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Abstract

We present an analysis of the inner layer of adverse-pressure-gradient turbulent
boundary layers at Reynolds numbers up to Reθ = 57000. The major aim is to
determine the resilience of the log-law, the possible change of the log-law slope
and the appearance of a square-root law above the log-law at significant ad-
verse pressure gradients. The second objective is to characterise the total shear
stress. The third aim is to provide a well-defined test case for the validation
and improvement of numerical flow simulation methods. We designed and per-
formed a new wind-tunnel experiment, in which the turbulent boundary layer
flow of interest develops on the side wall of the wind-tunnel and then follows an
accelerating ramp and a long flat plate at almost zero pressure gradient. Then
the flow enters into the adverse pressure gradient section, first along a curved
surface and then on a flat plate. We use a large-scale overview particle imaging
velocimetry method for characterising the streamwise evolution of the flow over
a streamwise distance of 15 boundary layer thicknesses. In the focus region, we
use microscopic and Lagrangian particle tracking velocimetry to measure the
mean velocity and the Reynolds stresses down to the viscous sublayer. Oil-film
interferometry is used for the complementary direct measurement of the wall
shear stress.

In the adverse pressure gradient region we observe a composite form of the
mean velocity profile with a thin log law region and a square-root law above
up to 0.12δ99. We find lower values for the log-law slope coefficient than for
zero pressure gradient boundary layers, but the reduction is within the uncer-
tainties in the measurement and possible history effects. The total shear stress
and the turbulent viscosity in the inner layer can be described by an analytical
model whose parameters are the pressure gradient parameter and the accelera-
tion parameter based on the streamwise gradient of the wall shear stress. Then
we use a data base of adverse pressure gradient turbulent boundary layer flows
at large Reynolds numbers from the literature. We find that the mean veloc-
ity profiles for different flows almost collapse provided that both the pressure
gradient parameter and the wall shear stress gradient parameter are close to
each other. Finally we describe and discuss the effects of the convex curvature
and the relaxation of upstream curvature effects on a flat plate. The stream-
wise eddy-turnover distance indicates that the flow relaxes fast in the inner
layer, whereas the turnover length is strongly increasing in the outer part of the
boundary layer.
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Chapter 1

Introduction

Turbulent boundary layers subjected to an adverse pressure gradient still pose
many open questions. At the same time, they have a high relevance in many
technical applications. Lift generation on airplane wings, thrust generation us-
ing turbomachinery blades, and energy harvesting using wind turbine blades
are just a few examples out of many. Among these flows, the flow around air-
plane wings are special due to the very high Reynolds numbers. These flows
are characterised by a streamwise changing pressure gradient and surface cur-
vature. Modern commercial transport aircrafts use so-called supercritial airfoil
geometries since the 1970s. In the rear part of the airfoil, the flow on the upper
side experiences an adverse pressure gradient and a convex surface curvature.
On the lower side the geometry is S-shaped with a convex followed by a con-
cave curvature. Consequently the pressure gradient is changing from adverse to
favourable. Due to the strong changes in streamwise direction, these flows show
significant effects of non-equilibrium, relaxation and flow history.

The proper mathematical description of the statistically averaged mean flow
of a turbulent boundary layer at a significant adverse pressure gradient (APG) is
still under debate. For boundary layers at zero-pressure gradient, there is large
experimental support and agreement in the literature that the mean velocity in
the inner layer can be described by the log-law

u+ =
1

κ
log(y+) +B (1.1)

for sufficiently large Reynolds numbers, see e.g. Rotta [1962], Österlund et al.
[2000], and Marusic et al. [2013]. Therein, the superscript + denotes the viscous
units. The values for the slope coefficient κ and for the interceptB are still under
discussion in the literature, see Örlü et al. [2010] for an overview. During the
years, besides the values κ = 0.41 and B = 5.0 by Coles and Hirst [1969], also
lower values were proposed, e.g., κ = 0.384 and B = 4.17 found by Österlund
et al. [2000].

Regarding the mean flow structure of canonical wall-bounded flows, i.e. tur-
bulent channel and pipe flows and turbulent boundary layers at zero pressure
gradient, traditionally, these flows are divided into four layers, i.e., the vis-
cous sublayer (y+ < 5), the buffer layer (5 < y+ < 30), the logarithmic layer
(30 < y+ < 0.15δ+99) and the wake layer (y+ > 0.15δ+99), see e.g., Wei et al.
[2005a] for a review. Therein δ99 denotes the boundary layer thickness. A his-
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torical overview over the extent of the log-layer in the literature can be found
in Örlü et al. [2010]. In the more recent publications, there is agreement on the
outer edge of the log-layer near y = 0.15δ99, see Örlü et al. [2010] and Marusic
et al. [2013]. The region y < 0.15δ99 will be referred to as the inner layer. Re-
garding the beginning of the log-layer, larger values ranging from y+ > 150 up to
y+ > 300 have been proposed recently. A mesolayer located between the buffer
layer and the log-layer in the region 30 < y+ < 300 was proposed by George and
Castillo [1997]. Another view was given by Hultmark et al. [2012], who found
for turbulent pipe flows at very high Reynolds numbers the existence of a region
where the log-law for the mean velocity and a logarithmic profile for the stream-
wise (and spanwise) turbulence intensities hold simultaneously, as suggested by
Townsend [1976]. This result was supported in Marusic et al. [2013] for turbu-

lent boundary layer flows, leading to the proposal 3Re1/2τ < y+ < 0.15Reτ , with
Reτ = δ+99, for this region.

For flows with a significant adverse pressure gradient, there is no consensus
on the law-of-the-wall in the literature, and the discussion described in Alv-
ing and Fernholz [1995a] is still open. A first hypothesis is that the log-law
(1.1) still holds and that slope 1/κ and intercept B still have the same value as
for a flat-plate turbulent boundary layer at zero pressure gradient (ZPG), but
that the region occupied by the log-law is progressively reduced with increasing
adverse pressure gradient. This hypothesis was called the ”progressive break-
down” of the law of the wall in Galbraith et al. [1977]. It was suggested from
the measurements by Wieghardt and Tillmann [1944] and advocated, among
other, by Coles [1956], Perry [1966], Coles and Hirst [1969], Galbraith et al.
[1977], Granville [1989], and Huang and Bradshaw [1995]. We note that the
empirical two-parameter family of mean velocity profiles by Thompson [1967]
also uses the ZPG log-law for y/δ99 < 0.05. This is of interest for the present
work, since this profile family was found to be successful to describe a large
number of adverse pressure gradient flows.

In conjunction with the first hypothesis, Perry [1966] proposed that above
the log-law region there is a so-called half-power law region. In the special case
of a vanishing wall shear stress close to separation due to a continuous APG,
the half-power law extends almost down to the wall. This proposal by Stratford
[1959] was recently supported by direct numerical simulations in Coleman et al.
[2017] and Coleman et al. [2018]. Alternative composite wall-laws based on a
log-region in the inner part and a different form of the half-power law in the
outer part of the inner layer were proposed for boundary layers by Kader and
Yaglom [1978], by Kiel [1995], and by Afzal [2008], and for Couette-Poiseuille
flow by Telbany and Reynolds [1980] and by Vieth [1996]. Moreover, Kader
and Yaglom [1978] and Telbany and Reynolds [1980] proposed a model for the
thickness of the log-law region. We mention also the work by Perry and Schofield
[1973] which was refined in Schofield [1981] and Schofield [1986]. A three-layer
structure of the law-of-the-wall was proposed by Durbin and Belcher [1992]. For
a mathematical approach we refer to Scheichl and Kluwick [2006, 2007].

A second hypothesis is that, in the log-law region, the coefficients κ and B
change their values. Nickels [2004] proposed a functional dependence of κ on
the so-called pressure gradient parameter in inner scaling ∆p+x

∆p+x =
ν

ρu3
τ

dPw

dx
. (1.2)
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This proposal was studied for sink flows by Dixit and Ramesh [2008]. Regarding
a possible change of κ and B, a number of data sets were evaluated by Nagib
and Chauhan [2008], who found an empirical correlation between κ and B.
Experimental results by Nagano et al. [1991] could indicate a change in B, and
also the DNS data by Lee and Sung [2009] give indications that κ and B may
change. A recent work by Luchini [2017] also gives some indications.

A third hypothesis in that direction is that the pressure gradient causes “[...]
a change in the character of the velocity distribution over the entire region [...]”
occupied by the log-law in a ZPG flow, see Galbraith et al. [1977], which is
called a “general breakdown” of the log-law. Some authors proposed a single
formulation for the entire inner layer based on a generalised half power law,
see Szablewski [1960], Townsend [1961], McDonald [1969], van den Berg [1975],
Skote and Henningson [2002]. For the theoretical analysis therein, it is assumed
that the half-power law is accompagnied by a region, where the total shear stress
grows linearly with the wall-distance, see e.g., Szablewski [1954] and Brown and
Joubert [1969].

An increasing number of new experiments and numerical simulations for tur-
bulent boundary layers at adverse pressure gradient have been provided during
the last decade. Wind tunnel experiments were performed for equilibrium flows
by Atkinson et al. [2016], and for streamwise changing flows by e.g. Drobniak
et al. [2010], Monty et al. [2011], Harun et al. [2013], Cuvier et al. [2014], Atkin-
son et al. [2014], Knopp et al. [2015], Soria et al. [2016], Schatzman and Thomas
[2017], and Vila et al. [2017]. Recent numerical simulations of equilibrium tur-
bulent boundary layer flows at adverse pressure gradient were performed by Lee
and Sung [2008], and Kitsios et al. [2016, 2017], and for the Couette-Poiseuille
flow by Coleman et al. [2015], for which the special case of a zero skin friction
flow was studied in Coleman et al. [2017]. Streamwise developing turbulent
boundary layer flows were studied in e.g. Inoue et al. [2013], Gungor et al.
[2014, 2016], Vinuesa et al. [2018], and Coleman et al. [2018].

The scaling and characterisation of turbulent boundary layers with pres-
sure gradients has also been attracting recent research activities. Regarding
the question of scaling and self-similarity of the mean velocity profiles and the
Reynolds stresses in the outer part of the boundary layer we refer to e.g. Mellor
and Gibson [1966], Elsberry et al. [2000], Schatzman and Thomas [2017], Maciel
et al. [2006a], Gungor et al. [2016], and Maciel et al. [2018]. For the inner layer,
the classical scaling is based on viscous units, whereas Mellor [1966] proposed
to use a velocity scale based on the pressure gradient. Nickels [2004] proposed
to use a velocity scale which is based on the total shear stress at the outer edge
of the viscous sublayer.

The question of characteristic mean flow parameters which govern the be-
haviour of mean velocity and Reynolds stresses is still an open question. There
is agreement in the literature that the pressure gradient plays a central role,
and it is used in the form of the pressure gradient parameter ∆p+x , or using
the scaling by Rotta and Clauser or by Zagarola and Smits [1997], see Ma-
ciel et al. [2018]. The question of additional relevant parameters is still open
and thus the complexity of the parameter space needed to describe turbulent
boundary layers with pressure gradients. Monty et al. [2011] used the pres-
sure gradient parameter in the Rotta-Clauser scaling and the acceleration pa-
rameter K = νU−2

e dUe/dx where Ue denotes the local free-stream velocity
at the boundary layer edge. For the inner layer, the acceleration parameter
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∆u+
τ,x = νu−2

τ duτ/dx based on the streamwise derivative of the friction veloc-
ity (or equivalently, of the wall shear stress) was used in addition to ∆p+x by
Perry et al. [1966], van den Berg [1973] and Galbraith et al. [1977]. In Bobke
et al. [2017] the local boundary layer thickness Reτ = δ+99 was used as a second
parameter.

For flows with pressure gradients in conjunction with streamwise surface
curvature, the scaling properties become even more challenging, and only a
small number of experiments can be found in the literature, e.g., by Baskaran
et al. [1987] and by Bandyopadhyay and Ahmed [1993]. The effect of surface
curvature has been studied in depth since the pioneering work by Bradshaw
[1970]. For the present work the focus in on convex curvature. The magnitude
of curvature effects depends on the ratio of the local boundary layer thickness δ99
to the local radius of curvature Rc. Large curvature effects are associated with
values for δ99/Rc > 0.05, which were investigated by e.g. So and Mellor [1973]
and Gillis and Johnston [1983]. An impulse like curvature was studied in Smits
et al. [1979]. Values of δ99/Rc < 0.01 are associated with mild curvature in the
literature, which were studied e.g. by Gibson et al. [1984], and by Ramaprian
and Shivaprasad [1978]. The relaxation of a turbulent boundary layer from
curvature on a flat plate was studied for the zero-pressure gradient case by
Gillis and Johnston [1983] and by Alving et al. [1990]. Baskaran et al. [1987]
and Bandyopadhyay and Ahmed [1993] studied the effect of an abrupt change
in surface curvature which can initiate the growth of an internal boundary layer.
Baskaran et al. [1987] studied the effect of a perturbation in wall curvature for
a flow with prolonged convex curvature. They performed experiments for a
wall mounted curved hill with an abrupt change in curvature and a free wing
based on the same convex curvature geometry. They describe that an abrupt
change in surface curvature can initiate the growth of an internal boundary
layer. The internal layer grows as an independent boundary layer beneath a
turbulent free-shear layer, and establishes its own inner and outer region during
its development in streamwise direction. Bandyopadhyay and Ahmed [1993]
designed a flow experiment with an abrupt change of curvature and pressure
gradient. The curvature changes on one wall from flat to convex-concave and
on the other from flat to concave-convex, and then the flow relaxes on a flat
wall.

Once a wall-law for the mean velocity at adverse presssure gradient is dis-
covered, this could stimulate the improvement of RANS turbulence models, see
Rao and Hassan [1998] and Knopp [2016], and of near-wall models and wall-
functions for hybrid RANS/LES methods. A significant improvement in the
predictive accuracy of RANS modelling is needed to reach the vision to design
and optimise an aircraft based on computer simulations, see Bush et al. [2019].
The computational costs of direct numerical simulations of realistic aircrafts
with their large ratio of viscous surface area compared to the boundary layer
thickness is unfeasible even for a single flight case, see Spalart [2015], but the
design and certification of an aircraft require data for several millions of flight
conditions.

We have optimism that a step towards a wall-law for adverse pressure gra-
dients, even if it may be only empirically motivated and cannot account for all
higher order effects in full detail, can lead to new questions, which may lead to
a deeper understanding of turbulent boundary layers at adverse pressure gradi-
ents e.g. using the idea of organised structures, see, for example, Adrian [2007],
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Lee and Sung [2009], Marusic and Monty [2019], and Bross et al. [2019].
This paper is organised as follows. After a short review of the classical and

recent theory of turbulent boundary layers with pressure gradients in section
2, we describe the new wind-tunnel experiment in section 3. The aim of the
experiment is to study possible changes of the log-law slope coefficient according
to the theory by Nickels [2004] and the appearance of a sqrt-law at large Re
by achieving values of ∆p+x > 0.01 and large Reynolds numbers, i.e., Reθ >
30000, in the adverse pressure gradient region. The characterisation of pressure
gradient and curvature is given in section 4. The results for the zero pressure
gradient region upstream of the region of the adverse pressure gradient are
presented in section 5. The results for the mean velocity in the adverse pressure
gradient region are described in section 6. The experimental data support a
composite form of the mean velocity profile by Perry et al. [1966] with a thin
log-law region and a sqrt-law region above. In section 7 we study the mean-
momentum balance and the turbulent shear stress. The aim is to identify the
dominant terms of the mean-momentum balance and to characterise them using
suitable flow parameters. This will lead to a two-parameter model for the total
shear stress based on the pressure gradient parameter ∆p+x and the wall-shear
stress gradient parameter ∆u+

τ,x. In section 8 we compare the results for the
present flow with other representative turbulent boundary layer flows at APG
using a data base from the literature. The results indicate similarity of the mean
velocity profiles in the inner layer among different flows for similar values of ∆p+x
and ∆u+

τ,x, despite differences in the upstream history of the flows. In section
9 we attempt to assess the role of history effects and surface curvature for the
present experiment, and we study the question if other, possibly higher order
terms with additional parameters, determine the details of the mean velocity
profiles in the region y+ < 150. The main conclusions of the analysis are
summarised in section 10.
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Chapter 2

Classical theory

2.1 Boundary layer theory

In this work we assume for simplicity a two-dimensional, incompressible tur-
bulent boundary layer flow without external forces. We assume a wall-fitted
local coordinate system with streamwise wall-parallel direction x, wall-normal
direction y, and mean velocity components U (streamwise wall-parallel) and V
(wall-normal). We assume that the following boundary layer approximation of
the U -momentum equation can be used

ν
∂2U

∂y2
−

∂u′v′

∂y
=

1

ρ

dPw

dx
+U

∂U

∂x
+ V

∂U

∂y
− ν

∂2U

∂x2
+

∂

∂x

(

u′2 − v′2
)

. (2.1)

Therein the relation P (x, y) = Pw(x)− v′2(x, y) is used, which can be obtained
by integration of the boundary layer equation for the V -momentum

1

ρ

∂P

∂y
+

∂v′2

∂y
= 0

from the wall up to the wall-distance y in wall-normal direction, see Pope [2000],
Hinze [1975]. Due to integration from the wall, the wall-pressure Pw(x) arises,
whereas integration from the boundary layer edge leads to the free-stream pres-
sure, which is used in Hinze [1975].

In the sequel, we neglect the term ν∂2U/∂x2. Then for the total shear stress
τ with

τ

ρ
≡ ν

∂U

∂y
− u′v′ (2.2)

integration of equation (2.1) from the wall to the wall-distance y gives the rela-
tion

τ

ρ
=

τw
ρ

+
1

ρ

dPw

dx
y+

∫ y

0

U
∂U

∂x
dỹ+

∫ y

0

V
∂U

∂ỹ
dỹ+

∫ y

0

∂

∂x

(

u′2 − v′2
)

dỹ (2.3)

where τw denotes the wall shear stress. For abbreviation we introduce

Icu(y) =

∫ y

0

U
∂U

∂x
dỹ , Icv(y) =

∫ y

0

V
∂U

∂ỹ
dỹ ,

Ir(y) =

∫ y

0

∂

∂x

(

u′2 − v′2
)

dỹ (2.4)
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to denote the integrated convective term and the Reynolds normal stress term.

2.2 Scaling for the inner layer

The classical scaling based on the friction velocity is

u+ =
U

uτ
, y+ =

yuτ

ν
, τ+ =

τ

τw
, uτ =

√

τw
ρ

, ∆p+ =
ν

ρu3
τ

dPw

dx
,

and the integrated terms defined in (2.4) become

I+cu(y
+) =

Icu
u2
τ

, I+cv(y
+) =

Icv
u2
τ

, I+r (y+) =
Ir
u2
τ

.

Then the relation for the total shear stress (2.3) becomes in inner viscous units

τ+ ≡
du+

dy+
− u′v′

+
= 1 +∆p+x y

+ + I+cu(y
+) + I+cv(y

+) + I+r (y+) . (2.5)

A second classical scaling based on the so-called pressure-viscosity velocity up

leads to

u∗ =
U

up
, y∗ =

yup

ν
, up =

∣

∣

∣

∣

ν

ρ

dPw

dx

∣

∣

∣

∣

1/3

, ∆p+ =

(

up

uτ

)3

,

which was proposed by Mellor [1966], see also Simpson [1983] and Manhart et al.
[2008].

2.3 A model for the total shear stress

the data can be can For a model of the total shear stress, we follow the work
by Coles [1956], Perry [1966], Galbraith et al. [1977], and van den Berg [1973,
1975]. They use the following ansatz for the mean velocity profile in the inner
region

U(x, y) = uτ (x) f(y
+(x, y)) , y+(x, y) =

uτ (x)y

ν
. (2.6)

Then using the chain-rule for differentiation and invoking the continuity equa-
tion they obtain the following model for the mean inertial terms

∫ y

0

U
∂U

∂x
dỹ +

∫ y

0

V
∂U

∂ỹ
dỹ = ν

duτ

dx

∫ y+

0

f2dỹ+ . (2.7)

By substitution of (2.7) into (2.5) and neglecting I+r (y+) they obtain the fol-
lowing relation for the total shear stress τ

τ+(y+) = 1 +∆p+x y
+ +∆u+

τ,xI
+
u , I+u =

∫ y+

0

f2dỹ+ . (2.8)
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This reveals that even for the most simple ansatz for a wall-law, viz. (2.6), the
total shear stress in the inner layer depends on two non-dimensional parame-
ters, the pressure gradient parameter ∆p+x and the wall shear stress gradient
parameter ∆u+

τ,x defined by

∆u+
τ,x =

ν

u2
τ

duτ

dx
. (2.9)

From (2.8) a linear approximation for the total shear stress can be motivated
for small values of ∆u+

τ,xI
+
u compared to ∆p+x y

+. The classical literature, e.g.
McDonald [1969], uses the assumption that the effect of mean inertia can be
accounted for by writing

τ+ = 1+ λ∆p+x y
+ . (2.10)

Therein λ is a constant smaller than one, and λ∆p+x is called the effective
pressure gradient, see also Durbin and Belcher [1992]. For flows at a mild
adverse pressure gradient near equilibrium, McDonald [1969] proposes λ = 0.7,
and from Perry et al. [1966] a value of 2/2.4 = 0.833 can be inferred at the outer
edge of the logarithmic layer for the flows considered their work. Similar values
were found in Knopp et al. [2015].

