
 
 

Forschungsbericht 2019-28 
 
 
 

 
 
 

 

A combined analytical and numerical 
analysis method for low-velocity  
impact on composite structures 

 
 

Raffael Bogenfeld 
 

 

Deutsches Zentrum für Luft- und Raumfahrt 
Institut für Faserverbundleichtbau  
und Adaptronik 
Braunschweig 

 
 
 

 
 

156 Seiten 
  83 Bilder 
  16 Tabellen 
205 Literaturstellen 

 
 
 
 

 
 
 
 

                                
 
 









A combined analytical and numerical analysis method for
low-velocity impact on composite structures

Von der Fakultät für Maschinenbau

der Technischen Universität Carola-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: Dipl.-Ing. Ra�ael Bogenfeld
aus (Geburtsort): Filderstadt

eingereicht am: 5.9.2018
mündliche Prüfung am: 27.2.2019

Gutachter:
Prof. Dr.-Ing. Martin Wiedemann

Prof. Dr.-Ing. Laura De Lorenzis

2019





iii

Zusammenfassung

Das Verständnis von Schlagschädigung ist eine essentielle Voraussetzung zur Kon-
struktion von Leichtbaustrukturen aus Faserverbundmaterialien. Die vorliegende Ar-
beit beschreibt hierzu die Entwicklung eines kombinierten Analyseverfahrens aus Nu-
merik und Analytik. Diese Kombination erlaubt sowohl ein detailliertes Verständnis
der Schädigungsvorgänge im Laminat als auch die e�ziente Analyse von Luftfahrt-
Strukturbauteilen.

Die Entwicklung eines numerischen Modells basiert auf verschiedenen bereits verf-
ügbare Methoden. Ein hochaufgelöstes explizites FE Modell abstrahiert das Laminat
auf der Meso-Skala. Dies ist nötig um die Schadensmodi Delamination, Faserbruch
und Zwischenfaserbruch physikalisch plausibel abzubilden. Das Modell kombiniert
dazu zwei bruchmechanische Ansätze: kohäsive Kontakte dienen der Vorhersage von
Delamination, Kontinuumsschädigungsmechanik erfasst die Schäden innerhalb einer
unidirektionalen Lage. Auf diesem Modell aufbauend wird im Rahmen der vorliegen-
den Arbeit eine Stei�gkeits-Degradationsmethode für Zwischenfaserbrüche in schiefen
Bruchebenen entwickelt. Basierend auf einem Schädigungstensor achter Stufe erlaubt
diese Methode die Berücksichtigung der Kopplung von Schub und Normalverformung
bei Ausbildung schiefer Risse. Durch Rotation des Stei�gkeitstensors in die Bruche-
bene wird die Degradationsgleichung vereinfacht. Eine Validierung des so verbesser-
ten progressiven Schädigungsmodells erfolgt anhand von Würfel-Druckversuchen und
Coupon-Impacts.

Hochaufgelöste FE Modelle lassen sich kaum direkt auf Strukturbauteile anwen-
den, da der damit verbundene Berechnungsaufwand inadäquat hoch ist. Jedoch wird
in dieser Arbeit der relevante Analysebereich auf einen kleinen Referenzcoupon re-
duziert. Diese Modellreduktion erlaubt hoche�ziente Simulation von Schlagschäden.
Ein analytischer Transferansatz ermöglicht, dass der Schaden am reduzierten Modell
dem an der Originalstruktur entspricht. Hierzu kommt ein neu entwickeltes Feder-
Masse-Modell zum Einsatz. Dieses beschreibt Impactschäden für ein Laminat una-
bhängig der Randbedingungen und Einschlagposition. So kann von einem bekannten
Impact das laminatabhängige Schädigungsverhalten für jedes ausreichend ähnliche
Impactszenario abgeleitet werden. Die Impactenergie wird für die Übertragung des
Schadens zwischen Struktur und Referenzcoupon skaliert. Im Rahmen der Validie-
rung zeigt eine umfangreiche Versuchsreihe die Möglichkeiten und Einschränkungen
dieser Methode.

Über die Skalierung einzelner Impacts hinaus ist die integrale Betrachtung der
Impactgefährdung von weiten Bereichen eines Bauteils möglich. Durch die objektive
Schadensbeschreibung können aus dem Feder-Masse-Modell Resultate für jeden ähn-
lichen Einschlagort ermittelt werden. Diese Herangehensweise ebnet den Weg für den
Einbezug von Schlagschäden in die schadenstolerante Strukturauslegung von Flugzeu-
gen.
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Abstract

Understanding impact damage is essential to building lightweight composite structu-
res. The present doctoral thesis proposes a comprehensive impact analysis approach
that combines analytical and numerical methods. This approach assists in understan-
ding the details of laminate damage modes and in analyzing the impact scenarios of a
typical aircraft structure. This thesis approaches numerical impact analysis through
an examination of various existing methods. An explicit �nite element model that
captures the laminate on the meso-scale can be used to plausibly predict impact-
induced delamination, inter-�ber failure, and �ber failure. This model involves two
fracture-mechanical methods: �rst, cohesive surfaces catch the delamination damage
while, second, continuum damage mechanics addresses the intra-ply failure modes.
Building on this model, the present work describes the development of an appropriate
degradation method for inter-�ber cracks in oblique fracture planes. Using a rank-
eight damage tensor, this method enables the calculation of the resulting sti�ness
tensor including the coupling e�ects of shear and normal deformation. A simpli�ed
approach in fracture plane coordinates is derived on the basis of this tensorial degra-
dation. Compression experiments with oblique fracture planes and coupon impacts
serve as validation of this new progressive damage model. The computational cost of
this high-�delity approach impedes a direct application on the structural level. Howe-
ver, a typical property of damage resulting from impact with low velocity and large
mass helps to reduce the scope of the structural model: as the impact damage is small
in comparison to the full structure, the relevant zone for damage analysis is limited
to a small cross-section around the impact location. This model reduction permits
a very e�cient analysis of structural impact. An analytical transfer approach allows
the reduced model to comply with the original structural impact. A newly developed
spring-mass model captures the damage that occurs. In this model, a damage element
objectively describes the damage for a laminate con�guration. Thus, the spring-mass
model o�ers a method for transferring the damage behavior to any su�ciently similar
impact con�guration. Wherever qualitatively similar damage occurs, this model scales
the impact energy for damage similarity. In this manner, a structural impact scenario
can be analyzed on a numerical or experimental reference coupon of minimal size.
Impact experiments validate the method and show its range of applicability. Finally,
the transfer method enables impact analysis on sizeable structural areas through the
areal evaluation of the damage description in the spring-mass model. This develop-
ment allows for the establishment of a damage-tolerant design based on the actual
impact threat to structures.
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�Research is what I'm doing when I don't know what I'm doing.�

Wernher von Braun, space scientist (1912-1977)

1
Introduction

Nature provides �ber reinforcement to organically grown materials.
The human invention of �ber reinforcement copies this evolutionary ap-
proach. However, one crucial di�erence remains. While a tree can over-
grow and repair damage, a human-made structure remains damaged. We
thus have to deal with the damage.

1.1 Motivation of impact analysis on composite structures

Impact is the action of one object striking another. During this action, both objects
deform, and kinetic energy is converted to internal energy in both objects. A deforma-
tion beyond the reversible capacity of an object deteriorates its mechanical integrity;
damage results. The subject of this thesis is the striking of foreign objects against
load-sustaining structures. Impact-induced damage reduces the structure's capability
to sustain load. If impact cannot be avoided, a structure becomes damage-prone.
Consequently, impact damage has to be understood, and solutions for its mitigation
have to be found.

Consideration of impact damage is crucial for designing aircraft structures, in
particular. Aircraft are likely to be exposed to impact during their service life: hail,
birds, and dropped tools are only some relevant impact scenarios. If massive damage
occurs during �ight, safe �ight continuation has to be ensured until landing. Small
damage that is unlikely to be recognized immediately has to be tolerated until its
discovery; it may even need to be tolerated for the entire lifetime of the structure.

Impact scenarios are relatively simple to handle for metallic materials. Plastic
deformation absorbs most kinetic energy, and the damage is visible. The correspon-
ding damage-growth behavior is stable, well understood, and the guidelines for a
safe, damage-tolerant design are long established. Conversely, �ber-reinforced plastics
(FRPs) do not �t to this established system, based on their damage characteristics.
For this reason, experiences from metal structures are not directly transferable to
structures made of FRPs.

Fiber-reinforced plastics provide higher strength and sti�ness than do conventio-
nal metallic materials. Indeed, the exploitation of FRPs' anisotropic characteristics
enhances the possibility of establishing load-path-optimized designs. Although the
low mass density of FRPs provides a high potential for lightweight construction, the
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practically achieved weight savings are not nearly as high as the pure numbers of
strength and density suggest. One reason for this discrepancy is impact damage.
The complex damage behavior of various interacting damage modes makes damage-
tolerant design challenging. Damage is hardly visible and its growth easily becomes
unstable. All this deprives FRPs of their advantageous lightweight properties. As
a consequence, conservative design with high safety factors ensures the structure's
airworthiness. Such safety factors increase the structural mass of the aircraft, ho-
wever. Moreover, the conservative design demands for extensive quali�cation e�ort,
increasing the corresponding costs associated with FRP structures.

The research in this thesis shall provide an improved understanding of impact
damage. A combined analytical-numerical method is established for impact damage
assessment on a structural level. An analytical scaling approach enables a transfer of
a structural impact scenario and to a simpli�ed coupon impact. A numerical coupon
simulation provides the actual damage prediction. Advanced means of structural
analysis represent the basic instruments for the developed methodologies in the present
work.

Based on this approach, the risk of impact damage can be estimated, and the
experimental quali�cation e�ort shall be reduced. This work will not directly result
in better lightweight aircraft design, but in the increased safety for future lightweight
aircraft and the reduction of the associated design costs.

1.2 Objectives and hypotheses

The objectives of this dissertation are formulated in three hypotheses from which
the accomplished work steps derive. These hypotheses build on the primary goal of
developing an analysis strategy for low-velocity impact on the structural level. The
knowledge gaps that I discovered in currently available analysis methods and ideas
for their solutions lead to the hypotheses' formulation. In the main part of the thesis,
these solutions are developed, applied, and validated through experiments. The �nal
part of this work involves an evaluation of each hypothesis.

Initially, an impact analysis method that can be implemented in a damage to-
lerance (DT) analysis according to industrial standards requires a reliable damage
prediction for FRPs. Physical soundness of the phenomenological description and nu-
merical robustness have to be ensured. This analysis includes the prediction of both
the damage initiation and the postfailure behavior of the damaged material. A nu-
merical model that is based on the published state of the art shall serve that purpose.
The model shall be further improved where a lack of physical consistency is identi�ed.
This leads to the �rst hypothesis:

Hypothesis 1:

The failure of unidirectional composite plies in multi-directional lami-
nates can be captured by continuum damage mechanics (CDM) and a
�nite element solution.

For application in a DT analysis, the results of distinct impact scenarios are insuf-
�cient. A comprehensive approach, describing impact damage on an entire structure
would be useful and would radically enhance the possibilities of structural impact
assessment. Only a quickly solvable analytical model can provide this assessment.
Therefore, a new damage description method is required to characterize both the
structural state of damage and its e�ect on the mechanical behavior. Thus, the se-
cond hypothesis is derived:
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Hypothesis 2:

The impact damage of a composite structure can be described through
an analytical spring-mass model, capturing the state of damage and the
structural indentation behavior.

An analytical description of the damage state is insu�cient to predict impact
damage. Instead of a prediction, the analytical model shall allow the transfer of a
known impact damage to a di�erent location. It has to permit the deduction of a
laminate's generalized damage behavior from a known impact case. This deduction
presumes that the impact damage behavior can be described objectively regarding
the boundary conditions (BC) and the impact location. From the objective damage
behavior, the results of speci�c impact scenarios shall be derived. Accordingly, a
reduced, representative impact setup can represent large areas of an impact-prone
structure. These aims are formulated in the third hypothesis:

Hypothesis 3:

A low-velocity impact on a composite structure is transferable to a
more general reference case, the results of which can be inversely transfer-
red to large areas of a structure.

In the course of the thesis, the Chapters 2, 3, and 4 comprise the analysis of all
three hypotheses. The present introductory chapter provides the necessary theoretical
background on the basis of the published literature.

1.3 Fiber-reinforced plastics

1.3.1 Fiber reinforcement

Fiber-reinforced plastics are composites of at least two materials: a �ber reinforcement
and a matrix embedding the �bers. Fiber reinforcement is not a human invention but
a basic principle evolved by nature. Nature applied �ber reinforcement to organic
materials in plants and living organisms � wood, bone, and muscle are naturally �ber-
reinforced materials. Human-built structures reinforced by plant �bers are known to
have existed 3000 years ago in ancient Egypt [1]. In fact, the use of plant �bers is
reported in many ancient applications, commonly in combination with loam or tree
gum, both of which harden by drying; in that way, the increased material toughness
by �ber reinforcement was early on exploited by man. Modern utilization has moved
from natural to manufactured �bers made of carbon, glass, or aramid. Fibers are
superior to a solid of the same material because they are free of notches and have
identically oriented molecules.

A composite of �bers and matrix material has a clear distribution of tasks. Fibers
provide high tensile sti�ness and strength � excellent premises for load bearing. The
disadvantages of pure �ber material include a lack of compression stability and a
negligible shear sti�ness. To overcome these disadvantages, �bers have to be combined
with a second material component. This component has to provide cohesion and
stability to the �ber reinforcement. These are the main tasks of the matrix material.

Fibers provide high strength and sti�ness only in their longitudinal direction. The
composite of �bers and matrix behaves similarly. This behavior results in a parti-
cular case of directional material properties called �orthotropy�. As such, there are
three mutually orthogonal planes with symmetry of elasticity. For a �ber-reinforced
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material, one of these three planes is very tough, while the other two are not. In
some applications this characteristic �ts perfectly to the load � a tree trunk is such an
example in nature. Under multiaxial loading, however, an orthotropic behavior is not
advantageous. A combination of di�erently orientated �bers resolves this de�ciency.
The most pragmatic solution for this problem is thus a layered composite. Individual
orthotropic layers of unidirectional �bers are stacked to a multidirectional laminate.
This arrangement in layers is another essential characteristic of today's composites.
It o�ers new opportunities to design load-path-optimized structures.

Each of these positive characteristics makes FRPs a promising material for present
and future aircraft. Their properties of density, sti�ness, and strength o�er high
potential for lightweight designs. In design, analysis, and manufacturing, many new
di�culties arise, however. The damage behavior is complicated and hard to analyze
[2]. Improved damage capture of FRPs is inevitable for future structures made from
FRPs.

1.3.2 Damage modes of �ber-reinforces plastics

The damage behavior of FRP materials is driven by a diversity of various failure
modes that involve the �bers, the matrix, and the interface region [3]. The composite
itself, consisting of at least two di�erent materials, is responsible for this variety.
In addition, the layered design provides an additional property that in�uences the
damage behavior. Depending on the laminate and the loading, di�erent damage
modes dominate the failure. Figure 1.1 illustrates the three crucial damage modes of
composites [4].

Fiber  

Matrix 

Figure 1.1: Damage modes of composite materials: �ber fracture,
inter-�ber fracture, delamination (from left to right).

Fiber failure

In an FRP structure, the �ber reinforcement takes the bulk of the load. In con-
sequence, the breakage of �bers is the most severe failure mode. It substantially
attenuates structural strength and sti�ness. Alfred Puck even calls �ber damage �the
only desired failure mode of laminates� [5]. Being the load-carrying elements, �bers
should be exploited to their utmost strength. If another failure mode occurs before
�ber damage, the material potential is not fully exploited.

With �ber failure (FF) due to tensile load, usually �bers break, causing a crack
to appear. Under compressive load, the FF is dominated by kinking. In this case,
the �bers can lose their capability to bear a load without an actual crack [6, 7].
This behavior can be important if the loading condition changes between compression
and tension. Fibers that broke on tensile load can still sustain compression, and the
opposite is also true. Accordingly, the FF has to be captured as two separate damage
modes.
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The shear load is a minor factor for FFs. Due to the symmetry of the stress tensor
[8], each shear component in a possible �ber fracture plane σ12 and σ13 equivalently
acts in a possible plane of inter-�ber fracture by σ21 and σ31. Accordingly, shear load
usually results in a matrix failure mode before the �bers would be a�ected.

Fiber failure crack planes are usually perpendicular to the �ber orientation, as
illustrated in Figure 1.1.

Inter-�ber failure

We consider any ply damage orthogonal to the �ber orientation as inter-�ber failure
(IFF). It results in a cracked laminate with intact �bers. As early as 1987, Liu et
al. analyzed this damage type experimentally [9]. Inter-�ber failure can occur in two
ways: either by a crack in the matrix material or by the debonding of �bers and
matrix. Both ways can be summarized in one comprehensive IFF mode.

Depending on the state of stress that initiates the damage, the IFF has di�erent
damage characteristics. Tensile load in combination with shear results in one distinct
crack. When this crack is closed, the compression load can still be sustained. In
contrast to that, compression-shear damage results in a zone of crushed matrix ma-
terial, after which neither compression nor tension nor shear can be carried in that
section. However, in both cases the �bers remain undamaged. Consequently, load
in the �ber direction can still be carried. Either way, the stability behavior of �bers
under compression load can be a�ected negatively.

As the �bers remain intact, the fracture planes of IFF are usually in line with the
�ber orientation. Hence, they can occur at di�erent angles around the �ber axis. The
exact orientation depends on the state of stress that leads to the failure.

Delamination

In contrast to the previously described modes, delamination is an interlaminar failure
mode [9] � the local debonding of two adjacent plies. This mode leads to an IFF
surface parallel to the ply surfaces. Physically, the mechanisms are the same as for
IFF; however, the delamination does not occur on the ply level but on the laminate
level.

Delamination is not visible from the outside. Even when it occurs together with
visible damage, delamination can span over a much larger area. It is often called the
predominant damage mode in the failure of composites [9, 10, 11, 12]. This is true
for certain damage causes, especially those that do not result in catastrophic failure,
such as a low-velocity impact (LVI) [9]. Ballistic impacts and manufacturing defects
are also common causes of delamination [13, 4]. Usually, exceeding a certain level of
impact energy makes FF predominate over delamination.

The layup also in�uences the occurrence of failure types. As delamination appears
only at interfaces between two plies with a di�erent orientation, unidirectional lami-
nates do not delaminate [14]. A larger number of delamination-prone ply interfaces
results in smaller dimensions of the individual delaminations. The interface angle of
two adjacent plies in�uences the delamination size as well [15].

The distribution of impact-induced delaminations over the laminate thickness di-
rection shows a certain characteristic: The damage size varies with the damage depth.
Commonly, a pine tree pattern of delamination damage occurs [16]. For thin lami-
nates, the delamination size increases from the impact side to the reverse side. The
lowermost delamination is commonly the largest. For thick laminates, the pine tree
pattern reverses. The largest delamination occurs in the interface closest to the impact
side.
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To detect delamination damage in a structure, non-destructive inspection methods
have to be applied; possible methods include ultrasonic inspection, X-ray analysis,
and computer tomography, all of which require specialized test equipment. Ultrasonic
inspection is the most important method for practical inspection of structures as well
as for the validation of simulation results. The fundamental principle of the applied
ultrasonic methods is explained in Appendix A.2.

Damage interaction

The described failure modes can appear as separate phenomena. However, this is
only true for generic exceptions, like homogeneous states of stress; by contrast, the
damage modes usually interact [9]. Only by consideration of the modes' in�uence
on each other can a plausible prediction be made. An essential interaction regarding
impact analysis is the relation between delamination and IFF (Figure 1.2). Choi and
Chang were the �rst to describe these e�ects in 1992 [17]. Shi and Yee enhanced the
description in 1994 [18] through their analysis of the crack opening modes leading to
the propagation of delamination. Additionally, Serge Abrate contributed to a better
understanding of the delamination distribution over a laminate's interfaces with his
comprehensive work about impact [16].

In common sense, an IFF is the �rst-occurring damage in a laminate. The bending
load of the impact induces inter-�ber cracks by normal stress or by shear stress.
According to the same principle, as for a beam [19], normal stress is linearly distributed
over the thickness, with compression on the top and tension on the lower side. The
largest tensile stress is located on the backside of the laminate. A tensile IFF is mostly
located in the lower half of the laminate, while shear stress is quadratically distributed
and reaches its maximum in the middle of the laminate [20]. In consequence, shear
cracks accumulate in the laminate's inner plies.

An inter-�ber crack grows through a ply until it reaches an interface where the
�ber orientation changes. The �bers of the next ply act as a crack stopper, and crack
is de�ected to the interface; delamination results. Once a delamination initiates, the
Mode I crack opening signi�cantly contributes to its propagation [18].

The shear-induced delamination in the middle of the laminate can also appear
without a previous intra-ply crack. The symmetry of the stress tensor leads to an
equivalence of out-of-plane shear and the shear in the ply interface. In contrast, the
tension-induced delamination at the impact backside cannot arise separately. It is
bound to the matrix crack. This coupling is crucial for the prediction of the delami-
nations close to the impact backside. In a damage analysis, this interaction has to
be enabled by the damage model. Alternatively, it can be considered directly in the
damage prediction, as Choi and Chang proposed in their delamination criterion [17].

1.3.3 Damage-tolerant design with �ber-reinforced plastics

Aircraft structures have to meet high safety standards that are de�ned by the aeronau-
tical authorities European Aviation Safety Agency (EASA) and the Federal Aviation
Administration (FAA). These safety standards result from an indispensable need for
fail-safety in structures of vital importance. Describing his �ying machine, Leonardo
da Vinci said that �in constructing wings one should make one cord to bear the strain
and a looser one in the same position so that if one breaks under the strain, the
other is in the position to serve the same function� [21]. To comply with that need,
design guidelines for aircraft structures have developed throughout aviation history.
As those structures were originally made for metal alloys, the established guidelines
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Figure 1.2: Interaction of delamination with an IFF shear crack (A)
and an IFF tensile crack (B).

deal with metallic damage behavior and hence are not directly transferable to FRPs.
Further developments are required in the �eld of dealing with impact damage. An
FRP structure has to �equal or exceed� the same safety standards as a conventional
metal structure [22]. For that purpose, the FAA guideline AC 20-107 [23] de�nes the
permitted design principles for composite aircraft.

The �rst design concepts applied to ensure airworthiness were the safe-life and the
fail-safe design philosophies. As the diagram in Figure 1.3 shows, a safe-life structure
has to ensure that ultimate load can be sustained over the service life of the aircraft.
This assurance includes any possible damage occurring, because an inspection has not
been scheduled. Thus, safe-life design results in high structural mass. The fail-safe
concept ensures airworthiness by a redundancy of load paths but does not formulate
inspection requirements. The major di�erence in DT is the in the speci�cation of
inspections [24]. Regular inspections are scheduled to detect damage before it becomes
critical. With this design philosophy, the structure has to provide only the capability
to sustain the limit load over an inspection interval. Critically damaged components
are repaired or replaced. This method permits lighter structures.

Aircraft structures are designed according to the concept of DT. This concept
replaced the safe-life and the fail-safe concepts in the 1980s [24]. Damage tolerance
provides a good compromise between safety and economic e�ciency. The basic analy-
sis principle of damage-tolerant design is shown in schematic damage-growth diagram
in Figure 1.4 [25]. Damage is considered by assuming an initial crack exists in the
structure. Under operational load, this damage begins to grow. Damage tolerance
demands that the damage be detected and repaired before it reaches the maximum
tolerable size [22]. The residual structural strength, needing to be higher than the
limit load, de�nes the damage threshold. A damage growth analysis can obtain the
safe interval between those two damages sizes. Required inspection interval are deri-
ved directly as a fraction of the interval of safe damage growth. This principle was
established for aircraft made from metal materials.

In their work regarding DT concepts for composite structures Sierakowski and
Newaz said, �A basic tenet in the design of structures composed of composite materi-
als is that the structure should equal or exceed the damage tolerance requirement of
metals� [22]. However, the damage behavior of FRP materials makes a direct trans-
fer of the damage-tolerant design principle di�cult. Observable crack propagation is
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Figure 1.3: Applicability of damage tolerance and safe-life design
philosophy for di�erent damage sizes.
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Figure 1.4: Schematics damage-tolerant design with damage growth
under operation load.

fundamental to establishing the DT design principle. Unfortunately, damage detec-
tability cannot be ensured for all relevant damage. Delamination must be considered
nondetectable in a visual inspection. In addition, damage on the inner side of the
structure is not necessarily observable from the outside. These damage modes are
classi�ed as barely visible impact damage (BVID). This term refers to a damage that
is not detectable in a general visual inspection procedure according to the EASA and
FAA [26]. This makes BVID likely to remain in the structure during its service life.
Accordingly, the maximum possible BVID has to be considered in the design of this
structure.

The interval of safe damage growth in FRPs is very small, since damage might not
be visible even when it becomes critical. Accordingly, tight inspection intervals would
be required. As a result, a no-growth approach is applied, not permitting any growth
of possibly existing BVIDs. This is close to a safe-life design philosophy (Figure
1.3). The structure has to be capable of sustaining ultimate load after any possible
impact scenario [27]. Capabilities to build lighter structures cannot be exploited, as
the growth of damage is not permitted.
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1.4 Failure analysis1

The analysis of material failure is an important engineering discipline. Impact analysis
methods are founded on more general methods of failure analysis in materials. This
section gives a brief introduction to the relevant fundamentals.

The behavior of most materials begins with an elastic phase that can be considered
linear. In Figure 1.5, this linearity is represented by the �rst illustrated phase. In this
phase, no damage occurs, and loading and unloading are fully reversible. Hooke's law
[28] describes the linear correlation of load and displacement. Equation (1.1) shows
the generalized law in sti�ness form. The fourth-order sti�ness tensor C4 couples the
stress tensor σ and the strain tensor ε.

σ = C4 ε (1.1)

When the loading exceeds a certain threshold, the linear phase ends, and damage
initiates. Irreversible deformations occur. These can be either small cracks or plas-
tic deformations by damage on the atomic scale. Both result in a reduction of the
material's load-carrying capability. For engineering application, this second phase
is crucial. The prediction of the threshold of damage initiation is the �rst point of
interest. Secondly, the degradation behavior until total failure has to be described.

The third illustrated phase represents the post-failure behavior of a material. Un-
der tensile load, the failure usually results in an open crack, and the load drops to
zero. Under compression load, there is still a residual load-carrying capacity, as the
material cannot physically move away. A failure analysis also has to capture this third
phase.

The failure analysis in FRP usually requires a distinction of cases. The diversity of
damage modes is hard to capture in a comprehensive approach, as each failure mode
initiates di�erently and shows its own propagation behavior.

Strain 

Stress 
2) Failure 1) Elastic 3) Post failure 

Figure 1.5: Stress-strain schematics of material behavior in an elastic
phase, a failure region, and a post-failure region.

Damage initiation

Engineering methods use stresses or strains for the prediction of damage initiation in
isotropic materials. Methods like the von Mises yield criterion [29] or the maximum-
normal stress theory of Rankine [30] are established and applied in design processes.

The prediction of damage initiation of FRP is challenging and is itself a topic
of research. Many prediction methods � so-called failure conditions � are available.
These conditions predict the damage initiation according to the states of stress and
strain in the material. Many reviews of such conditions them have been established.

1Parts of this section have been published by the author in [RB1].
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Additionally, international comparative studies have been conducted in the World-
Wide Failure Exercises (WWFE) [31, 32, 33].

In this international exercise, many failure conditions were evaluated [32]. The ho-
mogenized criteria can be categorized by their association to failure modes [34]. For
example, criteria like those of Tsai-Wu [35] or Chamis [36] simply indicate damage by
a general failure index comprising all failure modes. Other conditions that consider
di�erent failure modes work with one failure index for each mode: Criteria of this
kind can be distinguished in non-interactive methods, that limit every stress or strain
component separately [33] and interactive criteria, taking into account several stress
or strain components to predict distinct failure modes. Non-interactive criteria such
as maximum-strain are usually straightforward but not necessarily conservative. Inte-
ractive models like the Hashin criterion [37] analyze each failure mode by taking into
account all strains or stresses that in�uence this speci�c mode (compare [RB2]). In
this category, there are simple geometrical models like the quadratic strain criterion in
the Equation (1.2). This criterion can be interpreted as the normalized length of the
strain vector in a fracture plane with the coordinates L/N/T . This normalized length
indicates failure when it becomes larger than 1. The fracture planes are commonly
the three orthogonal planes of the Cartesian material coordinates 1/2/3 in Figure 1.6.
Some failure conditions determine the most likely fracture plane of IFF. In this case
L/N/T is rotated by the angle ϕ around the 1-axis.

Fn =

√(
εnnEnn
Xnn

)2

+

(
εnlEnl
Xnl

)2

+

(
εntEnt
Xnt

)2

(1.2)

Failure conditions that determine the fracture plane are physically based. For
example, such an approach was developed by Puck and Schürmann [38]. Puck assumes
that IFF occurs in arbitrary fracture planes. According to the sketch in the Figure
1.6, this fracture plane is equipped with the coordinate system L/N/T , where L is
the �ber direction and N , the normal vector of the fracture plane.

Equations (1.3) and (1.4) show the Puck failure conditions for tensile IFF (ΦIFFt)
and compressive IFF (ΦIFFc) as it was formulated by Wiegand et al. [39]. The
criterion builds on the physically based Mohr-Coulomb type of failure. Thus, shear
stress determines the damage onset. The clue is the in�uence of the normal stress
through a friction term [39, 40]. The friction coe�cients pNT and pNL in Equations
(1.5) and (1.6) quantify this in�uence. Compression stress increases the sustainable
shear load, and tensile stress reduces it.

ΦIFFt (ϕ) =

(
σNN
XNN

)2

+

(
σNL

XNL − pNLσNN

)2

+

(
σNT

XNT − pNTσNN

)2

≥ 1 (1.3)

ΦIFFc (ϕ) =

(
σNL

XNL − pNLσNN

)2

+

(
σNT

XNT − pNTσNN

)2

≥ 1 (1.4)

pNT = − 1

2 tan (2ϕ0)
(1.5)

pNL = pNT
XNL

XNT
(1.6)

According to the evaluation in WWFE-II, especially those criteria that consider
oblique fracture planes provide good predictions (Puck [38], Cuntze [41], Pinho [7]).
The model of Puck and Schürmann includes a determination of the most likely fracture
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Figure 1.6: Sketch of an oblique fracture plane and the coordinate
systems of the material (1/2/3) and the fracture plane (L/N/T ).

angle to predict initiation more precisely. Another approach with oblique but �xed
fracture planes was proposed by Maimí, Camanho et al. in 2007 [42, 43]. They assume
compression fracture to occur in the typical angle of φ0 = 53◦ [44]. Apart from Maimí
and Camanho, many researchers report a similar fracture angle for compression failure
of unidirectional composites [45, 46, 47]. Based on the idea of Camanho, further
development by Catalanotti et al. [48] also lead to a criterion that determines of the
fracture angle.

For two-dimensional analysis, the most likely fracture angle can be computed
directly by an analytic formula [5, 49]. In a three-dimensional case, the determination
of the fracture angle ϕ has to be established as an iterative process. Wiegand et
al. have published an algorithm for e�cient determination of the fracture plane [39].
Through a golden section search and quadratic interpolation, the fracture plane is
determined in very few iterative steps. Evaluation of the failure conditions in the
fracture plane for approximately ten angles is required to compute a value that is
comparably reliable to an iterative search with 180 steps (cf. Figure 1.7). Wiegand's
algorithm is suitable for any criterion that requires the determination of a fracture
plane [38, 48, 50].
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Figure 1.7: IFF index of Puck's criterion depending on the fracture
angle determined by iterative search (blue) and golden section search

(red).

Damage propagation

For analysis of a strength- or sti�ness-based design, the consideration of the damage
initiation is su�cient. A safety factor ensures an adequate structural reserve until
the point of damage initiation that the failure condition predicts. However, for DT
design the damaged case becomes essential � propagating cracks and existing damage
have to be considered. Damage evolution describes what happens after the failure
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initiation, when Hooke's law according to the Equation (1.1) no longer describes the
material behavior.

At sharp crack tips, the assumptions of continuum mechanics would result in in�-
nitely high stresses. As such levels of stress are physically implausible, the continuum
theory reaches its limits. Inglis described this insu�ciency as early as 1913 [51]. It
is an insu�ciency from which a new branch of mechanics arose. Suitable methods
to deal with cracked structures belong to the scienti�c �eld of fracture mechanics.
Many fracture-mechanical approaches capture crack propagation based on the energy
absorption of the damaging material. This idea is based on the work of Gri�th in
1921 [52] and was further developed by Irwin in 1948 [53]. Irwin additionally contri-
buted to the development with his analysis of stresses and strains at crack tips to the
understanding of crack growth [54].

The propagation of a crack in a pre-stressed material releases an amount of energy
dEela per crack length da according to Equation (1.7). This energy release rate (ERR)
depends on the crack length of a (with a width b), the geometrical con�guration of
the specimen, and the applied load. In opposition to the released energy, the growth
of a crack requires an amount of energy that is proportional to the newly created
crack surface. This required energy per area is called critical energy release rate
Gc. To analyze whether a crack grows, the required energy for crack propagation is
compared with the potential energy being released by the softening of the specimen.
The condition for crack propagation (1.8) is ful�lled when the actual energy release
rate G exceeds the critical energy release rate Gc.

G = −dEela
da

1

b
(1.7)

G > Gc (1.8)

Following this idea, researchers tried to �nd a way of combining fracture mechanics
with continuum mechanics. For that purpose, Kachanov developed the e�ective stress
concept [55] that permits describing the state of stress in a cracked material element �
the CDM. Then, Chaboche and Lemaitre [56, 57] proposed a damage model based on
this concept, and Ladeveze provided further developments to apply CDM to composite
materials [58, 59].

