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Abstract

Timely monitoring of the economic performance of a particular sector is generally hindered by the
fact that not all companies have deposited their annual accounts by the time that an evaluation is
made. In view of this, we develop several imputation strategies that each enable predicting a
company’s value added based on available information from past and current years for those
companies where the value added was not timely reported.

For each proposed strategy we discuss the assumptions which must be fulfilled for unbiased
estimation and calculate the estimation uncertainty. In particular, the proposed imputation
procedures all rely on an assumption of missing at random, namely that the values added in
companies that did not yet deposit their annual accounts are similar (in some way) to those in
companies with the same characteristics (e.g. the same historical data) that did deposit their
accounts by the evaluation date. We show how to retrospectively assess the validity of this
assumption, and how to adjust the imputation procedure in case the assumption fails.

The importance of the availability of the uncertainty margins should not be underestimated because
they will result in faster and higher quality publications.

Finally we retrospectively apply each strategy to data from the Belgian Port sector and compare
their performance at several evaluation dates. All the proposed methods show good results on
these data. The method using (ordinary least squares) regression is preferred because it is very
flexible in the use of auxiliary variables, requires weaker assumptions, has smaller estimation
uncertainty and is easily automatable.
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1 Introduction

The Central Balance Sheet Office (CBSO) of the National Bank of Belgium (NBB) is respon-

sible for collecting the annual accounts of ±300,000 companies1. Around 5% of these annually

collected accounts are so-called ’full schemes’ and the other are abbreviated and (from the ac-

counting year 2016 on) also micro schemes. The micro schemes contain a subset of the data

in the abbreviated schemes, the latter contain a subset of the data that is reported in the full

schemes. Companies with the same scheme are similar with respect to information availability.

Companies depositing a full scheme are called ’large’, the others are categorized as ’small’.

The annual accounts must be filed with the CBSO within thirty days after they have been

approved and no later than seven months after the end of the financial year. In practice and for

several reasons, the CBSO receives the major part of the accounts for a certain financial year y

between July y + 1 (notation: y + 7m) and August y + 1 (notation: y + 8m), but it can take

until February-March of y + 2 (notation: y + 14m - y + 15m) before all accounts for year y are

(considered to be) complete. As an example, the accounts for the accounting year 2015 start to

arrive massively from July-August 2016, but only in February 2017 they are (almost) complete.

The arrival rate of the annual accounts for the companies in the Ports2 is illustrated in figure 1

for the years y ∈ {2014, 2015}. The horizontal axis shows the dates u in y + 1 at which the

number of accounts is counted, the vertical axis is the fraction of the accounts registered at the

CBSO at date u for the year y. The fraction is computed in terms of the number of companies

and in terms of value added and separately for large companies (i.e. the companies that report

a full scheme) and small companies (that report an abbreviated or a micro scheme). At the

beginning of August around 65% of the small companies reported their accounts (representing

1The legal background for the compilation and submission of annual accounts, consolidated accounts and
the social balance sheet with the Central Balance Sheet Office is mainly based on European and Belgian laws
and implementing decrees, see https://www.nbb.be/en/central-balance-sheet-office/filing-annual-accounts/legal-
background for the details.

2see e.g. Coppens et al., 2018 for the definition of the population of the Belgian Ports
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Figure 1: Fraction of accounts for year y deposited at the CBSO in y + 1 (for the large and
small in the Ports study)

around 70% of their value added), while for the large companies this fraction is around 80%

(accounting for more than 95% of their value added). In this context, it is important to note

that the large companies account for around 97% of the total value added of the Ports. Each

year there are around 4 300 companies in the Port studies, of which 1 600 are large.

The annual accounts are an important source for several studies and statistics published by

the NBB. These studies analyse a number of economic variables (like value added or employment)

for a particular sector (defined as a list of companies with a similar activity). In practice, a sector

is a list of company identification numbers. Because of new entries and exits, the list can change

from year to year. The economic variables can be computed from information in the (full,

abbreviated, micro) annual accounts.

For this reason, most sectoral studies are published with a large time lag, e.g. the study

on the Ports sector over the year 2015 (Mathys C., 2017) was published in June 2017. As Port
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authorities have asked for shorter publication lags, the Bank developed a ”flash estimate” of

the ports major aggregated variables in October y + 1 (NBB Press release, 2016). This ”flash

estimate” estimates (’imputes’) the missing values for the not-yet-received accounts using ad

hoc methods. The variable of interest is the sum of the (imputed and observed) value added

over all the companies in a year3. The currently used, ad hoc, methods are labour-intensive

and time consuming, and the ad hoc nature implies that their accuracy and precision remain

unclear.

The aim of this paper is to develop accurate, flexible and easily automatable methods for

estimating major aggregated variables of a branch (like ports) in the presence of incomplete

reporting of the annual accounts, along with an assessment of the uncertainty in the obtained

estimate. This uncertainty assessment will serve to decide when and at what level of detail a so

called flash estimate or a study can be published. In view of this, we develop several imputation

strategies that each enable predicting a company’s value added based on available information

from past and current years for those companies where the value added was not timely reported.

As such the proposed methods should increase the quality and shorten the publication delay

of these sectoral studies.

2 Methodology

2.1 Aim

As explained in the introduction, we aim to infer the total value added for year y (T (y)) across

a pre-defined population of companies, i = 1, ..., n. We will denote this as

T (y) ≡
n∑
i=1

Yi(y),

where Yi(y) denotes the value added of company i in the given year y. While straightforward to

calculate when each of the considered companies has submitted data on the value added for year

3The methods presented can (under similar conditions) be applied to variables other than value added.
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y by the time of the assessment, a timely monitoring of the general economy requires evaluation

prior to the value added of all companies being available. In other words, at the assessment

date u not all the companies have submitted their data for the year y. Let therefore Ri(y;u)

indicate 1 if the value added for year y of company i is available at the assessment date u, and

0 otherwise. Then we will estimate the total value added by substituting Yi(y) for companies

whose value added is missing at the time of the assessment, by a prediction Ŷi(y;u) based on

available, actual and historical data Xi (e.g. the value added of previous years, fiscal data, the

number of employees in the company, the change in number of employees since the previous

year, the production activity of the company, ...) available at the assessment date u.

Note that whenever Ri(y;u) = 1 then the value added for company i for year y is known

at date u and for such a company it holds that Ri(y;u)Yi(y) = Yi(y), while for a company j

with Rj(y;u) = 0, the value added is not observed and will be estimated by a value Ŷj(y;u). In

this case it also holds that Ŷj(y;u) = (1−Rj(y;u))Ŷj(y;u). Therefore we will estimate the total

value added at the assessment date u as T̂ (y;u) ≡
∑n

i=1

[
Ri(y;u)Yi(y) + (1−Ri(y;u))Ŷi(y;u)

]
.

To simplify the notation we will drop the assessment date u and the year y for which we compute

the value added and write:

T̂ ≡
n∑
i=1

[
RiYi + (1−Ri)Ŷi

]
In practice u is at least equal to July of year y + 1, where y is the year for which we compute

the total value added (notation: u ≥ y + 7m).

