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Consider a three-dimensional cusped spherical CR manifold M and sup-
pose that the holonomy representation of π1(M) can be deformed in such a
way that the peripheral holonomy is generated by a nonparabolic element.
We prove that, in this case, there is a spherical CR structure on some Dehn
surgeries of M. The result is very similar to R. Schwartz’s spherical CR
Dehn surgery theorem, but has weaker hypotheses and does not give the
uniformizability of the structure. We apply our theorem in the case of the
Deraux–Falbel structure on the figure eight knot complement and obtain
spherical CR structures on all Dehn surgeries of slope −3+ r , for r ∈ Q+

small enough.

1. Introduction

The celebrated theorem of hyperbolic Dehn surgeries of Thurston [2002] says that all
but a finite number of Dehn surgeries of a one-cusped hyperbolic manifold M admit
complete hyperbolic structures with developing maps and holonomy representations
close to those of M. The same question arises for other geometric structures. We
focus here on spherical CR structures, i.e., structures modeled on the boundary at
infinity of the complex hyperbolic plane with group of automorphisms PU(2, 1).
Schwartz [2007] shows a spherical CR Dehn surgery theorem that gives, under
some convergence hypotheses, uniformizable spherical CR structures on some Dehn
surgeries on a cusped spherical CR manifold. In this paper, we prove a similar
theorem using techniques coming from (G, X)-structures and the geometry of
∂∞H

2
C instead of the alternative approach of discreteness of group representations

and actions on H
2
C. Theorem 3.23 has weaker hypotheses than Schwartz’s theorem,

but we obtain geometric structures on the surgeries for which we do not know
whether they are uniformizable.

For the reader, the example to keep in mind, treated in Section 4, is the Deraux–
Falbel structure on the figure-eight knot complement constructed in [Deraux and
Falbel 2015]. For this example, Deraux [2014] shows that there is a one-parameter
family of spherical CR uniformizations on the figure-eight knot complement with
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parabolic peripheral holonomy containing this structure. Falbel, Guilloux, Koseleff,
Rouillier, and Thistlethwaite [Falbel et al. 2016] describe the SL3(C)-character
variety of the fundamental group of the figure-eight knot complement. They give
an explicit parametrization for the component in SU(2, 1) containing the holonomy
representation of the Deraux–Falbel structure. This component also gives rise to
spherical CR structures near the Deraux–Falbel structure. With this parametrization
and Theorem 3.23, we obtain the following theorem:

Theorem. Let M be the figure-eight knot complement. For the usual1 marking of
the peripheral torus of M :

(1) There exist infinitely many spherical CR structures on the Dehn surgery of M
of slope −3.

(2) There exists δ > 0 such that for all r ∈ Q ∩ ]0, δ[, there is a spherical CR
structure on the Dehn surgery of M of slope −3+ r .

In Section 2, we recall some properties about H
2
C, ∂∞H

2
C, and PU(2, 1) and set

some notation. We look in detail at the dynamics of one-parameter subgroups of
PU(2, 1) acting on ∂∞H

2
C. Understanding these dynamics will be crucial in the

proof of the surgery theorem. Section 3 deals with deformation of (G, X) structures
and fixes some notation and a marking of a peripheral torus in order to state the
main theorem of this paper, Theorem 3.23. In Section 4, we apply Theorem 3.23 in
the case of the Deraux–Falbel structure, by checking the hypotheses and looking
at the deformation space as given in [Falbel et al. 2016]. Finally, in Section 5, we
give a complete proof of the surgery theorem.

2. Generalities on H
2
C and its isometries

In this section we recall some facts about the hyperbolic complex plane H
2
C and

its boundary at infinity ∂∞H
2
C and set notation for them. We study the group

of holomorphic isometries of H
2
C, identified with PU(2, 1), by describing its one-

parameter subgroups. Almost all stated results can be found in the thesis of Genzmer
[2010] and in the book of Goldman [1999].

The space H
2
C and its boundary at infinity. We begin by giving a construction of

the hyperbolic complex plane. Let V be a complex vector space of dimension 3
endowed with a Hermitian product 〈 · , · 〉. Denote by 8 the associated Hermitian
form. We suppose that 8 has signature (2, 1). By setting

V− = {v ∈ V −{0} |8(v) < 0},
V0 = {v ∈ V −{0} |8(v)= 0},
V+ = {v ∈ V −{0} |8(v) > 0},

1For us, the usual marking is the one given in [Thurston 2002].
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the complex hyperbolic plane is defined as PV−, endowed with the Hermitian
metric induced by 8, and its boundary at infinity ∂∞H

2
C is defined as PV0.

Notation 2.1. We will denote with usual parentheses “(” and “)” the objects before
projectivization and with square brackets “[” and “]” the class of an object in the
projectivized space.

From now on, we will use two different models of the complex hyperbolic plane,
going from one to another by a conjugation. In both cases, the vector space is
V = C3. For the details in the construction, see [Goldman 1999].

Notation 2.2. Let

J1 =

1 0 0
0 1 0
0 0 −1

 and J2 =

0 0 1
0 1 0
1 0 0

.
They are the matrices of the Hermitian products 〈 · , · 〉1 and 〈 · , · 〉2 and they are

conjugate by Cayley’s matrix

C =
1
√

2

1 0 1
0
√

2 0
1 0 −1

.
Definition 2.3. By identifying V with C3 and 〈 · , · 〉 with 〈 · , · 〉1, we obtain the
ball model. We then have

H
2
C =

{[
Z1
Z2
1

]
∈ CP2

∣∣∣∣ |Z1|
2
+ |Z2|

2 < 1

}
and

∂∞H
2
C =

{[
Z1
Z2
1

]
∈ CP2

∣∣∣∣ |Z1|
2
+ |Z2|

2
= 1

}
.

With this model, we see that H
2
C is homeomorphic to the ball B4 and ∂∞H

2
C is

homeomorphic to the sphere S3. The other model that we will consider is the Siegel
model, more convenient for drawing pictures.

Definition 2.4. By identifying V with C3 and 〈 · , · 〉 with 〈 · , · 〉2, we obtain the
Siegel model, with

∂∞H
2
C =

{[
−

1
2

(
|z|2+ i t

)
z
1

] ∣∣∣∣ (z, t) ∈ C×R

}
∪

{[
1
0
0

]}
.
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We can then identify ∂∞H
2
C with (C×R)∪ {∞}. Removing the point at infinity,

we obtain the Heisenberg group, defined as C×R with multiplication

(w, s) ∗ (z, t)= (w+ z, s+ t + 2 Im(wz)).

We are also going to use complex geodesics, which are intersections of complex
lines of PV with H

2
C, and their boundaries at infinity, called C-circles.

Holomorphic isometries of H
2
C and invariant flows. We defined above the com-

plex hyperbolic space and have seen two of its models. The group of holomorphic
isometries of this space is PU(2, 1), as described below.

Notation 2.5. Let U(2, 1) be the group of matrices of GL3(C) such that A∗ J A= J
for J = J1 or J2 (according to the model in which we work). Let SU(2, 1) be the
subgroup of matrices of determinant 1 and PU(2, 1) its projectivization.