2.4 Wall laws for the mean velocity at adverse

pressure gradients

This section gives a brief survey on wall laws for the mean velocity at adverse
pressure gradients which are used in the present work.

2.4.1 A model for the viscous sublayer thickness by T.

Nickels

Nickels [2004] proposes an analytical model for the mean velocity in bound-
ary layers subjected to mild and moderately strong pressure gradients, which
can be favourable and adverse. Therein the viscous sublayer solution U+

vis =
U+
vis(y

+; ∆p+x , y
+
c ) is given by

U+
vis = y+c

[

1−

[

1 + 2
y+

y+c
+

1

2

(

3−∆p+x y
+
c

)

(

y+

y+c

)2

−
3

2
∆p+x y

+
c

(

y+

y+c

)3
]

e
−3

y
+

y
+
c

]

(2.11)

which depends on the local value of ∆p+x and a parameter y+c , which is associated
with the thickness of the viscous sublayer. The idea is that the thickness of the
viscous sublayer yc can be determined by a stability argument using a critical
value Rec of a suitably defined local Reynolds number

Rec =
uT yc
ν

, uT =

(

τ |y=yc

ρ

)1/2

. (2.12)

Therein yc is the critical value of y above which the viscous sublayer becomes
unstable. The velocity scale uT is based on a linear approximation of the total
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shear stress, neglecting the mean inertial term

τ+|y=yc
= 1 +∆p+x y

+
c . (2.13)

The assumption that Rec has a universal value for all wall-bounded flows implies
that yc satisfies the cubic equation

Rec =
uT yc
ν

= y+c

√

1 + ∆p+x y
+
c ⇔ ∆p+x

(

y+c
)3

+
(

y+c
)2

−Re2c = 0 (2.14)

where Rec is the only free parameter and is chosen from zero-pressure-gradient
data to be Rec = 12. The physically relevant solution for yc is the smallest
positive root of (2.14).

2.4.2 A model for the log-law slope κ by T. Nickels

Regarding the log-law slope, Nickels [2004] argues that two relations to charac-
terise the vorticity scale in the inner layer should be equal. The first relation is
based on the velocity scale uτ and the second is based on uT . This leads to

∂U

∂y
=

uT

κ0y
=

uτ

κy
⇔

κ

κ0

=
uτ

uT
(2.15)

Therein κ0 is the log-law slope for the zero pressure gradient case. This implies
that

κ

κ0

=

√

1

1 + p+x y
+
c

(2.16)

where κ0 is the only free parameter, for which he chooses κ0 = 0.39.

2.4.3 Half-power law

A half-power law (or: square-root law, abbreviated: sqrt-law) is studied in
several publications on turbulent boundary layers at adverse pressure gradient.
In the present work we write the sqrt-law in the form used by e.g. Skote and
Henningson [2002]

u+ =
1

Ko

[

log(y+) + 2

(

√

1 + ∆p+x y+ − 1

)

+ 2 log

(

2
√

1 + ∆p+x y+ + 1

)]

+Bo .

(2.17)

Then the mean velocity gradient in wall-normal direction is
(

du+

dy+

)

sqrt,theory

=

√

1 + ∆p+x y+

Koy+
. (2.18)

2.4.4 Composite form of the mean velocity in the inner

layer

The idea of a composite form of the mean velocity profile with a sqrt-law region
above the log-law region was proposed by some authors, e.g. Perry [1966], Kader
and Yaglom [1978], Telbany and Reynolds [1980]. Then the question arises on
the wall distance where the transition from a log-law to the sqrt-law takes place,
see e.g., Kader and Yaglom [1978].
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2.4.5 Mean velocity slope diagnostic functions

The mean velocity slope diagnostic function is a method to assess the functional
behaviour of the mean velocity gradient with more scrutiny, see e.g. Österlund
et al. [2000] for zero pressure gradient flows. In the general form the diagnostic
function may be written as

ξ−1 ∼

(

du+

dy+

)−1

theory

(

du+

dy+

)

data

. (2.19)

The first term on the right hand side is the theoretically assumed mean velocity
gradient to be tested and the second term is the actual mean velocity gradient
computed from the data. For the log-law the diagnostic function becomes

ξ−1
log = y+

(

du+

dy+

)

data

. (2.20)

For the sqrt-law (2.17) the mean velocity slope diagnostic function is

ξ−1
sqrt =

y+
√

1 + ∆p+x y+

(

du+

dy+

)

data

. (2.21)

A plateau region of the slope diagnostic function can be seen as support for
an the assumed (theoretical) behaviour u+(y+). For zero pressure gradient
turbulent boundary layers, a plateau can be seen only for Reθ ' 6000, see
Österlund et al. [2000]. The overlap of inner and outer layer becomes sufficiently
thick in terms of y+ only for asymptotically high Re. We expect that a similar
Re is needed to observe an asymptotic behaviour with a sufficiently thick overlap
region at adverse-pressure gradients. This can be reached at the moment only
using wind-tunnel experiments.
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Chapter 3

Experimental investigation

The aim of the experiment was to answer the following questions for the mean
velocity profile at adverse pressure gradients:

(Q1) Does a log-law region still exist at APG?

(Q2) Does the slope of the log-law change with ∆p+x , as proposed by Nickels
[2004]?

(Q3) Is there a sqrt-law region above the log-law, see e.g. Perry et al. [1966]?

The hypothesis by Nickels [2004] of a changing log-law slope led to the first
design condition (C1) to reach ∆p+x > 0.01 in the focus region of the APG, so
that a possible change of the log-law slope due to the pressure gradient is large
enough to be distinguished from uncertainties related to the evaluation of the
log-law slope and the determination of uτ . For this purpose the measurements
were performed on the contour geometry model and not on the flat wind tunnel
opposite to the model, since the values of ∆p+x are significantly larger on the
contour model. The second design condition (C2) was to reach large Reynolds
numbers in the APG focus region, since we assume that only at large Reynolds
numbers the asymptotic structure of a possible wall-law with a significantly
thick log-layer and a significantly thick sqrt-law region forms at APG, similar
to the observation for the ZPG case, see e.g. Österlund et al. [2000].

Two additional conditions were a consequence of the aim to use the mea-
surement technique as accurate as possible. The third condition (C3) was to use
a flat surface in the APG focus region to enable measurements through a glass
plate from behind to reduce the issue of reflections of particle imaging meth-
ods in the near-wall region. The fourth design condition (C4) was to achieve
large Reynolds numbers at moderately low flow speeds and large boundary layer
thicknesses to enable accurate measurements in the viscous sublayer. Due to
the design condition (C4) in conjunction with the decision to measure on the
geometry model, the issue of surface curvature effects arose. We accepted this
issue, since the aim to reach at least ∆p+x > 0.005 on the wind tunnel wall side
would lead to a much stronger pressure gradient on the geometry model causing
the flow to separate. This would mean either to accept a three-dimensional
flow with corner separation, whose complexity was described just recently by
Simmons et al. [2019], or to use flow actuation to prevent separation with all
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Figure 3.1: Sketch of the wind tunnel experiment with flow direction (axes not
to scale).

its technical challenges to reach constant and well-defined flow conditions over
the measurement time and reproducible results for different flow experiments.

3.1 Design of the experiment and set-up in the

wind tunnel

We performed the experiment in the Eiffel type atmospheric wind tunnel of
UniBw in Munich, which has a 22-m-long test section with a rectangular cross
section of 2×2m2. As described in figure 3.1, the flow develops on the side wall
of the wind tunnel over around 4m and is then accelerated along a first ramp
of height 0.30m and of length 1.225m. Then the flow gradually develops along
a flat plate of length 4.0m with ZPG into an equilibrium. The flow follows a
curvilinear deflection of length lc = 0.75m which initially causes a small FPG,
and enters into the APG region. The focus region is an inclined flat plate of
length 0.4m at an opening angle of α = 14.4◦ with respect to the 4.0m long
flat plate. Finally, the flow follows a second deflection down to the wind tunnel
wall. The opening angle was chosen to keep the flow remote from separation
in a more conservative way than in the precursor experiment by Knopp et al.
[2014] and was designed based on CFD results with the DLR TAU code using
the Spalart-Allmaras model and the SST k-ω model.

The coordinate system is shown in figure 3.1. The origin x = 0 is defined
at the nominal begin of the test section, which is located 0.875m downstream
of the thinnest cross-section of the contraction. The curvilinear deflection can
be described by a fourth order polynomial f(ζ). Therein ζ denotes the relative
coordinate ζ = x − 8.99m, i.e., ζ = 0 at the begin of the curvilinear element
and ζ = lc at its end. Then the conditions of a smooth transition between the
flat plate and the curved wall imply f ′(0) = 0, f ′(lc) = a = arctan(πα/180)
with α = 14.4◦, and f ′′(0) = f ′′(lc) = 0. Therein f ′ and f ′′ denote the first and
second derivative. This leads to f(ζ) = −a/(2l3c)ζ

4 + a/l2cζ
3.

The first idea was to remove the initial boundary layer upstream of the ramp
by some means of flow actuation and to start with a fresh boundary layer similar
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2D2C PIV LR-µPTV 3D3C LPT

Ue at xref 28.1m/s 28.1m/s 43.2m/s
Field of view 0.44× 0.37m2 20× 17mm2 50× 90× 8mm3

Resolution 5.9 pxobj/mm 125 pxobj/mm 35 pxobj/mm
Interrogation vol. 2.7× 2.7× 1mm3 – –
lx × ly × lz
IW size ly resp. 91δν 0.27δν 2.88δν
bin size at xref

δν = ν/uτ at xref 30µm 30µm 20µm

Table 3.1: Summary of the experimental parameters. The flow was seeded with
DEHS droplets with a diameter of approx. 1µm. The flow parameters are for
the reference position xref = 9.944m.

to the situation on an aircraft wing. The motivation for this was to keep the
boundary layer thickness δ99 small compared to the radius of curvature Rc to
reduce the curvature effects. This idea was abandoned for technical reasons and
to ensure a well-defined simple flow for CFD.

The experiments were performed at a free-stream velocity of U∞ = 10m/s,
U∞ = 23m/s, and U∞ = 36m/s which was measured at a reference position
upstream of the contour. This yields Reθ = 8400, 16000, and 23000 at x =
8.36m in the ZPG region and Reθ = 15000, 28000, and 41000 at x = 9.94m in
the APG region. In order to reduce the effects of the side walls, the dimension
of the APG part of the geometry was reduced by a factor of two compared to
the previous experiment by Knopp et al. [2014].

3.2 Measurement technique

3.2.1 Large-scale 2D2C particle image velocimetry

We combined different particle imaging approaches in order to match the re-
quirement of measuring the mean velocity and the Reynolds stresses over a
streamwise extent of several boundary layer thicknesses from the outer edge of
the boundary layer down to the viscous sublayer. For an overview measurement
from x = 8m to x = 10.2m we applied a multi-camera large-scale 2D2C-PIV
measurement using 9 cameras named c1 to c9 in the following. The cameras
c1 to c7 were located in the region of ZPG, FPG and mild APG, whereas the
cameras c8 and c9 were located in the region of the largest APG. The 2D2C-
PIV data were evaluated using a single-pixel ensemble correlation and a window
correlation method, see Reuther et al. [2015]. The interrogation window (IW)
size was 16 × 16 px2 and the interrogation step size was 8 px, corresponding to
an overlap of 50%. From the 2D2C-PIV data, the mean velocity profiles where
extracted at 13 selected streamwise positions. Details of the PIV method are
given in table 3.1.

The spatial resolution of the PIV method depends mainly on the magnifi-
cation of the imaging system, the pixel size of the recording cameras and the
selected interrogation window dimensions, see Kähler et al. [2012a]. To locally
capture the entire boundary layer, the nine sCMOS cameras were equipped with
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50mm Zeiss lenses (c1-c7) and 35mm Zeiss lenses (c8-c9), respectively, where
the boundary layer thickness increases significantly due to the present adverse
pressure gradient. In the regions of ZPG, FPG and mild APG, the field of view
was 0.32× 0.27m2 and the interrogation volume size was 2× 2× 1mm3 yielding
a resolution of 8pxobj/mm for cameras c1 to c7. Regarding the resolution in
viscous units δν , we consider the position at x = 8.12m. We obtain for the inter-
rogation window size l+y = 125 based on δν = ν/uτ = 16µm for U∞ = 23m/s,
and l+y = 57 based on ν/uτ = 35µm for U∞ = 10m/s. In the APG region
the field of view was 0.44 × 0.37m2 and the interrogation volume lx × ly × lz
was 2.7× 2.7× 1mm3. This yields an interrogation window size in wall-normal
direction of l+y = 91 for camera c8 at xref = 9.944m.

3.2.2 Particle tracking velocimetry

To resolve the near wall region, a high magnification approach using long-range
microscopic particle tracking velocimetry (2D-µPTV), see Kähler et al. [2006],
Kähler et al. [2012b], Cierpka et al. [2013], was applied at the position xref =
9.944m in the APG region, which gives a 2D2C data field. The wall normal
extent of the field of view was 140δν for the case U∞ = 23m/s. The size of a
bin in wall-normal direction was 0.27δν.

Additionally the 3D Lagrangian particle tracking (LPT) approach using the
Shake-The-Box (STB) method was used, which gives a 3D3C data field. This
technique was applied here in a multi-pulse acquisition strategy. For details
we refer to Novara et al. [2016]. The macroscopic field of view of 50 × 90 ×
8mm3 covered approximately 0.4δ99. In this work we use the data which were
sampled over a bin size of 2.88δν in wall-normal direction. This evaluation will
be referred to as LPT detail. The LPT data provide an very good resolution of
all components of the Reynolds stresses.

For a study of the terms of the mean momentum equation, a second evalu-
ation of the data was performed. The field of view was divided into 111 bins
in wall-normal direction and 5 bins in wall-parallel direction, corresponding to
a bin size of 321 × 30 px2 (or: 9.2 × 0.86mm2) in streamwise and wall-normal
direction. The gradients are evaluated using a linear interpolation over a kernel
of 5 points located in the center of each bin. The choice of the large bin size in
streamwise direction was motivated by statistical convergence reasons, as more
than 400000 entries per bin are available to estimate the mean and fluctuating
velocity components. Since the bin size in wall-normal direction corresponds to
around 41δν, this evaluation will be referred to as LPT average (abbreviated:
LPT ave).

3.2.3 Oil film interferometry

The wall shear stress was measured using oil film interferometry (OFI) in the
region of interest from x = 8.33m to x = 10.02m. This provides absolute mea-
surements of the wall shear stress independent of any assumption on the mean
velocity profile. For technical details of the oil film interferometry measurements
we refer to Schülein et al. [2017].
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U∞ x Ue Reθ Reτ δ99 δ995 δ∗ θ H12 uτ ∆p+x βRC

m/s m m/s mm mm mm mm m/s

10 8.120 11.81 12920 4133 145.3 166.1 18.07 13.99 1.292 0.430 −0.00058 −0.300
10 9.944 10.75 16015 2835 195.5 211.6 37.78 23.59 1.601 0.219 0.0436 24.07
23 8.120 28.13 24358 9304 147.6 161.0 16.78 13.43 1.250 0.977 −0.00015 −0.156
23 9.944 25.50 39783 6939 203.7 215.5 37.01 24.19 1.530 0.528 0.0185 27.10
36 8.120 43.29 35908 13214 142.2 157.2 16.06 12.88 1.247 1.443 −0.00011 −0.167
36 9.944 39.18 57363 9799 192.9 206.9 34.54 22.73 1.520 0.789 0.0141 26.36

Table 3.2: Characteristic boundary layer parameters for the 2D2C PIV mea-
surements evaluated by the PIV single-pixel ensemble correlation method.

3.3 Flow conditions

The experiment was performed for three different reference velocities U∞ =
10m/s, U∞ = 23m/s, and U∞ = 36m/s. The reference velocity U∞ was
measured near x = 0 little downstream of the nozzle at the beginning of the test
section at a distance of 0.30m above the wind-tunnel wall. The measurements
using the different measurement techniques were performed at different days,
nominally for the same values of U∞. The PIV measurements were performed
during two consecutive weeks at very similar ambient conditions. The OFI
measurement campaign was performed some months later at little larger values
for ν by around 10% compared to the PIV measurement campaign. Details of
the flow conditions in the wind tunnel are summarised in table A.1 in appendix
A.

The characteristic boundary layer parameters are given in table 3.2. They
are based on the 2D2C PIV measurements evaluated by the single-pixel method.
The values should be seen only as approximate values. The boundary layer
thicknesses δ99 and δ995 are determined as the wall distance where the mean
velocity reaches 99% and 99.5% of its maximum value along a wall-normal line.
In the present work the focus is on the inner part of the boundary layer, and
therefore the method used is considered to be sufficient to characterise the flow
conditions. In the focus region, the mean velocity profiles near the boundary
layer edge do not show the more difficult situations which can occur for the flow
around airfoils, see, e.g., Vinuesa et al. [2016], Knopp and Probst [2013], and
Probst et al. [2011]. For the determination of the length scale to characterise the
outer boundary layer, more sophisticated methods are needed for the boundary
layer edge and the turbulent/non-turbulent interface, see, e.g., Chauhan et al.
[2014b,a], Vinuesa et al. [2016], Reuther and Kähler [2018, 2019].

We remark that the mean velocity profiles obtained by the single-pixel en-
semble correlation method and the window correlation method show small de-
viations near the boundary layer edge, leading to a small deviation in δ995.
The parameters are given for two streamwise positions, namely, at x = 8.12m
where the flow is almost at ZPG, and at x = 9.944m in the APG region. The
boundary layer thicknesses δ99 and δ995 are decreasing with increasing Re for
U∞ = 23m/s and U∞ = 36m/s. However, for the case U∞ = 10m/s the
boundary layer thickness is slightly thinner than expected.
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Chapter 4

Characterisation of the

streamwise flow evolution

In this section we describe of the streamwise evolution of the flow. The goal is
to characterise the pressure gradient and the effects of surface curvature.

4.1 Characterisation of pressure gradient and

curvature

The characterisation of the effects of an adverse pressure pressure gradient is still
not clear in the literature, as pointed out in section 2. For the characterisation
of the pressure gradient in the inner part of the boundary layer, we show ∆p+x
in figure 4.1 (a). The pressure gradient in Clauser-Rotta scaling

βRC =
δ∗

ρu2
τ

dPw

dx
(4.1)

shows a very similar distribution as ∆p+x , see figure 4.1 (b). Both become largest
in the region where uτ becomes smallest. This appears in the APG region on the
inclined flat plate. We included RANS results using the SSG/LRR-ω model, see
Eisfeld et al. [2016]. The pressure gradient parameter in Zagarola-Smits scaling
βZS, see Zagarola and Smits [1997], Gungor et al. [2014], is shown in figure 4.2
(a), and does not involve the friction velocity

βZS =
δ299

ρU2
e δ

∗

dPw

dx
(4.2)

Downstream of the ZPG region, βZS shows significant negative values for the
favourable pressure gradient near x = 9.05m, then changes its sign and reaches
large positive values with a maximum near x = 9.62m where a significant
adverse pressure gradient is reached.

