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Abstract:  9 

Soiling of solar reflectors affects their reflectance and has a direct impact on the power output of 10 

concentrated solar power (CSP) plants. One way to minimize the efficiency losses is the implementation 11 

of anti-soiling coatings on the reflector surfaces. This method is being studied for the past decade, but 12 

has not been successfully commercialized yet. The purpose of the coatings is to reduce soiling and 13 

improve the washability of the reflectors. In this work results are presented from an extensive outdoor 14 

campaign of two potential anti-soiling coatings under realistic conditions at a representative CSP site in 15 

southern Spain. Nearly six years of outdoor data are available, which makes this campaign the longest 16 

published on this type of coatings. Regular cleaning and reflectance measurements were performed 17 

during the exposure and conclusions about the performance and durability of the coatings are drawn. It 18 

is shown that in the initial state the coatings show an advantageous behavior, resulting in higher 19 

reflectance during outdoor exposure due to less soiling and better cleaning of the reflectors. The second 20 

main finding is that durability is an important issue for the implemented coatings, as their properties 21 

degrade over time resulting in lower reflectance values after several years of exposure compared to 22 

conventional glass reflectors. 23 
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1. Introduction: 25 

Solar reflectors are one of the key components for the development of cost competitive concentrated 26 

solar power plants as their quality directly influences the concentration of the incoming sunlight and 27 

thus the efficiency of the plant. The main characteristic that a solar reflector has to possess, in order to 28 

be able to assure a high efficiency of the plant (that is, 20-25 % of net electricity generation to incident 29 

solar radiation in a typical parabolic-trough collector plant [Reddy et al., 2013]), is a high solar specular 30 

reflectance (around 0.945 [Sutter et al., 2019]) over the lifetime of the power plant. An initial high 31 

reflectance is as important as maintaining that high value in time. The initial reflectance can be affected 32 

mainly by two mechanisms: first, progressive degradation throughout time, which changes some of the 33 

material characteristics irreversibly (García-Segura et al., 2016), and secondly by the soiling that can get 34 

accumulated on the surface as time goes by, which can be counteracted by cleaning. This soiling has a 35 



high impact on the reflectance. Common soiling rates with daily losses of around 0.5 % are reported 36 

(Wolfertstetter et al., 2018a), which can be considerably higher depending on the site’s characteristics 37 

(Wolfertstetter et al., 2018b, Bouaddi et al., 2018). Cleaning large reflective areas of the solar field in a 38 

power plant implies major operation and maintenance (O&M) costs and thus, lowers the plant’s benefits 39 

(Fernández-García et al., 2014). Additionally, with the cleaning methods applied nowadays, water 40 

demand is critical since many CSP plants are situated in arid regions with scarce water resources (Sarver 41 

et al., 2013). 42 

One way to address this issue is to apply an anti-soiling coating on the front glass of the traditional solar 43 

silvered-glass mirrors. This coating should help decreasing the amount of soiling that remains on the 44 

reflector’s surface and improving its washability (Plesniak et al. (2014). 45 

Anti-soiling coatings are nowadays used in a variety of applications and industries, on ceramic and glass 46 

surfaces (Midtdal and Jelle, 2013). Currently, investigations are being carried out in order to use these 47 

coatings in solar energy technologies, mainly for photovoltaics (Costa et al., 2016), but also for CSP 48 

applications. Anti-soiling coating developments can be derived from the following three physical 49 

mechanisms:    50 

 Hydrophilic coatings possess a high surface energy, which results in the formation of low contact 51 

angles between the coating and water droplets. This allows very thin films of water to form in 52 

the case of washing or rain and this facilitates dirt removal. This type of coating is often silica 53 

based (Aranzabe et al., 2018). 54 

 Hydrophobic coatings, on the other hand, have a low surface energy and contact angles are 55 

high. This provokes the formation of small water droplets which easily roll over the surface 56 

taking present dirt particles with them (Polizos et al., 2014). Formulations of silica or titania 57 

nanoparticles are usually used. 58 

 Titania based coatings often use the photocatalytic effect (Atkinson et al., 2015, Jesus et al., 59 

2015), enhancing the decomposition of organic matter in the presence of UV radiation. 60 

