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Abstract 

Dibenzazepinyl dichlorophosphine 2 reacts with (R,R)-2,3-O-isopropylidene-threitol (3) in Et2O 

solution to afford gram-quantities of the enantiopure macrocylic phosphoramidite (all-R)-6, which 

may be seen as a formal dimer of classic phosphoramidite P-alkene hybrid ligands. Complexation 

experiments with PdCl2 reveal highly selective formation of the trans-dinuclear complex (all-R)-11. 

The corresponding bulkier and rigidly trans-eclipsed 1,4-diol (S,S)-bis-hydroximethyl-9,10-

dihydro-9,10-ethaneanthracene (4), does not favor macrocycle formation and exclusively leads to 

the new dibenzazepinyl phsophormaidite P-alkene ligand 7, which in Pd-catalyzed asymmetric 

allylic amination comes the well-known ‘privileged’ binol-derived P-alkene analogue 1 close in 

terms of enantioselection. 

 

Keywords: Chiral P-alkene ligands; Phosphoramidites; Hemilability; Chiral macrocycle; trans-

dinuclear palladium complex; Asymmetric allylic amination 

 

Chiral alkene ligands1 and, in particular, chiral P-alkene ligands2 with improved stability are well 

established in enantioselective catalysis. We have developed a general and facile method for the 

preparation of a library of dibenz[b,f]azepine-derived chiral P-alkene ligands.3 One of the privileged 

ligand variants up to this point has been the binaphthol derivative 1 (Scheme 1),4 which, when used 

in the correct ligand-to-metal stoichiometry of 2:1, displays exquisite enantioselectivities in Rh-

catalyzed C–C5 and in Ir-catalyzed6 C–C,7 C–N,8 and C–O9 bond-forming reactions. The L/M 

stoichiometry of 2:1 does not negatively affect catalytic performance thanks to the hemilability of 
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the alkene function, which has been proven in structural studies.10 The success of ligand 1 warrants 

efforts directed at diversifying this architecture.11 In the past, we have repeatedly observed the 

formation of byproducts during the synthesis of such phosphoramidite P-alkene ligands, which were 

suspected to be oligomers. Indeed, formal dimers of such molecules leading to macrocyclic 

tetradentate P-alkene ligands would be worthwhile synthetic targets for the formation of bimetallic 

complexes, which may lead to co-operative catalyst systems12 with improved activity and 

selectivity.13 However, structurally characterized chiral bimetallic complexes remain scarce, 12c, 13b 

and here we wish to communicate the gram-scale syntheses of new enantiopure P-alkene ligands 

and, in particular, the preparation and structural characterization of a C2-symmetric trans-ligated 

dinuclear macrocyclic palladium complex. We also show crystallographically that the alkene 

function of this type of ligands may or may not coordinate to Pd(II) centers. 

 

Scheme 1. Hemilability of ‘privileged’ P-alkene ligand 1 and the proposed macrocyclic variant 
viewed as a dimer (P-alkene)2 
 

 

 

We have previously described the reaction of the dibenzazepinyl dichlorophosphine 2 with (R,R)-

2,3-O-isopropylidene-threitol (3) in CH2Cl2 solution in the presence of NEt3, which affords ligand 5 

in good yields (see Scheme 2).3 5 shows a characteristic singlet at 139 ppm in the 31P{H}-NMR 

spectrum. However, this reaction displays a strong solvent dependency, and the use of Et2O instead 

of CH2Cl2 typically gives a 1:1 mixture containing a new species with a 31P resonance at 142 ppm.14 

This species may be separated by selective crystallization from CH3CN solution, in which it is 

sparingly soluble, to afford analytically pure 6 on a gram scale. Its macrocyclic nature15 is 

unambiguously established by the crystal structure of the corresponding Pd-complex 10 (vide infra). 

The 1H-NMR spectrum of 6 shows a characteristic diastereotopic separation of the CH3 groups 

resonating at 1.39 and 1.41 ppm. In view of the apparent propensity of the primary diol 3 to form 
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macrocycles, we were wondering if the bulky and rigidly trans-eclipsed primary diol (S,S)-bis-

hydroximethyl-9,10-dihydro-9,10-ethaneanthracene (4)16 would favor the formation of macrocyclic 

structures thanks to its fixed torsion angle of ca. 120º across the 1,4-diol backbone. Under a variety 

of conditions, diol 4 reacts with 2 to afford ligand 7 in high yield, but only trace amounts of the 

sought-after macrocyclic ligand. Therefore, it appears that diol 4 resembles binol and actually 

favors the formation of the rigid seven-membered dioxa-phospha cycle of P-alkene 7. 

