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In spite of the potentially groundbreaking environmental sentinel applications, studies

of canine cancer data sources are often limited due to undercounting of cancer cases.

This source of uncertainty might be further amplified through the process of spatial data

aggregation, manifested as part of the modifiable areal unit problem (MAUP). In this study,

we explore potential explanatory factors for canine cancer incidence retrieved from the

Swiss Canine Cancer Registry (SCCR) in a regression modeling framework. In doing

so, we also evaluate differences in statistical performance and associations resulting

from a dasymetric refinement of municipal units to their portion of residential land. Our

findings document severe underascertainment of cancer cases in the SCCR, which

we linked to specific demographic characteristics and reduced use of veterinary care.

These explanatory factors result in improved statistical performance when computed

using dasymetrically refined units. This suggests that dasymetric mapping should be

further tested in geographic correlation studies of canine cancer incidence and in future

comparative studies involving human cancers.

Keywords: geographic correlation studies, canine cancer incidence, cancer underascertainment, spatial data

aggregation, dasymetric refinement

INTRODUCTION

Following the recent worldwide escalation of incidence, human cancer registration was initially
introduced in hospitals at the beginning of the twentieth century and progressively implemented in
several national surveillance programs (1–3). As a result, human cancer registries have become an
essential data source for epidemiological research, confirming etiologies such as specific lifestyles,
behavioral factors, and environmental exposures (3, 4). Despite these significant achievements, the
understanding of relationships between human cancers and environmental risk factors remains
limited for several reasons. One of these reasons is of specific relevance to this study—exposure
measurement error (5, 6), which is known to be one of the primary sources of uncertainty in
epidemiological studies (7).

One of themain causes of measurement error lies in the long latency period of many cancers and
the difficulty to systematically assess exposure to environmental risk factors over time, especially for
populations with dynamic mobility patterns (7, 8). To partly overcome this analytical limitation,
ongoing research is engaging in comparative studies of cancers in companion animals (9, 10).
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Similar to the iconic canary in a coal mine, companion animals
could be used as sentinels for environmental risk factors at the
household level because they share the same living environment
with their owners and have shorter latency periods than humans
(11, 12). In some instances, health data of companion animals
could potentially serve as accurate and timely indicators of
exposure to environmental risk factors for human cancers (12).
The relevance of these sentinel applications is supported by
comparative research linking similar cancer types in dogs and
humans to shared environmental risk factors (13–17).

These linkages have also been highlighted by spatial
epidemiological studies that incorporate the geographic
perspective into “the design and analysis of the distribution,
determinants, and outcomes” (18) of canine cancers. These
studies ranged from disease mapping (19) to cluster detection
(20), and geographic correlation studies (21). For instance,
through cluster analysis, similar geographic distributions of
selected cancer types in dogs and humans have been identified
in Michigan, USA (20). However, comparative studies in the
domain of spatial epidemiology are limited in numbers, because
few canine cancer registries are currently active, and those
that exist, involve different inclusion criteria and incompatible
collection methods. Such collection-related issues, together with
unreliable information on dog demographics and undercounting
of canine cancer cases, are persistent sources of uncertainty
challenging spatial epidemiological research (22–24).

To advance the understanding of some of the uncertainties
presented above, we examine the Swiss Canine Cancer Registry
(SCCR)—a data source compiled for future comparative studies
of canine and human cancers. These future studies are meant
to inform cancer research as well as planning and evaluation of
cancer prevention programs in Switzerland (25). Although the
SCCR was designed to overcome collection- and classification-
related issues, uncertain demographic characteristics of
the at-risk dog population and potential undercounting of
canine cancer cases persist (26–29). Undercounting comprises
underreporting and underascertainment—two distinct but
often confused phenomena (30). While underreporting takes
place when the result of a performed diagnostic examination
is not reported in the data source, underascertainment occurs
when the diagnostic examination has not been performed at
all (31, 32).

While underreporting is considered a marginal issue in the
SCCR data (25, 33, 34), we explore potential underascertainment
of canine cancer cases, in other words, undercounting related
to the fact that the dog owner might not seek veterinary care
for canine cancer diagnosis. Given this particular aim, methods
to assess undercounting in canine cancer registry data, such
as the capture-recapture method cannot be easily employed
because information about the missing diagnostic examination
cannot be retrieved from any other data source (30–32). For
these reasons, our assessment is performed in a regression
analysis framework to explore statistical associations between
canine cancer incidence computed across Swiss municipalities
and selected explanatory variables accounting for known
demographic risk factors and potential underascertainment of
canine cancer cases (26–29, 33, 34).

Because the SCCR data are enumerated within municipal
units, our assessment is also likely to be affected by issues
of spatial data aggregation, manifested as part of the
modifiable areal unit problem (MAUP) (35, 36). Several
studies demonstrated effects of spatial data aggregation related
to the MAUP in different spatial epidemiological applications,
such as disease mapping (37–40), cluster detection (41–44),
and geographic correlation studies (8, 45–47). To assess
uncertainty in the SCCR data and to explore effects of spatial
data aggregation, we contrast regression models based on two
enumeration types—municipal units and dasymetrically refined
units, comprising only the portion of residential land within the
municipal unit (29). These units are used to spatially aggregate
canine cancer incidence and the explanatory factors included in
the regression models.

