail banks

due to the evolution of the habits of the society and the further digitalization of services.

In this regulatory and digitalization context, retail banks have to enrich and propose
new financial services as well as to reinvent their way of thinking. They can now rely
on the new source of information coming from the digital media and digital devices.
Furthermore, they can use the latest techniques inherited from computer science, such
as machine learning and artificial intelligence, for their survival. More precisely, the
retail banks can now benefit and use the full potential of large data sets combining
exclusive information of the clients, financial information and economic predictions
to create value and gain a competitive advantage. These large data sets are the fuel
of the machine learning and artificial intelligence algorithms. To understand better
the research problem, we have to explain in more details these generic terms and the
techniques related. The expression artificial intelligence (Al) is widely used to describe
advanced regressions, machine learning techniques, neural networks, deep learning and
reinforcement learning. In an artificial intelligence configuration, a large data set is
used with an algorithm that is capable to find rules, patterns within this data set.
Although the frontier between each notion is so vague that every computer scientist
has his own opinion, we can demystify and shed light among the different techniques
included in this novel field.

First, the term machine learning is very often used to describe clustering algorithms
such as K-means [11] or K-nearest-neighbor [12], linear algebra factorization such as the
Singular Value Decomposition (SVD) [13] or the Tensor Decomposition (TD) [14] used
in recommender engines, decision trees [15] or Support Vector Machine (SVM) [16].
What is characteristic of these techniques is that the model fine tunes its parameters
based on the data set provided as input instead of relying on hard coded and predefined
rules. In most of the applications, the machine learning algorithms are defined as
supervised or semi-supervised learning. In supervised learning, all of the features of the
data sets are known and each example is associated with a label. In semi-supervised
learning, only a fraction of the features is labeled.

Then, a second term widely used related to artificial intelligence is deep learning.
Deep learning relies on neural networks [17]. A neural network, or artificial neuron, is
an elementary unit receiving a weighted input. A non linear function, or activation
function, such as the sigmoid function or the Rectified Linear Unit [18], is used to

transform the input signal to an output signal. Neural networks are highly effective to
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Figure 1.2 In deep learning, a large number of neurons are stacked through different
layers to process the data.

solve complex tasks because of the way they can be architected, as illustrated in Figure
1.2. Neural networks can be stacked through different layers where the first layer of
neurons receives the input data and the last layer of neurons outputs the processed
information contained within the data. The intermediate layer, or the hidden layer,
made of at least one layer of neurons, takes care of the signal processing. The collection
of neurons and layers allows to increase the problem solving capabilities and often lead
to a better accuracy in numerical experiments. Furthermore, the deep learning term
denotes a use of a significant number of neurons and layers. Contrary to the technique
aforementioned, most neural networks and deep learning applications are classified as
unsupervised learning. In an unsupervised learning framework, the algorithms try to
infer properties of the data set without knowing any labels.

Another technique that is gaining in popularity among computer scientists is reinforce-
ment learning. In reinforcement learning, the objective is to learn an optimal policy
that maximizes a reward based on a value function learned across a set of actions,
or decisions. Each of the actions lead to a particular state and, consequently, to a
particular reward. For instance, in a game emulator scenario, the optimal policy is
learned through a replay experience under which the algorithm learns to play the
optimal set of actions to maximize the overall score, as illustrated in Figure 1.3 with
the Pacman Atari game. Relying on the Pacman game example, the goal is to eat all

the bullets while avoiding the little monsters. With a reinforcement learning approach,
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Figure 1.3 Reinforcement learning applied to the Pacman Atari game.

the algorithm learns by itself how to play based on the maximization of the reward
score, reaching human level performance. Consequently, the retail banks have now at

their disposal a new field of science that they can use to face their upcoming challenges.

Throughout this chapter, we have established various challenges facing the banking
industry, and especially, the retail banking industry. Furthermore, we shed some light
on artificial intelligence and machine learning with explanation of basic concepts in
order to demystify these concepts. The objective of this work is to propose innovative
and novel solutions to overcome the technical advances that caused a shift in the
demographics of the population impacting the banking industry. Although the problem
is large and complex, we concentrate our effort to bring research innovation and open
research to retail banking. We rely on the extensive information contained within
the bank’s data sets in the context of evolving regulation and changing society. More
precisely, we explore how to bring enriched clients” experience given limited resources,
new habits and new regulations in a time of massive digitalization. Therefore, we chose

to structure our approach around the following research problems:

o Accurate and efficient extension of the population size under a strong European
banking regulatory framework. Currently, the innovation of the retail banking
services and offers is impacted by limited information for some real-world scenarios.
For instance, the range of amount for car loan applications is very often incomplete
and sparse, influencing the expected risk evaluation. Therefore, there is a need
to extend the historical observation samples. By relying on adversarial models
and neural networks, it is possible to artificially increase the number of historical

samples while keeping the crucial patterns related to existing car loan applications.




o Personalized recommendation through dimension reduction to better categorize
clients’ needs and clients” wills. The data sets related to the clients’ personal
and financial information are large and sparse. Additionally, the banks are losing
their relation with their clients because of the decrease of the visits in agencies.
Consequently, the banks have less information about the center of interest of
their clients. Therefore, the aim here is to propose financial products that fit the
needs and the interest of a client’s group while trying to compress the original
information to an interpretable size. Typically, the families having young children
might be interested to open a savings account for the children’s university studies
while a young graduate might not be interested. The approach should highlight
the difference of interests by categorizing the population while being humanly

understandable.

« Learning through aggregated customer behavior with the determination of the
optimal policy for money management with reinforcement learning. There are
no institutions that can capitalize as much as the banks on the habits of the
spendings of the different groups of population depending on the age, the personal
situation or the revenues. Using a model-free approach based on reinforcement
learning, it is possible to determine the optimal policy of money management
for a category of population. It proposes to answer innovatively to traditional
questions such as the limit of a loan amount or the monthly limit on the credit

card, while offering complete transparency and being free of any human-bias.

In Chapter 2, we present PHom-GeM, Persistent Homology for Generative Models
(19, 20], in the context of financial retail banking transactions. Different generative
adversarial models, including Generative Adversarial Networks (GAN), Wasserstein
Auto-Encoders (WAE) or Variational Auto-Encoders (VAE), are used with the persis-
tent homology. The latter is a field of mathematics capable to reflect the density of the
data points contained in a manifold and to evaluate the shape of the data manifold
based on the number of holes. Our proposed method is used to generate synthetic
transactions of high quality to increase the number of samples of existing transactions.
Such approach is particularly interesting to boost the accuracy of the risk evaluation or
of the recommendation predictions. Following the generation of financial transactions,
we then propose, in Chapter 3, to perform recommendations of financial products
depending on the clients’ categorizations. We reduce the dimension of large data sets

through an accurate tensor resolution scheme, VecHGrad [21], allowing to categorize
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a population through variables that cannot be observed, known as latent variables.
Predictions are performed using neural networks on the latent categories of population
for two scenarios. We first evaluate the next financial actions of the clients to help the
banks to adopt a dynamic approach for the proposal of new products fitting the clients’
needs [22]. We then determine the future mobile banking authentication. It enables the
bank to estimate which clients are more finance-oriented [23]. In Chapter 4, we discuss
a retail banking methodology to establish an open, transparent and explainable decision
making process. It targets the decisions made during financial product subscriptions
such as the limit on a new credit card or the amount of money granted for a loan. This
process should also be highly optimized to reduce the risk of the bank and to maximize
the client’s satisfaction. Using a model-free reinforcement learning approach in the
context of financial transactions [24], we are able to evaluate the optimal policy for
money management. It enables to answer the typical question of how and where to fix
the amount limit based on a complete transparent approach, free of any-model bias,
depending exclusively and solely on the clients” aggregated information. In Chapter 5,

we resume the accomplishments of this thesis and we address the main contributions.




Chapter 2

PHom-GeM: Persistent Homology
and Generative Models for Retail

Banking Transactions

Generative models, including Generative Adversarial Networks (GANs) [25] and Auto-
Encoders (AE) [17], have become a cornerstone technique to generate synthetic samples.
Generative models learn the data points distribution using unsupervised learning to
generate new data points with slight variations. The GANs are among the most
popular neural network models to generate adversarial data. A GAN is composed
of two parts: a generator that produces synthetic data and a discriminator that dis-
criminates between the generator’s output and the true data. The AE are a very
popular neural network architecture for adversarial samples generation and for fea-
tures extraction through order reduction. They are composed of two parts: the
encoder which maps the model distribution to a latent manifold and the decoder which
maps the latent manifold to a reconstructed distribution. However, AE are known
to provoke chaotically scattered data distribution in the latent manifold resulting in
an incomplete reconstructed distribution. Furthermore, GANs also tend to provoke
chaotically scattered reconstructed distribution during their training. Consequently,
generative models can originate incomplete reconstructed distributions and incomplete
generated adversarial distributions. Current distance measures fail to address this
problem because they are not able to acknowledge the shape of the reconstructed data
manifold, i.e. its topological features, and the scale at which the manifold should be

analyzed. We propose Persistent Homology [26] for Generative Models, PHom-GeM, a
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new methodology to assess and measure the data distribution of a generative model.
PHom-GeM minimizes an objective minimization function between the true and the
reconstructed distributions and uses persistent homology, the study of the topological
features of a space at different spatial resolutions, to compare the nature of the true
and the generated distributions. The potential of persistent homology for generative
models is highlighted in two related experiments. First, we highlight the AE partial
reconstructed distribution provoked by the chaotically scattered data distribution of
the latent space. Then, PHom-GEM is applied on adversarial samples synthetically
generated by AE and GAN generative models. Both experiments are conducted on
a real-world data set particularly challenging for traditional distance measures and
generative neural network models. PHom-GeM is the first methodology to propose
a topological distance measure, the bottleneck distance, for generative models used

to compare adversarial samples of high quality in the context of credit card transactions.

2.1 Motivation

The field of generative models has evolved significantly for the past few years thanks
to unsupervised learning and adversarial networks publications. A generative model
is capable to learn and approximate any type of data distribution, thanks to neural
networks, with the aim to generate new data points with small variations [17]. These
models are particularly useful to increase the size of the original data set or to overcome
missing data points. In [25], Goodfelow et al. introduced one of the most significant
generative neural networks called Generative Adversarial Network (GAN). It is a class
of generative models that plays a competitive game between two networks in which the
generator network must compete against an adversary according to a game theoretic
scenario [17]. The generator network produces samples from a noise distribution and its
adversary, the discriminator network, tries to distinguish real samples from generated
samples, respectively samples inherited from the training data and samples produced

by the generator.

Meanwhile, feature extraction through dimension reduction techniques were initially
driven by linear algebra with second order matrix decompositions such as the Singular
Value Decomposition (SVD) [27] and, ultimately, with tensor decompositions [28, 14],

a higher order analogue of the matrix decompositions. However, due to linear algebra
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limitations [29, 30], several architectures for dimension reductions based on neural
networks have been proposed. Dense Auto-Encoders (AE) [31, 32] are one of the most
well established approaches. An AE is a neural network trained to copy its input
manifold to its output manifold through a hidden layer. The encoder function sends the
input space to the hidden space and the decoder function brings back the hidden space
to the input space. More recently, the Variational Auto-Encoders (VAE) presented by
Kingma et al. in [33] constitute a well-known approach but they might generate poor

target distribution because of the KL divergence.

Nonetheless, as explained in [34], the points of the hidden space are chaotically scat-
tered for most of the encoders, including the popular VAE. Even after proper training,
groups of points of various sizes gather and cluster by themselves randomly in the
hidden layer. Some features are therefore missing in the reconstructed distribution
G(Z),Z € Z. Moreover, GANs are subject to a mode collapse during their training for
which the competitive game between the discriminator and the generator networks is
unfair, leading to convergence issue. Therefore, their training have been known to be
very complex and, consequently, limiting their usage especially on large real world data
sets. By applying some of the Optimal Transport (OT) concepts gathered in [35] and
noticeably, the Wasserstein distance, Arjovsky et al. introduced the Wasserstein GAN
(WGAN) in [36] to avoid the mode collapse of GANs and hazardous reconstructed
distribution. Gulrajani et al. further optimized the concept in [37] by proposing a
Gradient Penalty to Wasserstein GAN (GP-WGAN) capable to generate adversarial
samples of higher quality. Similarly, Tolstikhin et al. in [38] applied the same OT
concepts to AE and, therefore, introduced Wasserstein AE (WAE), a new type of AE

generative model, that avoids the use of the KL divergence.

Nonetheless, the description of the distribution Pg of the generative models, which
involves the description of the generated scattered data points [34] based on the dis-
tribution Py of the original manifold X, is very difficult using traditional distance
measures, such as the Euclidean distance or the Fréchet Inception Distance [38]. We
highlight the distribution and the manifold notations in Figure 2.1 for GAN and in
Figure 2.2 for AE. Effectively, traditional distance measures are not able to acknowl-
edge the shapes of the data manifolds and the scale at which the manifolds should be
analyzed. However, persistent homology [39, 40] is specifically designed to highlight the
topological features of the data [26]. Therefore, building upon the persistent homology,

11
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Figure 2.1 ITn PHom-GeM applied to GAN, the generative model GG generates fake
samples X € & based on the samples Z € Z from the prior random distribution Py.
Then, the discriminator model D tries to differentiate the fake samples X from the
true samples X € X. The original manifold X and the generated manifold X are
transformed independently into metric space sets to obtain filtered simplicial complex.
It leads to the description of topological features, summarized by the barcodes, to
compare the respective topological representation of the true data distribution Px and
the generative model distribution Fg.

the Wasserstein distance [41] and the generative models [38], our main contribution
is to propose qualitative and quantitative ways to evaluate the scattered generated

distributions and the performance of the generative models.

In this work, we describe the persistent homology features of the generated model GG
while minimizing the OT function W, (Px, Pg) for a squared cost c(z,y) = ||z — y||3
where Py is the model distribution of the data contained in the manifold X, and Pg
the distribution of the generative model capable of generating adversarial samples. Our

contributions are summarized below:

12
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Figure 2.2 In PHom-GeM for AE; the generative model G, the decoder, generates fake
samples X € X based on the samples Z € Z from a prior random distribution Py.
Afterward, the original manifold X and the generated manifold X are both transformed
independently into metric space sets to obtain filtered simplicial complex. As for
PHom-GeM applied to GAN, it leads to the description of the topological features,
summarized by the barcodes, to compare the respective topological representation of
the true data distribution Px and the generative model distribution Pg.

o A persistent homology procedure for generative models, including GP-WGAN,
WGAN, WAE and VAE, which we call PHom-GeM to highlight the topological
properties of the generated distributions of the data for different spatial resolu-
tions. The objective is a persistent homology description of the generated data

distribution Py following the generative model G.

o The use of PHom-GeM to underline the scattered latent distribution provoked
by VAE in comparison to WAE on a real-word data set. We highlight the VAE’s
hidden layer scattered distribution using the persistent homology, confirming the

original statement of VAE’s scattered distribution introduced in [17].

o The application of PHom-GeM for the description of the topological properties of
the encoded and decoded distribution of the data for different spatial resolutions.

The objective is twofold: a persistent homology description of the encoded latent

13
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space @, := Ep, [Q(Z|X)], and a persistent homology description of the decoded
latent space following the generative model Pg(X|Z). The latter allows to assess

the information loss of the encoding-decoding process.

o A distance measure for persistence diagrams, the bottleneck distance, applied to
generative models to compare quantitatively the true and the target distributions
on any data set. We measure the shortest distance for which there exists a perfect
matching between the points of the two persistence diagrams. A persistence
diagram is a stable summary representation of the topological features of simplicial

complex, a collection of vertices, associated to the data set.

« Finally, we propose the first application of algebraic topology and generative
models on a public data set containing credit card transactions, particularly
challenging for this type of models and traditional distance measures while being

of high interest for the retail banking industry.

The chapter is structured as follows. We discuss the related work in Section 2.2. In Sec-
tion 2.3, we review the four main generative model formulations, WGAN, GP-WGAN,
WAE and VAE, derived by Arjovsky et al. in [36], Gulrajani et al. in [37], Tolstikhin
et al. in [38] and Kingma et al. in [33], respectively. By using the persistent homology,
we are able to compare the topological properties of the original distribution Px and
the generated distribution Pg;. We additionally compare the latent distribution P, of
the AE hidden space. We highlight experimental results in Section 2.4. We finally

conclude in Section 2.5 by addressing promising directions for future work.

2.2 Related Work

Literature on Persistent Homology and Topology A major trend in modern
data analysis is to consider that data has a shape, and more precisely, a topological
structure. Topological Data Analysis (TDA) is a set of tools relying on computational
algebraic topology to obtain precise information about the data structure. Two of the

most important techniques are the persistent homology and the mapper algorithm [26].

Data sets are usually represented as points cloud of Euclidean spaces. The shape of

a data set hence depends of the scale at which it is observed. Instead of trying to
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find an optimal scale, the persistent homology, a method of TDA, studies the changes
of the topological features (number of connected components, number of holes, ...)
of a data set depending of the scale. The foundations of the persistent homology
have been established in the early 2000s in [39] and [42]. They provide a computable
algebraic invariant of filtered topological spaces (nested sequences of topological spaces
which encode how the scale changes) called persistence module. This module can be
decomposed into a family of intervals called persistence diagram or barcodes. This
family records how the topology of the space is changing when going through the
filtration [43]. The space of barcodes is measurable through the bottleneck distance.
The space of persistence module is moreover endowed with a metric and under a mild
assumption these two spaces are isometric [44]. Additionally, the Mapper algorithm
first appeared in [45]. It is a visualization algorithm which aims to produce a low
dimensional representation of high-dimensional data sets in form of a graph, and

therefore, capturing the topological features of the points cloud.

Meanwhile, efficient and fast algorithms have emerged to compute the persistent ho-
mology [39],[42] as well as to construct filtered topological spaces using, for instance,
the Vietoris-Rips complex [46]. It has consequently found numerous successful applica-
tions. For instance, Nicolau et al. in [47] detected subgroups of cancers with unique
mutational profile. In [48], it has been shown that computational topology could be
used in medicine, social sciences or sport analysis. Lately, Bendich et al. improved
statistical analyses of brain arteries of a population [49] while Xia et al. were capa-

ble of extracting molecular topological fingerprints for proteins in biological science [50].

Literature on Optimal Transport and Generative Models The field of unsu-
pervised learning and generative models has evolved significantly for the past few years
[17]. One of the first most popular generative models is auto-encoders. Nonetheless,
as outlined by Bengio et al. in [34], the points in the encoded hidden manifold Z for
the majority of the encoders are chaotically scattered. Some features are missing in
the reconstructed distribution G(Z) € X, Z € Z. Thus, sampling data points for the
reconstruction with traditional AE is difficult. The added constraint of Variational
Auto-Encoder (VAE) in [33] by the mean of a KL divergence, composed of a recon-
struction cost and a regularization term, allows to decrease the impact of the chaotic
scattered distribution Py of Z.
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Concurrently to the emergence of AE, Goodfellow et al. introduced Generative Ad-
versarial Network (GAN) in [25] in which two models are simultaneously trained. A
generative model, the generator, captures the data distribution and a discriminative
model, the discriminator, estimates the probability that a sample comes from the
training data rather than the generator [17]. However, in this game theoretic sce-
nario, the training is complex because of the competition between the generator and
the discriminator, frequently leading to a mode collapse. The concepts of optimal
transport have been brought up to light following the recent work of Villani in [35].
As a solution, optimal transport [35] was therefore applied to GAN in [36] with the
Wasserstein distance introducing consequently the Wasserstein GAN (WGAN). By
adding a Gradient Penalty (GP) to the Wasserstein distance, Gulrajani et al. in [37]
proposed GP-WGAN;, a new training for GANs capable of avoiding efficiently the
mode collapse. As described in [51, 52] in the context of unbalanced optimal transport,
Tolstikhin et al. also applied these concepts to AE in [38]. They proposed to add one
extra divergence to the objective minimization function in the context of generative

modeling leading to Wasserstein Auto-Encoders (WAE).

Meanwhile, serious efforts have been proposed to increase the efficiency and the ac-
curacy of the weights optimization of neural networks including Stochastic Gradient
Descent (SGD) in [53] applied to optimal transport for large-scale experiments [54]
and to machine learning [55]. Other gradient descent updates, such as Adagrad [56] or
Adam [57], have been introduced as alternatives to the SGD. It has led ultimately to
the popular RMSProp [58], widely used for complex training of AE and GANSs.

In this chapter, using the persistent homology and the bottleneck distance, we propose
qualitative and quantitative ways to evaluate the performance (i) of the generated
distribution of GP-WGAN, WGAN, WAE and VAE generative models and (ii) of the
encoding decoding process of WAE and VAE. We build upon the work of unsupervised
learning and unbalanced optimal transport with the persistent homology. We show
that the barcodes, inherited from the persistence diagrams, are capable of representing
the adversarial manifold X generated by the generative models while the bottleneck
distance allows us to compare quantitatively the topological features between the
samples G(Z) € X of the generated data distribution Py and the samples X € X of
the true data distribution Py.
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2.3 Proposed Method

Our method computes the persistent homology of both the true manifold X € X
and the generated manifold XeXx following the generative model G based on the
minimization of the optimal transport cost W.(Px, Pg). In the resulting topological
problem, the points of the manifolds are transformed to a metric space set for which a
Vietoris-Rips simplicial complex filtration is applied (see definition 2). PHom-GeM
achieves simultaneously two main goals: it computes the birth-death of the pairing
generators of the iterated inclusions while measuring the bottleneck distance between

the persistence diagrams of the manifolds of the generative models.