We state in detail a classification of the elements of PU(2, 1). We use the notations
and state the results of [Genzmer 2010, Chapter 1]. Isometries are classified by
their fixed points in H

2
C ∪ ∂∞H

2
C.

An isometry g 6= Id of H
2
C is called elliptic if it has at least one fixed point

in H
2
C, parabolic if it is not elliptic and has exactly one fixed point in ∂∞H

2
C, and

loxodromic if it is not elliptic and has exactly two fixed points in ∂∞H
2
C.

We can state this classification in terms of eigenvalues. The eigenvalues of an
element of PU(2, 1) are only defined up to multiplication by a cube root of 1 that
we denote by ω; we give a condition on the eigenvalues of a lift in SU(2, 1).

Proposition 2.6. Let U∈ SU(2, 1)−{Id}. Then U is in one of the three following
cases:

(1) U has an eigenvalue λ of modulus different from 1. Then [U ] is loxodromic.

(2) U has an eigenvector v ∈ V−. Then [U ] is elliptic and its eigenvalues have
modulus equal to 1 but are not all equal.

(3) All eigenvalues of U have modulus 1 and U has an eigenvector v ∈ V0. Then
[U ] is parabolic.

To refine this classification, we will consider different cases when there are
double eigenvalues. We give the following definition:

Definition 2.7. Let U ∈ SU(2, 1) − {Id}. We say that U is regular if its three
eigenvalues are different and unipotent if its three eigenvalues are equal (and so
equal to a cube root of 1).

The definition extends to PU(2, 1); we will speak of regular elements of PU(2, 1).
In that case the eigenvalues are well-defined up to multiplication by ω. Thanks to
the following remark, we know that regular elements are easier to manipulate.
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Remark 2.8. Let [U ] ∈ PU(2, 1) be a regular element. Then [U ] is determined by
its three eigenvalues α, β, γ and its three fixed points [u], [v], [w] in CP2.

It is possible to know if an element is regular only by knowing its trace, thanks
to the following proposition.

Proposition 2.9 [Goldman 1999]. For z∈C, let f (z)=|z|4−8 Re(z3)+18|z|2−27.
Let U ∈ SU(2, 1). Then U is regular if and only if f (tr(U )) 6= 0. Furthermore, if
f (tr(U ))<0 then [U ] is regular elliptic, and if f (tr(U ))>0 then [U ] is loxodromic.

Remark 2.10. It is suitable to make two remarks about the proposition:

(1) For ω ∈C satisfying ω3
= 1, we have f (z)= f (ωz). Therefore, we can define

the function f ◦ tr on PU(2, 1).

(2) For a parabolic element [U ], the equality f (tr(U )) = 0 holds, but there are
nonregular elliptic elements for which f (tr(U ))= 0.

In order to study spherical CR structures and their surgeries, we will use the
flows of vector fields associated to some elements of PU(2, 1). The geometric
objects that we are going to consider are invariant vector fields induced by elements
of PU(2, 1). We begin by looking at an infinitesimal level: an element of the Lie
algebra su(2, 1) defines a vector field on ∂∞H

2
C invariant under its exponential map.

Notation 2.11. Let X ∈ su(2, 1). It defines a vector field on ∂∞H
2
C invariant by

exp(X) given at a point x by

d
dt

∣∣∣
t=0

exp(t X) · x .

Let φX
t be the flow of this vector field, so φX

t (x) = exp(t X) · x . If there is no
ambiguity for X , we will only write φt .

Remark 2.12. If [U ] ∈ PU(2, 1) is close enough to a unipotent element, it defines a
vector field on ∂∞H

2
C. Indeed, possibly after changing the lift, we can suppose that

the eigenvalues of U are near 1, and consider the vector field associated to Log(U ).
Then, φLog(U )

1 has the same action as [U ].

Description of isometries and invariant flows. We are going to describe briefly
some elements of PU(2, 1), and classify each by its type and the dynamics of its
action on CP2.

We are going to study the dynamics of some flows of the form φLog(U )
t , where

U is close to a unipotent element. We describe here flows associated to regular
elliptic, loxodromic and unipotent elements.
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Regular elliptic flows. Consider a regular elliptic element in SU(2, 1), close to Id,
in the ball model. Perhaps after a conjugation, we can suppose that it is equal to

Eα,β,γ =

eiα 0 0
0 eiβ 0
0 0 eiγ

.
The flow of the associated vector field acts then on ∂∞H

2
C by

φLog(Eα,β,γ )
t

[
Z1
Z2
1

]
=

[
ei t (α−γ )Z1

ei t (β−γ )Z2
1

]
=

[
ei t (2α+β)Z1

ei t (2β+α)Z2
1

]
.

Remark 2.13. The flow stabilizes the two C-circles

C1 = [e1]
⊥
∩ ∂∞H

2
C =

{[
0

eiθ

1

] ∣∣∣∣ θ ∈ R

}
and

C2 = [e2]
⊥
∩ ∂∞H

2
C =

{[
eiθ

0
1

] ∣∣∣∣ θ ∈ R

}
,

on which it acts as rotations by angles 2β +α and 2α+β respectively.

Remark 2.14. The centralizer of Eα,β,γ is

C(Eα,β,γ )= {Eθ1,θ2,−(θ1+θ2) | (θ1, θ2) ∈ R2
}.

The orbits of this subgroup in ∂∞H
2
C are C1, C2, and the subsets Tr for r ∈ ]0, 1[,

defined by

Tr =

{[
Z1
Z2
1

]
∈ ∂∞H

2
C

∣∣∣∣ |Z2| = r, |Z1| =
√

1− r2

}
.

The orbits Tr are embedded tori in ∂∞H
2
C with core curves C1 and C2. They are

all invariant under the action of φLog(Eα,β,γ )
t . We can see an example in Figure 1.

Have a look now at the orbits of the flow φLog(Eα,β,γ )
t . Notice that the orbit of

a point is included in a unique torus Tr , and that every orbit included in Tr is the
image of a fixed orbit by an element Eθ1,θ2,−(θ1+θ2). Thus, the torus Tr is foliated
by these orbits. We fix r ∈ ]0, 1[, and consider two cases:

Case 1: α/β /∈Q. In this case, the angles of rotation in Tr for φt are (2α+β)t and
(2β +α)t . Since their quotient is irrational, an orbit is an injective immersion of a
line and it is dense in Tr .

Case 2: α/β ∈Q. In this case, the angles of rotation in Tr for φt are (2α+β)t and
(2β +α)t . Their quotient is rational; denote it by p/q in reduced form. The orbits
are periodic and of slope p/q in Tr : they are torus knots of type (p, q), knotted
around C1 and C2. We can see an example in Figure 2.
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Figure 1. Invariant subsets for an elliptic flow in the Siegel model:
invariant C-circles (left), and the invariant torus T4/5 (right).

Figure 2. Orbits of elliptic flows in the Siegel model: an orbit for
(2α+β)/(2β+α)= 7

11 , a torus knot of type (7, 11) (left), and an
orbit for (2α+β)/(2β +α)= 1

3 , an unknot (right).

Remark 2.15. If p are q are different from ±1, the orbit of a point of Tr is a torus
knot of type (p, q) and is knotted in ∂∞H

2
C. If p or q equals ±1, then the orbit

is unknotted; we can see an example in Figure 2. This remark will be crucial to
identify Dehn surgeries among the structures that we will construct by deformation.