In Section 3, we will discuss various strategies s = 1, 2, . . . , k for calculating Ŷi (k is the

number of strategies). Depending on the chosen strategy (s) we will obtain different values

for Ŷ
(s)
i and therefore different estimators for the total value added T̂ (s). For each of these

strategies we will moreover assess the underlying assumptions just as well as the accuracy of each

of the resulting estimates T̂ (s) under the assumption that the data for the different companies
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(Yi, Xi, Ri), i = 1, ..., n, are mutually independent. In particular, we will assess under what

conditions the resulting estimates are unbiased (i.e., not systematically under- or overestimated)

and moreover assess their precision (i.e., how different they can be expected from the target T ).

Using the (un)biasedness and precision and the ”ease of use” of each of these estimators

T̂ (s) , we will propose our ’preferred’ solution.

2.2 Accuracy

To reason about the accuracy of each of these estimators we will focus on the difference between

the target value T (when the value added for all the companies is known) and the estimated

value T̂ based on partially known information at the assessment date u. It should be clear that

this difference is only determined by the data from companies that did not yet submit their

financial data (i.e. companies i for which Ri = 0). Such companies i have (1 − Ri) = 1 and

contribute a difference of (Ŷi − Yi) to T̂ − T . As such, the total difference is given by:

T̂ − T =

n∑
i=1

(1−Ri)(Ŷi − Yi). (1)

The estimated value Ŷi for such a company will be based on other data (Xi) for that company

that is known at the time of the assessment (like e.g. the value added in the previous year,

the number of employees at the company, ...). For a company i we also know whether the

value added is available or not (i.e. we know Ri). We will therefore study the behaviour of

this difference T̂ − T conditional on knowing {Xi, Ri; ∀i}4. We condition on this information

to express that inaccuracy arises from what we don’t know, which concerns the value added

Yi, rather than what we know. In particular, inaccuracy may arise as a result of an individual

company’s value added Yi differing from what is predicted, Ŷi. Conditioning on {Xi, Ri;∀i} is

especially indicated since we are making an evaluation of a full population of companies, and

thus there is no variability related to the sampling of companies. The only sources of variability

4∀ reads ”for all”.
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that must be considered when evaluating the inaccuracy of T̂ are due to the fact that the quality

of the prediction Ŷi may be poor when based on limited observations, and the fact that even if

the prediction Ŷi were based on data for all companies, that prediction for company i would still

differ from the true value added for that company, due to random noise (i.e. the disturbance

term εi appearing in all imputation models infra).

We will say that T̂ is an unbiased estimate of T when the average difference between the

estimated (T̂ ) and real (T ) total value added, given the values of Xi and Ri (expressed as

...|{Xi, Ri;∀i}) is zero:

E
(
T̂ − T |{Xi, Ri;∀i}

)
= 0.

In that case, T̂ does not systematically under- or overestimate T or the predictions T̂ are

”on average” equal to the ”true” value T .

From equation (1) it follows that this is satisfied when Ŷi unbiasedly estimates the av-

erage value added for companies with missing value added and the same available data Xi,

as company i. Indeed by equation (1) the bias equals E
(
T̂ − T |{Xi, Ri; ∀i}

)
=
∑n

i=1(1 −

Ri)E
(
Ŷi − Yi|{Xj , Rj ; ∀j}

)
, which is zero when

E
(
Ŷi|{Xj , Rj , ∀j}, Ri = 0

)
= E (Yi|{Xj , Rj ,∀j}, Ri = 0) = E (Yi|Xi, Ri = 0) .

Unfortunately, we cannot guarantee unbiased predictions without making both testable and

untestable assumptions. The fact that Yi is missing for all companies with Ri = 0 means that

none of the available data is directly informative about the conditional mean E (Yi|Xi, Ri = 0).

We will therefore proceed under the so-called missing at random (MAR) (Rubin, 1976) assump-

tion that Yi ⊥⊥ Ri|Xi (meaning that the missingness (Ri) for given Xi does not depend on the
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value that is missing (Yi))
5 , and thus in particular that

E (Yi|Xi, Ri = 0) = E (Yi|Xi, Ri = 1) .

This assumption states that companies whose value added is not available at the time of

the assessment are comparable (in terms of value added) to companies with the same charac-

teristics Xi whose data are available at the time of the assessment (and hence the predictions

for companies i with Ri = 0 can be based on the analysis of companies j with Rj = 1). It can

be made more plausible by incorporating more characteristics Xi into the analysis. The missing

at random assumption is untestable, i.e. unverifiable from the available data at the time of the

assessment. Interestingly, however, in our case it can be assessed retrospectively, once the data

on the value added Yi have come available for all companies (i.e. at u ≥ y + 14m). We will

discuss this in Section 5, as well as how to deal with violations of this assumption6.

The missing at random assumption is sufficient for inferring T because we can infer the

mean E (Yi|Xi, Ri = 1) from the available (thus for companies i with Ri = 1) data and, by the

missing at random assumption, use it as a substitute for the unknown mean E (Yi|Xi, Ri = 0).

Estimating the mean E (Yi|Xi, Ri = 1) will typically necessitate the use of additional (testable)

modelling assumptions, however; see Section 3.

The unbiasedness of T̂ expresses only one aspect of its (in)accuracy. In addition, we will

quantify the imprecision of T̂ , which expresses how far we can expect T̂ to be located from T .

It can be assessed as

E

{(
T̂ − T

)2
|{Xi, Ri; ∀i}

}
=

n∑
i=1

(1−Ri)E
{(

Ŷi − Yi
)2
|{Xi, Ri;∀i}

}
(2)

+
∑
i 6=j

(1−Ri)(1−Rj)E
{(
Ŷi − Yi

)(
Ŷj − Yj

)
|{Xi, Ri;∀i}

}
,

5Note that for MAR to hold, the missingness may depend on Xi and, as Yi depends on Xi it could then also
depend (but indirectly, through Xi) on Yi. As long as the dependence of Ri on the value Yi that is missing is
only indirect, via the Xi, MAR is fulfilled.

6When the MAR assumption is violated, we say that the missingness is not at random (MNAR).
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which, by definition, is expected to shrink as the assessment time comes later (for then Ri = 1

for more companies).

The magnitude of the imprecision is driven by 3 sources of error: bias (e.g. due to failure

of missing at random or misspecification of the prediction model), the lack of sufficient data

to model E (Yi|Xi, Ri = 1) at the assessment time, as a result of which Ŷi may differ from

E (Yi|Xi, Ri = 0) (i.e., sampling variability), and the fact that Yi will generally differ from what

is expected, E (Yi|Xi, Ri = 0).

3 Imputation strategies

In the following sections, we will propose various strategies for calculating imputations Ŷi. We

will moreover evaluate under what conditions these imputations are unbiased, and show how to

calculate the imprecision of an estimate T̂ based on these imputations.

3.1 Proportional imputation

3.1.1 Definition and assumptions of the estimator T̂ prop
′

A first imputation strategy chooses the auxiliary variable Xi, used to predict Ŷi, to be merely

the value added of company i from the past year, and proceeds under the assumption that

Yi(y) = βXi + εi (≡ βYi(y − 1) + εi) with E(εi|Xi) = 0. (3)

Note that this model implicitly assumes that Yi(y−1) is known at the assessment date u, which

is not the case for companies that enter the population between y − 1 and y. Therefore we will

later propose an alternative that takes these ’new’ companies into account.

In model (3), β can be estimated based on the available data as

β̂ =

∑n
i=1RiYi∑n
i=1RiXi

.
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This is the weighted least squares estimator7, based on weights equal to 1/Xi (Cochran, 1977).

