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ABSTRACT 
 

Infusion process begins with preforming, where multiple CF layers are formed into three-

dimensional shape and are fixed between fibre and mould or in-between the different fibre layers. 

Manual fixing process with magnet is time-consuming non-reproducible step, which requires 

additional carrier material and higher manufacturing tolerances. For automated fixing [1],[2] 

the most time-consuming and cost-ineffective process is binder application onto CF. The 

influence of the binder's compatibility with the resin to be infiltrated and the effect of added 

amount of binder on mechanical properties of cured component must also be taken into 

account [3]. Clear evidence of not completely dissolved binder could be observed in cured 

component [4]. This paper introduces a new automated fixing method, which applies the 

adhesive force of RTM6 resin. Due to subsequent infiltration with the same resin no 

indication of previously applied matrix and mechanical influences could be determined [5]. 

First, parameter study has been conducted for identification of holding force and quantity of 

resin according to layer number and position. Approximately 0,094 g/m² resin is required for 

first layer to hold 8 subsequently applied layers. Thereafter, robot based end-effector is 

developed to distribute the resin and investigated theoretically and practically on 4m diameter 

Pressure-Bulkhead.  

 

1. INTRODUCTION 

The manufacturing of a large carbon fibre component (CFRP) in the aerospace industry 

requires many manual process steps. This reduces reproducibility and requires the subsequent 

improvements. The complex and manual production processes associated with the CFRP 

materials highly increase the production cost & production time. Therefore an automatic and 

an economical production process is required. The aim of DLR (Deutsches Zentrum für Luft- 

und Raumfahrt) research center, Augsburg is to reduce the production cost of the CFRP 

components through the development of an automatic production process and simultaneously 

to increase the productivity & the quality of production [6]. Figure 1 shows the out-of-

autoclave vacuum infusion process chain as well as details of two of its sub-processes. The 

main process begins with “process preparation”, which consists of cleaning of the 

component and application of the release agent in order to detach the cured component from 

the tool. A part of the manual “Handling and preforming” process is already developed and 

automated at DLR [6]. In this process an automated "pick and place end-effector" picks up 

the 2D carbon fibres, drapes them into the desired 3D geometry. The Fixation of the draped 

carbon fibres cut pieces onto mould succeeds still manually by using a magnet or 

thermoplastic a binder.  Both of these fixing methods are time-consuming and cost-

ineffective processes [1], [2]. Furthermore, the influence of the binder's compatibility with 

the resin (RTM6) to be infiltrated and the effect of added amount of binder on mechanical 

properties of cured component must also be taken into account [3].  
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Figure 1: Vacuum infusion production process of CFRP 

The conventional “vacuum bagging” process step (see in figure 1 the green block) of CFRP 

manufacturing line involves also a high amount of manual work.  Therefore, in the recent 

years DLR ZLP (Center for lightweight production technology) has developed a new 

automated vacuum bagging process [10], which again involves an automated handling of 2D 

packages of auxiliary cut pieces and positioning them onto 3D mould. Like the 2D dry carbon 

fibres, also, these auxiliary packages need to be fixed onto the mould automatically. 

Therefore, the main focus of this work was the development of a new automated fixation 

method, which is applicable for both sub-processes (“Handling and preforming” and 

Vacuum bagging”). After “vacuum bagging” process “infiltration” and “demoulding” are 

performed manually. 

2. EXPERIMENTATION 

2.1 Selection of fixing method 

The selection of the method took place in the master thesis [4], in which first a concept 

analysis and then an experimental investigation were carried out.  For this purpose, a cost-

utility analysis was performed with the help of the established evaluation criterias. The 

physical and process relevance evaluation criteria were holding force, influence of the 

fixation method on components quality, automation, reproducibility, flexibility and process 

time. The first three criteria were most decisive. Also the criteria like process conditions for 

the compliance with aviation regulations were taken into account.  

A plenty of fixing methods are existing. These can be categorised into 3 groups: 1) Friction 

joining 2) Cohesive joining 3) Positive fit-joining [7]. A part of the cost-utility analysis was 

performed based on the knowledge from research and industry. As a result the cohesive 

joining method with the following materials (Binder, RTM6, Adhesive tapes and spray 

adhesives) were selected for the experimental determination of the static friction coefficient, 

maximum holding force, holding time and component quality after infiltration. The holding 

force of the fixation depends on the forces acting on the preform package. A preform package 

consists of a number of carbon dry fibre layers with a different shapes and material 

properties. To prevent the downhill motion of the preform package (see  

Figure 2), the friction force  𝐅𝐟 must be equal to or higher than the weight force 𝐅𝐆. The 

Experiments were performed with a 556 g/m² carbon fibre layer.  