Definition 2.16. Let n, p, and q be relatively prime integers with |p| ≥ |q|. We
say that an elliptic element U ∈ PU(2, 1) is of type (p/n, q/n) if U is conjugate to
Eα,β,γ with

α =
2p− q

3n
, β =

2q − p
3n

, and γ =−α−β =
−p− q

3n
.

In this case, (2α+ β)/(2β + α) = p/q and the orbits of the flow φLog(U )
t are its

two invariant C-circles and torus knots of type (p, q).

Remark 2.17. (1) Only some elliptic elements are of some type (p/n, q/n). We
will see later that elements of some type (p/n, q/n) are the ones for which our
construction happens to work.

(2) The trace of an elliptic element gives its three eigenvalues, but it is not enough
to determine the type of the element. Indeed, an element of the same trace as
an elliptic of type (p/n, q/n) will have the same eigenvalues but not necessarily
the same eigenvalue associated to its fixed point in H

2
C. Thus, elements of type

(p/n, q/n), (−p/n, (q − p)/n), and ((p− q)/n,−q/n) have the same trace but
are not conjugate.
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Loxodromic flows. Consider a loxodromic element in SU(2, 1) in the Siegel model.
Perhaps after a conjugation, we can suppose that it is

Tλ =

λ 0 0
0 λ/λ 0
0 0 1/λ

,
where λ∈C is of modulus greater than 1. We then have λ=reiα, with α∈R and r>1.
We suppose that α is small enough, so the series Log(Tλ) converges. In coordinates
(z, s) ∈ C×R, the action of the flow is given by φLog(Tλ)

t : (z, t) 7→ (µt z, |µt |
2s),

where µt = r t e−3iαt.

Remark 2.18. The flow φt fixes globally the points

[p0] =

[
0
0
1

]
and [p1] =

[
1
0
0

]
and stabilizes the C-circle joining them, which is called the axis of [Tλ]. Furthermore,
for all u ∈ ∂∞H

2
C not fixed by Tλ,

lim
t→+∞

φt(u)= [p1] and lim
t→−∞

φt(u)= [p0].

In the same way as in the elliptic case, we have flow-invariant objects, related to
the centralizer of Tλ.

Remark 2.19. The centralizer of Tλ is C(Tλ)= {Tµ | µ ∈ C∗}. The orbits of this
subgroup in ∂∞H

2
C are the two fixed points of Tλ, the two arcs of the C-circle

joining them, and the punctured paraboloids Pr for r ∈R, as in Figure 3, defined by

Pr =

{[
−

1
2 (|z|

2
+ is)

z
1

]
∈ ∂∞H

2
C

∣∣∣∣ s
|z|2
= r

}
.

Unipotent flows. Consider now a unipotent element of SU(2, 1) in the Siegel model.
Perhaps after a conjugation, we can assume that it is, for (z, s) ∈ C×R,

Pz,s =

1 −z − 1
2(|z|

2
+ is)

0 1 z
0 0 1

.
The series Log(Pz,s) converges. In coordinates (z, s) ∈ C× R, the action of

the flow is given by φLog(Pz,s)
t : (z′, s ′) 7→ (z′ + t z, s ′ + ts − 2t Im(zz′)). In these

coordinates, the orbits of the flow are straight lines.

Remark 2.20. If z = 0, then [Pz,s] is called a vertical parabolic element and all
orbits of the flow are vertical lines. If not, then [Pz,s] is called a horizontal parabolic
element and the orbits of the flow are lines with different slopes.
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Figure 3. Orbits of loxodromic flows in the Siegel model: an
orbit of a loxodromic flow (left) and a cylinder invariant under a
loxodromic flow (right).

Some remarks on the convergence of regular elements. The projection

SU(2, 1)→ PU(2, 1)

is a covering of order 3; in order to study the convergence in PU(2, 1) we can focus
on the convergence in SU(2, 1).

Let (Un)n∈N be a sequence of regular elements of SU(2, 1) converging to U in
SU(2, 1)−C Id. If U is regular, then the convergence is given by the convergence
of eigenvectors and eigenvalues. We consider now the case where U is not regular.
The continuity of eigenvectors and eigenvalues gives the following lemma.

Lemma 2.21. Suppose that (Un)n∈N is a sequence of regular elements of SU(2, 1)
converging to U∈SU(2, 1)−C Id, and let (([un], αn), ([vn], βn), ([wn], γn)) be the
eigenvectors and eigenvalues of Un in some order. Then, perhaps after relabeling,
(([un], αn), ([vn], βn), ([wn], γn)) converges to (([u], α), ([v], β), ([w], γ )) in
(CP2

× C)3, where ([u], α), ([v], β), ([w], γ ) are (possibly equal) eigenvectors
and eigenvalues of U.

Consider the case where U is horizontal parabolic. Then, U has a unique
fixed point [p] ∈ CP2, which is in ∂∞H

2
C, and its eigenvalues can be chosen all

equal to 1. Using the above lemma, we deduce that (αn, βn, γn)→ (1, 1, 1) and
([un], [vn], [wn])→ ([p], [p], [p]). From a geometric point of view on H

2
C∪∂∞H

2
C

we make the two following remarks:

Remark 2.22. If the Un are loxodromic of axes ln then the ln leave every compact
subset of H

2
C ∪ ∂∞H

2
C−{[p]}.

Remark 2.23. If the Un are elliptic, they each have two invariant complex geodesics
l(1)n and l(2)n (the polar lines [vn]

⊥ and [wn]
⊥ if [un] is the fixed point of Un in H

2
C).

Then the l(i)n leave every compact subset of H
2
C ∪ ∂∞H

2
C−{[p]}.
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These two remarks will be crucial when understanding the geometry of deforma-
tions of spherical CR structures by considering a developing map.

3. Regular surgeries

The Ehresmann–Thurston principle. We are going to study spherical CR struc-
tures on a 3-manifold M. We begin by recalling the formalism of (G, X)-structures,
that will give us the language to use. In the definitions, X will be a smooth connected
manifold and G a subgroup of the diffeomorphisms of X acting transitively and
analytically on X . We will focus on the case where X = ∂∞H

2
C and G = PU(2, 1).

Definition 3.1. A (G, X)-structure on a manifold M is a pair (Dev, ρ), up to
isotopy, of a local diffeomorphism Dev : M̃ → X and a group homomorphism
ρ : π1(M)→ G such that for all x ∈ M̃ and all g ∈ π1(M) we have Dev(g · x)=
ρ(g) ·Dev(x) for the group actions of π1(M) on M̃ and of G on X .

We say that Dev is the developing map of the structure and ρ its holonomy.

Remark 3.2. We identify two structures if they are G-equivalent, i.e., if there is a
g ∈ G such that the developing maps Dev1 and Dev2 satisfy Dev2 = g ◦Dev1. In
this case, the holonomy representations are conjugate and satisfy ρ2 = gρ1g−1.

Remark 3.3. The definition we just gave is not the usual one. It is equivalent to
the usual definition of a (G, X)-structure as an atlas of charts of M taking values
in X and whose transition maps are given by elements of G. A couple (Dev, ρ)
immediately gives such an atlas, but the construction of (Dev, ρ) from an atlas
requires more work. See, for example, [Thurston 2002]. Nevertheless, we will use
both definitions: the first in order to deform a structure, and the second to construct
a new one.