2.3.1 Preliminaries and Notations

We follow the notations introduced in [37] and [38]. Sets and manifolds are denoted
by calligraphic letters such as X, random variables by uppercase letters X, and their
values by lowercase letters . Probability distributions are denoted by uppercase letters

P(X) and their corresponding densities by lowercase letters p(z).

2.3.2 Optimal Transport and Dual Formulation

Following the description of the optimal transport problem [35], the study of the
optimal allocation of resources, and relying on the Kantorovich-Rubinstein duality, the

Wasserstein distance is computed as

We(Px, Fo) = sup Exopy [f(X)] = Ey~p, [f(Y)] (2.1)

ferL
where (X, d) is a metric space, P(X ~ Px,Y ~ Pg) is a set of all joint distributions
(X,Y) with marginals Py and Py respectively and F, is the class of all bounded
1-Lipschitz functions on (X, d).

2.3.3 Wasserstein GAN (WGAN)

The objective of the Wasserstein minimization function applied to GAN is twofold:
(i) achieve appropriate calibration of the generator and the discriminator networks

thanks to the transporting mass cost function while (ii) avoiding the mode collapse of
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standard GANs [17]. By using the notations and the concept introduced in [36], the
WGAN objective loss function is defined by

Wc(Pm PG) = 316% ]ExNJP’r [fw(x)] - ]EINP(z) [fw(QB(Z))] ) (2'2)

where P, denotes the real data distribution, Py the generative distribution of the
function g : Z x RY — X, denoted gy(Z), with Z a random variable (e.g Gaussian)
over another space Z , {fu},e)y the parameterized family of functions, all K-Lipschitz

for some K, and w € W are the weights w contained in the compact space W.

2.3.4 Gradient Penalty Wasserstein GAN (GP-WGAN)

The Gradient Penalty Wasserstein GAN (GP-WGAN) [37] proposes to solve partial
issues that have been left opened in [36] by adding a gradient penalty to the loss function
of WGAN. The advantages of using a gradient penalty are twofolds: (i) reducing the
WGAN’s training error to improve the quality of the generated adversarial samples by
backpropagating gradient information while (ii) avoiding clipping the weights during
the WGAN’s training. Therefore, the GP-WGAN objective loss function with gradient

penalty is expressed such that

L=E [0~ E [FO+AE [(INe/(Dl-1% . (o3

X~Pg X~Px X~Pg

where f is the set of 1-Lipschitz functions on (X', d), Px the original data distribution,
P the generative model distribution implicitly defined by X = G(Z),Z ~ p(Z).
The input Z to the generator is sampled from a noise distribution such as a uniform
distribution. Pg defines the uniform sampling along straight lines between pairs of
points sampled from the data distribution Px and the generative distribution Pg. A
penalty on the gradient norm is enforced for random samples X ~ Pg. For further
details, we refer to [36] and [37].

2.3.5 Wasserstein Auto-Encoders
As described in [38], the WAE objective function is expressed such that

Dwar(Px, Fe) =, inf  EprEqezix[e(X, G(2))] +ADz(Qz, Pz) (2.4)
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where ¢(X,G(Z)) : X x X — R is any measurable cost function. In our experiments,
we use a square cost function c(z,y) = ||z —y||3 for data points z,y € X. G(Z) denotes
the sending of Z to X for a given map G : Z — X. @), and G, are any nonparametric

set of probabilistic encoders, and decoders respectively.

We use the Maximum Mean Discrepancy (MMD) for the penalty D (Qz, Pz) for a
positive-definite reproducing kernel k : Z x Z - R

Dy(Pz,Qz) := MMDy(Pz,Qz)

2.5
Dy(Pz,Qz) = ||/ ,)dPz(2) — /Z/f(zw)dQZ(Z)HHk , 2

where H;, is the reproducing kernel Hilbert space of real-valued functions mapping on
Z. For details on the MMD implementation, we refer to [38].

2.3.6 Variational Auto-Encoders

Variational Auto-Encoder (VAE) [33] were designed to combine approximate inference
and probabilistic models for efficient learning of latent variables within a data set. In the
VAE framework, the input x is mapped probabilistically to the latent variable z by the
encoder g4 and the latent variable z to x by the decoder py such as x q(fﬂf) 2 P
The parameters ¢ and 6 are used to parameterize q(z|z) and p(z|z) respectively.
The model has to learn the generative process p(x|z) for the optimization problem
max [, p(2)pe(z|z). Because of the assumption that the probability distribution are all

Gaussian, the VAE loss function is defined such that

o N X
L0 My —
(0,0, {x' 1)) = 37 L L. 0,a)
‘ N M
L0645 =151 S logpo(a', =)

)

1 =1 (26)

reconstruction IOSS
+ 3z Z ( +logy 4(z at) — Mé,d(ﬂfi) - Ui,d(xi)) }

KL divergence
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where the vector z is determined by z = g4(€, z) = pg(x) + € © 04(z) such that z will
have the distribution g4(z|z) ~ N(z, ue(x), 04(x)) with © the elementwise multipli-
cation. The terms p, and o4 denote the mapping from x to the mean and standard
deviation vectors, respectively. Finally, N is the number of data points contained in

the data set and M is the number of data points contained in the random sample.

2.3.7 Persistence Diagram and Vietoris-Rips Complex

We explain the construction of the persistence module associated to a sample of a
fixed distribution on a space. First, two manifold distributions are sampled from the
generative models’ training. Then, we construct the persistence modules associated to
each sample of the points manifolds. We refer to the first subsection of section 2.2 for

pointed reference on the persistent homology.

We first associate to our points manifold C C R”, considered as a finite metric space, a

sequence of simplicial complexes. For that aim, we use Vietoris-Rips complex.

Definition 1 Let V = {1,--- | |V|} be a set of vertices. A simplex ¢ is a subset of
vertices 0 C V. A simplicial complex K on V is a collection of simplices {o}, 0 CV,
such that 7 C 0 € K = 7 € K. The dimension n = |o| — 1 of ¢ is its number of

elements minus 1. Simplicial complexes examples are represented in Figure 2.3.

Definition 2 Let (X, d) be a metric space. The Vietoris-Rips complex VR(X €) at
scale € associated to X is the abstract simplicial complex whose vertex set is X, and

where {zo, 21, ..., %} is a k-simplex if and only if d(x;,x;) < eforall 0 <i,j <k.

b, Ly

Figure 2.3 A simplical complex is a collection of numerous “simplex" or simplices,
where a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle
and a 3-simplex is a tetrahedron.

n
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We obtain an increasing sequence of Vietoris-Rips complex by considering the VR(C, €)

for an increasing sequence (€;)1<;<n of value of the scale parameter e

Kp 5 Ko< Ky < o< Kyoy < K. (2.7)

Applying the k-th singular homology functor Hy(—, F') with coefficient in the field F
[59] to the equation (2.7), we obtain a sequence of F-vector spaces, called the k-th

persistence module of (K;)1<;<n

H(KL, F) 5 Hy(Ko,F) 2 o0 2% Ky, F) 2% Hy(Ky, F). (2.8)

Definition 3 V i < j, the (7,j)-persistent k-homology group with coefficient in F' of
K = (K;)1<i<ny denoted HP, 7 (K, F) is defined to be the image of the homomorphism
tj—l o...0%;: Hk(’C“ F) — Hk(ICJ,F)

Using the interval decomposition theorem [60], we extract a finite family of intervals of
R, called persistence diagram. Each interval can be considered as a point in the set
D= {(x, y) e Rijz < y}. Hence, we obtain a finite subset of the set D. This space of
finite subsets is endowed with a matching distance called the bottleneck distance and

defined as follow
do(4, B) = inf 5w Jlz — o)l

where A’ = AUA, B'=BUA, A = {(z,y) € R%|z = y} and the inf is over all the

bijections from A’ to B’.

2.3.8 Practical Overview of Persistence Diagrams, Barcodes

and Homology Groups

Before describing our contribution PHom-GeM, we give a more practical overview of
the concepts related to the filtration parameter, the barcodes, the persistence diagrams
and the homology groups for the ease of understanding. Consequently, we emphasize

the explanation of the key concepts without any formal formulation.
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Filtration Parameter, Barcodes and Persistence Diagrams

The first key notion for the construction of barcodes and persistence diagrams, used to
highlight the persistent homology features of the data points cloud, is the filtration
parameter denoted by e. First, for every data point, the size of the points is continu-
ously and artificially increased. Therefore, the size of the points grows as they become
geometrical disks. We illustrate the concept in Figure 2.4. Through the continuous
process, the filtration parameter € grows. When two disks intersect, a line is drawn
between the two corresponding original data points, creating a connected component
defined as a 1-simplex. As the filtration parameter keeps growing, more connected

components are created as well as triangles defined as 2-simplex.

By relying on this filtration parameter ¢, we can construct barcodes and persistence
diagrams. We recall that a barcode diagram is a stable summary representation of a
persistence diagram. We highlight the construction of the barcodes and the persistence
diagram in Figure 2.5. Given a two-dimensional function, we capture the points for
which there is a local extrema. The filtration starts from the bottom to reach the top.
Every time a minima is observed, a barcode is created. Then, as the filtration evolves,
local maxima are observed provoking the “death” of the barcode. Every “birth-death”
episode can be then reported in the persistence diagram offering a slightly different
visualization than the barcode diagram. Additionally, the persistence diagram can be
later used to further describe the topological properties of the original data points

cloud using quantitative measures, such as the bottleneck distance aforementioned.

Betti Numbers and Homology Groups

The aim of the persistent homology is to describe the shape of the data points cloud
by relying on features such as connected components, loops or cavities, independent
of any distance measurement. To this end, the set of features contained in the data
manifold are categorized into different homological dimensions, or homology groups.
We illustrate the different homology groups in Figure 2.6 for the first three homology
groups. The first homology group, denoted by Hy, is used to characterize the connected
components. The second homology group, H;, defines the loops or the circles. Finally,
the third homology group, Hs, designates the voids, the cavities or the spheres. We

invite the reader to [59] for more details.
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Figure 2.4 The filtration parameter € grows around each data point continuously leading
to the creation of geometrical disks. When two disks intersect, a line is drawn between
the two corresponding data points resulting in a connected component defined as a
1-simplex. Triangles, defined as 2-simplex, are generated as the filtration parameter ¢
keeps growing.

To complete the description of the topological features of the data points cloud, the
homology groups are completed with the Betti numbers. The Betti numbers are
used to measure the holes of the data point cloud for each of the homology groups
[40, 61]. They more precisely reflect the topological properties of a shape as being the
number of i—dimensional holes in a simplical complex [62]. We recall the illustration
of the simplicial complex in Figure 2.3. Relying on Figure 2.6, we can describe the

objects with the first three Betti numbers. The connected components, highlighting
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FUNCTION BARCODES PERSISTENCE DIAGRAM
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Figure 2.5 As the filtration evolves, the local minima of the function provoke the
creation of a barcode while the local maxima induce the death of the barcode. Every
birth-death cycle of each barcode can be represented in the persistence diagram,
allowing the description of further persistent homology features.
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the homology group H, are described with the Betti numbers 3y =1, 5, =0, 8, = 0.
Then, the circle representing the homology group H; has the following Betti numbers
Bo = 1,01 =1, 8> = 0. Finally, the sphere illustrating the homology group H, has the
Betti numbers 5y = 1,5, = 0,8, = 1.

Combining the Filtration Parameter, Homology Groups and Barcodes

Following the practical description of the key concepts of the persistent homology, we
emphasize how these concepts, and noticeably the filtration parameter, the simplex,
the homology groups and the barcodes, relate to each other in Figures 2.7 and 2.8.
Given four original data points representing a rectangle, the continuous growth of the
filtration parameter ¢ leads to the computation of various 1-simplex. Vertices, edges
and faces are effectively continuously generated [63]. The first two homology groups,
Hy and H;, are represented. These groups, as aforementioned, describe the connected
components and the loops, respectively. The different snapshots of Figure 2.7 capture
the relation between the barcodes, the homology groups and the filtration parameter
with respect to the original data points and the growth of the filtration parameter . At
the end of the filtration procedure, a persistence diagram is drawn to recapitulate the
birth-death events observed with the barcodes, as shown in Figure 2.8. The persistence
diagram can be later used to describe the topological properties of the original data

points cloud using quantitative measures, such as the bottleneck distance.

NV

Figure 2.6 Visualization of the first three homology groups. The line, or the connected
components, belongs to the first homology group Hy. The second homology group H;
represents the circles or the loops. Finally, the homology group Hs describes the voids,
the cavities or the spheres.

25



PHom-GeM: Persistent Homology and Generative Models

2.3.9 Proposed Method: PHom-GeM, Persistent Homology

for Generative Models

Bridging the gap between the persistent homology and the generative models, including
GP-WGAN, WGAN, WAE and VAE, PHom-GeM uses a two-steps procedure. First,
the minimization problem is solved for the generator G and the discriminator D when
considering GP-WGAN and WGAN. The gradient penalty A in equation (2.3) is fixed
equal to 10 for GP-WGAN and to 0 for WGAN. For auto-encoders, the minimization
problem is solved for the encoder () and the decoder G. We use RMSProp optimizer
[58] for the optimization procedure. Then, the samples of the original and generated

distributions, Px and Pg, are mapped to the persistent homology for the description of

1
le .y :
L] o

3

Hy—— Hy—— Hy

— —_—

H, H, — H, —

a c a8 c « B w5 g

Figure 2.7 Representation of the filtration parameter ¢ with the homology groups
H, and H; for data points inherited from a rectangle. As the filtration parameter
€ progresses, the persistent homology features are highlighted with respect to each
homology groups. The homology group H, captures the connected components and
the homology group H; the loops. The birth-death episodes of the persistent homology
features are summarized by the barcodes.
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Figure 2.8 The filtration procedure leads to the construction of the barcodes of the
homological groups Hy and Hi, a stable summary representation of the persistence
diagrams. The groups Hy and H; are represented by black dots and red triangles,
respectively, in the persistence diagram.

their respective manifolds. The points contained in the manifold X inherited from Py
and the points contained in the manifold X generated with Py are randomly selected
into respective batches. Two samples, Y; from X following Px and Y, from X following
Pg, are selected to differentiate the topological features of the original manifold X and
the generated manifold X. The samples Y] and Y5 are contained in the spaces ); and
Vs, respectively. The spaces Y and ), are then transformed into metric space sets )71
and Y, for computational purposes. We subsequently filter the metric space sets Y
and Vs using the Vietoris-Rips simplicial complex filtration. Given a line segment of
length €, vertices between data points are created for data points respectively separated
from a smaller distance than e. It leads to the construction of a collection of simplices
resulting in Vietoris-Rips simplicial complex VR(C, ¢€) filtration. In our case, we decide
to use the Vietoris-Rips simplicial complex as it offers the best compromise between
the filtration accuracy and the memory requirement [26]. Subsequently, the persistence
diagrams, dgm,, and dgmy,, are constructed. We recall a persistence diagram is a
stable summary representation of the topological features of simplicial complex. The
persistence diagrams allow the computation of the bottleneck distance d,(dgmy, , dgmy, )
for quantitative measurements of the similarities, as illustrated in Figure 2.9. Finally,
the barcodes represent in a simple way the birth-death of the pairing generators of the
iterated inclusions detected by the persistence diagrams. We summarized the persistent

homology procedure for generative models Algorithm 1.
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Persistence Diagram 1

Persistence Diagram 2 Bottleneck Distance

e

[ 2 J

Figure 2.9 The bottleneck distance is a measure of similarity between two persistence
diagrams. The points of the first and the second persistence diagrams are gathered on
one persistence diagram. The distance between each of the points is measured. The
bottleneck distance is computed such that it is the shortest distance for which any
couple of matched points are at distance at most b.

Algorithm 1: Persistent Homology for Generative Models

10

11

12

13

14

15

16

Data: training and validation sets, hyperparameter A

Result: persistent homology description of generative manifolds

begin

/*Step 1: Generative Models Resolution*/
Select samples {z1, ..., x,} from training set
Select samples {z1, ..., 2z, } from validation set
With RMSProp gradient descent update (Ir = 0.001, p = 0.9, ¢ = 1079), optimize until
convergence  and G
case GP-WGAN and WGAN: using equation 2.3
case WAE: using equation 2.4
case VAE: using equation 2.6

/*Step 2: Persistence Diagram and Bottleneck Distance on manifolds of generative
models*/

Random selection of samples Y7 € V1,Y5 € Vs from Px and Pg

Transform ) and )5 spaces into a metric space set

Filter the metric space set with a Vietoris-Rips simplicial complex VR(C, ¢)

Compute the persistence diagrams dgmy, and dgmy,

Evaluate the bottleneck distance dy(dgmy, ,dgmy;, )

Build the barcodes with respect to Y; and Y5

return
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2.4 Experiments

We assess on a highly challenging data set for generative models whether PHom-GeM
can simultaneously achieve (i) accurate persistent homology distance measurement
with the bottleneck distance, (ii) detection of the AE latent manifold scattered distri-
bution Py, (iii) accurate topological reconstruction of the data points, and (iv) precise

persistent homology description of the generated data points.

Data Availability and Data Description We train PHom-GeM on one real-world
open data set: the credit card transactions data set from the Kaggle database! contain-
ing 284 807 transactions including 492 frauds. This data set is particularly interesting
because it reflects the scattered points distribution of the reconstructed manifold that
are obtained during generative models’ training, impacting afterward the generated
adversarial samples. This data set furthermore is challenging because of the strong
imbalance between normal and fraudulent transactions while being of high interest for
the banking industry. To preserve the transactions confidentiality, each transaction
is composed of 28 components obtained with PCA without any description and two
additional features Time and Amount that remained unchanged. Each transaction is
labeled as fraudulent or normal in a feature called Class which takes a value of 1 in

case of a fraudulent transaction and 0 otherwise.

Experimental Setup and Code Availability In our experiments, we use the Eu-
clidean latent space Z = R? and the square cost function ¢ previously defined as
c(z,y) = ||z — y||3 for the data points z € X,7 € X. The dimensions of the true
data set is R?®. We kept the 28 components obtained with PCA and the amount
resulting in a space of dimension 29. For the error minimization process, we used
RMSProp gradient descent [58] with the parameters Ir = 0.001, p = 0.9,¢ = 107% and
a batch size of 64. Different values of A for the gradient penalty have been tested. We
empirically obtained the lowest error reconstruction with A = 10 for both GP-WGAN
and WAE, as summarized in Table 2.1. The coefficients of the persistent homology are
evaluated within the field Z/27Z. We only consider homology groups Hy and H; who
represent the connected components and the loops, respectively. Higher dimensional
homology groups did not noticeably improve the results quality while leading to longer

computational time. The simulations were performed on a computer with 16GB of

!The data set is available at https://www.kaggle.com/mlg-ulb/creditcardfraud.
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Table 2.1 Root Mean Square Error (RMSE) after PHom-GeM gradient penalty calibra-
tion on GP-WGAN and WAE between the predicted samples and the original samples
of the model (smaller is better).

Gradient Penalty RMSE of GP-WGAN RMSE of WAE

0.1 0.159 1.403
0.5 0.162 0.846
1.0 0.158 0.597
3.0 0.158 0.532
2.0 0.155 0.385
10.0 0.153 0.376
15.0 0.155 0.381
20.0 0.158 0.385

RAM, Intel i7 CPU and a Tesla K80 GPU accelerator. To ensure the reproducibility
of the experiments, the code is available on GitHub [64].

Results and Discussions about PHom-GeM Because of the strong impact of
the AE scattered distribution P, on the quality of the encoding-decoding process,
we first assess for AE, and noticeably for VAE and WAE, if PHom-GeM, Persistent
Homology for Generative Models, can measure the scattered distribution Pz using
the bottleneck distance. We then observe the consequence of the encoding process on
the AE reconstructed distribution. Finally, in a third experiment, we reach the core
of our contribution that is the use of the persistent homology on complex generated
adversarial samples. We test PHom-GeM on the four different generative models: GP-
WGAN, WGAN, WAE and VAE. For the second and third experiments, we compare
the performance of PHom-GeM on two specificities: first, qualitative visualization of
the persistence diagrams and barcodes and, secondly, quantitative estimation of the
persistent homology closeness using the bottleneck distance between the generated

manifolds X of the generative models and the original manifold X’.

2.4.1 Detection of the Scattered Distribution of the Samples
Z of the Latent Manifold Z for AE

PHom-GeM is capable to measure the persistent homological features, for intance the

number of connected components or the number of holes, between two samples of a
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distribution. Hereinafter, we use the persistent homological distance, the bottleneck
distance, to measure and compare how much the WAE’s and VAE’s distributions Py of
the latent manifold Z is scattered from a persistent homology perspective. The strength
of the bottleneck distance is to measure quantitatively the topological changes in the
data, either the true or the reconstructed data, while being insensitive to the scale
of the analysis. Using the bootstrapping technique of [65], we successively randomly
select data samples Z; of the manifold Z. The total number of selected samples Z; is
at least 85% of the total number of points contained in the manifold Z for a reliable
statistical representation. Assuming the data is not scattered, the bottleneck distance
between the samples Z; is small. On the opposite, if the data is chaotically scattered in
Z, then the topological features between the samples Z; are significantly different, and

consequently, the bottleneck distance is large. We illustrate the idea in Figure 2.10.