It follows that β̂ is an efficient (i.e., most precise) estimator of β in the model (3) when the

variance of the value added Yi, conditional on Xi, is proportional to Xi (Greene, 2008). This

estimated β̂ can be used to predict missing values as Ŷ prop′

i (y) = β̂Xi, so that

T̂ prop
′

=
n∑
i=1

(
RiYi + (1−Ri)Ŷ prop′

i

)
=

n∑
i=1

RiYi +
n∑
i=1

(1−Ri)Ŷ prop′

i

= β̂
n∑
i=1

RiXi +
n∑
i=1

(1−Ri)β̂Xi

= β̂
n∑
i=1

(RiXi + (1−Ri)Xi) .

It follows that

T̂ prop
′

= β̂
n∑
i=1

Xi, (4)

where β̂ is as supra, which is also known as the ‘ratio estimator’; the ratio β̂ is estimated on the

available companies for which Yi(y) and Xi ≡ Yi(y− 1) are known and then applied to the total

value added in the previous year for the population (
∑n

i=1Xi).

3.1.2 (Un)biasedness of the estimator T̂ prop
′

Under assumption (3), that for each company i (including the exiting and entering companies)

its value added in year y is, up to a random error, proportional to the one in the previous year,

along with the missing at random assumption, the ratio estimator is unbiased because

E
(
Ŷi|{Xj , Rj , ∀j 6= i}, Xi, Ri = 0

)
= E

(
β̂Xi|{Xj , Rj ;∀j}, Ri = 0

)
= E

(∑n
j=1RjβXj∑n
j=1RjXj

Xi|{Xj , Rj ; ∀j}, Ri = 0

)
= βXi = E (Yi|Xi, Ri = 0) .

7The value for β that minimizes the weighted sum of squares
∑

iRiwi(Yi − βXi)
2 is β̂ =

∑
i RiwiXiYi∑
i RiwiX

2
i

, where

wi is the weight for observation i.
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This unbiasedness is however questionable in practice, because the linear regression through the

origin, model (3), is likely misspecified, and moreover, adjustment for merely the value added

from the past year renders the missing at random assumption rather implausible.

3.1.3 (Im)precision of the estimator T̂ prop
′

In what follows, we will assess the imprecision of T̂ under the assumption that T̂ prop
′
is unbiased.

To assess imprecision due to Ŷi differing from E (Yi|Xi, Ri = 0), remember that we are studying

a complete population of companies. There is thus no variability related to the sampling of

companies, although there is variability related to the fact that β̂ is only based on data from

the subset of companies with Ri = 1.

The precision of the estimator T̂ prop
′

can be assessed by substituting Ŷ = β̂Xi and Yi =

βXi + εi in equation (2). It is approximately given by

E

{(
T̂ − T

)2
|{Xi, Ri; ∀i}

}
≈ σ2

n∑
i=1

(1−Ri),

where σ2 = Var (εi|Xi) can be estimated as

σ̂2 =

∑n
i=1Ri

(
Yi − β̂Xi

)2
(
∑n

i=1Ri)− 1
. (5)

This expression is only approximate as it ignores the imprecision in β̂ (which is generally small

when large numbers of companies are considered). A more accurate result is given by (see annex

A.1 for details):

E

{(
T̂ − T

)2
|{Xi, Ri; ∀i}

}
= σ2

[
n∑
i=1

(1−Ri)
{

1 +

(
1−

X(O)

X(P )

)}
+

(
X(P )

X(O)
− 1

)2 n∑
i=1

(
Ri −

X(O)

X(P )

)2
]
. (6)

where
∑n

i=1RiXi ≡ X(O) is the total of X for the companies for which the value added is

observed at date u (because in that case Ri = 1), while
∑n

i=1Xi ≡ X(P ) is the total of X

for the whole population that will eventually be observed. This expression incorporates finite
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population corrections to acknowledge that β̂ has no imprecision when data from all companies

are observed.

The above expression relies on the homoscedasticity assumption that σ2 ≡ Var (εi|Xi) does

not depend on Xi, which is quite strong. Its violation is likely, but, as argued in the annex,

generally does not impose major concerns, unless when R is strongly dependent on X.

3.2 Proportional imputation, accounting for new companies

3.2.1 Definition and assumptions of the estimator T̂ prop

In practice, the proportional imputation procedure needs adjustment for the fact that new

companies may arise, and that others may have left the population. For the companies i =

1, 2, . . . , n belonging to the population in year y, let Si = 1 if that company already existed

in the previous year, and 0 otherwise. Let Ri = 1 be defined as before. The proportional

imputation procedure may then be revised by redefining model (3) as8

Yi = βXi + εi, (7)

for all the companies that exist in year y, i.e. Si = 1, and moreover assuming that for the new

companies (for which Si = 0)

Yi = Zi + νi, (8)

with Zi a proxy for value added in the current year (Yi) that can be derived from the fiscal data

of company i9 and νi independent of Zi (conditional on Si = 0). It then follows that:

Yi = Si(βXi + εi) + (1− Si)(Zi + νi) (9)

In the proportional imputation we choose Xi = Yi(y − 1) so equation (7) expresses that for

companies that should deposit in y and y − 1, proportionality between Yi(y) and Yi(y − 1)

8There are other alternatives to adjust the ratio estimator to account for new companies, but we describe the
method that is currently used and thus serves as our benchmark.

9Zi derived from fiscal data is an (imprecise) proxy for the value added Yi. This holds for all companies. As it
is imprecise, it is only used where no accounting data is available, i.e. for the new companies that did not deposit
their accounts at the assessment date.
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holds. Equation (8) states that for new companies the value added can just be copied from

fiscal data. The latter implicitly assumes that the fiscal value added is an unbiased estimator

for the expected value added (computed from balance sheet data), although our later estimates

of the imprecision in T̂ will acknowledge imprecision that may result from bias. Equation (9)

expresses that, for new companies we use a proxy derived from fiscal data, while for companies

that already existed last year, we use the value added from accounting data.

With this choice, the imputation estimator T̂ prop equals

T̂ prop =
n∑
i=1

RiYi + (1−Ri)
(
SiXi

∑n
i=1RiYi∑n
i=1RiXi

+ (1− Si)Zi
)
,

which is also known as the ’corrected ratio estimator’.

Note that Ri equals one when the value Yi is observed and zero otherwise, so
∑n

i=1RiYi is

the sum of all observed Yi
10. Further

∑n
i=1(1−Ri)SiXi

∑n
i=1RiYi∑n
i=1RiXi

is the ratio estimator applied

to companies that exist in y and y − 1 (Si = 1 if i exists in y − 1) but for which Yi(y) is

not observed (Ri = 0) and
∑n

i=1(1 − Ri)(1 − Si)Zi is the sum of fiscal value added for those

companies that are new (Si = 0) and for which Yi is not observed (Ri = 0).

3.2.2 (Un)biasedness of the estimator of the estimator T̂ prop

It is trivially seen that this estimator is unbiased under assumptions (7) and (8) when MAR

holds and εi and µi have mean zero.