Attempts to generate alkene-coordinated [κ2-(P-alkene)PdCl2] complexes by slowly adding any of 

the ligands 1, 5 or 7 to PdCl2(NCCH3)2 in a 1:1 stoichiometry only afforded 2:1 adducts along with 

1 equiv of unreacted PdCl2(NCCH3)2 (see Scheme 3). When reacted in the correct 2:1 stoichiometry 

in CH3CN solution the respective complexes 8–10 form in good isolated yields. 8 has been 

described elsewhere,4(a) and 9 and 10 are free-flowing white solids, which are sparingly soluble in 

common organic solvents. The 31P{1H} NMR spectra of 9 and 10 show resonances at 115 and 128 

ppm, respectively. Single crystals of these complexes may be grown from CH3CN/CHCl3 solution 

and Figure 1 shows the molecular structure of complex 10 with the expected cis square planar 

arrangement around Pd and approximate C2 symmetry.17
 The uncoordinated C=C double bonds 

measure 1.352(8) Å, and the nitrogen atoms are, as expected, trigonal planar, which is typical for 

this ligand class when the alkene function is not coordinated to the metal center. 

 

Scheme 2. Synthesis of enantiopure P-alkene ligands 5–7 
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Scheme 3. Synthesis of enantiopure mononuclear Pd chloride complexes 8–10 

   

 

 

 

Figure 1. Molecular structure of complex 10 in the crystal (50% probability ellipsoids, H atoms are 
omitted). Selected bond lengths (Å) and angles (˚) are: Pd1–P1 2.226(2), Pd1–P2 2.236(2), Pd1–Cl1 
2.340(2), Pd1–Cl2 2.351(2), P1–N1 1.656(6), P2–O3 1.589(5), P2–O4 1.594(5), P2–N2 1.661(6), 
C25—C26 1.351(11), C57—C58 1.351(12), P1–Pd1–P2 95.18(8), Cl1–Pd1–Cl2 88.49(7). 
 

The coordination behavior of the dimeric (P-alkene)2 phosphoramidite (all-R)-6 is quite distinct 

from those of its P-alkene congeners 1, 5, and 7 and reacts with two equivalents of PdCl2(NCCH3)2 

according to eq 1 to form a soluble complex with a characteristic singlet at 121 ppm in the 31P{1H} 

NMR spectrum. A multiplet centered at 7.22 ppm in the proton spectrum hints at coordinated olefin 

functions, which is confirmed by the crystal structure shown in Figure 2. The chiral, C2-
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symmetrical homobimetallic complex (all-R)–11 features a central 14-membered chiral diphospha-

tetraoxa macrocycle that connects the two peripheral Pd atoms through its P atoms. The geometry 

of the ligand results in the metal centers being diametrically opposed to one another across the 

macrocycle. The coordination geometry of the metal centers is square planar with the chloride 

ligands in cis positions. The two chloride ligands trans to the alkene functions form, together with 

the four oxygen donors of the macrocycle, a cryptand-like structure with a pseudo-octahedral hole. 

Remarkably, and in contrast to structures 8–10, the Pd atoms are coordinated to the alkene functions 

of the dibenzazepine moieties. There is no significant alteration of the coordinated C=C bonds 

when compared to those of the uncoordinated alkenes in complex 10. This is in line with limited 

back-donation from the Pd(II) centers and the weak nature of this interaction, and compares well 

with similar structures.18 Furthermore, the N-atoms adopt a pyramidal geometry (sum of angles 

around N1: 338.9(8)˚ and N2: 338.2(8)˚) in order to facilitate the bidentate cis coordination of the 

P-alkene function, which contrasts with the planar geometry in their monodentate coordination 

mode in complex 10. 

 

(1) 
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Figure 2.  Structure of complex 11 in the crystal (50% probability ellipsoids, H atoms are omitted). 
Selected bond lengths (Å) and angles (˚) are: Pd1—P1 2.1976(19), Pd1—C7 2.235(7), Pd1—C8 
2.234(7), Pd1—Pd1—Cl1 2.3902(17), Cl2 2.3456(18), Pd2—P2 2.1986(19), Pd2—C28 2.222(7), 
Pd2—C29 2.222(6), Pd2—Cl3 2.3749(18), Pd2—Cl4 2.3380(17), C7—C8 1.381(10), C16—C18 
1.516(8), C28—C29 1.385(9). 
 

