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Abstract— In this paper, we design a nonlinear observer to
estimate the inertial pose and the velocity of a free-floating
non-cooperative satellite (Target) using only relative pose mea-
surements. In the context of control design for orbital robotic
capture of such a non-cooperative Target, due to lack of naviga-
tional aids, only a relative pose estimate may be obtained from
slow-sampled and noisy exteroceptive sensors. The velocity,
however, cannot be measured directly. To address this problem,
we develop a model-based observer which acts as an internal

model for Target kinematics/dynamics and therefore, may act
as a predictor during periods of measurement discontinuity. To
this end, firstly, we formalize the estimation problem on the
SE(3) Lie group with different state and measurement spaces.
Secondly, we develop the kinematics and dynamics observer
such that the overall observer error dynamics possesses a
stability property. Finally, the proposed observer is validated
through robust Monte-Carlo simulations and experiments on a
robotic facility.

I. INTRODUCTION

The estimation of motion parameters is key to Cartesian

control methods for robots and vehicles. For regulation

problems, a pose estimate using a kinematic observer is

sufficient. However, for tracking problems in which the

motion of the desired frame is time-varying, additional veloc-

ity/acceleration measurements are required in the commonly

known PD+ controllers [1]. In the context of On-Orbit

Servicing (OOS, see Fig. 1), the control objective is to track

a grasping frame on a free-floating satellite (right) with a

manipulator-equipped spacecraft (left). In the specific case

that the satellite is also non-cooperative (Target), the avail-

able measurement is often a relative pose which is computed

using an exteroceptive sensor like a camera. Therefore, the

control design is negatively affected by the lack of in-situ

proprioceptive sensors, like an Inertial Measurement Unit

(IMU), to measure the Target’s velocity, thereby motivating

the need for an observer of the Target’s motion states.

Pertaining to attitude estimation, in [2], the Multiplicative

Extended Kalman Filter (M-EKF) was proposed which dealt

with the orientation manifold by performing measurement

update in the tangent space of the quaternion group. In [3],

the authors developed a theoretical treatment of Lie group

observers that adhered to symmetries in kinematics and

possessed autonomous error dynamics. In [4] and [5], this

foundation was used to develop an invariant EKF which was

proved to be locally exponentially stable. In [6], the invariant

observer theory was enhanced and the autonomous error
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Fig. 1. Kinematic description of an OOS-SIM scenario in which a
manipulator-equipped spacecraft (left) tracks a free-floating satellite (Target,
right). The grasping frame {G} is observed in an end-effector-mounted
camera frame, {E}, and the motion states {gt, V bt } with respect to inertial
frame {I} have to be estimated.

dynamics derived in [3] was corroborated. The approaches

by both [3] and [7] propose an internal model (pre-observer).

This model possesses a geometric structure which is identical

to the actual kinematic system. In [8], the Continuous-

Discrete-EKF was developed which formalized filtering on

Lie group manifolds by making innovation updates in the

tangent space. In all these approaches, however, the esti-

mation problem was limited to the system kinematics with

an assumption that the proprioceptive sensor, IMU, provides

velocity measurements.

Pertinent to observers which include motion dynamics, [9]

developed a globally convergent angular velocity observer

using only orientation measurements, and used the natural

energy function on the momentum as a Lyapunov candidate

which resulted in a quadratic stable internal observer. [10]

and [11] developed a nonlinear observer which estimated

pose and a velocity and further demonstrated stability. Both

these observers, however, used pose and velocity measure-

ments. For non-cooperative targets, [12] developed a compu-

tationally efficient discrete EKF but the design did not exploit

symmetries in motion and it is also not trivial to derive the

region of attraction in an EKF. In contrast to [9], we propose

an alternative approach to compute a vector difference using

a push-forward vector operation. Furthermore, since the

subject of this paper is concerned with a non-cooperative

Target and velocity measurement is unavailable, the well-

formalized theory of autonomous error dynamics in [3],

[6] and [7] cannot be used directly and additionally, the

observers in [10] and [11] are not applicable. Therefore, in
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this paper, we address the problem of estimating the inertial

pose and body velocity of a non-cooperative free-floating

Target using only the relative noisy pose measurements.

The contributions of this paper are threefold. Firstly, we

propose an observer which extends the existing concepts of

kinematics symmetry in Lie group observer theory and uses

additional properties of rigid body motion dynamics. To this

end, we formalize the estimation problem on Lie groups with

different state and measurement spaces and derive a novel

left-invariant error formulation which narrows down observer

analysis to the state-space error. The kinematics and dynam-

ics part of the observer are designed such that it also acts as

a predictor. Secondly, through Lyapunov analysis, we show

that the observer error dynamics has almost-global uniform

asymptotic stability. Through a reformulation of dynamics

equations and exploitation of the skew-symmetric property

in rigid body motion, we are able to simplify the stability

analysis. Finally, we validate the proposed observer with 50
Monte-Carlo simulations and experimental validation.

The note is organized as follows. In sec II, the underlying

concepts of mechanical system modeling in SE(3), which

are relevant to this text, are provided. Following this, in

sec. III, the problem is formalized on SE(3) Lie group

with a general measurement model. In sec. IV, the proposed

observer equations are derived and stability is proved for

the observer parameters. This is followed by validation of

the proposed method using robust Monte-Carlo simulations

and experiments on OOS-SIM [13] (see Fig. 1) in sec. V

and sec. VI respectively. Finally, the conclusions and future

scope of work are laid out in sec. VII. All the Lemmas that

are used in the paper have been provided in the Appendix.