This analytical framework is meant to explore uncertainty
related to potential underascertainment of canine cancer cases
and effects of spatial data aggregation on the statistical
associations and goodness-of-fit. Given that canine cancer data
sources have rarely been studied within their geographic context,
we anticipate that the results of this study are an essential
stepping stone to foster a geographic perspective into future
comparative studies of canine and human cancers.

MATERIALS AND METHODS

Materials
Swiss Canine Cancer Registry
The SCCR stores canine cancer cases from 1955 to 2008
for the entire country of Switzerland. The registry has been
retrospectively assembled by the Collegium Helveticum Zurich
for future comparative studies of canine and human cancers
and is in the process of being updated to include the most
recent years (33, 34). To date, the SCCR comprises 121,936
diagnostic records issued from post-mortem and biopsy samples,
which have been collected by the Vetsuisse faculties of veterinary
pathology of Berne and Zurich. It additionally includes the
analysis of biopsy samples performed by a private diagnostic
laboratory, located on the outskirts of Zurich (33, 34). The
examination methods adopted by these diagnostic laboratories
have been discussed extensively elsewhere (25). The diagnostic
data have been systematically enumerated at the municipal level
because residential addresses were not consistently reported due
to different imputation strategies adopted by the diagnostic
institutes in the past. Based on the residential postcode, more
than 99.9% of the diagnostic data have been successfully allocated
to a municipal unit, while the remaining 0.1% with wrong or
missing postal codes have been discarded.

In this study, we use the 3,611 diagnostic records collected
during the year 2008, as previous research has shown that
data quality perceptibly decreases for earlier years because the
available diagnostic methods were less accurate (33, 34). We did
not exclude any cancer cases from the analysis. Following the
ICD-O-3 classification, the diagnosed cancers are the malignant
forms of odontogenic neoplasia, trophoblastic tumors, epithelial
tumors, germ cell tumors, lymphangioma, lymphangiosarcoma,
lymphoid tumors, melanoma, mesenchymal tumors, skeletal
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tumors, neural tumors, gonadal tumors as well as unspecified
tumors (33, 34). We developed a retrospective study of the
SCCR data because dogs age up to five times faster than humans
(25). As a consequence of a compressed lifespan, canine cancers
develop much faster than human cancers (25, 33). A thorough
assessment of a canine cancer incidence in 2008 is thus expected
to be relevant for future comparative studies of canine and
human cancers.

Demographic Risk Factors
We access the Swiss dog population census, as compiled by
the Animal Identity Service AG (48), to produce demographic
explanatory variables based on the at-risk dog population in
Switzerland for the year 2008. This census was enacted following
the obligation of dog microchipping and registration established
in 2006 (49). Presently, this is the most accurate source of
information about the dog population living in Switzerland,
as a recent expert evaluation confirmed 95% completeness
for the year 2008, and this percentage is steadily increasing.
According to this census, 496,689 dogs are recorded during
the study period, resulting in a ratio of 6.54 dogs per 100
inhabitants (49).

Based on the Swiss dog population census, we compute
variables describing the number of at-risk dogs, dog average
age (in years), female dog ratio (in percent), and mixed breed
ratio (in percent) at the municipal level. Mixed breed dogs are
defined according to the standards of the Fédération Cynologique
Internationale (FCI) used in the Swiss dog population census
(49). While age and sex have similar associations to cancers in
dogs and humans (50, 51), the different levels of cancer incidence
among breeds (52, 53) could be a potential source of uncertainty
in future comparative studies of canine and human cancers. For
this purpose, computing demographic indicators as continuous
variables (e.g., average age) instead of categorical variables
(e.g., age classes) enable a more straightforward identification
of potential mismatches with prior findings on demographic
determinants of canine cancers, which are typically conducted in
a non-geographic context.

Underascertainment of Canine Cancer Cases
Following previous studies of the SCCR data, we selected
explanatory variables of urban character and socioeconomic
status to account for different personal motivations or abilities
to make use of veterinary care, and, thus, for potential
underascertainment of canine cancer cases (26–29, 33, 34).
Firstly, we estimate the urban character of municipalities,
because the use of veterinary care is expected to be more
frequent among dog owners in urban areas (26–29). This
variable is computed based on human population density (in
1,000 people per square kilometer), using population census
data at the municipal level for the year 2008. The census
data can be accessed through the website of the Swiss Federal
Statistical Office (54). Secondly, we assume that in municipalities
characterized by higher socioeconomic status, dog owners are
more likely to own financial means for regular veterinary check-
ups potentially resulting in more frequent cancer diagnoses (26–
29). As a consequence, we consider a surrogate to estimate the

socioeconomic status of municipalities through national income
tax information for 2008 (in 1,000 Swiss Francs per capita), which
can be accessed through the Swiss Federal Tax Administration
website (55).

