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Abstract—The synthesis of numerical power vectors for 

optical satellite data downlinks through the atmosphere to 

optical ground stations is described. A set of standard time 

series is defined and their further application for estimation of 

transmission performance is shown. 
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I. INTRODUCTION  

Optical Low-Earth-Orbit satellites direct-to-Earth data 

downlinks (OLEODTE) [1] [2] [3] are becoming a major 

technological asset in future Earth-Observation (EO) 

missions, since the amount of data generated by the sensor 

payloads exceeds the available conventional RF-downlink 

capacity by orders of magnitude, and GEO-relays links - as 

an alternative repatriation option - may not be suitable for 

smaller EO-missions. To enable global implementation and 

compatible utilization of optical ground stations for direct-

to-Earth (DTE) links, standardization of data formats is 

required. This work is currently performed inside the 

CCSDS (Consultative Committee for Space Data Systems) 

[4] [5]. Specifically, the subgroup for “Optical On/Off 

Keying” (O3K) is defining the physical layer (optical 

frequencies, modulation format, symbol-rates) and the 

Synchronization and Coding for O3K DTE links.   

The downlink intensity of DTE links involving an 

atmospheric path shows fluctuations in the millisecond time 

scale, caused by Index-of-Refraction Turbulence (IRT) [6] 

and pointing jitter of the narrow beam transmitted from the 

satellite [7]. Therefore, the forward error correction coding 

and inter-leaver technique of the data stream must not only 

enhance overall reception sensitivity in Gaussian noise [8], 

but also cope with such fluctuations that eventually cause 

frequent and strong fading events. To enable comparable 

performance investigations by simulation of different 

channel-coding and inter-leaver schemes, a set of 

representative received power vectors has been defined, 

based on models and measurements on the respective signal 

parameters. It is of uttermost importance for further 

evaluation of different FEC schemes, that always exactly the 

same fading received power vectors are employed, since 

subtle variations in absolute fading behaviour can otherwise 

cause to misleading evaluation results.  

We show here the method to estimate the needed channel 

parameters, the simulation method, and describe the 

characteristics of the reference received power vectors (PV). 

Application in estimating the performance of a Forward 

Error Correction (FEC) scheme is shown, as well as 

necessary further steps.  
 

II. CHANNEL PARAMETERS ESTIMATION  

A. Parameters for OLEODTE-Channel estimation 

Necessary channel parameters for describing the received 

signal time behavior in an optical satellite downlink include:  

 Power Scintillation Index „PSI“ (variance of signal 

scintillation, normalized to mean power), to model 

the lognormal atmospheric scintillation 

distribution. This must regard aperture averaging 

from an accordingly sized receiver telescope. 

 Scintillation time-behavior, i.e. estimating its 

bandwidth, also reasonably well defined by its 

auto-covariance Half-Width at Half-Maximum 

ACOVHWHM . 

 The laser beam’s residual pointing jitter and jitter 

angle behavior result in fades. By estimating a 

Gaussian intensity profile and normal pointing 

error with equal deviation in all directions, this 

results in a beta-distributed fading component. 

 The time-behavior of this pointing jitter, again 

denoted by its bandwidth or ACOVHWHM . 

 

The first two components are elevation-dependent, and 

measured values are found in [9] for 847 nm wavelength or 

[10] for 1550 nm, and in [11] a comparison of measured 

with modelled values is shown. Further measurement data 

are given in [12]. 

The latter two components only depend on system 

parameters of the space terminal and the ground station in a 

simplified approach, and slower behavior is assumed mainly 

to insert a slower fading component which shall challenge 

the further error-correction algorithms. 

  

B. Chosen Parameter Values 

For the relevant scaling parameters (fading-bandwidth, 

scintillation indices, jitter-strength) we assume a signal 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/237469315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


wavelength of 1550 nm and a ground station with a receiver 

aperture of 40 cm being located at medium altitudes (600 m 

a.s.l.). One PSI value is 0.4 as found for 5° elevation, other 

is 0.1 as typically found at 15° elevation. For scintillation-

speed we pick 1 ms ACOVHWHM as typically measured with 

KIODO-downlinks (referring to 120 Hz 3 dB scintillation 

bandwidth), and as second value we use 3 ms, since slower 

variations have to be assumed for the longer wavelength 

1550 nm (referring to 40 Hz bandwidth). 

We assume a jitter such, that β=θ
2
/(4·σ

2
), where θ is 1/e

2
 

radius of the Gaussian beam, and σ is the rms-value of the 

pointing jitter in one plane. With this definition, the 

distribution function (PDF) of the received power fading 

due to pointing jitter becomes p(I) = β·I
(β-1)

·.  

For one set of parameters, no pointing jitter was assumed, 

for another we assumed a β of 3.  