II. MECHANICAL SYSTEMS ON SE(3) GROUP

Fig. 1 is a representative scenario for Target tracking

using a manipulator-equipped spacecraft wherein, {I}, {T },

{G}, and {E} indicate the inertial, Target center-of-mass

(CoM), the grasping, and the end-effector-mounted camera

frames respectively. Before introducing the kinematics and

dynamics, we describe the notation concerning mechanical

systems on SE(3) which is used in this paper.

A. Notations and definitions

The pose (configuration) of a rigid body in space is given

as a matrix Lie group representation called SE(3) and is

written as g =

[
R p
0 1

]

≡ (R, p), whose identity is I4,4,

where Ik,k is a square identity matrix of dimension k. A

pose between two frames is represented with the subscript

of the lowercase letters of both frames. For instance, the

pose of {G} relative to {T } is gtg . The tangent space of

a given pose g ∈ SE(3) at identity is the velocity field

(Lie Algebra) of the pose and is also a matrix group se(3)
which may be expressed in either the body (V b) or a

spatial (V s) frame. In this text, all velocity quantities are

body velocities. Analogously, the cotangent space at identity,

denoted as se(3)∗, is the space of generalized forces. An

se(3) velocity is given as

[
ω× v
0 0

]

, where (.)× indicates

the skew-symmetric matrix for the vector and, ω and v are

angular and linear velocities respectively. se(3) is isomorphic

to R
6, [.]∧ : R

6 → se(3), [.]∨ : se(3) → R
6 and in

R
6-form, is written as V =

[
ωT vT

]T
. Since se(3) and

corresponding R
6 isomorphisms refer to different notations

of the same quantity, they are used interchangeably for

simplicity of notation in this paper. Poses and velocities with

one subscript indicate that they are referenced relative to {I},

for instance, {gt, V
b
t } are pose and velocity of the Target

CoM relative to {I}.

Def. 1: SE(3) pose reconstruction formula: For a pose

g ∈ SE(3) and body velocity, V b, ġ = g[V b]∧. The

superscript b denotes body se(3) velocity.

The Adjoint action, Ad : se(3) → se(3), of a SE(3) pose,

g, transforms velocities between spatial and body frames as

V s = AdgV
b where Adg =

[
R 0
p×R R

]

, see [14]. There

also exists an adjoint map of the Lie Algebra onto itself,

ad : se(3) → se(3) which is the differential of the Ad map,

adV =

[
ω× 0
v× ω×

]

for V ∈ se(3). The codajoint action

ad∗ : se(3)∗ → se(3)∗ is defined as ad∗
X = adTX . The SE(3)

Lie group and its algebra are endowed with a local (almost

global) diffeomorphism map log : SE(3) → se(3) and has

been defined explicitly in Lemma 1 in the Appendix.

The following two group operations are pointed out and

will be used in sec. III to derive the measurement model.

Def. 2: Lie group action: A Lie group action of a pose g ∈
SE(3) on another group element h ∈ SE(3), is a left and/or

right translation operation(s), given as Lg, Rg : SE(3) →
SE(3), Lg(h) = gh, and Rg(h) = hg, respectively.

Def. 3: Lie algebra Automorphism: Given g, h ∈ SE(3)
and a Lie group operation Ψg : SE(3) → SE(3) such that

Ψg(h) = ghg−1, if X = log(h), then Y = log(Ψg(h)) =
AdgX , for X,Y ∈ se(3). In other words, if Ψg is a group

operation, Adg is its corresponding Lie algebra transforma-

tion.

B. Kinematics and Dynamics

The Target (right) in Fig. 1 is assumed to be a rigid

body with fixed inertia and its configuration space is the

pose gt ∈ SE(3) of {T }. For a rigid body with inertia

Λ : se(3) → se(3)∗, the Euler-Poincaré [15, th. 6.1, iii]

equation of motion is,

d

dt
ΛV b = ad∗

V bΛV b + f (1)

where V b ∈ se(3) and f ∈ se(3)∗. Applying (1) to a free-

floating Target with f = 06,1, we get the equation of motion

for inertia, Λt =

[
It 03,3
03,3 mtI3,3

]

, V bt ∈ se(3) as,

Dynamics
{

ΛtV̇
b
t = ad∗

V b
t
ΛtV

b
t . (2)

The kinematics for the Target are given by Def. 1 as follows,

Kinematics
{

ġt = gt[V
b
t ]

∧, gt ≡ (Rt, pt) (3)
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In the analysis that follows, we use the following defini-

tions. The set of singular values for A ∈ R
n×n are given as,

σ(A) =
√

λ(ATA), where λ is the set of eigenvalues of A.

σ(A) = min(σ) and σ(A) = max(σ) refer to the lowest and

highest singular value of A respectively. Additionally, the l2
operator norm, ||A|| = σ(A). For a vector x ∈ R

n, such

that ||ẋ|| ≤ c, c > 0 implies x ∈ C1, which means that x is

continuous and ||x|| ≤ b, b > 0 implies boundedness. ∵ / ∴
refer to standard logical substitutes for because/therefore.

〈., .〉 refers to the inner product of the two arguments. Ik,1
indicates a vector of ones. All entities that are accented with

(̂.) correspond to estimates of the indicated quantity.