In order to provoke alkene coordination by chloride abstraction, complexes 5–7 were reacted with 

two equivalents of AgBF4 in acetonitrile solution. Unfortunately, this method affords only 

inseparable mixtures, which could be due to competitive Ag(I)-(P-alkene) complex formation. 

Nevertheless, the dicationic starting complex [Pd(NCCH3)4][BF4]2 in combination with two 

equivalents of (S)-1 affords analytically pure [Pd((S)-1)2(NCCH3)2][BF4]2 ((S)-12) in almost 

quantitative isolated yield (eq 2). However, NMR spectra indicate no metal coordination of the 

alkene functions but rather the presence of two acetonitrile ligands. 

 

 

(2) 
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Complexes 8–12 were benchmarked as catalysts for the asymmetric allylic amination of 

diphenylallyl acetate with benzylamine (see Table 1). Perhaps not surprisingly, complex 8, which 

bears the privileged ligand 1, affords the highest yield and enantioselectivity. We note that the 

direct use of Pd-chlorido complexes (instead of the usual in situ formed allylic precursors) is a 

viable entry into the catalytic cycle. While complex 8 gives quantitative yields, the corresponding 

halide-free dication 12 (entry 5) shows sluggish reactivity and no enantioselectivity. We suspect 

that in the latter case reduction of 12 to enter the Pd(0)-based catalytic cycle proceeds by de-

coordination of the chiral ligand. Among the new ligands, 7 should be highlighted as being almost 

as selective as the benchmark ligand 1 (entry 3).19 

 

Table 1. Complexes 8–12 as direct catalysts for the asymmetric allylic amination reaction 

 

entry {Pd*} 
isolated 

yield (%) 
e.r. 

1 8 99 80:20 
2 9 89 54:46 
3 10 81 77:23 
4 11 64 52:48 
5 12 41 49:51 

 
 

In summary, we demonstrate the feasibility of a gram-scale synthesis of the optically pure 

macrocyclic phosphoramidite P-alkene hybrid ligand 6 by judicial choice of the reaction solvent. 

We found that the increased steric bulk and rigidly trans-eclipsed chiral 1,4-diol backbone of 4 does 

not favor formation of the macrocyclic dimer against expectations but exclusively leads to the new 

monomeric P-alkene 7. We are currently investigating possible template effects that favor 

macrocyclization of ligand 6. From a coordination chemistry point of view, the alkene donor 

function in ligands 5–6, which are comparable from an electronic point of view, is weak and may or 

may not coordinate Pd(II) centers as seen in complexes 11 and 10, respectively. This observation 

indicates the typical hemilability of this ligand class. In asymmetric allylic amination, ligand 7 

based on diol 4 comes close to the ‘privileged’ ligand 1, which we are currently exploiting it in 

other catalytic applications.  
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Experimental Part 

All reactions were carried out under anaerobic and anhydrous conditions, using standard Schlenk 

and glovebox techniques unless otherwise stated. Experiments without indication of temperature 

were performed at room temperature. THF, Et2O, and benzene were distilled from purple Na/Ph2CO 

solutions; toluene and benzylamine from Na; pentane and C6D6 from Na/K alloy, CH3CN and 

CH2Cl2 from CaH2, and NEt3 from from K. CDCl3 was degassed with three freeze-pump-thaw 

cycles and then kept over activated molecular sieves (4 Å) in a glovebox. NMR spectra were 

recorded on a JEOL 400 MHz spectrometer. (S,S)-4,16(a) PdCl2(NCCH3)2,
20 [Pd(NCCH3)4][BF4]2,

21 

complex 8,4(a) and acetate 1222 were prepared according to a published procedure. 