In Table 2.2, the bottleneck distance is significantly lower for WAE than for VAE. The
level of scattered chaos observed for WAE is lower than for VAE, a direct consequence
of the use of optimal transport in WAE. It also means the distribution Py of the latent
manifold Z is better topologically preserved for WAE than for VAE. Thus, we can expect
that the reconstructed distribution Pg(X|Z) of X is less altered for WAE than for VAE.

2.4.2 Reconstructed distribution P; of the AE

Following the results on the persistent homological features of the latent manifold
Z of the WAE and the VAE, we assess in this section the impact of the quality of
the distribution P on the reconstructed distribution. Effectively, before generating
adversarial samples, we want to evaluate how much the WAE and the VAE are capable

to reproduce at their output the data injected as input.

We represent the persistence diagrams and the barcode diagrams between the original
and the reconstructed distributions, respectively Px and Pg(X|Z), of the manifold
X in Figures 2.11 and 2.12. We can notice that the original and the reconstructed
distributions are more widely distributed for WAE than for VAE. Additionally, the
persistence diagram and the barcode diagram of WAE are qualitatively closer to those
associated with the original data manifold X'. It means the topological features are bet-

ter preserved for WAE than for VAE. Such result was expected based on the observation
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Scattered Distribution

Uniform Distribution

Figure 2.10 By using the bootstrapping technique of [65], we can randomly select sam-
ples of the latent manifold Z and then, measure and aggregate the bottleneck distance
between the samples. In case of a scattered distribution, there is a strong variation
between the randomly selected samples of the persistent homological properties, such
as the distance between the points or the number of holes between the connected
components. Therefore, a scattered distribution leads to a bigger bottleneck distance
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than a uniform distribution.

Table 2.2 Bottleneck distance (smaller is better) for PHom-GeM applied to WAE and
PHom-GeM applied to VAE between the samples Z; of the latent manifold Z following
Py to detect the scattered distribution. The WAE better preserves the topological
features during the encoding than the VAE resulting in a manifold Z less chaotically

scattered, highlighted by the smaller bottleneck distance.

PHom-GeM on WAE

PHom-GeM on VAE ‘

Difference (%)

0.0984

0.1372

28.28
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of the scattered distribution in Subsection 2.4.1. Consequently, it highlights a better
encoding-decoding process thanks to the use of an optimal transport cost function
in the case of WAE. Furthermore, in Figure 2.13, a topological representation of the
original and the reconstructed distributions is highlighted. We observe that the iterated
inclusion chains are more similar for WAE than for VAE. For VAE, the inclusions of
the reconstructed distribution are randomly scattered through the manifold without

connected vertices.

In order to quantitatively assess the quality of the encoding-decoding process, we use
the bottleneck distance between the persistent diagram of X and the persistent diagram
of G(Z) of the reconstructed data points. We recall the strength of the bottleneck dis-
tance is to measure quantitatively the topological changes in the data, either the true or
the reconstructed data, while being insensitive to the scale of the analysis. Traditional
distance measures fail to acknowledge this as they do not rely on the persistent homol-
ogy and, therefore, can only reflect a measurement of the nearness relations of the data
points without considering the overall shape of the data distribution. In Table 2.3, we
notice the smallest bottleneck distance, and therefore, the best result, is obtained with
WAE. It means WAE is capable to better preserve the topological features of the original

data distribution than VAE including the nearness measurements and the overall shape.

2.4.3 Persistent Homology of Generated Adversarial Samples

According to a Generative Distribution Py

In this third experiment, we reach the core of our PHom-GeM’s contribution. We
evaluate on the four generative models, GP-WGAN, WGAN, WAE and VAE, with the
persistent homology both the qualitative and quantitative topological properties of the

generated adversarial samples with respect to the generative model distribution Pg.

Table 2.3 Bottleneck distance (smaller is better) for PHom-GeM applied to WAE and
VAE between the samples X of the original manifold X and the reconstructed manifold
G(Z|X) for Z € Z. Because of OT, the WAE achieves better performance.

PHom-GeM on WAE PHom-GeM on VAE |  Difference (%)
0.0788 0.0878 | 10.25
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Figure 2.11 PHom-GeM applied to WAE and PHom-GeM applied to VAE’s rotated
persistence diagrams in comparison to the persistence diagram of the original sample
showing the birth-death of the pairing generators of the iterated inclusions. Black points
represent the 0-dimensional homology groups H, that is the connected components of
the complex. Red triangles represent the 1-dimensional homology group H; that is the
1-dimensional features, the cycles.
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WAE Original Sample

VAE

Magnitude Scale

Magnitude Scale

Magnitude Scale

Figure 2.12 PHom-GeM applied to WAE and PHom-GeM applied to VAE’s barcode
diagrams in comparison to the barcode diagram of the original sample based on
the persistence diagrams of Figure 2.11. The barcodes diagrams are a simple way
to represent the persistence diagrams. We refer to [26] for further details on their

generation.
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Figure 2.13 Topological representation of the reconstructed data distribution following
P(X1]Z) for PHom-GeM applied to WAE and VAE. The encoding-decoding process
of the WAE better preserves the topological features of the manifold X.

The adversarial samples are compared to the original samples X of the manifold X. On
the top of Figures 2.14 and 2.15, the rotated persistence and the barcode diagrams of
the original sample X are highlighted. In the persistence diagram, as previously men-
tioned, black points represent the 0-dimensional homology groups Hy, the connected
components of the complex. The red triangles represent the 1-dimensional homology
group Hy, the 1-dimensional features known as cycles or loops. The barcode diagram is
a simple way of representing the information contained in the persistence diagram. The
generated distribution Py of GP-WGAN is the closest to the distribution Py followed
by WGAN, WAE and VAE. The spectrum of the barcodes of GP-WGAN, effectively,
is very similar to the original sample’s spectrum as well as denser on the right. On
the opposite, the WAE and VAE’s distributions Pg are not able to reproduce all of
the features contained in the original distribution, underlined by the narrower and

incomplete barcode spectrum.

In order to quantitatively assess the quality of the generated distributions, we use the

bottleneck distance between the persistence diagram of X and the persistence diagram
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Figure 2.14 On top, the rotated persistence diagram of the original sample is represented.
It illustrates the birth-death of the pairing generators of the iterated inclusions. In
the persistence diagram, the black points represent the connected components of the
complex and the red triangles the cycles. The GP-WGAN, WGAN, WAE and VAE’s
persistence diagrams allow to assess qualitatively, with the original sample persistence
diagram, the persistent homology similarities between the generated and the original
distribution, Pg; and Px respectively.
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Original Sample
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GP-WGAN
WGAN
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Figure 2.15 On top, the barcode diagrams of the original sample is represented. It
illustrates the birth-death of the pairing generators of the iterated inclusions. In the
barcode diagram, the black lines represent the connected components of the complex
and the red lines the cycles. The GP-WGAN, WGAN, WAE and VAE’s barcode
diagrams allow to assess qualitatively, with the original sample barcode diagram, the
persistent homology similarities between the generated and the original distribution,
Pg and Py respectively.
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Table 2.4 Bottleneck distance (smaller is better) with 95% of confidence interval between
the samples X of the original manifold & and the generated samples X of the manifold
X. Because of the Wasserstein distance and gradient penalty, GP-WGAN achieves
better performance.

Gen. Model Mean Value Lower Bound Upper Bound

GP-WGAN 0.0711 0.0683 0.0738
WGAN 0.0744 0.0716 0.0772
WAE 0.0821 0.0791 0.0852
VAE 0.0857 0.0833 0.0881

of G(Z) of the generated data points. We recall the strength of the bottleneck distance
is to measure quantitatively the topological changes in the data, either the true or the
generated data, while being insensitive to the scale of the analysis. Traditional distance
measures fail to acknowledge this as they do not rely on the persistent homology and,
therefore, can only reflect a measurement of the nearness relations of the data points
without considering the overall shape of the data distribution. Using the bootstrapping
technique of [65], we successively randomly select data samples contained in the
manifolds X and X to evaluate their bottleneck distance. The total number of selected
samples is at least 85% of the total number of points contained in the manifolds X
and X to ensure a reliable statistical representation. In Table 2.4, we highlight the
mean value of the bottleneck distance for a 95% confidence interval. We also underline
the lower and the upper bounds of the 95% confidence interval for each generative
model. Confirming the visual observations, we notice the smallest bottleneck distance,
and therefore, the best result, is obtained with GP-WGAN; followed by WGAN, WAE
and VAE. It means, in our configuration, GP-WGAN is capable to generate data
distribution sharing the most topological features with the original data distribution,
including the nearness measurements and the overall shape. It confirms topologically
on a real-world data set the claims addressed in [37] of superior performance of GP-
WGAN against WGAN. Furthermore, the performance of the AE cannot match the
generative performance achieved by the GANs. However, the WAE, that relies on
optimal transport theory, achieves better generative distribution in comparison to the
popular VAE.
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2.5 Conclusion

Building upon optimal transport and unsupervised learning, we introduced PHom-GeM,
Persistent Homology for Generative Models, a new characterization of the generative
manifolds that uses the topology and the persistent homology to highlight the manifold
features and the scattered generated distributions. We discuss the relations of GP-
WGAN, WGAN, WAE and VAE in the context of unsupervised learning. Furthermore,
by relying on the persistent homology, the bottleneck distance has been introduced
to estimate quantitatively the alteration of the topological features occurring during
the encoding-decoding process and the topological features similarities between the
original distribution, the AE latent manifold distributions and the generated distri-
butions of the generative models. It is a specificity that current traditional distance
measures fail to acknowledge. We used a challenging imbalanced real-world open data
set containing credit card transactions, capable of illustrating the scattered generated
data distributions of the generative models, particularly suitable for the banking indus-
try. We conducted experiments showing the performance of PHom-GeM on the four
generative models GP-WGAN, WGAN, WAE and VAE. We highlighted the scattered
distributions of the WAE and VAE’s latent manifold, an AE limitation that will be very
likely addressed successively in future research. We furthermore showed the superior
persistent homology performance of GP-WGAN in comparison to the other generative
models as well as the superior performance of WAE over VAE in the context of the

generation of adversarial samples.

Future work will include further exploration of the topological features such as the
influence of the simplicial complex. We will additionally address the use of an optimal
transport persistent homological distance measure, such as the Wasserstein distance,
to increase the accuracy of the topological measurements. Finally, we leave for future
research how to back-propagate the persistent homology information to the objective
loss function of the generative models to improve their training and the generation of

adversarial samples.
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Chapter 3

Accurate Tensor Resolution for

Financial Recommendations

The new financial European regulations, such as the revised Payment Service Direc-
tive (PSD2) [4], are changing the retail banking services by welcoming new joiners
to promote competition. Noticeably, retail banks have lost the exclusive privilege
of proposing and managing financial solutions, as for instance, the personal finance
management on mobile banking applications or the credit cards distribution for the
transaction payment solutions. Consequently, they are now looking to optimize their
resources to propose a higher quality of financial services using recommender engines.
The recommendations are moving from a client-request approach to a bank-proposing
approach where the banks dynamically offers new financial opportunities to their clients.
By being able to estimate the financial awareness of their clients or to predict their
clients’ financial transactions in a context-aware environment, the banks can dynami-
cally offer the most appropriate financial solutions, targeting their clients’ future needs.
In this context, we focus on the tensor decomposition [14], a collection of factorization
techniques for multidimensional arrays, to build predictive financial recommender en-
gines. Tensor decomposition are among the most general and powerful tools to perform
multi-dimensional personalized recommendations. However, due to their linear algebra
complexity, tensor decomposition requires accurate convex optimization schemes.

Therefore, in this chapter, we describe our novel resolution algorithm, VecHGrad
for Vector Hessian Gradient, for accurate and efficient stochastic resolution over all
existing tensor decomposition, specifically designed for complex decomposition. We
highlight the VecHGrad’s performance in comparison to state of the art machine learn-

ing optimization algorithms and popular tensor resolution scheme. The description of
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VecHGrad is then followed by its direct application to the CP tensor decomposition
[66, 28], a multidimensional matrix decomposition that factorizes a tensor as the sum
of rank-one tensors, for the predictions of the clients” actions. By predicting the clients’
actions, the retail banks can adopt an aggressive approach to propose adequate new
financial products to their clients. Finally, we will address the monitoring and the
prediction of user-device authentication in mobile banking to estimate the financial
awareness of the clients. Because of the imbalance between the number of users and
devices, we will use the VecHGrad optimization algorithm to solve the PARATUCK?2
tensor decomposition [67], which expresses a tensor as a multiplication of matrices and

diagonal tensors to represent and to model asymmetric relationships.

3.1 Motivation

Endorsed by the European objectives to promote the financial exchanges between
the Euro members, new regulatory directives are now applicable such as the Revised
Payment Service Directive (PSD2). They promote more control, more transparency and
more competition while trying to reduce the contagion risk in the event of a financial
crisis such as in 2008. The financial services, such as Personal Finance Management
(PFM) to monitor the expenses, are no longer the exclusive privilege of the retail
banks. Effectively, it allows every person having a bank account to use a PFM from a
third party provider to manage its personal finance, and thus transform the banks into
simple vaults. This game changing directive moreover obligates the banks to provide
access, via specific Application Program Interfaces (API), to the financial data of the
clients. The banks can therefore compete between each other to attract new clients by

proposing them new forms of credit or new financial solutions.

Nonetheless, the retail banks now have the opportunity to use their clients’ digital
information for recommender engines unlocking new insights about their clients to
target financial product recommendations. In this context, we concentrate on two
main retail banking applications. First, we focus on the financial actions of the clients.
By analyzing and predicting the financial actions of their clients, the banks gain
insight knowledge of their clients’ interests and clients’ spendings. Therefore, they can
dynamically propose products targeting the personal needs of their clients such as new

credit cards or new loans. For instance, if a client likes to buy a new car every five

42



3.1 Motivation

years and he bought the last one five years ago, the bank can approach him to propose
a new car loan with interesting rates. The predictions of the financial transactions,
consequently, are at the heart of the bank’s marketing strategy to find or renew product
subscriptions. In a second application, we then monitor the user-device authentication
on mobile banking application. Through the regular authentication, the banks can
create a financial profile awareness for every clients. The more frequently a client is
authenticating to its mobile banking application, the more likely he will have a high
interest for finance, and therefore, the more likely he will be interested by financial
recommendation. This client will be first contacted to advert financial products for
wealth and money optimization. The predictions of the user-device authentication

consequently becomes involved in a strategy of financial recommendations.

However, the clients’ actions contains a large variety of information for both applications.
Therefore, the clients’ transactions and the user-device authentication predictions in a
financial context is multi-dimensional, sparse and complex. As a result, the proposed
methodology has to extract information from a large sparse data set while being able
to predict a sequence of actions. We rely on tensors, a higher order analogue of matrix
decomposition, to answer these challenges. The tensors are able to scale down a large
amount of data to an interpretable size using different types of decomposition, also
called factorization, to model multidimensional interactions. Depending on the tensor
decomposition, different latent variables can be highlighted with their respective asym-
metric relationships. Fast and accurate tensor resolutions have nonetheless required

specific numerical optimization methods related to preconditioning methods.

The preconditioning gradient methods use a matrix, called a preconditioner, to update
the gradient before it is used. Common well-known optimization preconditioning meth-
ods include the Newton’s method, which employs the exact Hessian matrix, and the
quasi-Newton methods, which do not require the knowledge of the exact Hessian matrix,
as described in [68]. Introduced to answer specifically some of the challenges facing
Machine Learning (ML) and Deep Learning (DL), AdaGrad [56] uses the co-variance
matrix of the accumulated gradients as a preconditioner. Because of the dimensions
of modern optimization, specialized variants have been proposed to replace the full
preconditioning methods by diagonal approximation methods such as Adam in [57], by
a sketched version [69, 70] or by other schemes such as Nesterov Accelerated Gradient
(NAG) [71] or SAGA [72]. It is worth mentioning that the diagonal approximation

43



Accurate Tensor Resolution for Financial Recommendations

methods are often preferred in practice because of the super-linear memory consump-
tion of the other methods [73].

In this chapter, we take an alternative approach to preconditioning because of our
aim of building accurate multidimensional financial recommendation engines. We
describe how to exploit Newton’s convergence using a diagonal approximation of the
Hessian matrix with an adaptative line search. Our approach is motivated by the
efficient and accurate resolution of tensor decomposition for which most of the ML
and DL state-of-the-art optimizers fail. Our algorithm, called VecHGrad for Vector
Hessian Gradient, returns the tensor structure of the gradient and uses a separate
preconditioner vector. Our analysis targets non-trivial high-order tensor decomposition
and relies on the extensions of vector analysis to the tensor world. We show the superior
capabilities of VecHGrad over different tensor decomposition in regards to traditional
resolution algorithms, such as the Alternating Least Square (ALS) or the Non-linear
Conjugate Gradient (NCG) [74], and some popular ML and DL optimizers such as
AdaGrad, Adam or RMSProp. The superior capabilities of VecHGrad are then used for
our two main applications related to the clients’ financial actions and the user-device
authentication. It ensures to reach a negligible numerical error at the end of the tensor
factorization process with respect to the tensor decomposition used. The compressed
data set inherited from the tensor factorization is then used as input for the neurons

to perform the predictions. Our main contributions are summarized below:

o We propose a new resolution algorithm, called VecHGrad, that uses the gradient
and the Hessian-vector product with an adaptive line search to achieve the goal
of accurate and fast optimization for complex numerical tasks. We demonstrate
VecHGrad’s superior accuracy at convergence and compare it with traditional
resolution algorithms and popular deep learning optimization algorithms for three
of the most common tensor decomposition including CP, DEDICOM [75] and
PARATUCK2 on five real world data sets.

e We then apply the unique property of CP decomposition for separate modeling
of each order of the clients’ transactions which are the time, the client reference,
the transaction label and the amount. A compressed dense data set is inherited
from the resolution of the CP tensor decomposition with VecHGrad. It is used as

an optimized input for the neural network removing all sparse information while
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highlighting latent factors. The neurons then predict clients’ financial activities

to unlock financial recommendation.

« Finally, we have developed an approach with the PARATUCK2 tensor decom-
position and its unique advantages of interactions modeling with imbalanced
data for user-device authentication monitoring. In our application, one user can
use several devices, and thus, we have considered the imbalance between the
number of users and devices. The PARATUCK?2 decomposition is solved with
VecHGrad to ensure accurate identification of the latent components. A collection
of neurons then predicts the users’ authentication to estimate the future financial
awareness of the clients. The banks can, therefore, better advertise their products

by contacting the clients which will be the most likely to be interested.

The chapter is structured as follows. We discuss the related work in Section 3.2. In
Section 3.3, we describe how VecHGrad performs a numerical optimization scheme
applied to tensors without the requirement of knowing the Hessian matrix. We then
build upon VecHGrad for the predictions of the clients’ actions with the CP tensor
decomposition and neural networks. We subsequently present our user-device authenti-
cation application for the estimation of the clients’ financial awareness. We use the
PARATUCK2 tensor decomposition with VecHGrad to identify the latent groups and
to input a compressed data set to a collection of neurons in charge of the predictions.
In Section 3.4, we highlight the experimental results of VecHGrad in comparison to
ML optimizers followed by our two applications on clients’ transaction predictions
and user-device authentication monitoring. Finally, we conclude in Section 3.5 by

addressing promising directions for future work.

3.2 Related Work

In this section, we review first the literature related to the numerical optimization algo-
rithms from the tensor and machine learning communities. The VecHGrad resolution
algorithm is effectively used in the three experiments of this chapter, and consequently,
is one of the main contribution of this chapter. We then review the recommender
engines and the tensor decomposition in relation with our application on predictions of
sparse clients” actions. Finally, we finish by highlighting briefly some research work

related to user-device authentication because of our user-device monitoring application.
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Literature on numerical optimization schemes As aforementioned, VecHGrad
uses a diagonal approximation of the Hessian matrix and, therefore, it is related to
other diagonal approximation such as the diagonal approximation of AdaGrad [56]. The
AdaGrad diagonal approximation is very popular in practice and frequently applied
[73]. However, it only uses gradient information, as opposed to VecHGrad which uses
both gradient and Hessian information with an adaptive line search. Other approaches
extremely popular in machine learning and deep learning include Adam [57], NAG [71],
SAGA [72] or RMSProp [58]. This non-exhaustive list of machine learning optimization
methods is also applied to our study case since it offers a strong baseline comparison
for VecHGrad.