3.2.3 (Im)precision of the estimator of the estimator T̂ prop

To assess the imprecision of T̂ prop let us write Yi = βXi + εi for companies with Si = 1, as

before, and Yi = Zi + νi for companies with Si = 0. Then the imprecision equals (we used the

10This includes the value added of new companies (i.e. with Si = 0) for which Ri = 1, i.e. which already
reported their data.
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result in equation (6))

E

[ n∑
i=1

(1−Ri)
{
SiXi(β − β̂) + Siεi + (1− Si)νi

}]2
|{SiXi, Zi, Ri, Si;∀i}


= σ2

[
n∑
i=1

(1−Ri)Si
{

1 +

(
1−

X(O)

X(P )

)}
+

(
X(P )

X(O)
− 1

)2 n∑
i=1

Si

(
Ri −

X(O)

X(P )

)2
]

+

n∑
i=1

(1−Ri)(1− Si)E
(
ν2i |Zi

)
, (10)

where X(O) and X(P ) are defined as before, but restricted to companies with Si = 1. Here, σ2

can be estimated as before, but now restricted to companies with Si = 1, i.e.

σ̂2 =

∑n
i=1RiSi

(
Yi − β̂Xi

)2
(
∑n

i=1RiSi)− 1
. (11)

Further, E
(
ν2i |Zi

)
can be unbiasedly estimated as

σ̂2ν =

∑n
i=1Ri(Yi − Zi)2∑n

i=1Ri
(12)

when E
(
ν2i |Zi

)
does not depend on Zi and, moreover, Yi−Zi is equally distributed for companies

with Ri = 1 and companies with Ri = Si = 0. Note that this estimate of E
(
ν2i |Zi

)
expresses

both imprecision due to the fiscal data being a biased assessment of the value added, as well as

due to random error. Note also that, while violation of assumption (8) may introduce a bias in

the estimates, this bias is taken into account in the above formula for the imprecision.

As an alternative we also assessed the imprecision using a semiparametric bootstrap pro-

cedure to compute 95% percentile prediction intervals as follows (see Efron and Tibshirani,

1994):

1. Draw, with replacement, a bootstrap sample Xi(k), Yi(k) with size
∑

iRiSi from the com-

panies i that have RiSi = 1;

2. Draw
∑

i(1−Ri)Si outcomes εm(k) randomly from a normal distribution with zero mean

and (estimated) variance given by equation (11);
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3. Draw
∑

i(1 − Ri)(1 − Si) outcomes νl(k) randomly from a normal distribution with zero

mean and (estimated) variance given by equation (12);

4. Calculate T̂(k) =
∑n

i=1

[
RiYi + (1−Ri)

(
SiXi

∑n
i=1 Yi(k)∑n
i=1Xi(k)

+ (1− Si)Zi
)]

+
∑

m εm(k)+
∑

l νl(k);

5. Repeat this for k = 1, 2, . . . ,K = 2500 to find bootstrap replicates T̂(1), T̂(2), . . . , T̂(2500)

and obtain a 95% prediction interval based on the 2.5% and 97.5% percentiles of these

replicates. If one wishes to avoid reliance on normal distributions then εm(k) and νl(k) may

alternatively be drawn from the observed residuals from models (7) and (8).

Note finally that that the above bootstrap procedure, as well as those that will follow later,

ignore finite population corrections.

3.3 Ordinary least squares imputation

3.3.1 Definition and assumptions of the estimator T̂ ols

A second, preferable, imputation strategy chooses Xi to be a rich collection of company char-

acteristics11, including 1 to allow for an intercept. It proceeds under the assumption that

Yi = β′Xi + εi, (13)

where β is estimated using ordinary least squares estimation (and both β and Xi are p × 1

vectors12 13, for a given dimension p, and Ri and Yi are scalars), so

β̂ =

p×p︷ ︸︸ ︷(
n∑
i=1

RiXiX
′
i

)−1 p×1︷ ︸︸ ︷
n∑
i=1

RiXiYi

Ex post, when all companies have deposited their accounts, we know the whole population

and thus also the population value for β. In practice however, we are in a situation where some

11Proportional imputation is a special case where there is only one characteristic Xi being the value added in
the previous year.

12We use boldface notation to distinguish vectors from scalars.
13β′ denotes the transpose of β.
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of the companies did not yet deposit their accounts. In those cases the population parameter β

is unknown and has to be estimated from available data.

3.3.2 (Un)biasedness of the estimator T̂ ols

It follows by the properties of OLS estimators that, under MAR, this estimation algorithm

guarantees unbiasedness under model (13), resulting in an imputation estimator T̂ equal to

T̂ ols =
n∑
i=1

RiYi + (1−Ri)β̂′Xi.

3.3.3 (Im)precision of the estimator T̂ ols

The imprecision of the estimator T̂ ols is approximately given by

σ2
n∑
i=1

(1−Ri), (14)

where σ2 = Var (εi|Xi) can be estimated as the residual variance∑n
i=1Ri(Yi − β̂′Xi)

2

(
∑n

i=1Ri)− p
, (15)

with p the dimension of β. This expression is only approximate as it ignores the imprecision in

β̂ (which is generally small when large numbers of companies are considered). A more accurate

result, which involves finite population corrections, is given by (see annex A.2 for details):

σ2

[
n∑
i=1

(1−Ri)

{
1 +X ′iA

−1r

{
n∑
i=1

(1−Ri)Xi

}}]

+σ2

{
n∑
i=1

(1−Ri)Xi

}′
A−1

 n∑
j=1

BjXjX
′
jB
′
j

A−1{ n∑
i=1

(1−Ri)Xi

}
. (16)

where r = (
∑n

i=1RiXiX
′
i) (
∑n

i=1XiX
′
i)
−1, A =

∑n
i=1RiXiX

′
i and Bi = (RiIp×p − r).

The homoscedasticity assumption is quite strong. Its violation is likely, but, as before,

generally does not impose major concerns since interest lies in the ‘total’ residual variance

across companies with incomplete data, rather than the variance of individual records.
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We also assessed the imprecision using a semiparametric bootstrap procedure to compute

95% percentile prediction intervals as follows (see Efron and Tibshirani, 1994) in a similar way

as for the estimator T̂ prop at the end of section 3.2.3:

1. Draw, with replacement, a bootstrap sample Xi(k), Yi(k) with size
∑

iRi from the compa-

nies i that have Ri = 1 and estimate β̂(k) from that sample;

2. Draw
∑

i(1−Ri) outcomes εl(k) randomly from a normal distribution with zero mean and

(estimated) variance given by equation (15);

3. Calculate T̂(k) =
∑

i

[
RiYi +

∑
i(1−Ri)β̂′(k)Xi

]
+
∑

l εl(k);

4. Repeat this for k = 1, 2, . . . ,K = 2500 to find bootstrap replicates T̂(1), T̂(2), . . . , T̂(2500)

and use these to compute 95% percentile prediction intervals. As before εl(k) may be

drawn from the empirical distribution of the residuals from model (13) if one wishes to

avoid normality assumptions.

3.4 Advantages of ordinary least squares imputation over proportional im-
putation

The ordinary least squares imputation strategy has a number of major advantages over propor-

tional imputation.

First, it can easily accommodate imputation of new companies; this can be done by letting

Xi include Si. Remember that Xi is a vector of p auxiliary variables Xi for company i. We

could for instance let X1i be the value added for company i of the previous year, X2i be the fiscal

data for the current year, X3i be the indicator Si that is one for a company that existed in the

previous year and let X4i be 1 for the intercept in the model. Then one may choose imputation

models with e.g. Xi = [1 X1iSi X2i Si]
′, i.e.