 

Binder (Polyamid-Vlies PA 1541, Producer Spunfab Ltd) : 

The binder material can be applied on a dry semi-finished CF ply for fixing it with another 

material. It consists of either the thin processed thermoplastic threads or the thermoplastic 

powder. An activation (heating) of the thermoplastic material over its melting temperature of 
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100 °C affects its fusion. During the cooling process, the material solidifies again, and 

thereby joins with the other material. 

  

Matrix (RTM6): 

The adhesive behaviour of RTM6 at room temperature (approx. 20 °C) can be used for 

cohesive bonding between two materials.  After applying a controlled quantity of the resin 

material on some specific spots of a CF ply, pressure needs to be applied to fix this ply with 

the component or other plies. Moreover, an infiltration is carried out with the same resin 

material; therefore, the fixing spots on the cured component become invisible. 

 

Adhesive tapes: 

The product Saerfix EP of the company Saertex GmbH & Co. KG is used as adhesive tape. 

This special adhesive material is based on epoxy, which is chemically integrated into the 

matrix during the hardening process. The adhesive material (12 g/m²) is provided with a 

carrier foil on both sides and can be therefore be easily cut into the desired sizes. Compared 

to spraying with the additional adhesive less time is required here and a reproducible 

distribution of adhesive is ensured. 

 

Adhesive Spray: 

The Aerofix 2 spray adhesive from R&G Faserverbundwerkstoffe GmbH was also 

investigated. This contact adhesive was specially developed for the fixation of carbon and 

glass tissue and is available in 500 ml cans (R&G 2017). 

 

 
 

Figure 2: Forces acting on a body on an inclined plane 

Conclusions: 

The details of the experimental setup and the results are published in the master thesis [4]. In 

the entire test series, the Aerofix 2 spray adhesive achieved by far the highest value for fixing 

force, but also the highest standard deviation, as uniform dosing of the adhesive medium was 

difficult to achieve. Therefore, this method was not selected for further experiments. In 

addition, the spray adhesive is still not approved to use for aerospace components. The 

determined value of the friction coefficient and the maximum holding force was higher for 

Saerfix EP than for the Binder and the RTM6, whereby the standard deviation of the binder 

was higher than for Saerfix EP. The lowest standard deviation was achieved with RTM6 

method. It should also be noted that in the experimental tests, although the same fixing 

amount were used for all methods, the achieved coated fixation area was less for RTM 6 

compare to other methods.  Because, after the applied pressure the distributed RTM 6 as 
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drops could not flow uniformly over the fixation area due to capillary effect. Therefore, the 

forces determined with RTM6 method were very low.  

Although ascertained holding force for Saerfix EP material was the highest, the RTM6 fixing 

method was the best choice for vacuum infusion process. Because a compatibility of a high 

amount of Saerfix EP material with aerospace approved infiltration matrix (RTM6) material 

cannot be guaranteed. During the test, it was observed that the adhesion between the adhesive 

medium and the carrier film of Saerfix EP is better than between the adhesive medium and 

CFRP surface provided with release agent. Therefore, the Saerfix EP or binder must first be 

applied to the ply and then pressed onto the bottom layer. This may include additional 

preparing process for ply and can increase the fixing cost. Also draping of the ply with pre-

applied Saerfix EP/ binder material on the multiple curved surfaces is limited due to material 

stiffness. Clear evidence of not completely dissolved binder as well as Saerfix EP could be 

observed in cured component [4]. Moreover the application of binder and Saerfix EP material 

on auxiliary package is difficult. In the case of RTM6, due to the subsequent infiltration with 

the same resin, fixing points on the cured component cannot be distinguished. Moreover no 

additional material is required, as the required quantity of RTM6 for fixing process is reduced 

from the total quantity of RTM6 for infiltration process so that the material cost can be saved 

directly. Regarding the fixing process time, which may influence the manufacturing cost is 

determined along with the other fixing parameters like quantity and processing temperature 

of RTM6 in the next section. The RTM6 method is also applicable without any limitation for 

auxiliary package. 