The methods specifically designed for tensor decomposition have to be mentioned since
our study case is related to tensor decomposition. Various tensor decomposition, or
tensor factorization, exist for different types of applications and different algorithms are
used to solve tensor decomposition [14, 76]. Each of the decomposition offers unique
features for data compression and latent analysis. The most popular optimization
scheme among the resolution of tensor decomposition is the Alternating Least Square
(ALS). Under the ALS scheme [14], one component of the tensor decomposition is fixed,
typically a factor vector or a factor matrix. The fixed component is updated using the
other components. All the components are therefore successively updated at each step
of the iteration process until a convergence criteria is reached, for instance a fixed num-
ber of iteration. Such resolution does not involve any derivative computation. At least
one ALS resolution scheme exists for every tensor decomposition. The ALS resolution
scheme was introduced in [28] and [66] for the CP/PARAFAC decomposition, in [75]
for the DEDICOM decomposition and in [67] for the PARATUCK2 decomposition.
Welling and Weber relied on the results of [77] applied to matrix resolution to propose
a general non-negative resolution of the CP decomposition in [78]. An updated ALS
scheme was presented in [79] to solve PARATUCK2. Bader et al. proposed ASALSAN
in [30] to solve with non-negativity constraints the DEDICOM decomposition with
the ALS scheme. While some update rules are not guaranteed to decrease the loss
function, the scheme leads to overall convergence. Charlier et al. proposed recently in
[80] a non-negative ALS scheme for the PARATUCK?2 decomposition.

Some approaches are furthermore specifically designed for one tensor decomposition us-

ing gradient information. Most frequently, it concerns CP/PARAFAC since it has been
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the most applied tensor decomposition [14]. An optimized version of the Non-linear
Conjugate Gradient (NCG) for CP/PARAFAC, CP-OPT, is presented in [74, 76]. An
extension of the Stochastic Gradient Descent (SGD) is described in [81] to obtain, as
mentioned by the authors, an expected CP tensor decomposition. Both approaches
focus specifically on CP/PARAFAC, and consequently, their performance on other
tensor decomposition is not assessed. The comparison to other numerical optimizers in
the experiments is additionally limited, especially when considering existing popular
machine learning and deep learning optimizers. In contrast, VecHGrad is detached of
any particular model structure, including the choice of tensor decomposition, and it only
relies on the gradient and on the Hessian diagonal approximation, crucial for fast conver-
gence of complex numerical optimization. VecHGrad, hence, is easy to implement and

to use in practice as it does not require to be optimized for a particular model structure.

Literature on Recommender Engines and Tensor Decomposition Recom-
mender engines have become very popular in real-world applications. The strengths of
the second-order matrix factorization recommender engines have been highlighted in
various publications of the last decades [82-84]. Recommender engines are generally
divided into three main categories: content-based recommendations, collaborative
recommendations and hybrid approaches. In content-based systems, the recommenda-
tions relies on the previous activities of a user. The collaborative recommendations
engines leverages on the community. It recommends similar products to clients sharing
similar interests. Finally, the hybrid recommendation combines both content-based
and collaborative recommendations [85, 86]. The matrix factorization is limited to the
unique modeling of the table clientsx products despite the development of effective and
efficient matrix factorization algorithms [87]. It cannot be enriched with additional
features. As a solution, tensor recommendation engines have therefore skyrocketed in
the past few years [88-90]. The tensors offer the possibility to extend the recommender
engines order [91, 92] as further information can be added to the algorithm such as the

time or the location.

Noticeably, tensor resolution schemes are of great interest for the end-results, building
efficient and accurate multidimensional recommender engines for a wide range of appli-
cation domains. Their accuracy is underlined in [93] for personalized recommendations
in the context of social media. The use of enriched features such as the geospatial

localization or the users’ social preferences significantly improved the quality of the
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recommendations. A regularized context-aware tensor factorization has been applied for
location recommendation in [88]. The algorithm relied on interaction regularization and
on locations information by using discrete spatial distances. What is noteworthy is that
accurate recommendations are intrinsically linked to accurate predictions. The tensor
factorization was even used in [94] to predict students’ graduation at the university
of Minnesota. Increasing the dimensionality of the data however comes at a cost as
the sparsity of the information rises significantly. Different authors have therefore
tried to propose various solutions to address the sparsity issues depending on the
application. The tensor factorization in [95] is combined with a matrix factorization
by a weight fusing method. The scheme does not nonetheless address the memory
issue that comes with the sparsity of large data sets. The algorithm ParCube [96]
introduces a parallelization method to speed up tensor decomposition while offering

memory optimization for extremely large data sets.

Although tensor factorization achieve strong recommendations and accurate predictions,
neural networks have recently been used to increase the accuracy of the predictions
that allow incorporating additional features [97, 98]. The tensor factorization are
combined with convolutional neural network or Long-Short-Term-Memory (LSTM)
neural network. It is worth mentioning that the references to matrices are references to
second order tensors. Even if the sparsity rises with the additional features, the gains
in accuracy often overcome the additional computational cost. In fact, in [99], neural
networks became the heart of the recommender engine and the tensors an additional
feature. Hidasi et al. in [100] tried to improve the second-order tensor recommendation
results by using only recurrent neural networks for short time period recommendations.
However, approaches that substitute tensor recommendations have focused more on
the latest deep learning progress [101-103]. The deep learning scheme is similar to the
tensor factorization scheme. It extracts abstract features, or latent factors in the case

of tensors, to provide the most likely events to build the recommendation.

Literature on user-device authentication The user-device authentication has sig-
nificantly evolved for the past few years thanks to the new technologies. A reliable
user-device authentication was proposed in [104], based on a graphical user friendly
authentication. The use of Location Based Authentication (LBA) was studied in
[105]. The development of recent embedded systems within smart-devices leads to

new authentication processes, which were considered as a pure fiction only few years
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ago. The usage of the embedded camera of smart-devices for authentication by face
recognition was assessed in [106]. The face image taken by the camera of the mobile
device was sent to a background server to perform the calculation which reverts then
to the phone. In a similar approach, the use of iris recognition was proposed in [107].
However, the authors showed this kind of authentication was not the preferred choice
of the end user. The sensors embedded into smart-devices allow, additionally, other
type of biometric authentication. The different biometric authentication that could
be used with smart-devices were presented in [108], such as the pulse-response, the
fingerprint or even the ear shape. Although biometric or LBA solutions might offer a
higher level of security for authentication, their extension toward a large scale usage is
complex. The authors in [109] developed the idea that public-key infrastructure based
systems, such as strong passwords in combination with physical tokens, for example,
a cell phone, would be more likely to be used and largely deployed. It is nonetheless
worth mentioning that the most common procedure for mobile devices authentication

is still a code of four or six digits [110].

3.3 Proposed Method

In this section, we begin by describing briefly the standard form of the Newton’s
method, and then we introduce VecHGrad for the first order tensor optimization. We
recall that a first order tensor is a vector. We then arrive at the objective of applying
VecHGrad to non-trivial tensor decomposition. We next reintroduce the non-negative
ALS scheme applied to the CP and the PARATUCK?2 tensor decompositions, as it is
the benchmark for tensor resolution algorithms. We also explain how to derive the non-
negative ALS scheme for the DEDICOM decomposition based on the PARATUCK?2
non-negative ALS scheme. We subsequently present the CP tensor decomposition
combined with Neural Networks (NN) for the predictions of the financial activities
of the clients. Finally, we reach our second application of user-device authentication
in mobile banking. We explain the use of the PARATUCK2 tensor decomposition

combined with NN for the predictions of authentication patterns.

The terminology hereinafter follows the one described in [14] and commonly used.
Scalars are denoted by lower case letters, a. Vectors and matrices are described

by boldface lowercase letters and boldface uppercase letters, respectively a and A.
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High order tensors are represented using Euler script notation, X. The transpose ma-
trix of A € R’ is denoted by A”. The inverse of a matrix A € R’*! is denoted by A~!.

3.3.1 Classical Version of the Newton’s Method

Hereinafter, we shortly resume the classical version of Newton’s method. We invite the
reader to [111, 112, 68] for a deeper review.
Let define the objective function f : R? — R as a closed, convex and twice-differentiable

function. For a convex set C, we assume the constrained minimizer

x* = arg Iilelélf(fb) (3.1)

is uniquely defined. We define the eigenvalues of the Hessian denoted v = Ain (V2 f (%))
evaluated at the minimum. Additionally, we assume that the Hessian map x — V?f(x)

is Lipschitz continuous with modulus L at x*, as defined below
I V2 f(2) =Vif@) [ S Llla—a" |2 . (3.2)

Under these conditions and given an initial random point 2° € C such that || 2°—z* [|,<

57, the Newton updates are guaranteed to converge quadratically as defined below

2L

27 =2 [l < - | Foat (3.3)

This result is well-known, further details can be found in [111]. In our experiments, we
slightly modify Newton’s method to be globally convergent by using strong Wolfe’s

line search, described in Subsection 3.3.2.

3.3.2 Introduction to VecHGrad for Vectors

Under the Newton’s method, the current iterate x' € C is used to generate the next

iterate X! by performing a constrained minimization of the second order Taylor
expansion
%1 — arg min {1 (x =%, V2f(R)(x — %)) + (V (%), x it>} L (34)
xeC (2 ’ ’
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We recall that Vf and V2f denotes the gradient and the Hessian matrix, respectively,
of the objective function f : R — R. In the ML and DL community, the objective

function is frequently called the loss function.

_ . of of of
Vf= g:gtcdf = [3:101’ Doy amd] (3.5)
0*f 0 f . 0*f
8x% 3x18x2 8m18xd
rf  f P
V’f =Hes = | §z,01, 013 D201, (3.6)
of *f 0
0r40r1 014079 dx2

When C € R?, which is the unconstrained form, the new iterate '™ is generated such
that

=& — VRV (3.7)

We use the strong Wolfe’s line search which allows the Newton’s method to be globally

convergent. The line search is defined by the following three inequalities

i) f(X' +a'p') < fX) + ' (p)' V)

i) —(P)'Vf(X' +a'p) < —e(p)' V) | (3.8)
ii) | (p")"VFE +a'p) < | () V)]
where 0 < ¢; < ¢ < 1, af > 0 is the step length and p' = —[V2f(x")]7'V f(x").
Sl

Therefore, the iterate X' becomes the following

{X = X — [V V) (3.9)

)**(t-‘rl _ )**(t + atpt

1 creates a certain

Computing the inverse of the exact Hessian matrix, [V?f(x")]~
number of difficulties. The inverse is therefore computed with a Conjugate Gradient
(CG) loop. It has two main advantages: the calculations are considerably less expensive,

especially when dealing with large dimensions [68], and the Hessian can be expressed by
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a diagonal approximation. The convergence of the CG loop is defined when a maximum
number of iteration is reached or when the residual r = V2 f(x")p’ + V f(x") satisfies
| vt ||< o || VF(X') || with ¢ € RT. Within the CG loop, the exact Hessian matrix can
be approximated by a diagonal approximation. In the CG loop, the Hessian matrix is
effectively multiplied with a descent direction vector resulting in a vector. The only
requirement within the main optimization loop is the descent vector. Consequently,
only the results of the Hessian vector product are needed. Using the Taylor expansion,

the Hessian vector product is equal to the equation below

Vi +np') - V()
7

The term 7 is the perturbation and the term p’ the descent direction vector, fixed

V(R p' = (3.10)

equal to the negative of the gradient at initialization. The extensive computation of
the inverse of the exact full Hessian matrix is bypassed using only gradient diagonal
approximation. Finally, we reached the objective of describing VecHGrad for first order

tensor, summarized in Algorithm 2.

3.3.3 VecHGrad for Fast and Accurate Resolution of Tensor

Decomposition

Hereinafter, we introduce VecHGrad in its general form, which is applicable to tensors
of any dimension, of any order for any decomposition. We review further definitions
and operations involving tensors before presenting the algorithm and its theoretical

convergence rate.

Algorithm 2: VecHGrad, vector case

1 repeat

2 Receive loss function f: R? — R

3 Compute gradient Vf(x?) € R?

4 Fix pf = -V f(x!)

5 repeat

6 Update p, with CG loop: rp = V2f(X!)p + V f(x!)
7| until k= g 0R | 1< 0 | VAE)) |

8

9

ot < Wolfe’s line search

Update parameters: x{t1 = % + atpépt

10 until t = maziter orR f(Z') <e1 OR || VF(T) ||< e2
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Tensor Definitions and Tensor Operations

A slice is a two-dimensional section of a tensor, defined by fixing all but two indices.
Alternatively, the k-th frontal slice of a third-order tensor, X..,, may be denoted more

compactly as Xj.

The vectorization operator flattens a tensor of n entries to a column vector R™. The
ordering of the tensor elements is not important as long as it is consistent [14]. For a

third order tensor X € R/*/*K the vectorization of X is equal to

T
Vec(x):[ﬂhn Tz - l'IJK} : (3.11)

The n-mode product of a tensor X € RI1>/2XXIN with a matrix U € R/*!* is denoted
by X x, U. The n-mode product can be expressed either elementwise or in terms of

unfolded tensors.

In,
(:X: Xn U)il...in_ljin+1...i]\] - inzzjl xil’ig...il\]ujin ‘ (312)

Yy=—xU & Y(n) = UX(n)

The outer product between two vectors, u, v € R/, R’ is denoted by the symbol o

U1V W2 - Uy
UV1  UVy -+ UVy

uov=| . . o =wyvyo (3.13)
urvy Urvy -+ UjUy

The Kronecker product between two matrices A€ R*/ and B R¥*% denoted by
A®B, results in a matrix C€ RS <KL guch that

anB a;B -+ ayB
anB axB - ayB

C=AgB=|_ *° 7 (3.14)
anB apB -+ apB
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The Khatri-Rao product between two matrices A€ R’*X and B€ R7*¥ | denoted by

A®B, results in a matrix C of size R//*¥_ It is the column-wise Kronecker product
CzA@B:[a1®b1 32®b2 aK®bK] . (315)

The square root of the sum of all tensor entries squared of the tensor X defines its

norm such that

I I In

[ X[ = (D> ..> at,, . (3.16)

j=1j=2  j=n

The rank-R of a tensor X € R/1x/2%XIN i5 the number of linear components that could
fit X exactly such that
R
X:Zagl)oag)o...oagv) : (3.17)
r=1
The CP/PARAFAC decomposition, shown in Figure 3.1, was introduced in [66, 28].
The tensor X € RI*IXK ig defined as a sum of rank-one tensors. The number of
rank-one tensors is determined by the rank, denoted by R, of the tensor X. The CP

decomposition is expressed as

T T T

R
X=YaloaPoa®o..0a | (3.18)
r=1

where al a® a® .. a™) are factor vectors of size Rt Rz Rs .. R/~ Each factor
vector a® with n € {1,2,..., N} and r € {1, ..., R} refers to one order and one rank of
the tensor X.

The DEDICOM decomposition [75], illustrated in Figure 3.2, describes the asymmetric
relationships between I objects of the tensor X € R”*!*K_ The decomposition groups
the I objects into R latent components (or groups) and describe their pattern of
interactions by computing A € R™*E H € RF*F and D € REXAXK guch that

X, = ADHD, A" with k={1,..,K} . (3.19)

The matrix A indicates the participation of object ¢ =1, ..., I in the group r =1, ..., R,
the matrix H the interactions between the different components r» and the tensor D

represents the participation of the R latent component according to the third order K.
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Figure 3.2 Third order DEDICOM tensor decomposition

The PARATUCK2 decomposition [67], represented in Figure 3.3, expresses the original

tensor X € RI*/*K a5 a product of matrices and tensors

X, = AD{HD/BY with k={1,...K} (3.20)

where A, H and B are matrices of size R™*F, RP*? and R7*?. The matrices Df €
RP*P and Dy € RY*QVE € {1,..., K} are the slices of the tensors D4 € RP*F*K and
DB ¢ R*@*K  The columns of the matrices A and B represent the latent factors
P and @, and therefore the rank of each object set. The matrix H underlines the
asymmetry between the P latent components and the () latent components. The
tensors D4 and D measures the evolution of the latent components regarding the
third order.

VecHGrad for Tensor Resolution

Here, we describe the main application of VecHGrad that is the resolution of non-trivial

tensor decomposition.
The loss function, also called the objective function, is denoted by f and it is equal to

f(%) = min X —X|| . (3.21)
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Figure 3.3 Third order PARATUCK2 tensor decomposition

The tensor X is the original tensor and the tensor X is the approximated tensor
built from the decomposition. For instance, if we consider the CP/PARAFAC tensor
decomposition applied on a third order tensor, the tensor X is the tensor built with

the factor vectors all), a(® al® for r = 1,..., R initially randomized such that

R
X=Yaloa®oa® . (3.22)

r=1
The vector x is a flattened vector containing all the entries of the decomposed tensor
X. If we consider the previous example of a third order tensor X of rank R factorized
with the CP/PARAFAC tensor decomposition, we obtain the following vector X €
RI=EU+J+K) guch that
N T

x =vec(X) = [a(ll), 31(21)7 ...,agR),aSQ), aéZ), ...,af,R),agg), a§3), ...,agﬂ . (3.23)
Since the objective is to propose a universal approach for any tensor decomposition,
we rely on the finite difference method to compute the gradient of the loss function of
any tensor decomposition. Thus, the method can be transposed to any decomposition
just by changing the decomposition equation. The approximate gradient is based on

a fourth order formula (3.24) to ensure a reliable approximation [113] of the exact

gradient, defined as

%)~ (2L — 2ne) — F(+ 2ne.)] + 161K + yey) — F( e

4l
(3.24)
In (3.24), the index i is the index of the variables for which the derivative is to be

evaluated. The variable e; is the i—th unit vector. The term 7, the perturbation, is

fixed small enough to achieve the convergence of the iterative process.
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The Hessian diagonal approximation is evaluated as described in Subsection 3.3.2.
During the CG optimization loop, the Hessian matrix is multiplied with a descent
direction vector resulting in a vector. Therefore, only the results of the Hessian vector
product is required. Using the Taylor expansion, this product is equal to the equation

below

VIE +np') - V()
n
The perturbation term is denoted by n and the descent direction vector by p?, fixed

V(R p' = (3.25)

equal to the negative of the gradient at initialization. Consequently, the extensive
computation of the inverse of the exact full Hessian matrix is bypassed using only
gradient diagonal approximation. Finally, we reached the core objective of describing

VecHGrad for tensors, summarized in Algorithm 3.

Theoretical Convergence Rate of VecHGrad

VecHGrad is based on the Newton’s method but it relies on a diagonal approximation of
the Hessian matrix instead of the full exact Hessian matrix with an adaptive line search.
The reason is that although the exact Newton’s method convergence is quadratic
[68], the computation of the exact Hessian matrix is too time consuming for ML and
DL large-scale applications, including tensor application. Therefore, VecHGrad has a
superlinear convergence such that

B, — V?f(x

nooe 1P,

Algorithm 3: VecHGrad, tensor case

]Rd_>]R11><12><m><1n
1 Receive tensor decomposition equation: g: q _, -
X' = X

2 Receive X0 = vec(X)

3 repeat
R? — R
4 Receive loss function: f:q _, 4
=) X —g(x) |l
5 Compute gradient V f(x?) € R?
6 Fix p} = -V f(x")
7 repeat
8 Update pZ;c with CG loop: rg = V2f(>~ct)p§C + Vf(xhH
9 until k = cg,405ter OR I re I< o Vf(fﬂ)t) l
10 ol «+ Wolfe’s line search
11 Update parameters: xtt1 = %t + octpf)pt

12 until t = maziter orR f(Z) < €1 OR || V() [|I< e2
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with X, the point of convergence, p,, the search direction and B,, the approximation
of the Hessian matrix. Practically, the convergence rate is described according to the

equation below

|)~(t+1 - }~(t| |>~<t . )~(t71’ -1

|)~(t . )~(t—1| llog |)~(t71 _ )~(th|

q ~ log (3.27)

3.3.4 Alternating Least Square for Tensor Decomposition

Because we designed VecHGrad for accurate tensor resolution, we have to compare its
performance with the most popular numerical optimizer in the tensor world that is
the Alternating Least Square (ALS) [14]. One component of the tensor decomposition,
a factor vector or a factor matrix, is fixed and updated using the other components
of the decomposition. Every component is successively updated until a convergence
criteria is reached. In our experiments, we furthermore emphasize on the non-negative
ALS scheme. It allows an easier interpretation of the tensor decomposition latent
factors, especially in our case involving financial recommendations. We first present
the standard ALS scheme [28, 66] followed by the non-negative ALS scheme based on
[77, 78] for the CP tensor decomposition. We then adopt the same methodology for
the PARATUCK?2 tensor decomposition [79, 80]. Finally, we explain how to derive
the non-negative ALS scheme for the DEDICOM tensor decomposition based on the
scheme of the PARATUCK2 tensor decomposition.

Under the ALS scheme, the following minimization equation has to be solved for both

the standard and the non-negative update rules

min ||X — X|| (3.28)
X

with X the approximate tensor of the decomposition and X the original tensor. All the

factor matrices and the factor tensors are updated iteratively to solve the equation
(3.28).

Standard and Non-negative ALS for CP

We recall that the CP tensor decomposition is defined by
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X=YaloaPoa®o..0al (3.29)

r
r=1

(1) 22 4@

Ty Ay Ty A Ty e

for a N-order tensor X € RIt>*%2>X-xN "3 rank R, and the factor vectors a
of size R\, Rz R . RV,

Standard ALS Method for CP
We denote the latent factor vectors by A = S o) B =2 4® and C = 27 o).

r=1

For a third order tensor X € R!*/*X the standard update rules are the following

A+ Xy(CoB)(C'Cx+B'B)f
B+ Xp(CoA)CTCxATA) . (3.30)
C+ X3BoA)BBxATA)f

Based on the standard ALS update rules for the CP tensor decomposition, we can

deduce the non-negative ALS update rules.