5,5'-((3aR,8aR,11aR,16aR)-2,2,10,10-tetramethyloctahydrobis([1,3]dioxolo)[4,5-e:4',5'-

l][1,3,8,10]tetraoxa[2,9]diphosphacyclotetradecine-6,14-diyl)bis(5H-dibenzo[b,f]azepine) ((all-

R)-6). A cool solution (ca. -23 °C) of (-)-2,3-O-isopropylidene-D-threitol (1786 mg, 11.01 mmol) 

in Et2O (160 mL) was added dropwise over 20 min to a vigorously stirred, cool (-23 °C), and 

slightly turbid solution of 6 (3239 mg, 11.01 mmol) in Et2O (160 mL) and NEt3 (4.48 g, 44.3 

mmol), producing large amounts of a white precipitate and a yellowish mother liquor. This mixture 

was stirred for 18 h, the solution filtered through a Whatman GF/B glass microfiber filter, and the 

white residue extracted with Et2O (2 x 100 mL). The combined Et2O solutions were evaporated and 

dried in vacuo leaving an off-white hard foam. CH3CN (6 mL) was added and the yellow solution 

was stirred overnight to afford a white solid that was separated by filtration at -23 °C and dried in 

vacuo. Repeating this procedure with fresh CH3CN (4 mL) yielded a white solid (1.06 g, 25 %) in 

97 % isomeric purity. Elemental analysis found: C, 65.87; H, 5.65; N, 4.23; Calculated for 

(C42H44N2O8P2)(H3CCN)0.25: C 65.69, H 5.80, N 4.06. 1H NMR (400 MHz, CDCl3) δ 1.37 (s, 3H), 

1.41 (s, 3H), 3.60-3.80 (m, 6H), 6.78 (s, 2H), 7.10-7.35 (m, 8H). 31P{1H} NMR (162 MHz, CDCl3) 

δ 142 (s). 13C NMR (101 MHz, CDCl3) δ 27.2, 63.3 (d, Hz), 64.9 (d, Hz), 78.9, 109.2, 110.0, 126.3, 

128.5, 129.0, 129.4, 131.2, 135.9, 142.9. The spectra show co-crystalized acetonitrile. 

5-((3R,5aR)-1,5,5a,6,11,11a-hexahydro-6,11[1,2]benzenonaphtho[2,3e][1,3,2]dioxaphosphepin- 

3-yl)-5H-dibenzo[b,f]azepine ((R,R)-7): A solution of 3 (2.00 g, 7.51 mmol) in CH2Cl2 (130 mL) 

was added dropwise over 2 h to a solution of 1 (2.21 g, 7.51 mmol) and NEt3 (3.80 g, 37.6 mmol) in 

70 mL of CH2Cl2. After stirring for 2 h, the resulting pale yellow-green solution was evaporated 

under vacuum to a pale green sticky solid that was extracted with Et2O (50 mL, then 3 x 5 mL, 

filtration through a G/FB filter). The solution was evacuated to dryness and after washing with cold 

pentane (3 x 20 mL) a white powder was obtained (3.42 g, 93%). Elemental analysis found: N 2.75, 

C 79.06, H 5.41; Calculated for C32H26NO2P C 78.84, H 5.38, N 2.87. 31P {1H} RMN (162 MHz, 

CDCl3), δ, ppm: 140.4 s (1P). 1H RMN (400 MHz, CDCl3) δ 7.10 - 7.20 m (16H), 6.61 - 6.67 m 

(2H), 4.30 m (1H), 3.95 - 4.02 m (3H), 3.24 td (J = 2.93 Hz, J = 10.98 Hz, 1H), 3.15 m (1H), 2.32 
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m (1H), 2.12 m (1H). 13C {1H} RMN (101 MHz, CDCl3) δ 145.3 (1C), 144.8 (1C), 144.4 d (3
JC-P = 

5.40 Hz, 1C), 144.3 d (3
JC-P = 4.05 Hz, 1C), 139.4 (1C), 138.9 (1C), 136.3 d (2

JC-P = 13.50 Hz, 1C), 

135.9 d (2
JC-P = 8.10 Hz, 1C), 131.2 (1CH), 129.2 (1CH), 129.1 (1CH), 128.8 (1CH), 128.8 (1CH), 

127.9 (1CH), 127.8 (1CH), 127.7 (1CH), 127.6 (1CH), 126.17 (1CH), 126.14 (1CH), 125.9 (1CH), 

125.8 (1CH), 125.7 (1CH), 125.4 (1CH), 125.0 (1CH), 122.6 (1CH), 122.5 (1CH), 71.1 (1CH2), 

68.3 d (2
JC-P = 8.10 Hz, 1CH2), 49.0 (1CH), 48.8 (1CH), 46.7 (1CH), 46.0 (1CH). 