Temporal jitter behavior was assumed as 10 Hz bandwidth 

or ~8.5 ms ACOVHWHM, estimated as a compromise between 

high performance and less complex system. 

These three pairs of parameter values thus define eight 

different cases or reference vectors. 
 

III. SIMULATION TOOL PVGET  

The simulation tool PVGeT (Power Vector Generation 
Tool) developed by DLR is based on numerical generation of 
scaled random variables for the lognormal atmospheric 
intensity (power) scintillation process, as well as for the β-
distributed pointing-jitter process - where the algorithm 
assumes a Gaussian beam profile and equal jitter in both 
angular directions. Both of these processes are assumed 
independent and thus are multiplied for generating the final 
received power time series. The algorithm is described in 
detail in [13], and Fig. 1 repeats its principle functionality.  

 

 
 

Fig. 1. The PVGeT algorithm  

 

 

IV. STANDARD DOWNLINK VECTORS 

A. Chosen Set of Reference Vectors 

Eight vectors are generated using the PVGeT script that 

emulates different conditions of OLEODL scenario like 

weak or strong scintillation, with or without pointing error, 

highly or less temporally correlated channel. All vectors are 

of lengths 100 seconds and sampling rate of 10,000 values 

per second. Other parameters used for these vectors are 

listed in Table I. The name of the power vectors uses the 

atmospheric PSI, the atmosphere correlation time, and the β-

value.   

 

TABLE I.  INPUT (IN) AND OUTPUT (OUT) PARAMETERS 

(Name)  

PSI-HWHM-βa
 

BW-IN 

atmos / β 

PSI-

OUT 

ACOVHWHM 

(OUT) 

β 

(OUT) 

(A) 0.1-1-inf 120 Hz / NA 0.1 1.05 ms 977 

(B) 0.4-1-inf 120 Hz / NA 0.4 0.95 ms 1021 

(C) 0.1-3-inf 40 Hz / NA 0.1 3.15 ms 961 

(D) 0.4-3-inf 40 Hz / NA 0.4 3.05 ms 990 

(E) 0.1-1-3 120 Hz / 10 Hz 0.17 1.65 ms 3.06 

(F) 0.4-1-3 120 Hz / 10 Hz 0.49 1.15 ms 3.02 

(G) 0.1-3-3 40 Hz / 10 Hz 0.17 4.25 ms 3.04 

(H) 0.4-3-3 40 Hz / 10 Hz 0.5 3.25 ms 3.02 
a. PSI-HWHM-β values used in the name of the power vectors are input parameters. 

 

B. Detailed description of one selected vector 

We selected one vector ‘(E) 0.1-1-3’ to describe in detail. It 
bears moderate scintillation with PSI = 0.1 and ACOVHWHM 
of 1 ms and includes residual pointing jitter. Detailed 
parameters of vector (E) are listed in Table II.  

TABLE II.  PARAMETERS OF VECTOR ‘(E) 0.1-1-3’ 

Parameters Values 

Vector length 100 s 

Sample Rate 10,000 samples per second 

Mean Vector Power 0.749 [-] 

PSI of combined vector 0.17 [-] 

HWHM of combined vector 1.65 ms 

HWHM of atmosphere only 1.05 ms 

LowPass atmosphere only 120 Hz 

HWHM Pointing only 8.35 ms 

LowPass Pointing only  10 Hz 

The vector is further analyzed and corresponding figures are 
presented below. Fig. 2 and 3 shows a 1s excerpt of the 
power vector (E) and depict how the signal fluctuates in 
terms of the running min, max and mean value. Fig. 4 and 5 
are PDFs of the underlying lognormal distribution (without 
pointing error) and pointing error distribution respectively. 
The figures also confirm that the generated PDFs match with 
the analytical ones. Fig. 6 and 7 show PDF and spectrum of 
the combined vector respectively. The lognormal vectors 
without pointing errors are normalized to the mean power of 
1. Once the pointing error is introduced, mean power of the 
vector is not equal to 1. Therefore, the vectors (A), (B), (C) 
and (D) have mean value almost equal to 1 (negligible 
pointing error), and vectors (E), (F), (G) and (H) do not have 
mean power of 1. However, for the fading analysis (Section 
C) of the vectors (Fig. 2, 3, 8 and 9), they are re-normalized 
to mean power of 1. Since OLEODL channel is a 



scintillating and fading channel, various error correcting 
codes can be employed for compensation, and they can be 
dimensioned using channel information like fade length, 
number of fades, and fractional fade time etc. as presented in 
Fig. 8 and 9 for vector (E).  

 

C. Fading Statistics of all Vectors 

Fading statistics of the channel represents important features 

of the channel. The statistics here include fade length 

(duration of fades), number of fade and fractional fade time. 

Each parameter is calculated for 3dB, 6dB and 10dB fades, 

and is listed in Table III. These values provide knowledge 

about the channel and help dimensioning error correcting 

codes to compensate fades.  