III. PROBLEM FORMULATION

In this section, the problem of estimating Target states,

{gt, V
b
t } is formalized. This problem is abstractly ren-

dered in Fig. 2. Illustrated on the left are the Lie group

configuration-space trajectories of the true state (solid), gt,
and observer’s estimate (dashed), ĝt ∈ SE(3), respectively.

η : SE(3) × SE(3) → SE(3) denotes the state estima-

tion error between gt(t) and ĝt(t). On the right are the

measurement-space trajectories for the actual measurement

(solid), g ∈ SE(3), and estimated measurement (dashed),

ĝ ∈ SE(3). ∆h : SE(3) × SE(3) → SE(3) denotes the

measurement error which is the residual between ĝ and g.

Between configuration-space and measurement-space, there

is a transformation, h(.) : SE(3) → SE(3), obtained through

Lie group actions (see Def. 2). This means that, given gt, ĝt,
we can obtain g = h(gt) and ĝ = h(ĝt) in the measurement

space. The poses, gt and ĝt are associated to their Lie algebra

V bt , V̂
b
t ∈ se(3) respectively. The estimation problem in this

paper is to use the measurement g = h(gt) to reconstruct

the states which include the pose (gt) and its Lie algebra

(V bt ). For this, we seek a transformation of errors from

measurement-space to the configuration-space so that we can

design the observer only in terms of the latter for simplicity.

A. Configuration-space error

First, we define a configuration-space error and a cor-

responding Lie algebra error as follows. In Fig. 2, the

estimation error in configuration-space, η, is defined as,

η = ĝ−1
t gt. Note that η is a left-invariant error formulation

[7, eq. 6]. Using the logarithm mapping defined in Lemma

1, we obtain an error term as log(η) = [ǫ]∧ ∈ se(3) and

ǫ =
[
ψTt qTt

]T
, where ψt and qt are the orientation and

translational errors respectively.

B. Measurement-space error

In this subsection, by using Lie group theory concepts, we

establish a relationship between configuration-space errors

(η, ǫ) and a similar measurement-space error (∆h, e) so that

in the rest of the text we can preclude measurement-space

for simplicity.

To this end, we describe any general measurement model

for g as a composite Lie group action (Def. 2) which may

contain both Rg and Lg actions, given by a transformation

h(.). Let us assume that there exist both, left and right actions

g, ĝ ∈ SE(3)

Vt

V̂t
ĝt

gt
η

h(gt)

h(ĝt)

gt, ĝt ∈ SE(3)

∆h

Fig. 2. Manifold portrait showing estimation on Lie groups: Trajectory
evolution of a rigid body and its observer with the same geometric structure.

gl, gr ∈ SE(3) on the state gt such that g = h(gt) = glgtgr.
Using this, a left-invariant measurement pose error, ∆h, is

defined as ∆h = h(ĝt)
−1h(gt). A Lie algebra error e ∈

se(3) is obtained using Lemma 1, such that e = log(∆h).
In the next step, we derive explicit forms of the relationship

between errors. Through rearrangement, we get,

η = gr∆hg
−1
r (4)

The expression in (4) is exactly the Ψgr (∆h) operation

(see Def. 3) of the action of gr contained in h. Hence,

log(Ψgr (∆h)) undergoes an Adg transformation. So, we get,

ǫ = Adgre (5)

From Fig. 1, the camera measurement pose is g while the

rigid body state is gt. In this specific case, from kinematics

we obtain, gr = gtg and gl = g−1
e . Applying the aforemen-

tioned transformations in (4) and (5), we get,

η = gtg∆hg
−1
tg , ǫ = Adgtg [log(∆h)]

∨, ∆h = (ĝ−1g) (6)

where ĝ = g−1
e ĝtgtg . It can be seen that using (6), the

measurement-space errors have been transformed to the

configuration-space for the case in Fig. 1. Hence, in the rest

of the paper, we perform analysis only with respect to the

configuration-space errors η, ǫ which are obtained using (6).

IV. OBSERVER DESIGN

A. Kinematics observer

Let us consider the kinematic part of the observer with the

same geometric structure as (3). This is obtained by applying

Def. 1 with an error injection term as follows,

˙̂gt = ĝt[V̂
b
t + AdηK1ǫ]

∧ (7)

where, K1 : se(3) → se(3) is the observer kinematic gain

which is determined through stability analysis in sec. IV.

B. Error kinematics

In this section, the observer error kinematics are de-

rived. The observer velocity error, V be , is defined as V be =
[

ωb
T

e vb
T

e

]T

= V bt − Adη−1 V̂ bt . Taking the time derivative
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of the pose error, η = ĝ−1
t gt, we get,

η̇ = −ĝ−1
t

˙̂gtĝ
−1
t gt + ĝ−1

t ġt

⇒ η̇ = η[V bt − Ad(η−1)V̂
b
t −K1ǫ]

∧

⇒ [η−1η̇]∨ = V bt − Ad(η−1)V̂
b
t

︸ ︷︷ ︸

V b
e

−K1ǫ
(8)

⇒ ǫ̇ = Br(ǫ)(V
b
e −K1ǫ) (∵ Lemma (2), Appendix) (9)

In parlance with the nomenclature presented in [14, §4], the

use of the log mapping for the error ǫ implies, the proposed

observer is the Logarithm feedback variant.