Cis-[PdCl2((R,R)-5)2] ((R,R)-9). A solution of (R,R)-5 (309 mg, 0.807 mmol) in CH3CN (4.7 g) 

was added dropwise to a stirred yellow slurry of [PdCl2(CH3CN)2] (104.6 mg, 0.4032 mmol) in 

CH3CN (6.3 g) causing the precipitation of a snow white solid. The mixture was stirred for 1 h, and 

the solid was separated by filtration over a cotton plug and then dried in vacuo (315 mg, 83%, free-

flowing white powder). Elemental analysis found: C, 52.44; H, 4.63; N, 2.82. Calculated for 

PdCl2C42H44N2P2O8•H2O: C, 52.43; H, 4.82; N, 2.91. 31P{1H} NMR (162 MHz, CDCl3) δ 115. 1H 

RMN (400 MHz, DMSO-d6, 100 ºC ) δ 2.03 (s, 4H), 2.09 (s, 12 H), 3.40-3.65 (m, 8H), 6.55-6.65 

(m, 4H), 6.65-6.75 (m, 12H), 6.90-7.00 (m, 4H). The spectrum indicates traces of decomposition 

products. No meaningful 13C {1H} RMN spectrum could be measured because of the low solubility 

of the complex. 

Cis-[PdCl2((R,R)-7)2] ((R,R)-10). A yellowish solution of (R,R)-7 (500 mg, 1.03 mmol) in MeCN 

(7.5 mL) was added dropwise to a slurry of Pd(MeCN)2Cl2 (134 mg, 0.515 mmol) in MeCN (7.5 

mL). Within a few seconds, a white precipitate formed, which was stirred for 30 min and then 

cooled to -33 °C for 30 min. The yellow filtrate was decanted off and the white solid was washed 

with cold MeCN (5 mL) and dried under HV to afford an off-white powder (526 mg, 89%). 

Elemental analysis found: C 66.59, H 4.47, N 2.26. Calculated C64H52N2O4P2Cl2Pd: C 66.70, H 

4.55, N 2.43. 31P {1H} RMN (162 MHz, CDCl3), δ, ppm: 89.85 s. 1H NMR (400 MHz, CDCl3), δ, 

ppm: 8.31 (d, J = 8 Hz, 2 H), 7.44-6.91 (m, 28 H), 6.62 (d, J = 12 Hz, 2 H), 6.35 (d, J = 8 Hz, 2 H), 

6.01 (d, J = 12 Hz, 2 H),  4.18-4.13 (m, 2 H), 3.80 (t, 4 H), 3.46 (t, 2 H), 2.94-2.82 (m, 2 H), 2.67-

2.52 (m, 2 H), 1.39-1.30 (m, 2 H), 1.06-1.00 (m, 2 H) ppm. 13C {1H} RMN (101 MHz, CDCl3) δ, 

ppm: 144.5, 144.0, 141.1, 139.4, 138.7, 137.9, 135.1, 131.1-125.5 (m), 123.1, 122.1, 72.2, 69.9, 

45.0, 44.7, 43.3, 42.2. Colorless needles suitable for single crystal X-ray analysis were obtained by 

slow evaporation of a CHCl3 solution. 

Cis-[Pd2Cl4((R,R,R,R)-5)] (11). (RD384, RD333, RD210) A solution of (all-R)-5 (306 mg, 0.394 

mmol) in CHCl3 (3 mL) was added dropwise to a yellow slurry of  [PdCl2(CH3CN)2] (205 mg, 

0.789 mmol) in CHCl3 (1.5 mL) affording a clear pale yellow slightly turbid solution which was 

stirred for 1.5 h. The solution was filtered over a cotton plug and cooled to -33 °C for 4 days to 

afford lemon yellow crystals that were separated by filtration and dried in vacuo (232.5 mg, 53%). 