Yi = β0 + β1X1iSi + β2X2i + β3Si + εi.
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This model assumes that the mean value added for new companies is β0 + β2X2i, while for

existing companies it is β0 + β1X1i + β2X2i + β3.

Second, in the same way one can easily include additional auxiliary variables that strongly

correlate with Yi like e.g. employment or salaries.

Third, the missing at random assumption in model (13) is much less strong than in (3) as

a result of adjusting for a larger collection of variables Xi. Adjusting for more variables Xi in

the ordinary least squares regression approach helps to ‘explain’ missingness (see also footnote

5), thereby rendering missing at random more plausible.

Fourth, model (3), unlike model (13) (e.g. with Xi = [1 X1iSi X2i Si]
′ as supra), excludes

the possibility of a systematic growth, for instance, by assuming that companies with small

(negative) value added in the past year have small (negative) value added (on average) in the

current year.

Fifth, adjusting for more company characteristics results in more accurate predictions Ŷi.

This is mainly expressed in the estimate of the residual variance (15) typically being much

smaller than the corresponding estimate (5). This is quite important if one considers that the

key component of the imprecision of T̂ equals
∑n

i=1(1−Ri)Var (εi|Xi).

By the same token, outlying outcome measurements are less likely in the ordinary least

squares imputation approach as they are more likely explained by additional predictors.

3.5 Linear mixed model imputation

3.5.1 Definition and assumptions of the estimator T̂mix

The imputation strategy of the previous section does not immediately lend itself to the modelling

of many branches, in view of their high-dimensionality. One may remedy this by using linear

mixed models. In particular, let Xi = (W ′
i , Ui, Zi)

′ be a vector with company characteristics Wi

(e.g. fiscal data, the number of employees in the company, the change in number of employees

since the previous year, the production activity of the company, ...), Ui is the value added of
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previous year (and is also included in the fixed effects vector Wi) and Zi the company’s branch

code. Further, let I(Zi = j), j = 1, 2, . . . , c be an indicator function which takes the value 1

when the ith company’s branch code equals j, and 0 otherwise. Then one may proceed under

the assumption that14

Yi = β′Wi +
∑
j

b0jI(Zi = j) +
∑
j

b1jUi × I(Zi = j), (17)

where bij is assumed to be a mean zero, normal variate with variance σ2bi for i = 0, 1; here,

the summation runs over all possible branch codes. The assumption that all coefficients bij

originate from a mean zero normal distribution with variance σ2bi ensures regularisation of the

corresponding coefficient estimates. In particular, it prevents that the lack of information gives

rise to highly variable estimates, and therefore instability. It moreover ensures that the coeffi-

cients of the c−1 dummies are essentially replaced by only one parameter σ2bi to estimate; doing

so we accommodate the loss of degrees of freedom. This then results in an imputation estimator

T̂mix equal to

n∑
i=1

RiYi + (1−Ri)

β̂′Wi +
∑
j

b̂0jI(Zi = j) +
∑
j

b̂1jUi × I(Zi = j)

 ,

where β̂ denotes the so-called restricted maximum likelihood (REML) estimator of β under

model (17), and b̂ij represents the so-called empirical best linear unbiased predictor (empirical

BLUP) corresponding to bij .

3.5.2 (Un)biasedness of the estimator T̂mix

Unlike the estimators of the previous sections, this estimator of T will typically have some bias

as a result of shrinkage in the empirical BLUPs that results in some attenuation (i.e. in b̂ij being

closer to zero, on average, than bij), which diminishes as the number of companies per branch

code grows.

14 This model implies that the intercept and the coefficient of Ui (value added in the previous year) may
depend on the branch of activity of the company. The coefficients of the other explanatory variables included in
Wi are assumed not to depend on the branch code.
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3.5.3 (Im)precision of the estimator T̂mix

The aforementioned bias, as well as the fact that empirical BLUPs tend to follow a complex, non-

standard distribution, makes analytical expressions of the imprecision of T̂ difficult to obtain;

while analytical approximations are possible, these approximations are known to be poor in

practice. In view of this, one may make use of the parametric bootstrap to assess the imprecision

of T̂ . In particular, writing

Yi = β′Wi +
∑
j

b0jI(Zi = j) +
∑
j

b1jUi × I(Zi = j) + εi,

note that the imprecision is given by the conditional expectation of n∑
i=1

(1−Ri)

(β − β̂)′Wi +
∑
j

(b0j − b̂0j)I(Zi = j) +
∑
j

(b1j − b̂1j)Ui × I(Zi = j) + εi


2

,

given {Xi, Ri;∀i}. In the expression for

(β − β̂)′Wi +
∑
j

(b0j − b̂0j)I(Zi = j) +
∑
j

(b1j − b̂1j)Ui × I(Zi = j),

we will use β̂ and b̂ij as substitutes for β and bij , respectively. Next, we will repeatedly (for

k = 1, ...,K for some pre-specified number, e.g. K = 2500) simulate new observations Y ∗i

for the value added of each company i with Ri = 1 by drawing normal variates with mean

β̂′Wi +
∑

j b
∗
0jI(Zi = j) +

∑
j b
∗
1jUi × I(Zi = j) and variance σ̂2, where b∗ij is a random draw

from a mean zero normal distribution with variance σ̂2bi , the restricted maximum likelihood

estimate of σ2bi . We next analyse each such simulated dataset k = 1, ...,K, in the same way

as the observed data to arrive at estimates β̂∗(k) and b̂∗ij(k). For each company i, we further

take a draw ε∗i from the distribution of εi. This could be a random draw from a mean zero

normal distribution with variance σ2, which can be consistently estimated as σ̂2 using restricted

maximum likelihood procedures under the assumption of constant residual variance. This could

alternatively be the estimated residual Yj − β̂′Wi +
∑

j b̂0jI(Zi = j) +
∑

j b̂1jUi × I(Zi = j) for
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a randomly selected company. This allows us to estimate the imprecision as

1

K

K∑
k=1

 n∑
i=1

(1−Ri)

(β̂ − β̂∗k)′Wi +
∑
j

(b̂0j − b̂∗0j(k))I(Zi = j)

+
∑
j

(b̂1j − b̂∗1j(k))Ui × I(Zi = j) + ε∗i


2

.

Drawing ε∗i from the estimated residuals has the advantage of not assuming normality, but the

drawback that it relies on biased estimates b̂ij of the random effects and that estimated residuals

tend to be attenuated towards zero.

The above procedure is likely to lead to slight overestimation of the imprecision of T̂mix by

not involving finite-population corrections on the distribution of β̂ and b̂ij . This is not a major

concern however, since for the methods where an analytical formula for the precision could be

derived, the ”finite population correction” shows to be relatively small (as can be seen in annex

B. )

Further, note that we deliberately make use of the parametric bootstrap rather than the

more common nonparametric bootstrap. The reason is that the nonparametric bootstrap does

not enable us to condition on the observed data on Xi; this is especially problematic as certain

branch codes might otherwise not appear in certain resamples, thereby yielding no estimates of

the corresponding coefficient bij .

4 Robustness against model extrapolation

A drawback of the imputation strategies of the previous section is that they all imply a risk of

extrapolation, which may occur when the companies who did versus did not submit their data are

rather different in terms of the observed variables Xi. Although the imputation models correct

for such differences, correct model specification can be quite crucial when the differences are

large, for then even mild misspecifications over the observed data range can induce large biases.