The streamwise distance over which the pressure gradient changes may be
compared to the boundary layer reference thickness, which is δ99,ref = 0.15m at
x = 8.12m. The curvature first causes an FPG from x = 8.85m to x = 9.24m
over a streamwise length of 2.6δ99,ref . The change of βZS from a significant FPG
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Figure 4.1: Streamwise pressure gradient parameter for U∞ = 23m/s (a) in
inner scaling and (b) in Clauser-Rotta scaling.

to a significant APG from x = 9.05m to x ≤ 9.62m corresponds to 4δ99,ref . In
the APG region on the inclined flat plate for x > 9.75m, the curvature is absent
and βZS is slowly decreasing in streamwise direction. The focus measurement
position at x = 9.944m in the APG region is located 1.3δ99,ref downstream of
the end of curvature.

The convex curvature of the geometry and the resulting mean-streamline
curvature is expected to have a significant influence on the flow. The ratio of
the local boundary layer thickness δ99 to the local radius of curvature Rc is
shown in figure 4.2 (b). The values for δ99/Rc are larger than the value of 0.01
which is associated with mild curvature in the literature. We note that the
value given in Knopp et al. [2017] was too low due to an unfortunate error in
the calculation. On the other hand, the value for δ∗/Rc is smaller than 0.005,
which is lower by one order of magnitude than the criterion by Bradshaw [1970]
to characterise strong curvature.

At the junction between the flat wall and the curvilinear wall, the sur-
face is smooth, but the change in curvature needs to be quantified. Baskaran
et al. [1987] and Bandyopadhyay and Ahmed [1993] describe that an abrupt
change in surface curvature can initiate the growth of an internal boundary
layer. Baskaran et al. [1987] characterise the strength of the perturbation in
curvature using the parameter ∆k∗ = ∆kν/uτ for a step change of Rc with
∆k = R−1

c,2 − R−1
c,1 . Since ∆k = 0 at the junction, we assess the change ∆k

over a streamwise distance ∆s of one inner layer thickness, i.e., ∆s = 0.15 δ99.
We obtain ∆k∗ ≈ 6.7 × 10−7 at the begin of curvature at x = 8.99m and
∆k∗ ≈ 1.0 × 10−6 at the end of curvature at x = 9.75m, both of which are
smaller than the threshold value of ∆k∗ ≈ 3.7× 10−5 reported by Bandyopad-
hyay and Ahmed [1993] to initiate an internal layer.

The present flow is thus subjected to convex curvature effects and relaxation
on a flat wall in conjunction with a streamwise changing pressure gradient from
favourable to adverse. The focus region begins at the reference stations x =
8.12m and x = 8.37m with a fully developed turbulent boundary layer profile
at almost zero pressure gradient, although the flow still shows history effects
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Figure 4.2: (a) Streamwise pressure gradient for U∞ = 23m/s in the scaling by
Zagarola & Smits (b) δ99/Rc.

due to the accelerating ramp. Then the turbulent boundary layer first enters a
region of convex surface curvature at a favourable pressure gradient, then convex
curvature at a changing pressure gradient from favourable to adverse, followed
by convex curvature at an adverse pressure gradient and then relaxation from
convex curvature on a flat wall at an adverse pressure gradient.

4.2 Concave curvature ramp and longitudinal

vortices

Before we can proceed with the results, an important detail on the flow needs to
be described. Upstream of the 4m long flat plate and the focus region, the flow
follows a first ramp, where it experiences a concave surface curvature in con-
junction with a significant favourable pressure gradient. During the evaluation
of the data, some indications arose that the concave curvature could cause the
generation of longitudinal vortices, similar to Görtler vortices. A first indica-
tion came from the OFI measurements showing a spanwise variation of cf , see
Schülein et al. [2017] with a wavelength in the range 0.10m to 0.14m. Moreover
we observed a deviation in uτ between the OFI results and the Clauser chart
method at x = 8.37m for the cases U∞ = 10m/s and U∞ = 36m/s, whereas the
agreement was very close for the case U∞ = 23m/s. The second indication were
2D2C measurements in wall parallel planes at different wall-distances, showing
small but noticeable spanwise variations of the mean flow, as reported in a
personal communication by Eich [2017]. A simple empirical model for Görtler
vortices yields a wavelength which is similar to the observed values, which is
described in appendix F.

The spanwise position of the longitudinal vortices is different for U∞ =
10m/s, U∞ = 23m/s, and U∞ = 36m/s. The longitudinal vortices seem to
meander in streamwise direction. For U∞ = 23m/s, the vortex travels outside
of the plane of the present PIV measurements and does not cross this plane.
However, for U∞ = 10m/s and for U∞ = 36m/s, the position of the longitudi-
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nal vortex is located closer to the measurement plane, and for U∞ = 10m/s the
longitudinal vortex could cross the measurement plane at some measurement po-
sitions. Although time-resolved PIV measurements could not be performed, the
PIV data in wall-parallel planes indicate a small unsteadiness in the meandering
of the longitudinal vortex, in particular for U∞ = 10m/s. As a conclusion, we
will focus on the cases U∞ = 23m/s and U∞ = 36m/s. For the latter case, we
do not use the OFI results, but instead we determine uτ from the mean velocity.

For the standard statistical averaging procedure for the Reynolds stresses,
the presence of the longitudinal vortex in the measurement plane is expected to
cause a small increase in the Reynolds stresses. This increase is assumed mainly
in the outer part of the boundary layer.
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Chapter 5

Results for the zero

pressure gradient region

First we consider the mean velocity profile at the long flat plate section, before
the flow enters the region of curvature and adverse pressure gradient. The
result for x = 8.12m at almost zero pressure gradient is shown in figure 5.1. As
a reference, we include the experimental data for a turbulent boundary layer
flow at zero pressure gradient for a similar value of Reτ and for a similar value
of Reθ by Marusic et al. [2015]. Moreover we include the composite law of the
wall by Coles with η = y/δ98 and Π = 0.45 in the form

u+ =
1

0.41
log(y+) + 5.0 +

2Π

0.41

(

sin

(

Πη

2

))2

We observe that the wake of the present data is less pronounced than for the
reference data. We suppose that this is a long-living history effect caused by the
prior history of the flow, i.e., the flow acceleration over the ramp. In the log-law
region, the present data are close to the reference data. The small differences
are supposed to be due to the small favourable pressure gradient and due to
details in the method to determine uτ . For the present data, the wall shear
stress was determined using a Clauser chart method (CCM) and using oil-film
interferometry. For the Clauser chart, we used (i) κ = 0.41 and B = 5.0, (ii)
κ = 0.384 and B = 4.17, and (iii) κ = 0.395 and B = 4.475. The value for uτ is
computed by a least-squares fit of the experimental data to the log-law (1.1) in
different intervals y+log,min < y+ < y+log,max, which are specified in table 5.1. In
figure 5.1 we use method (i) for scaling the present data. For the reference data,
uτ was determined using a composite velocity profile, as described in Marusic
et al. [2015].

Then we determine κ and B by a least squares fit of the data to the log-law
(1.1) using the value obtained for uτ . The results are given in table 5.1. For a
statistical evaluation for uτ and κ, we vary y+log,min and ylog,max/δ995 within the
intervals summarised in table 5.1. Therein δ995 denotes the wall-distance where
U = 0.995Ue, with Ue being the boundary layer edge velocity. We remark that
for the 2C2C PIV data using the window correlation method, the first reliable
data point is for y+ = 300. For the computation of δ∗ and θ, we use a composite
method, i.e., we use the mean-velocity profile by Chauhan et al. [2007] for y+-
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Figure 5.1: Mean velocity profile for U∞ = 23m/s at x = 8.12m in the region of
almost zero pressure gradient and comparison with reference data for a turbulent
boundary layer at zero pressure gradient for a similar value of Reτ and Reθ by
Marusic et al. [2015].

U∞ PIV techn. Method 104∆p+x y+log,min- ylog,max/δ995- uτ κ

m/s for cf interval interval m/s

23 single px. OFI −1.5 [100, 800] [0.1, 0.15] 0.9774 0.3905
23 single px. CCM −1.5 [100, 800] [0.1, 0.15] 0.9681 0.3868
23 wind. corr. CCM −1.5 [300, 800] [0.1, 0.15] 0.9627 0.3987
36 single px. CCM −1.1 [100, 800] [0.1, 0.15] 1.4327 0.3916
36 wind. corr. CCM −1.1 [500, 800] [0.1, 0.15] 1.4270 0.4007

Table 5.1: Statistical evaluation of uτ and κ at almost zero pressure gradient at
x = 8.12m by variation of lower bound y+log,min and upper bound ylog,max/δ995
assumed for the log-law region.

values below the first reliable data point and the experimental data are used
above.

The shape factor H12 and the skin friction coefficient cf evaluated at x =
8.12m are shown in figure 5.2. For comparison we include the hot-wire and Pitot
tube reference data by Bailey et al. [2013] and Marusic et al. [2015], measured
in the HRNBLWT and in the minimum turbulence level wind tunnel (MTL)
at the Royal Institute of Technology (KTH). For the present flow, the value
for H12 is smaller than for the reference data, which can be explained by the
smaller wake factor. On the other hand, the value for cf at x = 8.12m is larger
than for the reference data at zero pressure gradient. From these observations,
we draw the conclusion that the history effects of the flow acceleration along
the first ramp are still visible in the outer layer at x = 8.12m, despite the 4.0m
long flat plate downstream of the first ramp. The inner layer follows the log-law
in good agreement with the reference data.
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Figure 5.2: (a) Shape factor H12 and (b) skin friction coefficient cf for U∞ =
23m/s at x = 8.12m and comparison with reference data for the turbulent
boundary layer at zero pressure gradient from Bailey et al. [2013] and Marusic
et al. [2015].
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Chapter 6

Experimental results for the

adverse pressure gradient

region

The goal of this section is to find an empirical description for the mean velocity
profile in the inner layer in the adverse pressure gradient region based on the
experimental data. As we use the classical inner scaling, special care is needed
for the determination of the friction velocity. We consider the results for the
mean velocity in the adverse pressure gradient region, at the detail measurement
position xref = 9.944m in the middle of the inclined flat plate, which is around
1.14δ99 downstream of the end of the curvilinear deflection. We study the
results for two Reynolds numbers, i.e., for the onflow velocities U∞ = 23m/s
and U∞ = 36m/s.

6.1 Determination of the wall shear stress

Accurate values for uτ are needed to investigate wall-laws with a scaling involv-
ing uτ . We use oil film interferometry to determine uτ without any assumption
on the mean velocity profile. Additionally we attempt to determine the wall
shear stress from the mean velocity profiles. By definition of the wall shear
stress τw, this requires the evaluation of the mean velocity gradient in wall-
normal direction at the wall

τw
ρ

= u2
τ =

√

ν
∂U

∂y

∣

∣

∣

∣

w

(6.1)

The implications of this definition in terms of resolution requirements for mea-
surements are still open for flows at a significant APG. At high Re, several
accurate measurement points below y+ = 2 or even below y+ = 1 are very hard
to obtain. For the present experiment, the data points below y+ = 2 are not
considered reliable enough, even for the µPTV technique applied here. We note
that in a later measurement campaign proper measurements for y+ < 2 could
be achieved on the same model for the case U = 10m/s, see Bross et al. [2019].
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As a remedy we apply different indirect methods. These methods use a fit of
the data to an assumed mean velocity profile in a certain y+-region.

6.2 Mean velocity profiles in the viscous sub-

layer

For the case U∞ = 23m/s, the µPTV data for the mean velocity are considered
to be reliable for y+ > 2. We determine uτ by a least-squares fit of the data
to the relation u+ = y+ in the region y+ ∈ [2 ± 0.1; 4.6± 0.6]. This region was
found by a visual comparison of the data with the curve u+ = y+ and by an
inspection of ∂U/∂y. The upper bound is little lower than the value of y+ < 5
used by Nagano et al. [1991]. The statistics are obtained by a variation of the
lower and upper bound of the y+-interval. We obtain uτ = 0.5217±0.0230m/s.
The estimation of the relative uncertainty of 4.4% is described in C.1. For
comparison, OFI yields uτ = 0.5281± 0.0106m/s. The deviation from the OFI
result is around 1%. The mean velocity profiles are shown in figure 6.1, where
the inner scaling uses uτ from OFI (a) and from the fit u+ = y+ (b).

The detailed behaviour of the mean velocity profile in the viscous sublayer is
studied next. The second order Taylor-series expansion u+ = y+ + 1

2
∆p+x (y

+)2

is also shown in figure 6.1. The importance of the fourth-order and higher-order
terms for y+ > 3 can be clearly seen, as described by Nickels [2004]. On the
other hand, for y+ < 3 the number of data points is not sufficient to show an
advantage of the second-order approximation. The mean velocity profile (2.11)
for the viscous sublayer by Nickels [2004] is also included. This profile depends
on ∆p+x as a parameter. Interestingly, this profile follows the µPTV data very
closely up to y+ = 20. The mean velocity profile for a turbulent boundary layer
at ZPG is also included. We use the DNS data by Schlatter and Örlü [2010].
The ZPG data are close to the APG data near the wall, and the deviation
increases for y+ > 10, where the APG profile turns below the ZPG profile. This
downward turn can be described by the profile by Nickels.

For the case U∞ = 36m/s, we use the 3D LPT data with an evaluation which
gives the first reliable data point at y+ = 5. The OFI data are not used due
to the possible effects of longitudinal vortices described in section 4.2. First we
determine uτ using a standard Clauser chart method. Then we used an empirical
correction for APG to improve the result. The correction is motivated from the
difference found between the Clauser chart method and the direct method for
uτ for the µPTV data at U∞ = 23m/s. The method is described in appendix
D and is given by equation (D.1). Alternatively we determine uτ by a least
squares fit of the data to the profile by Nickels [2004] for y+ < 21, motivated by
the findings for the µPTV data at U∞ = 23m/s. The results for uτ are shown
in table 6.2. The two latter methods have a relative deviation of 1%.

6.3 On the log-law at adverse pressure gradients

In this subsection we study the question of ”the resilience of the logarithmic
law to pressure gradients”, to use the words by Johnstone et al. [2010], for the
present flow. In the case of a significant pressure gradient, we write the log-law
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Figure 6.1: 2D µPTV data for U∞ = 23m/s: Mean velocity profile in the
viscous sublayer in inner units using uτ (a) from OFI and (b) from a linear fit
to u+ = y+.
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Figure 6.2: U∞ = 36m/s. Mean velocity profile in the viscous sublayer in inner
units using uτ (a) from the corrected Clauser chart described in appendix D
and (b) from a least-squares fit to the mean velocity profile by Nickels [2004].
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Method uτ ǫuτ
100∆p+x ǫ∆p+

x

Ki ǫKi

for uτ in m/s in % in % in %

OFI 0.5281± 0.0106 2.0 1.826± 0.219 12.0 0.3703± 0.0167 4.5
Fit u+ = y+ 0.5217± 0.0230 4.4 1.894± 0.364 19.2 0.3659± 0.0252 6.9
Fit to Nickels [2004] 0.5270± 0.0200 3.8 1.837± 0.320 17.4 0.3697± 0.0233 6.3
CCM 0.5037± 0.0307 6.1 2.104± 0.512 24.3 0.3530± 0.0304 8.6

Table 6.1: U∞ = 23m/s: Results for uτ using different methods and evaluation
of Ki for the log-law slope at APG from the µPTV data.

using the notation

u+ =
1

Ki

log(y+) +Bi (6.2)

and we write Ki and Bi instead of κ and B. At the detail measurement position,
the pressure gradient parameter ∆p+x is around 0.0185 for the case U∞ = 23m/s
and 0.0115 for the case U∞ = 36m/s. In both cases, we observe a region where
the mean velocity profile can be fitted by a log-law by visual inspection of
the plot u+ versus log(y+). In order to identify such a region and its extent,
we consider the mean velocity slope diagnostic function (2.20) for the log-law.
For the case U∞ = 36m/s, we find an indication for a plateau in the region
84 < y+ < 152, which is shown in figure B.1 in appendix B. For the case
U∞ = 23m/s we find an indication for a plateau in the region 86 < y+ < 135,
albeit the result is less clear than for the case U∞ = 36m/s, see appendix B.

Then we evaluate the log-law slope coefficient Ki. First we consider the case
U∞ = 23m/s. We determine Ki using a log-linear regression in a y+-region
with lower bound y+log,min ∈ [82; 92] and upper bound y+log,max ∈ [126; 138]. The

y+-range is motivated from the slope diagnostic function. The results are given
in table 6.1. We obtain κ = 0.370 ± 0.017 for the case that uτ from OFI is
used. Beyond the bounds of the y+-range, the values obtained for Ki change
significantly due to the systematic deviation of the mean velocity profile from
a log-linear behaviour, in particular for y+ much larger than 140. The result
for the log-law fit is shown in figure 6.3 (a). The discussion of the uncertainties
can be found in appendix C.2 and the estimated uncertainties are summarised
in table C.4.

For the case U∞ = 36m/s, the log-linear regression is applied in a y+-region
with y+log,min ∈ [82; 90] and y+log,max ∈ [142; 150]. We obtain κ = 0.379±0.020 for
the case that uτ is determined by the least-squares fit to the profile by Nickels.
The detailed results are given in table 6.2. The mean velocity profile and the log-
law fit are shown in figure 6.3 (b). A detailed discussion of the uncertainties and
their quantification is given again in appendix C.2. The results are summarised
in table C.5.

6.4 Clauser chart method

We use the above results to review the Clauser chart method to determine
uτ at adverse pressure gradients. First we consider the case U∞ = 23m/s.
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Method uτ ǫuτ
100∆p+x ǫ∆p+

x

Ki ǫKi

for uτ in m/s in % in % in %

CCM 0.7710± 0.0431 5.6 1.253± 0.287 22.8 0.3696± 0.0251 6.8
CCM + corr. (v1) 0.7964± 0.0446 5.6 1.137± 0.259 22.8 0.3804± 0.0259 6.8
CCM + corr. (v2) 0.7885± 0.0441 5.6 1.171± 0.269 22.8 0.3765± 0.0256 6.8
Fit to Nickels [2004] 0.7946± 0.0318 4.0 1.144± 0.206 18.0 0.3794± 0.0197 5.2

Table 6.2: U∞ = 36m/s: Results for uτ using different methods and evaluation
of uτ and Ki for the log-law slope at APG for the 3D LPT data.

µ
θ θ

Figure 6.3: Mean velocity profile and least-squares fit in the log-law region (a)
for U∞ = 23m/s using uτ from OFI and (b) for U∞ = 36m/s using uτ from a
least-squares fit to the profile by Nickels [2004] for y+ < 20.
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The Clauser chart is applied in the identified log-law region, and a variation of
y+log,min ∈ [82; 92] and y+log,max ∈ [126; 138] is used for a statistical evaluation.
We find uτ = 0.5037m/s for κ = 0.41 and B = 5.0 and uτ = 0.5051m/s for
κ = 0.384 and B = 4.17. Therefore the sensitivity of uτ on the values for κ
and B calibrated for zero pressure gradient flows appears to be small, given the
upper and lower bounds for the assumed log-law region are held constant. The
values for uτ determined by the Clauser chart are systematically lower than
the value determined from OFI and from the viscous sublayer fit. This finding
is in agreement with the results in Monty et al. [2011]. The discussion of the
uncertainties is described in table C.6 in appendix C.3.

Then we consider a modified Clauser chart where we use κ = Ki and B = Bi

found from the linear regression with uτ from OFI. In this case the Clauser chart
yields the same value for uτ as obtained by OFI. Therefore we can conclude that
a reliable Clauser chart method for significant adverse pressure gradients needs
a method to know Ki and Bi depending on the local flow conditions. This
finding will be studied in more detail in the next subsection.

Then we consider the case U∞ = 36m/s. The Clauser chart is applied in
the region y+log,min ∈ [82; 90] and y+log,max ∈ [142; 150]. We find uτ = 0.7691m/s
for κ = 0.41 and B = 5.0 and uτ = 0.7710m/s for κ = 0.384 and B = 4.17.
The deviation is smaller than 0.3%. The discussion of the uncertainties is sum-
marised in table C.7 in appendix C.3. The latter value uτ = 0.7710m/s is used
for the empirical correction method (D.1) in appendix D.

6.5 Log-law slope and intercept

We consider the results for the log-law slope and intercept in more detail. The
question is, if a correlation forKi and/orBi as a function of local flow parameters
can be found. An example is the correlation (2.16) by Nickels [2004], in which
the relevant local flow parameter is ∆p+x . This is related to the question whether
the mean-velocity profile in the inner part of the inner layer can be described
as a function of local flow parameters.