Whereas in many applications the use of anti-soiling coatings is common, only very few commercial 61 

products are available on the market for the CSP sector (Schwarberg and Schiller, 2012). The main 62 

criteria a coating has to fulfill, in addition to the anti-soiling effect, are a high transmittance and minimal 63 

scattering, in order to maintain the specular reflectance of the base reflector. While the solar-weighted 64 

specular reflectance is the optimal way to characterize a solar reflector, for practical reasons, especially 65 

in the field, often specular reflectance is only measured at certain wavelengths (Fernández-García et al., 66 

2017). To characterize the quality of the coating, the reflectance difference with an uncoated reference 67 

material can be determined. To directly measure the hydrophilic and hydrophobic properties of the 68 

coatings, the contact angle can be analyzed. 69 

While the manufacturing of coatings with excellent optical and anti-soiling properties has been 70 

demonstrated, the durability of these coatings is still an important issue. It was shown that the 71 

properties of coated reflectors can deteriorate in accelerated tests when exposed to UV-radiation and 72 

abrasive forces  (Plesniak et al., 2014, Giessler et al., 2006). Limited data on real outdoor exposure are 73 

available for coated CSP reflectors and it is usually restricted to a few years. A previous study (Aranzabe 74 

et al., 2018) showed good durability for two coatings after 3.5 years with a specular reflectance of 2 to 75 



3.3 % higher than for uncoated reflectors. Another work (Sansom et al., 2016) proved that the type of 76 

cleaning has an influence on the degradation, especially for non-glass type mirrors. Apart from cleaning, 77 

abrasion by airborne particles can play an important role in the degradation of reflector surfaces 78 

(Wiesinger et al., 2018) and may possibly be more pronounced for coated reflectors, since traditional 79 

glass mirrors have shown the highest durability (Kennedy and Terwilliger, 2005). 80 

In this work, the methodology of an outdoor testing campaign for anti-soiling coatings and their analysis 81 

is described and the results and conclusions of this campaign are presented. The main objective is to 82 

evaluate the effectiveness of the coatings to increase the reflectance in comparison with uncoated 83 

standard material with glass surface under realistic conditions. The variation throughout time of this 84 

effectiveness is used as key indicator of the coatings’ durability and their performance under different 85 

soiling conditions. 86 

2. Method and Equipment: 87 

2.1. Outdoor campaign: 88 

The most realistic way to assess the behavior, here mainly soiling and degradation, of materials is via an 89 

outdoor exposure campaign under conditions similar to their real use, i.e. at a representative CSP site 90 

with regular cleaning (Bouaddi et al., 2017). For this work facets of a commercial solar 4 mm thick 91 

silvered-glass mirror material with different anti-soiling coatings were exposed on the Plataforma Solar 92 

de Almería (PSA) together with uncoated facets for reference. The reflector material with the coatings 93 

was provided by a major reflector manufacturing company and the campaign was conducted in close 94 

agreement with the company. The reflector facets were cleaned and the specular reflectance, as their 95 

main performance parameter, was determined on a regular basis. The portable specular reflectometer 96 

model 15R-USB (Figure 3-b), manufactured by Devices and Services, called D&S, was used to measure 97 

the monochromatic specular reflectance ρs,φ(660 nm; 15°; 12.5 mrad) with an incidence angle of 15° and 98 

in a wavelength range between 635 and 685 nm, with a peak at 660 nm. The measurements were taken 99 

with an acceptance angle of 12.5 mrad. An accuracy of 0.002 (reflectance units) is given by the 100 

manufacturer, the calibration mirror has an uncertainty of 0.0015 and the sensitivity of the equipment is 101 

0.001. Summing up the three uncertainties and considering a coverage factor of 2 (which defines an 102 

interval having a level of confidence of approximately 95 % for normal distributions), the expanded 103 

uncertainty of the equipment is 0.006. 104 

Table 1: Exposure site meteorological data.  105 

Location 

Mean 
temperature 
[ºC] 

Yearly global 
horizontal 
irradiance 
[kWh/m2] 

Yearly direct 
normal 
irradiance 
[kWh/m2] 

Mean 
wind 
speed 
[m/s] 

Mean 
relative 
humidity 
[%] 

TOW 
(%) 