C. Velocity error dynamics

Before describing the equations of the dynamics observer,

we first motivate the formulation by pointing out the fol-

lowing concept. For stability analysis, we need the velocity

error dynamics from the equations of motion. In order to

obtain this, the Target velocity (V bt ) and observer velocity

(V̂ bt ) have to be compared as a valid vector operation. For a

pose-error η, Adη−1 is the push-forward which transforms

the velocity V̂ bt to the actual Target body frame {T } as

Adη−1 V̂ bt . Hence, with the use of the push-forward and

referring both velocities on the same point in SE(3), we

obtain a correct vector comparison between transformed

observer velocity, Adη−1 V̂ bt and Target velocity, V bt . Note

that, this is evident in the velocity error in (8) which takes

the form, V be = V bt − Adη−1 V̂ bt .

Following the discussion above, we compute the velocity

error dynamics by taking the time-derivative of V be . To this

end, the time-derivative of Adη−1 V̂ bt is computed using [14,

Lemma 15] and (8) and error dynamics are written as,

d

dt
V be =

d

dt
(V bt − Ad(η−1)V̂

b
t )

=V̇ bt −
(
Ad(η−1)

˙̂
V bt − ad(V b

e −K1ǫ)Adη−1 V̂ bt
)

(10)

Substituting for Ad(η−1)V̂
b
t = V bt − V be and using the

properties, adxx = 0 and adxy = −adyx in (10), we get,

d

dt
V be = V̇ bt −

(
Ad(η−1)

˙̂
V bt + adV b

t
V be + adK1ǫAdη−1 V̂ bt

)

(11)

Therefore, the observer design is now limited to determining

Ad(η−1)
˙̂
V bt such that the observer exhibits a stability prop-

erty.

D. Dynamics observer

The observer dynamic equations of motion are proposed

with a geometric structure similar to (1) and velocity

Adη−1 V̂ bt as,

ΛtAd(η−1)
˙̂
V bt =ad∗

(Ad
η−1 V̂

b
t )
ΛtAd(η−1)V̂

b
t + fo

− ΛtadK1ǫAdη−1 V̂ bt

(12)

where fo ∈ se(3)∗ is a design input force which is de-

termined by Lyapunov stability analysis. It is also worth

pointing out that the resultant system consisting of (7) and

(12) is an internal observer (see [3], [6]), which means that

the time-evolution of the system in absence of measurement

is like that of a rigid body and hence the observer can be

used as a predictor.

Substituting (12) in (11), we get,

d

dt
V be =Λ−1

t

(
ad∗
V b
t
ΛtV

b
t − ad∗

(Ad
η−1 V̂

b
t )
ΛtAd(η−1)V̂

b
t

− ΛtadV b
t
V be − fo)

(13)

Applying Lemma 6 to the first two terms in R.H.S of (13),

we obtain,

d

dt
V be =Λ−1

t

(
(ad∗

V b
t
Λt + ad∼

ΛtV
b
t
− ad∗

V b
e
Λt − ΛtadV b

t
)

︸ ︷︷ ︸

C(V b
t ,V

b
e )

V be

− f0
)

(14)

The observer error dynamics can be written together for

kinematics in (9) and dynamics in (14) as,

d

dt

[
ǫ
V be

]

=

[
−Br(ǫ)K1 Br(ǫ)

06,6 Λ−1
t C(V bt , V

b
e )

]

︸ ︷︷ ︸

A

[
ǫ
V be

]

−

[
06,6
Λ−1
t

]

︸ ︷︷ ︸

B

f0

(15)

In the following, K1 and f0 are determined using Lya-

punov stability analysis for the proposed nonlinear observer.

Theorem 1: Main result: For a free-floating rigid body

whose motion equations are given by (3) and (2), and an

observer given by (7) and (12), the observer error, x =[

ǫT V b
T

e

]

∈ R
12 is almost globally uniformly asymptot-

ically stable about the origin for design parameters P1, P2,

and observer kinematic gain, K1 and dynamic input f0 such

that,

1) K1 = k1I6,6 = P1 = p1I6,6, p1, k1 > 0
2) P2 = diag(p2), p2 = [p21I

T
3,1, p22I

T
3,1]

T , p21, p22 > 0

3) f0 = p1P
−1
2 Br(ǫ)

T ǫ

4) p1 >
p21σ(Λt)||ω

b
e(0)||

2

π2−||ψt(0)||2

Proof: The proof is split into two parts. In the first part,

uniform asymptotic stability is proved and in the latter part,

the constraint on the matrix P is determined so that the

rotational singularity in the log map is not encountered along

trajectories. The latter part refers to the item 4 in Theorem

1 and ensures almost-global stability of the observer error

system in (15). Choosing the Lyapunov candidate as W =

1
2x

TPx, where P =

[
P1 06,6
06,6 P2Λt

]

such that P = PT for

an open connected region x(0) ∈ Ω ⊂ R
12, and there exist

bounds as,

1

2
σ(P )||x||2
︸ ︷︷ ︸

α(||x||)

≤W ≤
1

2
σ(P )||x||2
︸ ︷︷ ︸

α(||x||)

(16)
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Taking time derivative along trajectories and using observer

error dynamics in (15), we get,

Ẇ =xTPAx− xTPBfo

=xT
[
−P1Br(ǫ)K1 P1Br(ǫ)

06,6 P2C(V
b
t , V

b
e )

]

x

− xT
[
06,6
P2

]

fo

(17)

In the following, constraints are imposed on the design

parameters in order to simplify (17). We choose, K1 =
k1I6,6 = p1I6,6 as a scalar so that we can apply Lemma

3 to the block matrix (1, 1) position in the first term. The

Lemma 7 is applied to the block matrix position (2, 2) in

the first term so that the term with C(V bt , V
b
e ) vanishes.