In figure 6.4 (a) we plot Ki versus ∆p+x , as proposed by Nickels [2004]. The
correlation (2.16) is included. The error bars for both quantities ∆p+x andKi are
also attached. The uncertainty of ∆p+x uses an assumed uncertainty of 5% for
dPw/dx. The symbols indicate the method used to determine uτ . We observe
a smaller value for Ki for the case U∞ = 23m/s, which has a larger value for
∆p+x , than for the case U∞ = 36m/s. Thus the results are consistent with the
proposal by Nickels in the sense that Ki is decreasing for increasing values of
∆p+x . As a reference value for κ for zero pressure gradient turbulent boundary
layers, we assume κ = 0.40±0.02, with an uncertainty motivated by Bailey et al.
[2014]. We find a reduction of Ki in the APG region compared to κ = 0.40, but
this reduction is within the estimated uncertainty bounds.

Moreover we observe a significant role of the method to determine uτ . The
Clauser chart method (CCM) yields lower values for uτ , and hence larger values
for ∆p+x , and lower smaller for Ki are obtained. This gives a warning that a
possible change of Ki can appear enlarged if uτ is used from a standard Clauser
chart method.

Regarding the intercept Bi, the values for KiBi are plotted against Bi in
Figure 6.4 (b) and follow the trend of the correlation proposed by Nagib and
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∆

Figure 6.4: (a) Log-law slope Ki vs. ∆p+x . The symbols take into account the
method used for uτ . For the 2D µPTV data for U∞ = 23m/s: �, OFI; �, fit
to u+ = y+; ◮, fit to profile by Nickels [2004]; N, Clauser chart. For the 3D
LPT data for U∞ = 36m/s: △, Clauser chart; ⊲, fit to profile by Nickels [2004];
▽, Clauser chart with empirical correction. For the 2D2C PIV data using OFI
for uτ : ♦, x = 8.12m at almost zero pressure gradient; solid line, correlation
by Nickels [2004] for κ0 = 0.39; dashed line, correlation by Nickels [2004] using
κ0 = 0.40. (b) Plot of KiBi and vs Bi. Same symbols as in the figure left; solid
line, correlation by Nagib and Chauhan [2008].

Chauhan [2008]. There is a detail that needs further investigation in future
research, viz., the symbols at APG for the Clauser chart are closer to the cor-
relation than the symbols for the more accurate methods for uτ . However, here
we need to consider the possible role of history effects. For a discussion we refer
to section 9.4

6.6 On the half-power law region

We study the hypothesis of a half-power law region (or: sqrt-law region) above
the log-law. We attempt to identify a region where the mean velocity profile
can be described by the sqrt-law (2.17) using the mean velocity slope diagnostic
function (2.21). First we consider the results for the case U∞ = 23m/s. We use
the 2D2C PIV data evaluated using the single-pixel ensemble correlation method
and uτ from OFI. In figure 6.5 (a) we show the mean velocity profile and the fit
to the sqrt-law. The least-squares fit of (2.17) to the data is computed in the
region where the slope diagnostic function (2.21) shows a small plateau, which is
shown in figure 6.5 (b). The single-pixel data show an approximative plateau in
the region 500 < y+ < 860, whereas the window-correlation data are smoother
and show a little smaller plateau in the region 520 < y+ < 840. Interestingly,
the outer edge of the approximative plateau y+ ≈ 840 corresponds to 0.115δ+995,
which is in good agreement with the outer edge of the log-law at zero pressure
gradient. The single-pixel results for the slope diagnostic function exhibit some
oscillations and smoothing was not applied in order not to influence the results.
We note that in the region y+ < 200 the slope of the single-pixel data shows a
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Figure 6.5: 2D2C PIV results for U∞ = 23m/s. (a) Composite profile and
sqrt-law region. (b) Mean velocity slope diagnostic function of the sqrt-law.
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Figure 6.6: 3D LPT STB results for U∞ = 36m/s. (a) Composite profile and
sqrt-law region. (b) Mean velocity slope diagnostic function of the sqrt-law.

small difference compared to the µPTV data.

For the case of the larger Reynolds number at U∞ = 36m/s the mean
velocity profile and the fit to the sqrt-law are shown for the 3D LPT data in
figure 6.6 (a). A region of an approximative plateau for the slope diagnostic
function (2.21) can be observed for y+ > 750 which extends up to around
y+ ≈ 1260, see figure 6.6 (b). Its outer edge corresponds to 0.12δ+995. The
minimum region appears more clearly as an approximative plateau than for the
lower Reynolds number case.

As a final remark, we note that the mean velocity profile cannot be fitted
by the sqrt-law (2.17) in the entire inner region, say, y+ ∈ [150, 0.12δ+99].

The slope coefficient Ko can be determined by a least-square fit of (2.17) to
the data. For the case U∞ = 23m/s we obtain Ko = 0.310 for the single-pixel
data and Ko = 0.341 for the window correlation data, if for uτ the OFI result
is used. For the case U∞ = 36m/s we obtain Ko = 0.320 for the 3D LPT STB
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data, if for uτ the least-squares fit of the data to the profile by Nickels is used.

6.7 A model for the wall law at adverse pressure

gradient

An attractive aspect of the composite mean velocity profile is that it can describe
both zero pressure gradient flows and adverse pressure gradient flows, if we
assume that the wall distance of the change from the log-law to the sqrt-law
depends on ∆p+x and possibly on additional parameters. On the one hand, there
is the limit case of ZPG, i.e., for very small values of ∆p+x . Then the outer edge
of the log-law region extends up to the outer edge of the inner layer and the
sqrt-law region disappears. The other limit case is uτ → 0 and ∆p+x → ∞, as
the flow approaches separation. Then the sqrt-law occupies almost the entire
inner layer, possibly except a thin viscous region near the wall.

Using this idea, we consider the streamwise evolution of a flow from ZPG
to APG up to the verge of separation. In the first stage, for moderate values
of ∆p+x due to the still large values of uτ , y

+
log,max is progressively reduced and

the composite profile describes a progressive breakdown of the log-law region,
see Galbraith et al. [1977]. Above the log-law region, a sqrt-law region appears.
Note that for small values of ∆p+x , the value of Ki is practically unchanged, if
the model by Nickels [2004] is assumed. In the second stage, for significantly
large values of ∆p+x , the extent of the log-law fit region is further reduces and Ki

and Bi would change following Nickels [2004]. This can be viewed as a general
breakdown of the log-law in the sense of Galbraith et al. [1977].

The parametrisation of the composite wall law in Knopp [2016], of a similar
composite wall law in Kader and Yaglom [1978] and of the sqrt-law in Afzal
[1996, 2008] is based on ∆p+x . In the next two sections, we will develop the idea
that also the local flow deceleration, characterised by ∆u+

τ,x, needs to be taken
into account.

6.8 Summary

To summarise the results of this section, we find that the mean velocity profile
in the inner layer can be described by a composite form. The data can be fitted
by a log-law in a thin log-law region, above which the data can be fitted by a
sqrt-law up to 0.12δ99. The parameters of the wall law are the slope coefficient
for the log-law Ki and for the sqrt-law Ko, and the extent of the log-law region
y+log,max and the begin of the sqrt-law region y+sqrt,min. Regarding Ki, the results
tend to support the hypothesis by Nickels [2004] that Ki is decreasing with
increasing values of ∆p+x at APG, but significance cannot be shown due to the
measurement uncertainty. The open question is, if y+log,max and y+sqrt,min can be
described by suitable flow parameters. For this purpose we study the Reynolds
stresses and the mean-momentum balance in the next section.
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Chapter 7

Results for the Reynolds

stresses at adverse pressure

gradient

In this section we study the Reynolds stresses and the mean-momentum bal-
ance. The aim is to find the dominant terms of the mean-momentum balance
and to characterise them using suitable flow parameters. This will lead to a
two-parameter model for the total shear stress based on the pressure gradient
parameter and the wall-shear stress gradient parameter.

We consider the results at the detail measurement position xref = 9.944m
in the adverse pressure gradient region. The position is located 1.14δ99,apg
downstream of the end of surface curvature. We consider the 3D LPT data for
the case U∞ = 36m/s. We mainly use the data for the evaluation using the
large sampling volume (3D LPT average), as described in section 3.2.2. For
a detailed view near the wall we additionally show the data for the evaluation
using the small sampling volume (3D LPT detail) due to the filtering effect near
the wall for the large sampling bin.

7.1 Mean momentum balance in differential form

The terms of the mean momentum equation in differential form (2.1) are studied
first. This is motivated by the work by Wei et al. [2005a] for the zero pressure
gradient case. The 3D LPT data provide all terms arising in (2.1), in particular
all spatial derivatives of Ui and u′

iu
′

j (i, j = 1, 2, 3). The viscous stresses are small

for y+ > 100 and are not shown. The pressure gradient term is reconstructed
from the balance of all remaining terms. The fit of a constant pressure gradient
for 250 < y+ < 1600 is also shown. The data are non-dimensionalised using uτ

and ν. The results are shown for y < 0.35δ99 in figure 7.1 (a). A detailed view
for y < 0.15δ99 is given in figure 7.1 (b). For clarity only every fourth symbol
is shown in figure 7.1 (a) and every second symbol in figure 7.1 (b).

The dominant terms are the pressure gradient, the mean convection and
the turbulent shear stress in the region y < 0.35δ99. We see that |V ∂U/∂y| is
not negligible compared to |U ∂U/∂x|, so that both contributions need to be
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Figure 7.1: (a) Terms of the mean momentum equation in differential form
computed from the 3D LPT data for U∞ = 36m/s. (b) Zoom for the inner
layer y < 0.12δ+99.

considered. The pressure gradient term and the sum of the mean convective
terms give the largest contribution for y+ > 450, where the magnitude of the
turbulent shear stress is only 30% of the convective term. Closer to the wall, for
y+ < 220, the largest terms are the pressure gradient term and the turbulent
shear stress. The ratio of the viscous to turbulent shear stress is 0.02 at y+ = 130
and is decreasing for larger y+-values. For y+ < 130 the data are not considered
to be sufficiently accurate since the number of samples is not large enough to
obtain fully converged profiles for the gradients and the wall-normal size of the
sampling volume is expected to cause a significant filtering error.

The streamwise gradients of the normal stresses are negligible small for y+ <
840. For y+ > 840, they grow slowly, and ∂u′2/∂x and ∂(u′2 − v′2)/∂x reach
a small local maximum at around y+ = 1240, see figure 7.1 (b). As ∂u′2/∂x
is positive and ∂v′2/∂x is negative in this region, the sum ∂(u′2 − v′2)/∂x is
smaller than ∂u′2/∂x. The magnitude of ∂(u′2−v′2)/∂x is 25% of the turbulent
shear stress term at y+ = 1240. Compared to other results in the literature, the
non-negligible role of the streamwise gradients of the normal stresses in adverse
pressure gradient flows, ”[...] particularly those approaching separation [...]”, is
pointed out in Castillo et al. [2004], who refers to the flows by Simpson et al.
[1981], Dengel and Fernholz [1990], Alving and Fernholz [1995b], and Elsberry
et al. [2000]. This is not seen in contradiction to the present result, since the
present flow is far from incipient separation at xref = 9.944m for U∞ = 36m/s.

In the outer layer, for y+ > 2500 (or: y+ > 0.25δ+99), the contribution of
the Reynolds stress terms to the mean momentum balance in the differential
form is very small and the dominant terms are the pressure gradient and the
sum mean inertial term. We suppose that this is strongly influenced by the
significant reduction of the Reynolds stresses in the upstream region of convex
surface curvature. This will be studied in section 9.

As a final remark, the momentum balance indicates that the pressure gra-
dient is not constant in wall-normal direction up to the boundary layer edge at
x = 9.944m. RANS simulations reveal that the isolines of the pressure devi-
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ate from the wall-normal direction in the outer part of the boundary layer due
to the surface curvature regions located upstream and downstream of the flat
inclined plate.

7.2 Balance equation for the turbulent shear stress

We consider the momentum balance in the integral form (2.3) for the 3D LPT
data at U∞ = 36m/s. This equation can be seen as a relation between the total
shear stress τ+ and the sum of the wall shear stress, the pressure gradient term,
the mean inertia terms, and the normal stress gradient terms. The integrals I+cu,
I+cv and I+r are evaluated numerically using the trapezoidal rule. The 3D LPT
data provide all quantities, including ∂U/∂x, ∂u′2/∂x and ∂v′2/∂x.

Relation (2.3) can be used in different ways. First, it can be used as a
consistency check for the experimental data. Secondly we can use (2.3) to assess
and to improve the accuracy of the term with the largest assumed uncertainty.
This largest assumed uncertainty might be associated with the Reynolds stresses
for some older experimental data. In the present work, we use the balance (2.3)
to assess and to improve the accuracy of the streamwise pressure gradient, since
the Reynolds stresses are assumed to be accurate for the 3D LPT data. For this
purpose we compare the directly measured total shear stress τ+ and the exactly
reconstructed total shear stress in inner viscous scaling (2.5), i.e.,

τ+reconstr = 1 +∆p+x y
+ + I+cu + I+cv + I+r . (7.1)

The notation τ+reconstr indicates that the total shear stress is reconstructed from
the remaining terms of the momentum balance. The improved value for dPw/dx

is determined by fitting (7.1) to the directly measured τ+ = du+/dy+ − u′v′
+

in the region y+ / 760 where τ+ reaches its maximum. Figure 7.1 gives a
motivation to assume that the streamwise pressure gradient is constant across
the inner part of the boundary layer. The result for (7.1) is shown in figure
7.2. The profiles for τ+reconstr agree closely with the exact total shear stress up
to y+ ≈ 760 where τ+ has its maximum. The term I+r is found to be small for
y+ < 920, and has a moderate, albeit discernible, effect on the slope ∂τ+/∂y+

for y+ > 920.

7.3 A parametric model for the turbulent shear

stress

The momentum balance is then used to assess the parametric model (2.8) for
the total shear stress. The two approximations involved are the approximation
of the mean inertia term using (2.6) and to neglect I+r . The highest level of
modelling is to use the measured data for U+ to evaluate I+u , i.e.,

τ+model,exact = 1 +∆p+x y
+ +∆u+

τ,x

∫ y+

0

(

U+
)2

dỹ+ (7.2)

which will be denoted by τ+model,exact as the measured solution for U+ is substi-
tuted. The model (7.2) provides a good quantitative approximation to (7.1) for
y+ < 430. The deviation between (7.2) and (7.1) including I+r is smaller than
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Figure 7.2: Total shear stress τ+ computed from the 3D LPT data using
the resolved Reynolds shear stress and reconstruction of τ+ using (2.5) for
U∞ = 36m/s at x = 9.944m. Moreover the model τ+model,exact in (2.5), the

approximation τ+model,log in (7.3) and the approximation τ+model,sqrt in (7.4) are
shown.

1% for y+ < 430 and 2.2% at y+ = 500. For larger y+-values, the deviation
increases but the model still provides a qualitatively satisfying approximation
of (7.1). In particular, the wall-distance where τ+ reaches its maximum can be
predicted. Model (7.2) relates τ+ to the two flow parameters ∆p+x and ∆u+

τ,x.
This could explain the observation that a model for τ+ based on ∆p+x alone has
not been found in the literature.

7.3.1 An analytical model for the log-law region reviewed

The next level of approximation is to use an approximative profile for U+.
Galbraith et al. [1977] describe a result for the log-law region. They use an
analytical profile for y+ < 30 and the log-law for y+ > 30 and obtain

τ+model,log = 1+∆p+x y
++∆u+

τ,x

[

y+
(

k1
(

log y+
)2

+ k2 log(y
+) + k3

)

+ k4

]

(7.3)

for y+ > 30. In the present work we use the log-law notation (6.2) with co-
efficients Ki and Bi. Following Galbraith et al. [1977], the coefficients can be
written as

k1 =
1

K2
i

, k2 =
2Bi

Ki

−
2

K2
i

, k3 =
2

K2
i

−
2Bi

Ki

+B2
i

k4 = −
30 (log 30)

2

K2
i

+
60 log 30

K2
i

−
60

K2
i

−
60Bi log 30

Ki

+
60Bi

Ki

− 30B2
i
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The total shear stress given by (7.3) is an analytical function in y+ and depends
on the two local flow parameters ∆p+x and ∆u+

τ,x. The result for (7.3) is shown
in figure 7.2, where we use Ki = 0.38 and Bi = 3.44, see figure 6.3 (b). The
deviation between (7.3) and (7.2) is below 0.3% for y+ < 300 and 1.8% for y+ =
400. This y+-region is in good agreement with the extent y ≤ 0.05δ99 assumed
for the outer edge of the log-law region in the profile family by Thompson [1967]
which was used by Galbraith et al. [1977]. For y+ > 400 the difference in the
slopes of the two curves becomes clearly visible.

7.3.2 An analytical model for the sqrt-law region

For the aim to extend (7.3) for y+ > y+sqrt,min up to y+ = 0.12δ+99, we use the

composite formula for U+. We use (7.3) up to the outer edge of the log-law

region. In the sqrt-law region, we substitute (2.17) for U+. The terms of (U+)
2

were integrated from the wall to y+. The details are described in appendix E.
The final result is

I+u = ca1∆p+x
(

y+
)2

+
cb1

∆p+x

[

(

1 + ∆p+x y
+
)3/2

− 1
]

log
(

y+
)

+
cb2

∆p+x

(

1 + ∆p+x y
+
)3/2

log

(

√

1 + ∆p+x y+ + 1

)

+
cb3

∆p+x

(

1 + ∆p+x y
+
)3/2

+cc0 y
+ + cc1 y

+ log
(

y+
)

+ cc2 y
+ log2

(

y+
)

+ cc3 y
+ log

(

√

1 + ∆p+x y+ + 1

)

+cc4 y
+ log

(

y+
)

log

(

√

1 + ∆p+x y+ + 1

)

+ cc5 y
+ log2

(

√

1 + ∆p+x y+ + 1

)

+
cd1

∆p+x

[

√

1 + ∆p+x y+ − 1

]

log
(

y+
)

+
cd2

∆p+x

[

√

1 + ∆p+x y+ + 1

]

log

(

√

1 + ∆p+x y+ + 1

)

+
cd3

∆p+x

√

1 + ∆p+x y+

+
ce1

∆p+x
log

(

√

1 + ∆p+x y+ + 1

)

+
ce0

∆p+x

with constants

ca1 =
2

K2
o

, cb1 =
8

3K2
o

, cb2 = −
16

3K2
o

, cb3 =
8Bo

3Ko

−
16(1− log(2))

3K2
o

cc0 =

(

16

3
− 8 log(2) + 4 log2(2)

)

1

K2
o

−
4(1− log(2))Bo

Ko

+B2
o

cc1 =
2Bo

Ko

−
4(1− log(2))

K2
o

, cc2 =
1

K2
o

, cc3 =
8(1− log(2))

K2
o

−
4Bo

Ko

cc4 = −
4

K2
o

, cc5 =
4

K2
o

, cd1 = −
4

K2
o

, cd2 =
8

K2
o

cd3 =
8(1− log(2))

K2
o

−
4Bo

Ko

, ce1 = −
48

9K2
o

, ce0 =
4Bo

3Ko

−
8(1 + log(2))

3K2
o

The result for τ+model,sqrt is shown in figure 7.2, where we use the notation

τ+model,sqrt = 1 +∆p+x y
+ +∆u+

τ,xI
+
u (7.4)
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We use the sqrt-law for U+ for y+sqrt,min ≥ 580. The curve is shifted by hand to

match the reference curve at y+sqrt,min. For the coefficients we use Ko = 0.320
and Bo = −4.69 found for the least-squares fit to the sqrt-law. Regarding the
case ∆p+x → 0, we note that then the outer edge of the log-law region extends
up to the outer edge of the inner layer and the sqrt-law region disappears.

7.4 Outer peak of the turbulent shear stress

The observation of an outer peak in the Reynolds stresses was often reported for
the outer part of adverse pressure gradient turbulent boundary layers, see e.g.
Gungor et al. [2016]. Examples are the equilibrium turbulent boundary layer
by Skare and Krogstad [1994] at a high Reθ > 40000, and the non-equilibrium
flows by Maciel et al. [2006b] at Rex = 1.5 × 106, and by Nagano et al. [1991]
for Reθ up to 3350. For the present flow, the Reynolds stresses are strongly
reduced for y > 0.1δ99 in the region of convex surface curvature and streamwise
changing pressure gradient from favourable to adverse. Therefore an outer peak
of the Reynolds stresses cannot be observed for the present flow in the APG
region.