A crack represents a discontinuity in the material. The response of a cracked
material element is that of a discontinuous material with three phases: two phases of
material and one open crack phase, as shown in State 3 of Figure 1.8. Continuum
mechanics cannot directly capture this discontinuity. A complete description of the
physical material state would require an adaption of the specimen geometry during
the analysis. This requirement presents a severe disadvantage, primarily because of
the associated e�ort. The idea of the CDM is to overcome this disadvantage through a
homogenized description of the crack. It idealizes all three phases in a single material
element. This material element has to possess the e�ective properties of a black box
around the real three-phase material.

The CDM concept of Chaboche relates the sti�ness degradation to the reduced
load carrying cross-section Ad = A0−Acrack. For the constitutive equation, only this
reduced load carrying cross-section is relevant. But in the analysis A0 remains the
reference surface of the stress in the constitutive equation. Thus, the ratio between
those two values in equation (1.9) is the basic equation for the sti�ness degradation.
It is expressed by (1− d), where d works as damage variable, describing the damage
status.
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Figure 1.8: Schematics of a cracked material element according to
the CDM.

(1− d) =
Ad
A0

(1.9)

σ̂ = (1− d)σ = (1− d)Eε (1.10)

Damage evolution law

To describe the degradation path of the stress-strain curve, the fracture-mechanical
concept of the ERR is applied to the CDM approach. The critical ERR as a mate-
rial property de�nes the integral value of the stress-strain curve. However, no such
fracture-mechanical material parameter de�nes the curve shape. A bilinear law is
a well-conforming variant and used in many recent works [60, 61, 62]. This law is
easy to handle, as it is analytically integrable. The integration results in Equation
(1.11), expressing the speci�c energy absorption gc that can be obtained through the
critical ERR Gc and the volume of characteristic volume Vchar of the homogenization
approach. Accordingly, gc is a volume-speci�c critical ERR. In reference to Equations
(1.7) and (1.8), the cracked specimen has to provide at least this critical rate from its
elastically stored energy in order to propagate the crack.

The remaining parameter in the constitutive law εu can be computed from the
known input parameter Gc. Other evolution laws like exponential degradation [63,
64] usually require numerical integration of the stress-strain curve, which is computa-
tionally more expensive.

gc =
1

2
σiεu =

Gc
Vchar
Acrack

(1.11)

The damage evolution is expressed through parameter d and described by the
strain-driven evolution law in Equation (1.12). This equation determines the value
of d depending on the damage initiation strain εi and the ultimate failure strain εu.
The constitutive equation of the damage variable d characterizes the corresponding
evolution law. As the CDM principle is independent of this law, the evolution equation
(1.12) can easily be exchanged.

d (ε) =
εu

εu − εi

(
1− εi

ε

)
(1.12)

A problem occurs when an interactive failure condition is combined with a damage
evolution law as in Equation (1.12). An interactive damage initiation criterion depends
on more than one stress or strain component. However, a single strain value drives
the evolution according to Equation (1.12). This problem is commonly resolved by an
idealization called the concept of equivalent strain. A scalar equivalent strain and a
scalar equivalent stress are calculated to feed the bilinear degradation law. A simple
approach is the absolute value from the strain and stress vector of the associated
fracture plane (Equations (1.13) and (1.14). This strategy is applied by Gonzalez
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[65], Falzon [60], Liu [62], and many other researchers. Alternatively, the strain εi in
the fracture plane is computed by an equation analogously to the failure condition
[66], or it is even expressed by the normal strain only [67]. Either way, one must be
aware that all those approaches are an idealization, not capturing the true damage
evolution path. In particular, a changing state of stress during the damage evolution
will lead to distortion of the energy absorption.

εi =
√
〈εnn〉2 + ε2

nl + ε2
nt (1.13)

σi =
√
〈σnn〉2 + σ2

nl + σ2
nt (1.14)

Finally, the damage evolution equation (1.12) requires the strain value for full
damage εu. Simple geometry provides its value: the integral of the bilinear law is
the area of the triangle in Figure 1.9. Its calculation by Equation (1.15) requires the
volume-speci�c critical ERR gc from Equation (1.11) and the equivalent stress σi from
Equation (1.14).

εu =
2gc
σi

(1.15)

ε

σ

1

3

gc

εuεi

σi

2

(1− d)σgmin

Figure 1.9: Bilinear damage evolution law with an elastic phase (1),
a degradation phase (2), and a post-failure region (3).

Degradation in three dimensions

For application to composite materials, the degradation must be applied to the sti�-
ness tensor of orthotropic material. The CDM concept according to Equations (1.9)
and (1.10) was adapted for this case by Matzenmiller [68]. The scalar damage va-
riable is su�cient to describe the damage state in one prede�ned fracture plane: In
three dimensions, several damage modes have to be taken into account. Those usually
correspond with di�erent fracture planes. Accordingly, at least one damage variable
has to be introduced for each fracture plane. If compression and tension damage are
distinguished and assumed not to in�uence each other, it is also possible to use two
variables for each fracture plane.

Based on Matzenmiller's idea, many damage models for composite materials have
been published [61, 62, 69]. The principle of e�ective stress from Chaboche is al-
ways the basic idea. Matzenmiller derived the degraded tensor Cd

2 from a degraded
compliance matrix. This can be interpreted as degradation of Young's modulus and
Poisson's ratio.

The degradation of the Poisson ratio is physically sound. The lack of stress in
the load direction also prevents the lateral contraction e�ect. Instead, the crack will
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merely open with two unstressed parts as illustrated in the third image of Figure 1.8.
Orthogonal to the loading direction, the envelope of the cracked material element
remains unchanged.

Cd
2 =

(
Cd
normal 0
0 Cd

shear

)
(1.16)

Cd
normal =



(1-d1)(1−ν23ν32(1-d2)(1-d3))
∆E22E33

sym. sym.
(ν21+ν31ν23(1-d3))(1-d1)(1-d2)

∆E22E33

(1-d2)(1-ν13ν31(1-d1)(1-d3))
∆E11E33

sym.
(ν31+ν21ν32(1-d2))(1-d1)(1-d3)

∆E22E33

(ν32+ν31ν12(1-d1))(1-d2)(1-d3)
∆E11E33

(1-d3)(1-ν12ν21(1-d1)(1-d2))
∆E11E22


(1.17)

Cd
shear =


(1− d1)(1− d2)G12 0 0

0 (1− d1)(1− d3)G13 0
0 0 (1− d2)(1− d3)G23

 (1.18)

∆=
(1−ν12ν21(1−d1)(1−d2)−ν13ν31(1−d1)(1−d3)−ν23ν32(1−d2)(1−d3)−2ν21ν32ν13(1−d1)(1−d2)(1−d3))

E11E22E33

(1.19)
To achieve a physically sound degradation, the damage variables di need to be furt-

her extended. The introduction of separate degradation variables di+ for tension and
di− for compression damage allows the separate consideration of both failure types.
Depending on the current state of stress, the constitutive law picks the active de-
gradation variables according to Equation (1.20). Three additional variables di−shear
describe the shear degradation status. These are not independent but derived from the
tension and shear variables [69]. This derivation results in a total of nine degradation
variables, of which six are independent.

di = di+
〈σnn〉
σnn

+ di−
〈−σnn〉
σnn

(1.20)

Degradation in oblique fracture planes

The material degradation in an oblique fracture plane is more complex than the previ-
ously introduced approach in Cartesian planes. In each Cartesian fracture plane, the
in�uence of the crack on the sti�ness entries in the tensor 4C can be directly derived.
However, an oblique fracture is not associated with a speci�c orthotropic component.
A degradation in only one fracture plane of the material coordinate system would be
incomplete, while a degradation of all matrix-driven normal and shear sti�ness entries
[70] would be too severe, because this would also a�ect the direction normal to the
fracture plane, which can actually still sustain loads. Puck and Schürmann them-
selves suggest a method similar to this full degradation [38]. Without regarding the
actual fracture angle, they diminish the parameters of matrix sti�ness E22 and G12

by a factor η. However, they consider a two-dimensional case, in which the laminate
thickness direction 33 is not included. This simpli�cation does not necessarily require
a full consideration of oblique fracture planes. The degradation might be too severe,
but it makes the method suitable for the conservative prediction of failure.

Nevertheless, a conservative prediction alone is no guarantee for a physically plau-
sible damage prediction. The e�ect of an oblique fracture plane on the deformation
behavior of a material element has to be further analyzed. A pragmatic solution to
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this problem is a quasi-one-dimensional workaround, which Tan et al. [60] and Liu
et al. [62] use in their works. The degradation is not applied on the elasticity tensor
but the stress tensor. For that purpose, the stress tensor σ is transformed from the
material coordinates (1/2/3) to the fracture plane coordinate system (L/N/T ). The
coordinate systems are introduced in Figure 1.6 on page 11. As the fracture plane
is always parallel to the �ber orientation, this transformation is a simple rotation
around the 1-axis. In the next step the factor (1− d) applies directly to the transfor-
med stress components in the fracture plane σNN , σLN , σNT . The remaining three
stress components σLL, σTT , σLT remain untouched. A complete description of the
degradation status is provided by the fracture angle ϕ and the variable d. Transfor-
ming those values back to the material coordinates provides a set of degraded stresses.
The one-dimensional equations can be expanded to a matrix multiplication of the stif-
fness matrix in Voigt notation and a degenerated degradation tensor D as shown in
Equation (1.22). The associated constitutive Equation (1.23) describes the introduced
degradation method.

An analysis of Equation (1.23) shows a di�culty that arises from this approach.
It leads to a non-symmetrical sti�ness matrix as the expansion of Cd

2 shows in Equa-
tion (2.9) for the normal components. The degradation factor (1− d) is located in
the whole second row but not in the whole second column. Tan and Liu solve this
issue through a symmetri�cation. The ratio of the degraded normal stresses σii and
the elastic stresses σ̂ii results in new values for the parameters dii. These modi-
�ed parameters inserted in Equations (1.16) � (1.19) result in a symmetrical sti�ness
matrix.

σNN = σ̂NN − d〈σ̂NN 〉
σLN = (1− d) σ̂LN
σNT = (1− d) σ̂NT

(1.21)

D2 =



1
(1− d)

1
(1− d)

(1− d)
1


(1.22)

σ = D2 σ̂ = D2 C2 ε = Cd
2 ε (1.23)

1.5 The �nite element method

The �nite element method (FEM) is an established procedure for solving the di�e-
rential equations of motion. Closed-form solutions exist only for simple cases or if
idealizations are applied. The FEM is an approach to provide a suitable numerical so-
lution for complex cases, where no closed-form solution can be found with reasonable
e�ort.

As the tensile bar illustration in Figure 1.10 shows, the FEM splits the target
domain into subdomains, called �nite elements. In these subdomains, simple shape
functions Nij approximate the solution. These functions are only de�ned in their
subdomain. The degrees of freedom (DoF) are limited through a limited number of
nodes in each subdomain. The shape functions meet the solution only at these nodes
of the �nite element. A minimization of the potential energy in the whole system
leads to a system of equations. The number of unknown parameters is equal to the



1.5. The �nite element method 17

degrees of freedom in the discretized �nite element model. The displacement values
at the nodes represent the unknown parameters. This approximation results in a
discrepancy to the real solution.

x 

1 2 3 Elements: 
Nodes: 1 2 3 4 

Continuum Structure 

FEM 
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Figure 1.10: Sketch of the FEM applied to a tensile bar.

The underlying mathematical ideas of the FEM were already developed in the
�rst half of the 20th century. Turner et al. [71] were in 1956 the �rst to describe a
complete framework of the FEM. They conducted an analysis of structural sti�ness.
Other researchers quickly adopted the concept; important names include Argyris,
Zienkiewicz, and Bathe, who contributed signi�cantly to the further developments of
the FEM [72, 73, 74]. The capabilities of the current FEM are strongly enhanced, and
the development has continued [75, 76]. Today, the development often focuses on the
modeling of damage. For application in impact analysis, the FEM basic methods, as
well as advanced developments, are relevant.

1.5.1 Time integration

For solving dynamic problems like an impact, the equations of motions according to
Equation (1.24) enlarge the solution space by the time domain. Inertia and damping
are time-dependent e�ects that require a transient solution. To obtain this solution,
the time domain is also discretized. With a step width of ∆t, the deformation state
is calculated at discrete points. Based on a set of initial conditions, the displacement
solution is obtained in intervals with this step width. This work includes a brief intro-
duction to the basics of time integration methods in Appendix B.1. The integration
procedure can analogously be applied to a second-order di�erential equation, like the
equation of motion.

Mẍ + Dẋ + Kx = f (1.24)

Transferred to the �nite element solution of a structure, an explicit time integration
requires only a matrix multiplication to obtain the displacement �eld at the next time
point. In contrast, an implicit method results in a system of equations that has to be
solved. Accordingly, the computational e�ort of explicit methods depends only linearly
on the number of DoF, while this dependency is quadratic for implicit methods. The
consequence concerning the computational e�ort is that explicit solutions become
advantageous for large models with many DoF. However, it is important to remember
that an explicit FEM does not compute a structural equilibrium state of internal and
external forces. A deviation is always included and results in instability after a certain
number of time increments.
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Maximum stable time increment: The unstable character of an explicit time
integration results in a limitation of the maximum possible time increment ∆tmax.
This limitation can be visualized by the speed of wave propagation in a structure. If
waves propagate too quickly, the wave can run through a �nite element within one
time step. Within this time step, no counterforces antagonizing the wave's displa-
cement are applied. Each time, counterforces are applied too late, resulting in an
oscillation building up. The oscillation will increase for several increments until the
solution completely diverges, and the point of instability is reached. For that reason,
a su�ciently small time increment has to be ensured. This can be estimated through
the ratio of wave propagation speed and the relevant minimal element length for that
wave. According to the Courant condition [77] in Equation (1.25) the stable time
increment proportionally increases with lcrit.

∆tstable ∼
l

cwave
∼ lcrit

√
ρ

E
(1.25)

As the Courant condition is not necessarily conservative, an additional reduction
of the time increment is required to ensure stability. This reduction can be expressed
by a safety factor st = ∆tsimulation

∆tstable
, whose value is typically selected to be between 0.5

and 0.9 [78, 79, 80].
In addition, the Courant condition provides information about possible toeholds

to increase ∆tstable: increasing the critical length, increasing the mass density or
reducing the sti�ness. The �rst of those reduces the approximation quality of the
geometry. Changes in mass and sti�ness are not physically grounded and a�ect the
structural behavior; therefore, their adjustment has to be handled carefully. In the
explicit FEM, adjustments of the mass density, called mass scaling, are common [79].
Mass scaling is useful, especially when only a few �nite elements of a model determine
the stable time increment. The mass in the corresponding elements increases, and the
overall structural behavior is hardly a�ected. Primarily, the simulation can be carried
out with a signi�cantly larger time step, which leads directly to a lower computation
time according to 1

∆tsimulation
. The physical soundness of the solution must always be

monitored. The structural mass and the energy balance are important check values.

1.5.2 Composite modeling with the �nite element method

Various options exist for modeling a composite laminate through �nite elements. The
signi�cant di�erence in these options is the applied abstraction scale in the discretiza-
tion [81]. On the macro-scale, the meshing can be performed on the laminate level as
in Figure 1.11a. One single layer of elements represents the whole laminate stack. A
laminate theory is required within each element to capture the deformation behavior
of the composite. Having at least one integration point per layer ensures that the
stresses and strains of each unique ply can be derived. Commonly, this method works
with shell elements to capture the bending behavior of the laminate with a single
element layer.

In further detail, the meshing can be conducted on the ply level through a meso-
scale approach, as illustrated in Figure 1.11b. Each layer is modeled by at least one
layer of elements. This mesh can consist of either solid or shell elements. The meshed
layers are stacked upon each other and form the laminate. Neighboring layers share
adjacent nodes, their degrees of freedom at the contact faces are coupled through tie
constraints. Alternatively, a damage-capturing interface model connects the plies.
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A very high computational e�ort results from the number of DoF, which multiplies
by the number of layers in comparison with a macro-scale approach. In addition, the
ply thickness tply drives the stable time increment in Equation (1.25).

Despite the large computational costs, this modelling strategy has been chosen in
many recent works around the analysis of impact damage [65, 82, 60, 64, 62, 66].
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Figure 1.11: Illustration of a composite layup model on the macro-
scale (A) and on the meso-scale (B).

1.5.3 Contact formulation in the �nite element method

A fundamental principle of physics, that objects cannot pass through each other [83], is
not automatically valid in a �nite element model. The underlying equation comprises
the deformation behavior of a body. Its interaction with other objects has to be
treated separately by modi�cation of the external forces. Contact algorithms perform
this modi�cation. These algorithms also use the �nite element mesh with its nodes and
surfaces. Common contact algorithms prevent the penetration of nodes into surfaces.
This aim can, for instance, be achieved through penalty sti�ness [84] or Lagrangian
multipliers, which work as a non-penetration constraint [85].

Accurate capturing of contact is crucial for the simulation of impact with the FEM.
The contact between the striking body � the impactor � and the laminate is essential
for the deformation.

1.5.4 Cohesive zone method

A key point of the laminate model on the meso-scale is the interface. While the out-of-
plane modulus of the plies su�ciently describes the laminate compliance, the e�ects
of occurring damage have to be considered separately. The cohesive zone method
(CZM) is a suitable numerical method to approach fracture in interfaces. It describes
the fracture as a �hard discontinuity� [81] in contrast to the CDM that describes only
a �soft discontinuity�. De Lorenzis et al. [86] explain that �Simultaneously they permit
the combination of stress- and energy-based crack descriptions�. Exceeding interfacial
shear or normal strengths initiates the energy-based crack propagation.

These basic ideas of the CZM were developed by Dugdale [87] and Barenblatt [88].
Allix and Ladeveze [89] were the �rst to present a corresponding interface model to
capture delamination damage.

In the initial state of the interface, the cohesive zone connects both interface
partners elastically. This connection concerns three deformation modes that all lead
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to a separation of the partners: the deformation mode in the normal direction and two
out-of-plane-shear deformation modes. In each mode, a sti�ness component Kij and a
relative displacement δij permit the calculation of a traction tij through Hooke's law
in Equation (1.26). The sti�ness components Kij have the unit N

mm3 and stand for
stress per separation. The tractions describe the state of stress in the interface zone,
and a damage initiation condition can be evaluated. A failure criterion, as in Equation
(1.27), is evaluated to determine the damage onset. After damage initiates, an energy-
based damage evolution completes the fracture-mechanical traction separation, and
the critical energy release rate Gi becomes the driving parameter. The constitutive
formulation of the cohesive zone is comparable to that represented in the CDM model
introduced in Subsection 1.4.

The whole formulation is either implemented in a speci�c element type (cohe-
sive elements) or in a contact law (cohesive surfaces). Equation (1.26) represents
the formulation for cohesive surfaces. Cohesive elements work with an additional
constitutive thickness value T0 to compute strain values from the separations. The
sti�ness values Kij respectively require a multiplication with this thickness to achieve
the corresponding element sti�ness eij : KijT0 = eij .

t =

tnntnl
tnt

 =

Knn

Knl

Knt

δnnδnl
δnt

 (1.26)

fCZM =

√(
〈tnn〉
Xnn

)2

+

(
tnl
Xnn

)2

+

(
tnt
Xnn

)2

(1.27)

For both cohesive elements and cohesive surfaces, the sti�ness of the cohesive
zone is a numerical and not a physical parameter. In order to maintain physical
soundness, the sti�ness has to be high enough not to in�uence the global laminate
sti�ness signi�cantly. On the other side, too-high sti�ness values would negatively
a�ect the stable time increment of the simulation. For the derivation of a quantitative
value for K, Turon [90] suggests the formula given in Equation (1.28). The reciprocal
1
α de�nes the ratio of the additional compliance introduced into the laminate by the
cohesive zone. According to Turon, this value shall be 2 % at the maximum.

K = α
E33

Tply
(1.28)

A cohesive zone prescribes the plane of possible crack development. For many cases
of crack prediction, this would be a severe disadvantage, but delamination modeling
is a predestined application. The interface is a known vulnerability in a laminate.

The required mesh density for cohesive zones does not depend on the minimal
energy absorption, like the limits derived from the CDM. Instead, the cohesive zone
length has to be signi�cantly larger than the element length. This is the crack zone
between the point of damage initiation and the point of full damage. In this zone,
at least three elements are recommended to describe the crack-propagation behavior
plausibly [90]. The cohesive zone length di�ers individually for each crack opening
mode and depends on the critical energy release rate and the maximum allowable
tractions. [91]

lcz = ME
Gc
X2
i

(1.29)
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According to Turon, M is a parameter that depends on the speci�c cohesive zone
model. Turon lists several methods for its determination, resulting in values between
0.21 and 1.0.

To achieve a larger cohesive zone and thus a larger permitted element length,
the strength parameter Xi is arti�cially decreased [90, 91]. The interface strengths
Xi become purely numerical parameters, which are arti�cially reduced. During an
impact, normal tensile stress in the out-of-plane direction is very low, and consequently
a decrease of Xn is considered insigni�cant for the damage initiation. Either way, this
method can result in physically implausible delamination damage close to the support
of the specimen.

As shear stress initiates delamination, a similar adaption for Mode II is ineligi-
ble. Even though a plausible delamination damage result could still be achieved, the
delamination threshold force of the impact event would not be met anymore.

1.5.5 Continuum damage mechanics in a �nite element model

The basics of the CDM model were already explained in Section 1.4. Its application
in the FEM requires some additional steps which this subsection brie�y introduces.

Maximum element length

The approach in Equation (1.15) on page 14 relates the critical ERR of a failure mode
to the constitutive law of the material degradation path. This equation works with
a volume-speci�c energy release rate gc with the unit

[
mJ
mm3

]
. In contrast to that,

the critical ERR as a material parameter is speci�c for the created crack surface,
and the unit has to be area-speci�c

[
mJ
mm2

]
. This requires normalization by a length

value. A unit length would be the easiest possibility, but this would result in a
severe de�ciency of Equation (1.11) in the application on a �nite element � a mesh
dependency. A constant volume-speci�c value gc makes the damage-induced energy
dissipation dependent on the volume of the damaging �nite element. In fact, the
energy dissipation should depend on the element cross-section that represents the
fracture plane.

The mesh dependency can be solved by normalization with the characteristic ele-
ment length normal to the fracture plane [66]. In Equation (1.30) lc represents this
characteristic length. It is a function of the element dimensions, the failure mode, and
the fracture angle. The normalization of the ultimate failure strain with the corre-
sponding length value lc is necessary to achieve mesh-independent energy absorption.

εu =
2Gc
lcσi

(1.30)

However, there is a mesh-dependent minimum energy absorption gmin de�ned by
the elastic energy stored in an element when failure initiates. This appertains to the
�rst half-triangle in the bilinear law, illustrated in Figure 1.9. The value is expressed
in Equation (1.31). The ratio of critical ERR and minimal speci�c energy absorption
results in the maximum allowable characteristic element length in equation (1.32).
For practical application in an explicit simulation, an additional factor around 0.9 is
recommended to prevent abrupt degradation and thus to ensure numerical stability.
The mesh has to ful�ll this requirement for each considered damage mode.

σiεi
2

=
σ2
i

2E
= gmin (1.31)
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Gc
gmin

=
2EGc
σ2
i

= lmax (1.32)

Maximum degradation in the post-failure region

In theory, the damage parameters di range from zero (undamaged) to 1 (fully dama-
ged). However, the upper limit of 1 is practically unsuitable. From the numerical
point of view, a sti�ness of zero results in a singular sti�ness matrix. Deletion of
the respective �nite elements would solve this issue. However, this deletion causes
other problems. Fully developed inter-�ber damage can occur with all �bers remai-
ning intact. Deletion of the corresponding element would a�ect all directions and be
physically inaccurate.

There are also physical reasons why a complete sti�ness loss will not occur under
compression or shear load. When compression damage occurs, the created crack does
not open. The compression deformation pushes the damaged material together. In
a laminate, this material cannot entirely move away or vanish. Residual stress will
always remain. Some authors capture this sti�ness by a stress plateau in the post-
failure region [60].

1.6 Impact on composite structures 2

Before the actual introduction to impact analysis methods, a further examination of
the impact phenomenon itself is required. The technical term Impact actually descri-
bes a phenomenon that can emerge in very di�erent ways. An important parameter
for the impact characterization is the ratio of the impactor mass mi and structural
mass ms. It determines which e�ects dominate the impact response. Olsson proposes
distinguishing three di�erent categories [92], as illustrated in Figure 1.12:

� In a ballistic impact with mi << ms, dilatational waves dominate the dynamic
response.

� A low-mass impact mi ≈ ms has a wide-band dynamic response in which many
�exural eigenmodes of the structure participate.

� A large-mass impact with mi >> ms results in a quasistatic structural response
consisting of the impact system's fundamental �exural mode.

Figure 1.12: Categories of impact according to Olsson: ballistic im-
pact, low-mass impact, and large-mass impact (mi1 < mi2 < mi3).

Thus, the impactor mass mi characterizes the structural dynamic response. Ho-
wever, this parameter by itself does not drive the resulting impact damage. Both
the impactor's velocity vi and its mass mi determine this damage. Figure 1.13 il-
lustrates the relationship of impactor mass, impactor velocity, and damage. While a
large-mass impact with high velocity causes destructive damage, its impact with low

2Parts of this section have been published by the author in [RB2].
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velocity results in local damage to the laminate. The design-relevant BVID (compare
with Section 1.3.3) belongs to this category. On the other side, low-mass impact with
low-velocity causes negligible damage. The low-mass impact becomes interesting only
in combination with a high impactor velocity. Even though this kind of damage was
found to be �more detrimental to the integrity of a composite structure� [93], this
damage is typically visible and not classi�ed as BVID.

From this awareness, we derive the target domain of this work: large-mass impact
with low velocity. This domain is commonly referred to as low-velocity impact � a
de�nition that appears ambiguous, as it includes low-mass and large-mass impacts,
which behave di�erently according to the above-mentioned categories speci�ed by
Olsson. The negligible small damage of low-mass impact with low velocity solves
this ambiguity: it is not a common region of interest. In common sense, the term
low-velocity impact refers to a large-mass impact with low velocity. 3

Consequently, in the further course of this work, the term low-velocity impact
refers to large-mass impact with low velocity.
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Figure 1.13: Characterization of impact scenarios through the im-
pactor mass and velocity. The graph illustrates the target regions of
interest (BVID) and validity (blue) of the models developed in the

present work.

1.6.1 Overview of impact analysis methods

For reliable impact analysis, at least three basic physical principles must be under-
stood: the vibration behavior of structures, the indentation of an object to a structure,
and the damage of FRPs. The analysis of these principles is accompanied by analy-
tical challenges in capturing these principles by mathematical equations � equations
for which either closed-form solutions or approximate numerical solutions have to be
found.

The approaches to impact analysis can be classi�ed by their abstraction scale.
The overview in Figure 1.14 comprises the most relevant classes of impact models.
Simple analytic models describe an impact setup through springs and masses or a

3In contrast, the ambiguity of the terminology large-mass impact cannot be resolved. It may
mean a large mass combined with low velocity or high velocity. The former is BVID-relevant, while
the latter causes massive structural damage and must be analyzed in the context of crash analysis.
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beam. Low-�delity models on the macro-scale capture the structure on the laminate
level. High-�delity models require a resolution on the ply level of a laminate, leading
to meso-scale approaches. Micro-mechanical modeling, distinguishing the constituent
parts �ber and matrix as separate phases, represents the most detailed level. The
increase of predictive capabilities came with a signi�cant increase of the computational
e�ort. Usually, the models aim at the prediction of the occurring damage, its onset,
and its extent.
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Figure 1.14: Overview of impact analysis methods on di�erent ab-
straction scales.

Early analytical methods treat an impact system as a multi-body system in which
springs connect one or more masses. Abrate published the �rst of such spring-mass
models in 1991 [94], and later Christoforou [95] and others followed. These models
capture an elastic impact response, taking into account the plate deformation of the
structure and the local surface indentation. Based on a spring-mass model, Chris-
toforou even developed a semi-analytical approach for analyzing impact by dimensi-
onless constants, the so-called loss factor theory [96]. It allows achieving kinematic
similarity of size-scaled impact scenarios. These analytical methods permit an es-
timation of impact duration, maximum contact force, and impactor displacement.
Furthermore, Olsson developed an advanced spring-mass model [92, 97] that captures
damage by a spring in series with the bending deformation. Singh and Mahajan [98]
recently enhanced this idea through damage consideration in each deformation mode.

Static indentation problems of objects were �rst analyzed by Heinreich Hertz in
the 19th century [99]. He developed an analytical contact law that is still important
today, for analytical models or quick assessments of surface deformation by contact.
Taking dynamic e�ects into account, Stepan Timoshenko provided the �rst solution
for dynamic indentation of a beam, based on his famous static beam theory [19]. In-
corporating the third dimension, Karl Karas investigated in his work from 1939 lateral
shock to plates [100]. His work builds on both Hertz's contact law and Timoshenko's
dynamic beam theory.
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A plate approach comprises more eigenfrequencies of the impact system. Dobyns'
development on the dynamics of orthotropic plates [101] forms the basis of these
approaches. He provides an analytical description for �simply-supported orthotropic
plates subjected to static and dynamic loading conditions�. This description is founded
upon pre-existing plate equations and an approximate dynamic solution by a series
approach. All mentioned scienti�c works form historic landmarks for the analysis
of impact on FRP. Although state-of-the-art methods go far beyond these historic
developments, the knowledge provided in those works is still relevant today, especially
to analytic solutions.

Building on the work of Dobyns, Olsson derived in 1992 the �rst impact model
[102], based on Kirchho�'s plate equation. In addition, Swanson proposed an improved
plate approach in 2005 [103] that is also valid for composite laminates [103]. Such plate
models capture the undamaged dynamic behavior with higher accuracy than spring-
mass approximations. The inclusion of material-speci�c nonlinearities, as proposed
by Naja� in 2016 [104], even extends this capability.

Both spring-mass and plate models can be combined with an empirical or ana-
lytical prediction of damage threshold loads (DTL). Analytical estimations of the
damage initiation and extent build on such DTL. For instance, Olsson, Schoeppner,
and Abrate have proposed respective methods [92, 97, 105]. Damage threshold loads
are usually derived using fracture mechanics, to predict the contact force that makes
a delamination grow. To predict the damage extent, Jackson and Poe [106] proposed
a force-based approach that calculates the largest delamination diameter.

Beyond the possibilities of analytical description, impact analysis can be con-
ducted by the FEM in many variations. These variations are categorized in macro-,
meso-, and micro-models, depending on the laminate's abstraction scale of the �nite
elements. Layered-shell approaches belong to the macro scale. As proposed by Elder
et al. in 2003 [107], such models capture the kinematics of impact like a plate model.
However, they permit the evaluation of failure conditions on the ply level and the cor-
responding sti�ness degradation. Elder's model uses explicit simulations in LS-DYNA
implementation; Baaran [108, 109] and Kärger [110, 70] have even developed a stand-
alone-tool for impact analysis (CODAC4). By implicit time integration, combined FE
analysis, and analytical equations, an e�cient impact analysis was achieved.

An upgraded macro-scale model that even included a stacking of sublaminates was
published by Johnson et al. in 2001 [111]. This stacking permits the authors to use
an interface model between the plies. Johnson applies an interface model from Allix
and Ladeveze [89] to capture delamination damage. This method still provides the
basis for state-of-the-art meso-scale models. Considering the limited computational
power compared to today's possibilities, Johnson reported reasonable results.

The increase of computational power permitted the application of Johnson's idea
on the meso-scale: each ply is modeled with at least one layer of elements. The
plies are equipped with a damage model based on CDM, and the CZM according
to Allix [89] is used at the interface. A vast variety of meso-scale methods has been
published � the interface model, the ply model, element types and meshing approaches
are essential characteristics in which recent models di�er. As a meso-scale model can
work with any homogenized failure condition [32, 33].

In 2001, Borg et al. also published a cohesive element delamination model for
composite laminates [112]. Based on this model, the research group presented a com-
plete meso-scale model for impact analysis in 2004 [113]. In this model, an approach
for determining the propagation direction of delamination was included. Published

4Composite Damage Tolerance Analysis Code, www.dlr.de/FA
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by Loikkanen el al., another meso-scale model followed in 2008 [114]. They applied
the cohesive surface method in their impact analysis model.

Both Loikkanen and Borg report good delamination predictions. Borg additionally
identi�ed the necessity of improved ply-damage models. A correspondingly improved
model was presented by Bouvet in 2010 [115] and by Gama in 2011 [63]. Later, several
adapted con�gurations were developed by, for example, Ilyas in 2010 [116], Shi in 2014
[117], Gonzalez in 2012 [65] and Tan in 2015 [60]. Recent publications mainly provide
incremental improvements, proposing better failure conditions [62], the inclusion of
nonlinearities, the permanent deformation [60, 118, 64, 119] or the damage evolution
[60, RB1] are proposed. Panettieri also identi�ed additional relevant in�uence factors
like the vibration behavior of the impactor [120]. Furthermore, Ehrich applied the
meso-scale method for the analysis of impact on preloaded specimens[121].

Good results can be achieved with these methods, even though the computation
e�ort is high and numerical di�culties have been reported. Recent improvements
possibly provide a better solution accuracy, but they increase the computational e�ort
rather than reducing it. Usually, user-de�ned material models are necessary for the
CDM damage models. Especially if permanent indentation or nonlinear shear behavior
is included, onboard materials of commercial FE codes do not provide the required
features. Gama implemented a suitable material model for LS-Dyna and published it
under the name Mat162 [69].