Furthermore, we set the input fo = p1P
−1
2 Br(ǫ)

T ǫ which

leads to a cancellation of coupled terms, ((2, 1) and (1, 2))
that follow in (18). Therefore, we get,

Ẇ = xT
[

−k21I6,6 p1Br(ǫ)
−p1Br(ǫ)

T 06,6

]

x = −k21||ǫ||
2 ≤ 0 (18)

Hence, from (18), we first conclude that the observer error

dynamics in (15) is uniformly stable. Note that, in contrast

to common Lyapunov functions used in robot control, (18)

has negative semi-definiteness with pose-error, ǫ, and not

velocity error, V be . In order to prove uniform asymptotic

stability of the state x, we use Matrosov’s theorem (see [1]

for application) from theorem 2 (in Appendix). We choose an

auxiliary function, W = xTPx, where P =

[
P1 06,6
−Λt P2Λt

]

.

Using Lemma 8 which guarantees a bounded observer

error x, we deduce that

β||x||2 ≤ |W| ≤ β||x||2 (19)

where β, β > 0. Hence, |W| is bounded.

Taking time derivative of W along trajectories, setting

P2 = diag(p2) and fo as defined in Theorem 1, we obtain,

Ẇ = xT (PA+ATP
︸ ︷︷ ︸

Q1

)x− xTPBfo − fTo B
TPx

=xTQ1x− 2p1V
bT

e Br(ǫ)
T ǫ+ p1ǫ

TP−1
2 Br(ǫ)

T ǫ

=xT (Q1 −Q2)x

(20)

where Q2 =

[
−p1P

−1
2 Br(ǫ)

T p1Br(ǫ)
p1Br(ǫ)

T 06,6

]

. Continuity and

boundedness of Ẇ follows from the conclusion in Lemma

10, which was derived by systematically proving these two

properties for all the terms in (20).

Furthermore, in the set {x ∈ Ω|Ẇ = 0} ≡ {x ∈ Ω| ||ǫ|| =
0}, applying limits to (20), we obtain,

⇒ lim
Ẇ→0

Ẇ = lim
||ǫ||→0

Ẇ = −V b
T

e

(

ΛtBr(06,1)

− (C(V bt , V
b
e )
TP2 + P2C(V

b
t , V

b
e )

)

V be

(21)

Using the definition of Br(ǫ) from Lemma 4, Br(06,1) =
I6,6. Employing the inner product property of Lemma 7 (see

(29)) to cancel out terms with C(V bt , V
b
e ), we obtain,

lim
Ẇ→0

Ẇ = −V b
T

e ΛtV
b
e ≤ −σ(Λt)||V

b
e ||

2

⇒ lim
Ẇ→0

|Ẇ| ≥ σ(Λt)||V
b
e ||

2
(22)

We conclude therefore that W is bounded and sign-definite

(negative for non-zero values of ||V be ||) in the set {x ∈
Ω| ||ǫ|| = 0}.

The conclusions from (16), (18), (19) match conditions

1, 2, 3 in Matrosov’s theorem. For the condition 4, the two

conditions in Lemma 11 are satisfied by Lemma 10 and (22).

Since, the error dynamics in (15) is bounded for x ∈ Ω, from

the Matrosov’s theorem in Lemma 11, we conclude uniform

asymptotic stability of the state x about the origin.

Topological drawbacks preclude global stability in SE(3)

due to the ambiguity in rotation. Readers are referred to

works by [10], [16] and [17] where this problem is discussed

and applied. In order to achieve, almost-global stability, a

condition on the minimum p1 is derived next. In this part

of the analysis, all functions with a subfix (.)ω denote the

rotational component of the corresponding function.

Let us define a sublevel set, Ωω = {x ∈ R
12 : Wω <

p1π
2

2 }, which is the state-space whose Wω is confined within

its least value at singularity (||ψ|| = π, ωbe = 03,1). Since,

we proved that W is non-increasing and given that, Wω ,

Ẇω , and P are decoupled from the translational part, Ωω
is a positive invariant set. If the upper bound of Wω(t =
0) for time t is restricted within the aforesaid sublevel set

Ωω = {x ∈ R
12 : Wω < p1π

2

2 }, it is sufficient to ensure

that the observer trajectories never encounter the rotational

singularity. This is written as,

1

2

(
p1||ψt(0)||

2 + p21σ(It)||ω
b
e(0)||

2
)
< p1

π2

2

⇒p1 >
p21σ(It)||ω

b
e(0)||

2

π2 − ||ψ(0)||2

(23)

and (23) provides a sufficient condition to ensure that the

observer error dynamics in (15) have almost-global uniform

asymptotic stability. �

V. MONTE-CARLO SIMULATION RESULTS

The proposed observer was implemented for estimating

the states of an inactive tumbling satellite (ENVISAT, [18]).

In such a scenario, the motion states as well as the the

inertia, Λt, are subject to uncertainties (detailed in Table I).