Lastly, we derive a measure of distance to veterinary care (in
kilometers), as we expect that greater road distance to veterinary
practices would result in increased underascertainment of canine
cancer cases (26–29). This variable is based on the addresses
of the 938 veterinary practices active in 2013, which have been
retrieved from the Swiss Yellow Pages website (56). We create
an hectometric distance-grid (i.e., with a 100 × 100 meter
spatial resolution) representing travel distances along roads to
the nearest veterinary practice (57), using the Swiss road network
in 2008, which has been extracted from the VECTOR25 data
model of the Swiss Federal Office of Topography (58). Municipal-
level travel distances to the nearest veterinary practice are then
computed by averaging the distance-grid values intersecting
each enumeration unit. We use the addresses of registered
veterinary practices in 2013 because data for 2008 are not
available, retrospectively. However, information issued by the
Swiss Registry of Medical Professions confirms that changes
in the number of licensed veterinarians within this period are
negligible (59).

Enumeration Units
We spatially aggregate the SCCR data and the explanatory
variables at the municipal level because this is the finest spatial
resolution for which the data are available. For this purpose,
we use the 2,350 Swiss municipal boundaries for the year 2014,
as derived from the swissBOUNDARIES3D vector data model
of the Swiss Federal Office of Topography (58). We retrieve
municipal unit boundaries for 2014 because the SCCR data
for all prior years have been systematically geocoded based
on the units existing in 2014. To evaluate changes in model
performance related to possible effects of spatial data aggregation,
we carry out a dasymetric refinement of the enumeration
units, based on the areal extent of residential land within each
municipality (60).

The use of residential land as an ancillary variable for
dasymetric refinement is connected with the assumption that
dogs and humans share the same living environment (29). We
derive residential land data from the building and dwelling
survey conducted by the Swiss Federal Statistical Office in 2014.
The data is available as an hectometric grid (i.e., with a 100
× 100 meter spatial resolution), where grid cells are classified
as residential land if they intersect the centroid of at least
one residential building. The survey retrieves information on
characteristics and geographic coordinates of the buildings from
the Federal Register of Buildings and Dwellings (RBD) (54).
We use more recent information on residential land because
data for 2008 is not currently available. However, differences
between the corresponding years are reported to be minimal,
because of the increasing densification of residential land parcels,
especially in peri-urban areas (54). For this reason, using the
building and dwelling survey data for 2014 is seen as an
acceptable compromise.
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Methods
Dasymetric Refinement of Enumeration Units
We employ a dasymetric-mapping framework to evaluate
improvements in our models of canine cancer incidence that
could be linked to reduced effects of spatial data aggregation.
These effects, often described under the term of MAUP, influence
statistical analyses using enumerated data because summary
statistics may change according to the shape and areal extent of
the enumeration unit (35, 36). Spatial data aggregation further
implies that the aggregated data are homogeneously distributed
within the enumeration units and that sharp changes of summary
statistics occur across their boundaries characteristics—two of
the underlying assumptions of the choropleth mapping method
(60–62). However, choropleth maps can produce unrealistic
spatial distributions of aggregated data in a spatial epidemiology
context because populations, and thus diseases such as cancer, are
usually not homogeneously distributed across the enumeration
units (e.g., administrative units) (60).

Dasymetric mapping is a cartographic method designed
to produce more accurate spatial distributions of enumerated
data with respect to geographic context using ancillary spatial
variables. The ancillary variables, typically linked to population
characteristics, are assumed to be related to the geographic
distribution of the phenomenon of interest—which is often
linked to population—more accurately (60–62). To highlight
the differences between dasymetric mapping and choropleth
mapping, Figure 1 illustrates the dasymetric refinement of
population data within administrative units using the portion
of residential land as a binary ancillary variable (Figure 1B)
(60). Compared to the choropleth map based on administrative
units (Figure 1A), the dasymetric map (Figure 1C) produces
more accurate spatial distributions of the population densities
within the enumeration units (60). Importantly, this sort of
dasymetric refinement is constrained by the pycnophylactic
property, implying that population counts of dasymetrically
refined units shouldmaintain the same total values as the original
enumeration units (63).

Various kinds of data have been tested as ancillary variables for
dasymetric refinement. For example, land cover (62, 64, 65), road
density (66), remote sensing imagery (67, 68), parcel data (69–
71), address points (67) and dwelling survey data (29) have been
employed to refine the geographic distribution of populations
within the original enumeration units.