While normal meso-scale approaches capture intra-ply damage through CDM,
Bouvet and Rivallant developed an alternative solution [115, 82, 122]. The mesh
aligns with the �ber direction, and �ber-parallel cohesive zones are put inside each
ply. In contrast to CDM, cracks are captured as real singularities in the ply. The
corresponding failure mode is called ply splitting [115] and is a type of IFF. The si-
mulation results of Bouvet show excellent agreement with experimental results on
di�erent laminates of unidirectional plies.

Furthermore, other variants to build a meso-scale model without CDM were tried.
Nian [123] and Chen [124] considered the extended �nite element method (XFEM)
suitable for analyzing lamina damage, but Chen also mentioned di�culties with ex-
plicit time integration and the required computation e�ort. Other advanced methods
like phase �eld theory [125], peridynamics [126], or discrete elements [127, 124] still
do not provide the required maturity.

On the next level of detail, the prediction of IFF is conducted by a micro-mechanical
model. Such a model needs to be coupled with a reference volume element (RVE) in
a multiscale approach. The matrix damage is predicted on the micro-scale. Parti-
cularly for multiaxial loading, such a prediction is superior to homogenized models.
Micromechanical failure criteria such as those proposed by Huang [128] or energy-
based matrix failure conditions [129] can be used. The Mises yield criterion [29] for
isotropic material is also a proper failure condition. It was applied in early works
about micro-mechanical failure analysis [130] and is still applied in recent works [131].
Lopes et al. published the �rst impact model on this abstraction scale in 2014 [132];
later Ivan£evi¢ et al. [133] and Liao et al. [134] proposed related approaches.

In summary, the present high �delity models are able to capture impact damage
with high accuracy, but these methods are numerically costly and partly require para-
meters that are not physically motivated. Simulation on the coupon level requires at
least 100 central processing unit (CPU) hours [60, 61]. To achieve reductions of the
physical testing e�ort, numerical methods should be reliable and su�ciently fast on
the structural level. E�cient methods with the right balance between accuracy and
computation e�ort have to be provided to make numerical impact analysis interesting
for design applications.
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1.6.2 Existing reviews

Many researchers already have conducted reviews about impact analysis methods.
The compendium �Impact on Composite Structures� by Abrate [16] represents a review
of the entire spectrum of analytical methods. The capabilities and the de�ciencies
of various spring-mass and plate models are analyzed and evaluated in this work.
The �rst broadly based review was conducted by Elder et al. in 2004 [135]. Linear
elastic fracture mechanics, macro-scale shell-models, and the damage threshold loads
were tested. Among these, damage threshold evaluation lead to surprisingly good
results, but the test cases were still far from possible impact use cases. For e�cient
aircraft design application, a need for further development and improved accuracy
was recognized.

Reviews have also been published about recent high-�delity models. A comparison
of the predictive capabilities with di�erent failure criteria was conducted by Liu et
al. [62]. Their model is based on a stacked-solid approach with cohesive elements.
According to their results, the Puck criterion leads to the most reliable results. Force
history, energy dissipation, and damage initiation forces were plausibly predicted.
Other criteria also lead to proper results. In consequence, it is appropriate to trade
o� between accuracy and computation e�ort for particular applications.

In 2015, Lopes et al. conducted another benchmark about impact simulation met-
hods [64]. Four di�erent meso-scale modeling strategies with varying mesh structures
and cohesive zone models were presented and compared. Aligned meshing improved
the prediction of the intralaminar failure and the delamination. Cohesive surfaces
permitted the inclusion of the friction behavior of two delaminated plies and also
lead to improvements in the overall results. Also, the work of Trousset 2014 work
[136] provides a broad overview of the available impact analysis methods on di�erent
abstraction scales, according to Figure 1.14.

In addition to that, Jousset published a comparison of two di�erent possibilities
to employ a constitutive law in a cohesive zone [137]. A standard bilinear traction
separation law was compared to a pressure-dependent elasto-plastic damage-model.
An elastoplastic model had better behavior if the interface material showed signi�cant
plastic yield. May's evaluation of cohesive laws [138] included strain-rate e�ects. He
provided an overview of the required enhancements and identi�ed strain rate e�ects
as crucial only beyond LVI and quasistatic events. Abisset et al. proved in their work
the equivalence of damage morphology between quasistatic indentation and LVI [139].
On the numerical side, the in�uence of cohesive parameters on the impact response
was analyzed by Panettieri et al. [140].

The state-of-the-art modeling approach with a meso-scale model is also used
beyond the analysis of LVI [60, 64, 141, 62]. Corresponding models for high-velocity
impact were proposed by Pernas-Sanchez et al. [142] or by Heimbs et al. [143]. A
comparable approach is also applied for crushing analysis [144] and for general damage
modeling in composite structures [145].

1.6.3 Impact analysis on the structural level

Su�ciently accurate modeling strategies are available; the current challenge is the
application of impact analysis on the structural level. While the predictive capabilities
seem satisfactory, the corresponding computation e�ort is already very high for small
coupon specimens. For coupon simulations of CAI impacts, Tan reports a computation
time of 19 h on 32 CPUs [60], with Lopes even reporting 48 h on 40 CPUs, as a very
�ne mesh was applied. These numbers show that a blunt transfer of the same method
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to the structural level would result in an ine�ciently high computation e�ort. For
some methods, also the modeling e�ort can also severely increase.

An excellent example for a structural application of a high-�delity impact analysis
was published by Schwab and Pettermann in 2016 [146]. The de�nition of a damage-
prone area permits them to work with di�erently meshed zones. Riccio proposes in
several publications a comparable approach [147, 148]. He also applies a local analysis
approach with a damage-prone area and uses it at the coupon level in order to reduce
the computational costs. Both Riccio and Schwab achieve good results with this local
impact damage analysis. Additionally, Riccio presented the application of a meso-
scale model on a substructural level [149]. Johnson works directly with a cut-out
section of the actual structure [150]. Low-�delity methods with a layered-shell mesh
can directly be applied on the structural level as the number of DoF is signi�cantly
lower [110].
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�Successful engineering is all about understanding how things

break or fail.�

Henry Petroski, civil engineer and author (*1942)

2
The Numerical Prediction of Low-Velocity

Impact Damage

Scope of this chapter

In this chapter, I want to set up a physically sound impact-damage simulation. On
the basis of the available of analysis methods introduced in Chapter 1, a particular
impact analysis approach is selected through a trade-o�. The selection process leads to
a model on the meso-scale using the explicit FEM. The implemented model captures
all laminate damage modes relevant to the impact analysis, in order to address the
�rst research hypothesis from Section 1.2. The model is examined for its capabilities
and de�ciencies. Accordingly, I derive the required improvements.

The major improvement in this work is the degradation model for oblique fracture
planes. A tensorial-based degradation approach provides the basis for this model. The
damage result shows good agreement with experimental results and provides a better
understanding of damage formation under impact load. Finally, the applicability and
the required e�ort to analyze structural-level impact are examined.

(The developed tensorial-based degradation is not a necessary basis for the analy-
tical method in Chapter 3. Parts of this chapter have been published by the author
in [RB1] and [RB2].)

2.1 General considerations

When we consider all possibly relevant circumstances, several aspects of the impactor
and the impacted structure determine how the impact damage emerges [22]. The
generic Equation (2.1) summarizes the relevant aspects that a�ect the impact damage
DMG.

These aspects are the impact energy Ei, the impactor properties IMP (size and
shape), and the boundary conditions BC, including the deformation behavior of the
surrounding structure around the impact region. All these provide a signi�cant con-
tribution to the dynamic impact response and the damage. Additionally, the material
parameters MAT of the unidirectional plies and their interfaces are crucial to assess
the deformation and intra-ply damage modes. Finally, the stacking sequence of the
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layup LAY signi�cantly determines the damage behavior of the laminate. A simula-
tion model that is sensitive to each of these parameters is required to predict impact
damage adequately.

DMG = DMG(Ei, IMP,BC,MAT,LAY ) (2.1)

2.2 Model building

2.2.1 System boundary of an impact setup

The system boundary determines where the zone of the numerical analysis ends. Force
or displacement constraints describe the behavior of the further environment. An
arbitrary system boundary with arbitrary boundary conditions suits a generic test
case. However, the system boundary signi�cantly determines how an impact use case
or an experimental impact setup is transferred into a �nite element model.

Several compression after impact (CAI) standards suggest an impact setup that
is used for the most validation impacts in this work. The standards of the American
Society for Testing and Materials (ASTM), Deutsches Institut für Normung (DIN;
i.e., the German National Organization for Standardization), and Airbus Industries
Test Method (AITM) [151, 152, 153] de�ne this test in a similar manner. The Figure
2.1 shows a sketch of an example test equipment suggested by the Airbus standard
AITM 1.0010. A 150× 100 mm2 specimen is centrically placed on a base plate with a
125× 75 mm2 window. Four rubber clamps hold the specimen in place. The impactor
hits the clamped specimen centrically. The corresponding experiments are commonly
conducted in a drop tower, as described in the Appendix A.1.

Figure 2.1: Impact test setup according to the CAI standard AITM
1.0010 [153].

Nearly all researchers who publish work about high-�delity analysis methods ex-
plicitly model the test setup, including the support frame, the impactor, and the
clamps [65, 122, 147, 62]. Panettieri et al. went even further and modeled the exact
geometry of the impactor head and mass elements [120]. In that way, the vibration
behavior of the impactor itself becomes part of the model. To assess the in�uence on
the corresponding eigenmodes of the experiments conducted for this work, a modal
analysis of the corresponding impactor is part of the Appendix A.1.
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Contact phenomena drive the specimen support. For that reason, a simple re-
placement of the plate through clamped or simply supported boundary conditions is
ineligible. Accordingly, a physically based �nite element analysis requires a model of
the impacted specimen and its real supporting conditions.

The rubber clamps apply an unknown preload to the specimen. This preload
depends on the con�guration of the impact setup and is hard to de�ne precisely.
However, it can be considered small in comparison to the load during the impact
event and consequently not mandatory.

If a low-�delity analysis method on the macro-scale model is applied, a contact
model of the specimen and the base plate and the impactor can signi�cantly increase
the total computational e�ort of the model [RB2]. For that reason, it can make sense
to accept reduced accuracy and avoid contact modeling. As low-�delity models are
generally less accurate, the accuracy decrease can be considered less severe. This
makes the use of boundary conditions and analytical indentation models attractive,
as suggested, for example, by Baaran and Kärger [109, 154, 70].

2.2.2 Abstraction scale of the laminate model

A �nite element model can capture a composite laminate on various abstraction scales,
as explained in Section 1.5.2. Its choice essentially in�uences the capabilities and the
costs of an analysis model [RB2]. Consequently, the choice of the abstraction scale
has to be well-considered.

As shown in the introduction, the development went from low-�delity approaches
on the macro-scale to advanced high-�delity models on the meso-scale that can even be
equipped with micro-scale failure analysis. As previously stated, a macro-scale model
is usually a layered-shell approach, while meso- and micro-scale models are stacked-
layer approaches. Therefore, the capabilities of a layered-shell and two stacked-layer
approaches are analyzed in this section to form the basis for a trade-o� decision on
the way to a physically-sound impact analysis:

1. A layered-shell model with elements of the type S4R in Abaqus captures the
whole laminate with a single element layer and one integration point for each
ply.

2. A stacked-shell model includes each ply as an own layer of S4R shell elements.
Tie constraints couple the adjacent surfaces of neighboring plies.

3. A stacked-solid model includes each ply as an own layer of C3D8R solid elements.
Tie constraints couple the adjacent surfaces of neighboring plies.

All models have the same in-plane mesh density with a constant element length
of 2 mm. Both element types S4R and C3D8R use reduced integration and tend
to nonphysical deformation modes called hourglassing [79]. For their counterbalance
the option enhanced hourglass control' of Abaqus is employed. This method applies
viscous and elastic forces to prevent arti�cial deformation. The thus-induced arti�cial
energy has to remain small in comparison with the elastic energy in the model.

The evaluation of the available options requires their examination on a simple
impact test case. Based on this case, we compare the analysis e�ort and the predictive
capabilities. As stated above, such a numerical test setup can have an arbitrary
con�guration. For that purpose, a benchmark model according to Figure 2.2 has been
set up with the following properties:

� a quadratic specimen with the outer dimensions 100× 100 mm2 and 4 mm thickness
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� cross-ply laminate [0, 90, 0, 90]s with tply = 0.5 mm

� clamped boundary conditions on all four edges

� linear elastic material with the elastic properties provided for �Material 0� in
the Appendix A.3

� spherical impactor with a nose diameter of 20 mm

� impact energy of 10 J at 4 m
s impactor velocity

This test case di�ers in several points from a real impact con�guration. The layup
with very thick plies is especially generic. These thick plies facilitate the assessment
of methods in this section. Fewer interfaces permit an easier assessment of the dela-
minations. To trigger all relevant laminate damage modes, the material properties in
the test case di�er from real properties. Mainly, the strengths and fracture toughness
for FF are reduced.

In this test case (and all other models of this work), the x-direction of the global
coordinates de�nes the 0° �ber orientation. An orientation of 90° stands for the
corresponding y-direction. Furthermore, the commercial FEM software Abaqus is
used for all models in this work.

(a) Geometry and boundary conditions
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0°
90°

90°
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.
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.
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.
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(b) Layup con�guration and numbe-
ring convention

Figure 2.2: Test case for the assessment of methods and the trade-o�
analysis.

Assessment of the elastic prediction

The basic requirement for a plausible damage prediction model is the capability to
capture the elastic deformation under the impact load case. For examination of that
capability, the test case was equipped with a linear elastic material.

Figure 2.3 shows the displacement plot of all three con�gurations at the time
0.8 ms. This time corresponds to a contact force between 10.4 kN and 10.6 kN. The
contact force slightly varies between the models because of the slight di�erences in
the predicted elastic response. As a reference, we consider the models' static central
de�ection for a contact force of 10.6 kN. An implicit static analysis with a layered-shell
model results in a central de�ection of 2.035 mm.

The central de�ection value of all three compared models hardly di�ers from the
quasistatic solution, as the results in Figure 2.3 show. Moreover, all de�ection results
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(a) Layered shells

(b) Stacked solids

(c) Stacked shells

Figure 2.3: A central cross-section of three impact models shows the
out-of-plane displacement ∆z at t = 0.8 ms.

are qualitatively equivalent. The deviation of the deformation value does not exceed
0.1 mm at any point of the specimen.

Qualitatively, the local surface indentation can be observed under the impact point
of the stacked-solid model. The out-of-plane elasticity of the solid elements accordingly
a�ects the deformation state, permitting a slightly larger indentation value. However,
it hardly a�ects the global elastic response, as the force-displacement history in Figure
2.4 shows. The maximum contact force, the maximum impactor displacement, and the
higher-order oscillation are nearly similar in the three elastic models. This similarity
indicates the su�ciency of a simple macro-scale model to predict the transient elastic
response of a structure under out-of-plane indentation.

Assessment of the damage initiation prediction

The evaluation of failure criteria to predict the damage onset is conducted on the
ply level of the composite laminate. As stated in Section 1.4, these criteria evaluate
stresses or strains. Regarding the excellent agreement of the three models' elastic
response, a satisfactory prediction of the stresses and strains can be expected for all
tested methods. To prove that assumption, the stress distribution within the plies has
to be checked to compare the stresses of all three elastic models. The static implicit
solution provides maximum stresses for the laminate's top and its bottom according to
Equation (2.2). To compare these values with the impact result, the elastic reference
impact is evaluated at the time 0.8 ms and shown in Table 2.1.

max(σ11−ply1) = 2260 MPa

max(σ22−ply1) = 207 MPa

min(σ11−ply8) = −1836 MPa

min(σ22−ply8) = −176 MPa

(2.2)

Due to the bending e�ect under the out-of-plane load, the lowermost ply 1 sustains
tensile load and the uppermost ply 8, compression load. The membrane deformation
creates a �eld of tensile stress over all plies. The superposition of the bending and
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Figure 2.4: The force-displacement history of the elastic impact si-
mulations with the three models on di�erent abstraction scales.

the membrane deformation explains why the absolute values of the tensile stresses are
higher than the absolute compression stresses.

Table 2.1 shows the plots of the in-plane stresses σ11 and σ22 for the lowermost
and the uppermost ply in the test layup. These are average values for each ply;
consequently, they are lower than the static reference stresses. Additionally, the failure
index of a quadratic stress failure condition [Equation (1.2)] is presented for three
selected plies.

The in-plane stresses of all three models are in good agreement. The deviations in
ply 1 do not exceed 5 %. The stress di�ers in the upper plies of the laminate only in
the contact area with the impactor. Di�erences of up to 50 % were found between the
shell models and the stacked-solid approach. These di�erences are expectable, as the
out-of-plane deformation of the solid elements also in�uences other stress components
around the impact spot.

Nevertheless, the out-of-plane components are responsible for a signi�cant di�e-
rence between the models. The distribution of the failure index in the lowermost ply
is similar for all three models. In-plane stresses dominate the state of stress in this
ply. Out-of-plane stresses occur predominantly in the inner plies of the laminate [1].
The failure index in the plies 3 and 4 marks the mentioned e�ect on the damage
occurrence. The stacked-solid model predicts a more extensive damage area, as it is
the only one to consider the relevant out-of-plane stress component. In these inner
plies, the shell models cannot provide an appropriate prediction.
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Layered shell Stacked shell Stacked solid Legend

Ply 1: σ11

Ply 1: σ22

Ply 8: σ11

Ply 8: σ22

Ply 1:
QuadStress
22-tension

Ply 3:
QuadStress
22-tension

Ply 4:
QuadStress
22-tension

Table 2.1: Stress distribution and failure index for selected plies of the elastic impact test
case at t = 0.8 ms.
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The out-of-plane stresses have to be part of a plausible damage prediction. Out-
of-plane shear occurs under bending load. The ordinary shell elements do not cap-
ture the complete three-dimensional state of stress as it would be required for that
purpose. Nonetheless, possibilities to resolve this de�ciency exist. The extended
two-dimensional method, as proposed by Rolfes and Rohwer [155, 156, 157] allows
calculating transverse shear stresses based on the �rst-order shear deformation the-
ory. Thus, the missing shear components could be considered for the evaluation of the
failure criterion. As a result, a more plausible damage prediction in the inner plies of
a laminate becomes possible with shell models.

Nevertheless, an extended shell model with the mentioned improvements would
still neglect the out-of-plane compression stress σ33 in z-direction of the specimen.
A signi�cant contribution of this stress component can be expected in the laminate
zone directly under the impactor. This stress can still not be considered in the failure
condition. To estimate the in�uence of this component, an analytical estimation was
conducted within this work. This estimation determines whether the stress σ33 = σzz
can become relevant for the initiation of failure.

The principle of the analytical approximation is illustrated in the Figure 2.5. It
is based on a plate under static indentation of an impactor. The composite plate
is idealized with quasi-isotropic in-plane properties. The out-of-plane sti�ness was
chosen equal to the 22-sti�ness of a unidirectional layer. An impactor of radius Ri
indents the laminate with the force Fimpactor. The static response of this setup is the
subject of the analytical approximation.

A circular contact area between the impactor and the plate emerges [99]. The
Hertzian contact law, according to Equations (2.3) and (2.4), provides the determina-
tion of the contact radius rc. A circular section with this radius is cut free from the
indented plate (center sketch in Figure 2.5).

rc =

(
3FRi

4Ehertz

) 1
3

(2.3)

Ehertz =

(
1

E33−impactor
+

1

E33

)−1

(2.4)

The section force fradial−section results from the equilibrium of forces with the
contact force Fimpactor. fsection is composed of a normal component nsection and a
transverse component qsection. The decomposition of these components, according
to Equations (2.5) and (2.6), requires the bending-angle w′ at the radial location
rc. Taking into account the e�ective elastic properties, we can determine this angle
analytically through the Kirchho� theory of plates, which results in a value of 0.7° at
a radial position of rc. ∫ 2π

0
qsectiondθ = cos

(
w′
)
Fimpactor (2.5)

∫ 2π

0
nsectiondθ = sin

(
w′
)
Fimpactor (2.6)

The section force qsection corresponds to the integral of the shear stress σrz at
the cutting edge. To evaluate this integral reversely, a distribution for this shear
stress along the z-direction has to be assumed. For a plate under bending load, this
distribution would be parabolic, with its maximum in the center of the laminate [8].
However, it is likely that the contact with the impactor still in�uences the out-of-plane
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shear at the top of the laminate. The limiting case would be that the maximum occurs
at the top of the laminate. This maximum leads to a half-parabolic distribution along
the thickness. Both mentioned cases are considered in order to calculate an envelope
of the stress distribution σzz(z).

To calculate this stress distribution, the circular section is cut vertically, as shown
on the right in Figure 2.5. In Equation (2.7) the equilibrium of z-forces is set up
depending on the cutting position z.

σzz (z) =
Fimpactor −

∫ 2π
0

∫ t
t−z σrz (z) dzdθ

πr2
c

(2.7)
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W‘ 

Figure 2.5: Sketch of the analytical derivation of out-of-plane stresses
in a circular cross-section around the impact spot.

The distributions of σzz resulting from Equation (2.7) are plotted in Figure 2.6 for
the two possible shear variants, the symmetric parabolic shear and the half-parabolic
shear.

The results are compared to the numerical prediction based on the stacked-solid
model. This comparison shows quantitatively and qualitatively a good agreement
with the analytical estimations as the numerical prediction lies within the envelope
of the two analytical variants. Qualitatively, the stress distribution based on the
half-parabolic shear law is closer to the numerical prediction.

Based on the stress evaluation of the elastic impact models, we can assess the
suitability of the three tested approaches for prediction of the damage onset. All
models provide almost similar results for the in-plane stresses. These results indicate
a good accuracy of the macro-scale model. However, out-of-plane stresses in�uence the
damage initiation considerably in the contact zone with the impactor. Solid elements
could improve the prediction of the damage initiation.

Assessment of the damage propagation capabilities

For the analysis of impact damage, it is not su�cient to predict only its onset. A phy-
sically sound model has to capture the propagating damage during the whole impact
event. Two factors drive this propagation: the damage evolution at a material level
and the corresponding transfer of load after local degradation. The employed material
law of degradation does not depend on the abstraction scale of the model. Therefore,
it is not a selection criterion in the present trade-o�. However, the capability to
transfer load is crucial.
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Figure 2.6: The stress distribution σzz over the laminate thickness
predicted by the analytical models, with parabolic shear (ana1) and
half-parabolic shear (ana2) and the numerical stacked-solid model

(FEM).

To analyze the eligibility to predict damage propagation, we consider a generic
test case of an eight-ply unidirectional laminate. Under tensile load in the �ber
direction, the distribution of the stress and the strain along the thickness is analyzed
with the layered-shell approach on the macro scale and the stacked-solid approach,
which represents both meso-scale models in this trade-o�. For the plot of stresses and
strains in Figure 2.7, the distributions are normalized with the average stress along
the laminate thickness and the average strain over the beam length, respectively.

Figure 2.7a illustrates the test case and visualizes the strain distribution of the
stacked-solid approach. A strain concentration at the crack and the adjacent plies is
clearly visible. The diagram in Figure 2.7c shows the corresponding stress and strain
over a cross-section at the crack location. The normalized stress and strain for each
ply con�rms a signi�cant load transfer from the cracked layer to the adjacent plies.
This load transfer encourages the propagation of damage to the concerned plies if
there is a �aw in the laminate.

In contrast, the load transfer is insu�ciently captured by the layered-shell model.
The inclusion of a crack by setting the sti�ness of the respective integration point
to zero causes a stress and strain distribution as shown in Figure 2.7b. The DoF of
the shell element link the strain for all plies. The stress is calculated depending on
the individual sti�ness of each ply. Consequently, the load transfer involves each ply
comparably after one ply fails. No stress concentrations occur locally around the crack.
This spread impedes both damage evolution and load transfer. Hence, the predicted
propagation is not conservative. Underestimation of the sti�ness degradation and the
damage size is likely.

Computation and modeling e�ort

The predictive capabilities of a layered-shell, a stacked-shell, and a stacked-solid ap-
proach were assessed in the previous three subsections. A brief consideration of the
modeling and computation e�ort follows here.

In terms of the modeling e�ort, a layered-shell mesh is advantageous in comparison
to a stacked-layer approach. A shell mesh on the laminate level requires only a mid-
surface model of the structural geometry. The layup de�nition and the geometric
modeling are uncoupled. In contrast to that, the stacked-layer approach describes
the geometry on the ply level. Curvature, ply drop-o�, and geometric particularities
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(a) Layer-wise strain plot of a tension-loaded unidirectional laminate with a crack in the
third ply (stacked-layer).
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(b) Section plot of a layered-shell model
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(c) Section plot of a stacked-layer model

Figure 2.7: Load transfer behavior depending on the abstraction
scale: layer-wise normalized stress and strain plots of a cross-section

in a unidirectional laminate with a crack in ply three.

are di�culties to cope with. Therefore, layered shells are commonly preferred for the
modeling of complex structures.

The computation costs for a numerical solution with each model depend essentially
on several parameters of the FE model: the number of DoF the model has, the number
of integration points, and the stable time increment. With regards to the laminate,
the number of plies nplies and the ply thickness Tply drive these parameters.

Table 2.2 shows the normalized computation e�ort of the previously de�ned test
case and its dependence on nplies and Tply. The layered-shell model is much faster
than the stacked-shell or even the stacked-solid model. With an increasing number of
layers nplies, this di�erence increases because the number of DoF increases only in the
stacked-layer models. With a decreasing ply thickness tply, the e�ect becomes more
severe, too, as tply of solid elements a�ects the stable time increment according to the
Courant Equation (1.25). For an impact analysis with a laminate consisting of thinner
plies or more layers, the ratio of computation time can even increase to much higher
values [RB2]. For example, a modi�ed test case with a 4 mm con�guration consisting
of 22 plies of the material I or II (Appendix A.3) would multiply the computation e�ort
of the stacked-solid model by a factor of 7.5. The e�ort of the layered-shell model
would hardly be a�ected. The in�uence on the stacked-shell model is around factor
three. However, a stacked-layer model always has to be combined with a damage-
capturing interface model. This interface model also a�ects the stable time increment
depending on the ply thickness tply; therefore, the eventual e�ort of this model is
larger than shown in Table 2.2.
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Layered shells Stacked shells Stacked solids

Normalized com-
putation time

1 4.6 17.3

Laminate DoF const. ∼ nplies ∼ nplies
Integration points ∼ nplies ∼ nplies ∼ nplies
Stable time incre-
ment

const. const. ∼ t−1
ply

Table 2.2: Overview of the computational e�ort and its dependence on the
number of plies nplies and the ply thickness tply for each abstraction scale.

Trade-o� decision

Given consideration of the capabilities and the costs of each modeling strategy, Table
2.3 summarizes all addressed points. The �rst research hypothesis crucially demands
an accurate prediction of the damage evolution behavior. Thus, the predictive capa-
bilities are weighted higher than the required e�orts. Consequently, a stacked-layer
approach on the meso-scale abstraction is necessary to the speci�ed needs. It plausibly
captures damage in the plies and interfaces. Cracks can arise, open, and propagate.
In addition, the formation of sublaminates is an important feature for the analysis of
residual compression strength after the impact [158].

The proper prediction of damage initiation through three-dimensional failure con-
ditions requires the model to capture the complete state of stress in the specimen.
The out-of-plane components contribute signi�cantly to the damage onset. This con-
tribution is the strongest argument for the use of solid elements. Additionally, with
regard to the surface indentation under the impactor, the meso-scale model with solid
elements is superior to the shell model. For those reasons, I chose a stacked-solid
approach as the baseline of this work.

Layered
shells

Stacked
shells

Stacked
solids

Modelling e�ort ++ � �
Computation e�ort + � � �
Elasticity prediction + + ++
Damage initiation prediction O O ++
Damage evolution � � ++ ++

Table 2.3: Summary of the trade-o� between a layered-shell model, a
stacked-shell model, and a stacked-solid model.

2.2.3 Impactor model and contact formulation

The indentation of the impactor into the laminate is a nonlinear process. A pure force
or displacement boundary condition cannot capture it. Instead, either an analytical
function or a contact formulation is required to include it in a numerical model.

The �rst mentioned option, an analytical model, is advantageous in terms of the
computational e�ort but requires sophisticated integration into the FE model [109].
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In addition, if the indentation model is elastic-based, it can hardly be adapted when
surface damage occurs, and the contact behavior changes.

An FE contact model, in theory, provides these missing features. However, it
increases the computational e�ort and is a possible source of instability to an explicit
time integration. The additional computational e�ort has to be considered in relation
to the total computational e�ort of the model. For the explicit layered-shell model, the
contact formulation increases the computation e�ort by approximately 100 %. This
ratio can be even higher with implicit time integration [RB2]. In contrast to that, the
computational e�ort of the stacked-solid model increases by only about 10 %, as the
contact's computational e�ort is less signi�cant in comparison to the computational
e�ort of the laminate model. This relationship makes the application of a contact
model easy to justify for a high-�delity analysis.

A contact model prevents the penetration of slave nodes into a prede�ned master
surface through counteracting forces [79]. Instability can occur when those forces
change irregularly. Usually, this change happens due to a master surface which is
uneven or wobbly. The latter is likely to occur to the laminate surface under impact
load. The ply elements are very thin in the thickness direction and relatively soft
in two of three main directions, and their mass density is low. These properties can
trigger uncontrolled vibration. Accordingly, the laminate surface must not be the
master surface of the contact.

An impact analysis requires a pure master-slave contact formulation, where the
impactor is considered the master surface, and the ply nodes represent the slave
contact partner. This choice is very important for the stability of an impact simulation,
as shown in Figure 2.8. Even the simple elastic model exhibits instabilities in the
contact force if the contact model is inverted. The contact noise signi�cantly disturbs
the contact force history. This might cause a simulation to abort and makes the
identi�cation of damage-induced vibration di�cult. The instabilities even persist
if a double-sided contact model is applied. This contact formulation prevents the
penetration of nodes from either contact partner into the other's surface.

One side e�ect of the pure master-slave contact shall be mentioned here. The im-
pactor shape is convex. Accordingly, some impactor nodes will penetrate the element
faces of the ply. However, if the impactor nodes were the slave partner, the penetra-
tion of the ply nodes into the impactor face would still be unlikely. Thus, the contact
sti�ness of the chosen contact formulation is less correct. The impactor appears a
little undersized in the simulation result. However, the curves in Figure 2.8 show that
the corresponding loss of sti�ness is minimal, and the dynamic response of the elastic
specimen remains similar. Therefore, I consider this e�ect negligible if the mesh is
su�ciently �ne. No further corrections are conducted.

2.2.4 Interface model

The interface between two layers of di�erent �ber orientations is a delamination-
prone area. The corresponding damage-capturing interface model is a core element of
a stacked-layer approach [89, 111]. The CZM is the current state of the art for such
an interface model. In contrast to the fracture-mechanical standard method of virtual
crack closure, the CZM, is capable of predicting damage onset and propagation, as
stated in Section 1.5.4. The Equations (1.26) and (1.27) describe the constitutive
behavior. Abaqus Explicit o�ers both variants. As the overview in Section 1.6.1
shows, both variants appear in the recent literature.

In this work, both variants were considered and assessed for their suitability. The
stacked-solid model of the 100× 100 mm2 reference impact was equipped with each
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Figure 2.8: Force-displacement history of elastic impact simulations
with three di�erent contact formulations.

cohesive model. The Figure 2.9 shows the force history of the elastic stacked-solid
model and its adaptations with cohesive elements and cohesive surfaces. According
to the Equation (1.28), an interface sti�ness of 500 000 N

mm3 was employed for both
cohesive models. The constitutive thickness and the real thickness of the cohesive
elements were selected equivalently to 0.01 mm. The strength and damage evolution
properties of the cohesive zones are de�ned according to the generic data of �Material
0� from Appendix A.3.

During the initial phase of the impact, the force history of all three models is iden-
tical. This equality proves that the additional compliance by the cohesive interfaces
hardly a�ects the impact response. After the damage initiation, the force history of
the models with cohesive interfaces shows signi�cant degradation. Cohesive elements
and cohesive surfaces still behave similarly. Slight di�erences result from numerical
e�ects like the �nite thickness and the mass of cohesive elements. Additionally, the co-
hesive elements evaluate the traction-separation law at their integration points, while
the cohesive surfaces evaluate the separation of the slave nodes.
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Figure 2.9: Force-displacement history of stacked-solid impact simu-
lations with di�erent cohesive zone methods.
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(a) Cohesive elements

(b) Cohesive surfaces

Figure 2.10: Predictions of the delamination results, beginning from
the lowermost (left) interface to the uppermost (right).

As expected, both models with cohesive zones predict similar damage. Conse-
quently, the required e�ort for modeling and computation is the driving factor for the
selection. Concerning the modeling e�ort, cohesive surfaces are superior to cohesive
elements. Cohesive elements require a geometrical thickness within the layup. This
thickness makes the model building on the meso-scale more di�cult. The geometrical
thickness and the constitutive thickness are additional numerical parameters. Their
in�uence might become relevant if inappropriately high or low values are chosen.

In comparison with the elastic model without cohesive zones, the computational
e�ort of both models increases signi�cantly. As Table 2.4 shows, the high number of
DoF is a crucial reason for this increase. Additionally, the stable time increment of
the simulation can decrease, depending on the elastic sti�ness of the cohesive zone, as
given in the Equation (1.28) on page 20. Cohesive elements also increase the number of
integration points in the model; this increase is responsible for a higher computational
e�ort for cohesive elements in direct comparison with cohesive surfaces.