2.2 Determination of fixing parameter 

The aim of the study was to determine the influencing parameters for the RTM6 method 

under a production condition. Therefore, a double-curved pressure bulkhead with a diameter 

of approx. 4 m was selected as the target component. As a part of the project “Protec NSR” 3 

different grippers (see in Figure 3: Modular End-effector, Snake End-effector and Endless 

End-effector) were applied to build a Preform according to CPD design (with the different 

dimensions of CF-layers) on the pressure bulkhead.  

 

 
Figure 3: Gripper systems developed at DLR ZLP 
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Taking these CF-layers as boundary conditions, distribution and required total quantity of the 

RTM6 were determined for fixing CF-Layers in the master thesis [8]. Furthermore, the CF-

layers should not slide until completion of the infusion process. In order to avoid the capillary 

effect and to increase the fixing force a thin layer of resin was made with spray nozzle (see 

Figure 4).  

 

 
Figure 4: Spray nozzle and thin layer of RTM6 

It is necessary to apply enough pressure on CF-layers after draping to increase the fixing 

force. Variation of the force applied (on the ply) has an effect on the fixing force [8]. Further 

experiment results showed increased value of the measured force by increasing the fixing 

area [9]. The Endless End-effector as well as the Modular End-effector to be used for the 

draping can apply enough pressure on a large surface through the contact area compare to the 

Snake End-effector, which has limited number (small area) of soft suction cups and force to 

apply the pressure on ply. Therefore the experiments were conducted to determine the fixing 

force with the minimum surface area (provided by number of suction cups) and maximum 

possible applied force with the soft suction cups of Snake End-effector. By considering the 

weight of 10 CF plies at 45° angle (ply size 340m x 340 mm and weight 432 g/m²) the 

required holding force will be 3.468 N, which is still smaller than average value of the 

measured forces 22.92 N for first layer and 16.68 N for the second layer. For the experiment 

1.43 g RTM6 was used and 9.81 N force was applied with one module of the Snake End-

effector (consists of 11 soft suction cups with 0.0058 m² area) to apply the pressure on ply. 

Thus it can be concluded that one module of the Snake End-effector is able to apply enough 

pressure to hold the upper plies. The required time with one spray nozzle to spray the 1.43 g 

is 30s. Although the spray time seems long at the moment, it was decided to develop the 

method for automated fixing process. Because to spray 1.43 g in less than 30s can be 

optimised by adding more spray nozzles or with a different spray nozzle. Also the amount of 

RTM 6 can be optimised in future. 

Further experiments were conducted directly on the component to verify the fixing process. 

In this experiment 7 CF-Plies (size: 1.2 m x 0,6m) were stacked together and only the 1
st
 CF-

ply was fixed to the component with 21.7g RTM6, which was distributed with the Snake 

End-effector pattern. Although RTM6 was sprayed 100 mm lower from the upper edge of 

CF-ply (due to gripping position of Snake End-effector), no peeling effect could be observed. 
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No sliding effect could be noticed for any layer for more than 16 hours. These plies were 

detached from the component manually. In another experiment (see Figure 5) different CF-

Plies were fixed onto component with the same parameters. No sliding effect was noticed for 

any ply for than 24 hrs. 

  

 
 

Figure 5: The combined experiment of the lower and intermediate plies 

2.3 Development of the fixing End-effector 

The End-effector was designed as a part of the master thesis [8].  The main components of 

the fixing End-effector design are cartridge for RTM6 and the spray nozzle with connecting 

pipe (see Figure 6). The end effector was developed for the portal robot and was able to 

deliver a specific amount of RTM6 in form of a thin layer. All components of the Nordson 

dispenser system was integrated with the End-ffector in such a way that: 1) Dispensing 

parameters can be easily modified any time manually & from a host PC. 2) The spray nozzle 

can be disassembled and assembled easily for changing the cartridge of the resin. 

Furthermore the load capacity of KUKA portal robot and position of the component in the 

robotic cell (in order to spray from 50 mm distance and normal to surface) were considered. 

Figure 7 illustrates the Fixing End-effector, which is 2 m long to reach every position on the 

component. Also the Nordson control system is integrated in the End-effector.  