Non-negative ALS Method for CP
We use a tensor of size X € RI*/*K with the latent factor vectors A = S  a(l)]

B=Y% 4% and C=%" 4. Based on the non-negative update rules for matrices
[77], the non-negative ALS method for CP follows the below update rules

X@(CoB)i

“rTACOBTCO B, 331
X@(CoA),

' U BC O ATCO AT, o

Chr 4—Chr X3 (BO A (3.33)

[CBOA)TBOA)

We will use the non-negative ALS update rules in our experiments involving the CP

tensor decomposition and the ALS algorithm.

Standard and Non-negative ALS for PARATUCK2 and DEDICOM

We recall that the equation for the PARATUCK?2 tensor decomposition is equal to
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X, = AD/HD?B” with k={1,..,K} |, (3.34)

where X € RI*/*K ig the original tensor, A, H and B are matrices of size RT*F, RP*?
and R7*?. The matrices Di} € R”*” and DP € R9*QVEk € {1, ..., K} are the slices of
the tensors DA € RPXPXK and DB ¢ ROXOXK,

Standard ALS Method for PARATUCK?2

We consider one level k of K, the third dimension of the tensor to ease the explanation
for the resolution of the PARATUCK2 tensor decomposition. Under the standard ALS
method, the equation (3.34) is rearranged to update A such that

X, = AF, with F,=D{HD/B" . (3.35)
The simultaneous least square solution for all £ leads to

X= [X; Xy X
A =X(FDHT  with Ko Xz Xl (3.36)

To update D4, the equation (3.34) is rearranged such that
X, = AD{'F} with F,=BD/H" . (3.37)
The matrix D; is a diagonal matrix which leads to the below update
D(f}m = [(Fr,® A)x,]"  with x5, = vee(X;) . (3.38)

The notation (k,:) represents the k-th row of D(}w). To update H, the equation (3.34)

is rearranged as

X = vec(X
x; = (BD? @ ADY)h  with { (%) , (3.39)
h=vec(H)

which brings the solution
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BD? ® AD{

BD? ® ADy

h=7Z'x with Z= (3.40)

BD{ ® AD;
The methodology presented for the update of A and D4 is reproduced to update B

and DB. We can now build upon the standard ALS update rules for the PARATUCK2

tensor decomposition to define the non-negative ALS update rules.

Non-negative ALS Method for PARATUCK?2

In the experiments, we use the non-negative PARATUCK2 decomposition adapted
from the non-negative matrix factorization presented by Lee and Seung in [77]. The
matrices, A, B and H, and the tensors, D4 and D?, are computed according to the

following multiplicative update rules

XF]
Qip — Qpp————2  F =D HDEBT | 3.41
D D [A(FFT)} | ( )
ip
[ZTX} R
2 —dt ———»__ 7—(BDPFH) 0 A | 3.42
pp 74 [DA(ZZT)} ( ) ( )
pp
Z'x
g pq[L’q , Z=BD? @ AD* | (3.43)
H(zZ")|
pq
b, db b2, Z=Bo H'DAATT (3.44)
qq qq {DB(ZTZ)} ’ ’
qq
X"F]
byi < byi————%  F = (AD*HD®)T | 3.45
qJ qJ [B(FFT)} | ( ) ( )
q
(3.46)

with

(3.47)
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The multiplicative update rules help to an easier interpretation of the tensor decomposi-
tion since all the numbers are positive or null. We used this non-negative ALS update in

our experiments involving the PARATUCK2 tensor decomposition and the ALS scheme.

Non-negative ALS method for DEDICOM
We recall that the equation for the DEDICOM tensor decomposition is equal to

X, =AD,HD,AT | Vk=1,.. K |, (3.48)

with the original tensor X € R™*/*K the factor matrices A € R™*E H € RF*F and
the factor tensor D € RIFXFXK,

The DEDICOM and the PARATUCK2 tensor decomposition are very similar. There-
fore, we can deduce the non-negative ALS update rule for DEDICOM based on the
PARATUCK2 update rules

XFT|
Qi aip.[Lp , F=DHDA" | (3.49)
A(FF")|
L 1p
ZT
dpp + d [XLP Z=(ADH") o A (3.50)
PP PP D(ZZT) ) ) .
- - pPp
VAR
h,, < h {L’P Z=AD®AD (3.51)
PP PP H(ZZT) ) )
L dpp
[xZ],, 7
. Z=A0e H'DATT | 3.52
PP PP {@B(ZTZ) ( ) ( )
4Pp
XTFT|
pi apiw , F=(ADHD)" | (3.53)
AFFT)|
P
(3.54)
with
X =[X;X,---X
X1 X Xyl (3.55)

x = vec(X)

It is noteworthy that some factors update might not lead to a minimization of the

objective function for a given iteration. However, the overall convergence through
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the successive iterations is always obtained. We used this scheme in our experiments
involving the ALS method and the DEDICOM tensor decomposition.

3.3.5 The CP Tensor Decomposition and Third Order Finan-

cial Predictions

Building upon VecHGrad, the CP tensor decomposition and the neural networks,
we use a two-steps procedure for the predictions of the financial transactions of the
clients, as illustrated in 3.4. First, the clients’ transactions are stored in a third order
tensor, denoted by Xj.... The tensor Xy, is then decomposed using the CP tensor
factorization to remove the sparsity contained in the transactions. The VecHGrad
resolution algorithm is used with the equations (3.18) and (3.21) to ensure an accurate
CP tensor decomposition. The sparse information contained in A}, is removed from
the factor vectors alV), ..., a™) of Xiarget- The factor vectors furthermore highlight the
different latent groups of clients and transactions. In a second step, the factor vectors
a®, ... al of Xiarger are then mapped to the inputs of the neural networks to achieve
third order financial predictions. The neural networks are able to predict the financial
activities of the bank’s clients through the training of the factor vectors data set to

learn the function g(.) : R® — R

Given the shape of the factor vectors used for the predictions, it is impossible to guess
at first glance which neural networks would predict the most accurately the financial
transactions. We therefore use and compare different neural networks architecture
and a machine learning regression for the predictions. The Decision Trees (DT) are
a widely used machine learning technique [114] to predict the value of a variable by
learning simple decision rules from the data [115, 116]. Their regression decision rules
however have some limitations. Outpacing DT capabilities, neural networks including
Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN) and Long-Short-
Term-Memory (LSTM), and their applications, have therefore skyrocketed for the past
few years [117]. MLP consists of at least three layers: one input layer, one output
layer and one or more hidden layer [17]. Each neuron of the hidden layer transforms
the values of the previous layer with a non-linear activation function. Although MLP
is applied in deep learning, it lacks the possibility of modeling short term and long
term events. This feature is found in LSTM [17]. The LSTM has a memory block
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Figure 3.4 The CP tensor decomposition factorizes a third-order tensor Xj,.,. of rank
R into a sum of rank-one tensors, denoted by X4 4er, removing the sparsity of the
transactions. The factor vectors are denoted by a@ with r =1,..., R and ¢ = {1,2,3}.
The neural networks are used to predict the next financial transactions of the clients.

connected to the input gate and the output gate. The memory block is activated
through a forget gate, resetting the memory information. Moreover, CNN is worth
considering for classification and computer vision. In a CNN, the neurons are capable of
extracting high order features in successive layers [118]. Through proper classification,
the CNN is able to detect and predict various tasks including activities recognition
[119, 120]. We summarized the methodology of the financial predictions with the CP

tensor decomposition in Algorithm 4.

3.3.6 Monitoring of User-Device Authentication with the PA-
RATUCK?2 Tensor Decomposition

By adapting the methodology of the third order financial activities predictions for the
user-device authentication monitoring with the PARATUCK?2 tensor decomposition,
we use a two-steps procedure. The procedure is capable to reduce the dimensions of
the initial data set by keeping only the useful information while being able to perform

accurate predictions. The proposed approach is illustrated in Figure 3.5.

The user-device authentication are first stored in a third order tensor, denoted by
Xirue- The tensor Xy is then decomposed into three factor matrices A, B and H
and two factor tensors DA and DB using the PARATUCK2 tensor decomposition.
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Algorithm 4: Financial predictions with the CP tensor decomposition

Rd N Rllxlzxmxln

1 Receive the CP tensor decomposition equation: g : - I
P d TV xt o T~ Zagl) oa$ﬂ2) oal® o.._oagN>
r=1

2 Receive X0 = vec(X)
3 repeat
4 VecHGrad optimization loop for t steps
5 with loss function: f : {Hfij —R 4
x| X —g(x) |
6 Update parameters: x‘+!
7 until convergence criteria is reached
8 /* A=aM) B=2a® ¢c=a® */
9 A,B, C + unflatten(X°P?)

10 Send A, B, C to the input of the NN
11 Training of the NN to learn the function g(.) : R3 — R!
12 y € R! « NN prediction of financial activities

It allows to reduce the dimensions of the data set to an interpretable size while
keeping all the useful authentication patterns contained in the original tensor Xj,..
The reason to choose the PARATUCK2 tensor decomposition additionally is that a
client, a user of the mobile application, can authenticate several times per day using
different devices. Our tensor decomposition has therefore to be capable of modeling
the asymmetric relationships between the users and the devices. This is the case
for the PARATUCK2 tensor decomposition, contrarily to the CP tensor decomposi-
tion. We rely on the VecHGrad resolution algorithm using the equations (3.20) and
(3.21) to ensure an accurate PARATUCK2 tensor decomposition. Each of the factor

REMOVE SPARSE INFORMATION NEURAL NETWORK FOR PREDICTIONS

> S
@
g W, ‘ ‘ .
c T T
| — e L e 7 |— 0 ® @
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Locomo oo
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‘X‘ti‘ut’ Xtm’get NEURAL NETWORK

Figure 3.5 The PARATUCK2 tensor decomposition factorizes a third-order tensor Xj,.e
into a multiplication of latent matrices and tensors, denoted by Xipget. It removes the
sparsity of the user-device authentication while preserving the data set imbalance. The
factor matrices and factor tensors are denoted by A, H,B and D*,DB. The neural
networks are used to predict the next user-device authentication.
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Algorithm 5: User-device authentication monitoring with the PARATUCK?2 tensor decomposition

1 Receive the PARATUCK?2 tensor decomposition equation:
Rd — Rllxlzxmxln

: {;ct — X ~ AD{HDPB?  with k= {1,..,K}
2 Receive X0 = vec(X)
3 repeat
4 VecHGrad optimization loop for t steps = 0, 1,2, ..., T to determine %°P?
R - R
Xt = X = g(x") |
At each step t, update vector %!*1!

5 with loss function: f : {

until convergence criteria is reached

A, DA H,DB,B « unflatten(x°Pt)

Send A and DA to the input of the NN

10 Training of the NN to learn the function g(.) : R® — R!
11 y € R! + NN prediction of financial activities

© w0 N o

matrices and of the factor tensors highlight respectively the user authentication and

the device authentication. We provide more practical details in the experiments section.

In a second step, the factor matrices and the factor tensors are mapped to the inputs
of the neural networks to achieve the user authentication predictions. We recall we
aim at building a financial awareness score based on the client’s habits on the mobile
banking application. We consequently concentrate our effort on the user authentication
that has been isolated from the device authentication thanks to the PARATUCK?2
tensor decomposition. The factor matrix A and tensor D? are used to train the neural
networks to learn the function g(.) : R® — R! in order to perform predictions of the
next user authentications. Similarly to the financial actions predictions of the clients,
we cannot guess which neural networks will predict best the next user authentication.
We therefore train independently and compare the three neural networks aforemen-
tioned including a MLP [17], a CNNJ[118] and a LSTM [17] as well as a DT [114].
We summarized our approach for the user-device authentication monitoring with the
PARATUCK?2 tensor decomposition in Algorithm 5.

3.4 Experiments

In this section, we present our three experiments in the context of accurate resolution
of tensor decomposition for financial recommendation. We first present the results

of the VecHGrad optimization algorithm. We then apply the superior accuracy of
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the VecHGrad optimization algorithm to the task of predictions of sparse financial
transactions of the bank’s clients. In the last experiment, we use VecHGrad to perform

efficient and precise monitoring of user-device authentication for mobile banking.

3.4.1 VecHGrad for Accurate Tensor Resolution

Hereinafter, we investigate the convergence behavior of VecHGrad in comparison to
other popular numerical resolution methods inherited from both the tensor and the
machine learning communities. We compare VecHGrad with ten different algorithms
applied to the three main tensor decomposition with increasing linear algebra complexity,
CP/PARAFAC, DEDICOM and PARATUCK2:

« ALS, Alternating Least Squares [79, 80];

« SGD, Gradient Descent [68];

« NAG, Nesterov Accelerated Gradient [71];

o Adam [57];

« RMSProp [58];

« SAGA [72];

« AdaGrad [56];

o CP-OPT and the Non-linear Conjugate Gradient (NCG) [74, 76];
« L-BFGS [121] inherited from BFGS [122-125].

Data Availability and Code Availability We highlight VecHGrad using popular
data sets including CIFAR10, CIFAR100, MNIST, LEW and COCQO. All the data sets
are available online. Each data set has different intrinsic characteristics such as the
size or the sparsity. A quick overview of the data set features is presented in Table
3.1. We chose to use different data sets as the performance of the different optimizers
might vary slightly depending on the data. The overall conclusion of the experiments
therefore is independent of one particular data set. The implementation and the code

of the experiments are available on GitHub!.

Experimental Setup In our experiments, we use the standard parameters for the
popular ML and DL gradient optimization methods. We use n = 10~* for SGD,
v = 0.9 and n = 107* for NAG, 5, = 0.9, = 0.999,¢ = 1078 and n = 0.001 for

!The code is available at https://github.com/dagrate/vechgrad.

67



Accurate Tensor Resolution for Financial Recommendations

Table 3.1 Description of the data sets used (K: thousands).

Data Set Labels Size Batch Size

CIFAR-10 image X pixels x pixels 50K x 32 x 32 64

CIFAR-100  image X pixels x pixels 50K x 32 x 32 64
MNIST image X pixels X pixels 60K x 28 x 28 64
CcOCO image x pixels x pixels 123K x 64 x 64 32
LFW image X pixels X pixels 13K x 64 x 64 32

Adam, v = 0.9, = 0.001 and € = 1078 for RMSProp, n = 10~* for SAGA, n = 0.01
and € = 107® for AdaGrad. We use the Hestenes-Stiefel update [126] for the NCG
resolution. The convergence criteria is moreover reached when fi*! — f* < 0.001 or
when the maximum number of iteration is reached. We use 100,000 iterations for the
gradient-free methods, 10,000 iterations for the gradient methods and 1,000 iterations
for the Hessian-based methods. We additionally fixed the number of iterations to 20
for the VecHGrad’s inner CG loop, used to determine the descent direction. We invite
the reader to review the code available on GitHub? for further knowledge about the
parameters used. The simulations are conducted on a server with 50 Intel Xeon E5-4650
CPU cores and 50GB of RAM. All the resolution schemes have been implemented in

Julia and are compatible for the ArrayFire GPU accelerator library.

Results and Discussions Two different experiments are performed to highlight the
strengths and the weaknesses of the optimizers aforementioned. The evaluation of
the optimizers’ performance is first based on a visual sample and, then, we provide a
detailed overview of the mean loss function at convergence and the mean calculation

time over all batches for the data sets CIFAR10, CIFAR100, MNIST, LFW and COCO.

In our first experiment, we highlight visually the strengths of each of the optimization
algorithms aforementioned. Figure 3.6 depicts the resulting error of the loss function
of each of the methods at convergence for the PARATUCK2 tensor decomposition. We
voluntarily chose latent components for which the numerical optimization would be
difficult since we are interested to highlight the differences of convergence for complex
optimization, and not to reproduce a good image quality. The error of the loss function,
or how accurate a method is, is reflected by the blurriness of the picture. The less

the image is blurry, the lower the loss function error at convergence. As it can be

2The code is available at https://github.com/dagrate/vechgrad.

68



3.4 FExrperiments
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Figure 3.6 Visual simulation of the accuracy at convergence of the different optimizers
for the PARATUCK?2 decomposition. The accuracy at convergence is highlighted by
how blurry the image is (the less blurry, the better). The popular gradient optimizers
AdaGrad, NAG and SAGA failed to converge to a solution close to the original image,
contrarily to VecHGrad or RMSProp.

noticed, some numerical methods, including ALS, RMSProp or VecHGrad, offer the
best observable image quality at convergence, given our choice of parameters. However,
other popular schemes, including NAG and SAGA, fail to converge to a solution

resulting in a noisy image, far from being close to the original image.

In a second experiment, we compare in Tables 3.2 and 3.3 the loss function errors and
the calculation times of the numerical optimization methods on the five ML data sets,
CIFAR-10, CIFAR-100, MNIST, COCO and LFW, for the three tensor decomposition
CP, DEDICOM and PARATUCK2. Both the loss function errors and the calculation
times are computed based on the mean of the loss function errors and the mean of
the calculation times over all batches. As it can be observed, the numerical schemes
of the NAG, SAGA and AdaGrad algorithms fail to minimize the error of the loss
function accurately. We have furthermore to mention that the ALS scheme offers
a good compromise between the resulting errors and the required calculation times,
explaining its major success across tensor decomposition applications. The gradient
descent optimizers, Adam and RMSProp, and the Hessian based optimizers, VecHGrad
and L-BFGS, are capable to minimize the most accurately the loss function. The NCG
method achieves satisfying errors for the CP and the DEDICOM decomposition but
its performance decreases significantly when trying to solve the complex PARATUCK?2
decomposition. Surprisingly, the calculation times of the Adam and RMSProp gradient

descents are greater than the calculation times of VecHGrad. VecHGrad is capable
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Table 3.2 Mean of the loss function errors at convergence over all batches. The lower,
the better (best result in bold).

Decomposition Optimizer CIFAR-10 CIFAR-100 MNIST  COCO LFW
CP ALS 318.667 428.402 897.766  485.138  4792.605

CP SGD 2112.904 2825.710 2995.528 3407.415  7599.458

CPp NAG 4338.492 5511.272  4916.003 8187.315 18316.589

CP Adam 1578.225 2451.217 1631.367 2223.211 6644.167

CP RMSProp  127.961 128.137 200.002  86.792  4205.520

CP SAGA 4332.879 5501.528  4342.708 6327.580 13242.181

CP AdaGrad 3142.583 4072.551 2944.768 4921.861 10652.488

CP NCG 41.990 37.086 23.320 76.478  4130.942

CPp L-BFGS 195.298 525.279 184.906  596.160  4893.815

CP VecHGrad < 0.100 < 0.100 <0.100 <£0.100 < o0.100
DEDICOM ALS 1350.991 1763.718  1830.830 1894.742 3193.685
DEDICOM SGD 435.780 456.051 567.503  406.760  511.093
DEDICOM NAG 4349.151 5722.073 4415.687 6325.638 9860.454
DEDICOM Adam 579.723 673.316 575.341 743.977 541.515
DEDICOM RMSProp 63.795 236.974 96.240 177.419 33.224
DEDICOM SAGA 4285.512 5577.981 4214.771  5797.562  8128.724
DEDICOM AdaGrad  1962.966 2544.436  1452.278 2851.649  3033.965
DEDICOM NCG 550.554 321.332 171.181  583.430 711.549
DEDICOM L-BFGS 423.802 561.689 339.284  435.188 511.620
DEDICOM VecHGrad < 0.100 < 0.100 <0.100 <£0.100 < o0.100
PARATUCK2 ALS 408.724 480.312 1028.250  714.623 658.284
PARATUCK?2 SGD 639.556 631.870 1306.869 648.962  495.188

PARATUCK2 NAG 4699.058 6046.024  5168.824 8205.223 14546.438
PARATUCK2 Adam 512.725 680.653 591.156  594.687  615.731
PARATUCK2 RMSProp 133.416 145.766 164.709  134.047 174.769
PARATUCK2 SAGA 4665.435 5923.178 4934.328 6350.172  8847.886
PARATUCK2 AdaGrad  1775.433 2310.402  1715.316 2752.348  2986.919

PARATUCK2 NCG 772.634 1013.032 270.288  335.532 15181.961
PARATUCK2 L-BFGS 409.666 522.158 464.259  467.139  416.761
PARATUCK2 VecHGrad < 0.100 < 0.100 <0.100 <£0.100 < o0.100

to outperform the gradient descent schemes on both accuracy and speed thanks to

the use of the vector Hessian approximation, inherited from gradient information, and

its adaptive strong Wolfe’s line search. We can therefore conclude that VecHGrad is

capable to solve accurately and efficiently complex numerical optimizations, including

complex tensor decomposition, whereas, surprisingly, some popular machine learning

gradient descents, such as SAGA, NAG or AdaGrad, fail or show average performance.
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Table 3.3 Mean calculation times (sec.) to reach convergence over all batches. The
convergence is reached when the evolution of the loss function errors between the
iterations is smaller than 0.05. The results have to be analyzed with Table 3.2 as a
small calculation time does not ensure a small loss function error.