PSA, 37.1°N, 2.35°W 18.3 1901 2133 3.2 59.5 16.1 

The outdoor exposure campaign started in June 2011. In Table 1 the main climatic parameters at the 106 

exposure site are presented. Mean values of two years data were calculated. The time of wetness (TOW) 107 

is defined as the duration in which the relative humidity is above 80% and the temperature above 0°C 108 



(ISO9223, 2012). Soiling rates at the PSA have been determined in the past by continuous 109 

measurements with the automatic soiling measurement system TraCS (Wolfertstetter et al., 2018a) and 110 

an average soiling rate of 0.52 %/d (drop in reflectance per day) was found. In cases of unfavorable 111 

conditions, e.g. the combination of light rain and dusty atmosphere, daily reflectance drops of up to 7 % 112 

were detected. As the degradation of the coatings is analyzed in the campaign, the effect of erosion by 113 

airborne particles can be an issue. Data gained in the past has proven that this effect is negligible at the 114 

investigated position at the PSA even for aluminum reflectors which are much more sensitive than glass 115 

reflectors (Sutter et al., 2018).   116 

An exposure rack was set up to hold five groups of seven facets each (Figure 1). Each facet has a size of 117 

75x106 cm². The frequency of measurement and cleaning was different for the different groups. Every 118 

two weeks groups 1 to 4 were measured before cleaning, followed by cleaning and the measurement of 119 

groups 2 and 4 only. Groups 1 and 3 were cleaned, followed by the measurement after cleaning with a 120 

lower frequency, every four weeks. Group 5 was not cleaned, except for natural cleaning by rain fall, and 121 

had reference purposes only. It was exposed to be measured under possible special circumstances (e.g. 122 

sand storms or similar) without the influence of regular cleaning application. As no special events were 123 

suffered during the exposure, no additional results were obtained from this group.  124 

  
a) b) 

Figure 1: a) Outdoor exposure site at PSA with measured facets, b) measurement mask on facet. 125 

The cleaning was performed with pressurized water at 200 bar using a HDS 10/20-4M device from 126 

Kärcher (Figure 2-a), which is similar to known parameters used for cleaning in commercial plants 127 

(Cohen et al., 1999). The distance between the spray nozzle and the reflector surface was approximately 128 

0.5 m. The cleaning was performed by the operator until no further cleaning effect could be 129 

appreciated. The water used is demineralized, with a maximum conductivity of 2 µS/m. The cleaning 130 

method applied was the most commonly used one in commercial CSP plants. In addition, cleaning with a 131 

brush was discarded from the beginning due to recommendation of the manufacturer and previous 132 

experience of the researchers, to avoid any damage of the coatings due to abrasion (Sansom et al., 133 

2006). 134 



  
a) b) 

Figure 2: a) Kärcher cleaning device and b) D&S reflectometer placed on measurement mask. 135 

A mask was designed and used for the reflectance measurements with the portable reflectometer 136 

(Figure 1-b Figure 2-b). The mask with 5 holes, which fit the reflectometer, was placed on the facets to 137 

always measure on the same spots on the facet. Additionally the mask served as a protection during the 138 

measurements. The average of the measurements of the five spots was calculated for each facet as the 139 

reflectance value of the corresponding facet. 140 

In the beginning of the campaign three different anti-soiling coatings were used together with one 141 

uncoated reference material. The measurements started in July 2011 and were continued until March 142 

2017, thus comprising a period of nearly 6 years. In March 2013, the results of the 3 coatings were 143 

analyzed after 2 years of exposure. According to the conclusion obtained, the manufacturer decided to 144 

keep only one of the original coatings (the one with the best behavior), and remove the other two. 145 

Results of these two coatings are not shown in this paper due to confidentiality agreements with the 146 

manufacturer. In addition, another new coating was included in the analysis, which was developed by 147 

the manufacturer as an optimized product, coming from the analysis of the testing performed until that 148 

moment. Measurement results in this work focus on the three materials that were exposed and 149 

measured until the end of the study: anti-soiling coating 1 (AS1) and the reference material exposed in 150 

2011 and anti-soiling coating 2 (AS2) exposed in 2013. 151 

In addition to reflectance measurements, optical microscopic analysis was performed with a 3D light 152 

microscope model Axio CSM 700 manufactured by Zeiss. A scanning electron microscope (SEM) Gemini 153 