There are two related questions, which arise. The first question is the change
of the position of the outer peak with the Reynolds number, and its behaviour
for very large Reynolds numbers. The second question is the role of the mean
inertia term, in particular in the absence of upstream curvature effects. We
expect that a correlation between the maximum of the turbulent shear stress
and βRC as described for equilibrium flows in figure 8 of Skare and Krogstad
[1994], is limited to these flows. An investigation of the role of ∆p+x and ∆u+

τ,x

to characterise the outer peak is not attempted in this work. In particular, if the
outer peak is located in the middle of the boundary layer, then history effects
can be expected to be too complicated to be described in a local model, even in
the absence of upstream curvature effects.

7.5 A parametric model for the turbulent vis-

cosity

The turbulent viscosity can be computed from the definition

ν+t =
−u′v′

+

du+/dy+
(7.5)

For the exact computation of ν+t , we use the measured data for u′v′ and for
du+/dy+. As a minor technical aspect, for the computation of du+/dy+ at y+i ,
we use a linear regression over an n-point stencil, i.e., over the subset of data
points {yj | j = i−n, . . . , i+n}, with n = 3 to apply a small amount of smoothing
to the gradients. This corresponds to an average over six interrogation windows
or 18δ+ν in viscous units.

As a model for νt to describe (7.5), we approximate the turbulent shear stress
using τ+model,exact in (7.2), where the integral is evaluated using the measured
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profile for U+

ν+t,model,exact =
τ+model,exact

(du+/dy+)exact
(7.6)

Then we consider two parametric models. To approximate νt in the log-law
region, we use τ+model,log in (7.3) for the shear stress and the gradient of the
log-law for the mean velocity gradient

ν+t,model,log =
τ+model,log

(du+/dy+)log
(7.7)

This leads to the relation

ν+t,model,log = Kiy
+
[

1 + ∆p+x y
+ +∆u+

τ,x

[

y+
(

k1
(

log y+
)2

+ k2 log(y
+) + k3

)

+ k4

]]

(7.8)

In order to extend this relation for the sqrt-law region up to y+ = 0.12δ+99,
we substitute the sqrt-law solution (7.4) for the shear stress and the sqrt-law
slope for the mean velocity gradient into (7.5). Then we obtain the relation

ν+t,model,sqrt =
τ+model,sqrt

(du+/dy+)sqrt
, y+ > y+sqrt,min (7.9)

For comparison we consider two algebraic relations for the turbulent viscosity
in the log-law region. First we consider the relation for zero pressure gradient
flows

ν+t = Kiy
+ (7.10)

Secondly we consider the relation proposed by Nituch et al. [1978] to improve
the Cebeci-Smith eddy-viscosity model (see also Granville [1989])

ν+t =
1 +∆p+x y

+

(du+/dy+)log
= Kiy

+(1 + ∆p+x y
+) (7.11)

which uses the linear stress model and the log-law for the mean velocity gradient
in (7.5).

The results are shown in figure 7.3. The model approximation based on the
measured solution (7.6) is in close agreement with νt evaluated from (7.5) up to
y+ = 400. For y+ > 400, the deviation is more pronounced than for the shear
stress, see figure 7.2. The reason for this is the stronger weighting caused by
differences between the exact and the modelled shear stress for increasing y+

values, due to decreasing values of the mean velocity gradient in the denomina-
tor. The ZPG relation (7.10) cannot describe νt in the log-law fit region. The
APG relation (7.11) captures the steeper gradient of ν+t compared to zero pres-
sure gradient, but overpredicts νt for y

+ > 80 and fails to capture the decreasing
slope of νt for y

+ > 180 and the local maximum. In both cases we use Ki = 0.38
based on the experimental data. Relation (7.8) with Ki = 0.38 gives a closer
approximation to the exact curve for νt for y

+ < 150. However, the behaviour
of νt for y+ > 180 cannot be captured. Relation (7.9) with Ko = 3.20 gives
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Figure 7.3: Turbulent viscosity νt computed from the 3D LPT data and for
ν+t,model,exact in (7.6), for ν+t,model,log in (7.7), for ν+t,model,sqrt in (7.9), and for the
relation for ZPG in (7.10) and for APG in (7.11) for the case U∞ = 36m/s at
x = 9.944m.

a much better qualitative description in the region 850 < y+ < 1150, which is
the core region of the plateau for the mean velocity slope diagnostic function,
see figure 6.6. However for y+ < 750 the deviation becomes clearly visible. The
difference is caused by the subtle deviation of the mean velocity gradient from
the sqrt-law for y+ < 750, which can be seen from the slope diagnostic function
in figure 6.6. In the transition region from a log-law to a sqrt-law, say in the
region 160 < y+ < 700, neither (7.8) nor (7.9) provide a reasonable description
for νt. This region needs further work in future research. We conclude that a
qualitative and quantitative description of νt up to 0.12δ99 needs at least the
two flow local parameters ∆p+x and ∆u+

τ,x.
The derivation of a sqrt-law in the classical literature, e.g., Szablewski [1954],

Stratford [1959], Townsend [1961], uses the assumption of a linear shear stress.
The present investigation is seen as an indication that the sqrt-law can be a
reasonably good fit to the mean velocity, albeit the total shear stress is far from
being linear in the region of the sqrt-law. Moreover the motivation of the sqrt-
law using a mixing length approach for the turbulent viscosity in conjunction
with the assumption of a linear shear stress appears to need a critical review.

7.6 Summary

We find that the dominant terms of the mean momentum balance in the in-
ner layer are the mean inertia term, the streamwise pressure gradient, and the
turbulent shear stress. The mean inertia term can be modeled using the mean
velocity profile and the wall shear stress gradient parameter, see section 2.3.
The model for the total shear stress (2.8) is found to describe the experimental
data qualitatively and quantitatively. The question arises if the composite form
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of the mean velocity profile, parametrised using the pressure gradient parameter
and the wall shear stress gradient parameter, can also describe other represen-
tative turbulent boundary layer flows at APG from the literature. This will be
studied in the next section.
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Chapter 8

Characterisation and

similarity of the inner layer

The idea, that the leading order parameters for the total shear stress and the
composite form of the mean velocity profile are the pressure gradient parame-
ter and the wall-shear stress gradient parameter, was developed so far for the
present flow experiment. The aim of this section is to investigate this idea
for other representative turbulent boundary layer flows at APG. Therefore we
set-up and study a data base from the literature.

The characterisation of turbulent boundary layer flows at adverse pressure
gradient using suitable boundary layer parameters is still an open question, cf.
Vila et al. [2017]. The parameter space is much wider than for fully developed
turbulent flows in channels and pipes and for turbulent boundary layers at zero
pressure gradient. In this section we assume that the dominant parameters are
the pressure gradient and the local flow acceleration, motivated by the results
of section 7. The role of upstream history effects due to the accelerating ramp
with possible Görtler type vortices is briefly addressed in appendix F, and the
region of a streamwise changing pressure gradient and convex surface curvature
upstream of the APG region will be studied in section 9.

8.1 Data base approach

To evaluate the sensitivity and the richness of the parameter space of APG flows
qualitatively, we set up a data base from the literature and the experiment. The
data base covers the test cases collected in Coles and Hirst [1969]. Moreover
we use the experiments by Samuel and Joubert [1974], Skare and Krogstad
[1994], and Marusic and Perry [1995]. We assume that the sqrt-law region
between the log-law region and the outer part of the boundary layer is arising
only for sufficiently large Re. Therefore we only consider velocity profiles at
Reθ > 10000. Moreover we restrict the data base to boundary layers, i.e.,
Couette-Poiseuille flows are not considered. We use the identifiers (IDENTs,
abbreviated IDs) for the flows and for the streamwise positions given within
the collection by Coles and Hirst [1969]. We note that the flow 2900 by Perry
is omitted, since its results show some differences compared to the other flows.
This might be explained by the configuration, where the mean velocity profiles
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are measured on a 5m long flat plate mounted at an incidence angle of 9.5◦

into the center of the wind-tunnel with a flap used to control the flow on the
leading edge. Regarding the flow 2600 by Bradshaw, we omit profile 2604, since
possible initial effects of interference between the boundary layer on the upper
and lower wall are mentioned in Coles and Hirst [1969].

The data-base covers equilibrium flows and non-equilibrium flows. If relation
(2.8) were exact, then self similar solutions in the inner layer can be expected
only if both ∆p+x and ∆u+

τ,x have the same values. We remark that some
experiments established conditions for similarity in the inner and outer flow,
leading to the condition that uτ/Ue and hence the skin friction coefficient based
on Ue (instead of U∞) remains constant in streamwise direction and Ue ∼ (x−
x0)

−m, where x0 is the virtual origin of the equilibrium state and 0 < m < 0.23
for attached flows at adverse pressure gradient. Then ∆u+

τ,x ∼ −m(x−x0)
−m−1

is decreasing slowly in streamwise direction.

For all flows in the data-base, we use the values for uτ given by the original
authors which are tabulated in Coles and Hirst [1969]. Most authors used an
indirect method for uτ . The values for duτ/dx are computed using a finite
difference approximation.

8.2 Boundary layer characterisation for the in-

ner layer

We attempt to use the parameters ∆p+x and ∆u+
τ,x to characterise the inner layer

of a turbulent boundary layer over a flat plate, motivated by relation (2.8). For
this purpose we introduce the ∆u+

τ,x-∆p+x -plane. For a given flow, the stream-
wise evolution of ∆u+

τ,x(x) and ∆p+x (x) can be parametrised by the streamwise
position x. The trajectory through the ∆u+

τ,x-∆p+x -plane describes the stream-
wise evolution of the flow parameters. For the test-cases of the data-base, this
evolution is shown in figure 8.1. Each velocity profile at a certain measurement
station corresponds to a point in the ∆u+

τ,x- ∆p+x - plane. Equilibrium flows and
non-equilibrium flows are both included.

The history of a flow is contained in the trajectory through the ∆u+
τ,x- ∆p+x -

plane, as far as upstream regions of acceleration and deceleration are concerned
which effect uτ . Here we focus on the adverse pressure gradient region of the dif-
ferent flows. The symbols within each equilibrium flow are much closer together
than for the streamwise evolving flows. The trajectories of the non-equilibrium
flows are from small values of ∆u+

τ,x, ∆p+x towards large values of ∆u+
τ,x, ∆p+x in

streamwise direction, as uτ is typically decreasing in streamwise direction in the
APG region. For the streamwise evolving flows, the ∆u+

τ,x-values of the symbols
are within a certain band and larger than for the equilibrium flows. We also in-
clude the numerical results of the RANS simulations for two airfoil flows at high
lift, where the flow on the upper airfoil surface experiences a significant adverse
pressure gradient. The simulations use the Reynolds-stress transport turbu-
lence model SSG/LRR-ω, see Eisfeld et al. [2016]. Both flows are at subsonic
Mach numbers Ma = 0.15. For the NACA 4412 airfoil at Reynolds number
Rec = 4.2 × 106 based on the chord length at an incidence angle α = 13◦,
the flow separates in the rear part of the airfoil, whereas for the HGR01 airfoil
at Rec = 2.5 × 107 and α = 10◦, the flow remains attached. The streamwise
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Figure 8.1: Characterisation of the flow in the inner layer of turbulent boundary
layer flows at adverse pressure gradient using ∆p+x and ∆u+

τ,x.

evoluation in the ∆u+
τ,x- ∆p+x - plane is similar for the airfoil flows and for the

boundary layer flows in the data-base.

8.3 Composite mean velocity profile

The composite form of the mean velocity profile in the inner layer with a log-
law region and a sqrt-law region above can describe the mean velocity profiles
of the present data base. This is shown exemplarily for the data by Samuel
and Joubert [1974] at ∆p+x = 0.0040 and for the data by Marusic and Perry
[1995] at ∆p+x = 0.0042 in figure 8.2. We include the log-law with Ki = 0.41
and Bi = 5.0 and a least-square fit of the sqrt-law (2.17) to the experimental
data. The sqrt-law fit is in the region y+sqrt,min < y+ < 0.15δ99 for the profile
by Marusic and Perry [1995]. For the profile by Samuel and Joubert [1974] the
sqrt-law fit is up to 0.18δ99 due to the relatively low Reynolds number.

8.4 Approximate model for the turbulent shear

stress

In this section we study the approximative model for the turbulent shear stress
(2.8) for cases of the data-base for which experimental data for the Reynolds
stresses are available. The aim is to study the mean-inertia effects and to
describe them using the parameter ∆u+

τ,x. First we study the equilibrium
flow by Skare and Krogstad [1994] at x = 4.4m where ∆p+x = 0.0132 and
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Figure 8.2: Composite structure of the mean velocity profile (a) for the data by
Samuel and Joubert [1974] at x = 3.04m with ∆p+x = 0.0040 and Reθ = 13500,
and (b) for Marusic and Perry [1995] at x = 3.08m with ∆p+x = 0.0042 and
Reθ = 19133.

∆u+
τ,x = −4.4 × 10−6, see figure 8.3 (a). The experimental data are for the

turbulent shear stress, as the viscous shear stress is small for y+ > 100. The
contribution of the mean-inertial term to the total shear stress is small, which
can be seen from the low value of ∆u+

τ,x compared to ∆p+x . The linear stress re-
lation 1+λ∆p+x y

+ with λ = 0.9 gives a good approximation to the experimental
data. The prediction by model (2.8) is close to the linear stress relation. From
this the hypothesis arises that for flows near equilibrium with a small role of the
mean-inertia terms, the linear stress model can be a reasonable approximation
for the total shear stress in the inner layer. We remark that the parameter λ
can be determined by a fit of the linear stress model to the model (2.8).

For the non-equilibrium flow by Marusic and Perry [1995], the mean-inertia
terms become important. We consider the flow at x = 2.64m, where ∆p+x =
0.0042 and ∆u+

τ,x = −9.2 × 10−6. We assume that the inner layer extends up

to y+ = 0.15δ+99 = 458, as δ+99 = 3053. The result is shown in figure 8.3 (b).
Obviously the linear stress model cannot be fitted to the measured shear stress
profile up to 0.15 δ+99. The linear stress model with λ = 0.7 gives a reasonable
approximation only near the wall. On the other hand, model (2.8) is able to
describe the shear stress profile and its departure from a linear behaviour at
least qualitatively.

We remark that we found the results of model (2.8) to be sensitive with
respect to the parameter values for ∆p+x and ∆u+

τ,x, and their measurement
error and uncertainty. Moreover there is the question if all effects of first order
importance are included in model (2.8). In the approximation leading to model
(2.8), further higher order terms and their parameters may be missing. The
streamwise gradient of the Reynolds normal stresses was omitted explicitely.
Additional parameters involving d2Pw/dx

2 and (dPw/dx)(duτ/dx) could be
possible, see Knopp et al. [2015].
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Figure 8.3: A model for the total shear stress at APG (a) for the flow by Skare
and Krogstad [1994] near equilibrium at x = 4.4m where ∆p+x = 0.0132 and
∆u+

τ,x = −4.4×10−6 and (b) for the non-equilibrium flow by Marusic and Perry
[1995] at x = 2.64m where ∆p+x = 0.00422 and ∆u+

τ,x = −9.19× 10−6.

8.5 Similarity of the mean-velocity profiles in

the inner layer

To study the question of mean flow similarity in the inner layer, we compare
different mean velocity profiles of the data-base at stations with similar values
for ∆p+x and ∆u+

τ,x.

8.5.1 Results for moderate values of the pressure gradient

parameter

First we consider moderate values for ∆p+x , i.e., ∆p+x ∈ [0.0025, 0.0035] in figure
8.4 (a), and ∆p+x ∈ [0.0035, 0.0048] in figure 8.4 (b). The flow parameters
are given in table 8.1. As a reference curve for comparison, we include the
profile ID 2130 by Schubauer & Klebanoff at ∆p+x = 0.004 in both figures. The
profiles shown in figure 8.4 (a) include the equilibrium flows by Clauser and by
Bradshaw and different non-equilibrium flows. The values for ∆u+

τ,x are similar,
albeit little larger in magnitude for the equilibrium flows. All curves are very
close to each other in the inner 15% of the boundary layer. A small difference
can be observed for the flow by Bradshaw, where the upward turn above the
log-law begins at little larger y+-value than for the other profiles. We note that
the profiles with the largest Reynolds numbers are for the flow by Bradshaw
and by Schubauer & Klebanoff, which also have the largest extent y+ = 0.15δ+99
of the inner layer. The velocity profiles shown in figure 8.4 (b) are also close
to each other in the inner 15% of the boundary layer. The upward turn above
the log-law for the different profiles is little larger than for the profile ID 2130,
which is explained by the little larger value of ∆p+x . We note that the profile
ID 2130 has a larger value of δ+99 and hence a larger extent of the inner layer in
terms of y+ than the other flows in this figure.

The sources of uncertainties for u+ versus y+ are due to the uncertainty in
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Author ID x Reθ ∆p+x ∆u+
τ,x × 105 βRC H12

Ludwieg & Tillmann 1108 3.532m 25870 0.00306 −0.557 3.282 1.519
Clauser, mild APG 2206 26.92 ft 15515 0.00309 −0.420 2.164 1.461
Clauser, mild APG 2207 29.75 ft 16182 0.00299 −0.292 2.172 1.443
Clauser, mild APG 2208 32.25 ft 17405 0.00303 −0.423 2.349 1.446
Bradshaw, a = −0.255 2603 5.417 ft 30247 0.00346 −0.311 4.292 1.558
Schubauer & Spangenb. 4804 8.333 ft 12094 0.00256 −0.396 1.430 1.442
Schubauer & Klebanoff 2128 21.00 ft 29379 0.00270 −0.273 3.202 1.444
Schubauer & Klebanoff 2130 22.00 ft 36066 0.00404 −0.545 5.710 1.521
Samuel & Joubert 2.87m 12369 0.00350 −0.537 2.75 1.480
Samuel & Joubert 3.04m 13498 0.00413 −0.616 3.59 1.510
Ludwieg & Tillmann 1205 2.782m 19775 0.00475 −0.874 4.004 1.535
Marusic & Perry 2.24m 10997 0.00266 −0.615 1.39 1.435
Marusic & Perry 2.64m 14209 0.00422 −0.919 2.74 1.489

Table 8.1: Summary of boundary layer parameters for flows at moderate ∆p+x -
values.

Figure 8.4: Mean velocity profiles at similar values of ∆p+x and ∆u+
τ,x, see table

8.1.
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Author ID x Reθ ∆p+x ∆u+
τ,x × 105 βRC H12

Present flow, U∞ = 36m/s 9.944m 51600 0.0120 −1.974 23.6 1.478
Schubauer & Spangenberg 4505 6.667 ft 15182 0.00952 −1.370 6.202 1.638
Schubauer & Klebanoff 2134 24.00 ft 53838 0.0117 −2.55 20.286 1.857
Schubauer & Klebanoff 2135 24.50 ft 58117 0.0147 −4.57 27.291 1.983

Table 8.2: Summary of boundary layer parameters for flows at moderately
strong ∆p+x -values.

uτ used for scaling and in the parameters ∆p+x and ∆u+
τ,x. The uncertainty

of uτ is assumed to be moderately small due to the moderate value of ∆p+x <
0.005. However, there could arise an additional uncertainty in uτ due to missing
Pitot tube corrections, which we infer from Bailey et al. [2013]. Regarding the
remaining differences beween the profiles, a possible reason is that there are
still small history effects in the inner layer and higher order effects, e.g., possibly
involving d2Pw/dx

2. Another possible reason are effects of the outer layer, which
is much more influenced by history effects than the inner layer. Moreover, there
can be small effects of flow details, which contribute to the remaining differences,
e.g., possible three-dimensional effects of the wind-tunnel side walls, and effects
of the Reynolds number, which is possibly not large enough in the asymptotic
sense.