In view of this, we will make an ’in principle’ preferable (though more complicated) proposal
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below, which explicates the uncertainty due to extrapolation and has the added advantage of

generalising rather straightforwardly to missing not at random data.

4.1 Definition and assumptions of the weighted imputation estimator T̂wls

To lessen the risk of model extrapolation, we will avoid sole reliance on imputation models.

We will do this by considering instead a model which describes how likely a company with

characteristics Xi has submitted its financial data at the time of the assessment. For instance,

we may postulate that

logit (P (Ri = 1|Xi)) = γ ′Xi, (18)

which can be fitted using logistic regression; P̂ (Ri = 1|Xi) is then obtained as the fitted value

from this logistic model, i.e. P̂ (Ri = 1|Xi) = eγ̂
′Xi

1+eγ̂
′Xi

, where γ̂ is the maximum likelihood

estimator of γ.

This model merely quantifies what percentage of companies with data Xi has submitted its

financial data; it thereby avoids the possible extrapolation in imputation models (which model

the outcome in companies with Ri = 1 and extrapolate to companies with Ri = 0). With this

logistic model, we then propose fitting the imputation model (13) to companies with observed

outcome data using ordinary least squares regression, weighting the ith (i = 1, ..., n) company’s

data by weight

wi =
P̂ (Ri = 0|Xi)

P̂ (Ri = 1|Xi)
= e−γ̂

′Xi ,

resulting in estimates β̂(w) for β and in an imputation estimator

T̂wls =

n∑
i=1

RiYi + (1−Ri)β̂(w)′Xi.

4.2 (Un)biasedness of the estimator T̂wls

The use of such weights does not harm the unbiasedness of the imputations when the imputa-

tion model is correctly specified, even when the logistic model for the weights is misspecified.
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However, it provides additional assurance in the following sense. At an intuitive level, these

weights are large at covariate levels Xi where there is a lot of ‘missing data’ (i.e. P (Ri = 1|Xi)

is closer to 0). They thus ensure that the imputation model fits well at covariate values Xi of

companies who did not yet submit their financial data; they thus target a good fit in the region

of the covariate space where predictions will be made (Vansteelandt, Carpenter and Kenward,

2010). More formally, when the imputation model is misspecified so that biased imputations are

obtained, the imputation estimator T̂wls remains unbiased (in large samples) provided that the

logistic model for the weights is correctly specified (Seaman and Vansteelandt, 2018). Indeed,

in that case, the imputation estimator can be rewritten as

T̂wls =
n∑
i=1

RiYi + (1−Ri)Ŷi

=
n∑
i=1

(
RiYi + (1−Ri)Ŷi +Ri

P̂ (Ri = 0|Xi)

P̂ (Ri = 1|Xi)

(
Yi − Ŷi

))

=
n∑
i=1

(
RiYi + (1−Ri)Ŷi +Ri

{
1− P̂ (Ri = 1|Xi)

P̂ (Ri = 1|Xi)

}(
Yi − Ŷi

))

=

n∑
i=1

(
Ri

P̂ (Ri = 1|Xi)
Yi +

{
1− Ri

P̂ (Ri = 1|Xi)

}
Ŷi

)
. (19)

Here, the second equality holds because the weighted least squares predictions Ŷi satisfy:

n∑
i=1

Ri
P̂ (Ri = 0|Xi)

P̂ (Ri = 1|Xi)

(
Yi − Ŷi

)
= 0

The unbiasedness now follows because, under MAR, Ri has mean equal to P (Ri = 1|Xi),

conditional on Xi and Yi, so that the first term in (19) averages to E(Yi) and the second term

to 0, when the model for P (Ri = 1|Xi) is correctly specified. Since the resulting method thus

gives (approximately) unbiased results when either the imputation model (13) or the missingness

model (18) is correctly specified, it is called double robust.
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4.3 Stability of the estimator T̂wls

The parameter γ indexing model (18) can be estimated using maximum likelihood for logistic

regression yielding weights ŵi = e−γ̂
′Xi . However, this is likely leading to instability as a result

of P (Ri = 1|Xi) converging to 1 as the assessment time comes later because ’in the limit’ all

values Yi are observed and therefore Ri = 1. In that case, especially the intercept in model

(18) can be expected to diverge. The intercept is nonetheless irrelevant for the procedure of the

previous section. Indeed, writing γ ′Xi = γ0 + γ ′1X−1,i (where X−1,i is the vector Xi excluding

the component for the intercept), note that the weights equal e−γ̂
′Xi = e−γ̂0e−γ̂

′
1X−1,i , where

the factor e−γ̂0 is constant and hence can be ignored in the maximisation of the weighted sum of

squared residuals. We will therefore design a novel estimation procedure which does not require

estimation of the intercept γ0.

In particular, we propose estimating γ1 as the solution to the system of unbiased equations∑n
i=1(1−Ri)X−1,i∑n

i=1(1−Ri)
=

∑n
i=1Rie

−γ′1X−1,iX−1,i∑n
i=1Rie

−γ′1X−1,i
.

Under MAR, the left hand side (LHS) is the mean of the covariates in the companies with missing

data and the right hand side (RHS) is the weighted mean of the covariates in the companies with

observed data, which is equal when MAR can be assumed15 . Both sides of the equation are

thus asymptotically unbiased estimators of E(X−1,i|Ri = 0), as a result of which the solution

to this equation is a consistent estimator of γ1 (Newey and McFadden, 1994). In cases where

the equation is difficult to solve, we recommend minimising the least squares distance between

both sides of the equation. In particular, we recommend minimising

p∑
j=2

(∑n
i=1(1−Ri)Xji∑n

i=1 1−Ri
−
∑n

i=1Rie
−γ′1X−1,iXji∑n

i=1Rie
−γ′1X−1,i

)2

,

where Xji is the jth element of Xi. The solution to this equation guarantees more stable

weights e−γ
′
1Xji . Indeed, applying these weights to the companies that submitted their data

15This follows from the fact that MAR implies mean independence (E(Yi|Xi, Ri = 1) = E(Yi|Xi, Ri = 0) and
from our model assumption (Yi = β′Xi + εi)
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ensures that their (weighted) covariate means match those of companies that did not yet submit

their financial data.

Although the above procedure is designed to return stable weights, one may sometimes

still observe the weights for certain companies to be large. We have observed this often to

be the result of outlying predictor values Xi in companies with Ri = 1. For instance, when

companies with Ri = 0 had added values below a certain threshold x in the previous year,

and some companies with Ri = 1 had added values above x, then much greater stability can

be achieved by defining P (Ri = 1|Xi) = 1 for companies with added value in the past year

above x, and assuming that logit (P (Ri = 1|Xi)) = γ ′Xi in the remaining companies. This

enables restricting the above minimisation procedures to all companies whose added value in

the past year was below x. This is valid, since the weights are then zero for companies whose

added value in the past year was above x so that they can effectively be eliminated from the

imputation procedure. If the remaining weights continue to be unstable, one may consider

truncating them at the 99% percentile (see Cole and Hernan, 2008).