Ultra 55, manufactured by Zeiss, with an INCA FETx3 EDX system was used for more detailed surface 154 

analysis.  155 

2.2. Laboratory test device: 156 

As it is important to determine the mechanical stability of coated reflectors (Sansom et al., 2014), a 157 

mechanical laboratory test was conducted with the Taber linear abraser Model 5750 (Figure 3-a) to 158 

assess the resistance of the coatings to erosion wear. The tests were conducted according to standard 159 

(ISO9221-4, 2006) and (UNE206016, 2018) with an abrasion head model MIL/E/12397. The test consists 160 

in performing linear back and forth strokes of the abrasion head with a defined force (pressure of 161 



1.24 kg/cm²) on the sample surface (size 10x10 cm²). Reflectance measurements and a microscopic 162 

analysis were performed before and after testing. 163 

  
a) b) 
Figure 3: a) Taber abrasion tester, b) D&S 15-R USB reflectometer. 164 

3.   Results: 165 

The most significant value for the evaluation of the anti-soiling coatings is the reflectance difference 166 

between the coated and the uncoated reference material. As the coated and the uncoated facets are 167 

exposed under the exact same conditions, the anti-soiling facets only cause a benefit when their 168 

reflectance is higher than for the reference material. If the mean value of the coated material is higher 169 

than for the uncoated material, there is an advantage in the use of the coatings. The initial specular 170 

reflectance values of the three materials are presented in Table 2. It can be seen that the values of the 171 

uncoated and the AS2 material are very similar, with AS2 being 0.2 pp higher. The reflectance of AS1 lies 172 

below the others with a difference of 0.6 pp to the uncoated material, which is still within the 173 

uncertainty of the D&S, meaning that the coatings lower the initial reflectance of the reflectors only 174 

insignificantly and absorption and scattering of the coatings is negligible. 175 

Table 2: Initial reflectance of the three analyzed materials. 176 

Material Uncoated AS1 AS2 

Initial monochromatic specular reflectance [%] 94.8±0.6 94.2±0.6 95.0±0.6 

Figure 4 and Figure 5 show the development of the reflectance of the uncoated reference material over 177 

time, before and after cleaning, respectively. The focus in these graphs is to show the absence of 178 

appreciable degradation of the uncoated material for both cleaning frequencies. Figure 5 only displays 179 

the values after cleaning for the 2- and the 4-week frequency. As the cleaning by pressurized water is 180 

not able to completely remove the soiling on the reflector surfaces, the initial value of the reflectance is 181 

not restored in the field during the whole campaign. It can be seen that the reflectance is fluctuating 182 

over time, staying between 88 and 95 %, but that there is no considerable degradation. Both linear 183 

approximation lines (dotted straight lines) do not show a decrease in reflectance over time. The short 184 

term fluctuation is due to different soiling conditions and the imperfect cleaning method throughout the 185 

campaign. It can be seen that lower values after cleaning (such as the ones just after 06/06/2011 and 186 



just before 18/10/2012) match with periods of stronger soiling before cleaning (compare Figure 5 after 187 

cleaning with Figure 4 before cleaning). This is because the cleaning method is not able to restore the 188 

initial reflectance values when the soiling level of the reflectors is high. In this sense, more frequent 189 

cleaning (2 weeks instead of 4) helps restoring reflectance values. The mean reflectance value of the 190 

material cleaned every two weeks is slightly higher (around 0.5%). Although this difference is not 191 

substantial (still below the instrument uncertainty), it is assumed that more frequent cleaning cycles 192 

help to prevent the formation of strong adhesive bonds between the dust and the glass surface, and 193 

therefore the 2-weeks cleaned surface reaches a slightly higher average reflectance than the 4-weeks 194 

cleaned surface.  195 

 196 

Figure 4: Reflectance values of uncoated material before cleaning for the 2 and the 4 week cleaning campaign. 197 

 198 

Figure 5: Reflectance values of uncoated material after cleaning for the 2 and the 4 week cleaning campaign. 199 
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Table 3: Yearly mean reflectance values and reflectance drop for all 3 materials and the two cleaning campaigns after 200 
cleaning (in %). 201 