The hectometric cells representing residential land are
allocated to municipal units according to the location of their cell
centroid. Once allocated to a municipality, the residential hectare
cells are dissolved, and the resulting areal extents are employed
as refined enumeration units. These dasymetrically refined units
are finally used to enumerate canine cancer incidence and
explanatory variables implemented in the regression models.
However, the only two differences between regression models
based on municipal units and those based on dasymetrically
refined units can be found in the explanatory variables involving
recomputed density and distance explanatory variables. This is
because only these variables change according to the modified
areal extent and location of the enumeration units. While
the refinement of density variables is a natural application of

dasymetric mapping (60–62), the recomputation of distance
variables involves a change of support (i.e., downscaling from
municipal units to their portion of residential land), which is
not subject to the pycnophylactic property (72, 73). In both
cases, the impact of dasymetric refinement on model associations
and goodness-of-fit will be central and inform about potential
improvements that could be related to reduced effects of spatial
data aggregation.

Regression Models of Canine Cancer Incidence
Geographic correlation studies assess the relationships between
disease incidence or mortality and the occurrence of potential
demographic and environmental risk factors within their
geographic context (18). Given that we are assessing count
data for a relatively rare outcome, we use a Poisson regression
as a baseline model to fit observed canine cancer incidence
(y) across Swiss municipalities in 2008 (74). Dog Population
is used as an offset (e), a constant of proportionality to
account for the underlying at-risk dog population and compute
incidence rates. Canine cancer incidence rates are fit through the
following explanatory variables (x)—Dog Average Age (in years),
Female Dog Ratio (in percent), Mixed Breed Ratio (in percent),
Average Income Tax (in 1,000 Swiss Francs per capita), Human
Population Density (in 1,000 people per square kilometer), and
Distance to Veterinary Care (in kilometers). These explanatory
variables are not centered to facilitate the interpretation of
the resulting multiplicative coefficients (β) using the original
reference units, but they are systematically tested for potentially
induced multicollinearity (75, 76). For this purpose, we use the
square root value of the variance inflation factor (SQVIF) because
values >2.0 are reported to be critical to coefficient estimation
(76). The equation below shows the formula of our baseline
Poisson model, with regression to the mean of the data (µi),
where α is the intercept and β the multiplicative coefficients
estimated for each explanatory variable reported above (77).

yi ∼ Poisson (µi)

log(µi) = α +

K∑

1=k

βKxi,K + log(e)

This regression analysis framework is meant to explore
uncertainty in the SCCR data and its impact on statistical
associations, interpreted as multiplicative effects [i.e., log(β)]
for predicting canine cancer incidence (y). Significant (α
= 0.05) associations between canine cancer incidence
and the explanatory variables accounting for potential
underascertainment of canine cancer cases (i.e., Average Income
Tax, Human Population Density, and Distance to Veterinary
Care) will thus be central to the assessment of uncertainty in
the SCCR data (26–29). Furthermore, the associations between
canine cancer incidence and dog demographic risk factors (i.e.,
Dog Average Age, Female Dog Ratio, andMixed Breed Ratio) can
also highlight uncertainty when compared with prior findings
on demographic determinants associated with canine cancers
(52, 53, 78, 79). Such an analytical framework also allows for the
assessment of changes in model associations and goodness-of-fit
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FIGURE 1 | A framework for dasymetric refinement of population data within residential land. Example of binary dasymetric refinement of population data within

residential land — (A) population density computed within administrative units is refined based on (B) the location of residential land to recompute (C) population

density within dasymetrically refined units.

between the two enumeration types as Human Population
Density and Distance to Veterinary Care are recomputed after
the dasymetric refinement.

Considering that the Poisson model is based on the highly
restrictive assumption of equidispersion (i.e., the variance is
equal to the mean of the incidence data) (80), we compare four
different regression models for count data—(A) Poisson model,
(B) Poisson model with zero-inflation extension, (C) negative
binomial model, and (D) negative binomial model with zero-
inflation extension (80, 81). While the negative binomial models
(C, D) relax the assumption of equidispersion by accounting
for a variance greater than the mean (i.e., overdispersion), the
zero-inflation extensions (B, D) model potential excess zeros in
a separate logistic regression model with binary outcome (i.e.,
zero vs. non-zero counts) (80, 81). Model equations and directed
acyclic graphs (DAGs) for the different models can be found
in the Supplementary Material. Modeling these excess zeros
separately has the advantage of providing insights into false zeros,
associated with the structure of the SCCR data. To avoid model
overspecification, we first implement all the explanatory variables
presented above in the zero-inflation extensions, but we finally
retain only the significant (α = 0.05) ones.

We first assess the goodness-of-fit of the regression models

through the Akaike information criterion (AIC) (82). The lowest
AIC measure indicates the highest goodness-of-fit and allows
comparison of the goodness-of-fit of each of the regression
models based onmunicipal units and dasymetrically refined units
because the sample size remains the same. This comparison
involves systematic pairwise relative-likelihood assessments of
the probability that amodel minimizes the estimated information
loss similarly to the model with the lower AIC (83). To assess
the significance (α = 0.05) of improvement of one model over
another, we also perform systematic pairwise likelihood-ratio
tests (84). This form of comparison is meant to overcome
the use of the Vuong test (83, 84), as several concerns about

its validity have been recently raised (85, 86). In addition
to these assessments of goodness-of-fit, we examine changes
in the associations between the models based on the two
enumeration types. This assessment contrasts significant (α =

0.05)multiplicative effects resulting from the coefficient estimates
and their effect sizes, estimated through the percentage of
deviance reduction (80, 81).