Decomposition Optimizer CIFAR-10 CIFAR-100 MNIST COCO LFW

CPp ALS 5.289 4.584 2.710 5.850 4.085
CPp SGD 1060.455 1019.432 0.193 2335.060 6657.985
Cp NAG 280.432 256.196 0.400 1860.660 1.317
CP Adam 2587.467 2771.068  2062.562 6667.673 6397.708
CP RMSProp  2013.424 2620.088  2082.481 5588.660 4975.279
CPp SAGA 1141.374 1160.775 0.191 3504.593  3692.471
CPp AdaGrad  1768.562 2324.147 959.408 3729.306 6269.536
CPp NCG 315.132 165.983 4.910 778.279  716.355
CP L-BFGS 2389.839 2762.555  2326.405 5936.053 5494.634
CP VecHGrad  200.417 583.117 644.445 1128.358 1866.799
DEDICOM ALS 21.280 70.820 14.469 55.783 158.946
DEDICOM SGD 1826.214 1751.355  1758.625 1775.100 1145.594
DEDICOM NAG 30.847 25.820 240.587  43.003 49.518
DEDICOM Adam 2105.825 2128.626  1791.295 2056.036 1992.987
DEDICOM RMSProp  1233.237 1129.172 993.429 1140.844 1027.007
DEDICOM SAGA 27.859 30.970 64.440 28.319 32.154
DEDICOM AdaGrad 196.208 266.057 1856.267 2020.417 2027.370
DEDICOM NCG 2524.762 644.067 236.868 1665.704 4219.446

DEDICOM L-BFGS 1568.677 1519.808  1209.971 1857.267 1364.027
DEDICOM  VecHGrad  592.688 918.439 412.623  607.254  854.839

PARATUCK?2 ALS 225.952 209.978 230.392  589.437  625.668
PARATUCK?2 SGD 1953.609 2625.722  2067.727 3002.172 2745.380
PARATUCK?2 NAG 48.468 48.724 285.679 76.811 72.068

PARATUCK?2 Adam 2628.211 2657.387  2081.996 2719.519 2709.638
PARATUCK2 RMSProp  1407.752 1156.370  1092.156 1352.057 1042.899

PARATUCK?2 SAGA 74.248 70.952 120.861 71.398 86.682
PARATUCK2 AdaGrad  2595.478 2626.939  2073.777  292.564  2795.260
PARATUCK?2 NCG 150.196 1390.013 928.071 1586.523  82.701

PARATUCK2 L-BFGS 2780.658 2656.062  2188.253 3522.249 2822.661
PARATUCK2 VecHGrad  885.246 1149.594  1241.425 1075.570 1222.827

3.4.2 Predicting Sparse Clients’ Actions in the Banking En-

vironment

New regulations have opened the competition in retail banking, especially in Europe.
Retail banks lost the exclusive privilege of proposing financial solutions such as, for
instance, transaction payments. They are consequently looking to propose a higher

quality of financial services using recommender engines. The recommendations are
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moving from a client-request approach to a bank-proposing approach where the banks
dynamically offers new financial opportunities to their clients. We address this problem
in our experiments with our approach. It allows the banks to predict the financial
transactions of the clients in a context-aware environment and, therefore, to offer the

most appropriate financial solutions to their clients for their future needs.

Clients’ Transactions and Data Availability In 2016, the Santander bank released
an anonymized public data set containing the financial activities of its clients®. The file
contains activities of 2.5 millions of clients classified in 22 transactions labels for a 16
months period. The first reported transaction is on 28 January 2015 and the last one
on 28 April 2016. The total number of transactions is slightly more than 17 millions.
The three most common transactions are the main account transfers, direct debits and
online transactions. Since the transactions are classified per month, we track monthly

activities to predict the activities of the following months.

Experimental Setup and Code Availability In our simulation, we choose the 200
clients having the most frequent financial activities during the 16 months since regular
activities are more interesting for the predictions modeling. The transactions are
categorized into 22 different labels such as, for instance, credit card activity, payroll
activity, savings or interest payments. Consequently, all the information is gathered in
the tensor Xj,..., with a size equal to 200x22x16. We define the tensor rank equal to 25,
considering the sparsity of the information and the number of transaction labels. For
the CP decomposition with the VecHGrad resolution, we define the stopping condition
as the relative change in the objective function W.. The CP decomposition stops
when [W,., — W, |(W.,_,)™' <107% where W, and W,

current and the previous iterations, respectively. We rely on the keras library for the

., are the values of W, at the
neural network implementation. We use the Adam solver with the default parameters
b1 = 0.5, B = 0.999 for the neural network training. The experiments were performed
on a computer with 16GB of RAM, Intel i7 CPU and a Tesla K80 GPU accelerator.

Results and Discussions We first highlight the superior accuracy of the VecHGrad
resolution algorithm on our financial data set. We then perform the predictions using
three different type of neural networks: Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN) and Long-Short Term Memory (LSTM) network. We addition-

3The data set is available at https://www.kaggle.com/c/santander-product-recommendation
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ally cross-validate the performance of the neural network with a Decision Tree (DT).
The performance of each neural network and the DT is based on four metrics: the
Mean Absolute Error (MAE), the Jaccard distance, the cosine similarity and the Root
Mean Square Error (RMSE).

Based on the findings of Subsection 3.4.1, we compare the performance between VecH-
Grad and other popular machine learning and deep learning optimizers on our clients’
transactions data set. As it can be noticed in Table 3.4, the numerical errors of the
objective function W, of the CP tensor decomposition are the lowest at convergence for
the VecHGrad resolution algorithm, thanks to its adaptive line search and the Hessian
update. The results furthermore are very similar to the results of the subsection
3.4.1. The numerical optimizers NCG, BFGS, ALS and RMSProp lead to lowest
numerical errors after VecHGrad while the updates SGD, NAG and SAGA achieve
poor performance. It is worth mentioning, additionally, that the NCG optimizer allows
to reach the second lowest numerical error, explaining its success within the scientific
community when using the CP tensor decomposition. Our findings legitimate the use
of the VecHGrad algorithm for the task of predicting the next sparse clients’ actions

since, in our configuration, it outperforms the popular numerical optimizers.

The predictive models, MLP, CNN, LSTM and DT, have been trained on one year
period from 28 January 2015 until 28 January 2016. The activities for the next three
months are then predicted with a rolling time window of one month. As shown in
Figure 3.7, the LSTM models the most accurately the future personal savings activities
followed by the MLP, the DT, and finally the CNN. The CNN fails visually to predict
accurately the savings activity in comparison to the other three methods, while the
LSTM seems to achieve the most accurate predictions. We highlight this preliminary
conclusion in Table 3.5 by reporting the previously described four metrics for Figure
3.7. In Figures 3.8 and 3.9, we present the predictions of the credit card and the debit
card spendings. The best results are similarly obtained with the LSTM, followed by
the MLP, the DT and the CNN. In Table 3.6, we show the aggregated metrics among
all transaction predictions. In all the experiments, the LSTM network predicts the
activities the most accurately having the lowest errors, followed by the MLP, the DT
and the CNN.
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Figure 3.7 Three months predictions of the evolution of the personal savings of one
latent group of clients. We can observe the prediction differences between the neural

networks.
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Figure 3.8 Three months predictions of the evolution of the credit card spendings of one
latent group of clients. The prediction differences between the methods are highlighted.
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Figure 3.9 Three months predictions of the evolution of the debit card spendings of one
latent group of clients. The prediction differences between the methods are highlighted.

74



3.4 Fxperiments

Table 3.4 Residual errors of the objective function W, between the different optimizers
for the prediction of the clients” actions at convergence (the smaller, the better). All
methods have similar computation time.

Optimizer W, Error

CP-VecHGrad < 0.100
CP-ALS 222.280
CP-SGD 8585.511
CP-NAG 9930.186

CP-Adam 5941.293

CP-RMSProp  475.649

CP-SAGA 10646.734

CP-Adagrad  8055.968
CP-NCG 16.792
CP-BFGS 101.833

Table 3.5 Latent predictions errors on personal savings. LSTM achieves superior
performance.

Error Measure DT MLP CNN LSTM

MAE 0.040 0.083 0.579 0.047
Jaccard dist.  0.053 0.109 0.777 0.061
cosine sim. 0.946 0.928 0.832 0.966
RMSE 0.080 0.121 0.626 0.063

Table 3.6 Aggregated predictions errors on all transactions. LSTM achieves superior
performance.

Error Measure DT MLP CNN LSTM

MAE 0.024 0.021 0.270 0.010
Jaccard dist.  0.034 0.025 0.288 0.017
cosine sim. 0.831 0.908 0.883 0.953
RMSE 0.026 0.021 0.298 0.014

To resume, we obtain the best results when using LSTM for the predictions. Considering
that most of the clients’ financial actions are cyclic and occur on a monthly basis, we
find legitimate that the LSTM gives the best predictions. By using our approach, the
banks therefore are able to remove the sparsity of the financial transactions of the
clients wile being able to predict the actions for the future weeks, a key aspect for

marketing personalized financial products.
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3.4.3 User-Device Authentication in Mobile Banking

Because of the increasing competition in the banking sector brought by the PSD2
directive, the banking actors are now looking to use all the digital information available
from their clients. More especially, the banks can split their clients into different groups
and build different financial awareness profile to target product recommendations by
monitoring and predicting the user-device authentication of their mobile banking appli-
cation. We consequently highlight how we can analyze the trace of the authentication
through tensor decomposition. We discuss how we take into account the imbalance
between the number of users and devices. We then highlight the accurate removal of
sparse information using our VecHGrad resolution algorithm followed by the results of

the predictions of the authentication with our methodology.

User-Computer Authentication and Data Availability For the sake of the re-
producibility of the experiments, we present the approach with a public data set.
In 2014, the Los Alamos National Laboratory enterprise network published the
anonymized user-computer authentication logs of their laboratory [127], and available

at https://csr.lanl.gov/data/auth/. Each authentication event is composed of the

authentication time (in Unix time), the computer label and the user label such as, for
instance, "1,U1,C1". In total, more than 11,000 users and 22,000 computers are listed
representing 13 GB of data.

Construction of the user-computer authentication tensor We randomly select
150 users and 300 computers within the dataset representing more than 60 millions
lines. The first two months of authentication events have been compressed into 50 time
intervals, corresponding to 25 working days per month. A tensor X € RI*/*E of size
of 150x300x50 is built. The first dimension, denoted by I, represents the users, the
second dimension, denoted by J, the computers and the last dimension, K, stands for

the time intervals.

Limitations of the CP tensor decomposition The CP tensor decomposition
expresses the original tensor into a sum of rank one tensors. The user-computer
authentication tensor is therefore decomposed as a sum of user-computer-time rank-one
tensors. However, in the case of strong imbalance, CP leads to underfitting or overfitting

one of the dimension [74]. Within the dataset, we can find 2 users that connect to at
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least 20 different computers. Therefore, a rank equal to 2, one per user, consequently
underfits the computer connections. A rank equal to 20, one per machine, overfits the
number of users. In Table 3.7, the underfitting is underlined by significant residual
errors at convergence. The overfitting is detected by a good understanding of the data
since the residual errors tend to be small. Hence, the PARATUCK2 decomposition is

chosen to model properly each dimension of the original tensor.

PARATUCK2 Tensor Completion and Resolution PARATUCK?2 decomposes
the main tensor X € R™/*X into a product of matrices and diagonal tensors as shown
in Figure 3.10. The matrix A factorizes the users into P groups. We observe 15
different groups of users, and therefore, P equals to 15. The diagonal tensor D4
reflects the temporal evolution of the connections of the P users groups. The matrix
H represents the asymmetry between the P users groups and the () computers groups.
We notice 25 different groups of machines related to different authentication profiles,
and consequently, @ equals to 25. The diagonal tensor D¥ illustrates the temporal
evolution of the connections of the () computers groups. Finally, the matrix B factorizes

the computers into ) latent groups of computers.

Predictions for Financial Recommendation To achieve higher subscription rates
during the advertising campaign of financial products, we explore the latent predictions
for targeted recommendation based on the future user-computer authentication. The
results of PARATUCK?2 contain the users’ temporal information and the computers’
temporal information in the diagonal tensors D4 and DP, respectively. Predicting the
users’ authentication allows the banks to build a more complete financial awareness

profile of their clients for optimized advertisement.

Table 3.7 In CP, for imbalanced dataset, underfitting one dimension is highlighted
by significant residual errors. Overfitting is difficult to measure because of the low
residual errors. A good understanding of the data is required to estimate it.

Tensor Size Rank Residual Errors £@n)=f(@n-1)l

|/ (zn)]
2x20x30 2 50.275 <1076
2x20x30 20 1.147 <107
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Figure 3.10 PARATUCK2 decomposition applied to user-computer authentication.
The neural network predictions are performed on the tensor D4.

The first step of our approach is to remove the sparsity of the information and to ensure
the accurate resolution of the PARATUCK2 tensor decomposition on our user-device
authentication data set. We hereinafter compare the error at convergence between
VecHGrad and other machine learning and deep learning optimizers. The results are
presented in Table 3.8. We recall that the PARATUCK2 tensor decomposition is
one of the most complex tensor decomposition to solve, and therefore, it can lead to
numerical instabilities during the resolution optimization process. Similarly to the
previous experiments, the VecHGrad algorithm achieves the lowest numerical errors
at convergence followed by the SGD, BFGS, ALS, and RMSProp algorithms. The
numerical instability of the NCG algorithm is highlighted here. Effectively, the NCG
algorithm diverges when applied on the complex PARATUCK2 tensor decomposition
with our user-device authentication data set. The optimizers NAG and SAGA addi-
tionally lead to the biggest numerical errors. These findings confirm the results of the
previous experiments. We consequently used the VecHGrad resolution algorithm to
solve the objective minimization function W., as illustrated in Figure 3.5, since it is

the algorithm delivering the lowest numerical errors at convergence.

In Figures 3.11 and 3.12, we highlight the results of the predictions of the users’ au-
thentication for a specific group of clients, corresponding to one specific latent factor P.
Four different methods have been used for the predictions, DT, MLP, CNN and LSTM.
All the methods have been trained on a six weeks period. The users’ authentication
for the next two weeks are then predicted with a rolling time window of one day.
Figures 3.11 and 3.12 highlight visually that the LSTM models the most accurately
the future users’ authentication. It is followed by the MLP, the DT, and finally the
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Table 3.8 Residual errors of the objective function W, between the different optimizers
for the monitoring of the user-device authentication at convergence (the smaller, the
better). All the methods have similar computation time.

Optimizer W, Error
PARATUCK?2 - VecHGrad < 0.100
PARATUCK2 - ALS 99.834
PARATUCK2 - SGD 8.651
PARATUCK?2 - NAG 513.860
PARATUCK2 - Adam 419.812
PARATUCK2 - RMSProp 146.086
PARATUCK2 - SAGA 513.561
PARATUCK?2 - Adagrad 461.413
PARATUCK?2 - NCG diverge
PARATUCK2 - BFGS 67.152

CNN. We underline this preliminary statement using six well-known error measures.
The Mean Absolute Error (MAE), the Mean Directional Accuracy (MDA), the Pearson
correlation, the Jaccard distance, the cosine similarity and the Root Mean Square
Error (RMSE) are used to determine objectively the most accurate predictive method.
Table 3.9 describes the aggregated error measures of the users’ authentication. As
previously seen, the LSTM is the closest to the true authentication since it has the
lowest error values. Then, the MLP comes second, the DT third, and the CNN last.

We can conclude that LSTM combined with PARATUCK2 models the best the future
users’ authentication with the aim to better target the clients that might be interested
by financial products during the bank’s advertising campaigns. As the majority of
the user’s authentication are sequence-based, it is legitimate to find out LSTM gives
the best results for the predictions. Effectively, each user has a recurrent pattern in
the authentication process depending on its activities of the day. By using VecHGrad
for PARATUCK?2 and the LSTM for the predictions, the bank can therefore earn
a significant competitive advantage for the personalized products recommendation,

relying only on its clients’ authentication on the mobile application.
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Figure 3.11 Two weeks prediction of the evolution of a latent users’ authentication
group according to the different models used.
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Figure 3.12 Two weeks prediction of the evolution of another latent users” authentication
group according to the different models used.

Table 3.9 Aggregated latent predictions errors of the users’ authentication with decision
tree and neural networks

Error Measure DT MLP CNN LSTM

MAE 0.0965 0.0506 0.1106 0.0379
MDA 0.1579 0.7447 0.5263 0.6842
Pearson corr. 0.8537 0.9598 0.8885 0.9753
Jaccard dist.  0.2257 0.1206 0.2648 0.0911
cosine sim. 0.9587 0.9891 0.9745 0.9914
RMSE 0.1306 0.0695 0.3140 0.0477
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3.5 Conclusion

Building upon tensor decomposition, numerical optimization, preconditioning meth-
ods and neural networks, we proposed a predictive method to target personalized
recommendations for the banking industry. Because of the requirement of precise
and accurate resolution of tensor decomposition, we introduced VecHGrad, a Vector
Hessian Gradient optimization method. VecHGrad uses partial information of the
second derivative and an adaptive strong Wolfe’s line search to ensure faster conver-
gence. We conducted experiments on five real world data sets, CIFAR10, CIFAR100,
MNIST, COCO and LFW, very popular in machine learning and deep learning. We
highlighted that VecHGrad is capable to outperform the accuracy of the widely used
gradient based resolution methods such as Adam, RMSProp or Adagrad, and the
linear algebra update ALS on three different tensor decomposition, CP, DEDICOM
and PARATUCK?2, offering different levels of complexity. Based on the results of this
experiment, we used VecHGrad resolution algorithm for the task of predicting the next
financial actions of the bank’s clients in a sparse environment. We rely on a public data
set proposed by the Santander bank. We proposed a predictive method in which the
sparsity of the financial transactions is removed before performing the predictions on
future client’s transactions. The sparsity of the financial transactions is removed using
the popular CP tensor decomposition, which decomposes the initial tensor containing
the financial transaction into a sum of rank-one tensors. The predictions are performed
using different type of neural networks including LSTM, CNN, MLP and a decision
tree. Due to the recurrent activities of most of the financial transactions, we underlined
the best results were found when the CP tensor decomposition was used with LSTM.
We furthermore presented our methodology for a novel application in the context of
mobile banking application. We introduced the use of the PARATUCK2 tensor de-
composition and neural networks for the monitoring and the predictions of imbalanced
user-device authentication. The PARATUCK2 tensor decomposition expresses a tensor
as a multiplication of matrices and diagonal tensors and, therefore, it is highly suitable
for imbalanced data sets. The user-device authentication on mobile banking allows to
build a financial awareness profile to better target potential subscription by the clients
on new products. We rely on a public data set proposed by the Los Alamos National
Laboratory enterprise network for the experiments. The resolution of the PARATUCK?2
tensor decomposition was performed using VecHGrad to ensure a decomposition of

high accuracy. We performed users’ authentication predictions using LSTM, CNN,
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MLP and a decision tree, evaluated on different distance measures. Similarly to the
predictions of the next clients’ transactions the best results were obtained with LSTM

because of the recurrent and cyclic patterns of the user-device authentication.

Future work will concentrate on the influence of the adaptive line search for the
VecHGrad algorithm. We effectively observed that the performance of the algorithm is
strongly correlated with the performance of the the adaptive line search optimization.
We will simultaneously look to reduce the memory cost of the adaptive line search
as it has a crucial impact for a GPU implementation as well as a limited memory
resolution for a usage on very large data sets. Concerning the predictions of the financial
activities for personal financial recommendation, a smaller time frame discretization,
weekly or daily, will be assessed with other financial transactions. It will offer a larger
choice of financial product recommendations depending on the clients’” mid-term and
long-term interests. Finally, the financial recommendation depending of the user-
device authentication on a mobile banking application will be further extended by
incorporating additional features. Noticeably, the navigation usage, the time gap
between each action and the type of device used will be monitored to further improve

the bank’s advertising campaigns of their products to the appropriate clients.
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Chapter 4

MAQLV: Q-learning for Optimal
Policy of Money Management in
Retail Banking

Reinforcement learning [128] is one of the best approaches to train a computer game
emulator capable of human level performance. In a reinforcement learning approach,
an optimal value function is learned across a set of actions, or decisions, that leads
to a set of states giving different rewards, with the objective to maximize the overall
reward. A policy assigns to each state-action pairs an expected return. We call an
optimal policy a policy for which the value function is optimal. QLBS [129], Q-Learner
in the Black-Scholes(-Merton) Worlds, applies the reinforcement learning concepts, and
noticeably, the popular Q-learning algorithm [130], to the financial stochastic model
of Black, Scholes and Merton [131, 132]. It is, however, specifically optimized for the
geometric Brownian motion and the vanilla options. Its range of application is, therefore,
limited to vanilla option pricing within the financial markets. We propose MQLV,
Modified Q-Learner for the Vasicek model, a new reinforcement learning approach that
determines the optimal policy of money management based on the aggregated financial
transactions of the clients. It unlocks new frontiers to establish personalized credit card
limits or to fulfill bank loan applications, targeting the retail banking industry. MQLV
extends the simulation to mean reverting stochastic diffusion processes and it uses a
digital function, a Heaviside step function expressed in its discrete form, to estimate
the probability of a future event such as a payment default. In our experiments, we

first show the similarities between a set of historical financial transactions and Vasicek
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generated transactions and, then, we underline the potential of MQLV on generated
Monte Carlo simulations. MQLV is the first Q-learning Vasicek-based methodology

addressing transparent decision making processes in retail banking.