 2-week campaign 4-week campaign 
 Uncoated AS1 AS2 Uncoated AS1 AS2 

1st year mean reflectance 92.7±0.9 92.6±0.9 93.5±0.8 92.2±1.1 92.3±1.2 93.3±0.9 

Last year mean reflectance 92.8±0.6 89.5±1.6 90.0±0.7 92.4±0.7 90.6±0.9 90.1±0.7 

Mean reflectance drop +0.1 -3.1 -3.5 +0.2 -1.7 -3.2 

Table 3 presents the mean reflectance values of the different materials after cleaning, calculated for the 202 

first and the last year of exposure, together with the resulting reflectance losses. As presented in the last 203 

paragraph, it can be seen that the mean reflectance of the uncoated material remains constant over the 204 

whole campaign, even showing slightly positive reflectance differences (0.1-0.2 percentage points). As 205 

the uncoated material does not suffer a perceivable degradation, degradation detected in the following 206 

graphs for the reflectance differences is provoked by changes of the anti-soiling coatings. Figure 6 and 207 

Figure 7 display the advantage of the coatings over time for both the 2- and the 4-week cleaning 208 

campaign before cleaning, that means in the soiled state. The advantage is defined here as the 209 

reflectance of the coated material minus the reflectance of the uncoated one.  I.e. if the reflectance of 210 

the material with anti-soiling coating is higher than the uncoated material, there is an advantage and the 211 

value is positive. If the value is negative, the reflectance of the coated material is lower than of the 212 

uncoated material, which shows a disadvantageous behavior (that is, the coated material 213 

underperforms compared to the uncoated material). 214 

The values of the new material AS2 start later because they were exposed at a later time. For both 215 

coatings the advantage is positive in the beginning and diminishing over time until there is a point when 216 

the coating becomes a disadvantage (values are negative). The slope of the linear approximation is 217 

similar for both of the materials. For the 4-week campaign the advantage shrinks slower than for the 2-218 

week campaign. 219 

 220 

Figure 6: Advantage of anti-soiling coatings AS1 and AS2 compared to uncoated references, before cleaning every 2 weeks. 221 
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 222 

Figure 7: Advantage of anti-soiling coatings AS1 and AS2 compared to uncoated references, before cleaning every 4 weeks. 223 

In Figure 8 and Figure 9 the advantages are displayed after cleaning. Here the advantage of the anti-224 

soiling coatings is lower, hence the effect of the coating is more pronounced in the soiled state. Again 225 

the values start in the positive area and reach the area of disadvantage. But here the advantage is 226 

smaller from the beginning and the negative values are reached faster than for the before cleaning 227 

values. Still it can be stated that in the beginning of the campaign, even after cleaning the utilization of 228 

the coatings is beneficial. That is due to the fact that with the cleaning technique used, the facets 229 

reflectance cannot be restored to the initial value, but the cleaning is more effective for the coated 230 

samples. The negative trend of all reflectance difference curves leads to the conclusion that a 231 

degradation of the AS coatings takes place and that it is evolving with time. Looking at the reflectance 232 

losses of the coated samples in Table 3 it can be seen that these losses can reach values of more than 3 233 

percentage points depending on the coating and parameters.  234 

 235 

Figure 8: Advantage of anti-soiling coatings AS1 and AS2 compared to uncoated references, after cleaning 2 weeks. 236 
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 237 

Figure 9: Advantage of anti-soiling coatings AS1 and AS2 compared to uncoated references, after cleaning 4 weeks. 238 

In Figure 10 (2-week campaign) and Figure 11 (4-week campaign) the linear trend lines for both coatings 239 

for before and after cleaning are presented together with the corresponding averages per material. 240 

Some conclusions can be drawn here. The advantage is always higher in the soiled state, with the 241 

difference between before and after cleaning decreasing over time. Looking at the average lines per 242 

material it is possible to detect at what moment the implementation of the anti-soiling coating becomes 243 

a disadvantage. The worst case here is AS2 and the 2-week cleaning campaign. Here the point is reached 244 

already after roughly two years, whereas for AS2 with the 4-week campaign it is after nearly 4 years, or 245 

44 months. For all cases the point is reached faster for the 2-week campaign. The comparison of the two 246 

coatings is difficult because they were exposed at different dates and thus have not seen the same 247 

outdoor conditions over their lifetime. The advantage for AS1 is higher in the beginning compared to 248 