Data processing, analysis, visualization, and statistical
modeling were carried out using RStudio Desktop 1.1.463 (87).
The following R packages were used in this study—gdistance
(88), ggplot2 (89), maptools (90), plyr (91), pscl (92), reshape
(93), rgdal (94), and sandwich (95).

RESULTS

Contrasting Municipal and Dasymetrically
Refined Units
Figure 2 shows the portion of residential land within municipal
units to inform about changes in the areal extent of enumeration
units due to dasymetric refinement. These changes in areal extent
impact the recomputation of density indicators—in this study
Human Population Density—used as explanatory variables in
the models of canine cancer incidence. Figure 2 indicates that
substantial differences in the areal extent occur in the Alps
and the Jura Mountains, which show very low residential land
proportions, mostly <10.0%. In contrast, higher residential land
proportions, between 10.0 and 59.9%, generally characterize the
Central Plateau, with peak proportions exceeding 60.0% for the
larger urban agglomerations like Zurich, Geneva, or Basel.

Figure 2 also shows changes in the relative location of
the enumeration unit centroids due to the change of support
resulting from dasymetric refinement. The width and direction
of the purple arrows symbolize the magnitude and direction
of displacement of the centroids from the municipal units
(base of the arrow) to the dasymetrically refined units (point
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FIGURE 2 | Effects of dasymetric refinement of the municipal units — changes of spatial extent (part of residential land) and centroid displacements (shift to the

centroid of the residential land). The data is classified according to the fixed classes classification method.

of the arrow). These changes in relative location impact
the recomputation of distance indicators—in this study travel
Distance to Veterinary Care along roads—used as explanatory
variables in the models of canine cancer incidence. Again,
the largest centroid shifts, between 2.5 and 15.5 km, occur in
the sparsely populated Alps, while centroid shifts are much
smaller, between 0.0 and 2.4 km, in the densely populated Central
Plateau. As mentioned, the changes in the areal extent and
relative location of the enumeration units highlighted in Figure 2
influence the recomputation of Human Population Density and
Distance to Veterinary Care, and how their use as explanatory
variables for modeling canine cancer incidence is likely to modify
the estimated associations and goodness-of-fit.

Figure 3 shows two maps of human population density

at the municipal level. The first one is computed based
on the areal extent of municipal units (Figure 3A), and the

second one is based on the areal extent of dasymetrically
refined units (Figure 3B). For better visual comparison, in
Figure 3B, the recomputed population densities after dasymetric
refinement are also shown in a choropleth fashion. The
use of dasymetrically refined units yields substantially higher
human population densities because the areal extent for density
recomputation is reduced to the portion of residential land
within municipal units. This effect is notable in the mountainous
regions and in most municipalities of the flat Central Plateau,

where human population densities also perceptibly increase.
Human Population Density recomputed using dasymetrically
refined units is thus likely to produce more accurate spatial
distributions and more robust associations in the models of
canine cancer incidence.

Figure 4 shows two maps of road distances to the closest
veterinary practice averaged at the municipal level. The first
is computed based on the areal extent of the municipal units
(Figure 4A), and the second is based on the areal extent of
dasymetrically refined units (Figure 4B). Similar to Figure 3,
for direct visual comparison, Figure 4 shows both maps in
choropleth fashion. Despite the change of support, averaged
distances to veterinary care are similar in both maps. The mean
distance to veterinary care is 4.05 km (SD = 3.56) for municipal
units, slightly higher than the mean distance of 3.63 km (SD
= 3.43) for dasymetrically refined units. In both cases, the
important spread suggests a persisting impact of large distances
to veterinary care, as shown in the Alps and the Jura Mountains.

Modeling Canine Cancer Incidence
Figure 5 shows the spatial distribution of observed canine cancer
incidence rates at the municipal level in Switzerland for the year
2008 using dasymetrically refined units. Canine cancer incidence
rates seem to exhibit a particular geographic configuration, with
high rates in the German-speaking northeast of the Central
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FIGURE 3 | Human population density indicators resulting from the two enumeration types — (A) municipal units and (B) dasymetrically refined units. For better visual

comparison, the indicator recomputed after dasymetric refinement is also presented in a choropleth fashion. The data is classified according to the quantile

classification method applied to the dasymetrically refined units.

FIGURE 4 | Distance to veterinary care indicators resulting from the two enumeration types — (A) municipal units and (B) dasymetrically refined units. For better visual

comparison, the indicator recomputed after dasymetric refinement is also presented in a choropleth fashion. The data is classified according to the quantile

classification method applied to the dasymetrically refined units.