Lopes et al. [132] describe an additional advantage of cohesive surfaces. The
implemented contact formulation permits easily including friction between separated
sublaminates. Through the consideration of static friction, they were able to obtain
permanent indentation with such a model.

Trade-o� decision: Due to the lower computational costs and the better modeling
properties, I prefer the cohesive surfaces for the high-�delity impact analysis in this
thesis. Additionally, the consideration of post-failure friction is automatically included
in the contact formulation and does not need to be considered separately for newly
created crack surfaces. These circumstances make cohesive surfaces less complicated
in their application and superior in their predictive capabilities.

elastic cohesive elements cohesive surfaces

Normalized com-
putation time

1 4.1 2.5

DoF (nplies + 1)× DoFply
2 nplies ×DoFply nplies ×DoFply

integration points Iply × nplies 5Iply × nplies Iply × nplies

Table 2.4: Overview of the computational e�ort, degrees of freedom, and integration
points for models with di�erent cohesive zone methods.
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Despite the mentioned advantages, a numerical issue impedes the application of
cohesive surfaces in Abaqus Explicit. �An uneven master surface severely in�uences
the damage behavior under compression load. Slave nodes that are close to a master
element's edge tend to separate immediately if compression load is applied. This
results in large, physically unlikely delaminations. Stability problems of the simulation
are probable. In consequence, coherent meshes in neighboring plies have to be avoided.
We found two possible solutions to this issue. Firstly, the slave surface can be equipped
with a denser mesh. However, this solution cannot be employed for laminates because
each embedded ply is simultaneously master for its upper and slave for its lower ply.
The second solution is an adaption of the mesh. In each second ply, the nodes were
shifted by 0.2 mm in the in-plane directions� [RB2]. Even though both workarounds
increase the modeling e�ort of cohesive surface models, the modeling e�ort is still
smaller than for a cohesive element model.

In addition, cohesive surfaces cannot be combined with a double-sided contact
model. Consequently, also the contact between neighboring plies requires a pure
slave-master formulation. As a consequence, a known issue reoccurs here. The master-
slave formulation of the impactor-laminate contact permits a slight indentation of the
impactor into the laminate. For the same reason, the choice of the slave and the
master in�uences the elastic sti�ness of the numerical model: The laminate curvature
under impact load can lead to severe penetrations of the plies if the inner contact
partner forms the master surface as Figure 2.11 illustrates. In contrast, the master
surface on the outer contact partner does not geometrically allow a penetration of the
inner partner's slave nodes.

Master-Layer

Slave-Layer

Impactor

Master-Layer

Slave-LayerImpactor

Figure 2.11: Penetration behavior of two adjacent plies depending
on the master-slave choice of the contact partners.

2.2.5 Intra-ply damage model

Delamination usually dominates BVID. However, an interaction of the delamination
with the intra-ply damage modes of the unidirectional plies is likely (compare to
Section 1.3.2). For their consideration, an intra-ply failure model is employed accor-
ding to the theory in Section 1.4. This model consists of the quadratic strain failure
condition [Equation (1.2)] and a bilinear degradation law (Figure 1.9). Strength pro-
perties and critical ERR are adopted from the generic �Material 0� in Appendix A.3.

Figure 2.12 shows how intra-ply damage a�ects the force history. Analogously
to the model considering only inter-ply damage, the elastic response in the initial
phase remains una�ected. However, the damage initiates earlier, and the sti�ness
degradation is more signi�cant, making the global response softer. The maximum
contact force accordingly decreases, and the impact duration increases.

Additional numerical di�culties arise with the inclusion of an intra-ply damage
model. As mentioned in Section 2.2.2, the elements with reduced integration (C3D8R)
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are prone to hourglassing, which is a non-physical deformation. The hourglass control
to counterbalance this deformation mode a�ects the energy balance in the model:
arti�cial strain energy arises. This arti�cial strain energy is also part of the elastic
impact model. Its value is below 4 % of the total impact energy. An intra-ply damage
model with a maximum degradation value of di−max = 0.999 results in nearly 20 %,
which makes the simulation physically inconsistent.

Especially the compression in the 33 direction causes such unwanted behavior.
Elements with full degradation d3− = 0.999 become heavily distorted and accumulate
arti�cial energy. In the force history of Figure 2.12, this distortion causes the insta-
bility from the model di → 0.999. For possible larger contact force or thinner plies, a
simulation abort is likely.

The deletion of the respective elements from the model is a possible solution.
Removing an element removes the sti�ness components of all directions, however.
Thus, it also a�ects the in-plane sti�ness of a ply with out-of-plane damage. The key
problem remains the element distortion resulting in instability.

For the mentioned reasons, degradation limits for the parameters di were intro-
duced according to Equation (2.8). This limitation results in an hourglass energy of
around 5 %. The force response of the limited model also enables a signi�cant gain
of stability. Nevertheless, in Figure 2.12, two curves with di�erent degradation limits
also di�er qualitatively. Thus, the numerically driven adaptation of the degradation
limits is likely also to a�ect the damage result.

d1+ −→ 0.999

d1− −→ 0.97

d2−/d3− −→ 0.7

dshear −→ 0.99

(2.8)

To understand how the intra-ply damage in�uences the impact damage behavior,
we compare the damage behavior with a model that considers only inter-ply damage.
To observe the damage initiation, the diagram in Figure 2.13 shows the energy history
of the impact simulations. In particular, it shows the energy dissipation by damage.
Firstly, we look at the dissipation by delamination, which is displayed in the value
Edmg−interply. Its course qualitatively di�ers between both models. The inclusion of
intra-ply damage causes delamination to initiate earlier and reduces the delamination
threshold force. This reduction indicates that intra-ply and inter-ply damage interact.
The respective interactions were introduced in Section 1.3.2, and their occurrence is
vital to a physically plausible impact simulation. In addition to the damage onset,
the further development of the delamination energy di�ers between the two models.

Trivially, only the simulation that includes an intra-ply failure model can predict
the energy absorption of the respective damage modes Edmg−intraply. Small intra-ply
damage initiates before the delamination onset. However, its �nal value is only around
40 % of the energy absorbed by delamination.

Figure 2.14 shows the delamination results and the inter-�ber damage of the si-
mulation that includes all damage modes. As FF did not occur, the corresponding
result plots are not part of this �gure.

Qualitatively, the delamination damage in Sub�gure 2.14a di�ers only slightly
from the results in Figure 2.10. The delamination in the lowermost interface is so-
mewhat larger, and the delaminations in the middle of the laminate are smaller.
Inter-�ber failure, as shown in Figure 2.14b, occurs in each ply in line with the �ber
orientation. Due to the absence of FF, this result is plausible.
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Figure 2.12: Force history of impact simulations with di�erent acti-
vated damage modes.

0.0000 0.0005 0.0010 0.0015
0

1

2

3

Time [s]

E
ne
rg
y
[J
]

Edmg−intraply
Edmg−interply
Edmg−interply

Figure 2.13: Damage energy dissipation history predicted with the
model considering only delamination (blue) and the model taking into

account intra-ply damage and delamination (black).

2.2.6 Analysis of the impact process

The model, as established so far, can now be applied to analyze the damage e�ects
during an LVI. For this purpose the 100× 100 mm2 reference specimen is analyzed
under a higher impact energy of 15.5 J. The energy increase shall cause FF, so all
considered damage modes participate in the impact response. Figure 2.15 shows a
combined plot of the resulting force history and the energy absorption of the damage
modes. Figure 2.16 shows the corresponding damage predictions.

In comparison with the 10 J impact that was analyzed, the delaminations grew
further. In the top ply, �bers fail under compression at a contact force of around
7000 N. At approximately 9000 N, tensile FF results in a sharp drop in the contact
force.

The results of this coupon simulation provide information about the emerging
damage during the impact event. Based on the corresponding damage thresholds,
several phases of a low-velocity impact event can be identi�ed. The phases di�er in
the predominant e�ects for the impact response and the damage propagation. We can
analyze those e�ects with the help of the force history in Figure 2.15.
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(a) Delamination

(b) Inter-�ber failure (IFF)

Figure 2.14: Predicted damage results of the numerical model with
all damage modes.
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Figure 2.15: Phases of an impact illustrated in the force history
(black) and the energy dissipation (green) of the reference impact si-

mulation with increased impact energy (15.5 J).

1. The initial phase of the impact marks the region in which the impact response
is driven by elastic deformation and e�ects of inertia in higher-order vibration
modes. These can be observed in the oscillation of the force response. Damage
hardly occurs and is limited to slight IFFs on the laminate surface.

2. The delamination phase of the impact begins with the delamination threshold.
Delamination begins to propagate and quickly becomes the predominant damage
mode, as the comparison of the energies Edmg−interply and Edmg−intraply shows.
An impact scenario that reaches its maximum contact force in this phase mostly
results in BVID. According to the FAA guidelines for composite aircraft [23], this
is damage category 1 (of 5). Such damage has to be tolerated by the structure.

3. The �ber damage phase begins with the threshold force for FF on tension or on
compression. When FF begins, a signi�cantly larger amount of energy is dis-
sipated by intra-laminar failure. This energy can even become larger than the
energy absorption by delamination. It will result in FF becoming the predomi-
nant failure mode. An impact scenario that reaches its maximum contact force
in this phase mostly results in visible impact damage (VID). According to the
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FAA guidelines [23] this damage belongs to category 2 and has to be �reliably
detected by scheduled inspections within speci�ed intervals�.

4. The relaxation phase of the impact begins when the impactor indentation maxi-
mizes. This point can coincide with the point of maximum contact force or occur
afterwards. This phase does not in�uence the damage size or shape. The energy
balance proves that damage is already fully developed. However, the relaxation
phase is essential if permanent deformation or the total energy absorption of an
impact shall be predicted.

(a) Delamination

(b) Tension IFF in-plane (d2+)

(c) Compression IFF out-of-plane (d3−)

(d) Fiber failure (FF) (d1)

Figure 2.16: Predicted damage results of the numerical model with
all damage modes.

2.2.7 Identi�cation of required improvement

The selected numerical model is already eligible to compute the impact damage in
composite laminates. So far, this model has no scienti�c novelty. However, the in-
volved damage evolution works only in the three Cartesian planes of the material
coordinates. Additionally, the stability of the explicit time integration remains a cri-
tical issue. Degradation of the out-of-plane compression sti�ness was found to be the
main cause of instability. The correction through a limitation of di a�ects the result.

On closer inspection, the compression damage model applies a severe idealization
of the reality. Compression-caused matrix cracks in composite laminates commonly
do not align normally to the load direction. Oblique fracture planes occur. The failure
conditions of Puck [5], Camanho [7], or Catalonetti [48] take this e�ect into account.
To establish a progressive damage model based on those criteria, a di�erent damage
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(a)
(b)

Figure 2.17: Experimental setup (A) and the corresponding FE mo-
del (B) of a compression cube specimen with a 0° unidirectional lami-

nate.

(a) (b) (c)

Figure 2.18: The predicted damage initiation (A) and the fully de-
veloped crack (B) of the compression specimen analyzed with a degra-
dation mode in Cartesian planes in comparison with the experimental

damage (C). The view is perpendicular to the �ber direction.

evolution approach has to be employed. It has to capture the degradation behavior
of an obliquely cracked material element.

If the degradation is applied according to the principle of Matzenmiller, as explai-
ned in Section 1.4, a typical pattern of compression damage cannot be reproduced.
To illustrate this de�ciency, the damage result of a compression test with a cubical
specimen is simulated (Figure 2.17). Such a test shall determine the out-of-plane pro-
perties of a composite laminate [159]. Two pressure disks compress a 10 mm cube of
unidirectional material with an orientation of 0° (Material I in Appendix A.3). The
prediction of the damage initiation and the fully developed crack are shown in Figures
2.18a and 2.18b in comparison with a test result.

Analogously to the experiment, the predicted damage initiates at the edges. The
degradation of the out-of-plane sti�ness in the corresponding elements transfers the
load to the neighboring elements. Whether the damage criterion requires an oblique
fracture plane or not; the fracture angle is unimportant to a degradation according to
Equations (1.16) � (1.19). The variables di degrade the material either perpendicular
or in line with the load direction. However, all those options result in a ��at crack�
under compression load.
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2.3 A tensorial-based progressive damage model

2.3.1 Material degradation in oblique fracture planes

A physically consistent approach for that case requires a more general description of

4C
d than Matzenmiller's model provides. A fracture plane that is orientated obliquely

to the describing coordinate system causes coupling e�ects of shear modes and normal
modes. As stated in Section 1.4, Matzenmiller's sti�ness matrix in Equations (1.16)
� (1.19) contains a 0 submatrix for shear-normal mode coupling. Consequently, the
degraded sti�ness matrix 4C

d cannot be obtained through a reduction of existing
entries with the factor (1− d) from Equations (1.9) and (1.10).

The solution of Tan [60] and Liu [62] is better, as it considers some e�ects of an
oblique fracture plane. However, the asymmetrical degradation of the stress tensor
in the fracture plane has a disadvantage. The asymmetry a�ects the contribution of
lateral strains ε11 and ε33 on the fracture plane's normal stress. The inverse in�uence
of the fracture plane's normal strain ε22 on lateral stresses is not included in the
degradation according to the Equations (1.21) � (1.23) on page 16. Nonphysical
deformation behavior occurs. According to those equations, fully cracked elements
still contract laterally. This e�ect can easily be shown with the stress history in
a single element analysis under tensile load in Figure 2.19. Lateral contraction is
omitted by the boundary conditions. This contraction leads to large lateral stress in
the cracked element. This stress is physically non-existent.
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Figure 2.19: Force history of a single element under tensile load
in 11-direction. After damage initiation, an asymmetrical material

degradation is applied.
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(2.9)

The conducted demonstration example is valid for an orthogonal fracture plane in
material coordinates. Non-symmetry occurs only for the modes of normal deformation.
The shear modes are represented by a diagonal sub-matrix without coupling e�ects.
In the fracture plane coordinate system, this representation changes. The asymmetry
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also shows up in the previously mentioned shear coupling terms. It can easily result
in a stability problem of an explicit simulation and convergence di�culties of implicit
simulations. Both are critical disadvantages of asymmetrical material degradation.
Tan and Liu's solution to this problem makes the degraded sti�ness matrix of an
oblique fracture plane symmetrical (compare to Section 1.4). Their approach involves
some e�ects of an oblique fracture plane. However, the sti�ness matrix Cd

2 still
consists of only the original entries of the undamaged sti�ness C2 . New coupling
e�ects between shear and normal deformation are still not part of the model.

2.3.2 Tensorial material degradation

To include the shear-normal coupling e�ects, the degraded sti�ness tensor Cd
4 has to

be derived in a more general manner. �A complete linear mapping of a rank n tensor
requires a transformation tensor of rank 2n. In consequence, a degradation tensor of
eighth-order D8 is required to map the undamaged fourth-order elasticity tensor C4
to Cd

4 by Equation (2.10). This tensor has to provide both the degradation and the
introduction of the newly created coupling e�ects.

Cd
4 = D8 C4 (2.10)

An oblique fracture plane, as shown in Figure 1.6, couples the normal deformations
ε22 and ε33 with the shear mode 23. The belonging coupling entry C2223 exists neither
in the undamaged elasticity tensor nor in the idealized variant of Cd

4 . It cannot be
obtained by simple degradation of existing sti�ness entries. Hence, the entry has to
result from other sti�ness components. Exactly this in�uence of any component in C4
to any component in Cd

4 requires an eighth-order degradation tensor for its complete
transformation to the degraded form.

To set up a suitable tensor, an approach by Kreikemeier is taken into account.
He derived a second-order degradation tensor [160] based on the second-order identity
tensor I and on the direction of the largest principal stress. The degradation is de�ned

by D̃ =
(
I − 4
√
dn⊗ n

)
, where n represents the direction of the maximum principal

stress. The dyad of the second-order outer product n⊗n subtracted from the identity
tensor results in the degradation tensor. By the Rayleigh product of the degradation
tensor and the sti�ness tetrad C4 , the sti�ness Cd

4 is obtained. Regardless, this
degradation is valid in the principle stress coordinates. Generally, this coordinate
system is not equivalent to the fracture plane determined by the failure conditions
of Puck or Camanho. Hence this degradation tensor still needs to be expanded to a
more general form, taking into account a general state of stress.

For a degradation status of d = 0 the degradation tensor must be able to map the
sti�ness tetrad to itself. Accordingly, Equation (2.11) remains a necessary condition
for the degradation tensor.

D8 (d = 0)
!

= I8 (2.11)

Thus, the eighth-order identity tensor de�nes the baseline of D8 for the new de-
gradation approach. The identity tensor I8 is de�ned as follows:

Iijklmnop = δimδjnδkoδlp (2.12)

The expansion of Kreikemeier's approach to an eighth-order degradation tensor in
the material coordinates requires an eighth-order dyad from the fracture plane normal
vector n.



52 2. The Numerical Prediction of Low-Velocity Impact Damage

D̃8 =
(
I8 − dn⊗8

)
(2.13)

Illustrated on an orthogonal fracture plane, this tensor's application in Equation
(2.10) is equivalent to a degradation of the C2222 entry by (1−d). The existence of this
relation is correct, but it is only a single element of the complete tensor. The in�uence
of other components on Cd2222 is also not yet included, nor is the inverse in�uence of
C2222 to other components of Cd

4 . In addition to the N -direction that Kreikemeier
used in his model, the tangential directions, in the fracture plane T and L, have to be
considered for the outer product. In theory, there are 38 possible combinations of those
vectors to form an outer product. Not all of those combinations require consideration
in the subtraction from the identity tensor. Figure 2.20 shows how the degradation
must a�ect the stress tensor and the in�uence of the strain tensor. A degradation
shall be applied only if at least one basis vector of the corresponding entry is N . This
principle can also be applied to the outer product of the vectors L, N and T .
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Figure 2.20: Overview of stress components and stress derivatives
with respect to the strain of a fully developed material element with

a crack.

To write the full tensor in one equation, the notation n1 = L, n2 = N and n3 = T
for the fracture plane base vectors is introduced. Those three directions are combined
to eighth-order tensors in 38 outer products in Equation (2.14). The tensor Ω8 (2.14)
is de�ned by a weighting factor representing the damage state in (2.15) and those
outer products, providing the base system. The weighting factor's assembly follows a
simple rule. Its entries are equal to the degradation parameter d if n2 is part of the
outer product. Otherwise, the value is zero. A nonzero weighting is applied only if
the fracture plane's normal direction is represented by one of the eight vectors in the
product. The multiplication of the outer products transforms the damage state in Ω
to the fracture plane. With this condition the tensor D8 can be set up by Equation
(2.16). The execution of all eighth-order outer products in Equation (2.14) leads to
an almost fully populated tensor D8 .

Ω8 = Ωijklmnopni ⊗ nj ⊗ nk ⊗ nl ⊗ nm ⊗ nn ⊗ no ⊗ np (2.14)

Ωijklmnop = min [d, d (δ2i + δ2j + δ2k + δ2l + δ2m + δ2n + δ2o + δ2p)] (2.15)
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D8 = I8 − Ω8 (2.16)

While it requires a long process to obtain D8 , the tensor itself can be simpli�ed
by using its three symmetry conditions [Equations (2.17) � (2.19)]. They result from
the symmetry of the sti�ness tetrad, accordingly, as a result of the symmetry in the
stress and the strain tensor. These conditions reduce the number of independent
components in D8 from 6561 to 231.

Dijklmnop = Dmnopijkl (2.17)

Dijklmnop = Dklijmnop = Dijklopmn (2.18)

Dijklmnop = Djiklmnop = Dijlkmnop = Dijklnmop = Dijklmnpo (2.19)

From the second and the third symmetry condition of D8 , it directly follows
that the degraded sti�ness tensor is also symmetrical. In Equation (2.10), Cdijkl =
DijklmnopCmnop the �rst sub-symmetry in Equation (2.18) ensures the main symme-
try of Cd

4 . The �rst two minor symmetries in Equation (2.19) result in the sub-
symmetries of the sti�ness tensor. Accordingly, the full linear mapping by an eighth-
order tensor automatically keeps the symmetry of the sti�ness tetrad. Appendix B.3
of this work includes a further outline of the symmetry properties of tensors.

The assembly of this eighth-order tensor for any fracture plane is a geometrical
task. It depends only on the fracture angle ϕ and d from Equation (1.12) on page 13.
The assembly through the proposed method is a long process for a general fracture
plane. An implementation in a user subroutine of an FE code is possible, but the high
number of operations in Equation (2.16) will seriously slow down the calculation.
For development and demonstration, an implementation in SCILAB1 was used. Best
practice for visualization of the implemented degradation is a transcribed sti�ness
tetrad in Voigt notation.

2.3.3 Derivation of a simpli�ed tensorial-based degradation

The damage tensor D8 provides a general description of an arbitrarily cracked material
element that depends only on the normal vector of the fracture plane and the damage
evolution parameter d according to Equation (1.12). However, the evaluation of the
product D8 C4 is numerically costly. The direct application of this equation in a
numerical analysis would signi�cantly slow down the computation. Accordingly, it
makes sense to seek a simpli�cation, considering not an arbitrary fracture but only
fracture planes that occur with IFFs according to Puck [5]. Additionally, Cauvin and
Testa have shown in their work from 1999 [161] that a degradation tensor of the eighth-
order can be reduced to the fourth-order if the equivalent strain principle according
to Chaboche [57] is applied. Even though the present work also uses the principle of
Chaboche, Cauvin's reduction approach requires a set of several independent damage
parameters. Therefore, its direct application to the material degradation based on a
fracture angle and a scalar damage parameter d is not possible. However, the work of
Cauvin indicates the possibility of further simpli�cation of D8 .

The direct derivation of D8 is much easier if the fracture plane is orthogonal to the
describing coordinate system. Therefore, a description in fracture plane coordinates
is used to build the degradation tensor. In this case, L, N , and T are unit vectors.

1http://www.scilab.org
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Each combination of them to an outer product leads to exactly one entry with the
value 1 in the eighth-order tensor. The in�uence of the fracture angle is captured
by a separate transformation of the sti�ness tetrad to the fracture plane coordinate
system. Rotation of a fourth-order tensor is performed by the Rayleigh product in
Equation (2.21).

R =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 (2.20)

Crmnop = RimRjnRkoRlpCijkl (2.21)

After this transformation, the undamaged sti�ness tensor is described by a system
in which the fracture plane is normal to the 2-direction, now called N or n2. In this
system, setting up the degradation tensor becomes much easier. Figure 2.21 shows
a sketch of the state of stress in a cracked material element. This state of stress
sets the frame for the required degradation. The eighth-order degradation tensor
represents a linear mapping, in which the in�uence of each component of C4 on any
component of Cd

4 can be taken into account. After the rotation, only components at
the same position in both tensors can in�uence each other. Hence, in fracture plane
coordinates, the Or

8 is equal to Ωr
8 , as the outer product is equal to an identity

transformation. Consequently, Dr
8 can be directly assembled based on the eighth-

order identity tensor. Degradation has to be applied to any component that in�uences
the strain or stress in the constitutive equation of the fracture plane. Therefore, the
factor (1− d) is applied to any Kronecker delta with index 2. No implicit summation
is required in this de�nition, the Kronecker deltas de�ne each component in Dr

8 by
one combination of indexes.

Dr
ijklmnop = δim (1− dδ2i) δjn (1− dδ2j) δko (1− dδ2k) δlp (1− dδ2l) (2.22)

The tensor product of Dr
8 and Cr

4 gives the degraded sti�ness tetrad Cdr
4 ac-

cording to Equation (2.23).

Cdr
4 = Dr

8 Cr
4 (2.23)

σ = [RTRT

C
dr

4︷ ︸︸ ︷
Dr

8

(
RR C4 RTRT

)︸ ︷︷ ︸
C
r

4

RR]

︸ ︷︷ ︸
C
d

4

ε (2.24)

In Equation (2.24), the full computation chain for the degraded stress is illustra-
ted. The multiplication Cdr

4 = Dr
8 Cr

4 is computationally very expensive. However,
Dr

8 is only �lled with entries that exist in the identity tensor. Accordingly, a further
simpli�cation is possible. Only nonzero values of Dr

8 must participate in the multi-
plication of Equation (2.23). Thus, there are no coupling terms left in Dr

8 , and each
entry of Cdr

4 can be derived directly from Cr
4 .

As mentioned before, the eighth-order degradation tensor Dr
8 is directly derived

from the identity tensor in Equation (2.22). The degradation of existing sti�ness en-
tries works analogously to Matzenmiller's approach, presented in Equation (1.16). In
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Figure 2.21: Existing stress components and derivatives of the stress
with respect to the strain for an open crack (a) and a closed crack (b).

contrast to the original coordinate description, without shear-normal coupling terms,
a fully populated matrix Cr

4 must be degraded now.
Following Figure 2.20, all stress components σNN , σNL and σNT have to be de-

graded. In addition to that, the crack omits the in�uence of all strains in the fracture
plane. Any stress component caused by the strain vector in the fracture plane needs to
be degraded. Keeping the bilinear character of the damage evolution law, the factor
(1− d) must be applied. However, this approach leads to the diagonal component
being multiplied several times with this term. A power of γ occurs. A power of
1/γ keeps the damage factor linear in Equation (2.26). Thus, the �nal degradation
equation for an open crack is given in Equations (2.26) and (2.27).

Cdrijkl = [(1− dδfi) (1− dδfj) (1− dδfk) (1− dδfl)]Crijkl (2.25)

Cdrijkl = [(1− dδfi) (1− dδfj) (1− dδfk) (1− dδfl)]
1
γ Crijkl (2.26)

γ = δfi + δfj + δfk + δfl (2.27)

In addition to this general degradation law, a di�erence between compression and
tension in the fracture plane is required in a manner similar to Matzenmiller's in
Equation (1.20). This relation does not directly �t the tensorial-based model because
it works with a single damage evolution parameter for IFF. According to the Figure
2.21, the state of stress changes for open and closed cracks. The presented formula
includes a degradation of the normal stresses. This is only valid for open cracks. If
the crack is closed, compression can still be sustained. Based on Tan's model, where
only shear stresses are degraded for compression load, Equation (2.28) serves as a
branching condition for the degradation, to a�ect only shear components.

(1− d) =

{
1 if i = j ∪ k = l

(1− d) if i 6= j ∩ k 6= l
(2.28)

2.4 Validation of the tensorial-based damage model

Two test cases are considered for the validation and the demonstration of the method's
capability to describe cracks under compression and tension. The evaluation begins
with the example of a minimal tensile specimen, as illustrated in Figure 2.22a. A
displacement-controlled deformation is applied in the 2-direction of the material with
free lateral contraction. The expected result is a sudden load drop in the force history
and a localized crack band orthogonal to the loading direction. The force response
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Figure 2.22: Sketch (A), force history (B), and damage (C) in a
numerical minimal tensile test with the tensorial-based degradation.
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Figure 2.23: Application of the tensorial-based damage model for
the prediction of the damage initiation (A) and the fully developed
crack (B) under compression load in comparison with the experimental

damage results (C) and (D).

in Figure 2.22b and the damage prediction in Figure 2.22c meet these expectations.
Nevertheless, a degradation model in Cartesian fracture planes would also reproduce
the results correctly. Consequently, this example suits only the demonstration of
equivalence of the tensorial-based model and the previous damage model.

To show the gains of the tensorial-based model, an example with an oblique frac-
ture plane and its e�ect on the post-failure deformation is necessary. The compression
test on a cubical specimen, as illustrated in Section 2.2.7 (compare Figure 2.17), suits
as such an example. The FE simulation is conducted with the new damage model.

Under compression, oblique fracture planes occur with a typical angle of 53◦ (com-
pare to Section 1.4). The algorithm of Wiegand [39] and the failure condition of Puck
[5] are employed to �nd this fracture plane.

As stated earlier, a coupling of normal and shear deformation forms the post-
damage behavior. The result of the tensorial-based model for the cubical compression
specimen is shown and compared to the experimental reference results in Figure 2.23.
The damage criterion of Puck also predicts the damage onset at the edges of the cube
(Figure 2.23a). In contrast to the Cartesian degradation, the crack propagates not
orthogonally to the load direction but diagonally toward the center of the specimen
(Figure 2.23b). The resulting crack pattern is a plausible prediction of the failure
as it occurred in the experiment (Figures 2.23c and 2.23d). The deviation from the
theoretical fracture angle results from the inhomogeneous state of stress caused by
the hindered lateral expansion at the contact surfaces.

Despite the coupling e�ects of the oblique fracture plane, the solution is numeri-
cally stable, and a stability-driven limit of the degradation parameter dmatrix is not
required. The limit value of 0.99 leaves only minimal residual sti�ness.

With the presented tensorial-based method, the degradation can be performed in
an arbitrary fracture plane that is parallel to the �ber direction 11. Nevertheless, a
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more general approach for any fracture plane (in a di�erent material) is possible by
the same principle. This principle would require an appropriate transformation of the
sti�ness tensor into the coordinate system of the fracture plane. For example, this
could be provided by three intrinsic or extrinsic Cardan rotations, as suggested by
Davenport [162], or by quaternion rotation according to the development of Hamilton
in 1844 [163]. The degradation of the sti�ness tensor remains valid for any orthonormal
transformation.

2.5 Validation of the impact model

2.5.1 Validation setup

The impact use case is the next-highest level of validation. This application to a real
impact scenario additionally validates the capability of virtual impact testing with
the high-�delity model from Section 2.2. A set of �ve coupon experiments (CAI1.15,
CAI1.30, CAI2.20, CAI2.40, B1) serves this validation purpose. All �ve cases are LVI
scenarios with large impactor mass according to Figure 1.13 on page 23. Table 2.5
provides all relevant parameters for the impact cases, and Figure 2.24 shows the FE
models of the test setups.

Brie�y, three di�erent laminates form the validation test series. Two of them are
4 mm CAI coupons. Both CAI con�gurations are tested on two di�erent energy levels.
The lower impact energy was chosen to trigger delamination but no signi�cant FF.
Thus, the impact scenario reaches its maximum contact force in the second phase ac-
cording to the categorization in Section 2.2.6 shown in Figure 2.15. The second energy
level was chosen higher to cause FF in addition to the delamination. Consequently, the
third phase according to the conducted categorization, is reached. The last test case
is a thin 2.2 mm laminate con�guration. This thinner laminate con�guration ensures
that a pine tree pattern of delaminations occurs in the laminate [16]. Capturing this
pattern, in particular, challenges an impact model as it requires a working interaction
of intra-ply and inter-ply failure. In this case, the impact energy was chosen to reach
the maximum damage size which is still classi�ed as BVID. This level of damage is
the maximum damage size that will probably remain undiscovered in a structure. The
concerned structure still has to bear ultimate load, as shown in the DT diagram in
Figure 1.3.

All specimens were made from unidirectional prepreg material. The specimens
of con�gurations 1 and 3 consist of Material I ; the specimen type 2 is made from
Material II from the list in Appendix A.3, which provides the required set of material
parameters for elasticity, strength, and damage evolution and mentions their origins.
In-situ properties are applied for the strengths X22, X12, X13, and X23 according to
the method of Camanho et al. [164, 165].
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(a) CAI test setup

(b) Setup for the thin ply impact.

Figure 2.24: Virtual test setups for the validation of the high-�delity
impact analysis model.

Test case CAI1.15,CAI1.30 CAI2.20, CAI2.40 B1

Type CAI CAI thin coupon

Material Material I Material II Material I

Layup type quasi-isotropic clustered quasi-isotropic

Stacking sequence
[45,-45,0,90,45,-45,

0,90,45,-45,0]s

[45,45,45,0,-45,-45,-45,

90,-45,0,45]s
[45,-45,0,90,45,-45]s

Number of Plies 22 22 12

Delamination-prone
interfaces

20 12 10

Nominal thickness 4 mm 4 mm 2.2 mm

In-plane geometry 150× 100 mm2 150× 100 mm2 160× 110 mm2

Hole in support struc-
ture

125× 75 mm2 125× 75 mm2 125× 75 mm2

Impact energies A:15 J, B:30 J A:20 J, B:40 J 25 J

Impactor nose diame-
ter

16 mm 16 mm 20 mm

Impactor mass 3.95 kg 3.95 kg, 5.95 kg 3.99 kg

Table 2.5: Test parameters for the �ve validation experiments on three di�erent laminates.

2.5.2 Validation results

To assess the quality of the numerical prediction, a direct comparison with the expe-
rimental results is presented in Table 2.6. The diagram in Figure 2.25 shows the force
history curves. Finally, the Figures 2.26 and 2.27 show the delamination overlay plots
and the �ber cracks in the top ply of each laminate.

All experimental data has to be seen in the context of the typical scatter of ex-
perimental impact damage [105, 166, 167]. The results table provides this context
in the form of the standard deviation of the experimental results. Each diagram in
Figure 2.25 includes the force history curves of at least three experiments. The plots
of delamination and �ber cracks are also compared with three experimental results.
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In addition to the known scatter, the measuring errors can occur in the record of
the force history curvess as described in Appendix A.1. Such errors can be observed
for the con�gurations CAI2.20 and CAI2.40, where the force measurement began
with a delay, which causes a propagating error at the beginning of the test.

The tendency of the validation con�rms a reasonable predictability of impact da-
mage with the high-�delity simulation. Nonetheless, we observe some qualitative and
moderate quantitative deviation between the prediction and the experiments. The
following breakdown to the relevant aspects of impact damage explains this general
assessment:

� All predicted force-time and force-displacement history curves qualitatively ac-
cord with the experimental results concerning the �rst three phases of the impact
event (compare to the Figure 2.15). Only the relaxation phase cannot be repro-
duced with the applied simulation model. The force-displacement plot especially
reveals this discrepancy.