AS2. The point where the coating becomes a disadvantage is reached earlier by AS2 in the 2-week 249 

campaign but in the 4-week campaign it is the other way around. 250 

In general it has to be stated that the specific outdoor conditions as well as the applied cleaning strategy 251 

will have an impact on the behavior of the materials and measurements. 252 
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 253 

Figure 10: Linear trend of advantage of both anti-soiling coatings with exposure time during 2 week campaign, before, after 254 
and average. 255 

 256 

Figure 11: Linear trend of advantage of both anti-soiling coatings with exposure time during 4 week campaign, before, after 257 
and average. 258 

In Figure 12 images of the three investigated material types, uncoated, AS1 and AS2 facets are displayed 259 

after completion of the outdoor campaign. On the pictures of the coated facets, the areas where the 260 

measurements were taken with the D&S are clearly visible (marked in red). Apart from remaining soiling 261 

on the surface the uncoated facets don’t show any signs of degradation. The marks on the anti-soiling 262 

facets are damages in the surface coatings and coincide with the measurement points. To analyze the 263 

effect of the measurement process on the coatings, an additional measurement campaign was 264 

conducted during the last seven measurements of the regular campaign and microscopic analysis was 265 

performed on these spots. 266 
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a) Uncoated facet b) AS1 facet c) AS2 facet 

Figure 12: Images of facets of the three different materials with the measurement points marked in red for the AS facets. 267 

During this campaign, five extra measurement points per sample were chosen that lie at least 10 cm 268 

away from the usual measurement points. This way an influence of potential damages, introduced by 269 

the reflectometer over the years, on the measurements could be avoided. In Figure 13 the 270 

measurements of this campaign are presented (extra measurements) and compared to the regular 271 

measurements. The continuous lines present the regular measurements and the dotted/slashed lines 272 

correspond to the extra measurements (marked “EX”). For the facets without coating the difference 273 

between the regular and extra measurement points is rather small. For the coated samples nearly all 274 

extra measurements show considerably higher values than the regular measurements. By calculating the 275 

average values for the difference between extra and regular measurements, these results can be 276 

confirmed: Δuncoated = -0.1; ΔAS1 = 1.81; ΔAS2 =2.14. 277 



 278 

 279 

Figure 13: Difference between reflectance values for measurement spots and apart from these. 280 

To analyze the general degradation and the difference between the regular and extra measurements, 281 

the surface of the facets was observed with light and SEM microscopy. In Figure 14 representative SEM 282 

images are displayed of areas where the D&S measurements were taken and apart from those areas. 283 

For the uncoated facets basically no degradation was detected on the zones away from the 284 

measurement points (Figure 14-a). The measurement zones show minor residues on the surface and 285 

only few punctual defects (Figure 14-b) of the surface.  286 

For the coated facets the anti-soiling coating is clearly visible and defects are appreciated in form of 287 

scratches and zones where the coating has been removed (Figure 14-c). These damages are considerably 288 

stronger and more densely distributed at the measurement points (Figure 14-d), which explains the 289 

reflectance differences between the different measurement points of the anti-soiling coated facets 290 

mentioned above. The higher the defect density, the higher is the scattering and absorption, lowering 291 

the specular reflectance of the material. 292 
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a) No coating b) No coating, D&S zone 

  
c) AS1 d) AS1 D&S zone 

Figure 14: SEM images of the different zones on uncoated and AS1 facets. 293 

To analyze the ability of the coatings to resist mechanical damages, a standardized abrasion test was 294 

done. The Taber test was conducted for 100 cycles in total. In Figure 15 microscopic images are 295 

displayed showing the initial state of the coating and the status after 10, 50 and 100 Taber cycles 296 

respectively. It can be appreciated that the surface degradation increases with the number of cycles 297 

conducted. In the initial state only minor defects can be detected (Figure 15-a), whereas with higher 298 

cycle numbers, horizontal scratches appear which follow the direction of the abraser head movement 299 