4.4 (Im)precision of the estimator T̂wls

When the imputation model (13) is correctly specified, then, in large samples from an infinite

population, the uncertainty due to the estimation of γ can be ignored when evaluating the

imprecision of T̂ , because inconsistent estimation of γ then does not affect the consistency of T̂wls

(Newey and McFadden, 1994; Theorem 6.1). The resulting approximation can be expected to

be even smaller in finite populations, and will therefore be ignored. In that case, the imprecision

of T̂wls can be assessed along similar lines as before. In particular,

β̂ − β =

(
n∑
i=1

Rie
−γ′1X−1,iXiX

′
i

)−1 n∑
i=1

Rie
−γ′1X−1,iXiYi −

(
n∑
i=1

XiX
′
i

)−1 n∑
i=1

XiYi

=

(
n∑
i=1

Rie
−γ′1X−1,iXiX

′
i

)−1 n∑
i=1

(
Rie
−γ′1X−1,iIp×p − r

)
Xiεi + op(n

−1/2),
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where

r =

(
n∑
i=1

Rie
−γ′1X−1,iXiX

′
i

)(
n∑
i=1

XiX
′
i

)−1
.

In practice γ1 can be substituted by γ̂1.

If we introduce the notationsA =
∑n

i=1Rie
−γ′1X−1,iXiX

′
i andBi =

(
Rie
−γ′1X−1,iIp×p − r

)
then this becomes:

β̂ − β = A−1
n∑
i=1

BiXiεi,

The imprecision of T̂wls (as well as the residual variance σ2) may then be calculated as for T̂ ols

(see section 3.3.3), but using the matrices A,Bi and r defined above. The homoscedasticity

assumption is quite strong. Its violation is likely, but, as argued in the annex, generally does

not impose major concerns.

5 Missing not at random estimator T̂mnar

In the previous section we argued how a violation of the model assumption can be mitigated

by using a doubly robust estimator. Remember that, besides the model assumption, we also

assumed that the data is missing at random. In this section we show how the results in the

previous section can be extended (1) to construct a retrospective hypothesis test for the MAR

assumption and (2) if the data are missing not at random, how we can accomodate that.

When the data are missing not at random in the sense that E(Yi|Ri = 0,Xi) 6= E(Yi|Ri = 1,Xi)

for some Xi, then we may postulate a model for P (Ri = 1|Xi, Yi), which additionally allows for

a dependence on the current outcome. For instance, we may postulate that

logitP (Ri = 1|Xi, Yi) = γ0 + γ ′1X−1,i + θYi. (20)

Here, θ describes the extent to which companies with the same observed data (i.e. fiscal data,

employment data, historical value addeds, ...), but different value added in the current year,
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have different probabilities of having submitted their data at the assessment time. In particular,

θ = 0 corresponds with Missing at Random.

One may thus retrospectively test the null hypothesis of Missing at Random once all financial

data have been submitted, using a standard Wald test that θ = 0 in model (20)16.

If the hypothesis test concludes that θ 6= 0 then the missingness is not at random. In that

case we can, by the same reasoning as in section 4, give a higher weight to observations where

the probability of being missing is higher. In other words, we then define weights equal to the

reciprocal of P (Ri = 1|Xi, Yi).

However, at the time of the assessment, the observed data carry no information about

θ, because Yi is missing when Ri = 0. We will therefore first explain how to proceed for a

prespecified choice of θ. A reasonable guess for θ can be obtained by fitting model (20) to the

data from the previous year using maximum likelihood (since the financial data are all available

in that case), although there are no guarantees that the same value of θ would apply to the

current year.

For given θ, we then recommend estimating γ1 by minimising

p∑
j=2

(∑n
i=1(1−Ri)Xji∑n

i=1 1−Ri
−
∑n

i=1Rie
−γ′1X−1,i−θYiXji∑n

i=1Rie
−γ′1X−1,i−θYi

)2

,

as before. Note that these equations ensure that Yi is only needed for companies with Ri = 1,

so that the equations can be calculated. This is important since standard maximum likelihood

would give infeasible estimators.

Given an estimate γ̂1 of γ1, an estimate T̂mnar of T is now obtained as in Section 4 upon

substituting P̂ (Ri = 1|Xi) by P̂ (Ri = 1|Xi, Yi). The weights thus become e−γ
′
1X−1,i−θYi , the

term θYi in the exponent explicitly accounts for the missingness being not at random.

16For the hypothesis test the coefficients of the logistic model (20) can be estimated by maximising the likelihood
function. In this paper we used Firth regression (Firth , 1993, Heinze and Schemper , 2002) to eliminate small
sample bias.
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6 Application to the port study

6.1 Retrospective testing procedure

In the previous sections we have introduced several estimators (T̂ prop, T̂ ols, T̂mix) for the total

value added of a population of companies in the presence of missing data. We analysed the

underlying imputation model’s assumptions and assessed their (un)biasedness and (im)precision

when the data are missing at random. We also argued how the imputation models could be

made more robust against model extrapolation by using estimated probabilities of missingness

as weights in a weighted linear regression (i.e. the estimator T̂wls). As the missing at random

assumption is crucial, we also presented a hypothesis test to verify its credibility. Finally we

presented a method that can be used when the data are not missing at random (i.e. the estimator

T̂mnar).

In this section we will compare the performance of each of these estimators on a real data

set, namely the data that was used for the population of the Belgian ports study (e.g. Coppens

et al. (2018), Mathys (2017)). The reason for using this study as a benchmark is that there

has been an explicit demand for faster publication. We used the population for the years 2014

and 2015, because at the time we started working on this paper (October 2017) the total value

added for these years was known, just as well as the value added for each company17.

To make things clear, let’s take e.g. y = 2015. At the time of writing the paper (October

2017) we knew the target value T (y = 2015) (because October 2017 is more than 14 months

later than end of 2015). At each assessment date u, 2016/07/31 ≤ u ≤ 2017/02/28 we can

extract the data for the companies that had already deposited their financial accounts at u and

exclude those that reported after u18. As we fix the deposit date at u, some of the companies in

17Pro memorie: the CBSO receives the major part of the accounts for a certain financial year y between July
y+1 and August y+1, but it can take until February-March of y+2 before all accounts for year y are (considered
to be) complete. Therefore, in October 2017 we knew (approximately) what the ”true” value of T (y) for the years
2015 and 2016 would be.

18The CBSO registers, for each account, the date at which the account was received. Therefore we can
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the population for 2015 have not yet reported and their value added has to be estimated with

one of the described imputation models (T̂ prop, T̂ ols, T̂mix). Moreover, we know the target value

for T (y = 2015), so we can compare each of these estimated values (T̂ prop(y = 2015), T̂ ols(y =

2015), T̂mix(y = 2015)) to T (y = 2015). Note that this comparison can only be made ex post,

when T (y) is known, which is not the case at the assessment date u. Therefore we also computed

the precision of each estimator as a prediction interval at the 95% confidence level using only

information available at u.

This paper assesses the imprecision using the bootstrap (see Efron and Tibshirani, 1994)

based on which we constructed a 95% prediction interval19; for T̂mix we used the parametric

bootstrap (see section 3.5.3); for the other estimators the non-parametric bootstrap was used

(see sections 3.2.3 and 3.3.3). For reasons of computational efficiency we also derived analytical

formulas for the (im)precision of all estimators except for T̂mix (see equations (10) and (16) for

the imprecision of the proportional and the OLS imputation). This section will compare the

outcome of the analytical formulas to the bootstrap-based intervals.

Remember that the missing at random assumption is crucial for the unbiasedness of the

predictions. In section 5 a retrospective test was presented to verify the validity of that assump-

tion. In the current section this test will be applied at each assessment date u. Note again that

this test can only be performed ex post, when the outcome Yi is known for all companies i.