  

 
 

Figure 6: Main components of fixing End-effector 
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Figure 7: Design of Fixing End-effector 

3. RESULTS 

3.1 Automated fixing of preform package on component 

For the experiments in the section (2.2) the 781S spray nozzle from Nordson was controlled 

with Nordson 7140 controller, in order to spray accurate amount of RTM6 with the defined 

air pressure and the dispensing time. In order to reduce the fixing time for the automated 

demonstration, it was decided to change the spray pattern from circle (due to suction cups of 

the Snake End-effector) to continuous curve (see Figure 8) for all the End-effectors. 

Furthermore, generation of a robot program according to pattern of the Snake End-effector is 

difficult. Maximum 10 s time can be set with the Nordson controller for continuous spray. 

Therefore, with 6.0x10
5
 Pa constant air pressure, the nozzle (on/off) was triggered directly by 

the robot. Also the robot movement speed (0.0163 m/s) had to be defined to spray the same 

amount of RTM6 as determined in the section 2.2. By considering the robot speed and the 

required amount of RTM6, the length of the spray pattern were constructed in CATIA. 

FASTSurf offline-program was used to generate the robot program. Prior to this the base-

position of the component and the Tool-Center-Point (TCP) for the Fixing End-effector was 

measured.  

 

 

Figure 8: Different spray pattern according to size of CF-pleis 

To fix all 59 CF-layers with different sizes 1.2 kg RTM6 was used. For the infiltration 

process the same amount was reduced. Total spray time was 11 hrs. It is to be noted that only 
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one nozzle was used for the demonstration and the quantity of RTM6 was not optimised for 

all the CF-layers. For the optimum case, the resin quantity would be reduced linearly from 

the first to the last layer. Multiple nozzles and the optimum spray quantity would 

significantly reduce the process time. Thus, all the CF-layers could be successfully fixed 

faster and automatically on the pressure bulkhead. Figure 9 (a) shows the already fixed 1
st
 

long CF-ply as well as sprayed RTM6 for fixation of 2
nd 

CF-ply of first layer.  Figure 9 (b) 

shows all fixed 59 long and intermediate CF-layers with RTM6. 

 

 

Figure 9: Automated fixation of CF-layers 

3.2 Automated fixing of auxiliary package on component 

As mentioned in introduction, for the vacuum bagging process auxiliary packages were cut 

according to geometry and stiffeners positions. All these packages were placed on the 

component with a multi-kinematic gripper [10]. The spray positions (shows in Figure 10 (a)) 

are the drop positions of the gripper. The gripping element has 30 mm diameter to press the 

auxiliary package on the ply. 80 mg RTM6 was sprayed within 5.2 s by a circular motion 

with a robot at each position. In order to spray at 134 positions 12 min was required. The 

robot movement time is not considered in this 12 min. Above experiment results thus show 

the successful fixation of the auxiliary packages with the newly developed method .     

 

 

Figure 10: Fixing positions of auxiliary packages 
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Figure 11: Automated fixation of auxiliary packages 

 

4. CONCLUSIONS 

The aim of the research was to develop an automated fixing process for CF-layers and 

auxiliary packages. A cost-utility analysis made it possible to evaluate the possible fixing 

processes on the basis of clearly defined and weighted target criteria and to identify the most 

suitable method. The advantages and disadvantages of these suitable selected methods could 

be proven experimentally. It could be shown that the RTM6 method was thebest choice. 

Several experiments were conducted on the surface of at component to determine the 

distribution and the quantity of the resin to be used. From the experiments conducted to 

determine the fixing force of a ply increases up to a certain level as the pressure being applied 

on the ply is increased & the Snack End-effector is also able to bring enough pressure to fix 

the plies. Further dispensing parameters (quantity, time) of RTM6 were also determined for 

automated fixation of CF-layers and auxiliary packages. The developed Fixing End-effector 

was used to spray required RTM6 at defined positions on the component. All the 59 long and 

intermediate CF-layers were fixed with this new method. Also auxiliary packages were fixed 

successfully with Multi-kinematic gripper after application of RTM6. Although the spraying 

time for the large scale demonstration above was relatively long, the time can be reduced by 

implementing multiple spray nozzles and optimizing the spray quantity. The topic will be 

examined in detail in the coming experiments.  
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