Plateau compared to low to mixed rates in the French-speaking,
western part of the country. In the Alps and the Jura Mountains,
rates are mostly very low or even zero. Figure 5 also provides
visual support for our dasymetric framework, as it enables a more
meaningful interpretation of the spatial distribution of canine
cancer incidence rates.

To provide an in-depth insight into uncertainty in the
SCCR data, we fit our four regression models for count
data using a (A) Poisson model, (B) Poisson model with
zero-inflation extension, (C) negative binomial model, and
(D) negative binomial model with zero-inflation extension—
for the two types of enumeration units (i.e., municipal units

and dasymetrically refined units). In these models, the square
root of the variance inflation factor (SQRVIF) values is
consistently below 2.0. The zero-inflated extensions in models
(B) and (D) implement only Dog Average Age because
this is the only significant (P < 0.05) explanatory variable
in the logistic model component. Table 1 presents the AIC
measures for the four regression models and both types of
enumeration units.

Table 2 presents the results of the pairwise likelihood-ratio
tests to determine model improvements. In the likelihood ratio
test, a positive χ

2 value rejects Model 1, and the significance
level of the test is reported in parentheses. The relative likelihood
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FIGURE 5 | Observed canine cancer incidence rates across Swiss municipalities in 2008. The data is classified according to the quantile classification method and

mapped using dasymetrically refined units.

TABLE 1 | AIC measures for the different regression models based on the two

enumeration types — (A) municipal units and (B) dasymetrically refined units.

Regression model (A)

Municipal units

(B)

Dasymetrically

refined units

Poisson 6449.3 6419.7

Negative binomial 5930.2 5910.7

Poisson with zero inflation 6243.2 6223.5

Negative binomial with zero inflation 5894.5 5878.2

assessments consistently endorse the results of the likelihood-
ratio tests with values of 0.00. In each row, the model with the
best goodness-of-fit, both according to the relative likelihood and
the likelihood-ratio, is highlighted in bold. These tests suggest
that the negative binomial model with zero-inflation extension
(D) outperforms the other models for both types of enumeration
units. On the one hand, this is because the model shows
the lowest AIC measure and the pairwise relative likelihood
assessments confirm that the likelihood that the other models can
compete inminimizing the information loss is extremely low (i.e.,
0.00). On the other hand, the likelihood-ratio test shows that this
improvement is significant (P < 0.05).

Table 3 shows the coefficient estimates and the percentage of
deviance reduction related to each explanatory variable for the

TABLE 2 | Pairwise likelihood-ratio tests comparing the different regression

models based on the two enumeration types — (A) municipal units and (B)

dasymetrically refined units. The P value of the tests is consistently <0.05. The

best model is highlighted in bold.

Model 1 Model 2 (A)

Municipal units

(B)

Dasymetrically

refined units

Poisson Negative

binomial

521.1 511.0

Poisson Poisson with

zero inflation

210.1 200.2

Negative

binomial

Poisson with

zero inflation

311.0 310.8

Negative

binomial

Negative

binomial with

zero inflation

39.7 36.5

Poisson with

zero inflation

Negative

binomial with

zero inflation

350.7 347.3

negative binomial model with zero-inflation extension (4) using
both types of enumeration units. The coefficient estimates suggest
that Dog Average Age exhibits negative associations, such that
for each increasing year of age, the incidence rates decreased
by 17.3% (for municipal units) and 18.9% (for dasymetrically
refined units). Conversely, Female Dog Ratio and Mixed Breed
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Ratio both produce positive associations, as for each increasing
percentage unit of female dogs and mixed-breed dogs, the
incidence rates increase by 1.0% (for municipal units) and 2.0%
(for dasymetrically refined units) and 3.1% (for municipal units)
and 2.0% (for dasymetrically refined units), respectively.

Average Income Tax and Human Population Density both
exhibit positive associations, showing that for each 1,000 CHF
per capita and 1,000 individuals per square kilometer, the
incidence rates increase by 11.6% (both for municipal units and
dasymetrically refined units) and 4.1% (for municipal units) and
8.3% (for dasymetrically refined units), respectively. However,
the latter association is not significant in the model based
on municipal units (P = 0.23). Distance to Veterinary Care
exhibits negative associations, indicating that for each additional
kilometer, the incidence rates decrease by 3.0% (for municipal
units) and 3.9% (for dasymetrically refined units). Lastly, in
the zero-inflation extension of the models, Average Age showed
negative associations, suggesting that for each increasing year, the
odds of observing zero incidence rates decrease by 97.3% (for
municipal units) and 97.5% (for dasymetrically refined units).