8.5.2 Results for moderately large values of the pressure

gradient parameter

Then we consider different velocity profiles for ∆p+x ≈ 0.01, which are sum-
marised in table 8.2. In figure 8.5 (a) we show profiles for similar values of
∆u+

τ,x, and in figure 8.5 (b) for different values of ∆u+
τ,x. We note that for the

present data at U∞ = 36m/s we show u+(y+) using the Clauser chart method
for uτ . The uncertainty of uτ is moderately small for ∆p+x ≈ 0.01, and, more
importantly, the profiles of the data-base also use an indirect method for uτ . We
find that the present data are close to the profile ID 2134 by Schubauer & Kle-
banoff. Both flows have similar values for ∆p+x and ∆u+

τ,x. The profile ID 2135
is for a little larger value of ∆p+x and shows a little larger upward turn above the
log-law. The agreement with the profile ID 4505 by Schubauer & Spangenberg,
which is at similar values for ∆p+x and ∆u+

τ,x, is also close, albeit this flow is at a
smaller Reθ. On the other hand, in the outer layer for y > 0.15δ99, the velocity
profile for the present flow looks clearly different compared to the profiles by
Schubauer & Klebanoff. A possible explanation for this is that the relaxation
time is much longer in the outer layer than in the inner layer. Therefore the
differences in the outer layer of the mean-velocity profiles are supposed to be
due to the long-living effects of flow history of the region of curvature and the
streamwise changing pressure gradient.

The role of different values of the parameter ∆u+
τ,x is studied in figure 8.5

(b). We use the flow data by Clauser and by Skare & Krogstad, see table 8.3.
The flows by Clauser and by Skare & Krogstad are close to equilibrium, and
the values for ∆u+

τ,x are smaller than for the other flows shown in figure 8.5
(a). We observe that the velocity profiles for the two equilibrium flows are
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Figure 8.5: (a) Comparison of the present flow at x = 9.944m for U∞ = 36m/s
and different flows at similar values of ∆p+x and ∆u+

τ,x, see table 8.2. (b) Com-
parison with flows at different values of ∆u+

τ,x, see table 8.3.

Author ID x Reθ ∆p+x ∆u+
τ,x × 105 βRC H12

Clauser 2306 19.17 ft 20917 0.0103 −0.774 8.70 1.766
Clauser 2307 23.92 ft 26438 0.0119 −1.10 12.07 1.757
Clauser 2308 26.67 ft 31018 0.0142∗ −1.43∗ 16.28 1.758
Skare & Krogstad 4.4m 44420 0.0130 −0.448 19.6 1.989
Skare & Krogstad 4.6m 46250 0.0129 −0.641 20.1 1.998
Skare & Krogstad 4.8m 49180 0.0123 −0.614 20.2 1.994
Skare & Krogstad 5.0m 50980 0.0124 −0.734 21.2 1.998

Table 8.3: Summary of boundary layer parameters for flows close to equilibrium
at moderately strong ∆p+x -values.

close to each other. The region occupied by the log-law appears to be larger
for the equilibrium flows with their smaller magnitude of ∆u+

τ,x. For the non-
equilibrium flows in table 8.2, the extent of the log-law fit region is smaller.
This figure shows that we cannot expect similar mean velocity profiles in the
inner layer for the same value of ∆p+x , if the values for ∆u+

τ,x are significantly
different.

We remark that there is possibly a considerable uncertainty of uτ and duτ/dx
for the flow ID 2300 by Clauser. The mean velocity profiles provide only three
data points in the logarithmic region and are effected by measurement uncer-
tainties. Moreover, it seems difficult to determine duτ/dx accurately, in partic-
ular for station ID 2308, see p. 213 in Coles and Hirst [1969]. Therefore the
corresponding values for ID 2308 are marked with an asterix in table 8.3.

8.6 Summary

From the analysis of a large number of adverse pressure gradient turbulent
boundary layer flows, we show indications for similarity of the mean velocity
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profiles, where the leading order similarity parameters are ∆p+x and ∆u+
τ,x. The

form of the mean velocity profile is composite with a thin log-law region and a
sqrt-law region above. Noteworthy, the similarity is despite the differences in
the upstream history of the flows considered. The APG flows of the literature
data base evolve on a flat plate, whereas the present flow is subjected to strong
curvature, relaxation from curvature on a flat plate, and a streamwise changing
pressure gradient from favourable to adverse upstream of the APG focus region.
The role of the upstream history will be studied in the next section.
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Chapter 9

Streamwise evolution of the

flow

The aim of this section is to assess possible higher order effects, e.g., history
effects due to curvature and relaxation from curvature on a flat plate, which
are neglected by the simple model based on ∆p+x and ∆u+

τ,x. We attempt
to describe the response time of the flow and the corresponding streamwise
travelling distance by considering the eddy turnover time. Then we study the
small details of the mean velocity profile in the region y+ < 150 for the present
flow and different flows from the literature data base to assess the role of possible
higher order effects of the flow history and of the Reynolds number.

We consider the streamwise evolution of the flow using the results of the
large-scale 2D2C PIV overview measurement. The profiles for the mean-velocity
and for the Reynolds stresses were extracted at different streamwise positions
along wall-normal lines in a wall-fitted coordinate system with wall-normal di-
rection y. The streamwise positions of the profiles are given in table 9.1 and in
table 9.2.

Therein we define the streamwise distance x∗

curv = (x − xb)/δ99,ref from the
begin of curvature at xb = 8.990m as a multiple of δ99,ref . Moreover we define
the streamwise distance of flow relaxation downstream of the end of curvature
x∗

relax = (x − xe)/δ99,apg, which is measured from the end of curvature at xe =
9.750m. The latter is expressed as a multiple of the reference boundary layer
thickness δ99,apg in the adverse pressure gradient region, taken at x = 9.72m.

x in m 8.12 8.37 8.62 8.87 9.12 9.32 9.42 9.52
x∗

curv −5.80 −4.14 −2.47 −0.80 0.86 2.20 2.86 3.53
x∗

relax - - - - - - - -
100∆p+x −0.015 −0.025 −0.046 −0.095 −0.17 0.037 0.20 0.49
βRC −0.15 −0.27 −0.52 −1.08 −1.74 0.29 1.50 4.30
100δ99,ref

Rc

- - - - 4.3 7.4 7.3 6.1

Table 9.1: Positions for the mean-flow profiles from the 2D2C PIV overview
measurement. The values are for the case U∞ = 23m/s using the values for uτ

obtained by OFI (Part 1).
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x in m 9.72 9.87 9.944 10.02 10.09
x∗

curv 4.86 - - - -
x∗

relax −0.20 0.70 1.14 1.59 2.00
100∆p+x 1.34 1.57 1.85 2.26 2.75
βRC 14.2 17.7 24.9 33.9 44.5
100δ99,ref

Rc

0.65 - - - -

Table 9.2: Positions for the mean-flow profiles from the 2D2C PIV overview
measurement. The values are for the case U∞ = 23m/s using the values for uτ

obtained by OFI (Part 2).

We found δ99,apg = 0.17m for the case U∞ = 23m/s. Moreover we include
the values for the pressure gradient parameter in inner scaling ∆p+x and in the
Clauser-Rotta scaling βRC using the value for uτ obtained by OFI. Finally we
include the values for δ99,ref/Rc.

9.1 Mean velocity

9.1.1 Results

For the mean velocity, we consider the 2D2C PIV data evaluated by the single-
pixel ensemble correlation method for the case U∞ = 23m/s. The profiles are
scaled to viscous units using uτ from OFI. First we consider the change from
zero to a favourable pressure gradient and the begin of curvature, see figure 9.1
(a). We use the profile at x = 8.12m as the reference. We also include the
log-law with κ = 0.390 and intercept B = 4.07, obtained by a least squares fit
of the log-law to the data. Note that we write κ = 0.39 and B = 4.1 in the
figures. We remark that the flow at the ZPG reference stations shows history
effects due to the accelerating ramp, as discussed in section 5. The favourable
pressure gradient is increasing at x = 8.62m and we observe a downward shift
of ∆u+ = 0.4 compared to x = 8.37m (not shown). At x = 8.87m the velocity
profiles still show a log-law region, where slope and intercept are unchanged
compared to x = 8.62m. The height of the wake is decreasing in streamwise
direction.

As curvature effects and the favourable pressure gradient become stronger
at x = 9.12m, the extent of the log-law region is reduced to y+ < 400. Above
y+ = 400, the velocity profile, plotted against log(y+), turns downwards below
the log-law and then upwards at around y+ = 1400 corresponding to y/δ99 =
0.14. Above this upward turn, a second log-law region seems to appear with
κ close to 0.4 and at a reduced intercept. The height of the wake is reduced
significantly compared to x = 8.87m. The profile at x = 9.12m shows features
which are a combination of two effects, i.e., a favourable pressure gradient and
convex curvature, which will be discussed in the following section.

In the curvature region, the pressure gradient changes from favourable to
adverse. The magnitude of the adverse pressure gradient in terms of ∆p+x and
βRC is increasing in streamwise direction. The value of u+(100) being the
value of u+ at y+ = 100 remains almost unaltered, see figure 9.1 (b), but the
profiles do not follow the log-law up to y+ = 400. Instead, they begin to turn
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Figure 9.1: Mean velocity profiles for U∞ = 23m/s at almost zero pressure
gradient and in the region of curvature with change from favourable to adverse
pressure gradient.

upwards above the log-law and make an S-shaped bending, if plotted against
log(y+). The spurious upward turn above the log-law appears at x = 9.42m
where ∆p+x reaches a moderate value. Above this bending, a second log-law
region appears whose slope is close to the value of κ = 0.4 and whose intercept
is increasing in streamwise direction. The y+-value of the outer edge of the
second log-law region is decreasing in streamwise direction and the extent of
the wake-region increases. The height of the wake becomes more pronouned in
streamwise direction.

Downstream of the end of curvature at x = 9.750m, the flow is subjected
to two effects simultaneously, i.e., an adverse pressure gradient and relaxation
from curvature. The results are shown in figure 9.2 (a). The value for u+(100)
appears to be still almost unchanged. The upward turn above the log-law is
increasing. The extent of the y+-region where the velocity profile shows this
upward turn is increasing in streamwise direction. Above this region, the profile
turns back and a second log-law region can still be observed. The slope of the
second log-law is increasing in downstream direction.

The mean velocity profiles in the region of the largest ∆p+x -values are shown
in figure 9.2 (b). The pressure gradient parameter ∆p+x is increasing in stream-
wise direction. The value for u+(100) is decreasing and the profiles for u+

appear to be shifted downwards below the log-law observed at x = 8.12m. A
thin inner logarithmic region appears to recover as the flow relaxes from curva-
ture. Such a recovery of the log-law during flow relaxation was also observed for
flows without a significant pressure gradient, as discussed in the next section.
Above the thin log-law fit region, the velocity profiles turn upwards above the
log-law. The upward turn, if plotted against log(y+), is increasing in stream-
wise direction. The outer edge of this region is also increasing in terms of y+ in
streamwise direction. Above y+ > 1500, the profiles turn back and the second
log-law still can be observed.
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Figure 9.2: Mean velocity profiles for U∞ = 23m/s in the adverse pressure
gradient region.

δ99,ref/Rc αcurv lcurv/δ99,ref lrelax/δ99,ref Reθ,ref
Smits et al. [1979] 0.167 30◦ 3 57 6000
Gillis & Johnston 0.05, 0.1 90◦ 16 21 3800
Alving et al. [1990] 0.08 90◦ 21 90 6000
Present flow 0.07 14.4◦ 5 2.4 12900, 24350

Table 9.3: Comparison with turbulent boundary layer flows with convex curva-
ture and relaxation downstream on a flat plate at similar values of δ99,ref/Rc

in the literature. For the present flow we include the cases U∞ = 10m/s and
U∞ = 23m/s.

9.1.2 Discussion

The present flow is subjected to a streamwise changing pressure gradient from
favourable to adverse, convex curvature effects and relaxation on a flat wall. In
table 9.3 we give some zero pressure gradient turbulent boundary layer flows
subjected to convex curvature and relaxation at similar values of δ99,ref/Rc.
Among these cases, the flow by Smits et al. [1979] imposes an impulse-like
sudden curvature over the shortest streamwise distance compared to the other
cases.

As the flow enters the begin of the curvature region, the strongest effect is the
favourable pressure gradient. The observed reduction of the wake contribution
due to the favourable pressure gradient is in agreement with results e.g. for the
sink-flow turbulent boundary layer by Jones et al. [2001]. Then the pressure
gradient changes to adverse, and the increase of the wake parameter is again in
agreement with previous findings in the literature.

In the convex curvature region, a reduction of the outer extent of the log-
law region in conjunction with an upward turn of the velocity profile above the
log-law starting below y+ = 100 can be seen also for the data by Gillis and
Johnston [1983] and Gillis et al. [1980], and in the work by Kim and Rhode
[2000]. The upward turn is developing during the curvature section. Note that
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in Gillis and Johnston [1983] the Clauser chart method was used to determine
uτ . Some theoretical models have been proposed to describe the upward turn
above the log-law due to convex curvature, see, e.g., Kim and Rhode [2000] and
references therein. For the present flow, the upward turn above the log-law is
stronger than for the zero pressure gradient cases. We suppose that it is the
adverse pressure gradient who mainly alters the mean velocity profile and causes
a sqrt-law behaviour.

The recovery of the log-law during relaxation on a flat wall was studied
for the zero pressure gradient cases by Gillis et al. [1980], Smits et al. [1979]
and Alving et al. [1990]. The upward turn of the velocity profile above the
log-law is decreasing and the extent of the log-law is increasing in streamwise
direction. In the outer layer, the relaxation of the mean velocity profile takes
much longer than for the inner layer, see Gillis et al. [1980] and Alving et al.
[1990]. The second log-law region can still be observed during the so-called
early relaxation at x∗

relax = 4 for the data in Gillis et al. [1980]. It can also be
observed at x∗

relax = 0.8 and x∗

relax = 4 in figure 7 in Alving et al. [1990] and at
x∗

relax = 1.3 in figure 7 (d) for the flow by Smits et al. [1979]. We remark that the
streamwise extent of the measurement region for relaxation is much longer in
the zero pressure gradient cases than for the present flow. The combined effect
of relaxation and adverse pressure gradient is more complex. The relaxation of
the thin log-law region whose extent is slowly increasing in streamwise direction
is attributed to the end of curvature, whereas the strong upward turn above the
log-law is attributed to the adverse pressure gradient and the sqrt-law behaviour
up to y+ = 0.12δ+99.

Regarding the phenomenon of a double log-layer, Spalart [2010] uses a the-
oretical model and RANS simulations to describe that this can be caused by a
sudden change of uτ over a short time. Then, inside the inner layer, the inter-
nal boundary layer yields a different slope of du+/dy+ than for the layer above
whose vorticity is conserved along streamlines, see figure 1 therein. Internal
layers can grow if the flow is subjected to an abrupt change of pressure gradient
and/or surface curvature, see Baskaran et al. [1987]. They performed experi-
ments for a wall mounted curved hill with an abrupt change in curvature and a
free wing based on the same convex curvature geometry. They describe that an
abrupt change in surface curvatures initiates the growth of an internal boundary
layer. In the free-wing experiment the effect of the pressure gradient was found
to dominate the effect of mild convex curvature, where δ99/Rc was smaller than
0.012. Bandyopadhyay and Ahmed [1993] designed a flow experiment with an
abrupt change of curvature and pressure gradient. They report that for their
experiment the effect of curvature dominates the accompanying changes of the
pressure gradient, where δ99/Rc was in the range 0.04 to 0.065. For the present
flow the curvature perturbation parameter ∆k∗ was smaller than the threshold
value of ∆k∗ ≈ 3.7× 10−5 reported by Bandyopadhyay and Ahmed [1993], see
section 4. For the present flow, the ”dip” below the log-law, using the word by
Baskaran et al. [1987], and the change of the log-law slope in the second log-law
region are much less pronounced than for the flow by Baskaran et al. [1987].
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9.2 Reynolds stresses

9.2.1 Results

We consider the results for the Reynolds stresses for the case U∞ = 10m/s
evaluated using the window-correlation method. The resolution of the wall-
normal fluctuation v′2 was found to determine the resolution requirements for
the window-correlation method. The results for the position at almost zero
pressure gradient at x = 8.12m show good agreement with hot-wire reference
data at similar Reynolds numbers in the literature. The Reynolds stresses are
made non-dimensional using the reference velocity Uref = 10m/s. The wall-
distance is scaled using the local boundary layer thickness δ99.

We remark two issues before proceeding. First, for the determination of the
boundary layer thickness we use the relatively simple method described in sec-
tion 3.3. The aim of this section is to study the effect of curvature and pressure
gradient on the magnitude of the Reynolds stresses. For a detailed characteri-
sation in the outer part of the boundary layer, more sophisticated methods for
the boundary layer edge are needed, see , e.g., Vinuesa et al. [2016]. The sec-
ond issue concerns the use of the Reynolds decomposition for the computation
of the mean flow and fluctuation statistics, as described in Kwon et al. [2016].
In the present work we use an unconditional average, i.e., an average over all
instantaneous data. This can be justified for the inner part of the boundary
layer, where the flow is fully turbulent. However, in the outer region, the flow
is intermittently turbulent. Recently, new decompositions were proposed to en-
sure that non-turbulent regions in the flow do not contaminate the fluctuating
velocity components in the turbulent regions, see, e.g., Kwon et al. [2016] and
Reuther and Kähler [2019]. Such a method involves the problem to determine
the turbulent/non-turbulent interface, see, e.g., Vinuesa et al. [2016], Chauhan
et al. [2014b,a], Reuther and Kähler [2018, 2019]. Here we are only interested
in the qualitative behaviour of the Reynolds stresses during the flow evolution.
Due to the open questions of more sophisticated Reynolds decomposition meth-
ods, we use the traditional unconditional method.

The evolution of the Reynolds stresses from the zero pressure gradient region
into the curvature region is considered first. The normal stresses are shown in
figure 9.3 (a) and (b). The flow acceleration causes a reduction of u′2 and v′2 in
the inner 50% of the boundary layer at x = 8.87m. Then the convex curvature
and the favourable pressure gradient cause a further reduction of u′2 and an
even larger reduction of v′2 at x = 9.32m in the inner 50% of the boundary
layer. As the pressure gradient changes from favourable to adverse, u′2 starts
to increase whereas v′2 still decreases for y < 0.5δ99. The increase in u′2 and
v′2 in the outer layer at x = 9.32m and x = 9.42m could be in parts due the
effect of the meandering Görtler vortices, and could also be effects by details of
the data evaluation at the turbulent/non-turbulent interface, see Reuther and
Kähler [2018], Reuther and Kähler [2019].

The Reynolds shear stress u′v′ and the correlation coefficient are shown in
figure 9.3 (c) and (d). The favourable pressure gradient causes a small reduction
of −u′v′ from x = 8.12m to x = 8.87m for y/δ99 < 0.3. In the curvature re-
gion, −u′v′ is strongly decreasing, in particular from x = 9.32m to x = 9.42m,
despite the increasing adverse pressure gradient. The correlation coefficient
u′v′/(u′

rmsv
′

rms) gives values around 0.38 in the inner layer at x = 8.12m, which
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Figure 9.3: Streamwise evolution of Reynolds stresses and correlation coefficient
from the region of almost zero pressure gradient to the region of curvature and
change from favourable to adverse pressure gradient for U∞ = 10m/s.
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Figure 9.4: Streamwise evolution of Reynolds stresses and correlation coefficient
in the region of curvature and relaxation at adverse pressure gradient for U∞ =
10m/s.

is comparable to experiments in the literature at similar Reθ. Albeit the coeffi-
cient cannot be expected to be constant across the inner layer nor independent
of the Reynolds number, see Marusic et al. [2013], it could give some valuable
indications about the turbulence structure and departure from equilibrium, see
Gungor et al. [2014]. At x = 9.32m and at x = 9.42m, we observe that the
correlation coefficient is significantly reduced for y/δ99 > 0.1.

During the second part of the curvature region and the relaxation on the
inclined flat wall, the flow experiences an adverse pressure gradient. For u′2 and
v′2 we observe an increase in the inner region for y/δ99 < 0.2 and a new inner
maximum forms at around y/δ99 ≈ 0.072 at x = 9.87m, see figure 9.4 (a). The
streamwise increase of v′2 is larger than for u′2, see figure 9.4 (b). The maximum
of u′2 and v′2 is larger than at the position of almost zero pressure gradient. In
the outer part, for y/δ99 > 0.7, the changes compared to x = 9.52m could be
attributed again to the effect of the meandering longitudinal vortices and the
data evaluation at the turbulent/non-turbulent interface.