� The maximum contact force and the maximum indentation values are predicted
with strong accuracy. The maximum values occur before the relaxation phase
and that accuracy is not surprising.

� The prediction of the contact time involves the relaxation phase and is still
reasonable. Thus, this parameter emerges as being insensitive towards slight
mispredictions.

� The dissipation of energy is not correctly captured for any con�guration. In all
cases, the numerical prediction falls below the real dissipation.

� The damage threshold forces for delamination and �ber cracking are predicted
to be slightly too low. The delamination threshold is marked by the �rst dis-
continuous load drop (well visible in the history plots of CAI1.15, CAI1.30, and
CAI1.40 ). A larger load drop close to the force peak indicates the signi�cant
FF (observable on CAI1.30 and CAI2.40 ).

� The qualitative damage pattern of delamination (Figure 2.26) and FF (Figure
2.27) is in four out of �ve test cases consistent with the experimental result. In
the remaining case (B1 ), the lowermost and largest delamination is not predicted
su�ciently well in the simulation.

� Quantitatively, we observe a tendency to an overestimation of the delamination
damage. Especially for impact with low energy, the model signi�cantly overesti-
mates Adela. This overestimation indicates a too-early delamination onset in the
simulation based on the interface strengths. In consequence, the delamination
threshold force is underpredicted.

With propagating damage, the discrepancy disappears. Thus, the energy-based
damage evolution captures the experimental behavior plausibly. Case B1 is an
exception to this overestimation. However, the qualitative di�erence does not
permit a quantitative comparison.

� The simulation provides accurate qualitative and quantitative predictions of the
compression-induced �ber crack in the uppermost ply. All test con�gurations
con�rm these predictions. However, the numerical analysis of the test cases
CAI1.30 and B1 also includes �ber cracking in the lowermost ply. This tensile
crack did not emerge in any of the corresponding experiments.
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As stated in the list above, the numerical and the experimental results are in
strong agreement. However, at this point, we focus on the analysis of the deviating
points and try to explain their causes.

Firstly, we look at the underprediction of the delamination threshold. Its cause is
related to the arti�cial reduction of the interface strengths. The corresponding values
do not represent the actual strength of the material. According to Equation (1.29)
on page 20, the normal interface strength Xn is a numerical parameter. Its arti�cial
reduction ensures enough elements in the cohesive zone. Nevertheless, the reduction
is essential to allowing simulations with lower mesh density.

The second important di�erence we observed is the tensile FF in the lowermost
ply of the impact specimens. In the case of B1, this FF is likely to cause a quali-
tatively faulty delamination pattern. Fibers break, instead of delamination further
propagating in the interface. Afterwards, the �ber crack diminishes the load at the
delamination crack tip, and the delamination pattern remains incorrect. A possible
cause of the early FF can be found in the absence of a nonlinear shear model. As a
typical shear response behaves degressively, the linearized model behaves sti�er than
does the real response [168].

The good agreement of the experimental results and the numerical prediction
a�rms the model's suitability for virtual impact testing. This capability moves the
physical testing e�ort to elaborate material characterization tests. Elastic parameters,
strength values, and fracture-mechanical parameters have to be determined on the ply
level in order to employ a high-�delity impact simulation � a challenge to the user of
a numerical impact model.

Test

case
CAI1.15 CAI1.30 CAI2.20 CAI2.40 B1

Fmax [kN] 9.2
(8.6± 0.1)

12.7
(12.9± 0.1)

10.2
(9.9± 0.1)

12.6
(12.8± 0.3)

7.86
(8.0± 0.1)

xmax [mm] 3.09
(3.19± 0.02)

4.41
(4.58± 0.02)

3.82
(−0%)

5.46
(−0%)

7.1
(7.39± 0.07)

Ti [ms] 3.64
(3.70± 0.02)

3.87
(3.71± 0.02)

3.93
(3.85± 0.02)

5.06
(5.12± 0.16)

6.25
(6.36± 0.33)

Adela [mm2] 391
(231± 15)

911
(762± 136)

864
(542± 31)

1344
(1450± 86)

280
(537± 60)

lfibcrack [mm] 15
(12± 3)

28
(31± 8)

27
(26± 6)

40
(44± 8)

22
(18± 3)

lmatcrack [mm] 10
(-a )

18
(-a )

29
(37± 3)

55
(72± 9)

24
(36± 3)

Edis [J] 3.6
(5.1± 0.1)

9.2
(11.4± 0.6)

5.1
(6.0± 0.5)

14.1
(24.6± 1.7)

5.2
(22.3± 1.6)

Table 2.6: Validation results of the numerical prediction in comparison with the experi-
mental results (average and standard deviation) in brackets.

a No experimental data available.

Energy dissipation

Finally, the underprediction of the energy dissipation Edis marks an obvious de�ciency
of the numerical model in its present form. To understand its cause, we analyze which
energies form full absorption Edis according to Equation (2.29).

Edis = Edmg + Efric + Erkin + Eres (2.29)
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Figure 2.25: Numerical force time history (red) and force displace-
ment history (blue) of the validation cases in comparison with the test

results (grey).
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The energy dissipation by damage Edmg represents the actual absorption through
the CZM and the CDM damage models. The numerical model should provide a
reasonable prediction of this component. However, the present experimental data do
not permit one to validate this model.

Frictional dissipation Efric results from the contact friction and the material dam-
ping. The simulation includes these e�ects only partly, yet its value is far too small
to explain the observed deviation from the experiment.

For the coupons under consideration, the remaining kinetic energy Erkin in the
specimen is also negligibly small. A modal energy analysis in the Section 3.3.3 of this
work supports this assumption.

However, the calculated value of Eres is zero, while its experimental counterpart
can be signi�cant. The missing e�ects of permanent deformation explain this dis-
crepancy. In reality, Matrix debris blocks open cracks, and during the relaxation
these cracks cannot fully close [169]. They a�ect the relaxation path of the force-
displacement curve and cause residual stresses in the unloaded laminate. The curve
becomes bulgy and steep from the beginning of the relaxation. Good examples of this
e�ect include the experimental history curves CAI2.40. A constitutive model not ac-
counting for permanent indentation can neither correctly capture the relaxation phase
nor the energy absorption.

The numerical prediction of the energy absorption represents the value Edmg and
not the full energy dissipation Edis. As Edmg increases only during the loading phase
of the impact, its continuous evaluation is representative for all energy levels passed.
The diagrams in Figure 2.28 show the thus-obtained correlation of the impact energy
and the absorption through damage. The rise of these curves points out when damage
grows. Steep increase indicates the exceedance of a damage threshold and plateaus
at a phase without damage propagation.

2.5.3 Comparison with other methods

To classify the obtained results of the developed model, we have to consider how other
damage models perform. As the most severe damage occurs in the test case CAI2.40
with 40 J, this con�guration serves as an example for the comparison. We consider
the following four methods:

� An unsymmetric degradation as shown in Equation (1.21) is a simple degradation
method that considers the e�ects of an oblique fracture plane by degradation
of the fracture plane stresses. However, this degradation is equivalent to an
asymmetrical sti�ness matrix [Equation (2.9)] [RB1].

� A symmetri�ed degradation is a further development for the asymmetrical de-
gradation of fracture plane stresses [60]. The model considers the e�ects of an
oblique fracture plane but works with a degraded sti�ness matrix according to
Matzenmiller [Equations (1.16) � (1.19)].

� The total degradation concerns all resin-driven components in the sti�ness af-
ter IFF occurs. This method considers oblique fracture only for the damage
prediction. The degradation is conservative and was recommended by Puck [5]
himself. It works according to the method of Matzenmiller [Equations (1.16) �
(1.19)], with d22 = d33 = dmatrix.

� The quadstrain model combines the degradation according to Matzenmiller [Equa-
tions (1.16) � (1.19)] with the quadratic strain failure condition (1.2). Thus, it
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does not take into account oblique fracture planes. Fracture is assumed to occur
in the three Cartesian planes of the material coordinates.

Surprisingly, no signi�cant di�erence between the models occurs in the force his-
tory of the impact. In Figure 2.29, we see the force-time and the force-displacement
response. Both indicate, that all models lead to equal results before damage initia-
tes at approximately 4000 N contact force. After damage initiation, the curves di�er
slightly. Only the quadratic strain model shows a tendency toward instability.

In order to assess the quality of the damage prediction, we take into account the
delamination pattern. Figure 2.30 shows the results of all tested models and con�rms
that nearly all models provide a suitable predictions. The only exception that leads
to a faulty result is the total degradation.

Remarkably, even the asymmetrical model predicts the correct result and does
not become unstable � in spite of the physically inconsistent degradation (compare
to Figure 2.19). This result becomes especially interesting as the degradation is easy
to implement and computationally faster than any other model for oblique fracture
planes.

Additionally, the good prediction of the quadratic strain model a�rms that also a
model with an elementary failure condition can lead to a suitable result [33]. The sim-
plicity of this model facilitates the method's combination with theories for permanent
deformation, residual compression stress or nonlinearities.

2.6 Critical assessment of the numerical impact analysis
model

The developed damage model shows promising results in predicting impact damage.
With delamination, IFF and FF, the model involves the essential damage modes and
provides reasonable predictions. Importantly, it predicts compression failure in a phy-
sically plausible manner. Nevertheless, simpler degradation models were also shown
to be capable to provide plausible predictions of impact damage. A consideration
of the oblique fracture is not mandatory to achieve consistent results. The author
has to admit, however, that oblique fracture is of minor importance to the damage
morphology in a multidirectional laminate.

Notwithstanding the current development, several aspects of the chosen basis mo-
del emerge as questionable. The damage prediction by the failure condition of Puck
provides a fracture angle in each �nite element. This angle can di�er from element to
element. Consequently, the predicted crack pattern does not necessarily represent one
continuous crack in the material. Also, the equivalent strain approach according to
Equations (1.13) and (1.14) is an idealization, which becomes quantitatively incorrect
when the state of strain changes during the damage evolution.

In addition, the tensorial-based degradation method further increases the compu-
tational e�ort of the numerical impact analysis. Thus, e�cient applicability is limited
to small coupons, and a simpler degradation model can still be the better choice if,
for instance, e�ciency is a crucial analysis requirement. Simpler degradation models
were found to provide damage predictions of similar quality, as the bene�ts of the
tensorial-based degradation seem merely relevant for impact damage.

Regarding the impact model as a whole, the cohesive zones require an arti�cial
correction of the interface's normal strength in order to be applicable using a ma-
nageable element size. This arti�cial correction leads to inaccurate predictions if
signi�cant out-of-plane tensile stress occurs. The detected mesh dependency of the
cohesive surfaces is also a possible source of analysis errors.
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Finally, the constitutive material laws as applied in the CDM approach and the
cohesive zones do not consider any e�ects of permanent deformation. Actually, the
nonlinearity of the shear response results in signi�cant residual strains after load
removal [58]. Many state-of-the-art models include these e�ects in the material law
[67, 115, 169, 170, 171]. In this work, they were intentionally left out. Firstly, such
models increase the complexity of the constitutive laws. They are an additional source
of uncertainty and require appropriate input parameters that were not available for
the validation in this work. Secondly, this behavior a�ects mainly the relaxation
phase of the impact, which is not mandatory for a plausible prediction of the damage.
Eventually, the tensorial-based damage evolution and advanced constitutive laws for
shear can be combined.
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Figure 2.26: Comparison of the each predicted delamination overlay
plot with the ultrasonic D-Scan results of three exemplary coupon

tests.
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Figure 2.27: Comparison of the numerical prediction for FF in
the top ply in comparison with the top view of three exemplary test
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Figure 2.28: Energy dissipation by damage in comparison between
the experiments and the high-�delity simulation.
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�Abstraction forces you to reach the highest level

of the basics.�

Alan So�er, artist

3
Analytical Impact Scaling

Scope of this chapter

The methods described in this chapter permit the e�cient analysis of structural impact
scenarios. Hence, the chapter addresses the second and third research hypotheses from
Section 1.2. An analytical approach allows scaling the impact energy of a structural
impact scenario to a reference impact scenario on the coupon level. The corresponding
coupon represents a section of the actual structure. Thus, the numerical damage
predictions through a high-�delity method or coupon experiment can be transferred
from the coupon to the structural level. A quasistatic analytical spring-mass model
provides this transfer by capturing the specimen's damage behavior and transferring
it to any su�ciently similar impact scenario. In order to include the dynamic impact
response in the transfer, a modal correction comprises the energy loss in higher-order
modes.

A large set of impact experiments was conducted to validate the damage descrip-
tion by the analytical spring-mass model and the impact damage transfer. These
experiments con�rm the general validity of the method and depict its limitations for
kinematically di�erent scaling origins and targets.

The development described in this chapter is independent of the tensorial-based
degradation in Chapter 2. Parts of this chapter have been published by the author in
[RB3] and [RB4].

3.1 Analysis approaches for impact on the structural level

While the developed high-�delity impact simulation model provides good results on
the coupon level, its application on the structural level is economically ine�cient
[RB2]. A simulation of a coupon impact according to the Section 2.5 lasts approx-
imately 100 CPU hours. Various authors have reported similarly high computation
e�ort for their models [65, 169, 60]. Accordingly, a direct transfer of the method to
the structural level does not make sense for an actual use case. There are two possible
kinds of solutions to this issue: on the one hand, the simpli�cation of the analysis
model in order to become more e�cient; and on the other hand, a limitation of the
analysis area to permit reduction of the computational e�ort of a high-�delity method.
Such approaches are founded on the idea that the damage of LVI with large impactor
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mass occurs locally around the impact spot [172]. Consequently, the full structure
does not have to be analyzed for possible damage � only the damage-prone section.
Four ways to allow structural impact analysis were considered for this research. These
ways are described in the following list and illustrated in Figure 3.1.

(A) The actual structural impact analysis is conducted through a layered-shell model
as illustrated in Figure 3.1a. Comparative coupon analyses with a high-�delity
method validate or calibrate the low-�delity model of each impact con�guration,
material, or laminate. This method is computationally very e�cient and easy
to apply. However, the trade-o� analysis in Section 2.2.2 shows that a macro-
scale model does not permit satisfactory damage evolution. Accordingly, this
method cannot take advantage of accurate damage predictions through a model,
as described in Chapter 2.

(B) The easiest way to exploit the local characteristics of impact damage is a locally
re�ned model of the structure, as Figure 3.1b illustrates. In this model, a
high-�delity mesh is embedded in a layered-shell model. Shell-to-solid couplings
connect both meshes in the transition zone. A model of that type is suitable for
predicting local impact damage on a structure. The computational e�ort only
slightly exceeds the e�ort of a simple coupon simulation [RB2]. This level of
e�ort makes the method attractive for a quick assessment of a single structural
impact scenario. However, in practical application, this method faces a high
modeling e�ort. The model-building e�ort reoccurs with each possible impact
location on a structure as the damage-prone zone changes. Thus, the method is
unattractive for application in a design process.

(C) A global-to-local approach connects a global shell model and a local high-�delity
model. The principle behind this approach is comparable to a micro-meso mul-
tiscale method [132, 133, 134]. In this case, a multiscale formulation permits
drawing the boundary conditions for the high-�delity model from the global
model. The reaction forces are mapped inversely. Figure 3.1c illustrates this
method. The modular setup with two independent models allows working with
a single structural model for all analyses. Di�erent impact locations require only
slight adaptions of the high-�delity model. Accordingly, the approach is �exibly
applicable, with a low modeling e�ort. The computation e�ort is comparable to
approach B.

(D) Figure 3.1d shows an unconventional approach. The impact analysis model is
reduced to a small section around the damage-prone zone. For the actual impact
analysis, this section is supported with arbitrary boundary conditions. Adapted
impact parameters for this modi�ed impact have to be calculated in order to
obtain similar damage as it would occur in the original impact scenario. Whet-
her and how such scaling can be performed is an interesting object of research
and seems to o�er possibilities beyond the locally re�ned analysis of an impact
scenario. For these reasons, this approach was my focus in the development of
an impact analysis method for composite structures.

3.1.1 General consideration of impact similarity

A scaling approach according to Figure 3.1d shall calculate the structural impact
damage on a di�erent specimen. Thus, the scaling has to ensure the similarity of the
damage in those two impact scenarios. According to the general damage equation,
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Figure 3.1: Graphical explanation of the considered options for im-
pact analysis on the structural level.

Equation (2.1) on page 30, the impact damage depends on a set of generic parameters
of the impactor and the impacted laminate.

To implement the idea of impact scenarios with similar damage, the equation is
now modi�ed to the new variant in Equation (3.1). Here, the energy Ei as the driving
impact parameter depends on the boundary conditions BC. The expression Ei (BC)
is a nonlinear normalization of the impact scenario. A damage description according
to this general equation is objective regarding the boundary conditions or the impact
location for similar impactor (IMP ), material (MAT ), and layup (LAY ). As the
third research hypothesis of this work implies, it assumes the existence of an objective
damage behavior from which the damage development of each speci�c impact scenario
can be derived.

DMG = DMG [Ei (BC) , IMP,MAT,LAY ] (3.1)

The suggested procedure seems analogous to the system description through di-
mensionless parameters as they are common in aerodynamics or thermodynamics
(Reynolds number, Mach number, Nusselt number, etc.). Once the behavior of a
single speci�c scenario is understood, the analysis with dimensionless parameters can
transfer the behavior to an arbitrarily modi�ed system. The �rst approach for impact
damage could be to analogously determine dimensionless parameters.

With the help of Buckingham's π-theorem [173], Morton already in 1988 conducted
such a dimensional analysis for impact on composite laminates [16, 174]. However,
this method is linear, which makes it unsuitable for capturing the highly nonlinear
impact e�ects. Another issue is that the scaling always a�ects the whole model. The
scaling of the laminate and ply thickness especially disturbs the actual purpose of the
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scaling between the structure and a reference coupon.
Beyond the dimensional analysis, Swanson also approached impact scaling [175,

176, 16]. To reduce the time and the costs of impact experiments, he intended to pro-
vide a method to scale impact between small laboratory specimens and large structu-
res. This goal is already much closer to the need described in this work. He approached
the scaling from the di�erential equation of orthotropic plates. This approach a�ects
the geometry of the structure, the impactor, and also the laminate thickness, which
prevents its application for the current purpose.

Additionally, Christoforou developed a methodology to scale the impact response
of di�erently sized composite structures [95, 177, 178]. He discovered that �seemingly
di�erent impact situations may be similar in non-dimensional form and need not
be duplicated� [95]. The similarity of the dynamic impact response drives the scaling
approach. In this way, Christoforou derives the equivalence of actually di�erent impact
scenarios, when two dimensionless parameters are similar. This approach is already
close to the objective of scaling an impact between two di�erent scenarios of a similar
laminate. However, the achieved similarity results from an equivalent normalized
contact force. Thus, with the size of a structure, the damage scales with the size of
the analyzed structure. This makes the purpose insu�cient to de�ne di�erent impact
scenarios with similar damage.

In summary, three di�erent scaling approaches for impact on composite laminates
are available. In particular, the works of Swanson and Christoforou show that it
is possible to obtain similar damage for di�erent boundary conditions. However,
no method permits the analysis of a section from a structure. Consequently, the
existing ideas had to be further developed to permit the transfer of impact damage
between di�erent scenarios. My novel idea in this work is the use of a basic impact
model that ensures the similarity of the damage in two di�erent impact scenarios.
As formulated in the second research hypothesis in Section 1.2, this model has to
capture the damage behavior of an impact event. It does not have to provide an
elaborate damage prediction but only the transfer of predicted damage to a second
impact scenario. Regarding the overview of impact analysis methods in Figure 1.14, a
spring-mass model �ts this need if an appropriate damage description can be provided.

3.2 Analytical impact analysis

3.2.1 Elastic spring-mass models

Spring-mass models describe an impact system in one dimension. They involve only
the main vibration mode of the impact. In the case of LVI, this mode equals the
quasistatic response. Thus, they suit the description of large-mass impact according
to Olsson's categories in Figure 1.12 on page 22. As long as the fundamental mode
dominates the impact response, it can be captured through a spring-mass model with
a single DoF. This limitation to the main vibration mode a�ects this work's target
domain in Figure 1.13 on page 23. It prohibits an extension toward the further BVID-
relevant zone of higher impactor velocity and lower mass.

The response of an elastic structure is driven by several deformation e�ects which
can all be captured through di�erent springs, as Abrate showed [16]. These e�ects are
bending, shear, and membrane deformation. Additionally, the local surface deforma-
tion needs to be considered. The illustration of the deformation modes in Figure 3.2
provides an overview of the mode shapes and the corresponding force-displacement
relations.
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Bending and shear deformation are connected in series (Fb = Fs = Fbs), and
membrane e�ects occur in parallel. Both depend on the global indentation wglobal.
The sum of their reaction forces forms the impactor contact force in Equation (3.2).
Bending and shear forces are proportional to the global indentation wglobal, whereas
membrane forces are proportional to the third power of wglobal, as Abrate [16] and
Olsson [92] con�rmed in their works about analytical impact models.

The fourth illustrated deformation mode in Figure 3.2 connects in series to wglobal
and is associated with the local surface indentation wlocal. The contact law of Hertz
[99] (or a comparable law) describes the indentation behavior. The sum of wglobal and
wlocal forms the total impactor indentation w. The spring-mass model describing all
these phenomena is shown in Figure 3.3 (B). It has three characteristic values, kbs,
km and kc, where kbs summarizes bending and shear.
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Figure 3.2: The elastic deformation under impact load is split up to

a bending, a shear, and a membrane component.

F = Fbs + Fm (3.2)

For common composite laminates, the local indentation is insigni�cant compared
to the global indentation [Equation (3.3)]. The corresponding vibration mode has a
very high frequency, which is negligible in the dynamic response. On account of that
relation, we idealize the impact system by removing the surface indentation spring
from the spring-mass model. This idealized spring-mass model is illustrated in Figure
3.3 (A). As we neglect the local indentation, a simple relation between contact force
F and impactor displacement w can be established with Equation (3.4).

wglobal >> wlocal (3.3)

F (w) = wglobalkbs + w3
globalkm (3.4)
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Figure 3.3: Elastic spring-mass models in the idealized version (A)
and the variant accounting for local indentation (B).

The reduction of the model from two to one DoF changes the composition of the
oscillating mass. The complete model 3.3 (B) consists of the impactor mass mi and
the modal mass of the specimen's �rst eigenmode. This mass ms can be calculated
in modal analysis. For a typical CAI specimen (as in the reference cases CAI1 and
CAI2 in Section 2.5) the mass ms = 0.04 kg. The reduced model with only one DoF
works with a combined mass m1 = mi +ms, which approximates the modal mass of
the impact system, with the impactor tied to the impact location.

In the next step, the we test the suitability of Equation (3.4) for the description of
elastic out-of-plane deformation. For this purpose, the force-displacement history of
the FE model is evaluated. The parameters of the spring-mass model, kbs and km, are
�tted with a least squares method (LSQ) as explained in Appendix B.2. Eventually,
the �t is compared to the original prediction of the FE model.

The FE model itself can be very elementary. In the model-building section, Section
2.2.2, a layered-shell model was found to suitably predict the elastic impact response.
Thus, the result of an elastic impact analysis with layered shells serves for the deter-
mination of the elastic parameters kbs and km.

To ensure the validity of the curve �t, a coe�cient of determination for nonlinear
�ttings was evaluated [Equation (3.5)]. With this coe�cient, a value of 1 indicates a
perfect �t, with all measured values Fi(wi) exactly on the interpolation curve. With
a decreasing interpolation quality, the value approaches zero.

The �nite element results for two di�erent cases are given in the force-displacement
diagram in Figure 3.4. The sti�er curve belongs to a 150× 100 mm2 CAI specimen
according to the standard AITM 1.0010 [153]. The second curve belongs to a sti�ened
panel section as it will be introduced in the validation section of this chapter.

In both of the demonstrated cases, the idealized model provides a good approx-
imation of the global response. For all tested cases, the coe�cient of determination
was larger than 0.9, which indicates a good �t. The existing deviation from an ideal
�t is caused by the oscillation in the dynamic indentation response rather than by a
global divergence.

cdet = 1−
N∑
i=1

[
Fi − wikbs − w3

i km
Fi ∗N

]2

(3.5)

In fact, the real system also responds with its higher eigenmodes. The spring-
mass model does not include these modes. This restriction limits the validity of the
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panel section.

model to LVI. The LVI response is similar to the quasistatic response, which again is
represented by the �rst eigenmode of the impact system [92].

3.2.2 Damage description with spring-mass models

Elastic spring-mass models suit only the description of impact scenarios with hardly
any damage occurring. The description becomes invalid as soon as the impact response
leaves the initial phase according to the schematics in Figure 2.15 on page 47.

Usually, to include impact damage in analytic spring-mass models, the elastic
models are upgraded. Springs in series to the elastic springs represent the softer
behavior of a damaged structure. An entirely upgraded model recently published by
Singh and Mahajan [98] considers damage in every deformation mode. According
to them, bending damage, shear damage, membrane damage, and surface damage
each require one additional damage element. Furthermore, Singh and Mahajan show
analytical correlations between the damage parameters in the analytical model and
the existing delamination damage in the laminate.

Earlier, Olsson proposed an elementary model [92], which works with a single
additional damage element in the spring-mass system. This element is intended to
capture the softening of shear and bending sti�ness. The sti�ness parameter of the
newly introduced damage element is kd. During the impact process, the value of kd
decreases monotonically. This results in the condition in Equation (3.6) for the deri-
vative of kd. Although kd is a sti�ness variable, it describes the additional compliance
by damage in the impact system. As damage propagates in the structure during an
impact event, the introduction of additional compliance is more demonstrative than a
sti�ness. This compliance by damage is mathematically described by cd = 1

kd
. From

its initial value zero, it starts to increase monotonically with propagating damage.
These conditions result in the boundary values of Equations (3.7) and (3.8) for kd.

k̇d ≤ 0 (3.6)
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kd (t = 0)→∞ (3.7)

kd > 0 (3.8)

The fundamental principle of additional compliance drives the progressive damage
behavior of a spring-mass model. For this work, we idealized the spring-mass model of
Olsson analogously to the elastic model in the previous section. The idealized version
consists of three sti�ness elements kbs, km, and kd. The con�guration is shown in
Figure 3.5 (A).

In contrast to other works about analytical impact analysis, the aim of the present
model is not the analytical prediction of impact damage but its description. A single
scalar parameter is going to describe the impact-damage state in a structure. This
state will later be utilized to achieve the same damage state on the structural level as
on a reference coupon.

Equipped with the sti�ness values of the elastic response and the force-displacement
history of an actual impact event, the spring-mass model will capture the damage sta-
tus in the laminate. The model of Olsson �ts this need better than the complex variant
by Singh, as a single damage parameter can directly be derived from the former. Con-
sequently, the authors used the model of Olsson as a baseline for the �rst analysis.
This model is physically sound for small impact damage without �ber cracking. It is
not su�cient when the damage becomes larger, however. Problems arise with the ap-
pearance of the �rst �ber cracks. In Olsson's model, the membrane sti�ness remains
una�ected by the damage. The compliance by damage softens only the bending and
shear forces. This results in very high membrane forces if the displacement increases.
As there is barely any load in the bending shear load path, kd may quickly lean toward
zero. Even in the range of BVID, this inclination toward zero can lead to di�culties in
the determination of kd and physically unlikely behavior. For this reason, the model
has been adapted to the current application.

The additional compliance by damage was moved to a series connection with the
global bending, shear, and membrane deformation. This model is shown in Figure
3.5(B). The series connection with the global sti�ness leads to a linear superposition
of the elastic de�ection wglobal and the additional de�ection by damage wd [Equation
(3.9)].

m1

km

kbs

kd

(a)

m1

kmkbs

kd

(b)

Figure 3.5: Sketches of damage-capturing spring-mass models: the
idealized version of the model by Olsson (A) and the spring-mass model

newly introduced in this work (B).
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w = wd + wglobal (3.9)

Equation 3.10 describes the relation between the contact force and the additional
de�ection by damage wd. The relation of the force to the third power of the de�ection
is a preliminary assumption and will be evaluated in the course of this work. The
assumption stands for a membrane behavior of the additional compliance by damage.
It is based on a characteristic of delamination damage. The plies remain intact, but
delamination separates them as sub-laminates. The bending sti�ness of the laminate
signi�cantly decreases. The softening allows a larger indentation under similar force.
In the delaminated region, the major part of the load is sustained by tensile stress
in the angular �bers � a membrane e�ect. This assumption requires that the �bers
sustaining tensile load remain intact. Thus, slight �ber damage on the impact side is
tolerable. Broken �bers in the plies on the reverse side could thwart the validity of
the spring-mass model.

kd =
F

w3
d

(3.10)

The compliance by damage captures the progressive damage behavior of the impact
by reducing the value of kd. The elastic sti�ness parameters remain untouched. This
impact description is founded on the idea that the intact composite structure controls
the elastic behavior. The major part of the structure is far enough removed from the
location of impact not to experience any damage. It only stores elastic energy during
the impact event. The damage barely a�ects this structural energy storage. Thus,
the in�uence of local, impact damage on a relatively large structure is small enough
not to be taken into account in the global elastic model. Instead, the deformation due
to damage occurs locally on the laminate level.

The global elastic deformation and the deformation by damage are linearly su-
perposed in the spring-mass model. This assumption is valid when the structure is
signi�cantly larger than the damage-a�ected part. An assumption that is true for this
work's target domain of impact scenarios according to Figure 1.13 on page 23. This
limitation prevents an extension of the target domain to large-mass impact with high
velocity. The damage would a�ect the whole structure and require a more complex
analytical degradation model, as proposed by Singh [98].

The sti�ness value kd integrally describes the local damage state of the laminate.
In its function, this sti�ness value is comparable to the projected delamination area.
In contrast to this area, the sti�ness parameter kd is a parameter of the impact system.
It can be evaluated at any point in the force-displacement history of an experimental
impact or a �nite element result. Correlating the sti�ness kd with the impact energy
introduced to the specimen provides a function kd (E). This function represents the
specimen-speci�c damage-propagation during the impact. Its determination is the
baseline for the damage description by the newly introduced spring-mass model.

3.2.3 Determination principle for the damage parameter kd

The determination of kd based on a force-displacement history is a straightforward
procedure. The global elastic displacement wglobal is computed with the current con-
tact force value by inverting Equation (3.4). The di�erence between the global elastic
de�ection and the total impactor displacement provides the additional deformation
caused by the damage in the laminate.
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The evaluation of an impact-force-displacement history for kd is illustrated by the
force-displacement diagram in Figure 3.6. It is possible to obtain the sti�ness value
for any point of the force-displacement history. A force-displacement history can be
evaluated up to the point of maximum displacement, where the full impact energy is
introduced into the laminate. The condition, that kd needs to decrease monotonically,
prevents a healing of the structure. However, prompt force drops always come along
with dynamic e�ects. Inertial e�ects delay the elastic response of the structure and
overshooting occurs. For this reason, the e�ects of high-frequent oscillations have to
be eliminated by �ltering the force history. Otherwise, prompt force drops would
result in implausible drops of kd.

This determination procedure for kd provides information about the impact da-
mage in the energy range between zero and the applied impact energy Ei. To exploit a
simulation or a test maximally, a high impact energy Ei should be chosen. This energy
needs to be chosen with care, as there is a validity limit for large impact damage that
is dominated by �ber damage rather than by delamination.
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Figure 3.6: Determination of the damage sti�ness parameter kd(E)
from the real impact response and the elastic response depending on

the introduced energy Etotal.

The model provides a scalar value for the energy dissipation by the damage that
is easily obtained. The elastic energy in the global deformation modes, as shown
in Equation (3.11), results from the integral of Equation (3.4). The subtraction of
Eglobal from the total energy Etotal provides the energy amount that was absorbed by
the damage zone. Even this energy is not fully dissipated, however, as kd also stores
energy elastically. The elastic energy in the spring kd needs to be subtracted from
Etotal then as well. This subtraction leads to the energy in Equation (3.12), de�ning
the energy dissipation by damage.

However, the value of energy dissipation by damage is not equivalent to the full
energy absorption during the impact. From Section 2.5.2, we know that during the
relaxation phase, e�ects of permanent deformation absorb a signi�cant amount of
energy, so Ed < Edis. Permanent indentation is not captured by the presented spring-
mass model and is not required for the aspired goal, ensuring damage equivalency of
a scaled impact between a structure and a reference coupon.

Eglobal =
1

2
kbsw

2
global +

1

4
kmw

4
global (3.11)
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Ed = Etotal − Eglobal +

∫ 0

wd

kdw̃
3
ddw̃d = Etotal − Eglobal −

1

4
kdw

4
d (3.12)

Evaluation of the spring-mass model After the determination of the sti�ness
parameters, impactor mass, and initial impactor velocity, we can evaluate the spring-
mass model to obtain the force response of an impact scenario. This evaluation is a
straightforward procedure based on the time integration of the equation of motion of
the point mass m1 [Equation (3.13)]. For the elastic spring-mass model, an analytical
solution of this di�erential equation can be found through separation and integration
[16]. This is equivalent to the damaged model with kd → ∞. However, the damage
element kd impedes an analytical solution. The course of kd itself is not an analytical
function but a discrete table of values. Thus the equation has to be solved through
numerical time integration with a discrete step-width ∆t.

ẅ =
F (w)

m1
(3.13)

This integration and the initial condition ẇ(0) = v0 provide the history curves
w(t), ẇ(t), and ẅ(t). From these, the forces responses F (t) and F (x) derive directly.