We will also sometimes use manifolds with boundary, but the definition of
(G, X)-structure easily extends to this case. From now on, we consider a compact
three-dimensional manifold M with (possibly many) torus boundary components.
We are going to study spherical CR structures on M, where the model space X is
∂∞H

2
C and the group G is PU(2, 1).

Definition 3.4. A spherical CR structure is a (PU(2, 1), ∂∞H
2
C)-structure.

In order to deform the structure using the Ehresmann–Thurston principle that
we state below, the essential objects are the representations of π1(M) taking values
in PU(2, 1).

Notation 3.5. Let R(π1(M),G) be the set of representations of π1(M) taking
values in G, endowed with the topology of pointwise convergence.

We are going to work with deformations of some structures. In order to state the
results on a deformation, we will need to be “far enough from the boundary” or
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“close to the boundary”. We are going to consider the union of M with a thickening
of its boundary to be able to state the results precisely.

Notation 3.6. If s ∈ R+, denote by M[0,s[ the union of M with a thickening of its
boundary. Thus, M[0,s[ = (M ∪ (∂M × [0, s[))/∼, where we identify ∂M with
∂M ×{0}. We consider those manifolds as included into each other, in such a way
that if s1 ≤ s2, then M[0,s1[ ⊂ M[0,s2[.

Remark 3.7. The manifolds M[0,s[ are all homeomorphic to the interior of M. We
use these cuts in order to get a suitable convergence “far enough” from the boundary
of M for geometric structures.

We state the Ehresmann–Thurston principle, which says that we only need to
deform in R(π1(M),G) the holonomy of a (G, X)-structure to have a deformation
of the structure itself. A proof can be found in [Bergeron and Gelander 2004] or in
the survey [Goldman 2010].

Theorem 3.8 (Ehresmann–Thurston principle). Suppose that M[0,1[ is endowed
with a (G, X)-structure of holonomy ρ0. For all ε > 0, if ρ ∈ R(π1(M),G) is a
deformation close enough to ρ0, then there is a (G, X)-structure on M[0,1−ε[ with
holonomy ρ and close to the first structure on M[0,1−ε[ in the C1 topology.

Surgeries. As in the real hyperbolic case, we consider Dehn surgeries of M, which
are, from a topological point of view, a gluing of solid tori on the torus boundaries
of M. We attempt to extend a spherical CR structure on M to one of its surgeries. We
show a result very similar to the one showed by Schwartz [2007], but with some dif-
ferences. On the one hand, our hypotheses are weaker than Schwartz’s and we obtain
a geometric structure. On the other hand we do not know if the structure is obtained
as a quotient of an open set of ∂∞H

2
C by the action of a subgroup of PU(2, 1).

Thickenings and lifts. We begin by fixing notation for a torus boundary component,
one of its lifts, and the associated peripheral holonomy. We denote by M̃ the
universal cover of M and by π : M̃→ M its covering map. We state all results for
a single torus boundary component in order to avoid heavy notation, but the same
statements hold for several boundary components.

Notation 3.9. Let T be a fixed torus boundary component of M. For s ∈ [0, 1[, let
Ts = T ×{s} ⊂ M[0,1[, and, for an interval I ⊂ [0, 1[, let

TI =
⋃
s∈I

Ts = T × I ⊂ M[0,1[.

Let T̃[0,1[ denote some connected component of π−1(T[0,1[)⊂ M̃ [0,1[: it is a universal
cover of T[0,1[ embedded in M̃ [0,1[. Finally, for s ∈ [0, 1[, set T̃s = π

−1(Ts)∩ T̃[0,1[
and, for an interval I ⊂ [0, 1[, set T̃I =

⋃
s∈I T̃s .

We make some remarks on the choices made by using this notation:
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Remark 3.10. For all s ∈[0, 1[, we see that T̃s is homeomorphic to R2. Furthermore,
T̃I is homeomorphic to R2

× I .

Remark 3.11. The choice of T̃[0,1[ fixes an injection of the fundamental group of T
into the fundamental group of M by identifying π1(T ) with the stabilizer of T̃[0,1[
for the action of π1(M) on M̃ [0,1[. In the rest of the paper, we will use additive
notation for π1(T )'Z2, in order to use the standard notations and tools for a group
isomorphic to Z2. Nevertheless, the identification of π1(T ) with a subgroup of
π1(M) will lead to a slight abuse of notation: we will keep multiplicative notation
for π1(M), but when considering elements of π1(T ) we will use additive notation.

Notation 3.12. With the fixed injection of π1(T ) into π1(M), by restricting the
holonomy ρ of a (G, X)-structure we have a peripheral holonomy hρ : π1(T )→ G.

Notation 3.13. We denote by R1(π1(M),G) ⊂ R(π1(M),G) the set of repre-
sentations ρ such that the image of hρ is generated by a single element. When
ρ ∈R1(π1(M),PU(2, 1)) has [U ] ∈ PU(2, 1) as a preferred generator for its image,
we write φρt for φLog([U ])

t .

Horotubes. We use the definitions related to horotubes given in [Schwartz 2007]:

Definition 3.14. Let [P] ∈ PU(2, 1) be a parabolic element with fixed point
p ∈ ∂∞H

2
C. A [P]-horotube is an open set H of ∂∞H

2
C − {p}, invariant under

[P] and such that the complement of H/〈[P]〉 in (∂∞H
2
C−{p})/〈[P]〉 is compact.

In order to work with more regular objects, we often ask horotubes to be nice:

Definition 3.15. A [P]-horotube H is nice if ∂H is a smooth cylinder invariant by
the flow φLog([P])

t .

Figure 4. The boundary of a nice horotube in the Siegel model.
The horotube is outside the red surface.
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Remark 3.16. If H is a nice [P]-horotube, then ∂H is the orbit for φLog([P])
t of an

embedded circle of ∂∞H
2
C−{p}. We can see an example in Figure 4.

Shrinking the horotube if necessary, we may assume it is nice:

Lemma 3.17 [Schwartz 2007, Chapter 7]. Let H be a [P]-horotube. Then, there
is a nice [P]-horotube H ′ such that H ′ ⊂ H and (H − H ′)/〈[P]〉 is of compact
closure in (∂∞H

2
C−{p})/〈[P]〉.

From now on, we suppose that M[0,1[ has a spherical CR structure with developing
map Dev0 and holonomy ρ0. We also make two more hypotheses:

(1) The image of the peripheral holonomy hρ0 is unipotent of rank 1 and generated
by an element [U0] ∈ PU(2, 1).

(2) There is s ∈ [0, 1[ such that Dev0(T̃[s,1[) is a [U0]-horotube.

Marking of π1(T ). We are going to fix a marking of π1(T ) naturally deduced from
the structure given by Dev0 and ρ0. This marking will be useful to identify the
Dehn surgeries obtained when deforming the structure. It is essentially the same
marking as the one given in [Schwartz 2007, Chapter 8]; its definition uses the two
hypotheses given above.

Notation 3.18. Fix s ′ ∈ [s, 1[ and x0 ∈ Dev0(Ts′). Let l be the loop given by the
projection of t 7→ φρ0

t (x0). As hρ0(l)= [U0] generates the image of hρ0 and since a
unipotent subgroup of PU(2, 1) has no torsion, l is a primitive element of π1(T ).