These uncertainties, together with the exteroceptive sensor

(camera) noise, make estimation robustness a key criterion in

determining practical use. The camera noise was simulated

as a concentrated Gaussian [8] with ν = 1e−4
I6,1 in the

tangent space and the noisy measurement was obtained as

g̃ = g exp [ν]∧ with sampling time T = 0.1[s]. In order

to validate the robustness of the proposed observer, 50
Monte-Carlo simulations were performed by varying the set

{Λt, gt(0), Vt(0)} within the uncertainty bounds (Gaussian

distributions) as specified in Table I. In all the simulations,

the observer was initialized only to zero initial conditions and
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TABLE I

UNCERTAINTY AND OBSERVER PARAMETERS

Λt It([Kg.m2]) =





17023.3 397.1 −2171.4
397.1 124825.7 344.2

−2171.4 344.2 129112.2





±





350 100 250
100 3000 150
250 150 3000





mt([Kg]) = 7827.867± 78.27867

V bt (0) 06,1 ± 0.0873I6,1([m/s], [rad./s])
gt(0) (R(±45[°],±45[°],±45[°],±0.5I3,1[m])∗

V̂ bt (0)
[

0T3,1[rad/s] 0T3,1[m/s]
]T

ĝt(0) (R(0, 0, 0),
[

0 0 0
]T

[m])∗

P p1 = 9.597,

P2 = 1.0e−05diag([0.0124IT3,1, 0.1158I
T
3,1]

T )

Th. 1, 4 p1 = 9.597 > 1.3549e−05 =
p21σ(Λt)||ω

b
e(0)||

2

π2−||ψt(0)||2

K1 k1 = 9.597
∗

X-Y-Z-sequence Euler angle parameterization

TABLE II

SUMMARY OF MONTE-CARLO SIMULATIONS

Mean ± std Max(||.||) Min(||.||)

pe[m]





0.0017
0.0007
−0.0003



±





0.0038
0.0033
0.0043



 0.0120 8.4542e−04

θe[°]





−0.0531
0.0248
0.0057



±





0.2226
0.1806
0.2425



 0.5271 0.1082

the gains were computed from parameters P1 and P2 which

are declared in Table I. Note that, for the expected tumbling

motion [18], item 4 of Theorem 1 is achieved by choosing

P1 as in Table I. In the description below, η ≡ (Re(θe), pe)
is used to show position and orientation errors.

Fig. 3 shows the convergence of motion states: the pose gt
and velocity V bt , for the 50th simulation run. After dropping

b superscript in the velocity (top row), Vt =
[
ωTt vTt

]T

of the Target is shown to converge after an initial transient

period. The configuration pose, gt, which is plotted as

position and quaternion, converged to position-error norm,

||pe|| = 0.0084[m] and angular-error norm, ||θe|| = 0.3[°].

Additionally, in Fig. 4, from the histogram of component-

wise errors for velocities (top row) and pose (bottom row),

we can infer that despite the introduced uncertainty, the

observer converges to a bounded error. The results tabulated

in Table II summarize these histogram results and it can

be seen that the maximum error-norm of both, position and

orientation, are 0.012[m] and 0.5271[°] respectively. These

metrics are better than the corresponding ones for the noisy

measurements (0.0173[m] and 1[°] respectively). These re-

sults validate the design and additionally prove robustness of

the observer which was designed using Theorem 1.

VI. EXPERIMENTAL VALIDATION

The proposed observer was implemented at the OOS-SIM

facility at DLR to estimate states of an axially spinning
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Fig. 3. Convergence of estimates ((̂.), solid) to the ground-truth ((.),
dashed) for the 50th Monte-Carlo simulation.
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Fig. 4. Histogram (component-wise) of errors in 50 Monte-Carlo sim-
ulations for velocities (top row) and pose (bottom row) with specified
uncertainties in Table I.

satellite. The satellite inertia was simulated using the facil-

ity’s client dynamics with Λt ≡ (mt, It), mt = 341[Kg]

and It = diag([400.1025, 262.9500, 264.9425])[Kg.m2]. The

satellite was spun about its dominant x−axis with ωtx =
i, i ∈ [2, 3, 4][°/s] for 8[s] each time. The satellite was

observed using an end-effector camera as shown in Fig. 1

and an image-processing algorithm was used to provide

pose-measurements to the observer at 10[Hz]. Firstly, the

convergence of the estimated ω̂tx towards ground truth ωtx
is demonstrated in Fig. 5. For practical purposes, a heuristic

threshold-based outlier rejection scheme was implemented

to avoid using unlikely pose-estimates from the image-

processing algorithm. However, despite this, we observe that

due to extremely noisy pose measurements, the estimation

degrades and fluctuates about the true value. Furthermore,

for the fastest case ωtx = 4[°/s], we demonstrate the

convergence of the observer state q̂t 7→ Rt(q̂t) to the ground

truth qt within 5[s] from 0 initial conditions of the observer

in Fig. 6. This concludes the experimental validation of the

proposed observer.
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Fig. 5. Comparison of estimates, ω̂tx, with ground truth, ωtx, for an
axially spinning Target simulated on the OOS-SIM facility (see Fig. 1) for
ωtx = i, i ∈ [2, 3, 4][°/s] where pose measurements were obtained from a
camera and image-processing system at 10[Hz].
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Fig. 6. Convergence of orientation estimate (q̂t 7→ Rt(q̂t)), to ground
truth, qt, for an axially spinning Target at ωtx = 4[°/s].

VII. CONCLUSION

In this paper, a nonlinear rigid body observer was de-

veloped using the log coordinates of the SE(3) pose error

to estimate the current pose and the body velocity of a

free-floating Target. The problem was first formalized for

rigid body motion on the SE(3) Lie group. Secondly, the

kinematics and the dynamics equations were proposed such

that the observer acted as an internal model that evolves

in time as a rigid body and can be used as a predictor.