4.1 Introduction

A major goal of the reinforcement learning (RL) and Machine Learning (ML) commu-
nity is to build efficient representations of the current environment to solve complex
tasks. In RL, an agent relies on multiple sensory inputs and past experience to de-
rive a set of plausible actions to solve a new situation [133]. While the initial idea
around reinforcement learning is far from new [134-136], significant progress has been
achieved recently by combining neural networks and Deep Learning (DL) with RL,
to either increase the quality of the signals from the multiple sensory inputs or the
number of linear function approximators. DL [137, 138] has, for instance, allowed
the development of a novel agent combining RL with a class of deep artificial neural
networks [133, 139] resulting in Deep Q-Network (DQN). The Q refers to the Q-learning
algorithm introduced in [130]. It is an incremental method that successively improves
its evaluations of the quality of the state-action pairs. The DQN approach achieves
human level performance on Atari video games using unprocessed pixels as inputs.
In [140], deep RL with double Q-Learning was proposed to challenge the DQN ap-
proach while trying to reduce the overestimation of the action values, a well-known
drawback of the Q-learning and DQN methodologies. Meanwhile, the extension of
the DQN approach from discrete action domain to continuous action domain, directly

from the raw pixels to inputs, was successfully achieved for various simulated tasks [141].

Nonetheless, most of the proposed models focused on gaming theory and computer
game simulation and very few to the financial world. In QLBS [129], a RL approach is
applied to the Black, Scholes and Merton (BSM) financial framework for derivatives
[131, 132], a cornerstone of the modern quantitative finance. In the BSM model, the
dynamic of a stock market is defined as following a Geometric Brownian Motion (GBM)
to estimate the price of a vanilla option on a stock [142]. A vanilla option is an option
that gives the holder the right to buy or sell the underlying asset, a stock, at maturity
for a certain price, the strike price. In Figure 4.1, we describe the payoff (Sr — K)* at
maturity of a vanilla call option with S the spot price at maturity of the stock and K

the strike price. The holder of the vanilla option will execute his right to buy the stock
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Payoff at Maturity
A

PROFIT

Strike
LOSS Underly?ng Price

Buying Price

Figure 4.1 Payoff at maturity of a vanilla call option. The option allows to buy the
underlying asset, a stock, at maturity for a certain price, the strike price. A profit is
generated if the underlying price is higher than the strike at maturity, otherwise the
buyers makes a loss.

at the strike price as soon as the payoff is positive and compensates the buying cost of
the option. QLBS is one of the first approach to propose a complete RL framework
for finance. As mentioned by the author, a certain number of topics are, however, not
covered in the approach. For instance, it is specifically designed for vanilla options
and it fails to address any other type of financial applications. Additionally, the initial
generated paths rely on the popular GBM but there exist a significant number of other

popular stochastic models depending on the market dynamics [143].

In this work, we describe a RL approach tailored for personal recommendation in
retail banking regarding money management to be used for loan applications or credit
card limits. The method is part of a banking strategy trying to reduce the customer
churn in a context of a competitive retail banking market. We rely on the Q-learning
algorithm and on a mean reverting diffusion process to address this topic. It leads
ultimately to a fitted Q-iteration update and a model-free and off-policy setting. The
diffusion process reflects the time series observed in retail banking such as transaction
payments or credit card transactions. We furthermore introduce a new terminal digital
function, II, defined as a Heaviside step function in its discrete form for a discrete
variable n € R. The digital function is at the core of our approach for retail banking
since it can evaluate the future probability of an event including, for instance, the
future default probability of a client based on his spendings. Our method converges to

an optimal policy, and to optimal sets of actions and states, respectively the spendings
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and the available money. The retail banks can, consequently, determine the optimal
policy of money management based on the aggregated financial transactions of the
clients. The banks are able to compare the difference between the MQLV’s optimal
policy and the individual policy of each client. It contributes to an unbiased decision
making process while offering transparency to the client. Our main contributions are

summarized below:

¢ A new RL framework called MQLV, Modified Q-Learning for Vasicek, extending
the initial QLBS framework [129]. MQLV uses the theoretical foundation of RL
learning and Q-Learning to build a financial RL framework based on a mean
reverting diffusion process, the Vasicek model [144], to simulate data, in order to

reach ultimately a model-free and off-policy RL setting.

o The definition of a digital function to estimate the future probability of an
event. The aim is to widen the application perspectives of MQLV by using a
characteristic terminal function that is usable for a decision making process in

retail banking such as the estimation of the default probability of a client.

e The first application of Q-learning to determine the clients’ optimal policy of
money management in retail banking. MQLV leverages the clients aggregated
financial transactions to define the optimal policy of money management, target-

ing the risk estimation of bank loan applications or credit cards.

e The introduction of an update function applied to MQLV to compensate the
overestimation of the action values, characteristic of the Q-Learning algorithm.
The objective is to minimize the overestimation of the event probabilities mea-

sured by the digital function.

The chapter is structured as follows. We discuss the related work in Section 4.2. We
review QLBS and the Q-Learning formulations derived by Halperin in [129] in the
context of the Black, Scholes and Merton model in Section 4.3. We describe MQLV
according to the Q-Learning algorithm that leads to a model-free and off-policy setting
in Section 4.4. We highlight experimental results in Section 4.5. We conclude in Section

4.6 by addressing promising directions for future work.
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4.2 Related Work

The foundations of modern reinforcement learning [134, 136] established the theoretical
framework to learn policies for sequential decision problems by proposing a formulation
of the cumulative future reward signal. The Q-learning algorithm introduced in [135]
is one of the cornerstone of reinforcement learning. However, the convergence of the
Q-Learning algorithm was solved several years later. It was shown that the Q-Learning
algorithm with non-linear function approximators [145] with off-policy learning [146]
could provoke a divergence of the Q-network. The reinforcement learning community

therefore focused on linear function approximators [145] to ensure convergence.

The emergence of neural networks and deep learning [17] contributed to address the use
of reinforcement learning with neural networks. At an early stage, deep auto-encoders
were used to extract feature spaces to solve reinforcement learning tasks [147]. Thanks
to the release of the Atari 2600 emulator [148], a public data set was then available
answering the needs of the RL community for larger simulation. The Atari emulator
allowed a proper performance benchmark of the different reinforcement learning algo-
rithms and offered the possibility to test various architectures. The Atari games were
used to introduce the concept of deep reinforcement learning [133, 139]. The authors
used a convolutional neural network trained with a variant of Q-learning to successfully
learn control policies directly from high dimensional sensory inputs. They reached
human-level performance on many of the Atari games. Shortly after, the deep rein-
forcement learning was challenged by double Q-Learning within a deep reinforcement
learning framework [140]. The double Q-Learning algorithm was initially introduced in
[149] in a tabular setting. The double deep Q-Learning gave more accurate estimates
and lead to much higher scores than the one observed in [133, 139]. An ongoing work
is consequently to further improve the results of the double deep Q-learning algorithms
through different variants. The authors used a quantile regression to approximate
the full quantile function for the state-action return distribution in [150], leading to a
large class of risk-sensitive policies. It allowed them to further improve the scores on
the Atari 2600 games simulator. Similarly, a new algorithm, C51, which applies the
Bellman’s equation to the learning of the approximate value distribution was designed

in [151] and showed state-of-the-art performance.
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Meanwhile, a certain number of publications focused on model-free policies and actor-
critic framework. Stochastic policies were trained in [152] with a replay buffer to avoid
divergence. It was showed in [153] that deterministic policy gradients (DPG) exist,
even in a model-free environment. The DPG approach was subsequently extended in
[154] using a deviator network. A deviator network backpropagates different signals to
train the network. Continuous control policies were learned using backpropagation,
and therefore, introducing the Stochastic Value Gradient SVG(0) and SVG(1) in
[155]. Recently, Deep Deterministic Policy Gradient (DDPG) was presented in [141] to
learn competitive policies using an actor-critic model-free algorithm based on a DPG

algorithm that can operate over continuous action spaces.

4.3 Background

We define A; € A the action taken at time ¢ for a given state X; € X and the immediate
reward by R;.;. To avoid any confusion between the stochastic diffusion process and
the different states of the environment, the ongoing state is denoted by X; € X and
the stochastic diffusion process by S; € S at time t. The discount factor that trades

off the importance of immediate and later rewards is expressed by v € [0; 1].

We recall a policy is a mapping from states to probabilities of selecting each possible

action [128]. By following the notations of [129], the policy 7 such that

740, T—1}xX = A (4.1)

maps at time t the current state X; = x; into the action a; € A

ay = 7(t, ) . (4.2)

The value of a state  under a policy 7, denoted by v.(z) when starting in = and

following 7 thereafter, is called the state-value function for policy 7 and it is defined as

VUp = ]Eﬂ- Z ’Yth—i-k—&-l’Xt =X . (43)

k=0
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The action-value function, ¢, (z,a) for policy = defines the value of taking action a in
state x under a policy 7 as the expected return starting from z, taking the action a,

and thereafter following policy 7 such that

gr(x,a) =E, Z YFRppr | Xy =2, A, =a| . (4.4)
k=0

The optimal policy, 7}, is the policy that maximizes the state-value function

™ (Xy) = argmax V" (X,) . (4.5)

The optimal state-value function, V;*, satisfies the Bellman optimality equation such
that

V7 (X)) = BT [Ry(Xo,we = 77 (X0), Xoa) + Vi (Xen)] (4.6)

The Bellman equation for the action-value function, the Q-function, is defined as

Q7 (z,a) = B¢ [Re( X, ap, Xo1)| Xy = 2, a0 = a] + VET [W11(Xt+1)|Xt = l‘} . (A7)
The optimal action-value function, ()}, is obtained for the optimal policy with

T, = arg max QF (x,a). (4.8)
The optimal state-value and action-value functions are connected by the following

system of equations

V¥ = max, Q*(z,a)
Qf = B [Ri( X, a, Xoq1)] + 7Ky {Wi1(Xt+1|Xt = x)}

Therefore, we can obtain the Bellman optimality equation
Qr(f]ﬂ', CL) = ]Et Rt(Xt7 Ay, XtJrl) + Y mlaGXA Q:+1(Xt+1, at+1)|Xt =T,aq = CL:| . (410)
at4

Using the Robbins-Monro update [53], the update rule for the optimal Q-function
with on-line Q-learning on the data point (X\™,a{™, R{™, Xt(z)l) is expressed by the

following equation with « a constant step-size parameter
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Q?k—‘rl(Xta (lt) :(]‘ - ak)Q:‘,k’k(Xb at)+

By ok (4.11)

" | Ry( Xy, ag, Xiy1) + maEXAQt:i-1<Xt+1aat+1>
at+1

4.4 Algorithm

We describe, in this section, how to derive a general recursive formulation for the
optimal action. It is equivalent to an optimal hedge under a financial framework such
as, for instance, portfolio or personal finance optimization. We additionally present
the formulation of the action-value function, the Q-function. Both the optimal hedge
and the Q-function follow the assumption of a continuous space scenario generated by
the Vasicek model with Monte Carlo simulation. For the ease of understanding, we
explain the meaning of the RL concepts into the retail banking world. The states are
defined as the amount of money available, the actions as spending or receiving money
in your bank account, the reward as the probability of avoiding a payment default, and
the policy as the mapping from the perceived states (the amount of money) to actions

(credit or debit transactions). Figure 4.2 gathers these RL concepts.

By relying on the financial framework established in [129], we consider a mean reverting

diffusion process, also known as the Vasicek model [144],

The term k is the speed reversion, b the long term mean level, o the volatility and By

the Brownian motion. The solution of the stochastic equation is equal to

t
S; = Spe " +b(1 — e ") + 06_’“/ e™dBs . (4.13)
0

Therefore, we define a new time-uniform state variable, i.e. without a drift, as

St = Xt + Soe_’it + b(]_ — G_Kt)

(4.14)
with X, = ge " [} e"*dB, — [Spe " + b(1 — e™)]

We illustrate the idea of the time-uniform variable in Figures 4.3, 4.4 and 4.5. In
the context of finance and retail banking, a time-uniform variable is a variable that

is independent of the concepts of inflation and deflation. Instead of estimating the
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price of a vanilla option as proposed in [129], we are interested to estimate the future
probability of an event using the Q-learning algorithm and a digital function. We
recall the digital function is at the center of our approach with the Vasicek model. It
effectively allows the modeling of the default probabilities, a key aspect to determine
the optimal policy for money management. We first define the terminal condition

reflecting that with the following equation

Q}(XT, ar = 0) = —HT — \Var [HT<XT)] s (415)

where Il is the digital function at time ¢ = T" defined such that

1if Sy > K
Iy = 1g,5kx = b T . ; (4.16)
0 otherwise

and the second term, \Var [[I(X7)], is a regularization term with A € R < 0. The
digital function can be approximated using the BSM formula by combining vanilla

options, as illustrated in Figure 4.6. We use a backward loop to determine the value of
Il fort=T-1,...,0

POLICY:
mapping from perceived states (amount of money)
to actions (credit or debit transactions)

STIMULUS-RESPONSE
RULES

STATES:
amount of money available

REWARDS:
maximize the rewards over the long run

reduce the risk of a payment default
ACTIONS:
spending or receiving money

in your bank account

Figure 4.2 In MQLV, reinforcement learning is applied to the retail banking. The
optimal policy of money management is learned by maximizing the rewards, defined as
avoiding a payment default, based on state-action sequences, respectively spending or
receiving money in your bank account.
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S
I = v (141 — a;AS;)  with  AS, = Sipq — L St — erAts, (4.17)
f‘)/
Following the definition of the equations (4.6) and (4.17), we express the one-step time

dependent random reward with respect to the cross-sectional information F; as follows

Ri( Xy, a, Xi11) = ya; ASy( Xy, Xy1) — \Var [IL| F] (4.18)

with Var [II,| F] = 7°E, {ﬁfﬂ — 20, AS T,y + afASﬂ .
The term AS, is defined such that AS, = %AS, AS = AS—AS, and ﬂt+1 = Ht+1—ﬁt+1
with l:ItH = %Htﬂ. Because of the regularizer term, the expected reward R; is
quadratic in a; and has a finite solution. We therefore inject the one-step time
dependent random reward equation (4.18) into the Bellman optimality equation (4.10)
to obtain the following Q-learning update, Q*, and the optimal action, a*, to be solved
within a backward loop Vt =T —1,...,0

Qi (X1, a1) =Er |Q71(Xer, 0741) + @, AS,| = AVar (11| 7]

A 1 9111 . (4.19)
CL:(Xt) = Et [ASth+1 + mASt] |:Et |:<A5t) :|

We refer to [129] for further details about the analytical solution, a*, of the Q-learning
update (4.19). Our approach uses the N Monte Carlo paths simultaneously to determine
the optimal action a* and the optimal action-value function Q* to learn the policy 7*.
We thus do not need an explicit conditioning of X; at time ¢. We assume a set of M
basis function {®,(z)}, with n =1,..., M, for which the optimal action a;(X;) and

the optimal action-value function, Q;(X;,a;), can be expanded

a:(Xt)zfjgbmq)n(Xt) and Q;(Xt,a:)szm@n(xt) . (4.20)

The coefficients ¢ and w are computed recursively backward in time Vt =T —1,...,0.

We subsequently define the minimization problem to evaluate ¢,,; such that

2

N M M
Gi(d) = D [ =D dmPu(XF)ASE + A (Hffﬂ - ¢m<1>n<xf>A§f>

k=1 n n

(4.21)
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State Variables
Sample Paths

Time Steps Time Steps

Figure 4.3 Time uniform state variables (left) in the context of a null inflation sample
paths (right). Both curves are similar since there is no time-dependency modeled here
in the case of a null inflation.

1.2

=
.
L

State Variables
Sample Paths
I
o

o
©
!

0.8

Time Steps Time Steps

Figure 4.4 Time uniform state variables (left) in the context of a strong inflation (right).
The time uniform state variables only capture the fluctuation of the transactions.
Therefore, the long term impact of the inflation leading to the strong increase of the
sample paths has no effect on the state variables.

State Variables
Sample Paths

Time Steps

Time Steps

Figure 4.5 Time uniform state variables (left) in the context of a strong deflation (right).
The deflation leads to the sample paths decrease. The time uniform state variables,
however, are not impacted and only capture the fluctuation of the transactions.
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Payoff at Maturity
A

Payoff at Maturity
A
Selling Price
PROFIT | Underlying Price
Strike + € i
PROFIT LOSS
Strike - €
Buying Price LOSS Underlying Price
Payoff
A :
11 —_——
1
i
, i NO DEFAULT
Strike - ¢
1
T Hy >

i V\ Transactions

1
DEFAULT : Strike + ¢

1
i
0O

Figure 4.6 The BSM formula is commonly used to price vanilla options. The combination
of vanilla options at different strikes allows the replication of the digital function. In
our case, the BSM formula allows to replicate the thresholds for which we observe a
payment default. It offers a benchmark comparison of the values found by our approach

denoted by MQLV.

The equation (4.21) leads to the following set of linear equations Vn =1,..., M
N
=3 0, (XF) P, (XF)(ASy)? u
k= .
o vl with ; AD ¢ =BY - (4.22)
= Z:: : +1AS 5 )\ASt
The coefficients of the optimal action a;(X;) are therefore determined by
or=A'B, . (4.23)

We hereinafter use the Fitted Q Iteration (FQI) [149, 156] to evaluate the coefficients
w. The optimal action-value function, Q*(X;,a;), is represented in its matrix form

according to the basis function expansion of the equation (4.20) such that
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1 WH(t) ng(t) e WlM(t) q)l(Xt)
Q:(Xt, (lt) = (]., a, 2(1,?) W21 (t) ng(t) e WQM(t)
(4.24)
War(t) Waa(t) ... Wan(t)) \ @ (Xy)

=ATW,®(X,) = AT Uw (t, Xy)

Based on the least-square optimization problem, the coefficients W, are determined

using backpropagation Vt =T — 1, ...,0 as follows

N

2
Lo(W) =) (Rt(XtyataXtJrl) +7 max, Qi1 (Xig1, r41) — ”t\pt(Xtvat))
at4

k=1

with W, W (X, a¢) + € — Ry(Xy, ar, Xiyq) + v max QIH(XtH, ag1)
e—0 at41€A

(4.25)
for which we derive the following set of linear equations
N
M =30, (Xf, ) {77 <Rt(Xt7 ag, Xoy1) + Y max, Qi1 (Xega, at+1))]
1 t+1
with n ~ B(N, p)
(4.26)

The term B(N, p) represents the binomial distribution for n samples with probability p.
It plays the role of a dropout function when evaluating the matrix M, to compensate
the well-known drawback of the Q-learning algorithm that is the overestimation of the
Q-function values. We finally reach the definition of the optimal weights to determine

the optimal action a* as follows

Wi =S"M, . (4.27)

The proposed model does not require any assumption on the dynamics of the time
series, neither transition probabilities nor policy or reward functions. It is an off-policy
model-free approach. We highlight the overall scheme of MQLV with aggregated
transactions in Figure 4.7. The computation of the optimal policy, the optimal actions

and the optimal Q-function is summarized in Algorithm 6.
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Algorithm 6: Modified Q-learning for the Vasicek model with the digital value function II
Data: time series of maturity T, either from generated or true data
Result: optimal Q-function Q*, optimal action a*, value of digital function IT
1 begin
2 /*Condition at T*/
3 ar(Xr)=0
4
5

QT(XT7aT) = 7HT = 7]‘STZK using equation (416)
Q’?(XTa (l;—‘) = QT(XTa aT)

6 /*Backward Loop*/
7 fort <+ T —1to0do
8
9

/*Evaluate the coefficients ¢*/
compute Ay, B; using equation (4.22)
10 bF «+ A7'By
11 /*Evaluate the coefficients w*/
12 compute S;, M; using equation (4.26)
13 Wi+ S; M,
14 0 (X0) = 32, 67, ®a (X))
15 L Q*(Xt, at) = A,tTWt*q)(Xt)
16 /¥ Compute the digital function value to estimate the event probability at t = 0%/
17| print(Ilp = mean(Q5))
18 return

MQLV

INPUT OuUTPUT
Aggregated Q-learning - Optimal Policy
Transactions with digital function " of Money Management

TRAINING

Figure 4.7 MQLV takes as input the aggregated financial transactions. The training
is performed using the Bellman equation updated with the digital function. At
convergence, the optimal policy of money management is obtained.
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4.5 Experiments

We empirically evaluate the performance of MQLV. We initially highlight the similarities
between historical payment transactions and Vasicek generated transactions. We then
evaluate the Q-values overestimation with the closed formula of [131, 132], hereinafter
denoted by BSM’s closed formula. We finally underline the MQLV’s capabilities to
learn the optimal policy of money management based on the estimation of future event
probabilities in comparison to the BSM’s closed formula. We rely on synthetic data

sets because of the privacy and the confidentiality issues of the retail banking data sets.

4.5.1 Data Availability and Data Description

One of our contributions is to bring a RL framework designed for retail banking.
However, none of the data sets can be released publicly because of the highly sensitive
information they contain. We therefore show the similarities between a small sample
of anonymized transactions and Vasicek generated transactions [144]. We then use
the Vasicek mean reverting stochastic diffusion process to generate larger synthetic
data sets similar to the original retail banking data sets. The mean reverting dynamic
is particularly interesting since it reflects a wide range of retail banking transactions
including the credit card transactions, the savings history or the clients’ spendings.
Three different data sets were generated to avoid any bias that could have been in-
troduced by using only one data set. We choose to differentiate the number of Monte
Carlo paths between the data sets to assess the influence of the sampling size on the
results. The first, second and third data sets contain 20,000, 30,000 and 40,000 paths.