Notation 3.19. Since hρ0 is unipotent of rank 1 and a unipotent subgroup of PU(2, 1)
has no torsion, its kernel is generated by a primitive element m. We orient m in
such a way that (l,m) is a direct basis of π1(T ) (for the orientation given by the
inside normal in the horotube).

Remark 3.20. The definition of l and m does not depend on the choice of s ′ nor
of x0. Nevertheless, we make a choice for orientations. The one for m is explicit,
but the orientation of l is given by the choice of [U0] or [U0]

−1 as a generator for
the image of hρ0 .

Remark 3.21. Schwartz [2007] gives a “canonical” choice for the orientations of l
and m (denoted β and α). It is almost the same choice as the one made above, but
he has a preferred choice for [U0]. Note that the marking (l,m) given here might
not be the usual one. If we have another marking of π1(T ), for example when M
is a knot complement, changing markings can be done easily when ρ0 is known
explicitly.

Definition 3.22. For two relatively prime integers p, q, we denote by M (p,q) the
manifold obtained by gluing a solid torus D2

× S1 on the boundary T of M such
that the loop pl + qm of T becomes trivial in D2

× S1. We refer to it as the Dehn
surgery of M of type (p, q) or of slope p/q .
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Figure 5. The curve m (in green) and the curve l (in yellow) in
the image of Dev0(T̃s′).

In the real hyperbolic case, deforming the complete hyperbolic structure on M
gives structures on all but a finite number of Dehn surgeries M (p,q) of M, as is
shown in [Thurston 2002]. The main idea to prove it is to deform the structure “far”
from the cusp, cut by T, look at the developing map near the boundary T, and then
notice that a solid torus can be glued to this boundary. What follows, stated in the
spherical CR case, is inspired by this technique. The deformation “far” from the
cusp gives rise to a developing map near T, and the manifolds that can be glued are
solid tori only in some cases.

A surgery theorem. We are now able to state a spherical CR surgery theorem. It
says that in a neighborhood of the structure (Dev0, ρ0), under some discreteness
conditions, spherical CR structures on M come from structures on Dehn surgeries
of M, and in some cases another kind of surgery.

Theorem 3.23. Let M be a three-dimensional compact manifold with torus bound-
ary components. Let T be one boundary torus of M. Suppose that there is a
spherical CR structure (Dev0, ρ0) on M[0,1[ such that:

(1) The image of the peripheral holonomy hρ0 corresponding to T is unipotent of
rank 1 and generated by an element [U0] ∈ PU(2, 1).

(2) There is s ∈ [0, 1[ such that Dev0(T̃[s,1[) is a [U0]-horotube.

Then there is an open set � of R1(π1(M),PU(2, 1)) containing ρ0 such that, for
all ρ ∈� for which the image of hρ is generated by a single element [U ] ∈ PU(2, 1),
there is a spherical CR structure on M with holonomy ρ. Furthermore, for the
marking (l,m) of π1(T ) described above:

(1) If [U ] is loxodromic, then the structure extends to a spherical CR structure on
the Dehn surgery of M of type (0, 1).
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(2) If [U ] is elliptic of type (p/n,±1/n), then the structure extends to a spherical
CR structure on the Dehn surgery of M of type (n,±p).

(3) If [U ] is elliptic of type (p/n, q/n) with |p|, |q|> 1, then the structure extends
to a spherical CR structure on the gluing of M with a compact manifold with
torus boundary V (p, q, n). Furthermore V (p, q, n) is a torus knot comple-
ment in the lens space L(n, α), where α ≡ p−1q mod n.

Remark 3.24. The existence of the spherical CR structure on M is a consequence
of the Ehresmann–Thurston principle. To extend the structure we need a local
surgery result, similar to the one given in [Schwartz 2007], and which is given in
Section 5.

Remark 3.25. If [U ] is parabolic, the theorem still holds, but the spherical CR struc-
ture extends to a thickening of M that is homeomorphic to M itself. We also exclude
from the discussion the case where [U ] is elliptic with irrational angle, for which
there is no reasonable filling for the structure, and the case where [U ] is nonregular
elliptic, for which the techniques used to prove Theorem 3.23 do not apply.

4. Deformations of the Deraux–Falbel structure
on the figure-eight knot complement

We are going to apply Theorem 3.23 in the case of the spherical CR structure on
the figure-eight knot given in [Deraux and Falbel 2015]. We will use some results
of [Deraux 2014], where Deraux describes a Ford domain for the structure, and
also some results of [Falbel et al. 2016], where the authors describe the irreducible
components of the SL3(C) character variety of the figure eight knot complement.

Notation 4.1. In the rest of this section, we denote by M the figure-eight knot
complement.

The Deraux–Falbel structure. We begin by recalling quickly the results in [Deraux
and Falbel 2015]. In that paper, the fundamental group of M is given by

π1(M)= 〈g1, g2, g3 | g2 = [g3, g−1
1 ], g1g2 = g2g3〉.

The authors construct a uniformizable spherical CR structure on M with unipotent
peripheral holonomy. The holonomy representation ρ0 is given by

ρ0(g1)= [G1] =

1 1 − 1
2 −

√
7

2 i
0 1 −1
0 0 1

 and ρ0(g3)= [G3] =

 1 0 0
−1 1 0
−

1
2 +

√
7

2 i 1 1

.
Remark 4.2. This representation is in the component R2 of the character variety
of [Falbel et al. 2016]. For the notation from Section 5.2 of that reference, we have
A = g3 and B = g1. With this notation, the usual longitude-meridian pair (l0,m0)
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of the knot complement satisfies

m0 = g3 and l0 = g−1
1 g3g1g−2

3 g1g3g−1
1 .

Furthermore, we check easily that ρ0(m0)
3
= ρ0(l0), so ρ0(3m0− l0)= Id.

Notation 4.3. From now on, in order to have the same notation as [Deraux 2014], we
consider the pair (l1,m1) obtained by conjugation by g2, so that m1= g2g3g−1

2 = g1.
Let l=m0 and m= 3m0−l0. In this way, m generates ker(ρ0) and ρ(l) generates

Im(ρ0): this is a marking as in the one on page 269.

Checking the hypotheses. Recall the hypotheses of Theorem 3.23:

(1) The peripheral holonomy hρ0 is unipotent with image generated by a single
element [U0] ∈ PU(2, 1).

(2) There exists s ∈ [0, 1[ such that Dev0(T̃[s,1[) is a [U0]-horotube.

The first hypothesis is satisfied by the Deraux–Falbel structure: the peripheral
holonomy is unipotent, its image is generated by [G1] = ρ0(l) and ρ0(m)= [Id].

In order to check the second hypothesis, we use the results of [Deraux 2014].
In that paper, Deraux finds with a different technique the Deraux–Falbel structure
[2015]. He considers a Ford domain F in H

2
C for 0 = ρ0(π1(M)) (Theorem 5.1)

and then studies its boundary at infinity in ∂∞H
2
C (Section 8). The manifold M

is then obtained as a quotient of a G1-invariant domain E = ∂∞F, that is, in
∂∞H

2
C ' (C×R)∪ {∞}, the exterior of a G1-invariant cylinder C embedded in

C×R (Proposition 8.1). The domain E is a [G1]-horotube; so there exists s ∈ [0, 1[
such that the image by the developing map of T̃[s,1[ is a [G1]-horotube contained
in E . Thus, the second hypothesis is satisfied.