3.3 Impact scaling

The developed spring-mass model is not intended to provide a stand-alone prediction
of impact damage. The aim is to deduce the impact behavior of the scenario of
interest from a simpler impact scenario with a predetermined result. The transfer of
the impact damage shall be ensured through an equivalency of the damage parameter
kd. The scaling of the impact energy is conducted to achieve this equivalency. The key
assumption behind this transfer of the damage behavior is that the damage behaves
qualitatively equivalently in both cases. The local limitation of the impact damage
suggests that this assumption is valid under speci�c conditions. The new spring-mass
model describes the impact response as a superposition of the material behavior �
which includes the damage � and the elastic structural behavior. Once the material
behavior is known, the structural behavior becomes exchangeable. That way, we can
deduce the structural impact response from the response of the reference coupon.

Usually, a reference coupon represents the origin of the transfer. The structure to
be analyzed is the transfer target. The reference coupon crucially has to represent a
segment of the structure. If connecting elements, sti�eners, or holes are part of the
damage-prone area, these also have to be part of the reference coupon. The coupon
has to comprise the entire damage-prone area. If nonlocal damage next to the impact
spot occurs, this second hot-spot has to be part of the coupon.

The process to achieve an equivalence is illustrated by the �owchart in Figure 3.7.
Firstly, the calculation of the elastic sti�ness values on the origin side is necessary.
This calculation includes an elastic FE analysis. Afterward, the damage parameter
kd of the transfer origin is obtained. In this step, a damage analysis by test or high-
�delity simulation needs to be conducted. An evaluation of the spring-mass model
according to the determination process described in section 3.2.3 has to be conducted.
An objective description of the damage is central to the transfer approach. From that
point, the transfer to the target can be conducted. The elastic sti�ness properties are
the only necessary input from the target side. A curve of damage-equivalent impact
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energy of the two scaling partners can be calculated. The damage parameter of the
target can be determined for a given impact energy.

This scaling process considers only the force-displacement response and not the
force-time response, which would additionally require an adaptation of the impact
model mass m1. The assumption of an LVI is that the quasistatic response drives
the damage propagation. Thus, an equal impact duration is not a requirement for
equivalent impact damage [RB2]. Additionally, the inclusion of the scaling for a similar
force-time response would not extend the validity of the model according to the target
domain in Figure 1.13. The model with adapted mass would consider only the �rst
mode of the impact response, while the neglected vibration modes of higher order are
damage relevant for low-mass impact with higher velocity.
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(Structure) 

Elastic analysis Elastic analysis 

Impact analysis 
(HiFi simulation or experiment) 
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Figure 3.7: Flow chart for the scaling of the impact energy/ the
transfer of impact damage between the origin and the target.

3.3.1 Scaling for equivalent damage or same impact energy

The determination of the impact energy for a given damage parameter kd requires
the inversion of the previously described determination method from section 3.2.3.
This is made possible by an iteration over the total impactor displacement w on the
target structure. The iteration starts with w = 0 and proceeds with ∆w according to
Equation (3.14). Each iteration cycle n+1 begins with an evaluation of the analytical
spring-mass model. Its input is the global elastic sti�ness of the target and the current
damage state kd_n. Equations (3.15), (3.16), and (3.17) form a nonlinear system of
equations. It can be solved for its three variables Fn+1, wglobal_n+1 and wd_n+1. They
provide the contact force and the division of the displacement in the new iteration
cycle.

wn+1 = wn + ∆w (3.14)

wn+1 = wglobal_n+1 + wd_n+1 (3.15)

Fn+1 = w3
d_n+1kd_n (3.16)
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Fn+1 = w3
global_n+1km + wglobal_n+1kbs (3.17)

Afterward, the damage parameter needs to be updated. To ensure its objective
description, a force-dependent function for kd is used wherever possible. Depending
on Fn+1, the new value kd_n+1 is selected from the damage result of the scaling origin.

The force-displacement history of the target structure results directly from this
procedure. The integral of the force-displacement curve provides the equivalent impact
energy of the target structure for each value of kd. In Equation (3.18), the integration
of this force-displacement curve provides the temporary total impact energy of each
iteration step.

En+1 =
n∑
j=0

Fj + Fj+1

2
∆w (3.18)

When the aim of the analysis is to obtain the impact energy for similar damage
on the target, the iteration stops as soon as the origin value of kd is reached. This
would indicate that the energy for a prede�ned damage state has been calculated:
if
(
kd_n ≤ kd_aim

)
→ E(kd_aim).

An alternative analysis approach is the calculation of the damage state for a given
impact energy of the target. In this case, the iteration is conducted according to the
same principle. Only the abort criterion changes. If the total energy exceeds the given
impact energy, the associated damage state kd represents the result of the analysis:
if (En ≥ Eaim)→ kd(Eaim).

During the iteration process, the additional de�ection by damage for each state
of global elastic de�ection is calculated. The variable kd results directly from this
indentation and the corresponding contact force. The relation in Equation (3.16) is
not required to achieve the transfer. In the previous section, a cubic relation of contact
force and damage indentation was postulated. This assumption does not a�ect the
result of the conducted procedure so far. However, there are conditions in which the
relation of both variables gains importance.

The transfer allows several deductions regarding the target structure. The �rst
direct result is a prediction of its force-displacement curve. The integral of this curve
provides the impact energy associated with each damage status. Thus, a correlation of
the impact energy on the original structure and the target structure can be derived �
a curve of equivalent energy. Figure 3.8 shows such a curve, for an origin and a target
that serve as validation in the following section. Each instance of impact energy on
the target structure is associated with an energy level at the origin. This correlation
makes it possible to scale the impact energy for similar damage. A transfer could also
be performed on the basis of equivalent elastic contact force by using only the elastic
part of the spring-mass model. An explicit analytical correlation that results in the
plotted curve can be derived from Equations (3.17) and (3.11). Yet, this approach does
not take into account that the sti�ness decreases with progressing damage. As such,
the impact energy is overestimated when the transfer target is softer than the origin,
as is the case in the example plot. However, an elastic-force-equivalent transfer might
serve as an alternative approach if no experimental or numerical data concerning the
impact event are available. In the energy range in which no damage occurs, both
transfer methods provide the same result. The larger the damage size, the larger the
error of force-equivalent scaling becomes.
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Figure 3.8: Curve of the damage-equivalent impact energy for the
transfer origin and the target.

3.3.2 Unstable damage propagation

The problem of the method described in Section 3.3.1 is that the displacement function
w(F ) is mathematically not injective. Several displacement values w can correspond to
same contact force. This multiplicity prevents a completely force-dependent objective
damage description. A force-dependent damage description would limit the method
to monotonically increasing force-displacement responses. Consequently, the case of
decreasing contact force has to be distinguished. The decreasing force corresponds to
unstable damage propagation. As Figure 3.9 shows, elastic energy is released when
the force drops. This released energy further propagates the damage until a new
equilibrium is reached.

To handle unstable propagation, the force history is split into injective and no-
ninjective sections. Each injective section ends when Ḟ < 0. A new injective section
starts when the new equilibrium is reached. Further analysis steps are necessary to
determine this new equilibrium state after unstable damage propagation.

A force drop releases energy from the global structure as illustrated in Figures 3.9
and 3.10. Equation (3.19) describes the released energy. For an equivalent force value,
a compliant structure provides a larger energy reservoir than a sti� structure. The
released energy is transferred to the damage element kd, representing the compliance
by damage in the spring-mass model. This energy transfer is illustrated in Figure
3.10. A part of the transferred energy is absorbed elastically. Further progression
of kd is also possible. This progression a�ects the contact force so that the released
energy further increases.

Erelease =

∫ wg(Fup)

wg(Fdrop)
kmw

3
g + kbswgdwg (3.19)
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Figure 3.9: Released energy of the global elastic structure of an
impact con�guration when the contact force drops from Fup to Fdrop.
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Figure 3.10: Spring-mass model illustration of the energy transfer
during damage growth with decreasing contact force.

The damage growth is unstable as long as the structure releases more elastic energy
than kd can absorb elastically. If dEidkd

exceeds −dEd
dkd

, the damage propagates unstably.
This criterion in Equation (3.20) evaluates the derivatives and compares the released
energy and the absorbed energy with respect to kd for unchanged total displacement
ẇ = 0. The idea is analogous to the fracture-mechanical principle of energy release
rates (compare to Section 1.4). The value −dEd

dkd
stands for the critical ERR, while

dEi
dkd

is the damage- and load-speci�c ERR. The damage propagation remains stable as
long as the released energy is smaller than the capability for elastic absorption. This
criterion is key to capturing force drops in the impact transfer.

dEi
dkd

< −dEd
dkd

(3.20)

Regarding the energy that can be absorbed elastically by kd, the derivative of Ed
with respect to kd is a simple equation, Equation (3.21). Yet, according to the chain
rule, this equation still requires the derivative of wd with respect to kd. The value wd
depends on four parameters � kbs, km, kd, w � as shown in Equation (3.23). Among
these, three are constant, and only kd is undetermined.

The determination of dwd
dkd

is approached by the equation of force equivalence,
Equation (3.22), of the global elastic springs and the spring representing the damage.
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It can be solved for wd with a symbolic computing environment like Maple. The
solution is a relatively long term that is di�erentiable with respect to kd.

A similar procedure needs to be conducted for the derivative of the energy released
by kbs and km. This derivative depends only on the indentation wg, which can easily
be obtained after wd is already known.

dEd
dkd

=
w4
d

4
+

3

4
kdw

3
d

dwd
dkd

(3.21)

(w − wd)kbs + (w − wd)3km = w3
dkd (3.22)

wd = wd (kbs, km, kd, w) (3.23)

Under the precondition that consecutive values of kd are available on sections of
decreasing contact force, this theory can be implemented. With this data, the ob-
jective force-dependent damage description would be complete. However, the damage
description method from section 3.2.2 provides values for kd depending on either the
energy or the impactor indentation. Therefore, an alternative evaluation for Equation
(3.20) has to be conducted.

In the implementation, the derivative of Ed is obtained from the data of the origin
side of the impact transfer. During the iteration process of the transfer approach,
the derivative of Ed for the target structure is calculated. The criterion for a stable
damage growth can be formulated by comparing these values in Equation (3.24).

− dEd_target
dkd

> −dEd_origin
dkd

(3.24)

This modi�ed criterion is weaker than the original formulation in Equation (3.20).
Instead of a complete objective damage description, it provides only a comparison of
the damage growth stability between the target and the scaling origin. In short, this
means that if damage propagation is stable on the transfer origin and the elastically
absorbed energy of the scaling target is equal or higher than at the origin, crack
propagation on the target is stable, too. Yet, if the target can take less elastic energy
than the origin, the behavior is unde�ned. This is an obstacle to overcome in the
implementation. It requires the skipping of several iteration increments until the
stability criterion is ful�lled. During those increments, it is assumed that the contact
force remains temporarily on the drop value of the transfer origin. In reality, a force
drop to a lower value would be expected. The solution would not include this drop,
if a scaling is performed toward a sti�er target.

This procedure provides quasistatic scaling for impact scenarios with any force-
displacement history. However, the quasistatic assumption still constricts the range
of transferable impact scenarios.

3.3.3 Modal energy correction

The scaling approach, as presented so far, is founded upon a quasistatic, one-dimensional
spring-mass model. As stated earlier in Section 3.2.1, this spring-mass model descri-
bes only the fundamental vibration mode of an impact. Thus, it is only valid for a
quasistatic event, according to the categorization by Olsson in Figure 1.12 on page 22.
The transfer method's range of validity lies within the limits of quasistatic solutions
for LVI. Therefore, it strictly limits the target domain of the transfer model to very
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large impactor mass and low velocity according to Figure 1.13 on page 23. An exten-
sion of the domain toward impacts with low mass and higher velocity would require
a consideration of higher-order �exural modes.

Swanson already analyzed this issue in 1992 [179]. According to his work, a su�-
cient distance between the impact main frequency and the next-lowest eigenfrequency
of the structure has to be kept. As a rule of thumb, he proposes that those two fre-
quencies should di�er by at least a factor of three. If the eigenfrequencies are closer, a
signi�cant ratio of impact energy goes into the higher-order eigenmodes. The energy
ratio in the eigenmode is suitable as a measure for an impact's quasistatic character
[RB2] because the in�uence of higher-order modes on the impact response marks the
validity limit of a quasistatic solution.

In order to enlarge the range of validity for the scaling, the method has to take
into account the energy in other modes. For quanti�cation of that energy, the energy
distribution over an impact system's eigenmodes is analyzed based on the modal
impact response. This distribution permits derivation of the relevant energy fraction,
the energy in the fundamental mode of the impact, for the quasistatic scaling.

However, the modal analysis requires a linearized idealization of the impact system,
as Figure 3.11 illustrates. Any nonlinear e�ects are a�ected by that requirement. The
model does not permit the inclusion of membrane e�ects, contact phenomena, or
damage.

Accordingly, the linearization requires an elastic material model. As we analyze the
distribution of energy at the beginning of the impact, this limitation is not a relevant
restriction. As shown earlier in Figure 2.15 on page 47, no damage is caused in the
initial impact phase. Membrane e�ects are also negligible, because the derivate Ḟm(0)
is zero according to Equation (3.4). Consequently, the linear behavior dominates the
modal energy distribution.

Additionally, the linearized model needs tied contacts between the specimen and
the impactor and the support structure, respectively. The impactor and the specimen
are in contact during the whole impact process. This fact permits a straightforward
procedure for the linearization. A point mass representing the impactor gets tied to
the specimen.

The contact between the specimen and the support structure shows di�erent be-
havior. Not all areas that are initially in contact keep that status during the impact
process. Tying all possible contact zones together sti�ens the model severely. Neg-
lecting all contacts and using a statically determined support con�guration results in
a too-soft system. Eventually, this contact requires decisions to be made on a case-
by-case basis. For example, tying two opposing edges with the other two edges left
unsupported represents one option to achieve a plausible behavior.

The linearized system allows the description of the impact scenario as an initial
value problem based on the equations of motion [Equation (1.24)]. The absence of
external forces and the negligence of material damping reduces this equation to the
homogeneous form in Equation (3.25). In the initial state, all DoF and nearly all
velocity components are zero. The only exception is the impact point with the tied
point mass, which begins with the initial impactor velocity vi.

Mẍ + Kx =0

x (t = 0) =0

ẋ (t = 0) =ẋ0

(3.25)
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Figure 3.11: Model sketch of an impact system for a modal analysis.

A modal analysis [180] is the �rst step to calculate the modal energy distribution
of the linearized impact system. It provides the linear independent vibration modes
that can occur without coupling e�ects. Accordingly, the modal equations of motions,
Equation (3.26), are independent of each other. These uncoupled equations result
from a transformation of the equation of motion [Equation (1.24)] into the modal
coordinates ξ. Each coordinate ξj stands for one eigenvector x̂j . These coordina-
tes and eigenvectors describe the dynamic response of the linear impact system with
Equation (3.27). The value Ne describes the number of eigenmodes that the approx-
imation considers. Its maximum value is equal to the number of DoF. The choice of
a smaller value for Ne leads to the neglection of eigenmodes with high frequencies.
This is a common procedure of model reduction, the dynamic condensation as it was
proposed by Paz [181].

mj ξ̈j +mjω
2
0jξj = 0 (3.26)

x (t) =

Ne∑
j=0

x̂jξj (t) (3.27)

Equation (3.28) transforms the initial velocity condition from the global to the
modal coordinates. This equation is overdetermined when not all eigenmodes are
considered, as there are more equations than free variables. Employing an LSQ met-
hod, as explained in the Appendix B.2, provides an approximate solution to obtaining
the value for ξ̇0j. These initial velocities already give the energy distribution at the
beginning of the impact. There is no elastic energy in the system as all DoF remain
zero. Only the kinetic energy has to be evaluated, as Equation (3.29) shows.

ẋ0 =

Ne∑
j=0

x̂j ξ̇0j (3.28)

x̂jMx̂Tj
ξ̇2

0j

2
=
mj ξ̇

2
0j

2
= Ej (3.29)

The diagram in Figure 3.12 depicts the distribution of the kinetic energy over the
�rst 50 eigenmodes of an impact system with 37 J. We recognize that the energy
decreases with increasing mode number (and thus increasing eigenfrequency). The
�rst few modes contain the bulk of the energy. This energy concentration permits the
mentioned model reduction through neglection of very high-frequency eigenmodes.
In this work, all modes below 10 000 Hz are taken into account. This limit is very
conservative and was chosen arbitrarily. The low computational e�ort of the modal
analysis does not demand a stricter approach.
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Figure 3.12: Distribution of kinetic energy over the �rst 50 modes
of a linearized impact setup.

This energy-correction method quanti�es the damage-relevant part of the impact
energy. As LVI damage is driven by the �rst eigenmode, the energy in higher modes
is considered as not relevant to damage. Two facts support this assumption. Firstly,
the higher-order modes comprise little energy. The associated deformations are likely
to occur elastically. This boundary determines whether an impact counts as large-
mass impact and the corresponding limit of the target region in the impact overview
diagram of Figure 1.13 on page 23.

Secondly, the material damping of carbon �ber material is su�ciently high to
dissipate most of this energy before the turning point of the impact. In two inde-
pendent works, Kottner et al. [182] and Oshima et al. [183] studied the damping
behavior of carbon FRP. They provide approximate values for the logarithmic decre-
ment (Λ = 0.02) and the damping ratio (ζ = 0.003). These values are of similar orders
of magnitude and can be used to estimate the decay behavior of higher-order modes
during the impact event. The logarithmic decrement describes the amplitude ratio of
two successive peaks ξ̂(ti) and ξ̂(ti+n) with n full cycles between [Equation (3.30)].
The energy in an oscillation is proportional to the square of the amplitude. Accor-
dingly, the energy decreases quadratically, and Equation (3.31) describes the energy
dissipation over a number of cycles n. The maximum de�ection and the maximum
contact force mark the end of the damage propagation. Both maxima co-occur after
a quarter of a �rst-mode-cycle. Thus, the number of oscillations during this quarter
cycles is relevant for the decay of higher-order modes. This makes very high-frequent
modes even more negligible, as they are completely damped when damage propagates
in the specimen.

nΛ = ln
ξ̂(ti)

ξ̂(ti+n)
(3.30)

E(ti)
1

exp 2Λn
= E(ti+n) (3.31)

However, this whole dynamic correction captures only the energy distribution at
the beginning of the impact event and would be valid during the whole process if
the behavior were purely linear elastic. In reality, damage results in a force drop
that can excite the impact system. This excitement relocates elastic energy from the
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fundamental mode to higher-order modes. Accordingly, the modal energy estimation
provides a minimum amount of energy that is lost to higher-order modes.

3.3.4 Obvious constraints and the characteristics of impact simila-

rity

With quasistatic scaling and dynamic correction, the presented methodology permits
the achievement of equal damage size in two impact scenarios. Several assumptions
that were made to achieve the impact scaling result now in constraints. We distinguish
these constraints in two categories: general constraints and similarity requirements for
the origin and the target.

General constraints concern the validity of the spring-mass model or the choice
of a reference coupon: Firstly, the damage has to only occur locally around the im-
pact spot. Nonlocal damage that is located out of the reference coupon would not
be recognized, using the scaling method. Secondly, �ber cracking must not be the
predominant damage mode. Signi�cant �ber cracking in the impact zone would erode
the validity of the membrane sti�ness approach in the damage element kd. Finally, the
damage size on the analyzed reference coupon determines the maximum predictable
damage size on the target. Scaling can be performed toward smaller damage only.
Extrapolation to larger damage is not allowed.

In addition, the origin and the target of the scaling have to ful�ll several requi-
rements of similarity. The equality is achieved based on several idealizations in a
spring-mass model. The simpli�ed damage description of this model entails several
restrictions regarding its applicability. The restrictions concern all relevant parameters
of the impact scenario:

� laminate stacking sequence in the damage-prone area

� ply material in the damage-prone area

� impactor shape and size

� dynamic impact response

� elastic deformation behavior in the impact zone

Based on this list, the similarity requirements for an impact transfer are formu-
lated. The �rst three items in the list need to be fully equal. A di�erent material
or layup in the damage-prone area would change the qualitative damage behavior.
Neither damage threshold forces nor the damage pattern of delamination would be
comparable. Changing the impactor would have a similar e�ect and is also not per-
mitted. Infringing the equality requirements would result in two di�erent damages at
origin and target, despite an equality in the value of kd.

Even if the dynamic correction according to the Section 3.3.3 is applied, the dy-
namic impact behavior remains a possible source of uncertainty. If the range of LVI
is left, the impact response contains signi�cant higher-order vibration. The dynamic
correction presented in this work extends the validity range for cases in which the
range of LVI is left, but higher-order eigenmodes do not contribute to the propagation
of damage in the laminate. However, these modes can become damage relevant if
excited with su�ciently high energy. A study of the phenomenon showed that just
15 % of the total impact energy in higher-order modes can a�ect the impact damage
[RB2]. However, this value is valid only for the impact con�guration from which it
was derived (CAI impact). The energy threshold of a certain eigenmode to become
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damage relevant can neither be determined as an absolute value nor as a ratio of the
total impact energy. It is individual for each eigenmode and consequently unique to
each impact system. And even a possible quanti�cation of the relevant energy amount
would not be su�cient to permit the scaling of this damage. The di�erent formati-
ons of eigenmodes on the structural level and the reference coupon di�erently a�ect
the damage. These circumstances impede the scalability if higher-order eigenmodes
become damage relevant.

The last item in the list above is a soft condition, requiring only su�cient similarity.
This soft demand is based on the principle of Saint Venant [184, 185]. The reagent
forces in the support areas are su�ciently far removed from the damage-prone zone.
Their exact distribution does not in�uence the damage. Only the deformation in the
impact zone is responsible for shape and extent of the damage. The limits of this
deformation need to be analyzed. For example, a long, slender specimen is unlikely to
develop the same damage pattern as a quadratic plate. In addition, impact damage
close to a supported edge will behave di�erently from a symmetrical impact. These
geometric varieties primarily a�ect the damage pattern that is to be transferred.
However, the force-displacement history can change as well. The development of kd is
especially in�uenced by the shifted threshold forces of delamination or �ber cracking.

In order to ensure a su�cient similarity of the deformation behavior, three check
values, c1, c2 and c3, are introduced in Equations (3.32) � (3.34). We obtain these
values from the displacement gradients in four orthogonal directions around the impact
point. The displacements are recorded during the out-of-plane indentation analysis in
which the elastic response is determined. Four points with an even distance from the
impact spot and a location on two orthogonal lines must be de�ned. All �ve points
together form a cross, as depicted in the illustration in Figure 3.13.

In this work, a distance from the impact point of ∆x = ∆y = 5 mm was cho-
sen. The �rst two check values describe the deformation symmetry in two orthogonal
directions. The sti�ness ratio of these two directions is indicated by c3. If the para-
meters of two di�erent impact scenarios are all the same, full kinematic equivalence
can be assumed. As long as there is su�cient similarity, a certain tolerance of the
three values is permitted. During the validation, the check values were monitored for
each transfer. By applying equation (3.35), the quadratic product of all check values
can be used for a quick assessment of the deformation symmetry of an impact loca-
tion. This check value permits the assessment of the similarity of an arbitrary impact
location to a symmetrical (usually quadratic) reference coupon. The limit of validity
cannot be expressed by a �xed value. It depends on the tracking distances ∆x and
∆y. In addition, it can vary depending on the material and the stacking. However,
the quantitative derivation of appropriate limit values exceeds the scope of this work.

c1 =
wi − w+x

wi − w−x
(3.32)

c2 =
wi − w+y

wi − w−y
(3.33)

c3 =
wi − w+x − w−x
wi − w+y − w−y

(3.34)

csym =
[
min

(
c1, c

−1
1

)
min

(
c2, c

−1
2

)
min

(
c3, c

−1
3

)]2
(3.35)
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Figure 3.13: Location of the four reference points for the derivation
of check values of deformation similarity.

3.4 Application and validation of the methodology

The validation of the presented models was performed through an extensive impact
test campaign. The test campaign was tailored to serve three validation purposes,
according to the schematics in Figure 3.14:

� The �rst validation (red arrow) concerns the damage description through the
spring-mass model in which the additional compliance by damage is the damage
parameter. The corresponding check is founded upon a test series of coupon
impacts on di�erent energy levels.

� The green arrow indicates the validation of the impact scaling method. This
validation fully relies on experiments to prevent a possible bias of the virtual
testing (for possible sources of errors check the critical assessment in Section
2.6). A large test series with di�erently sized impact specimens and impact
locations was conducted in order to check the scaling capabilities under various
conditions.

� The last validation step (blue arrows) consists of virtual tests using the high-
�delity model. The respective results are compared to a set of experimental
tests. Those tests involved di�erent laminates, boundary conditions, and energy
levels. This calculation has already been made in Section 2.5 and is mentioned
here only for the sake of completeness.

3.4.1 Description of experimental impact damage through kd

Based on the second research hypothesis, the modi�ed spring-mass model with the
sti�ness kd was developed to capture the damage state of an impacted composite
laminate. This capability shall be validated.

A set of impacts on CAI coupon impacts according to the AITM 1.0010 was
evaluated for this purpose. The testing campaign comprises 42 specimens with a quasi-
isotropic layup of carbon-�ber prepreg with epoxy resin. We know this con�guration
CAI1 from the validation of the numerical impact analysis in Section 2.5. Now, the
impact energy of the full set of samples ranges from 10 J to 35 J.
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Figure 3.14: Validation schematics for the analytical spring-mass
model, the impact scaling and the high-�delity simulation.

The course of the damage parameter during an impact event is depicted in the
diagram in Figure 3.15. The measured force-displacement history is plotted together
with the history of kd. Additionally, the elastic force-displacement curve of the spe-
cimen is part of the diagram, completing the source data from which kd was derived.
The derivation of kd was conducted according to the determination principle presen-
ted in Figure 3.6. For this determination, the actual impact response curve can be
a result of an experiment or an impact simulation. The elastic response is obtained
from an elastic FE model.

Continuous evaluation of the damage parameter, as shown in Figure 3.15, allows
the observation of the damage-progress during the impact event. Onset and propaga-
tion of damage soften the laminate sti�ness. This softening is indicated by a drop of
kd. Flat periods of kd indicate a temporary elastic behavior of the specimen.

With the spring-mass model set up from the relations in Figure 3.15, we can im-
mediately verify the suitability of this model. Firstly, the force-displacement response
has to be reproduced correctly. Secondly, the force-time history, which involves the
e�ects of inertia should �t the test result. Figure 3.16 shows both curves as obtained
through the numerical solution of the equation of motion, Equation (3.13). They
a�rm an excellent agreement of the analytical results with the experimental basis.
From this result, we conclude that the developed model suits the description of an
LVI response.

Beyond the impact response, the model shall describe the damage state of the
impacted laminate. Therefore, the entire set of tested CAI specimens was evaluated
for the �nal state of the damage parameter kd. Figure 3.17 shows the results, including
one complete kd-curve of a single specimen. This curve was derived from a 30 J
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Figure 3.15: Development of the damage parameter kd (blue) and
the corresponding force-displacement history (black) on the example

of a 30 J CAI impact (con�guration CAI1.30 in Section 2.5).
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CAI1.30 in Section 2.5).
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Figure 3.17: Comparison of the projected delamination area (black)
with the values of kd (blue) for a set of CAI experiments with the
continuous course of one exemplary 30 J experiment (dashed line).

impact, permitting an evaluation in the energy range from 0 J to 30 J. The trend of
the single specimen is in accordance with the data points of the test set. The damage
compliance is presented here as a descriptive parameter of the damage status. Usually,
the projected delamination area is used for the description of this damage status.

In order to prove the validity of the new description, the delamination area for each
instance of impact energy is plotted in the same diagram. The kd axis is logarithmic,
as the range is between 100000 and 1000 N

mm3 , and it exponentially decreases with an
increasing impact energy. A signi�cant scattering of kd is detectable, in particular
for high impact energy. Anyway, this scattering is qualitatively similar to the scatter
of the delamination area. This similarity indicates that the scatter is not due to the
descriptive model, but due to the real scattering of impact experiments, as it has also
been reported in the literature [105, 166, 167].

The damage kd(E) is a speci�c function for each impact con�guration. Its ideal
course without scattering in Figure 3.17 would be the same line for all specimens, each
ending at the associated impact energy value. The line itself changes only if other
parameters of the impact scenario are modi�ed. These can be the shape or size of the
impactor, the laminate con�guration, or other modi�cations.

However, kd(E) can also be a�ected by the specimen type, the location or the
boundary conditions. In order to scale the impact parameters between di�erent impact
scenarios, the speci�c description of the compliance by damage must be replaced
by an objective description. In general, objectivity concerning the elastic sti�ness
parameters kbs and km is required.

Energy dissipation by damage

As stated in Section 3.2.3, the analytical spring-mass model provides information
about the energy dissipation Ed by damage. This dissipation results from the sti�ness
loss in the damage element kd, and the function Ed(kd) does not depend on the
global sti�ness parameters kbs and km. The energy value Ed is an objective damage
description comparable to kd. Combined with the elastic sti�ness parameters, the
spring-mass model calculates the energy correlation Ed(E) according to Equation
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Figure 3.18: Energy dissipation by damage in comparison between
the experiments, the high-�delity simulation and the analytical spring-

mass model.

(3.12) from page 79. The evaluation of this equation in each displacement increment
of the iteration Equation (3.14) leads to a continuous history Ed(E).

With that relation, we extend the previous relations of the impact energy and
the energy dissipation (Figure 2.28 on page 66). In addition to the experimentally
observed dissipation and the numerical prediction, we include the analytically obtained
value from the spring-mass model in the diagram in Figure 3.18.

The dissipated energy of the model remains far below the experimental results.
However, the trend is qualitatively similar. We observed the same e�ect for the
numerically predicted energy dissipation. Even more, the notable agreement of the
analytical and the numerical curve suggests a similar physical cause. Both curves are
an extract of the full energy dissipation during an impact. However, this agreement
is not a validation, as an experimental determination of energy in the damage modes
was not conducted. The accumulated delamination area, �ber crack length, and inter-
�ber crack length have to be determined in order to validate the energy absorption.
So far, the agreement only indicates validity; it does not prove it.

3.4.2 Validation of the impact scaling

Test setup and impact con�gurations

For practical application, the impact scaling approach permits the analysis of a struc-
tural impact scenario on a reference coupon. For the purpose of validation, I de�ne
a di�erent scaling scenario: the result of a known coupon impact (reference coupon)
shall be reproduced in various scaled impact scenarios. These impact scenarios di�er
in the type and size of the specimen and the impact location. There are �ve di�erent
specimen geometries and a total of 18 di�erent impact scenarios. The �rst of these
is the reference impact con�guration (REF). Based on the result of REF, di�erent
impact scenarios were de�ned to result in similar damage as on the reference coupon
REF.

Under ideal conditions, similar damage would emerge in all 18 con�gurations.
In contrast to the application scenario with di�erent reference coupons, the chosen
scenario is more convenient to evaluate. A direct comparison of the results of all
con�gurations becomes possible and immediately shows deviations. Additionally, the
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Figure 3.19: The spring-mass model's force-time and force-
displacement history of the reference impact �REF� (B1) with 25 J.

reduction to a single reference coupon reduces the number of required validation ex-
periments. Otherwise each impact con�guration would come along with its own re-
ference impact. Despite this reduction, the full scaling methodology is conducted for
each con�guration. Thus, the approach suits the validation purpose.

All specimens have the same layup [45,−45, 0, 90, 45,−45]s, consisting of plies from
unidirectional carbon �ber prepreg material with a thickness of 0.184 mm (Material
I in Appendix A.3). The geometries and impact locations are shown in Figure 3.20.
The reference coupon is a small specimen of type �B� with an outer dimension of
160× 110 mm2. The reference impact �B1� is placed in the middle of this specimen.
The impact energy for this reference impact was determined in preliminary tests with
this impact con�guration. These tests aimed at �nding the impact energy that leads to
the maximum possible damage size that would still be classi�ed as BVID. The visibility
classi�cation is based on a limit value of 0.3 mm permanent indentation. On average,
this value was reached with an energy of 25 J. Under this impact load, a delamination-
dominated damage with a projected damage area around 500 mm2 occurs. Inter-�ber
fracture comes along with this damage and is mainly visible on the impact backside.
Fibers already break in the uppermost ply at a length of approximately 20 mm. Based
on our assumption of small impact damage, we consider this as still acceptable to
be captured by damage variable kd in the spring-mass model. As such, the 25 J
con�guration was chosen for the reference impact in this testing campaign.

We already know the described reference impact �B1� (REF) from the validation
of the numerical impact simulation in Section 2.5. An elastic FE analysis provides
the sti�ness parameters km and kbs. These parameters are combined with the expe-
rimental force response to build the corresponding spring-mass model of the scaling
origin. Any scaling to be based on this spring-mass model necessitates the model's
validity for the scaling origin itself. The diagrams in Figure 3.19 verify this analytical
description. Its force-displacement history �ts well to the experimental basis. The
force-time history also match the test result.

Apart from the reference coupon, there are four other types of test specimens for
the scaling: one coupon of similar size as the reference but with the layup turned by
90°, two larger coupons of 280× 160 mm2 with and without a central sti�ener, and
�nally a 340× 310 mm2 panel section with a central sti�ener. The sti�eners measure
20 mm in height, consist of the same layup as the skin, and arise from the skin plies.
Consequently, there is neither a sti�ener foot nor a bonding interface.

All impacts were conducted under simply supported boundary conditions with
clamping strips at two opposing edges. For that purpose, a special support �xture for
these specimen types was used, as shown in the pictures in Table 3.1.
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Coupon type A,B C,D E

Test setup

FE model

Table 3.1: Test setups (upper row) and �nite element models (lower row) for all specimen
types of the transfer validation.

On each of these coupon types, several target impact locations were de�ned. To
achieve the same damage for all con�gurations, the reference impact shall be scaled
to each con�guration. For that purpose, the reference coupon is always the scaling
origin, while each new impact con�guration forms a target. Consequently, an elastic
indentation analysis has to be conducted for each target. For that purpose, the test
setup was fully modeled with �nite elements. Table 3.1 also shows the corresponding
model for each test con�guration.