(Figure 15-b). After 50 cycles (Figure 15-c) the scratches have grown and in the lower part of the picture 300 

an area is visible in which a part of the coating has been completely removed. After finishing the 100 301 

cycles most of the coating has been removed (Figure 15-d). The test was also done with the uncoated 302 

material. Here the abraser has no effect at all.  303 



  
a) Initial b) 10 cycles 

  
c) 50 cycles d) 100 cycles 

Figure 15: microscopic images of AS1 coating before, after 10, 50 and 100 cycles of the Taber test. 304 

These effects can be verified when the specular reflectance is taken into account. The evolution of the 305 

reflectance of the coated and uncoated material is displayed in Figure 16. For the AS1 coating the 306 

reflectance drops in the beginning due to higher scattering at the scratches and imperfections of the 307 

coating. When continuing the test, the reflectance rises again when a high percentage of the coating is 308 

removed, leaving the base glass material. No reflectance change is detected for the uncoated material. 309 



 310 

Figure 16: Development of specular reflectance of coated and uncoated sample during Taber test. 311 

It must be concluded that the durability of the anti-soiling coatings is lower than that of the bare 312 

silvered-glass mirrors. Especially mechanical wear can harm the surface and thus lower the specular 313 

reflectance. It is important to state that the conducted outdoor campaign of this work is supposedly 314 

more aggressive than exposure under realistic conditions in a plant. Even though cleaning in the plant 315 

may be similar to the technique employed during the campaign, further mechanical stress is introduced 316 

here by the extensive measurement on designated spots. While sporadic measurements with the D&S 317 

(or other devices) are usually performed in commercial power plants, the spots for these measurements 318 

are arbitrarily chosen, avoiding the multiple repetition of measurements on the same spots. During 319 

measurements with D&S several parts of the equipment are in contact with the surface to be measured 320 

(Figure 17), mainly the three leveling screws and the rubber shielding around the measurement spot. 321 

For future measurement campaigns with similar goals as the one performed, it is important to minimize 322 

contact between instrument and sample surface to avoid unrealistic damage of the surface. 323 

 324 

Figure 17: Lower part of D&S with parts that are in contact with surface during measurements. 325 
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4. Conclusions: 327 

The outdoor campaign of this project produced valuable data on the behavior and performance of two 328 

anti-soiling coatings over a long period of time. A number of important conclusions can be drawn from 329 

this campaign: 330 

 The application of the anti-soiling coatings leads to a clearly visible advantage in the beginning 331 

of exposure, shown by the higher reflectance during outdoor exposure compared to uncoated 332 

silvered-glass mirrors. 333 

 The advantage is more pronounced in the soiled state before cleaning. But in the beginning of 334 

the campaign the advantage before and after cleaning proves that the coatings lower the effect 335 

of soiling and improve the washability of the reflectors. 336 

 Degradation of the coated reflectors is a bigger issue than for the uncoated material. The 337 

advantage of the coatings decreases with time and becomes a disadvantage after a relatively 338 

short time. In the course of this study the time to reach that point is around two to four years.  339 

 The advantage in reflectance and degradation of the coatings strongly depends on the 340 

environmental conditions and cleaning strategy the material is exposed to. Different climatic 341 

conditions and the performance of different cleaning techniques and frequencies may change 342 

the results considerably. 343 

 Especially mechanical stresses have shown to alter the quality of the coatings due to the high 344 

sensitivity of the coatings compared to very hard and resistant pure glass surfaces of 345 

conventional reflectors. 346 

 Measurement campaigns similar to the one conducted throughout this study require the 347 

utilization of measurement techniques that minimize the influence of the measurement process 348 

on the material due to the high number of measurements on the same spots. Contact between 349 

measurement equipment and material surface should be avoided by the use of soft distance 350 

pieces or adequate measurement mask design.  351 
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Nomenclature 358 

AS Anti-soiling 359 

Ciemat Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (Energy, Environment 360 

and Technology Research Centre, Spain) 361 

CSP Concentrating Solar Power 362 

D&S Devices & Services Reflectometer 363 



DLR  Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Centre, Germany) 364 

DNI  Direct normal irradiance 365 

GHI Global horizontal irradiance 366 

O&M Operation and maintenance 367 

PSA Plataforma Solar de Almería 368 

SEM  Scanning electron microscopy 369 

TOW Time of Wetness 370 

 371 

Δ absolute difference between reflectance measurements 372 

ρλ,φ near-specular reflectance 373 
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