Elemental analysis found: C 44.82, H 3.99, N 2.42. Calculated C42H44N2O8P2Cl4Pd2: C 44.98, H 
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3.95, N 2.50. 31P{1H} NMR (162 MHz, CDCl3) δ 120.4. 1H NMR (400 MHz, CDCl3) δ 1.13 (s, 

3H), 1.15 (s, 3H), 3.20-3.35 (m, 1H), 3.75-3.85 (m, 1H), 3.85-3.95 (m, 2H), 4.25-4.40 (m, 1H), 

4.40-4.50 (m, 1H), 7.15-7.30 (m, 2H), 7.40-7.75 (m, 8H). 13C {1H} RMN (101 MHz, CDCl3) δ, 

ppm: 140.7, 134.3, 134.2, 132.7, 132.5, 130.3, 130.2, 129.6, 110.6, 110.4, 101.4, 100.7, 77.2, 75.5, 

74.9, 69.9, 27.1, 26.6. X-ray quality lemon-yellow single crystals formed from a CDCl3 solution (17 

mg/0.6 mL) at -23 °C. 

Cis-[Pd((S)-1)2(NCCH3)2][BF4]2 (12). A solution of (S)-1 (684 mg, 1.34 mmol) in CH3NO2 (3 mL) 

was added dropwise to a stirred yellow solution of [Pd(NCCH3)4][BF4]2 (297 mg, 0.669 mmol). 

The resulting red solution was stirred for 2.5 h before evaporating it to dryness. The solid residue 

was washed and slurried with pentane (3 x 7 mL) and dried in vacuo to afford a red powder (918 

mg, 99 %). Elemental analysis found: C, 61.28; H, 3.65; N, 3.31. Calculated 

C72H50N4B2F8O4P2Pd⋅2H2O: C, 61.16; H, 3.85; N, 3.96. 31P{1H} NMR (162 MHz, NO2CD3) δ 92.3. 
1H NMR (400 MHz, NO2CD3) δ 1.3-3.5 (bm, 6H, coord NCCH3), 5.41 (d, J = 7.6 Hz, 2H), 6.20-

6.30 (m, 6H), 6.39 (t, J = 7.5 Hz, 2H), 6.80-6.90 (m, 4H), 7.00-7.10 (m, 4H), 7.15 (d, J = 8.4 Hz, 

4H), 7.25 (t, J = 7.6 Hz, 2H), 7.30-7.42 (m, 4H), 7.47-7.55 (m, 3H), 7.60-7.70 (m, 4H), 8.00 (t, J = 

8.7 Hz, 4H), 8.25 (t, J = 8.5 Hz, 4H). 13C {1H} RMN (101 MHz, NO2CD3) δ, ppm: 147.9, 146.1, 

137.4, 135.1, 135.0, 133.3, 133.1, 132.9, 132.3, 132.1, 130.9, 130.1, 129.5, 129.3, 128.6, 128.2, 

128.0, 127.7, 127.4, 127.3, 127.2, 127.1, 126.5, 121.5, 121.0, 119.7. 

General procedure for the asymmetric catalytic allylic amination: rac-trans-1,3-Diphenylallyl 

acetate (0.5 mmol) and the Pd complex (0.025 mmol) were dissolved in CH2Cl2 (1.5 mL). After 

stirring for 5 min, a solution of benzylamine (1.5 mmol) in 1.5 mL of CH2Cl2 was added. The 

resulting yellow solution was stirred for 15 h at RT. The product was isolated after purification via 

flash column chromatography using a 19:1 mixture of hexane-EtOAc. 1H NMR (400 MHz, CDCl3) 

δ 7.42 (d, J = 7.4 Hz, 2H), 7.37 – 7.29 (m, 8H), 7.29 – 7.22 (m, 4H), 7.21 – 7.16 (m, 1H), 6.57 (d, J 

= 15.8 Hz, 1H), 6.32 (dd, J = 15.8, 7.5 Hz, 1H), 4.39 (d, J = 7.4 Hz, 1H), 3.84 – 3.72 (m, 2H), 2.09 

(s, 1H). Enantiomeric excess was determined by chiral HPLC (Chiralcel OD-H, 

hexane/isopropanol, 99:1 v/v, 0.3 mL/min, UV 260 nm), retention times: tR = 45.07 min for the (R)-

isomer, tR = 47.27 min for the (S)-isomer. 
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CCDC 1907446 and 1907447 contain the supplementary crystallographic data for this paper. The 

data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/structures. 
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• A new enantiopure trans-dinucleating macrocylic 
phosphoramidite P-alkene ligand was synthesized

• Crystal structures of new chiral phosphoramidite P-
alkene complexes of Pd indicate hemilability of ligand 
alkene functions

• The Pd complexes are single component catalysts for 
the asymmetric allylic amination reaction