The elastic �nite element analyses with layered shells provides the elastic force
responses for all con�gurations. In this analysis, it is crucial to apply consistent met-
hods on the origin and on the target. This concerns mainly the prescribed indentation
at the impact point, which has to be accomplished through the same method. For ex-
ample, modeling the impactor is possible but not mandatory. The indentation can be
achieved by a concentrated out-of-plane force at a single node representing the impact
spot. This can save computation time as there is no numerical contact formulation
between impactor and specimen. If the elastic simulation does not require contact
modeling, an implicit solution can provide results very quickly. If the elastic model
involves contact, an explicit time integration is more e�cient.

The force response from this FE analysis forms the basis for the determination of
the elastic spring parameters km and kbs. The symmetry check values ci are derived
from it. To calculate the required impact energy, the impact response of the reference
coupon is considered. For this calculation, the result of one reference impact was used.

This calculation did not include the modal energy correction to capture the dyna-
mic energy loss. So, this set of experiments validates primarily the quasistatic scaling
approach. Nevertheless, the eigenmode-based dynamic correction from Section 3.3.3
is employed later in the validation process, to explain deviations.

Table 3.2 presents the geometric con�guration, the sti�ness parameters, the sym-
metry conditions, and the calculated impact energy for all impact scenarios in the
test set. Additionally, it shows the number of conducted tests. This number of tests
depends on two factors: �rstly on the number of available specimens of this type and
secondly, on the result of the �rst test in this location. If the damage was qualitatively
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Figure 3.20: Geometry of all �ve validation specimen types and the
18 chosen impact locations.

di�erent from the reference damage, the corresponding con�guration was considered
devalidated. In this case, the transfer is not valid. The di�erent damage indicates
that another reference coupon would be required to scale this impact location.

The impact positions were intentionally chosen to achieve impact scenarios that
di�er according to the following criteria:

� global indentation sti�ness (and impact energy, respectively)

� symmetry conditions in various directions

� distance to a support structure

� distance to a sti�ener

� ratio of membrane and plate deformations

As the reference coupon is small and sti� in comparison with most of the other
impact con�gurations, nearly all transfers require a higher impact energy than did the
reference coupon. The energy spectrum ranges from 21 J up to 39 J. The impactor
mass remains constant at 3.99 kg. With this mass, the impact drop tower (Appendix
A.1) can cover the required energy range.

Validation results

The scaling procedure according to the �owchart in Figure 3.7 directly provides the
force-displacement history of a scaling target. Therefore, this history curve is the
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�rst result to be considered in this validation. The measured curve of the impact
experiments is compared to the analytical curves derived from the spring-mass model.
Figure 3.21 shows the force-displacement history of four exemplary impacts. The full
set of diagrams is included in Appendix A.4.

The transferred force-displacement history curves in comparison with the experi-
mental results are evidence of a very strong validity. The loading phase of all three
test cases is well predicted. The damage onset thresholds also match. As a rule,
the impact on the origin and the target have to exceed the same damage thresholds.
This requirement leads to the side e�ect of similar maximum contact force values for
similar damage. When the force before the threshold determines this maximum, the
value is trivially similar. In addition, if the contact force exceeds the value of the last
threshold, the maximum contact force is also similar for the target and the origin: the
last section of the force-displacement curve is injective, and the spring-mass model
provides a force-equivalent scaling. Thus, an equal maximum load is a necessary but
not a su�cient condition for damage-equivalent impact scenarios.

Obviously, the oscillation behavior of the curve is not predicted, as it results
from eigenmodes of a higher order. These are not part of the transfer as the spring-
mass model is based on the �rst mode only. The result con�rm the capability of the
developed transfer method to predict the force-time history.
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(a) Con�guration: B3, Ei = 23 J
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(b) Con�guration:B1', Ei = 24 J
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(c) Con�guration: D1, Ei = 37 J
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(d) Con�guration: E1, Ei = 39 J

Figure 3.21: Force-displacement history of experimental impacts
(grey) and prediction by the transfer (red) derived from the reference

impact.
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According to the conducted transfer of impact damage, all impact tests were desig-
ned to result in similar damage. I address this aim in the main step of the validation.
Several metrics quantify the impact damage: the maximum contact force, the pro-
jected delamination area from the ultrasonic detection, the visible �ber crack length
on the impact front side of the specimen, the visible inter-�ber crack length on the im-
pact back side, and the energy absorption during the impact event. Additionally, each
impact force provides a value for the damage parameter kd. These results are also part
of the validation, as kd is the actual subject of the damage transfer. Consequently, it
should be similar beyond the impact con�gurations.

� Similar maximum contact force is a necessary but not a su�cient condition for
similar damage [RB3], as the same threshold forces have to be exceeded. Howe-
ver, in regions of decreasing contact force, di�erences in the damage propagation
do not a�ect the peak force.

As visible in the �rst diagram of Figure 3.22, nearly all con�gurations ful�ll the
requirement of similar contact force. The only exceptions are the con�gurations
B4, C4, D4, and E2. The deviation of these cases is visible but does not appear
severe.

� The delamination damage is the predominant damage mode in BVID. The pro-
jected area is a common measure to assess this result. For the present validation,
it is vital also to look at the qualitative delamination results as they are provided
for all tests in Appendix A.4.

The second graph of Figure 3.22 compares the projected area of all con�gurati-
ons. We see a result that di�ers more. The con�gurations B4, C5, D3, and D4
deviate signi�cantly from the reference range.

The qualitative delamination pattern also provides information about the simi-
larity of the occurring damage modes. Indeed, most of the damage patterns
are qualitatively similar. However, there are several con�gurations with very
di�erent damage. These are B4, C4, C5, D4, and E2.

� The lengths of the observable �ber cracks and the inter-�ber cracks on the
specimens serve as measure for intra-ply damage. The third diagram in Figure
3.22 shows the respective crack lengths, measured for each con�guration.

On the reverse side, tensile IFFs emerge. The crack aligns with the �ber orien-
tation and does not branch. The same crack type also occurred constantly in
nearly all impact con�gurations. A qualitatively di�erent crack was observed in
the asymmetric impact locations B4 and D4, where �ber cracking also occur-
red on the reverse side and the inter-�ber crack branches. Quantitatively, the
damages of several con�gurations (C4, D3, E1, E2, E3) lie outside the range of
scattering as observed on the reference coupon.

On the impact side of the specimen, compression-driven FF occurred. Two
separate cracks initiate from the contact area with the impactor. The measured
value in the diagram shows the accumulated length of both observed cracks.
The behavior is comparable to what we observed for the IFF. Both B4 and D4
qualitatively di�er from the reference coupon. In all E con�gurations, shorter
�ber cracks emerged.

� The energy absorption during the impact is a parameter commonly related to
the resulting damage size. Therefore, I also considered it an indicator of the
similarity of the impact scenarios. However, this value emerged as an unsuitable
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measure for that purpose. The energy absorption increases especially for soft
impact spots that require high impact energy. Especially a�ected are the impacts
on the specimen types D and C.

Several e�ects cause this increase. The signi�cant energy absorption during
the relaxation phase was described in the validation section of the high-�delity
model 2.5.2. Secondly, the dynamic energy loss to vibrations of a higher order
was not taken into account for the energy calculation of the scaled impacts.
However, the follow-up evaluation of the modal energy correction will later be
used to explain the observed deviations.

� As damage parameter, kd is the key to the impact scaling. Figure 3.23 shows the
state of this parameter for all impact con�gurations. To provide an easier clas-
si�cation of the scatter and the deviations, the diagram includes two reference
lines of 15 J and 35 J impacts on the reference coupon.

The results of kd tend to an inverse distribution over the con�gurations as the
projected delamination area. This tendency is plausible because smaller values
of kd stand for larger damage. However, there are some exceptions. In the
impact con�gurations C4, D4, and E2, a small delamination area has small
values of kd

The evaluation of the damage result supports the validation of the scaling method,
but also suggests the devalidation of several test cases. Summarizing the results, we
observe su�ciently similar damage for 9 of 17 conducted quasistatic transfers. The
damages of the remaining eight con�gurations di�er by at least one measure from the
reference impact. The concerned con�gurations are B4, C4, C5, D3, D4, E1, E2, and
E3.

These numerous potentially invalid transfers are not surprising, as the impact
locations were speci�cally chosen to test the area of validity for the newly developed
approach. The next validation step is to analyze whether these cases represent a
violation of the area of validity or an actual devalidation. For that purpose, we consider
the di�erent phenomena that occurred on the above-mentioned impact transfers.

Qualitatively di�erent damage (B4, D4, C5): Di�erent damage modes were
observed for three con�gurations. During the B4 and D4 impacts, �bers failed on the
reverse side. This failure signi�cantly a�ected the delamination size and its qualita-
tive pattern. Both concerned impact locations are close to the edge of the specimen
and have di�erent symmetry characteristics than the reference impact. Thus, these
locations indicate the limit of transferability for impact locations with a di�erent de-
formation behavior. To resolve this issue, another reference impact that is comparably
asymmetric has to be employed.

In addition, the C5 impact damage interacted with the sti�ener on the skin. The
delamination propagates under the sti�ener, which signi�cantly increases the delami-
nation area. As the specimen was impacted 30 mm away from the sti�ener mid plane,
this behavior is hardly surprising. The impact damage with a length of 40 mm grows
close to the sti�ener edge. Under these circumstances, interaction with this sti�ener
is likely. A close look at two impacts of the con�guration C1 shows already the begin-
ning of this e�ect. The impact is located 36 mm away from the sti�ener mid plane,
and the lowermost delamination is slightly asymmetric. The half side that points to
the sti�ener becomes larger.

This second damage phenomenon indicates that the impact location requires a
di�erent reference coupon. This coupon has to include the sti�ening element, and
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length, and the energy absorption of all scaled impact experiments.
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Figure 3.23: Experimentally determined values of kd for all tested
impact con�guration that shall result in a similar damage as the refe-

rence coupon (REF).

the impact has to be placed at a distance equal to that of the structure, because the
damage-prone area of the impact has to remain unchanged. The same requirement
applies to impacts close to free edges, holes, or connecting elements; thus all these
cases can be captured. However, the universal validity of such reference impacts is
smaller than for monolithic impact locations.

Non-local damage (C4 and E2): Two con�gurations resulted in nonlocal damage
occurring in addition to the main damage at the impact spot. The respective D-scan
delamination results (Appendix A.4) show that additional delamination initiates at
the ends of the sti�ener. This sti�ener was not part of the reference coupon. Accor-
dingly, the transfer method as currently conducted would skip this second damage
hot spot.

An appropriate solution to this problem has to be employed on the structural level.
In the present approach, an elastic �nite element model captures the behavior of the
structure. A detection of a possible nonlocal damage hot spot can be performed during
this elastic indentation analysis. If we consider Section 1.4, an appropriate prediction
of damage initiation has to take into account the out-of-plane stresses. Therefore,
a FEA with shell elements using the extended two-dimensional method [155, 156,
157] o�ers excellent possibilities. As I described in the model-building section, 1.4,
a layered-shell model using this theory permits the combination of fast FEA with a
reliable prediction of the damage onset. A degradation would not be required.

A special case of nonlocal damage is the impact scenario C6, where the impact was
placed directly behind the sti�ener, as Figure 3.20 shows. This impact position is the
only one that was not intended to cause damage similar to the reference coupon. The
obtained delamination result is also part of Appendix A.4. There are two damage-
prone zones at the ends of the sti�ener, but no local damage at the impact spot in the
middle of the sti�ener. This case represents the extreme example of nonlocal damage.

The transfer method would still be applicable for problems with nonlocal damage.
However, the respective reference coupon has to be selected to be quite large.

Quantitative deviation (D3, E1, E3): Even if the observed damage modes are
consistent with the reference, in some cases their size still di�ers from the intended
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measure. The concerned impacts ful�ll the similarity requirements as formulated in
Section 3.3.4 of this chapter. In a di�erent way from the nonlocal damage and the
kinematically un-similar impact locations, the varying damage size could devalidate
the methodology. Its purpose was to determine the energy quantity that results in a
speci�c damage size under the premise of qualitatively equal damage behavior.

The mentioned cases all resulted in smaller damage than predicted. To �nd out
why some damages emerged as smaller than the reference we try to track the causes.
Three transfer con�gurations lead to smaller damage than predicted. These occurred
without exceptions on larger coupons (D and E), where the indentation sti�ness was
signi�cantly softer than the reference. However, their energy absorption of these con-
�gurations was larger. Apparently, this additional amount of energy did not yield to
damage propagation. To explain this seeming paradox, the dynamic energy balance
is the right point to consider. The observed loss of energy was the driving factor in
establishing the modal energy correction according to Section 3.3.3. The diagram in
Figure 3.24 shows the energy loss in vibrations modes of higher order and the ratio
of damage-relevant energy (energy in the �rst mode). While all con�gurations on the
small coupons have a negligible dynamic energy loss, losses of more than 1 J were
calculated for all con�gurations on the specimen E. Therefore, the respective impact
requires higher energy to cause damage that is similar to the reference. Nevertheless,
the quantity seems to be too small to explain the smaller damage size. Indeed, this
energy amount is not the full dynamic energy loss but an estimation of its minimum.
The modal approach considers only the loss by the initial excitement of the specimen.
The real loss will still be higher: each contact force drop re-excites the higher-order
vibration in the specimen, as the oscillating contact force proves. So the currently
suggested modal correction is capable of providing a tendency to improve the scaled
impact energy. The impact damage on the reference coupons shows three signi�cant
drops of contact force. Assuming that each of these excitements is comparable to
the initial excitement, a factor four would have to be considered for the dynamic
energy loss in comparison with the calculated values in Figure 3.24. With this know-
ledge of modal correction and the remaining bias, we consider the concerned impact
con�gurations to be validly scaled.

Eventually, the quasistatic scaling method conservatively predicts the impact da-
mage size on the structure � even without any modal energy correction. The dynamic
energy loss decreases the e�ective impact energy on the structure and cuts down the
resulting damage size. Thus, the real damage on the structure would emerge as smaller
than on the reference coupon.

Summary of the experimental validation

Beyond the eight outliers, the validly scaled damage result range is larger than the
scatter of REF. Impact damage reportedly varies in its dimension and failure modes,
even if all test parameters are kept constant [105, 166, 167]. The impact transfer
appears to increase this scatter even further. Each analysis step of the transfer pro-
cedure in the �owchart in Figure 3.7 on page 80 has a range of uncertainty: both
elastic analyses, the interpolation of the elastic spring-mass model, the determination
of the impact response, and the derivation of the objective damage behavior. The
mathematical propagation of uncertainty can result in a signi�cant increase of the
scatter from the reference coupon to the transfer target.

Within the validation program, several causes of uncertainty were identi�ed:

� The boundary conditions during the determination of the elastic indentation
sti�ness can be inaccurate. Idealized boundary conditions or missing preload
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Figure 3.24: Dynamic energy dissipation by higher-order vibrations
for each test con�guration.

could result in �awed parameters km and kbs. If contact phenomena are involved,
the description of the elastic spring-mass model might be incapable of covering
the full target range of contact force. Accordingly, this force range for the
interpolation has to be chosen carefully.

The present test series is especially susceptible to such errors. Both the reference
coupon and the transfer target are impacted on a support base that involves
contact phenomena (images of the support structures can be found in Table
3.1). In contrast to that, the �arti�cial� boundary conditions of a numerical
reference coupon can be chosen to be clear and constant � simply supported or
clamped. A larger structure, where the boundary conditions are far from the
impact point, is less a�ected by errors resulting from contact.

� Numerical issues in the determination of the elastic constants can also cause
problems. The current method works through a force on a single node. This is
an idealization of the contact zone with the impactor. The usage of an impac-
tor and a contact model is a possible but computational costly solution. The
implementation of an analytical contact law would be more use-case dependent
but very e�cient [109, 70].

� A single impact of REF was the basis for all conducted transfers. This impact
is not necessarily representative of the average damage behavior of REF. The
response is subjected to the usual scatter of impact experiments. The result
of a single sample is unlikely to represent exactly the average; it could even be
an outlier. Consequently, all transfers would be biased by the deviation of the
single reference impact from the actual average damage behavior. To prevent
this issue, the scaling origin has to be an average impact response. A su�ciently
large set of reference experiments could provide this average. Alternatively, a
set of simulations with varying material parameters could be used.

3.4.3 Quanti�cation of the uncertainty through scaling

The results of the validation experiments indicate that the scaling causes an increase of
the range of scatter. Thus, the uncertainty of the damage prediction rises accordingly.
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The diagrams of the crack length and the delamination area in Figure 3.22 suggest
this rise. Some scaled results exceed the reference and some remain below it. To
quantify the e�ect, we can compare the rise of the scattering from the reference impact
to the total of all validly scaled impacts. For that purpose, Table 3.3 contains the
statistical results of two test groups: (1) the reference impacts, and (2) all validly
scaled impacts. These consist of the mean value x and the standard deviation s(x).

A di�erence of the mean value between the reference impact and the total of all
validly scaled impacts indicates a bias of the scaling method. Remarkably, none of
the scaled mean values in Table 3.3 signi�cantly di�ers from the reference. This result
con�rms that the scaling does not a�ect the results through a systematic bias.

The standard deviation behaves di�erently. As expected, the scaling causes an
increase of this value, which is in numbers between 35% and 97%. The average
increase of scatter is 75%. From these values, we conclude that that the experimental
uncertainty of impact damage results nearly doubles if the developed scaling method
from this chapter is applied.

3.5 Critical assessment of the developed impact transfer
method

The developed damage transfer provides a powerful tool to analyze structural impact
scenarios on a local damage-prone zone. The validation prove that the transfer is
applicable over a wide range of di�erent impact locations as long as the qualitative
damage behavior remains unchanged. Furthermore, the validation showed reasona-
ble quantitative agreement of the scaled experimental impacts with their prediction
through the transfer.

Nonetheless, the transfer method, due to its idealizations of the structure and
the damage, represents an additional source of uncertainty. Hence, it increases the
already large scattering range of impact experiments by a factor of nearly two. De-
viations occur in both directions, toward larger and smaller damage, which makes a
conservative damage prediction more di�cult.

In addition to the scattering caused by idealizations, a systematic bias of the
energy balance a�ects the scaling result. The dynamic energy loss was found to be
not su�ciently predicted as the modal energy analysis captures only the excitement
at the beginning of the impact. However, the damage progression can excite vibration
modes of a higher order, and more energy gets dissipated. As a consequence, scaling
from a coupon toward a softer target structure remains conservative, but impacts
scaled into the other directions can occur larger than predicted by the transfer.

Concerning the qualitative impact damage, the whole transfer procedure does not
take into account that the global structural response in�uences the state of stress in
the impact zone. Due to the principle of Saint Venant, this in�uence is not relevant
in most cases. Indeed, a change in the ratio of bending and membrane forces can
signi�cantly a�ect the damage initiation. While bending e�ects result in a linear
stress distribution with a positive and a negative region, the membrane e�ect causes
a �eld of pure tensile stress. Thus, a high membrane ratio in the impact response
favors tensile cracking and impedes compression failure.

Finally, the conducted validation is limited to a single material, one layup con-
�guration, and monolith impact locations. The applicability to di�erent materials,
fabric, or multimaterial or hybrid composites still has to be proven. Moreover, the
consideration of impact damage involving fasteners, sti�ening elements, or edges is
currently hypothetical and still has to be investigated.
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Con�g.
B1

(REF)
B2 B3 B4

B1'

(CAI)
A1 C1 C2 C3

∆x [mm] 0 15 0 15 0 0 36 45 40

∆y [mm] 0 0 15 35 0 0 −60 −60 0

kbs [
N

mm ] 671 720 909 1207 799 764 946 1085 960

km [ N
mm3 ] 17.10 18.80 28.0 34.57 19.90 16.90 17.19 21.86 12.97

c1[−] 1.0 0.96 0.93 0.9 1.0 1.0 0.95 0.59 0.88

c2[−] 1.0 1.0 1.0 1.0 1.0 1.0 0.84 0.87 1.0

c3[−] 1.02 1.02 0.99 1.0 1.03 0.98 1.07 1.09 1.08

Eimpact [J] 25 23 23 22 24 24 26 24 26

Number of
tests

5 4 3 2 2 4 4 5 4

Con�g. C4 C5 D1 D2 D3 D4 E1 E2 E3

∆x [mm] 35 30 0 30 25 35 70 35 50

∆y [mm] −85 60 0 −60 50 −70 50 −65 −30

kbs [
N

mm ] 1181 957 287 343 360 560 352 525 375

km [ N
mm3 ] 21.92 15.50 3.06 6.88 5.16 8.90 2.64 3.16 2.45

Eimpact [J] 21 26 37 31 33 29 39 37 38

Number of
tests

2 1 2 3 2 1 4 2 2

Table 3.2: Overview of all 18 impact con�gurations, including the impact position
from the specimen center, the elastic sti�ness, the impact energy, and the number of

conducted tests.
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Parameter Unit
Reference

impacts

Validly scaled

impacts

Fmax
[kN]

8.04 7.81

s (Fmax) 0.10 0.18

Ad [mm2]
537 551

s (Ad) 60 81

lmc
[mm]

35.6 37.4

s (lmc) 2.7 5.2

lfc [mm]
18.2 17.5

s (lfc) 3.2 6.3

Table 3.3: Average result values and the respective standard devia-
tion the reference impacts and the total of all validly scaled impacts.
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�Aviation is the branch of engineering that is least

forgiving mistakes.�

Freeman Dyson, physicist

4
Structural Assessment of Impact Damage

Scope of this chapter

The combination of the impact scaling method and the numerical analysis has several
possible application scenarios. A quick evaluation of structural impact damage can be
achieved through a numerical reference coupon of minimal size. The minimal coupon
size derives from a consideration of the elastic energy under impact load.

The numerical analysis of the coupon provides the impact response and the da-
mage result, which the spring-mass model transfers to the structural level. Either the
damage size for a given impact energy or the impact energy for given damage can
be calculated. The damage parameter kd correlates with the projected delamination
area. The coupon result can be exploited for large areas of a structure that are suf-
�ciently similar to the reference. This permits an areal assessment of the damage on
an impact-prone structure.

Finally, this chapter includes how the proposed analysis procedures can be em-
ployed to a DT assessment during a design process. Parts of this chapter have been
published by the author in [RB3] and [RB4].

4.1 Numerical impact analysis through a minimal refe-
rence coupon

4.1.1 Determination of the minimal reference coupon size

The impact-analysis procedure of a structure on a reduced section raises the ques-
tion how to choose this section. In general, the reference coupon can be of arbitrary
size and geometry as long as it meets the similarity characteristics derived in section
3.3.4. For the computational e�ciency of the simulation, the chosen size needs to
be as small as possible. This requirement necessitates a reference coupon of minimal
size. Beyond the e�ciency, a minimal reference coupon matches another need: the
quasistatic impact scaling to a target structure is conservative. As the minimal refe-
rence coupon represents the sti�est possible impact, the dynamic energy loss through
higher-order modes is negligible. A scaling to target locations where dynamic energy
loss exists always causes less damage than predicted on the reference, as supported
by the validation results D3, E1, and E3 in Section 3.4.2.
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Several factors possibly determine the size limit of the minimal reference coupon:

� the size of the damage-prone zone itself

� a possible damage initiation at the boundary conditions

� the validity limit of Saint Venant's principle

Among those limits, the size of the damage-prone zone is the smallest. However,
in advance of the impact analysis, the extent of the damage remains unknown. Only,
the impact analysis of the reference coupon is meant to determine the actual damage.
The size of the coupon has to be de�ned beforehand.

For an approximate determination of the damage-prone zone, the elastic FE analy-
sis of the reference coupon provides additional evidence: the laminate's damage-prone
zone has to imply a su�ciently large energy reservoir for an existing crack to pro-
pagate. Hence, the laminate's energy released by the damage propagation has to
exceed the critical ERR of at least one fracture mode. The damage can theoretically
propagate into the area ful�lling this prerequisite.

The relevant limit value results from the lowest critical ERR. Commonly, this
threshold is GIc for delamination or Gm+ for tensile IFF. However, not all elastic
energy gets released from the laminate when a crack propagates in one ply or inter-
face. A simple approach would be to consider only the ply energy � simple but not
conservative. The energy-supplying zone for a crack tip is not limited to the concerned
ply.

At that point, we use the knowledge gained from the analysis of a �awed laminate
in Section 2.2.2. The simulation result in Figure 2.7a and the following diagram
suggests that a crack a�ects mostly three plies: the �awed ply itself and its two
neighbors. Hence, it makes sense to assume that the energy in three plies drives the
crack propagation. This assumption results in Equation (4.1), with the to estimation
of the limit value for the area-speci�c energy elaminate.

min (GIc, Gm+) = elaminate
3

nplies
(4.1)

The elastic energy distribution of the indented specimen has to be analyzed for
the limit value according to Equation (4.1). This border depends on the applied
indentation force. For a conservative estimation, the chosen force has to be chosen at
least as high as the expected maximum during the impact.

An analysis according to the procedure above has been conducted for the laminate
of the validation series in Chapter 3. Figure 4.1a shows the energy distribution of the
con�guration REF under 8 kN. The limit value of 2 mJ

mm2 results from the critical ERR

Gm+ = 0.5 mJ
mm2 divided through 12 plies multiplied by a factor of three. The resulting

envelop has the dimensions 55× 40 mm2 � an estimate of the damage-prone zone.
This size represents a theoretical minimum for the reference coupon size. Additi-

onally, the other two limiting factors of the coupon size also have to be considered.
Such a small coupon is likely to trigger a damage onset at the edges, where the boun-
dary conditions are applied. This secondary initiation of damage is caused only by an
arti�cial, nonlocal damage-prone zone caused. In contrast to the nonlocal damages in
the validation test series, this damage does not occur somewhere on the structure, but
on the reference coupon. Nevertheless, the same method works for its compensation.
During the elastic analysis of the indentation response, failure conditions have to be
checked. If the extended two-dimensional method is used, a reliable prediction can be
provided with an elastic shell model.
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Even if damage does not initiate at the edges, it might propagate toward them.
When the damage extent covers the whole length of the coupon in any direction, the
damage interacts with the boundary conditions. Saint Venant's principle of locality is
no longer applicable, and we reach the third size-limiting factor. The in�uence of the
exact support con�guration becomes relevant to damage propagation. Basically, if
the impact damage shows an interaction with the boundary conditions, the reference
coupon is too small. Such an interaction would be comparable to the e�ect observed
on the impact con�gurations C1 and C5. At C1, the sti�ener close to the impact
location begins to a�ect the delamination shape. At C5, the delamination pattern
di�ers entirely from the reference. A clamping or support can a�ect the damage in a
similar manner.

An option to assess a possible invalidity also builds on the area-normalized energy
distribution in the loaded impact specimen. In Figures 4.1b and 4.1c, the above-
explained method to determine the damage-prone zone is applied to a potential mi-
nimal reference coupon. The energy distribution exhibits secondary hot spots at the
edges. If there is a path with su�ciently high energy potential from the impact spot
toward such hot spots, an interaction of the damage and the boundary conditions
becomes likely.

Figure 4.1b shows a possible minimal reference coupon of a size 110× 80 mm2

loaded with 8 kN. The size results from the damage-prone area of the test coupon
scaled by a factor of two. The analysis shows an isolated damage hot spot at the impact
location. In contrast to that, Figure 4.1b shows the distribution for a smaller coupon,
which is one and a half times the size of the damage-prone zone (80× 60 mm2). On
this coupon, the damage hot spot stretches to the edges � a possible path of damage
propagation which has to be avoided. The analysis indicates that the reference coupon
is too small. When di�erent boundary conditions are applied, as in Figure 4.1c, the
energy distribution changes. Generally, the minimal coupon size is larger for clamped
than for simply supported edges.

The conducted consideration of the energy-based approach does not provide the
ideal size for a minimal reference coupon. It is an energy-based estimate, that is
founded upon several idealizations. This estimate tells whether a reference coupon is
safe to use. It does not ensure that this coupon is the smallest possible. As a rule of
thumb, the coupon size should be twice as large as the damage or the damage-prone
zone.

Appropriate boundary conditions are either clamped edges with free translatory
in-plane DoF or simple support, �xing only the translational out-of-plane DoF. When
the edges are �xed in-plane, signi�cant membrane stresses emerge in the laminate.
These stresses can in�uence the thresholds of FF and make a crucial assumption for
the spring-mass model invalid, namely the qualitatively similar damage behavior. As
such rigid attachment does not exist in a real structure.

4.1.2 Numerical high-�delity analysis of the minimal reference coupon

A simply supported virtual coupon with a size of 100× 70 mm2 shall now be used
for damage prediction. The determination of the equivalent impact energy leads to a
value of 25 J, with the sti�ness parameters 854 N

mm for kbs and 15.23 N
mm3 for km. Those

parameters and the impact energy were determined through an elastic FE analysis.
The simulation result and the prediction by the transfer method are shown in

Figure 4.2. Figure 4.3 shows the corresponding delamination damage. The qualitative
damage pattern �ts the original reference coupon, but the quantitative size is predicted
to be slightly too large. The same applies to the trend of the force history, which
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(a) Test coupon REF: the yellow frame marks the damage-prone area

(b) 110× 80 mm2 numerical reference coupon clamped

(c) 80× 60 mm2 numerical reference coupon clamped

(d) 100× 70 mm2 numerical reference coupon simply supported

Figure 4.1: Laminate-level energy distribution of the validation la-
minate as calculated through an elastic analysis with 8 kN indentation

force.
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Figure 4.2: Numerical force-displacement history of the minimal re-
ference coupon and its transfer prediction by the original reference

coupon B1.

qualitatively meets the transferred prediction. However, the simulation apparently
underestimates the force thresholds. In general, the accordance between the results
is moderate. It meets the validation requirement for the scaling method, but further
investigation and validation of the numerical simulation model would be useful.

Figure 4.3: Delamination result predicted by the numerical analysis
of the minimal reference coupon.

4.2 Integral assessment of impact-prone structures

The damage description through the spring-mass model is objective, as demanded in
the general damage equation, Equation (3.1). The boundary conditions, the exact
geometrical con�guration, and the impact energy do not determine the qualitative
damage behavior in an impact scenario. These �ndings o�er a method to approach
impact analysis on a structural level.

The major potential of the transfer method lies in the structural assessment of
impact damage by a single high-�delity analysis or coupon experiment. It is possible
to obtain either the areal distribution of equivalent impact energy for a prede�ned
damage or the areal damage distribution for a speci�c impact energy on the structure.
The only analysis to be carried out on the structural level is the determination of global
sti�ness parameters. Each point of interest, representing one impact location, requires
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its own analysis. If the analyzed points are su�ciently close, an interpolation in the
area between these points is possible.

In the case of a given impact threat to a structure, this method provides the basis
for an advanced DT assessment, taking into account the expected impact damage
instead of the maximum possible BVID.

Figure 4.4 shows the results of an areal impact transfer analysis for the panel
section E from the testing done in the previous chapter. The analysis, which has
previously been conducted for a single point on the specimen, is now adopted to the
full skin area. The distribution of equivalent energy still refers to the experimental
reference coupon with a 25 J impact (from Section 3.4.2). As expected, the distribution
is symmetrical to the sti�ener. The largest values, around 40 J, are observed at the
center of the free skin area. Moving closer to the sti�ener or the supported areas leads
to lower BVID-equivalent impact energies, below 20 J.

The third picture in Figure 4.4 shows the calculated damage distribution of kd for
a prede�ned impact energy threat of 30 J. Low values of kd close to the edges indicate
large damage, and high values in the center smaller damage. A remarkable featuret
of the damage distribution is its wide-spread uniformity. The explanation for this
uniformity is the threshold-based character of the impact damage growth (compare
Figure 3.15). After a threshold has been exceeded, the contact force drops, and the
specimen can absorb some elastic energy without propagating the damage.

The predictable damage has a maximum, which marks the lower end of the scale.
Damage larger than the �nal damage on the reference coupon cannot be recognized.
An extrapolation is not permissible, as subsequent damage thresholds are unknown.
Thus, it may be useful to analyze a reference coupon with very high impact energy,
even though, this level of energy might violate the requirement of delamination-driven
damage.

Finally, the damage of the 25 J-impact on the reference coupon was transferred
to an arbitrary aircraft door section. This application of the scaling method should
not be considered representative for an aircraft design but as a demonstration of the
methodology developed in this doctoral thesis.

The door section includes three sti�eners and a frame structure behind the skin.
The entire skin area is assumed with the same layup as the coupons in the validation
in Section 3.4. Thus, a single reference coupon su�ces to analyze a large zone of
the skin area. Only the edges and the supported zones have to be excluded. As
an impact in those areas would change the geometry of the damage-prone region,
their analysis would require additional reference coupons. Each extra layup in a
realistic skin structure would also need an additional reference coupon. A set of
several reference coupons would be enough to cover the entire impact-endangered
area.

Figure 4.5 shows the transfer results for the door section, the sub�gure (a) shows
the energy plot for similar damage as on the 25 J reference coupon, and the sub�gure
(b) provides the distribution of kd for a 60 J impact scenario. The scale of the equiva-
lent energy plot is cut o� at the upper end at 60 J. This limit has been chosen based
on the considered generic impact threat for the structural use case.

From the energy distribution, it can be concluded which areas require consideration
of the maximum BVID in a DT analysis. This maximum size can arise, wherever the
equivalent impact energy is smaller than 60 J. Here, the impact threat exceeds the
required energy to produce the maximum BVID size. The equivalent impact energy
in all blue regions is higher than 60 J. Hence, the actual impact threat is not able
to cause damage in the size of the maximum BVID. The actual size of the damage
resulting from the 60 J-impact is quanti�ed by the damage parameter kd.
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(a) Equivalent impact energy for similar damage.