The Reynolds shear stress is increasing significantly in the region y/δ99 <
0.2 from x = 9.52m to x = 9.87m and a new inner maximum appears at
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y/δ99 ≈ 0.07 for x = 9.87m, see figure 9.4 (c), whereas the increase is much
slower further away from the wall for 0.2 < y/δ99 < 0.5. In the outer part, for
y/δ99 > 0.7 we observe a further reduction of −u′v′, ceasing to almost zero in
this region with small negative values for x = 9.87m. The correlation coefficient
is increasing in the inner 20% of the boundary layer after the end of curvature,
see figure 9.4 (d). Further away from the wall, for 0.2 < y/δ99 < 0.6, the
increase is slower and starts from a much smaller level reached at x = 9.52m.
In the outer layer for y/δ99 > 0.7 the correlation coefficient is still decreasing in
streamwise direction. The results near and above the boundary layer edge are
supposed to be affected by measurement uncertainties and numerical errors.

Further downstream in the adverse pressure gradient region on the inclined
flat plate, u′2, v′2 and −u′v′ are still increasing for y < 0.3δ99, whereas the
increase is small for 0.3 < y/δ99 < 0.6, see figure 9.5 (a) - (c). The correlation
coefficient appears to recover on the inclined flat wall in streamwise direction
and could exhibit a small overshoot during relaxation at x = 10.17m, but this
is not clear due to the uncertainty of the data, see figure 9.5 (d). The extent of
the region where the correlation coefficient becomes close to 0.4 is increasing in
streamwise direction and a level similar to x = 8.12m is reached for y < 0.11δ99
at x = 9.94m and for y < 0.25δ99 at x = 10.17m. Above y > 0.3δ99 the
correlation coefficient is still much smaller than for x = 8.12m.

For comparison, we show the 3D LPT STB results for U∞ = 36m/s in
figure 9.6. The Reynolds stresses are shown in figure 9.6 (a) and we note that
δ+99 = 10530. The correlation coefficient and the anisotropy coefficient are shown
in figure 9.6 (b). For the correlation coefficient, the maximum value is around
0.338. For the Bradshaw anisotropy ratio a12 =

∣

∣u′v′
∣

∣ /k with k = 0.5(u′2 +

v′2 + w′2) we find a maximum value of around a12 = 0.208.

9.2.2 Discussion

A common feature of turbulent boundary layers subjected to strong convex cur-
vature (δ99/Rc > 0.05) is the strong reduction of the magnitude of the Reynolds
shear stress u′v′ in the outer part of the boundary layer for y > 0.3δ99 and even
below, see Gillis and Johnston [1983]. The results in figure 9.3 (c) and in figure
9.4 (c) can be compared with figure 2 in Gillis and Johnston [1983]. Therein a
qualitatively similar behaviour can be observed for the station at x∗

curv = 2.3
and a turn angle of 13◦, whereas for x∗

curv = 5.6 and a turn angle of 30◦ already
significant negative values for −u′v′ are observed for y > 0.4δ99, which cannot
be found for the present flow.

The relaxation of the turbulence quantities is more complex than for the
mean flow and occurs in several stages. Alving et al. [1990] report that, during
relaxation, the stress levels rise to higher values than upstream of curvature,
and the ratios of the Reynolds stresses are found to be distorted. Qualitatively
similar results are described in Gillis and Johnston [1983], albeit their measure-
ments are only for the initial stage of recovery (xrelax ≤ 21δ99). Values for −u′v′

of up to 1.25u2
τ are shown in figure 19 in Gillis and Johnston [1983] and are ob-

served even for the last measurement position at x∗

relax = 21. The overshoot
shown for x∗

relax = 0.8 in figure 13 (a) in Alving et al. [1990] is little larger. For
the present flow, the relaxation on the inclined flat plate is superposed by the
adverse pressure gradient. The maximum of −u′v′ is increasing in streamwise
direction and the elevation above the upstream level is larger than for the flow
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Figure 9.5: Streamwise evolution of Reynolds stresses and correlation coefficient
in the adverse pressure gradient region on the inclined flat plate for U∞ =
10m/s.

Figure 9.6: 3D LPT STB data for U∞ = 36m/s at x = 9.944m. (a) Reynolds
stresses and (b) correlation coefficient and anisotropy coefficient.
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by Gillis and Johnston [1983], which is attributed to the adverse pressure gra-
dient. The role of small details of the present flow compared to the reference
flows in table 9.3 remain unanswered. The first difference is that the curvature
of the present geometry is continuous and joins smoothly the inclined flat plate
in constrast to the reference flows. The second difference is that the turning
angle before relaxation is only 14.4◦.

Gillis and Johnston [1983] also report a small overshoot in the structural
parameter a12 compared to the values upstream of curvature for y < 0.3δ99 for
their measurement station 12 at x∗

relax = 4 during relaxation. In the present
experiment, a small overshoot of the correlation coefficient compared to the
value at x = 8.12m might be seen for the most downstream position at x =
10.17m (or x∗

relax ≈ 2.5), but this could be influenced by uncertainties in the
measurement. The 3D LPT STB results for U∞ = 36m/s indicate a significant
reduction of a12 at 9, 944m.

9.3 Relaxation and history effects

On the inclined flat plate for x > 9.75m, the relaxation of curvature is superim-
posed by the adverse pressure gradient. We study the eddy turnover time τt.o.
to estimate the relaxation of history effects, motivated by the work in Wilcox
[1998] and Sillero et al. [2013]. Two definitions for τt.o. are considered. The first
definition is based on the turbulent shear stress |u′v′|

τt.o. = κ0 ∗ y/|u′v′|1/2 (9.1)

with κ0 = 0.41. The second definition is based on the turbulent kinetic energy
k

τt.o. = κ0 ∗ y/k
1/2 (9.2)

with k = u′2 + v′2 + w′2. Since the 2D2C PIV method only provides u′2 and
v′2, we use the approximation w′2 = 1.3v′2. The results are shown in figure 9.7
for (9.1) and in figure 9.8 for (9.2), both for the case U∞ = 10m/s. Therein the
turnover length δt.o. = Uτt.o. is the corresponding streamwise travelling distance
of the local mean flow U(y), see Sillero et al. [2013]. Following this work, the
flow is assumed to relax to equilibrium after 2τt.o..

The values for the turnover length based on |u′v′| are larger than based on
k. As an estimate for the turnover length we obtain 2δt.o. ≈ 2.4δ99,ref for τt.o.
based on |u′v′|, and 2δt.o. ≈ 0.9δ99,ref for τt.o. based on k, evaluated at a wall-
distance of y = 0.1δ99 for the position x = 9.72m. Closer to the wall, at y =
0.05δ99, the corresponding values are 2δt.o. ≈ 0.4δ99,ref and 2δt.o. ≈ 0.18δ99,ref .
This indicates that the near-wall flow relaxes rapidly, but not instantaneously.
Indeed, we observe a recovery of the log-law region for x ≥ 9.94m, which is 1.5δ99
downstream of the end of curvature. As the Reynolds stresses are increasing due
to the adverse pressure gradient, the turnover length is decreasing in streamwise
direction in the inner part of the boundary layer.

In the outer part of the boundary layer, the turnover length is strongly
increasing for y > 0.15δ99. We observe values for 2δt.o. up to 16δ99,ref (based on
k) and up to 50δ99,ref (based on |u′v′|) at a wall-distance of y = 0.6δ99, due to
the significant reduction of the Reynolds stresses and in particular of the shear
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Figure 9.7: Estimation of history effects using the turnover length based on
equation (9.1) for the case U = 10m/s.
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Figure 9.8: Estimation of history effects using the turnover length based on
equation (9.2) for the case U = 10m/s.

stress in the convex curvature region and the slow recovery of the Reynolds
stresses in the outer part of the boundary layer.

9.4 Discussion of adverse pressure gradient and

history effects

In this section, we study the mean velocity profile in the region y+ < 150 is
detail. The aim is to discuss the role of possible additional effects, which are
neglected in the simple model, e.g., history effects due to the upstream region
of curvature, relaxation from curvature on the flat wall, and Reynolds number
effects. We compare the µPTV data at ∆p+x = 0.0182 with some literature
data, which are at a similar value of ∆p+x . We use the data at x/δ0 = 15.6 by
Manhart and Friedrich [2002] with ∆p+x = 0.0186, the data at x/Y = −5 for
case C by Coleman et al. [2018] with ∆p+x = 0.017, and the data at x = 0.723m
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by Nagano et al. [1991] with ∆p+x = 0.0188 and Reθ ≈ 1900. Therein δ0 and Y
denote the reference length used in the corresponding publications.

The first question is if there is a significant deviation of the mean velocity
from the zero pressure gradient case, where we use the DNS data by Schlatter
and Örlü [2010] as a reference. The second question considers the correlation
(2.16) by Nickels [2004] and the correlation of KiBi versus Bi proposed by Nagib
and Chauhan [2008]. If both correlations hold simultaneously, then Ki and Bi

would be determined by the local value of ∆p+x . This would imply that the
mean velocity profiles of different flows, but for the same value of ∆p+x , should
be close to each other at least in a small log-law fit region, provided that Re is
large enough.

The results are shown in figure 9.9. To assess if the deviations are significant,
we include the error bars. For the µPTV data we assume an estimated overall
uncertainty in u+ of 3.1%, with an uncertainty contribution of 2.1% for uτ

from OFI and an assumed uncertainty of 1% for U . Moreover we assume an
uncertainty of 3.1% in y+ due to the uncertainty in uτ , in ν, and in the wall
position. For the DNS data by Coleman et al. [2018], we include an error bar
associated with an estimated uncertainty of 1% for uτ , based on a personal
communication by Coleman [2018]. The different curves are close to each other
for y+ < 8, and the curves start to deviate for y+ > 10. A downward shift
∆u+ of the mean velocity profile in the log-law fit region can be observed for
all profiles, but with a small variation. The downward shift is ∆u+ = −0.6 for
the profile by Manhart and Friedrich [2002], and ∆u+ = −0.3 for the profile
by Coleman et al. [2018]. A downward shift in the region y+ < 100 can be
observed also in figure 6 in Lee and Sung [2008] at Reθ = 1350, where the shift
is increasing with an increasing value of βRC, and in figure 6 in Bobke et al.
[2017]. Moreover it can be observed for the Couette-Poiseuille flow by Coleman
et al. [2015]. Therein, figure 8 gives an overview for the value of u+ at y+ = 50
for different flows in the literature.

The deviation between the µPTV data and the data by Coleman et al. [2018]
in the near wall region cannot be explained alone by the uncertainty of each
individual data-set. This brings up the question of additional flow parameters
to explain this deviation. There are different possible parameters, which could
give a contribution to the observed spreading of the mean velocity profiles.
However, it is also possible that two effects counterbalance or cancel each other,
suggesting a collapse of the data and masking differences.

The first aspect is the question of Reynolds number effects, which, for turbu-
lent boundary layers at ZPG, can cause an upward shift, see Wei et al. [2005b].
However, this effect appears to be small if Reθ > 1400 in Wei et al. [2005b]
and for the DNS data by Schlatter and Örlü [2010]. Moreover, effects related
to the mesolayer could arise. The flow region corresponds to the y+-regime of
the mesolayer in ZPG boundary layers, see George and Castillo [1997]. We also
remark a recent discussion on details of the near-wall mean-velocity profile at
ZPG, e.g., the proposal to account for an observed overshoot above the log-law
near y+ ≈ 50 by Chauhan et al. [2007].

Then there is the question if other, possibly higher order terms, with ad-
ditional parameters besides ∆p+x and ∆u+

τ,x govern the near wall solution. We
remark that the µPTV data and the profile by Coleman et al. [2018] are both
for the same value of ∆p+x and of ∆u+

τ,x = −6.44 × 10−5. Another possible
parameter is the coefficient of instantaneous backflow, see Alving and Fernholz
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Figure 9.9: Mean velocity profiles for different flows at a streamwise position
with ∆p+x = 0.018±0.01 using case C by Coleman et al. [2018] (CRS), Manhart
and Friedrich [2002] (MF), Nagano et al. [1991], and the ZPG data by Schlatter
and Örlü [2010].

[1995a] and Bross et al. [2019]. This could have an influence near separation, but
the data considered are sufficiently far upstream from the position of incipient
detachment (1% backflow).

Moreover there is the question if details of the flow in the outer part of the
inner layer (300 < y < 0.15δ+99) have an influence on the flow in the region
y+ < 150. This could be due to details of the mean velocity profile, e.g., the
observed upward turn above the log-law in the sqrt-law region, which depends
on ∆p+x and ∆u+

τ,x.

Another question are long-living history effects, see, e.g., Marusic et al. [2015]
and Schlatter and Örlü [2010] for the ZPG case. For the present µPTV data,
possible long-living history effects are due to the flow acceleration over the first
ramp with concave-convex curvature and possible Görtner vortices, and due to
the convex curvature region for x > 8.99m. On the convex wall, a deviation
from the universal log-law in the inner layer and even below y+ < 200 might be
indicated by the 2D2C PIV data, but additional high resolution data could not
be measured in this region. From the present data, the question of a possible
change of the log-law slope coefficient Ki and intercept Bi caused by the convex
curvature and a relaxation of Ki and Bi on the flat inclined plate cannot be
answered. If we assume for a moment that the log-law intercept is reduced
in parts due to history effects of the convex curvature region, then this would
imply little larger values for Bi in the absence of the curvature region. This
would shift the data closer to the correlation by Nagib and Chauhan [2008] in
figure 6.4 (b).

From these considerations more open questions than answers arise. Despite
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these questions, the following conclusions are drawn. First, the present data
are seen as an indication to support the reduction of the slope coefficient Ki in
the log-law fit region caused by the adverse pressure gradient, as proposed by
Nickels [2004]. However, the possibility that the observed reduction of Ki is,
at least in parts, due to history effects of the convex curvature region, cannot
be excluded due to the lack of data. Secondly, we tend to conclude that the
log-law intercept is altered by the pressure gradient and influenced by small
reminiscences of history effects.

9.5 Summary

The response time of the flow to streamwise changing flow conditions, e.g., the
relaxation from curvature on the flat plate, is estimated using the eddy turn over
time. The corresponding streamwise travelling distance of the mean flow is of
the order of the local boundary layer thickness for the inner part of the boundary
layer, i.e., the flow in the inner layer adjusts fast but not instantaneously. This
indicates the possibility of small history effects. The comparison of the mean
velocity profile of the present flow and the profiles of the literature data base at a
similar value of ∆p+x and ∆u+

τ,x shows subtle, but clear, differences in the region
y+ < 150, see figure 9.9. This suggests that higher order effects are negleced by
the simple model based on ∆p+x and ∆u+

τ,x, e.g., due to details of the streamwise
evolution of the flow. Moreover viscous effects associated with the mesolayer
are not included in the model. Therefore, regarding the similarity of the mean
velocity profile, we may conclude that the parameters ∆p+x and ∆u+

τ,x describe
only the leading order effects.
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Chapter 10

Conclusions

We presented an analysis of the inner layer of turbulent boundary layers at
adverse pressure gradient. The goal was to determine the resilience of the log-
law, the possible change of the log-law slope and the appearance of a square-
root law above the log-law. For this purpose we performed a new wind-tunnel
experimental of a turbulent boundary layer at adverse pressure gradient with
effects of convex curvature and relaxation from curvature, and we analysed a
data base from the literature.

The first conclusion concerns the measurement technique. We confirmed that
the accuracy and uncertainty of the measurement technique becomes a critical
issue for the study of wall-laws for the mean velocity and for the Reynolds
stresses. High resolution particle tracking velocimetry (PTV) methods were
shown to provide a substantial improvement compared to classical partical image
velocimetry (PIV). Three-dimensional Lagrangian particle tracking (LPT) gave
high resolution data for the mean velocity and for the Reynolds stresses from the
viscous sublayer up to 0.4 δ99. Microscopic PTV (µPTV) gave high resolution
data from the viscous sublayer up to y+ = 200. We found that a high resolution
method is needed to accurately determine the mean velocity gradient below
y+ = 200 to evaluate the log-law slope and the Reynolds stresses. A particular
challenge remains to accurately measure the mean velocity profile in the viscous
sublayer below y+ = 2.5 and to determine the wall shear stress from the mean
velocity profile in the viscous sublayer. Oil film interferometry was confirmed to
be an important alternative to determine the wall shear stress at high Reynolds
numbers.

The question of accuracy requirements for experimental data for wall laws,
in particular for a possible change of the log-law slope, was also investigated.
The major contribution to the overall uncertainty stems from the wall shear
stress. In the present work we reached at best an overall relative uncertainty of
3% for u+ vs. y+. The comparison with other data from DNS and experiments
suggested that a smaller uncertainty bound is needed for definite conclusions on
a change of the log-law for moderately strong values of ∆p+x = 0.02 and below.
Regarding the technical reasons for the uncertainty, it was found that near the
wall, in particular for high Re flows with their very small viscous length scale,
details of the particle tracking method become important, e.g., reflections of the
laser light sheet at the wall, and the determination of the exact wall-position,
confirming the results by Örlü et al. [2010]. For recent developments to improve
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the experimental accuracy, see Willert et al. [2018], Novara et al. [2019], and
Bross et al. [2019].

In the adverse pressure gradient region, we found a composite form of the
mean velocity profile in the inner layer, confirming an early proposal by Perry
et al. [1966]. The composite profile was found to consist of a thin log-law region
and a square-root law above the log-law up to 0.12 δ99. The square-root law was
demonstrated by a plateau of the mean velocity slope diagnostic function. As the
plateau was found to have only a moderate extent even for the large Reynolds
number Reθ = 57000, we infer that the square-root law region appears only at
sufficiently large Reynolds numbers. From this we conclude the need for high
Reynolds number data for the study of wall-laws at adverse pressure gradients.

Regarding the resilience of the log-law and regarding the work by Nickels
[2004], we found lower values for the log-law slope coefficient Ki in the adverse
pressure gradient region than for the zero pressure gradient region. The log-law
slope coefficient was found to be decreasing with increasing values of the pressure
gradient parameter ∆p+x . We found a value of Ki = 0.370 ± 0.017 for ∆p+x =
0.018. However, the reduction could not be demonstrated to be significant due
to the measurement uncertainty, and because the question of possible history
effects of the upstream located region of convex wall curvature could not be
answered. We mention that the corresponding theoretically expected value of
the log-law slope predicted by Nickels [2004] is Ki = 0.365 for ∆p+x = 0.018. We
also showed that using the value for uτ from the Clauser chart gives erroneously
smaller values for Ki than if a direct method of uτ was used.

Then we studied an analytical model for the total shear stress in the inner
layer, which was proposed by Coles [1955] and Perry et al. [1966]. Its parameters
are the pressure gradient parameter and the wall shear stress gradient param-
eter. The model uses an approximation for the mean inertia effects, where we
substituted the composite mean velocity profile. This model was found suc-
cessful to describe the measured turbulent shear stress. This was seen as an
indication that it not only the pressure gradient parameter, but also the local
flow deceleration, which govern the turbulent shear stress. In particular, we
found that the sqrt-law region for the mean velocity is not related to the ex-
istence of a region of a linear shear stress. Then an analytical relation for the
turbulent viscosity was described for the log-law region and for the square-root
law region. This model also depends on these two parameters. We concluded
that we cannot expect that a model for the turbulent viscosity based on a pres-
sure gradient parameter alone that describes the range of experimental results.

Then we compared the present results for the mean velocity and the Reynolds
stresses with other adverse pressure gradient turbulent boundary layer flows in
the literature. We found that the analytical model for the total shear stress can
describe flows near equilibrium and flows with significant effects of streamwise
deceleration. We remark that the model for the total shear stress was found to
be sensitive with respect to the values of the parameters and to be influenced
significantly by errors and uncertainties in the data. Regarding the similarity of
the mean velocity, the profiles for different flows were found to almost collapse
provided that the values for the pressure gradient parameter and for the wall
shear stress gradient parameter were close to each other. Moreover we showed
that the mean-velocity profiles of flows with the same value for the pressure
gradient parameter and different values for the wall shear stress gradient pa-
rameter do not collapse. We mention that the model implicitely includes some
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effects of flow history due to the friction velocity.
The observation of mean flow similarity for similar values of ∆p+x and ∆u+

τ,x

was remarkable due to the significant differences in the upstream history of the
different flows. For the present flow, the response time of the flow to streamwise
changing flow conditions, e.g., from curved to flat wall, was estimated using
the eddy turn over time. The corresponding streamwise travelling distance of
the mean flow was around 1-2 local boundary layer thickness for the inner 15
% of the boundary layer. From this we concluded that the flow in the inner
layer adjusts fast but not instantaneously and expected small history effects,
suggesting that higher order effects are negleced by the simple model based on
∆p+x and ∆u+

τ,x. Moreover the role of viscous effects and the location of the
thin log-law region compared to a possible mesolayer, proposed by George and
Castillo [1997], needs to be studied for adverse pressure gradients.