So, the conclusion of Theorem 3.23 holds. By changing coordinates in order to
have the usual marking for the fundamental group of the boundary of M, we get:

Proposition 4.4. There is an open set � of R1(π1(M),PU(2, 1)) such that, for all
ρ ∈� such that the image of hρ is generated by an element [U ] ∈ PU(2, 1), there
exists a spherical CR structure on M of holonomy ρ. Furthermore, for the usual
marking (l0,m0) of π1(T ):

(1) If [U ] is loxodromic, then the structure extends to a spherical CR structure on
the Dehn surgery of type (−1, 3) of M.

(2) If [U ] is elliptic of type (p/n,±1/n), then the structure extends to a spherical
CR structure on the Dehn surgery of type (−n,±p+ 3n) of M.

(3) If [U ] is elliptic of type (p/n, q/n) with |p|, |q|> 1, then the structure extends
to a spherical CR structure on the gluing of M to a compact manifold with torus
boundary V(p,q,n) along their boundaries. Furthermore, V(p,q,n) is the
complement of a torus knot in the lens space L(n,α), where α ≡ p−1q mod n.
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Remark 4.5. If [U ] is parabolic, then the theorem still holds, but the spherical CR
structure extends to a thickening of M. These structures are given in [Deraux 2014].

Remark 4.6. We wonder if Schwartz’s horotube surgery theorem [2007, Theo-
rem 1.2] can be applied in this case. For 0 = ρ0(π1(M)), the construction of
Deraux and Falbel [2015] states that the regular set �0 is nonempty and that �0/0
is homeomorphic to M, but we do not have any more information about �0 and
the limit set 30 = ∂∞H

2
C−�0. In order to apply the horotube surgery theorem,

we would have to check several nontrivial hypotheses. In particular we do not
know how to prove that the set 30 is porous. One of the main motivations of this
paper was to state a result with more simple hypotheses, even if we obtain weaker
conclusions when both theorems can be applied.

Deformations of the structure. It remains to see that the open set �⊂R1(π1(M))
is not reduced to a point to get interesting conclusions. The representation ρ0 is
in the component R2 of the SL3(C)-character variety described in [Falbel et al.
2016]. In Section 5 of that paper, the representations in R2 taking values in SU(2, 1)
are parametrized up to conjugacy, at least in a neighborhood of ρ0, by a complex
parameter u = tr(ρ(m0)). We denote by G(u)= ρ(m0) the corresponding matrix.

Setting v = u, 1= 4u3
+ 4v3

− u2v2
− 16uv+ 16, and

1′ =
−16+ 8uv− 2v3

− 4
√
1

8u2− 6uv2+ v4 ,

the parametrization is explicitly given by

[G−1
3 (u)] = ρ(a)=

 1
2v 1 −(1− i)1′

1
8(1+ i)(−2u+ v2) 1

4(1+ i)v 1
1

16(8− 4uv+ v3
− 2
√
1) 1

8(−4u+ v2) 1
4(1− i)v


and

[G−1
1 (u)] = ρ(b)=

 1
2v i (1+ i)1′

−
1
8(1+ i)(−2u+ v2) 1

4(1− i)v i
−

1
16(8− 4uv+ v3

− 2
√
1) − i

8(−4u+ v2) 1
4(1+ i)v

.
Recall that for this choice of generators the usual meridian m0 is given by m0= a−1.
The Hermitian form preserved by this representation is given by the matrix2

H =

 1
8(1− 16)(

√
1+ |u|2− 4) 0 0
0 16−1 0
0 0 8(

√
1+ 4)

.
2We write here the opposite of the matrix H appearing in [Falbel et al. 2016] in order to have

signature (2, 1) and not (1, 2).
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Figure 6. Domain parametrizing a component of the deformation
variety near ρ0.

Furthermore, in the whole component the relation ρ(l0) = ρ(m0)
3 holds, so

R1(π1(M)) ∩ R2 = R(π1(M)) ∩ R2. By projecting to PU(2, 1), we can apply
Theorem 3.23 on an open set containing 3= tr(ρ0(m0)) with these parameters.

Figure 6, taken from [Falbel et al. 2016], shows an open set of C where we have
representations. By noting tr(ρ0(m0))= x+iy, the component containing ρ0 admits
as parameters the regions with boundary the curve 1(x, y)= 0 and containing the
points 3, 3ω, and 3ω2, where

1(x, y)=−x4
− y4
− 2x2 y2

− 24xy2
+ 8x3

− 16x2
− 16y2

+ 16.

Now let us plot the curve C of traces of nonregular elements of SU(2, 1). It
is given by the zeroes of the function f (z) = |z|4 − 8 Re(z3)+ 18|z|2 − 27 (see
Proposition 2.9). The curve separates regular elliptic and loxodromic elements. It
has a singularity at the point u= 3: thus a neighborhood of this point contains points
corresponding to representations where the peripheral holonomy is loxodromic and
points where it is regular elliptic.

Remark 4.7. The parabolic deformations of the Deraux–Falbel structure given in
[Deraux 2014] correspond to the points of C.

We can therefore apply the first point of Proposition 4.4 to the space of holonomy
representations given by the parameters above. We obtain the following proposition:

Proposition 4.8. There exist infinitely many spherical CR structures on the Dehn
surgery of M of type (−1, 3).

Remark 4.9. This surgery is the unit tangent bundle to the hyperbolic orbifold
(3, 3, 4). It is a Seifert manifold of type S2(3, 3, 4). See, for example, Chapter 5
of the book of Cooper, Hodgson, and Kerckhoff [Cooper et al. 2000] or the paper
[Deraux 2015]. Deraux [2014, Section 4; 2015, Theorem 4.2] also remarks that the
image of ρ0 is a faithful representation of the even words of the (3, 3, 4) triangle
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group, generated by involutions I1, I2, I3. This identification satisfies G1= I2 I3 I2 I1,
G2 = I1 I2, G3 = I2 I1 I2 I3, and the triangle group relations: (G2)

4
= (I1 I2)

4
= Id,

(G1G2)
3
= (I2 I3)

3
= Id, and (G2G1G2)

3
= (I1 I3)

3
= Id. Furtheremore, the image

of the usual meridian m0 is G3.
This group is the fundamental group of a Seifert manifold of type S2(3, 3, 4).

Since the relation l0 = m3
0 holds in the whole component R2, the images of rep-

resentations in R2 are representations of this index-2 subgroup of the (3, 3, 4)
triangle group. Furthermore, Parker, Wang, and Xie [Parker et al. 2016] show that a
PU(2, 1) representation of the (3, 3, 4) triangle group is discrete and faithful if and
only if the image of I1 I3 I2 I3 is nonelliptic. Note that G1 I1 I3 I2 I3 = (I2 I3)

3
= Id,

so the representation of the triangle group is discrete and faithful if and only if the
corresponding peripheral holonomy is nonelliptic. They also give a one-parameter
family of such representations, corresponding to the parameters u ∈ R. Thus, there
exists δ > 0 such that all the spherical CR structures on the Dehn surgery of M of
type (−1, 3) with parameter u in the interval ]3, 3+ δ[ have discrete and faithful
holonomy.