(b) Coe�cient for deformation similarity according to equation (3.35)

(c) Impact transfer damage parameter kd for similar impact energy of 30J .

Figure 4.4: Areal impact transfer results for the sti�ened panel
section. The color scale is inverted, as small values of E and kd in-
dicate an impact-sensitive area (red) and high values an impact-�rm

zone (blue).
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Sub�gure (b) in Figure 4.5 shows the distribution of the damage parameter. In
all areas where the damage does not reach the maximum BVID, this distribution
de�nes the relevant damage size for a damage-tolerant design. In order to make
this approach consistent to present analysis procedures in aviation, the projected
delamination area and the damage parameter kd can be correlated empirically. This
correlation is individual for each laminate. Alternatively, existing approaches can
analytically correlate the damage in a spring-mass model and the delamination size
[106, 97, 98]. However, the accuracy of these approaches is usually low because the
distribution of delaminations over the interfaces is not captured [RB2].

(a) Impact energy for damage similar to the 25J reference.

(b) Distribution of the damage value kd for a similar energy of 60 J.

Figure 4.5: Areal impact transfer results for a generic aircraft door
section. The color scale is inverted to emphasize that small values of
E and kd indicate an impact-sensitive area (red), high values stand for

an impact-�rm zone (blue).
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4.3 Integration for structural design

The design of an impact-prone structure has to ensure that even the damaged structure
su�ciently sustains the limit load according to the DT schematics in Figure 1.3 on
page 8. In the case of BVID, even ultimate load has to be tolerated. The respective
knock-down of the residual strength drives the sizing of the structure and accordingly
its weight.

A common way to approach such a residual strength analysis would be the con-
sideration of the maximum possible BVID. Whether or where this damage size can
in fact emerge is not taken into account. At this point, the areal impact assessment
provides a new tool for considering the actual impact threat for each location on a
structure. Equation (4.2) expresses the design-relevant damage size in form of the
damage parameter kd. A damage of kd (Ethreat) can result from the actual impact
threat. If this damage is larger than the maximum BVID, it would be considered visi-
ble and not relevant to the DT analysis. Therefore, the maximum possible BVID sets
an upper limit for the design-relevant damage size. This limit becomes a minimum
in the damage parameter kd because the kd (max.BV ID) decreases with increasing
damage size.

In this way, the transfer method reduces the design-relevant impact damage size.
In contrast to general knock-down factors for impact damage, this method enables
the consideration of the actual damage threat to each point of the structure. It allows
one to prove a higher residual strength or to derive possible weight reductions.

DMGDT = min [kd (max.BV ID) , kd (Ethreat)] (4.2)

The above-explained principle represents an analysis strategy for impact damage
tolerance on structures. This strategy has to take into account the actual threat
to which the structure is exposed and accordingly provide knock-down factors for
the design. The diagram in Figure 4.6 illustrates such a process. It involves the
impact analysis through a high-�delity method and an analytical transfer approach.
In addition to that, the process has to employ a prediction method for residual strength
or damage growth. The comprehensive analysis procedure combines these elements
in the following chain:

1. The impact-prone structure forms the basis of the analysis. A set of reference
coupons has to be derived from it. How many coupons a structure requires
depends on the number of di�erent layups, materials, and sti�ener con�gurations
in this structure.

2. Each reference coupon requires one impact analysis to determine the impact
damage response and thus kd. This experimental or numerical analysis provides
both the impact force response and the damage result, including its characte-
ristics of delamination, �ber cracking, and inter-�ber cracking.

A numerical or experimental residual strength analysis can possibly follow di-
rectly after this step [60, 186, 158].

3. The speci�c impact damage behavior of the reference coupons is now analyzed
for the objective damage description. The analytical spring-mass model accom-
plishes this task. The procedure requires also an elastic response in addition
to the impact response. Hence, the elastic indentation analysis also has to be
conducted for each reference coupon. The respective analyses are conducted
through a low-�delity FE model.
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Use-case 
structure

1. Derivation of 
reference coupon(s)

2. Determination 
of  max BVID

High-fidelity model

BVID damage
Force history

5. Damage 
tolerance 

assessment

3. Analytic damage 
description

4. Determination of 
structural BVID

�� as integral 
damage parameter

Energy distribution for similar 
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Damage distribution for a 
given impact energy

Residual strength + 
damage growth

Figure 4.6: The proposed procedure for the assessment of impact
damage tolerance with the methods in this work.

4. To derive the speci�c damage behavior of distinct locations on the structure, the
spring-mass model is evaluated for the respective locations of interest. There-
fore, the elastic indentation analysis has to be conducted through a low-�delity
FE model of the structure. In this regard, the damage-prone zones are also
determined. An additional eigenfrequency analysis has to be conducted in order
to apply the modal energy correction that captures the dynamic energy loss.

5. The �nal step is the actual DT assessment. One possibility is to compare the
damage directly with an allowable reference. To comply with established pro-
cedures, it is helpful to correlate the damage parameter kd and the projected
delamination area. Knock-down factors can be derived from the correlation of
the damage parameter kd and the strength degradation on the coupon level.
In order to e�ciently calculate a knock-down factor, the residual strength can
also be evaluated directly on the structural level through analytical methods
[109, 70]. This procedure would be less conservative than deriving the residual
strength from the reference coupons.

4.3.1 Follow-up interface for residual strength analysis

Structures are commonly designed to sustain loads � impact-resistance as an end
in itself is rarely the purpose. Accordingly, the prediction of residual strength or
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damage growth has to be accomplished after successful impact analysis. Apart from an
experimental investigation, two variants of this follow-up procedure exist. A numerical
high-�delity prediction [60, 186, 158, 65, 140] or analytically based estimations [109,
70, 187]. Both variants could be used to address the residual strength prediction in
the above-proposed DT analysis process in Figure 4.6.

A simple option is to predict the residual properties using the same high-�delity
model as the impact simulation. A multi-step analysis chain of the impact analysis,
a damping step, and the actual residual strength analysis have to follow one after
another [60]. With all steps in one model, no mapping or transfer is required in-
between them. Hence, the residual strength prediction is also performed through
explicit simulation. The stability-driven limit of simulation time requires a massive
increase of the numerical loading speed in comparison to the real experiment. Even
though strain rate e�ects can just be left out of the material model, dynamic e�ects
might in�uence the result [158]. Therefore, an explicit simulation of a quasistatic
event has to be interpreted carefully. Regarding the process in Figure 4.6, such a
numerical damage prediction has to be conducted on the reference coupon. On that
level, knock-down factors have to be derived. When transferred to the structural level
for DT assessment, such derivations are conservative. A coupon o�ers hardly any of
the possibility for load transfer to other load paths as a structure does. Thus, the
corresponding strength reduction a�ects the structure less than it does a coupon.

In order to conduct a less conservative analysis, the residual strength analysis
has to be employed directly on the structural level. A high-�delity analysis for the
structure would require approximately the computational e�ort of an impact analysis
on that level. Thus, the same issues concerning the structural analysis e�ort are also
relevant to the residual strength analysis. With regard to the fast analytical impact
transfer, a follow-up high-�delity analysis cannot be a suitable approach. To make
the follow-up analysis more e�cient, analytical methods are a better choice. These
methods idealize the impact damage or permit the use of a low-�delity approach for
the residual strength prediction. Eventually, they permit that the DT analysis chain
according to Figure 4.6 can be employed as a comprehensively e�cient procedure.
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�The problem in this business isn't to keep people from stealing

your ideas. It's making them steal your ideas!�

Howard Alken, pioneer in computing (1900-1973)

5
Conclusion and Outlook

On the basis of three research hypotheses, I have developed a comprehensive analysis
strategy for low-velocity impact on composite structures. An analytical spring-mass
model permits one to scale a structural impact scenario to a representative reference
coupon of much smaller size. The impact damage on this coupon is analyzable with a
numerical high-�delity model. The scaling approach transfers the damage result back
to the structural level. Each of the involved methods uses a di�erent abstraction scale
of the impact system that has its own strengths and weaknesses:

� An explicit numerical high-�delity simulation provides quantitatively and qua-
litatively plausible results for impact analysis. Furthermore, it enables an un-
derstanding of the damage processes within a laminate. The implemented �nite
element model con�rms the �rst research hypothesis of this work.

However, the required analysis e�ort is high, because the high-�delity model
works with individual element layers for each ply in the laminate. Thus, the
analysis is computationally costly. This high cost makes a direct application on
the structural level ine�cient.

� An analytical quasistatic spring-mass model can capture the elastic response and
the damage of an impact system. Due to its analytical nature, a spring-mass
model can be evaluated very quickly. This model con�rms the second research
hypothesis.

Nevertheless, due to insu�cient sensitivity and accuracy, a spring-mass model
can hardly predict damage on its own. The model also requires information
about the elastic indentation sti�ness, which has to be obtained beforehand.

� A numerical low-�delity analysis enables the impact description through a spring-
mass model and provides valuable information about the damage-prone zone of
a structural impact scenario.

Even though a low-�delity model is not su�cient to capture damage propagation
appropriately, it predicts the elastic response accurately. A good prediction of
the damage onset is also possible.

The combination of these three methods, according to the schematics in Figure
5.1, allows on to exploit the strength of each method while compensating for each's
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de�ciencies. The high-�delity model analyzes the impact on the reference coupon.
This analysis is computationally the most costly part of the whole chain. As the
reference coupon is much smaller than the actual use case structure, relocating the
computation e�ort makes an impact analysis more e�cient than an examination on the
structural level. Low-�delity analyses of the structure and the reference coupon suit the
determination of the sti�ness parameters for a spring-mass model. The elastic force
responses provide input for an interpolation of the spring-mass model parameters.

Together with the coupon damage result, this analytical spring-mass model trans-
fers the damage result to the structural level.

This combined analysis chain con�rms the third research hypothesis of the present
doctoral work. Structural impact scenarios become analyzable on a much smaller
section: the reference coupon. Additionally, an areal assessment of impact damage
becomes possible: once the blue analysis path in Figure 5.1 is known, many evaluations
of the red path can be conducted for di�erent but su�ciently similar impact locations
on the structure. Hence, the impact damage for each possible location on the structure
can be assessed, which is especially useful to employ a damage-tolerant design.

Analytical 
Analysis 

Low‐Fidelity Analysis

High‐Fidelity Analysis

Low‐Fidelity Analysis

Damage 
Result

Reference Coupon(s) Structure

Figure 5.1: Schematics of the comprehensive analysis process of im-
pact damage on composite structures.

The whole analysis chain was validated in several steps, handling the high-�delity
analysis, the spring-mass model, and the transfer of impact damage. The high-�delity
simulation provides plausible damage results for delamination, FF, and IFF. However,
the application of such a model is challenged with regards to the determination of
appropriate input parameters for that model, and the computational e�ort is very
high. Furthermore, the scattering of impact results is currently not captured by that
method. In the best case, the deterministic results represent the mean value of the
experimental scattering. Otherwise, this scattering is a remaining reason for additional
knock-down factors.

The spring-mass model describes the impact damage by the additional out-of-plane
compliance in the laminate. This parameter similarly suits the damage description,
as the projected delamination area does. The advantage of this measure is that it
is provided by the spring-mass model as a property of the dynamic impact system.
Accordingly, it can be determined on the basis of the dynamic impact response. The
scatter of this compliance behaves similarly to the scatter of the projected delamina-
tion area.
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The transfer through the spring-mass model provides a scaling of the impact energy
for similar damage. This procedure was successfully conducted for a set of geome-
trically di�erent impact experiments. This validation of the scaling showed good
agreement of the prediction through the transfer and the tested impact con�gura-
tions. However, a quasistatic energy transfer was found to be insu�cient for some
con�gurations. Dynamic energy dissipation has to be considered if the range of appli-
cation is not strictly limited to the impact of very large masses with very low velocity.
It was eventually discovered that the scaling even further increases the usual scattering
of impact damage even further.

This work raises many questions that remain unanswered and demand further rese-
arch. One particularly important point is the scatter of experimental impact damage
and how to deal with it in numerical analysis. Obvious de�ciencies of the homoge-
nization in CDM and the CZM were accepted here. Those, of course, a�ected the
analysis results but do not worsen the developed tensorial-based material degradation
method. The occurrence of nonlocal damage as a possibly disturbing factor has to
be further analyzed. A promising approach for such analysis could be based on the
extended two-dimensional method for �nite shell elements. Through this method,
occurring non-local damage could be detected during the transfer procedure. Thus,
the certainty of the transfer method can be further increased. The dynamic energy
balance of an impact system is still not fully understood. The excitation of high-
frequency vibration modes is not caused only by the initiation of the impact but also
by each damage progression in the laminate. A quanti�cation of the corresponding
loss of energy can lead to more accurate scaling of the impact energy.

Beyond these open points, the application range of the developed method is ex-
tendable: di�erent material systems and layup con�gurations are possible variations
of monolith impact scenarios. Impact locations that involve fasteners, sti�ening ele-
ments, and edges are also possible �elds of application. However, all these speci�c
scenarios are relevant to the design procedure of an aircraft. The research in this
work might be adapted to conduct high-�delity analysis for these cases, or it might
be applied for quick determination of the design-critical impact scenarios, involving
all possible scenarios. In any of these cases, more research challenges have to be
confronted.

Finally, the presented research does not show how to build lighter aircraft struc-
tures, but it will contribute to the airworthiness of lighter structures in the future.
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�An experiment is a question which science poses to Nature, and mea-

surement is the recording of Nature's answer.�

Max Planck, theoretical physicist (1858-1947)

A
Experimental methods, results and material

data

A.1 Error analysis of the impact history data

All experimental impact testing in this work was performed with a Ceast drop tower
as shown in Figure A.1. An impactor with a large mass is moved to a prede�ned height
and dropped on the impact specimen. The height is computed based on the selected
impact energy. Equipped with a piezo force sensor, a high-frequent measurement
of the contact force between the impactor and the specimen is possible. This force
represents the only value measured during the impact event. In combination with the
known initial velocity, time integration of the histories of velocity and displacement
is performed. There are several possible sources of error in this experimental setup.
Their in�uence on the test results that are applied for validation of the numerical
models is brie�y investigated in this appendix section.

Energy deviation: Setting the impact energy by moving a mass to a prede�ned
height is performed quite accurately. Nonetheless, the height does not comprise the
de�ection of the specimen during the impact. At its turning point, the impactor is
located below the zero level by the length wmax. Additional energy according to Equa-
tion A.1 is introduced to the impact system. Depending on the impact parameters
and the maximum de�ection, this energy di�erence is less than 1 J.

∆wdeflection = g0 ·mi · wmax (A.1)

Oscillation in the impact system: The oscillation behavior of the impactor can
be important for the dynamic impact response of the whole system. The main cause
is the impactor with its mass plates. The corresponding eigenfrequencies can reach as
low as 500 Hz [120]. High-frequency oscillation in the contact force can be caused by
excitation of these modes.

Following the conclusion in the work of Panettieri [120], an eigenfrequency analysis
of the impactor was performed to �nd eigenmodes that are relevant for the dynamic
response of the impact on a specimen. Figure A.2 shows the result. For an impactor
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Figure A.1: Ceast Fractovis impact drop tower that was used to
conduct the experiments for this work.

mass of 3.99 kg the eigenfrequencies associated with these modes were 1053 Hz and
2460 Hz.

Error propagation to integrated history values: Obtaining velocity and displa-
cement information by integration of the force history is probably the most important
source of error, as it propagates errors from the measurement of force ∆F (t) and ini-
tial velocity ∆vo. In addition to that, a delayed triggering of the force measurement
can cut o� the �rst part of the force history.

v (t) = v0 +

∫ t

0
g0 −

F
(
t̂
)

m
dt̂ (A.2)

w (t) =

∫ t

0
v0 +

∫ t̃

0
g0 −

F
(
t̂
)

m
dt̂dt̃ (A.3)

The in�uence of ∆v0 is easy to analyze. It results in a constant bias of the velocity
history and a linearly increasing bias ∆v0 · t in the displacement. The error in the
measured contact force ∆F (t) is a random variable. The calibration of the sensor
ensures its mean value to be zero. A normal distribution can be assumed, and the
integral of the noise term becomes zero. Accordingly, there is no bias in the velocity
and displacement history caused by the sensor noise.∫ t

0
∆F

(
t̂
)
dt̂ = 0 (A.4)

The delayed triggering causes a cuto� in the force history and is described by
Equation (A.5). The direct consequence is the same as described for the error term
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Figure A.2: Displacement magnitudes of the �rst two eigenmodes of
the impactor that can participate in the impact.

∆v0, a constant bias in velocity and a linearly increasing bias in the displacement
function. ∫ t

0
g0 −

F
(
t̂
)

m
dt̂ =

∫ t1

0
g0 −

F
(
t̂
)

m
dt̂+

∫ t

t1

g0 −
F
(
t̂
)

m
dt̂ (A.5)

In addition to the bias in the history values, associated values of force and dis-
placement correlate incorrectly if the force record starts with a delay, because the
force-displacement diagram creates a distorted abscissa. As the distortion factor is
time-dependent, misinterpretation of the diagram is likely, even though the interpreter
knows about the error. The integral value of the energy absorption and the turning
point of the impactor are a�ected. For good experimental results, this error has to be
avoided.

A.2 Ultrasonic scanning methods

Ultrasonic scanning is the most important nondestructive testing method to assess
delamination damage. The method is established for visualization of delamination
damage in FRP materials [188]. The validation of numerical delamination prediction
is based on ultrasonic images. Laminates are typically scanned with two techniques.
To understand these techniques, we need to consider the basic principle of ultrasonic
inspection. An ultrasonic sound wave is sent into the FRP laminate in the out-of-
plane direction, as shown in Figure A.3. For that purpose, the laminate is put in an
immersion tank under water. To obtain information about the damage state in the
laminate, two characteristics of the wave can be exploited:

� The ultrasonic C-scan is a through transmission scan and the standard method
to detect �aws in laminated structures. When the sound wave travels through
a material, the material causes a damping of the signal amplitude. Damage,
especially delamination, increases this damping. The C-scan method is founded
on the evaluation of the echo signal from the reverse side of the immersion tank.
An evaluation of the echo amplitude leads to the damage information. Figure
A.3 shows, on the left, the principle of this method.

� The D-scan is a pulse echo evaluation and method provides more information
about the laminate. When the material-phase changes (e.g. with delamination),
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A B C

D-scan methodC-scan method

Immersion tank

Delamination

FRP laminate

Figure A.3: Illustration of the evaluation of the sound waves for two
ultrasonic scanning methods.

the sound wave reaches the plate's reverse side or the bottom of an immersion
tank, and an echo of the sound wave occurs. The path of the sound wave is
depicted on the right in Figure A.3. The D-scan method works with the wave
re�ections of the sublaminates, that arise with delamination. Considering the
sound wave's time of �ight, the out-of-plane location of the re�ection point can
be determined.

The information of a C-scan image is limited to the projected view through all
interfaces of the laminate. In Figure A.4, three di�erent delamination con�gurations
are presented. Although the single delaminations quantitatively and qualitatively
di�er, they result in equal C-Scan images. The number of delaminations that leads
to a drop of the echo signal does not result in a di�erence in the signal. Neither does
the location of the delamination in the thickness direction.

The D-scan image provides further detail. The information of a delamination's
depth in the laminate allows one to distinguish the three delaminations in case C.
However, this method still does not contain information about the full damage state
in the laminate. The shielding e�ect permits only an identi�cation of the uppermost
delamination at each in-plane position. Scanned from the reverse side, the example
cases A and B would still lead to equal results. The additional delaminations in
case A remain invisible. A scan from the top would show a di�erent result, but the
middle delamination in case A could still not be identi�ed. In edge regions of the
delamination, the echo signal might be weak or dispersive. Thus, the D-scan envelope
of the damage is usually smaller than the C-Scan envelope. In the provided example
images in Figure A.5, the D-scan envelope is approximately 13 % smaller than the
C-Scan envelope. In the C-scan an area is considered as damaged if the echo signal
drop exceeds 5 dB. Accordingly, the green-blue transition marks the border between
the damaged and undamaged area.

A B C

D-scan methodC-scan method

Immersion tank

Delamination

FRP laminate

Figure A.4: Cross-section of three equivalent laminates with di�erent
delamination patterns.

A false-color scale, as shown in Figure A.6a, visualizes the actual depth of the
detected delamination. The color distribution in this scale between the laminate top
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Figure A.5: C-Scan and D-Scan of the same impact damage.

(0) and the depth equal to the laminate thickness t is arbitrary. The scale for all
experimental D-scan results in this thesis are based on a discrete 16-ary scale.

In contrast to an experimental investigation, a numerical prediction provides in-
sight to all delaminations inside a laminate. In order to easily compare the numerical
results with the experimental result, it is common to assemble the numerical results
in a D-scan-equivalent plot. The false color scale of the overlay plot in the Figure
A.6b is a continuous interpolation in accordance with the experimental color scale.
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Figure A.6: Legends of the false color scale representing the depth
of a delamination damage in the laminate.

A.3 Material properties for numerical analyses

This section provides the material parameters for the numerical analyses conducted in
the presented research. For that purpose, Table A.1 lists the parameters of three unidi-
rectional materials. Among two real prepreg materials with carbon �ber reinforcement
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and epoxy resin. The corresponding parameters result from material characterization
tests in accompanying research projects around this thesis. Most of these experiments
were conducted according to established standards. For any material parameter that
does not result from a standardized test, Table A.1 references the source of literature
where the test is described or the parameters are taken from.

The additional �Material 0� is a generic material. Its parameters were derived
from the two real materials; however, some values were adapted for numerical reasons.
These modi�cations allow that a simple impact example with an 8-ply laminate su�ces
to trigger all relevant damage modes. This simple model makes the development of a
numerical impact model in Section 2 more tangible.

Material 0
(generic)

Material
I

Material
II

Test standard /
test method

Density [ kg
m3 ] 1600 1580 1570

Manufacturer speci�ca-
tion

Ply
thickness

[mm] 0.5 0.184 0.184
Manufacturer speci�ca-
tion

E11t [GPa] 159 167 170 DIN EN 2561 [189]

E11c [GPa] 159 151 150 DIN EN 2850 [190]

E22t [GPa] 8.6 8.8 8.8 DIN EN 2597 [191]

E22c [GPa] 8.6 9.0 9.4 DIN EN ISO 14126 [192]

E33 [GPa] 8.6 8.6 9.0 Pellet test [159]

G12, G13 [GPa] 5.6 5.0 5.5 AITM 1-0002 [193]

G23 [GPa] 4.5 3.0 4.5
Calculated transversely
isotropic [194]

ν12,ν13 [-] 0.33 0.31 0.23 DIN EN 2561 [189]

ν23 [-] 0.48 0.48 0.48
Assumption based on re-
sin properties [129]

X11t [MPa] 1600 3 000 2 700 DIN EN 2561 [189]

X11c [MPa] 800 1 450 1 590 DIN EN 2850 [190]

X22t [MPa] 50 60 105 DIN EN 2597 [191]

X22c [MPa] 205 230 252 DIN EN ISO 14126 [192]

X33c [MPa] 190 220 252 Pellet test [159]

X12,X13 [MPa] 115 110 105 AITM 1-0002 [193]

X23 [MPa] 65 65 65
Obtained from X22c

[5]

GIc [ mJ
mm2 ] 0.8 0.5 0.5 AITM 1-0005 [195]

GIIc, GIIIc [ mJ
mm2 ] 2.8 2.5 2.8 AITM 1-0006 [196]

η [-] 2.8 2.1 2.1 ASTM D 6671 [197]

Gf+ [ mJ
mm2 ] 130 130 106 Literature: [60]

Gf− [ mJ
mm2 ] 40 35 81 Literature: [60]

Gm+ [ mJ
mm2 ] 0.8 0.5 0.5 = GIc

Gm− [ mJ
mm2 ] 4.6 4.1 4.6 Gm−shear

cosφ
[43]

Gm−shear [ mJ
mm2 ] 2.8 2.5 2.8 = GIIc

Xsh [MPa] 55 87 87 DIN EN 2563 [198]

Xn [MPa] 16 20 20 Obtained from X22t [90]

Table A.1: Material properties for the simulations in this work.
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All strengths values in Table A.1 were determined for plies in a unidirectional la-
minate. Thus, their validity is also limited to that laminate type. However, embedded
plies in a multidirectional laminate behave di�erently [164]. The actual strength value
remains unchanged, but after the damage initiation, the laminate's fracture toughness
prevents a crack propagation. Thus, even after the initiation of a crack, the stress
further increases. This increase in stress leads to in-situ strength values, which are
higher than the actual unidirectional ply strengths. This increase becomes stronger
with decreasing ply thickness. According to the work of Camanho et al. from 2006
[164, 165], the in-situ strengths can be derived from the ply properties and the cri-
tical ERRs. For impact analysis, the application of this approach has already been
validated [60].

For the numerical analysis in this research, in-situ values were applied for the
strengths parameters Xis

22t and X
is
12t. The values are calculated according to Equations

(A.6) and (A.7) and replace the corresponding value in Table A.1.

Xis
22t =

√
4GIc
πtply

(
E−1

22 − ν12E
−1
11

)
(A.6)

Xis
12 =

√
8G12GIIc
πtply

(A.7)

A.4 Results of scaled impacts

This section contains all force-displacement diagrams of the validation impacts in
Chapter 3. The prediction by the analytical scaling method is also included in the
following diagrams in Figure A.7.

Furthermore, this section provides the raw delamination results for the validation
experiments in Chapter 3. The ultrasonic D-scan results were obtained with the help
of the analysis method as described in Appendix A.2.
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Figure A.7: The force-displacement curves of all impact con�gura-
tions in the test campaign: comparison of the spring-mass model's

prediction (red) and the experimental result (gray).
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REF B2 B3 B4 B1'

537± 60 mm2 504± 30 mm2 567± 55 mm2 725± 2 mm2 497± 3 mm2

Table A.2: D-scan delamination results of the impact experiments on specimen type B.
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A1 D1 D2 D3 D4

493± 17 mm2 510± 88 mm2 571± 108 mm2 415± 21 mm2 297 mm2

Table A.3: D-scan delamination results of the impact experiments on specimen type A and D.
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C1 C2 C3

514± 79 mm2 605± 85 mm2 609± 56 mm2

Table A.4: D-scan delamination results of the impact ex-
periments on the specimen type C. The dotted double line

indicates the position of the sti�ener on the backside.
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C4 C5

522± 42 mm2 932 mm2

C6

Table A.5: D-scan delamination results of the impact ex-
periments on the specimen type C. The dotted double line

indicates the position of the sti�ener on the backside.
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E1 E2 E3

447± 39 mm2 451± 36 mm2 445± 14 mm2

Table A.6: D-scan delamination results of the impact experiments on the specimen
type E. The dotted double line indicates the position of the sti�ener on the backside.
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B
Mathematical Methods

B.1 Time integration methods

To solve an ordinary di�erential equation with a �rst-order time derivative like
Equation (B.1), two main classes of time integration methods exist. These classes
are the forward and the backward integration methods [199]. The so-called Euler
methods are the most common and most simple representatives of both procedures.
Beginning from a known time point tn, the Euler forward method in Equation (B.2)
uses the values xn and tn to compute the target function at tn+1. This formulation is
explicit, as it can be directly evaluated, requiring only the values of the current time
increment.

In contrast, the Euler backward method in Equation (B.3) requires a value for
xn+1. Thus, apriori knowledge of the target time point is necessary, to calculate the
target value at the time tn+1. The new value xn+1 depends on itself, which requires an
implicit solution by iteration. This iteration results in a much higher computational
e�ort of the Euler backward method in comparison to the Euler forward method.
However, the bene�ts of this increased e�ort are better accuracy and stability.

∂x

∂t
= f (x, t) (B.1)

xn+1_e = xn + ∆tf (xn, tn) (B.2)

xn+1_i = xn + ∆tf (xn+1, tn+1) (B.3)

Figure B.1 shows a time-dependent function and illustrates explicit and implicit
time integration. This illustration shows the disadvantage of an explicit method.
The direct evaluation of the target function does not match the exact solution. The
implicit solution is superior, as the iteration process results in the convergence to
the exact solution value. The solution discrepancy of the explicit method increases
with each time step and can lead to a full divergence of the approximation from the
solution. To prevent this divergence, the chosen time increment ∆t has to be chosen
very small. Hence, the computational e�ort of an explicit model results from a high
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number of increments, while the computation e�ort of the implicit solution results
from the iteration e�ort.

This di�erence of the computationally costly part of the solution process leads to
a signi�cantly di�erent behavior of the computation e�ort with both methods. The
e�ort to employ an explicit time integration increases linearly with the number of
DoF. In contrast, the e�ort of an implicit time integration increases quadratically.
For that reason, an explicit solution is of particular interest for models with many
DoF.

x 

t 𝑡𝑡𝑛𝑛 𝑡𝑡𝑛𝑛+1 

𝑥𝑥𝑛𝑛 

tangent = f 𝑥𝑥𝑛𝑛, 𝑡𝑡𝑛𝑛   

𝑥𝑥𝑛𝑛+1_𝑒𝑒 , 𝑡𝑡𝑛𝑛+1 

𝑥𝑥𝑛𝑛+1_𝑖𝑖 , 𝑡𝑡𝑛𝑛+1 
x(t) 

∆𝑡𝑡 

Figure B.1: Time integration by an explicit and an implicit proce-
dure.

B.2 Least squares (LSQ) function estimation

The LSQ estimation is a method to solve overdetermined linear systems of equations.
This solution method applies, for example, when experimental data shall be used to �t
a function with less free parameters than available data sets. Adrien-Marie Legendre
was the �rst to describe it, at the beginning of the 19th century [200]. Today, it
remains a commonly used tool for the evaluation of measured data [201].

Equation (B.4) shows a generic correlation between the result value y and the
input values xi. Both vectors are coupled through a set of parameters b. When
this correlation can be written in a linearized form to its unknown parameters b, as
Equation (B.5) shows, it can be interpolated by an LSQ estimation. The correlation
between the parameters bi and the function values y has to be necessarily linear.

When a set of data is the basis of the interpolation, many equations like Equation
(B.5) exist and can be rewritten, using a matrix notation. In this case, y becomes the
result vector and X the matrix of input parameters.

y = f(xi, bi) (B.4)

y =
n∑
i=1

xibi (B.5)
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The system of equations has more equations than free variables and a solution for
b to meet all equations usually does not exist. The deviation of a solution is captured
in the residuum R as shown in Equation (B.6).

RLSQ(b) =
n∑
i=1

|yi −
m∑
j=1

Xijbj |2 = ‖y −Xb‖2 (B.6)

In order to obtain the best estimation, the LSQ method requests the minimum of
the function RLSQ(b) in Equation (B.7). This equation provides a set of parameters
b̂, that produces the smallest residuum R for the set of of input data X and resulting
values y.

b̂ =
(
XTX

)−1
XTy (B.7)

B.3 Symmetry of tensors

A tensor of the dimension d and the order n has nd entries. However, for symmetrical
tensors, the number of independent entries is much smaller. This number of indepen-
dent entries e can be determined through the exploitation of the tensor symmetry.
Thus, the e�ort required for the assembly of the full tensor signi�cantly decreases.

Let nT be an nth-order tensor of the dimension d. In that case, a second-order
tensor 2T has got d independent diagonal entries. Using the �rst symmetry 2Tij =2

Tji, the remaining entries appear twice. From Equation (B.8) we obtain the number
of independent entries e(2, d) for a second-order tensor depending on the dimension d.
The value e(2, d) results from number of diagonal values d. In addition, the subtraction
of the number of diagonal entries from the total number of entries, and dividing them
by two provides the number of additional independent entries.

e(2, d) = d+
d2 − d

2
(B.8)

To understand the symmetry of higher-order tensors, we considering a tensor of
the fourth order. We can express the major symmetry as 4Tijkl =4 Tklji. The
sub-symmetries are considered by the tensor consisting of d2 symmetric second-order
tensors. This symmetry condition leads to Equation (B.9) describing the number of
independent entries e(4, d) for a fourth-order tensor of the dimension d.

e(4, d) = e(2, d) +
e(2, d)2 − e(2, d)

2
(B.9)

With a typical dimension of d = 3 for a tensor in three-dimensional mechanics,
the number of independent entries can be computed. A recursive formula in Equation
(B.10) for the number of independent entries can be derived from that principle.
Table B.1 shows the number of independent entries for for two-dimensional and three-
dimensional tensor up to the eighth order.

e(2n, d) = e(n, d) +
e(n, d)2 − e(n, d)

2
(B.10)
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n 1 2 4 8

e(n, 2) 2 3 6 21
e(n, 3) 3 6 21 231

Table B.1: Number of inde-
pendent entries e depending

on the tensor order n.

A brief thought experiment helps to con�rm the value e = 231 for a three-
dimensional eighth-order tensor. The Voigt notation for Hooke's law uses a two-
dimensional matrix C2 to write the fourth-order sti�ness tensor C4 . The stress and
strain tensors are written as 6x1 vectors. The 6x6 matrix C2 is also symmetrical.
Consequently it consists of 21 independent entries (cf. Table B.1).

If we apply the same principle to the mapping of a fourth-order C4 tensor through
an eighth-order tensor D8 a 21x1 vector has to be multiplied by a 21x21 matrix. This
symmetrical matrix has 441 entries, of which 21 are located on the main diagonal.
Due to the symmetry, the other 420 entries occur twice. Consequently, the tensor D8
consists of 21+ 420

2 = 231 independent entries. The result of Equation (B.10) in Table
B.1 provides exactly this value for e(8, 3).
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