Table 3 also provides insights into how goodness-of-fit is
related to effects of spatial data aggregation. As mentioned, the
coefficient estimate for Human Population Density is significant
(P < 0.05) only in the regression model using dasymetrically
refined units. This explanatory variable also shows a higher
percentage of deviance reduction when using dasymetrically
refined units. In contrast, the coefficient estimate for Distance to
Veterinary Care is significant (P<0.05) in the regression models
based on both types of enumeration units, and the percentage of
deviance reduction even increases when using municipal units.
Table 3 also shows that the recomputation of Human Population
Density and Distance to Veterinary Care also influences other
explanatory variables and the overall goodness-of-fit of the
models. In particular, we can observe higher percentages of
deviance reduction for the explanatory variables potentially
related to underascertainment of canine cancer cases when using
dasymetrically refined units.

Finally, we compare the overall goodness-of-fit of the
regression models based on the two enumeration types through
the relative likelihood and the likelihood-ratio test. The former
shows that the regression model based on municipal units is very
unlikely (i.e., 0.00) to compete in minimizing the information
loss with the one based on dasymetrically refined units. The latter
shows that the regression model based on dasymetrically refined
units results in a significant improvement over the model based
on municipal units (P < 0.05; χ2

= 16.3).

DISCUSSION

Assessing Uncertainty in the Swiss Canine
Cancer Registry
This study aimed at identifying and understanding sources of
uncertainty in the SCCR data and their impact on models of
canine cancer incidence. For this purpose, we examined two types
of explanatory variables—those relating to dog demographic risk
factors and those accounting for potential underascertainment

of canine cancer cases. This analytical framework helped in
reflecting on the uncertainty surrounding both the SCCR data
and the statistical associations estimated in models of canine
cancer incidence, in general.

Our results show that, in the negative binomial component
of the models, most of the relationships between canine cancer
incidence and demographic risk factors contrast with prior
findings. These relationships are particularly critical, for instance,
when negative associations between canine cancer incidence and
Dog Average Age are implied. This unexpected finding is likely
to reflect different personal motivations and abilities to make
use of veterinary care, resulting in selective underascertainment
of cancer cases in older canine populations (96). However, in
contrast, such a phenomenon is not captured in the zero-inflation
extension of the models, as Dog Average Age confirms prior
findings on increasing canine cancer incidence in older dogs
(78, 79). Uncertainty in the SCCR data is also suggested by the
positive association between canine cancer incidence and Mixed
Breed Ratio, which contradicts prior findings of higher canine
cancer incidence among pure-breed dogs. Still, these results are
difficult to compare because mixed breed dogs can have very
different lifespans (52).

The relationships between canine cancer incidence and
the variables accounting for potential underascertainment of
canine cancer cases helped in reflecting personal motivations
or abilities to make use of veterinary care, thus, explaining
some of the contradicting statistical associations. Positive
associations between cancer incidence and both Average Income
Tax and Human Population Density confirmed prior findings
suggesting that higher socioeconomic status and urban lifestyle
involve more frequent uses of veterinary care, thus, a more
consistent ascertainment of canine cancer cases (26–29). We
also found a negative association between canine cancer
incidence and Distance to Veterinary Care, confirming our
expectation that greater road distances to veterinary care
affect the motivations or abilities to make use of veterinary
care, thus, an increased underascertainment of canine cancer
cases (26–29). Furthermore, the effect sizes of the variables
accounting for potential underascertainment of canine cancer
cases and the goodness-of-fit of the model associated with
the zero-inflation extension confirmed that underascertainment
of canine cancer cases impacts the completeness of the
SCCR data.

Compared with existing studies of the SCCR data (33, 34)
and other canine cancer registries (50, 51) that have been
carried out in a non-geographic context, the effect of
underascertainment of canine cancer cases becomes prominent
in this study because canine cancer incidence and explanatory
variables are enumerated within Swiss municipal units.
Using these enumeration units implies very high levels of
underascertainment in places located within mountainous
regions, such as the Alps and the Jura mountain range,
potentially resulting in highly inaccurate canine cancer incidence
estimates. For this reason, the sources of uncertainty highlighted
through our analytical effort need careful consideration when
developing future comparative studies of canine and human
cancers based on the SCCR data and similar data sources. These
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TABLE 3 | Coefficients for the negative binomial model with zero-inflation extension based on the two enumeration types — (A) municipal units and (B) dasymetrically

refined units.

(A) Municipal units (B) Dasymetrically refined units

Estimate Standard error P Deviance reduction (%) Estimate Standard error P Deviance reduction (%)

NEGATIVE BINOMIAL

Dog Average Age −0.19 0.04 <0.05 20.40 −0.21 0.05 <0.05 13.86

Female Dog Ratio 0.01 0.01 <0.05 3.76 0.02 0.01 <0.05 5.18

Mixed Breed Ratio 0.03 0.00 <0.05 20.40 0.02 0.01 <0.05 18.39

Average Income Tax 0.11 0.02 <0.05 21.53 0.11 0.02 <0.05 23.06

Human Population Density 0.04 0.03 0.23 0.75 0.08 0.01 <0.05 9.33

Distance to Veterinary Care −0.04 0.11 <0.05 8.76 −0.03 0.11 <0.05 4.92

ZERO INFLATION

Dog Average Age −3.61 0.61 <0.05 24.41 −3.69 0.63 <0.05 25.26

future studies should focus on selected cancer types to include
more targeted environmental risk factors, such as sun exposure
for melanoma or environmental pollution for lung cancer. They
should also test more complex spatial modeling techniques to
include random effects, for instance, conditional autoregressive
models (CAR) and to include measurement error components to
adjust the expected incidence by the probability that a dog with
cancer would be taken to a veterinarian (97, 98).