By using a reformulation and skew-symmetric property of

rigid body dynamics, the stability analysis of the error

dynamics was simplified. The observer was proved to possess

almost-global uniform asymptotic stability. Finally, through

robust Monte-Carlo simulation results and experiments, the

proposed method was verified and validated. As a future

work, the observer shall be extended for a forced rigid-body

motion with additional velocity and force measurements.

APPENDIX

USEFUL PROPERTIES AND LEMMAS

Lemma 1: Let g ≡ (R, p) ∈ SE(3) be a group entity such

that tr(R) 6= −1, then

log(g) =

[
ψ× A(ψ)−1p
0 1

]

⇒ [log(g)]∨ =

[
ψ
q

]

(24)

where, A(ψ)−1 = (I3,3 − 1
2ψ× + (1 − α(|ψ|))

ψ2

×

|ψ|2 ) with

α(x) = x
2 cot(x2 ), ψ = log(R) = φ

2 sinφ (R − RT ), φ =
1
2 (tr(R)− 1), q = A(ψ)−1p.

Lemma 2: (Differential of exponential) [14] Let g(t) ∈
SE(3) be a smooth curve, X(t) = log(g(t)) and x(t) =

[X(t)]∨ where log : SE(3) → se(3) defines the logarithmic

mapping, V b = g(t)−1ġ(t) is the body velocity,

ẋ(t) =

∞∑

n=0

(−1)n
Bn
n!

adnx [V
b]∨ = Br(x)[V

b]∨ (25)

where Bn are the Bernoulli’s numbers.

Lemma 3: A well known property is adXX = 0. A

consequence of this is that if the logarithm mapping, ǫ =
log(g) for a Lie group element g, then, Br(ǫ)ǫ = ǫ.

Lemma 4: [19, sec. 10] The Jacobian Br(x) where x =
[
ψT qT

]T
= [X]∨, X ∈ se(3) is given as,

Br(x) = I6,6 −
1

2
adx + γ1(ψ)ad2

x + γ2(ψ)ad4
x (26)

where γ1(ψ) =
2

||ψ||2 +
||ψ||+3 sin ||ψ||

4||ψ||(cos ||ψ||−1) and γ2(ψ) =
1

||ψ||4 +
||ψ||+sin ||ψ||

4||ψ||3(cos ||ψ||−1) .

Lemma 5: Skew-symmetric property: For the dynamics of

the form (2), the inner product 〈V bt , ad∗
V b
t
ΛtV

b
t 〉 = 0.

Def. 4: An operator, ad∼
h : se(3) → se(3)∗ is written for

h ∈ se(3)∗, given a rigid body with inertia Λ : se(3) →

se(3)∗ and momentum, h =
[
hTω hTv

]T
= ΛV b, V b ∈

se(3), as ad∼h =

[
hω×

hp×
hp× 0

]

, where hω and hv are the

angular and linear momenta respectively. This is derived by

using the property, a×b = −b×a, after expanding ad∗
V b
1

ΛV b2
in terms of its rotational and translational components.

Lemma 6: For a pose g ∈ SE(3), and body velocities, V b1 ,

V b2 , V be ∈ se(3), such that, V be = V b1 −AdgV
b
2 , the difference

in the coadjoint terms corresponding to velocities V b1 and V b2
for inertia Λ, is given as,

ad∗
V b
1

ΛV b1 −ad∗
AdgV

b
2

ΛAdgV
b
2 = (ad∗

V b
1

Λ+ad∼
ΛV b

1

−adV b
e
Λ)V be

(27)

where ad∼
(.) from Def. 4 has been used.

Proof:

L.H.S =ad∗
V b
1

Λ(V be + AdgV
b
2 )− ad∗

(V b
1
−V b

e )ΛAdgV
b
2

=ad∗
V b
1

ΛV be + ad∗
V b
1

ΛAdgV
b
2 − ad∗

V b
1

ΛAdgV
b
2

+ ad∗
V b
e
ΛAdgV

b
2

=ad∗
V b
1

ΛV be + ad∗
V b
e
Λ(V b1 − V be )

=(ad∗
V b
1

Λ + ad∼
ΛV b

1

− ad∗
V b
e
Λ)V be

�

Lemma 7: For a pose g ∈ SE(3), and body velocities,

V b1 , V b2 , V be ∈ se(3), such that, V be = V b1 −AdgV
b
2 , the inner

product form,

〈V be , (ad∗
V b
1

ΛV b1 − ad∗
AdgV

b
2

AdgV
b
2 )− ΛadV b

1

V be 〉 = 0

Proof: Applying Lemma 6, to the bracketed term in the

right side of the inner product, L.H.S =

〈V be , (ad∗
V b
1

Λ + ad∼
ΛV b

1

− ad∗
V b
e
Λ− ΛadV b

1

︸ ︷︷ ︸

C(V b
1
,V b

e ))

)V be 〉

=〈V be , (ad∗
V b
1

Λ + ad∼
ΛV b

1

− ΛadV b
1

)
︸ ︷︷ ︸

C̃(V b
1
)

V be 〉
(28)
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where Lemma 5 has been used. Using the definitions of

ad, ad∗ and ad∼, it can be verified that C̃(V b1 ) is a skew-

symmetric matrix. Hence, 〈V be , C̃(V
b
1 )V

b
e 〉 = 0. �

Also a consequence is,

〈V be , (PC(V
b
1 , V

b
e ) + C(V b1 , V

b
e )
TP )V be 〉 = 0 (29)

if P = diag(p), p = [p1I
T
3,1, p2I

T
3,1]

T , p1, p2 > 0.