Since the parameter is the trace of an element, we know that cases (2) and (3) of
Proposition 4.4 happen infinitely many times, but we can not distinguish at first
sight, for a given trace, if it is a Dehn surgery or a gluing of a V (p, q, n) manifold.
Nevertheless, using a computation with the explicit parametrization of [Falbel et al.
2016] and the continuity of eigenvalues we prove:

Proposition 4.10. There is δ > 0 such that, if p, n ∈N are relatively prime integers
such that p/n < δ, then the Dehn surgery of M of type (−n,−p+ 3n) admits a
spherical CR structure.

Proof. Let p, n ∈ N be relatively prime integers. Let

α =
−2p− 1

3n
, β =

2+ p
3n

, γ =
p− 1
3n

, and u = eiα
+ eiβ

+ eiγ.

Figure 7. Curve of nonregular elements in a component of the
deformation variety near ρ0 (left) and detail of same (right).
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We only need to show that if p/n is small enough, the eigenvalue of ρ(m)=G−1
3 (u)

corresponding to a negative eigenvector is eiγ, and so G3(u) is of type (p/n,−1/n).
Since eigenvectors and eigenvalues are continuous functions of u in the connected

component of regular elliptics, in R2, as in Figure 7, the statement is true for all
(p, n) if and only if it is true for a particular choice of (p, n). For the arbitrary choice
(p, n)= (3, 23) an explicit computation shows that G3(u) is of type

( 3
23 ,−

1
23

)
. �

5. Proof of Theorem 3.23

In this section, we are going to prove Theorem 3.23. We use the notation of Section 3.
We have a manifold M with a torus boundary T, endowed with a spherical CR
structure (Dev0, ρ0) such that the image of the holonomy hρ0 is unipotent of rank 1
and generated by an element [U0]∈PU(2, 1). We suppose that there is s∈[0, 1[ such
that Dev0(T̃[s,1[) is a [U0]-horotube. Recall that we work with a single boundary
component T to avoid heavy notation, but the proof works for several boundary
components.

In order to prove the theorem, we begin by rewriting the hypotheses to make them
easier to handle. The existence of a spherical CR structure on M for a deformation
of ρ0 will be a consequence of the Ehresmann–Thurston principle. To extend it to
a surgery of M, we need only a local surgery result by looking near the boundary
of M[0,1[. This surgery result is very similar, in cases (1) and (2), to the one given
in [Schwartz 2007, Chapter 8].

Rewriting the hypotheses. First of all, we rewrite the second hypothesis. Fix a
diffeomorphism ψ : R2

×[0, 1[ → T̃[0,1[, such that:

(1) ψ(R2
×{s})= T̃s for all s ∈ [0, 1[.

(2) ψ induces a diffeomorphism between R× S1
×[0, 1[ and T̃[0,1[/ ker(hρ0).

To avoid too much notation, we identify R2
×[0, 1[with T̃[0,1[ and R×S1

×[0, 1[with
T̃[0,1[/ ker(hρ0). In this case, the developing map Dev0 induces a diffeomorphism
between T̃[0,1[/ ker(hρ0) and Dev0(T̃[0,1[) that we will still call Dev0. We replace
hypothesis (2) of the theorem by hypotheses (2′) and (3) described below:

Hypothesis (2′): There are 0< s1 < s2 < 1 such that:

(1) Dev0({0}× S1
×{s}) is a circle transverse to the flow for all s ∈ [s1, s2].

(2) Dev0(t, ζ, s)= φρ0
t (Dev0(0, ζ, s)) for all (t, ζ, s) ∈ R× S1

×[s1, s2].

Remark 5.1. Thanks to Lemma 3.17, it is clear that hypothesis (2′) follows from
hypothesis (2). Perhaps after considering an isotopy and slightly increasing s, we
can suppose that the horotube Dev0(T̃[s,1[) is nice. We only need then to consider
the restriction to a segment T̃[s1,s2].
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Figure 8. Two views of surfaces bounding a region of the form Dev0(T̃[s1,s2]).

Hypothesis (2′) gives, in particular, that Dev0(T̃s2) separates ∂∞H
2
C−{p} in two

connected components: a solid cylinder Cs2 and the exterior of this cylinder, which
is homeomorphic to S1

×R×]0,+∞[. Hypothesis (3) tells us that the structure
of M is on the correct side of the tube:

Hypothesis (3): Dev0(T̃s1) is contained in Cs2 .

Remark 5.2. Hypothesis (2) is equivalent to hypotheses (2′) and (3). The implica-
tion from (2) to (2′) and (3) is clear, and, if we suppose (2′) and (3), the structure
can be extended to the outside in such a way that Dev0(T̃[s2,1[) is the horotube with
boundary Dev0(T̃s2).

Deforming the structure. We now prove Theorem 3.23. To begin, assume that the
rewritten hypotheses on page 276 are satisfied. Let ρ be a deformation close to ρ0

in R1(π1(M),PU(2, 1)) such that hρ(m)= Id. The image of hρ is then generated
by [U ] = ρ(l). We suppose that [U ] is a regular element.

Let ε > 0. By the Ehresmann–Thurston principle, if ρ is close enough to ρ0,
there is a spherical CR structure on M[0,s2+ε[ with holonomy map ρ. We then
have a developing map Devρ : M̃ [0,s2+ε[→ ∂∞H

2
C close to Dev0 in the C1 topology.

So, we can suppose that Devρ is still a diffeomorphism between the compact set
[−ε, 1+ ε]× S1

×[s1, s2] and its image.

Remark 5.3. We then have an atlas of charts on T[s1,s2] taking values in ∂∞H
2
C by

choosing lifts of T[s1,s2] in the space [−ε, 1+ε]× S1
×[s1, s2] ⊂ T̃[s1,s2]. Transition

maps are given by powers of [U ] = ρ(l).

Fix s1 < s ′1 < s ′2 < s2.

Lemma 5.4 (straightening). If ρ is close enough to ρ0, perhaps after taking an
isotopy of Devρ , we have, for all (t, ζ, s) ∈ R× S1

×[s ′1, s ′2],

Devρ(t, ζ, s)= φρt (Devρ(0, ζ, s)).
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Proof. The flows φρt and φρ0
t are close in the C1 topology when ρ is close to ρ0. We

deduce that the deformation from ρ0 to ρ induces a C1 deformation from φρ0
t ◦Dev0

to φρt ◦Devρ . First we restrict to the compact set [0, 1]× S1
×[s ′1, s ′2], which is in

the interior of [−ε, 1+ ε]× S1
×[s1, s2].

Since

Dev0([0, 1]× S1
×[s ′1, s ′2])=

⋃
t∈[0,1]

φρ0
t ({0}× S1

×[s ′1, s ′2]),

if ρ is close enough to ρ0, ⋃
t∈[0,1]

φρt ({0}× S1
×[s ′1, s ′2])

is contained in the interior of Devρ([0, 1]× S1
×[s1, s2]).

Since [U ]·φρt =φ
ρ

t+1 and [U ]·Devρ(t, ζ, s)=Devρ(t+1, ζ, s), we can straighten
Devρ by a [U ]-equivariant isotopy to have, for (t, ζ, s) ∈ R× S1

×[s ′1, s ′2],

Devρ(t, ζ, s)= φρt (Devρ(0, ζ, s)). �

From now on, we suppose that for all (t, ζ, s) ∈ R × S1
× [s ′1, s ′2] we have

Devρ(t, ζ, s)= φρt (Devρ(0, ζ, s)).