Evaluating the Effects of Spatial Data
Aggregation
To explore effects of spatial data aggregation on the models of
canine cancer incidence, we refined the municipal units in a
binary fashion using the areal extent of residential land (60–62).
This was meant to better account for the specific geographic
configuration of populated land within enumeration units
because dasymetric refinement has been reported particularly
effective in sparsely populated regions (61). Because of the
changes in the areal extent and location of the enumeration units,
the recomputation of density and distance explanatory variables
was, thus, expected to impact statistical association in the models
of canine cancer incidence (29).

Human Population Density produces a significant coefficient
estimate (P < 0.05) only in the regression model using
dasymetrically refined units, and this type of enumeration
unit also exhibits a higher percentage of deviance reduction.
This result confirms prior findings showing that dasymetric
refinement can result in more accurate density variables (60–
62) and, thus, more robust statistical associations with canine
cancer incidence. In contrast, the multiplicative effects for
Distance to Veterinary Care do not show any relevant change
associated with dasymetric refinement, and the percentage of
deviance reduction even decreases when using dasymetrically
refined units. This finding suggests that if dasymetric refinement
does not result in changes in average distance measures as
in this study, statistical associations in models of canine
cancer incidence will remain largely unaffected. Such a result
highlights that change of support problems are not trivial
and need in-depth consideration in geographic correlation
studies (72, 73).

Nevertheless, when contrasting the goodness-of-fit of the
models of canine cancer incidence based on the two enumeration
types, we detected a systematic improvement associated with
the use of dasymetrically refined units. This improvement
suggests that dasymetric refinement could mitigate effects of
spatial data aggregation when recomputing explanatory variables
to be implemented in models of canine cancer incidence.
For this reason, we contend that our analytical framework
provides relevant insights both for future comparative studies of
specific cancer types that involve spatially explicit environmental
variables. For this reason, in future studies, we aim to further
refine our dasymetric framework, for example, by testing
additional ancillary variables and fishnets of different spatial
resolutions (64, 65). This will provide more detailed analyses
of scale effects across different spatial units and, in turn,
support more effective strategies to cope with effects of spatial
data aggregation.

Fostering a Geographic Perspective Into
New Cancer Research Practices
Spatial epidemiology traditionally focuses on the study of
the distribution, determinant, and outcomes, among others,
of cancer in humans (19). Within this discipline, existing
studies of human cancer registries have shed light on risk
factors associated with specific lifestyles, behavioral factors, and
environmental exposures (3, 4). However, known analytical
limitations related, for instance, to exposure measurement error
require complementing the studies of human cancers with new
research practices and data sources (9, 10). For this reason, in
this study, we examined the SCCR—a unique data source that
has been assembled for future comparative studies of canine
and human cancers (25). Such a comparative approach aims,
for example, to reduce measurement error by providing timely
indications of exposure to environmental risk factors for human
cancers (11, 12).

Despite the apparent benefits suggested by disease mapping
(19), cluster detection (20), and geographic correlation studies
(21), comparative research of canine and human cancers is
currently challenged by uncertainties in the existing canine
cancer registry data sources (22–24). Given the geographic
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dimension of these spatial epidemiological investigations,
unexplored sources of uncertainty, connected with effects of
spatial data aggregation were also expected to affect the
estimation of statistical associations between canine cancer
incidence and geographically explicit environmental risk factors
(72, 73). For this reason, we complemented our investigation of
underascertainment of canine cancer cases with an assessment
of effects of spatial data aggregation in models of canine
cancer incidence.

By contrasting statistical performance and associations
estimated based on municipal and dasymetrically refined units,
we emphasize the importance of the geographic context in
the study of canine cancer incidence in Switzerland. Similar
to other study areas, this country presents sharp variations
in the distribution of human and canine populations, which
are related to geographic context (e.g., mountainous vs. flat
regions)—a setting in which dasymetric refinement can be
highly beneficial (60–62). As a consequence, this technique
produced a more accurate reflection of the distribution of
canine cancer incidence and geographically explicit explanatory
variables (i.e., human population density and distance to
veterinary care). This results in a more reliable assessment of
uncertainties in the SCCR data through the models of canine
cancer incidence.

These findings enable us to contend that our study of
canine cancer incidence advances the understanding of effects
of spatial data aggregation in geographic correlation studies.
Also, following the definition of spatial epidemiology, our
findings further advocate for the systematic implementation of
a geographic perspective into cancer research practices involving
new and unexplored data sources.
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