 

 

TABLE III.  FADING STATISTICS 

Name FadeLength /ms 

3dB/6dB/10dB 

No. of Fades 

3dB/6dB/10dB 

Fract. FadeTime /% 

3dB/6dB/10dB 

(A) 0.81/ 0.46/ 0 2187/ 3/ 0 1.7/ 0/ 0 

(B) 1.36/ 0.79/ 0.38 13458/ 2168/ 17 18.34/ 1.7/ 0 

(C) 2.43/ 1.7/ 0 787/ 1/ 0 1.9/ 0/ 0 

(D) 3.9/ 2.3/ 1.7 4623/ 789/ 4 18.27/ 1.82/ 0 

(E) 2.1/ 1.9/ 2.1 4374/ 534/ 34 9.2/ 1.05/ 0.07 

(F) 1.78/ 1.28/ 1.13 12734/ 3509/ 272 22.66/ 4.49/ 03 

(G) 5.45/ 4.37/ 3.5 1691/ 230/ 16 9.2/ 1/ 0.05 

(H) 4.87/ 3.5/ 2.7 4857/ 1240/ 115 22.36/ 4.35/ 0.31 

 

V. APPLICATION FOR CODE PERFORMANCE SIMULATION 

Main motivation for using a measured/synthesized power 
vector is to emulate the real OLEODL channel so that 
various error correcting schemes can be evaluated and the 
most appropriate ones can be selected. Currently, one is 
working on the CCSDS standardization of coding and 
synchronization layer for LEO to ground optical link 
scenarios (O3K physical layer and S&C blue book). These 
vectors are being used by various CCSDS affiliated space 
agencies to simulate their proposed schemes. In addition to 
the power vectors, the receiver noise model (shot-noise 
limited, thermal-noise limited, or realistic avalanche photo-
diodes) is also necessary to be used in the simulations [14]. 
Also, absolute link budget calculations must provide values 
of received mean power, which would be dependent on 
further parameters like elevation, aperture sizes, signal 
divergence, or atmospheric transmission, etc. However, link 
budgets, receiver model, and simulation results are out of the 
scope of this paper. A general block diagram of the bit-wise 
simulation process for coding and interleaving schemes is 
shown in Fig 10. At first, bit-stream (bframe) of zeros and ones 
is generated, encoded and interleaved, then interleaved 
codewords are transmitted through the optical channel (in 
this case defined by the power/fading vectors). These 
distorted signals arrive at the receiver and depending on 
various receiver parameters; output currents (IRx) are 
calculated and stored. The IRx vector is then decided using 
threshold level (Ith), and the output bit-stream (bout) is 
generated. Output codewords are then de-interleaved, 
followed by decoding, where decoding fails when too many 
erroneous bits are recovered. Finally, input and output bit-
streams are compared to calculate number of bit errors, 
symbol error rates, and codeword error rates, for different 
coding schemes. Simulations can be performed for different 
receiver types.  

 

 

Fig. 2. First 1s of the power vector E 

 

Fig. 3. min, max and mean of vector 

(E) using sliding window of 1s 

 

Fig. 4. PDF of the atmos. scint., 

compared with the analytical curve 

 

Fig. 5. PDF of the pointing error only 

compared with the analytical curve 

 

Fig. 6. PDF of the combined vector 
 

Fig. 7. Spectrum of combined vector 

 

 

Fig. 8. Histogram of the fade length of 
the PV (E). Blue line is for 3dB, red 

for 6dB and green for 10dB fades.  

 

Fig. 9. Fractional fade time calculated 
in 10s blocks. Blue line is for 3dB, 

red for 6dB and green for 10dB fades. 



 
Fig. 10. Simple Block diagram for simulating various error correcting 
techniques using power/fading vectors and receiver models. FEC: Forward 

error correction, Rx: Receiver, FER: Frame Error Rate, BER: Bit Error 
Rate, Calc: Calculation. 

VI. OUTLOOK TO APPLICATION 

We have defined eight vectors of received power 
variations for the O3K-scenario in CCSDS standardization, 
to enable simulative comparison of Error Correction 
Schemes. These are available for download, upon request to 
the authors. Further work will include the definition of a 
suitable receiver frontend modelling, which translates the 
received optical power into an electrical signal value. This 
conversion depends on the receiver technology employed, 
namely if thermal-noise limited detectors, or coherent 
receivers, or receivers with signal-dependent noise 
components are employed. In the scenario for O3K it has to 
be assumed that avalanche photodiodes are used, which 
practically exhibit partly signal-dependent noise behavior. 

Another important step would be the numerical 
derivation of a set of uplink power vectors, since these will 
be necessary to estimate the return channel e.g. in ARQ-
algorithms.  
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