Lemma 5.5. Let C be a C-circle invariant by [U ]. Then C and the annulus
Devρ({0}× S1

×[s ′1, s ′2]) are not linked.

Proof. First, [U ] is a regular element close to the unipotent element [U0], which
has fixed point p0 ∈ ∂∞H

2
C. Thanks to Remarks 2.22 and 2.23, we know that C

leaves every compact subset of ∂∞H
2
C − {p0} when [U ] approaches [U0]. Since

Devρ({0}× S1
×[s ′1, s ′2]) stays in a fixed compact set when we deform ρ0 to ρ, we

deduce that C and the annulus Devρ({0}× S1
×[s ′1, s ′2]) are not linked. �

It only remains to establish a local surgery result, similar to the result contained
in [Schwartz 2007, Chapter 8].

Thanks to Lemma 5.4, we know that Devρ(T̃[s′1,s′2−ε]) is the orbit by φρt of the
annulus A = Devρ({0} × S1

× [s ′1, s ′2 − ε]). This orbit separates ∂∞H
2
C (if [U ]

is elliptic) or ∂∞H
2
C minus two points (if [U ] is loxodromic) into two connected

components C1 and C2, with respective boundaries Devρ(T̃s′1) and Devρ(T̃s′2). We
have a proper action of [U ] on C2, and so we can consider the quotient manifold
N = C2/〈[U ]〉. It is a compact manifold with a torus boundary, endowed with a
spherical CR structure which coincides with the structure of M[0,s′2[ on T]s′2−ε,s′2[.
Thus, the gluing M[0,s′2[ ∪ N/∼ has a spherical CR structure which extends the
structure (Devρ, ρ) of M.

We will show that if [U ] is loxodromic or elliptic of type (p/n, 1/n), then N is
a solid torus and that we have a spherical CR structure on a Dehn surgery of M of
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Figure 9. The orbit of A under φt (red) and the spheres S and
[U ] · S (green).

a certain slope. If [U ] is elliptic of type (p/n, q/n), we will see a description of N
as a complement of a torus knot in some lens space.

Case 1: [U ] is loxodromic. We work in the Siegel model, and we identify ∂∞H
2
C

with (C×R)∪ {∞}. Perhaps after conjugating, we can assume that there exists
λ ∈ C such that |λ|> 1 and

U = Tλ =

λ 0 0
0 λ/λ 0
0 0 1/λ

.
Note that [U ] has two fixed points: (0, 0) and∞. Let S be the sphere centered at

(0, 0) and of radius 1 in C×R. This sphere is a fundamental domain for the action of
the flow φρt . The subgroup generated by [U ] acts properly on (C×R)− (0, 0), and
the region

⋃
t∈[0,1] φ

ρ
t (S) with boundary components S and [U ] · S is a fundamental

domain for this action. The orbit of A under φρt intersects S in an annulus that
separates S into two disks D1 and D2, so that their orbits under φt are the connected
components C1 and C2 respectively. Figure 9 shows this situation.

The quotient manifold N =C2/〈[U ]〉 is obtained by identifying D2 and [U ] ·D2

in
⋃

t∈[0,1] φ
ρ
t (D2). Thus, it is a solid torus. But the curve of π1(T ) that becomes

trivial in C2 is the one homotopic to the boundary of D2: so it is m. We deduce
that the surgery is of type (0, 1).

Case 2: [U ] is elliptic of type (p/n,±1/n). By choosing [U0]
±1 instead of [U0]

as the generator of the peripheral holonomy, we can suppose that U is of type
(±p/n, 1/n). For ease of exposition, we write the proof for [U ] of type (p/n, 1/n).

We reason in the same way as in the loxodromic case. By Lemma 5.5, we know
that Devρ(T̃[s′1,s′2−ε]) is the orbit under φt of the annulus A=Devρ({0}×S1

×[s ′1, s ′2]),
which is not linked to any of the invariant C-circles of [U ].
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Figure 10. The orbit of A under φt (in red), the longitude l (yel-
low), and the meridian m (green).

The orbit of A under the flow φρt is then homeomorphic to S1
× S1
× [s ′1, s ′2].

Its complement in ∂∞H
2
C has two connected components; let C2 be the component

with boundary Devρ(T̃s′2). Following Remark 2.15, the orbits of the flow are not
knotted: the two connected components are solid tori, and [U ] acts properly on
each one. But the quotient of a solid torus by a proper action of a finite group is still
a solid torus. The quotient manifold N = C2/〈[U ]〉 is then a solid torus, and we
have a spherical CR structure on a Dehn surgery of M. It only remains to identify it.

Perhaps after a conjugation, we can assume that

U = e−2iπ(p+1)/(3n)

e2iπp/n 0 0
0 e2iπ/n 0
0 0 1


in the ball model. In the Siegel model, by identifying ∂∞H

2
C with (C×R)∪{∞}, we

have that [CUC−1
] stabilizes two C-circles: the circle C1 centered at 0 of radius

√
2

in C×{0} and C2 the axis {0}×R. A generic orbit of the flow turns once around C1

and p times around C2.
Let γ be the loop that follows the C-circle C2 and is oriented so that the meridian m

is homotopic to γ in the component C2. In this case, nl is homotopic, also in C2,
to −pγ . Thus nl + pm is a homotopically trivial loop in C2, which is a covering
of the solid torus N glued to M. So it is also a trivial loop in N. We deduce that the
surgery is of type (n, p).

Case 3: [U ] is elliptic of type (p/n, q/n). As in Cases 1 and 2 above, we know
that Devρ(T̃[s′1,s′2−ε]) is the orbit by φt of the annulus A=Devρ({0}× S1

×[s ′1, s ′2]),
which is not linked to any of the invariant C-circles of [U ].

The orbit of A under the flow φρt is homeomorphic to S1
× S1

× [s ′1, s ′2]. Its
complement in ∂∞H

2
C has two connected components. Let C2 be (again) the

component with boundary Devρ(T̃s′2) and C1 the one with boundary Devρ(T̃s′1).
According to Remark 2.15, generic orbits of the flow are torus knots of type (p, q):
C1 is then a tubular neighborhood of one of the orbits and C2 is homeomorphic to
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the complement of a torus knot of type (p, q). But [U ] acts properly on ∂∞H
2
C and

stabilizes C1 and C2.
Notice that, in the ball model, the action of the group generated by [U ] is the

same as the one of the group generated by

(z1, z2) 7→ (e2iπ/nz1, e2iπα/nz2),

where α ≡ p−1q mod n. The quotient ∂∞H
2
C/〈[U ]〉 is then homeomorphic to the

lens space L(n, α). Furthermore, C1/〈[U ]〉 is a solid torus knotted in ∂∞H
2
C/〈[U ]〉.

The quotient manifold V (p, q, n) = C2/〈[U ]〉 is the complement of a torus knot
in ∂∞H

2
C/〈[U ]〉 ' L(n, α). The spherical CR structure of M then extends to the

gluing of M and V (p, q, n) along their torus boundary components.
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