Lemma 8: Boundedness of V be : For the system defined

by (15), x(0) ∈ Ω, using (18), we get ||ǫ(t)|| < ||ǫ(0)||.

Since W (t) ≤ σ(P )||x(0)||2 ⇒ ||x(t)||2 ≤ σ(P )
σ(P ) ||x(0)||

2 =

c2, c2 > 0 ⇒ ∃c1 > 0, ||V be (t)|| ≤ c1.

Lemma 9: The matrix operators adV b , ad∗
V b , ad∼

ΛV b are

continuous if Vb ∈ se(3) is bounded such that ||Vb|| < a1.

Proof: Applying theorem for continuity and boundedness

[20, th. 2.7-9] for linear operators, adV b , ad∗
V b , ad∼

ΛV b are

bounded and hence continuous. �

Lemma 10: Boundedness and continuity of Ẇ:

1) For free-floating motion of the Target, ||V bt || < c4.

2) From (2), ||V̇ bt ||
2 ≤ σ(Λ−1

t ad∗
V b
t
Λt)||V

b
t ||

2 which

proves that V bt ∈ C1.

3) ∃c5 > 0, such that ||C(V bt , V
b
e )|| < c5 after applying

Lemma 8 for V be and item 1 for V bt . Applying item 2,

and Lemmas 9 and 8 to all the contained ad
(.)
(.) terms

in C(V bt , V
b
e ), we conclude, C(V bt , V

b
e ) ∈ C1.

4) If C(V bt , V
b
e ) is bounded and continuous, applying

Lemma 8 to A(x), Q1 is bounded and hence, con-

tinuous [20, th. 2.7-9].

5) Applying, Lemma 8 to Q2, bounded and continuous

property of Q1−Q2 follows from that of Q2 and item

4.

By applying the above observations, we conclude that Ẇ ∈
C1 and γ||x||2 ≤ |Ẇ| ≤ γ||x||2, for γ, γ > 0. �

Theorem 2: Matrosov’s theorem: Consider the system ẋ =
f(x, t) with f(t, 0) = 0 ∀t > 0. Assume there exist two C1

functions W (t, x) : [0,∞) × Ω → R+, W(t, x) : [0,∞) ×
Ω → R with an open connected set Ω ⊂ R

n containing the

origin, a C0 function W ∗ : Ω → R+, three functions exist

α, α(||x||), c ∈ K such that for every (x, t) ∈ Ω× [0,∞),

1) α(||x||) ≤W ≤ α(||x||)
2) Ẇ (t, x) ≤W ∗(x) ≤ 0
3) |W(t, x)| is bounded. (auxilliary function)

4) max(d(x,E), |Ẇ(t, x)|) ≥ c(x), where E = {x ∈
Ω|W (x)∗ = 0}

5) ||f(t, x)|| is bounded.

where E ≡ {x ∈ Ω|W ∗ = 0} Then:

1) ∀x0 ∈ {x ∈ Ω|W (t, x) ≤ α(r)} ∀r > 0 such that

a closed ball Br ⊂ Ω, x(t) → 0 uniformly in t0 as

t→ ∞.

2) The origin is uniformly asymptotically stable.

Lemma 11: In theorem 2, condition 4 is satisfied for the

following:

1) Ẇ(t, x) is continuous in both arguments and depends

on time in the following way, Ẇ(t, x) = g(x, β(t))
where g is continuous in both its arguments. β is also

continuous and its image lies in a bounded set K1.

2) ∃ class K function, k, such that |Ẇ(t, x)| ≥
k(||x||) ∀x ∈ E, t > 0 .
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[8] Guillaume Bourmaud, Rémi Mégret, Marc Arnaudon, and Audrey

Giremus. Continuous-discrete extended kalman filter on matrix lie
groups using concentrated gaussian distributions. Journal of Mathe-

matical Imaging and Vision, 51(1):209–228, Jan 2015.
[9] S. Salcudean. A globally convergent angular velocity observer for rigid

body motion. IEEE Transactions on Automatic Control, 36(12):1493–
1497, Dec 1991.

[10] S. Brás, M. Izadi, C. Silvestre, A. Sanyal, and P. Oliveira. Nonlinear
observer for 3d rigid body motion. In 52nd IEEE Conference on

Decision and Control, pages 2588–2593, Dec 2013.
[11] S. Brás, M. Izadi, C. Silvestre, A. Sanyal, and P. Oliveira. Nonlinear

observer for 3d rigid body motion estimation using doppler measure-
ments. IEEE Transactions on Automatic Control, 61(11):3580–3585,
Nov 2016.

[12] Aghili Farhad and Parsa Kourosh. Motion and Parameter Estimation of
Space Objects Using Laser-Vision Data. Journal of Guidance, Control,

and Dynamics, 32(2):538550, 2009. doi: 10.2514/1.37129.
[13] Jordi Artigas et al. The oos-sim: An on-ground simulation facility

for on-orbit servicing robotic operations. In 2015 IEEE International

Conference on Robotics and Automation (ICRA), May 2015.
[14] Francesco Bullo and Richard Murray. Proportional derivative (pd)

control on the euclidean group. In European Control Conference,
volume 2, pages 1091–1097, 09 1995.

[15] Anthony Bloch, P. S. Krishnaprasad, Jerrold E. Marsden, and Tudor S.
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