The present boundary layer flow was subjected to a streamwise changing
pressure gradient, curvature and relaxation, and we found several open questions
for future research. The first question is on the combination of two effects, i.e.,
the combined effect of pressure gradient and curvature, and the simultaneous
effect of adverse pressure gradient and relaxation from curvature on a flat plate.
This would need a series of new experiments with a parametric variation of
each effect. The second question is about streamwise changing flows and their
delayed response time, i.e., departure from and relaxation towards equilibrium.
Then a sufficient number of streamwise stations for detail measurements are
needed to study the streamwise evolution of the flow. For the present flow only
a single detail measurement position could be studied due to the large amount
of time to set-up and to calibrate the 3D Lagrangian particle tracking method.
From this we conclude the need to reduce the measurement time for a single
station.

Another open question was the possible appearance of longitudinal vortices
which could explain the observed spanwise variation of the wall-shear stress from
the oil-film interferometry results. We could show that longitudinal Görtler-like
vortices could be generated in the concave curvature region of the accelerating
ramp, which could be persistent until the begin of the focus region more than
at 4m downstream. The longitudinal vortices could not be studied in detail
due to the lack of data. After the measurement campaign we were able to
visualise qualitatively the generation of longitudinal vortices as the flow passes
the concave curvature ramp.

To answer some of the open questions, we performed a new wind-tunnel ex-
periment within the DLR internal project “VicToria”. The geometry model was
modified to increase the adverse pressure gradient and to cause flow separation
with a thin recirculation bubble. However, the measurements are still ongoing
and the evaluation of the results is subject to future research.
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Appendix A

Flow conditions during the

wind-tunnel measurements

In this section we summarise the flow conditions in the wind-tunnel. The refer-
ence pressure p∞ was measured downstream of the model near the exit of the
test section. Table A.1 describes the conditions for the different measurement
campaigns.

U∞ Meas. T∞ p∞ ρ∞ µ∞ × 10−5 ν∞ × 10−5

in m/s techn. in K in Pa in kg/m3 in Ns/m2 in m2/s

10 2D2C PIV 281.85 95400 1.1791 1.7804 1.5100
10 2D-µPTV 282.52 95455 1.1770 1.7838 1.5155
10 OFI 300.51 95210 1.1021 1.8383 1.6680
23 2D2C PIV 285.43 95010 1.1600 1.7984 1.5503
23 2D-µPTV 284.1 94992 1.1648 1.7918 1.5383
23 OFI 296.76 95006 1.1132 1.8199 1.6349
36 2D2C PIV 284.58 94415 1.1558 1.7942 1.5524
36 2D-µPTV 283.35 94285 1.1592 1.7880 1.5425
36 3D PTV STB 284.58 94415 1.1564 1.7942 1.5515
36 OFI 298.92 94482 1.0971 1.8295 1.6676

Table A.1: Summary of flow conditions in the wind tunnel.
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Appendix B

Mean velocity slope

diagnostic function for the

log-law

We show the results for the mean velocity slope diagnostic function for the 3D
LPT data for the case U∞ = 36m/s. In the first step we apply a smoothing
to the data, using a Gaussian filter with a kernel of 7 points, i.e., using the
data points i− 3, . . . , i+ 3 for data point i, corresponding to a half filter width
of 8.7δν . In the second step, we use a linear regression with a 3-point stencil
i − 1, i, i + 1 for data point i. We find an approximative plateau in the region
84 < y+ < 152, which is shown in figure B.1.

For the µPTV data at U∞ = 23m/s, the result is not shown. There are large
oscillations for the slope diagnostic function caused by the velocity gradient, if
the raw data are used. As a remedy, we used different versions of the smoothing
method described above, but the results still show some ambiguity and are less
clear than for the case U∞ = 36m/s.
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Figure B.1: Mean velocity slope diagnostic function for the log-law for U∞ =
36m/s.
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Appendix C

Uncertainty analysis

In this section we describe the uncertainty analysis for the different methods to
determine the friction velocity uτ , and for the evaluation of the log-law slope.

C.1 Determination of the friction velocity from

the data in the viscous sublayer

First we consider the uncertainties for the µPTV data for U∞ = 23m/s. For
the measurements using oil film interferometry (OFI), the uncertainty ǫ in uτ

is estimated to be 2.0%, which takes into account the uncertainty of the OFI
method and the uncertainty in the flow conditions. For comparison Harun et al.
[2013] report an uncertainty of 1% and Pailhas et al. [2009] report a value of
1.5%. Then we consider the method to determine uτ by a least-squares fit of
the data to the relation u+ = y+ in the region y+ ∈ [2 ± 0.1; 4.6 ± 0.6]. The
sources of uncertainties identified in this work are listed in table C.1 together
with their contribution to the overall uncertainty. For the overall uncertainty
for uτ the estimate is 4.4%.

The uncertainty ǫ for the skin friction coefficient cf takes into account the
relative uncertainty in uτ and additionally the relative uncertainty in U∞, which
is estimated to be 1.3%. The overall uncertainty in cf is therefore 11%.

For the method to determine uτ using a least-squares fit of the data to the

Sources of uncertainties ǫ(uτ )
No reliable data points below y+ ≤ 1.9 1.6%
Spreading in U(y) due to not enough samples 0.5%
Uncertainty in the wall position (∆y+ = 0.3) 0.5%
Possible systematic error of data points U(y) for y+ < 2.6 (ǫU of 2%) 1.3%
Uncertainty due to an estimated uncertainty in ν of 1% 0.5%
Estimated total uncertainty 4.4%

Table C.1: Sources of uncertainties ǫ for the determination of uτ using a least-
squares fit of the data to the viscous sublayer profile u+ = y+ in the region
y+ ∈ [2; 4.6] and uncertainty quantification for the µPTV data at U∞ = 23m/s.
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Sources of uncertainties ǫ(uτ )
Variation of lower and upper bound for fit [4± 2, 17± 3] <0.1%
Uncertainty in the wall position (∆y+ = 0.3) 1.0%
Uncertainty due to an estimated uncertainty in ν of 1% 0.3%
Additional unknown systematic uncertainty 2.5%
Estimated total uncertainty 3.8%

Table C.2: Sources of uncertainties ǫ for the determination of uτ using a least-
squares fit of the data to the profile by Nickels [2004] in the region y+ ∈ [2; 20]
and their quantification for the µPTV data at U∞ = 23m/s.

Sources of uncertainties ǫ(uτ )
Variation of upper bound for fit y+ ≤ [5, 16.5± 3.5] 0.3%
Uncertainty in the wall position (∆y+ = 0.3) 0.8%
Uncertainty due to an estimated uncertainty in ν of 1% 0.4%
Additional unknown systematic uncertainty 2.5%
Estimated total uncertainty 4.0%

Table C.3: Sources of uncertainties ǫ for the determination of uτ using a fit to
the profile by Nickels [2004] in the region y+ ∈ [5; 20] for the 3D LPT data for
U∞ = 36m/s.

profile by Nickels [2004] in the region y+ ∈ [2; 20], the sources of uncertainties
found in this work and the estimated uncertainties are listed in table C.2. The
overall uncertainty for uτ is estimated to be 3.8%.

Then we consider the estimate for the uncertainties for the 3D LPT data
for U∞ = 36m/s for the method to determine uτ using a fit to the profile by
Nickels [2004] in the region y+ ∈ [5; 20]. The sources of uncertainties found in
this work and the estimated uncertainties are listed in table C.3. The overall
uncertainty for uτ is estimated to be 4.0%.

C.2 Determination of the log-law slope

Then we consider the uncertainty for the log-law slope Ki. The sources for
uncertainties are the assumed region for the log-law fit, i.e., the lower bound
y+log,min and the upper bound y+log,max, and the uncertainty in uτ . The un-
certainty due to the choice of the log-law region is computed by a statistical
variation of y+log,min and y+log,max. For the case U∞ = 23m/s we use for the

lower bound y+log,min ∈ [82; 92] and for the upper bound y+log,max ∈ [126; 138].

For the case U∞ = 36m/s we use for the lower bound y+log,min ∈ [82; 90] and

for the upper bound y+log,max ∈ [142; 150]. The corresponding contribution to
the relative uncertainty in Ki is 2.0% for the µPTV data for U∞ = 23m/s and
0.9% for the 3D LPT data for U∞ = 36m/s. The other contributions to the
uncertainty in Ki are the uncertainty in uτ and the uncertainty in ν, which sum
up to an additional uncertainty of 2.5% for the case U∞ = 23m/s and to an
uncertainty of 1.2% for the case U∞ = 36m/s. The overall uncertainty is the
sum of the uncertainty in uτ plus this additional uncertainty. The results are
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Sources of uncertainties ǫ(Ki)
Variation of y+log,min, y

+
log,max within the specified limits 2.0%

Uncertainty in the wall position (∆y+ = 0.3) 0.25%
Uncertainty due to an estimated uncertainty in ν of 1% 0.25%
Uncertainty due to 2% uncertainty in uτ for OFI 2.0%
Uncertainty due to 4.4% uncertainty in uτ for fit to u+ = y+ 4.4%
Uncertainty due to 3.8% uncertainty in uτ for fit to profile by Nickels 3.8%
Uncertainty due to 6.1% uncertainty in uτ for CCM 6.1%

Table C.4: Sources of uncertainties ǫ for the determination ofKi and uncertainty
quantification for the µPTV data for U∞ = 23m/s.

Sources of uncertainties ǫ(Ki)
Variation of y+log,min, y

+
log,max within the specified limits 0.9%

Uncertainty in the wall position (∆y+ = 0.3) 0.3%
Uncertainty due to an estimated uncertainty in ν of 1% <0.1%
Uncertainty due to 4.0% uncertainty in uτ for fit to profile by Nickels 4.0%
Uncertainty due to 5.6% uncertainty in uτ for CCM 5.6%
Uncertainty due to 5.6% uncertainty in uτ for corrected CCM 5.6%

Table C.5: Sources of uncertainties ǫ for the determination ofKi and uncertainty
quantification for the 3D LPT data for U∞ = 36m/s.

summarised for the case U∞ = 23m/s in table C.4 and for the case U∞ = 36m/s
in table C.5.

C.3 Clauser chart method in the adverse pres-

sure gradient region

We consider the uncertainty of the Clauser chart method (CCM) to determine
uτ for the present data. Monty et al. [2011] report an uncertainty for uτ of
5% for an adverse pressure gradient beyond βRC = 2. For the Preston tube,
Patel [1965] gives an accuracy within 6% for ∆p+x < 0.015, see also Brown
and Joubert [1969]. For the present flow, the deviation of the value for uτ

determined by the Clauser chart is smaller than 5% compared to the value for
uτ from the most reliable method. Therefore we assume a systematic error of
5% for the CCM. Moreover we have to take into account the additional sources
for uncertainties. The sensitivity with respect to the interval [y+log,min, y

+
log,max]

is estimated by a statistical variation of the lower and upper bound. We obtain
a relative uncertainty based on the ±2σ-interval of 0.65% for the µPTV data for
U∞ = 23m/s. For the 3D LPT data for U∞ = 36m/s, we obtain a value smaller
than 0.1%. The results are summarised in table C.6 for the case U∞ = 23m/s
and in table C.7 for the case U∞ = 36m/s.
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Sources of uncertainties ǫ(uτ )
Variation of y+log,min, y

+
log,max within the specified limits 0.2%

Variation of log-law coefficients (κ = 0.41, B = 5.0 vs. κ = 0.384, B = 4.17) 0.3%
Uncertainty of the wall position (∆y+ = 0.3) 0.4%
Uncertainty due to an estimated uncertainty in ν of 1% 0.2%
Systematic error of CCM compared to OFI and fit to u+ = y+ 5.0%
Estimated total uncertainty 6.1%

Table C.6: Sources of uncertainties ǫ for the determination of uτ using the
Clauser chart method and uncertainty quantification for the µPTV data at
U∞ = 23m/s.

Sources of uncertainties ǫ(uτ )
Variation of y+log,min, y

+
log,max within the specified limits 0.15%

Variation of log-law coefficients (κ = 0.41, B = 5.0 vs. κ = 0.384, B = 4.17) 0.2%
Uncertainty in the wall position (∆y+ = 0.3) 0.05%
Uncertainty due to an estimated uncertainty in ν of 1% 0.15%
Systematic error of CCM compared to OFI and fit to u+ = y+ 5.0%
Estimated total uncertainty 5.6%

Table C.7: Sources of uncertainties ǫ for the determination of uτ using the
Clauser chart method and uncertainty quantification for the 3D LPT data at
U∞ = 36m/s.
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Appendix D

Empirical correction

method for the Clauser

chart

We use an empirical method to correct the standard Clauser chart method for
uτ for the 3D LPT data for the case U∞ = 36m/s. For this purpose we use
the result found in this work and the similar observation by Monty et al. [2011],
that the value for uτ by the Clauser chart is lower than the value determined
by a direct method. Moreover we assume for simplicity that the correction is
a linear function of ∆p+x . Hence the empirical correction for U∞ = 36m/s is
expected to be smaller than for U∞ = 23m/s due to the lower value for ∆p+x .
Putting this together, we use the empirical correction

uτ,CCM+corr,36,v2 = uτ,CCM,36

(

1 +
uτ,vis,23 − uτ,CCM,23

uτ,CCM,23

∆p+x,36

∆p+x,23

)

(D.1)

where we use an additional subscript for the reference velocity. This empirically
correction yields a value of uτ = 0.7885m/s. Moreover we use the alternative
empirical correction

uτ,CCM+corr,36,v1 = uτ,CCM,36

(

1 +
uτ,vis,23 − uτ,CCM,23

uτ,CCM,23

)

(D.2)

which yields the value uτ = 0.7964m/s.
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Appendix E

An analytical shear stress

model for the sqrt-law

region

In this section we describe the details used for the derivation of (7.4). In the

sqrt-law region, we substitute (2.17) for U+. The terms of (U+)
2
were integrated

individually from the wall to y+ using the integral calculator Wolfram|Alpha
(https://www.wolframalpha.com/calculators/integral-calculator/) and verified
using numerical integration. For the relation obtained, we then use two ap-
proximations. First, we neglect the arising inverse tanh terms. Second, we
avoid the singularity of log(y+) as y+ → 0. Therefore in the second term we

replace (1 + ∆p+x y
+)

3/2
by (1 + ∆p+x y

+)
3/2

− 1. Similarly in the eleventh term

we replace the (1 + ∆p+x y
+)

1/2
by (1 + ∆p+x y

+)
1/2

− 1. For the present case
of ∆p+x = 0.011, these modifications cause only negligible changes for the final
result for the relevant y+-values in the sqrt-law region.
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Appendix F

On the possibility of

Görtler vortices

In this section we attempt to study the possibility that longitudinal Görtler-like
vortices are generated in the concave curvature region of the accelerating ramp
at around x = 3.8m and could persist until the begin of the focus region at
x = 8.12m. Following Bandyopadhyay and Ahmed [1993] we use the turbulent
Görtler number based on θ

Got,θ =
Ueθ

νt

√

θ

Rc
(F.1)

where the turbulent viscosity νt is used instead of the laminar viscosity ν, and νt
is computed from Clauser’s relation νt = 0.018Ueδ

∗. Moreover Rc is the radius
of curvature with Rc = 1.08m. From RANS simulations using the model by
Spalart and Allmaras [1992] we estimate the values θ = 0.0090m, δ∗ = 0.0116m,
and δ99 = 0.094m, and we obtain Got,θ = 3.95.

Denote α = 2π/λ the wavenumber associated with spanwise non-uniformities
of wavelength λ. Then using figure 4 in Tani [1962], disturbances are amplified if
αθ / 1, i.e., for λ > 0.056m. Maximum amplification is estimated for αθ ≈ 0.55
from figure 3 in Saric [1994], i.e., for λ ≈ 0.103m, which is of the order of the
local boundary layer thickness. The corresponding uncertainty in λ is given by
the uncertainty of θ plus an additional uncertainty to determine λ from Got,θ,
including the uncertainty in Got,θ.

The OFI measurements are over a spanwise extent of 0.12m for one stream-
wise reference position. However, the data are ambiguous. For U∞ = 23m/s,
the pattern of a single wave could be seen. We estimate a wavelength in the
range 0.10m to 0.14m and an amplitude of 1.3% for uτ . Thus the theoretically
predicted wavelength for maximum amplification is in good agreement with the
wavelength of the spanwise variation for cf . As the diameter of the longitudinal
vortices is not smaller than the boundary layer thickness, they are not likely to
be destroyed by turbulent mixing, following the argument by Smits et al. [1979].
We estimate the vortex diameter as δ99 and the circumferential velocity Uθ as
0.05Ue, following again Smits et al. [1979]. The time needed by the vortex to
complete one revolution is Trev = πδ99/Uθ. Then the corresponding streamwise
travelling distance Lx = UeTrev = 20πδ99 is about 5.9m, using δ99 = 0.094m at
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x = 3.8m in the concave bend. This would imply that the longitudinal vortices
could persist until the begin of the focus region at x = 8.12m.

For U∞ = 36m/s the spanwise behaviour of cf shows a maximum near
the center of the measurement field and a minimum near its boundary, and the
difference between maximum and minimum of uτ is around 3.8%, corresponding
to an amplitude of 1.9% of a possible wave.
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value of von Kármán’s constant in turbulent pipe flow. J. Fluid Mech., 749:
79–98, 2014.

95



P. Bandyopadhyay and A. Ahmed. Turbulent boundary layers subjected to
multiple curvatures and pressure gradients. J. Fluid Mech., 246:503–527,
1993.

V. Baskaran, A. J. Smits, and P. N. Joubert. A turbulent flow over a curved
hill. Part 1. Growth of an internal boundary layer. J. Fluid Mech., 182:47–83,
1987.
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Ablösewirbel an einer geraden Wand. PhD thesis, Dissertation Ruhr-
Universität Bochum, also VDI Fortschrittsbericht, Reihe 7, Nr. 281, VDI-
Verlag Düsseldorf, 1995.

98



N. Kim and D. L. Rhode. Streamwise curvature effect of the incompressible
turbulent mean velocity over curved surfaces. J Fluid Eng. – T. ASME, 122:
547–551, 2000.

V. Kitsios, C. Atkinson, J. A. Sillero, G. Borell, A. G. Gungor, J. Jimenez,
and J. Soria. Direct numerical simulation of a self-similar adverse pressure
gradient turbulent boundary layer. Int. J. Heat Fluid Flow, 61:129–136, 2016.

V. Kitsios, A. Sekimoto, C. Atkinson, J. A. Sillero, G. Borell, A. G. Gungor,
J. Jimenez, and J. Soria. Direct numerical simulation of a self-similar adverse
pressure gradient turbulent boundary layer at the verge of separation. J.
Fluid Mech., 829:392–419, 2017.

T. Knopp. A new wall-law for adverse pressure gradient flows and modification
of k-ω type RANS turbulence models. 2016. AIAA Paper 2016-0588.

T. Knopp and A. Probst. An algebraic sensor for the RANS-LES switch in
delayed detached-eddy simulation. In New Results in Numerical and Ex-
perimental Fluid Mechanics VIII, volume 121 of Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, pages 457–464, 2013.
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R. Geisler, J. Agocs, A. Röse, C. J. Kähler, S. Scharnowski, R. Hain, J. M.
Foucaut, C. Cuvier, S. Srinath, and J. P. Laval. Spatially and temporally
resolved 2C-2D PIV in the inner layer of a high Reynolds number adverse
pressure gradient turbulent boundary layer. In 8th Internatinal Symposium
on the Application of Laser and Imaging Techniques to Fluid Mechanics, July
4-7, 2016, Lisbon, Portugal, 2016.

P. R. Spalart. The law of the wall. indications from DNS, and opinion. In
J. Jimenez M. Stanislas and I. Marusic, editors, Progress in Wall Turbulence :
Understanding and Modelling. Proceedings of the WALLTURB International
Workshop held in Lille, France, April 21-23, 2009, ERCOFTAC Series, pages
9–20. Springer, 2010.

P. R. Spalart. Philosophies and fallacies in turbulence modeling. Prog. Aerosp.
Sci., 74:1–15, 2015.

P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerody-
namics flows. 1992. AIAA Paper 1992-0439.

B. S. Stratford. The prediction of separation of the turbulent boundary layer.
J. Fluid Mech., 5:1–16, 1959.
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