We release publicly the data sets' to ensure the reproducibility of the experiments.

4.5.2 Experimental Setup and Code Availability

In our experiments, we generate synthetic data sets using the Vasicek model with a
parameter Sy = 1.0 corresponding to the value of the time series at ¢ = 0, a maturity of
six months 7" = 0.5, a speed reversion a = 0.01, a long term mean b = 1 and a volatility
o = 0.15. The numbers were fixed such that any limitations of the methodology would

be quickly observed because the choice of the parameters of the Vasicek model does

!The code and the data sets are available at https://github.com/dagrate/MQLV.
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not have any influence on the results of the Q-learning approach. The number of time
steps is fixed equal to 5. We additionally use different strike values for the experiments
explicitly mentioned in the Results and Discussions subsection. The simulations were
performed on a computer with 16GB of RAM, Intel i7 CPU and a Tesla K80 GPU
accelerator. To ensure the reproducibility of the experiments, the code is available at

the address! aforementioned.

4.5.3 Results and Discussions

We first highlight the similarities between the dynamic of a small sample of anonymized
transactions and Vasicek generated transactions for one client [157] in Figure 4.8
because we cannot release publicly an anonymized transactions data set due to privacy,
confidentiality and regulatory issues. The financial transactions in retail banking are
periodic and often fluctuates around a long term mean, reflecting the frequency and
the amounts of the spendings habits of the clients. The akin dynamic of the original
and the generated transactions is highlighted by the small RMSE of 0.03. We also
performed a least square calibration of the Vasicek parameters to assess the model’s
plausibility. We can observe in Table 4.1 that the Vasicek parameters have the same
magnitude and, therefore, it supports the hypothesis that the Vasicek model could be

used to generate synthetic transactions.

We then highlight the motivations of the dropout function of MQLV, capable to limit
the overfit of the Q-values. We use the standard example of vanilla option to facilitate
the comparison with the BSM’s closed formula [131, 132], used as reference values for
the cross-validation of our approach. The absolute difference between the standard
Q-learning and the dropout Q-learning algorithms with respect to the BSM’s closed
formula values are computed in Figure 4.9 for a European vanilla call option. The
absolute differences of the BSM’s closed formula are all equal to zero since they are
the reference values. We can observe that the standard Q-learning update leads to
higher differences for all strikes, between 1% and 2% depending on the threshold values.
When applying the dropout function, the values obtained are closer to the target
values, therefore minimizing the absolute difference. These observations are confirmed
quantitatively in Table 4.2. The valuation differences are reported for the BSM’s closed
formula, the standard and the dropout Q-learning updates for the three generated data

98



4.5 Experiments

sets. The values of the dropout Q-learning approach are always closer to the BSM’s
target values. We can conclude that, for our simulation, the dropout update of the

equation (4.26) reduces the discrepancy with the BSM’s target values.

We present the core of our contribution in the following experiment. We aim at learning
the optimal policy of money management. It is particularly interesting for bank loan
applications where the differences between a client’s spendings policy and the optimal
policy can be compared. We show that MQLV is capable of evaluating accurately the
probability of a default event using a digital function, which highlights the learning of
the optimal policy of money management. Effectively, if the MQLV’s learned policy
is different than the optimal policy, then the probabilities of default events are not
accurate. The estimation of future event probabilities for different strike values is
represented in Figure 4.10. We rely on the BSM’s closed formula for the vanilla option
pricing [131, 132] to approximate the digital function values [143]. We used, therefore,
the BSM’s values as reference values to cross-validate the MQLV’s values. MQLV
achieves a close representation of the event probabilities for the different strike values
in Figure 4.10. The curves of both the MQLV and the BSM’s approaches are similar
with a RMSE of 1.5016. This result highlights that the learned Q-learning policy of
MQLYV is sufficiently close to the optimal policy to compute event probabilities almost

identical to the probabilities of the BSM’s formula approximation.

We gathered quantitative results in Table 4.3 for a deeper analysis of the MQLV’s
results. The event probability values are listed for the three data sets. We chose a
set of parameters for the Vasicek model such that our configuration is free of any
time-dependency. We therefore expect a probability value of 50% at a threshold of
1 because the standard deviation of the generated data sets is only induced by the
standard deviation of the normal distribution, used to simulate the Brownian motion.
Surprisingly, the MQLV values at a strike of 1 are closer to 50% than the BSM’s values
for all the data sets. We can conclude, subsequently, that, for our configuration, MQLV
is capable to learn the optimal policy of money management which is reflected by the

accurate evaluation of the event probabilities.

We chose to generate three new data sets with new Vasicek parameters a and o to
underline the potential of MQLV and the universality of the results. In Table 4.4, we

computed the event probabilities for different strikes for the newly generated data sets.
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Figure 4.9 Absolute differences between the standard and the dropout Q-learning
updates for the price evaluation of a European vanilla call. The benchmark of the
Q-learning algorithms is the BSM’s closed formula and, therefore, the differences are
set to 0. The dropout Q-update limits the overestimation of the Q-values leading to
smaller differences with the BSM’s closed formula.
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Figure 4.10 Event probability values calculated by MQLV and BSM’s closed formula
approximation for 40,000 Monte Carlo paths with Vasicek parameters a = 0.01,b =1
and o = 0.15. The BSM’s closed formula approximation values are used as reference
values. The event probabilities of MQLV are close to the BSM’s values with a total
RMSE of 1.502. It illustrates that MQLV is able to learn the optimal policy leading to
accurate event probabilities.
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The parameter b remains unchanged since we want to keep a configuration free of any
time-dependency. We notice that MQLV is capable to estimate a probability of 50% for
a strike of 1 which can only be obtained if MQLYV is able to learn the optimal policy. We
also observe that the BSM’s approximation does lead to a lower accuracy. We showed
in this experiment that our model-free and off-policy RL approach, MQLV, is able to
learn the optimal policy reflected by the accurate probability values independently of

the data sets considered and of the Vasicek parameters.

Limitations of the BSM’s closed formula used for cross validation In our
experiments, we observed, surprisingly, that the BSM’s closed formula approximation
underestimates the event probability values. The volatility is the only parameter
playing a significant role in the generation of the time series and, therefore, the event
probability should be equal to the mean of the distribution used to generate the random
numbers. The Brownian motion is simulated with a standard normal distribution
with a 0.5 mean. The BSM’s closed formula did not, however, lead to a probability of
0.5 but to slightly smaller values because of the limit of their theoretical framework
[131, 132]. We hence observed that MQLV was more accurate than the BSM’s closed

formula in our configuration.

4.6 Conclusion

We introduced Modified Q-Learning for Vasicek or MQLV, a new model-free and
off-policy reinforcement learning approach capable of evaluating an optimal policy of
money management based on the aggregated transactions of the clients. MQLV is
part of a banking strategy that looks to minimize the customer churn by including
more transparency and more customization in the decision process related to bank
loan applications or credit card limits. It relies on a digital function, a Heaviside
step function expressed in its discrete form, to estimate the future probability of an
event such as a payment default. We discuss its relation with the Bellman optimality
equation and the Q-learning update. We conducted experiments on synthetic data
sets because of the privacy and confidentiality issues related to the retail banking data
sets. The generated data sets followed a mean reverting stochastic diffusion process,
the Vasicek model, simulating retail banking data sets such as transaction payments.
Our experiments showed the performance of MQLV with respect to the BSM’s closed
formula for vanilla options. We also highlighted that MQLV is able to determine an
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optimal policy, an optimal Q-function, the optimal actions and the optimal states
reflected by accurate probabilities. We surprisingly observed that MQLV led to more

accurate event probabilities than the popular BSM’s formula in our configuration.

Future work will address the creation of a fully anonymized data set illustrating
the retail banking daily transactions with a privacy, confidentiality and regulatory
compliance. We will also evaluate the MQLV’s performance for data sets that violate
the Vasicek assumptions. We will furthermore assess the influence of the basis function
on the results accuracy. We effectively observed that the Q-learning update could minor
the real probability values for simulation involving a small temporal discretization
such as At = 200. Preliminary results showed it is provoked by the basis function
approximator error. We will address this point in future research. We will finally
extend the Q-learning update to other scheme for improved accuracy and incorporate

a deep learning framework in our approach.
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Table 4.1 RMSE error between the sam-
ples of original transactions and gener-
ated Vasicek transactions of Figure 4.8.
We also calibrated the Vasicek parame-
ters according to the original transactions
to validate the model’s plausibility.

Figure 4.8 Samples of original and Va-
sicek generated transactions for one client.
The two samples oscillate around a long
term mean of 1 and have a similar pattern,
highlighted by the RMSE of 0.03 in Table
4.1.

Description Value
RMSE 0.0335

Vasicek speed reversion a  0.5444
Vasicek long term mean b 0.9001
Vasicek volatility o 0.2185

Table 4.2 Valuation differences for a vanilla call option between the BSM’s closed
formula, the standard Q-learning update and the dropout Q-learning update. The
differences are presented for the three generated data sets for different strikes. The
dropout function helps to reduce the overestimation of the Q-values. The dropout
Q-values are, consequently, closer to the reference values of the BSM’s closed formula.

Data Number Strike BSM’s No Dropout Dropout
Set of Paths Values Values (%) Q-Values (%) Q-Values (%)
1 20,000 0.95 7.096 7.223 7.214
1 20,000 0.96 6.448 6.557 6.549
1 20,000 0.99 4.727 4.764 4.759
1 20,000 1.00 4.230 4.241 4.237
2 30,000 0.95 7.096 7.215 7.208
2 30,000 0.96 6.448 6.552 6.546
2 30,000 0.99 4.727 4.769 4.764
2 30,000 1.00 4.230 4.249 4.246
3 40,000 0.95 7.096 7.205 7.195
3 40,000 0.96 6.448 6.543 6.534
3 40,000 0.99 4.727 4.765 4.758
3 40,000 1.00 4.230 4.247 4.240
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Figure 4.11 Zoom in of the results pictured in Figure 4.10. The differences between
MQLV and BSM are further highlighted. Both curves have the same slope of -381
between the strike values of 0.98 and 1.02. We can already highlight that the MQLV’s
probabilities illustrate the MQLV’s ability to learn the optimal policy.

Table 4.3 Valuation differences of the digital values for event probabilities according to
different strikes between the BSM’s closed formula approximation and MQLV. Given
our time-uniform configuration, the event probability values should be close to 50%
for a strike value of 1. The MQLV values are close to the theoretical target of 50%
at a strike of 1 highlighting the MQLV’s capabilities to learn the optimal policy. The
BSM’s closed formula approximation slightly underestimates the probability values.

Data Number Strike BSM'’s Approx. MQLV Absolute
Set of Paths Values Values (%) Values (%) Difference

1 20,000 0.92 76.810 77.098 0.288

1 20,000 0.98 55.447 57.920 2473

1 20,000 1.00 47.867 50.235 2.368

1 20,000 1.02 40.509 42.865 2.356

2 30,000 0.92 76.810 76.953 0.143

2 30,000 0.98 55.447 57.760 2.313

2 30,000 1.00 47.867 50.043 2.176

2 30,000 1.02 40.509 42.744 2.235

3 40,000 0.92 76.810 77.047 0.237

3 40,000 0.98 55.447 57.491 2.044

3 40,000 1.00 47.867 49.924 2.057

3 40,000 1.02 40.509 42.713 2.204
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Table 4.4 Event probabilities for data sets generated with different Vasicek parameters
a and o. The parameter b remains unchanged to keep a time-uniform configuration to
facilitate the results explainability. We can deduce that MQLV is able to learn the
optimal policy because the MQLV’s probabilities are close to the theoretical target
of 50% at a strike of 1. MQLV is also more accurate than BSM’s formula in this
configuration.

Parameters Number Strike BSM’s App. MQLV Absolute
a;b;o of Paths Values Values (%) Values (%) Difference
0.01; 1; 0.10 50,000 0.98 59.856 61.223 1.366
0.01; 1; 0.10 50,000 1.00 48.562 50.001 1.439
0.01; 1; 0.10 50,000 1.02 37.596 39.044 1.447
0.01; 1; 0.30 50,000 0.98 49.558 53.647 4.089
0.01; 1; 0.30 50,000 1.00 45.767 49.997 4.230
0.01; 1; 0.30 50,000 1.02 42.088 46.194 4.106
0.10; 1; 0.15 50,000 0.98 55.447 57.540 2.093
0.10; 1; 0.15 50,000 1.00 47.867 50.015 2.148
0.10; 1; 0.15 50,000 1.02 40.509 42.638 2.129
0.30; 1; 0.15 50,000 0.98 55.447 57.586 2.139
0.30; 1; 0.15 50,000 1.00 47.867 50.022 2.155
0.30; 1; 0.15 50,000 1.02 40.509 42.542 2.033

105






Chapter 5
Conclusion

In this concluding chapter, we resume the accomplishments of this research project and
we point out the main contributions. Throughout the different chapters, we proposed
advanced analytical techniques and state of the art computer science concepts to
answer the specific needs facing the retail banking industry in a context of evolving
regulations and new clients’ behavior. We first highlighted how to overcome the lack
of financial data using generative adversarial models and persistent homology. We
then addressed multidimensional financial recommendations targeting new or renewed
products subscriptions for improved marketing banking strategy. We finally introduced
a model-free reinforcement learning approach specifically designed for personal financial

advice and custom-tailored requests, trying to limit the customer churn.

5.1 Persistent Homology for Generative Models to

Generate Artificial Financial Data

In our current modern age where digital traces and data are omnipresent, the retail
banking industry frequently encounters situations where an insufficient amount of
data is available to evaluate accurately the risks of the bank or to propose adequate
solutions to the clients. In car loan applications for instance, some age categories
of the applicants or loan amounts are historically under represented. Extending the
available data is a crucial need. We therefore introduced Persistent Homology for
Generative Models. In PHom-GeM, we used four different types of neural networks,
including gradient penalty Wasserstein generative adversarial network, generative ad-

versarial network, Wasserstein auto-encoders and variational auto-encoders, to generate
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synthetic credit card transactions based on a small sample of existing credit card
transactions. PHom-GeM characterizes the generative manifolds using persistence
homology to highlight manifold features of existing and artificially generated data. We
chose to apply PHom-GeM on credit card transactions since the latter is particularly
challenging for neural networks and persistent homology. Given the large number of
features per transactions, we underline in our experiments that PHom-GeM is able to
build effective representation of a high dimensional data set. We moreover introduced
the bottleneck distance to compare quantitatively the differences between the original

and the generated transaction samples.

PHom-Gem establishes new opportunities to artificially generate and evaluate high
dimensional data of retail banking. However, several questions still need to be addressed
in future research. First, we used the popular Vietoris-Rips simplicial complex for the
construction of the simplex tree. It is known to offer a good compromise between the
computational cost and the accuracy of the results. But what is the influence of the
simplicial complex? Second, we used the bottleneck distance to compare quantitatively
the persistence diagram samples. Given the recent progress of the theoretical framework
around optimal transport, the use of the Wasserstein distance for the quantitative
comparison between the persistence diagrams of the different samples should provide
interesting insights. Finally, PHom-GeM trains the neural network models and compare
the original and the artificial samples in a two-steps procedure. We leave for future
research how to back-propagate the persistent homology information to the objective
loss function of the generative models to improve their training and the generation of

adversarial samples!.

5.2 Accurate Tensor Resolution for Multidimensio-

nal Financial Recommendation

The European financial regulation authorities have been increasing regulatory pressure
on all the financial actors since the financial crisis of 2008. Under the revised Payment
Service Directive aiming the retail banking industry, the banks are losing partly their

historical privileges such as the distribution of the credit card payment solutions or

!This chapter of the thesis was published in the 6th IEEE Swiss Conference on Data Science (SDS)
and in the ATDA 2019 Workshop in conjunction with the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD).
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5.2 Accurate Tensor Resolution for Multidimensional Financial Recommendation

the management of the personal finance. Targeting the clients’ needs and proposing
dynamically new financial products is part of a marketing banking strategy to retain the
clients. Nonetheless, the task is complex and highly dimensional. We therefore build
upon tensor decomposition, a collection of factorization techniques for multidimensional
arrays, and neural networks. We first designed an optimized resolution algorithm for
the resolution of complex tensor decomposition. Our resolution algorithm, VecHGrad
for Vector Hessian Gradient, uses partial information of the second derivative and
an adaptive strong Wolfe’s line search to ensure faster convergence. We showed the
superior performance of VecHGrad on several well-known research data sets, such as
CIFAR-10, CIFAR-100 and MNIST, against the state of the art optimizers used in
deep learning and linear algebra, including alternating least square, Adam, Adagrad
and RMSProp. We then arrived at our first application in the context of financial
recommendations. We predicted the next financial actions of the bank’s clients in a
sparse environment. Such approach is of particular interest for the renewal of consumer
loans or the renewal of credit cards subscriptions. We used a public transactions
data set of the Santander bank. Our predictive method removes the sparsity of the
financial transactions before predicting the future client’s transactions. The CP tensor
decomposition, which decomposes the initial tensor containing the financial transaction
into a sum of rank-one tensors, removes the transactions sparsity. The next financial
transactions are then predicted using different type of neural networks. We obtained
the best predictions when using Long Short Term Memory neural network because of
the recurrent nature of the financial transactions activities. In our second financial
application, we addressed the authentication on mobile banking application. The traces
of the mobile banking application are of particular interest since they can be used
to build financial awareness profiles for every clients. We monitored and predicted
imbalanced user-device authentication with the PARATUCK?2 tensor decomposition
and neural networks. The PARATUCK2 tensor decomposition is highly suitable for
imbalanced data sets since it expresses a tensor as a multiplication of matrices and
diagonal tensors. We relied on a public data set of user-device authentication proposed
by the Los Alamos National Laboratory enterprise network for our quantitative exper-
iments. Similarly to our first application, the best results were obtained with Long
Short Term Memory neural network because of the recurrent and cyclic patterns of

the user-device authentication.
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Based on the recent publications in computer science conferences, we do believe that
some remaining opened questions about adaptive line search will be addressed in future
research. We noticeably observed that the performance of the VecHGrad algorithm is
strongly correlated to the performance of the the adaptive line search optimization. In
the context of big data and very large data bases, the memory cost of the adaptive line
search additionally has a crucial impact. In our client’s transactions predictions case
study, a different time frame discretization could furthermore be assessed. It would
contribute to address a larger choice of financial product recommendations depending
on the clients’ mid-term and long-term interests. Concerning our second financial
applications, the traces of the mobile banking application could finally be further
enriched by incorporating traces such as the navigation usage or the time gap between
each actions. It would further improve the design of financial awareness profile and,

consequently, the potential impact of the bank’s advertising campaigns?.

5.3 Reinforcement Learning for Decision Making

Process in Retail Banking

Following the new habits of younger generations and the financial regulations promot-
ing more competition, the retail banks face a significant risk of high customer churn.
Everyone nowadays can easily change from one bank to another to benefit from more
attractive financial opportunities. In this chapter, we described a reinforcement learning
approach at the core of the banking strategy to limit the customer churn in the retail
banking market. The approach is tailored for personal policy of money management to
be used for bank loan applications or credit card limits. We presented MQLV, Modified
Q-Learning for the Vasicek model, a model-free and off-policy reinforcement learning
approach capable of evaluating the optimal policy of money management based on the
aggregated transactions of the clients. We introduced a digital function, a Heaviside
step function expressed in its discrete form, to estimate the future probability of an
event such as a payment default. This contributed to the evaluation of the optimal

policy of money management helping to determine the limits on the credit cards or

2This chapter of the thesis was published in the 2017 IEEE Future Technologies Conference
(FTC), the 2018 IEEE Big Data and Smart Computing (BigComp) Conference, the 6th International
Workshop on Data Science and Big Data Analytics (DSBDA) in conjunction with IEEE International
Conference on Data Mining (ICDM 2018) and the 32nd Canadian Conference on Artificial Intelligence.
This chapter was also submitted to the thirty-fourth annual conference of the Association for the
Advancement of Artificial Intelligence (AAAI).
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the amount of a bank loan. In our experiments, we generated artificial data sets
reflecting the transaction data sets observable in retail banking because of the privacy,
confidentiality and regulatory issues of the clients’ historical transactions. Different
data sets with different configuration were generated to ensure the legitimacy of the
results. We showed the ability of MQLV to learn an optimal policy reflected by the
accurate estimation of event probabilities. We compared the MQLV’s probabilities with
the probabilities computed with the BSM’s closed formula. We successfully determined

an optimal policy, an optimal Q-function, the optimal actions and the optimal states.

Reinforcement learning applied to the retail banking industry for money management
is a very promising concept. We established the foundations for future research in
this field. In our opinion, the first research direction should address the creation
of a full anonymized data set of high quality illustrating the retail banking daily
transactions with a privacy, confidentiality and regulatory compliance. The second
research direction should emphasize the choice of the basis function in comparison to
the event probability estimation. Effectively, we observed that some fine temporal time
discretization could underestimate the real probability values. Considering the recent
success of deep learning with reinforcement learning applied to video games, we believe
that the approach could benefit in using deep learning for function approximators.
Finally, we used the popular Q-learning algorithm for our approach. Nonetheless, a
large variety of other algorithms are available, such as the double Q-learning algorithm,

offering wide possibilities to extend the MQLV framework?®.

3This chapter of the thesis was published in the MIDAS 2019 Workshop in conjunction with the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD).
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