The retrospective testing process is schematised in figure 2 for year y: at e.g. u1 =

31/07/y + 1 some companies deposited their accounts for y, while others did not. Using the

above estimators, we can, at assessment date u1, estimate the total value added T̂ (s)(y;u1) for

y ∈ {2014, 2015}, where (s) ∈ {prop, ols,mix}. For each estimator we can also estimate a 95%

prediction interval Î(y;u) (either using an analytical formula or using the bootstrap). Moreover,

at each assessment date u we can test the MAR assumption. Fourteen months after the end of

retrospectively test the state of that database at each such date u.
19We used the 95% ’percentile’ type intervals, see e.g. (Efron and Tibshirani, 1994, sect. 13.3)
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year y we know the target value T (y), so at the time we started working on the paper (October

2017) we knew the target values T (2014), T (2015)20.

Figure 2: Schematic overview of the retrospective testing for the port study
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6.2 Detailed specification of the OLS- and Mix- estimators

The estimator T̂ prop given by equation (9) does not require further specifications (it was already

mentioned that Xi is the value added in the previous year and that Zi is a proxy for the value

added derived from fiscal data). This is the method that is currently applied and therefore it

serves as our benchmark. In its current application, the ratio β̂ =
∑n

i=1RiYi/
∑n

i=1RiXi is

computed by branch21 of activity and by size class.

The regression models will be estimated by size class. The branch of activity is included as

an explanatory variable in the OLS procedure and as a random effect in the mixed effect model.

The estimators T̂ ols and T̂mix require us to specify the components of Xi. For the current

retrospective testing evaluation we defined Xi to be

Xi = [1 X1i X2i X3i X4i X5i X6i X7i]

where
20The attentive reader will notice that e.g. for y = 2015 the total T (y) is not identical to the figures in Mathys,

2015. The reason is that in Mathys, 2015 there are additional corrections after the imputation step e.g. companies
for that are only partially included in the study.

21A branch of activity is defined as a group of NACE-codes. In this paper we grouped companies by the first
position of the NACE code.
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– X1i = Y ∗i (y− 1) is value added in the previous year (with a zero when it is not

available, hence the ’*’ superscript);

– X2i = Z∗i (y) is value added derived from fiscal data in year y (with a zero when

it is not available);

– X3i = ei(y) is the number of persons employed by company i;

– X4i = D
(−1)
i (y− 1) is an indicator for the availability of the value added in the

previous year;

– X5i = D
(f)
i (y) is an indicator for the availability of fiscal data in the current

year;

– X6i = N1i(y) is the branch of activity (the first position of the Nace code);

– X7i is the interaction effect between the activity branch and X1i.

For the estimator T̂mix we decompose Xi into (Wi, Ui, Zi)
′ where

Wi = [1 X1i X2i X3i X4i X5i] .

These were the explanatory variables used for the purpose of the retrospective testing in

this paper. For NBB-internal use, additional (confidential) variables may be added (like salaries

paid) that might further reduce the uncertainty.

The ”corrected ratio estimator” copies a proxy value from fiscal data for new companies

that did not yet deposit their accounts. By the choice of the variables supra, it can be seen that

the OLS- and mixed estimators correct the proxy value via regression adjustment.

6.3 Definition of the population for year y

The imputation methods assume that we know all the companies that belong to the population

in year y at u, where u ≥ y + 7m. Moreover, for each company i the Xi values must be observed.

After 19m we can reasonably assume that the population for y − 1 (P(y − 1)) is known (Note
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that y + 7m = (y − 1) + 19m, it is assumed that all companies have deposited their account for

y − 1 19 months after the account is closed).

The population for y can be defined as follows:

P(y) = (P(y − 1) \ E(y)) ∪N (y),

where E(y) is the set of companies exiting the population during year y and N (y) is the set

of companies entering during year y. E(y) can be derived from other data sources with rela-

tively high precision; N (y) can only be defined approximately, but it should be noted that new

companies are usually the smaller ones (cfr infra for the definition of small companies and their

impact on the estimation results).

Note that Xi is observed for all the companies i in the population (for year y) P(y).

6.4 Simulation of (un)biasedness and (im)precision

Figure 3 illustrates the estimated values T̂ prop(y), T̂ ols(y), T̂mix(y) along with 95% bootstrap

prediction intervals (the error bars) for the year y = 2014. The top panel shows the results

for the companies that report full schemes or the ’large’ ones; the bottom panel for those that

report abbreviated or micro schemes, called the ’small’ companies. The dashed horizontal red

line represents the true (ex post known) value T (y). On the horizontal axis one finds the different

values for the (simulated) assessment date u while on the vertical axis one finds the estimated

values and their uncertainty (i.e. the 95% bootstrap prediction interval) and the target value

T (y). Note that the scales on the vertical axis are very different for both subpanels. Figure 4

gives similar results for year y = 2015.

As expected, the estimated value (for all the methods) converges to the ex-post value when

the total value is estimated at later dates u, because the number of companies for which the

value added is observed increases (and thus the number of companies for which value added

must be estimated decreases). The width of the estimated 95% prediction intervals also become
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Figure 3: Estimation results and bootstrap intervals for y = 2014
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Figure 4: Estimation results and bootstrap intervals for y = 2015
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smaller with increasing u.

The ex-post observed value added (and thus the ”true” value added) for the large companies

for year y = 2015, i.e. T large(2015), is 27 196.86 million euro. As an example, if we would

estimate the total value added for that year for the large companies at date u =2016-08-31

using the OLS-estimator, we find T̂ ols,large(2015;u) =27 238.33 million euro, or an estimation

error of 0.15%. This error can only be observed ex-post, when the ”true” value T (2015) has

been observed (in practice this is after February 2017). At the assessment date u (August 2016)

T (2015) is unknown and we can only calculate an estimate of the imprecision of the estimate

T̂ ols,large(2015;u) using data available at u. Figure 4 shows the uncertainty as 95% prediction

intervals for y = 2015 (for y = 2014, see figure 3), computed using the bootstrap. The bootstrap

intervals are computed by repeatedly (2500 times) predicting the value added using other data

(see sections 3.2.3 and 3.3.3 for more details). This is computationaly intensive and therefore

we also derived analytical formulas for computing this uncertainty (except for the imputation

based on mixed models).

The 95% bootstrap (percentile type) intervals for different estimators are shown as er-

ror bars in figures 3 and 4. As an example, the bootstrap estimated 95% prediction inter-

val for the large companies in year 2015 and for the OLS-estimator, Îb
ols,large

(2015;u) =

[Îb
ols,large

low (2015;u); Îb
ols,large

high (2015;u)] = [27 036.93 ; 27 364.58] million euro at u =2016-08-31.

Note that (see also figure 4) the estimated prediction intervals contain the ex-post observed

value and therefore there are no signs of bias22. The percentile type bootstrap intervals are

(in general) asymmetric around the estimated value T̂ ols,large(2015;u) =27 238.33 million euro.

Considering the fact that large companies account for a much larger share in total value added

(97.2% in 2015), we conclude that the OLS-estimator outperforms the other estimators. This

confirms the theoretical arguments given in section 3.4.

22The prediction intervals are computed at a 95% level, so, in (infinitely) repeated samples, 95% of the computed
intervals must contain the ”true” (ex post) value.
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We define the relative uncertainty23 of the estimate as the width of the 95% bootstrap

interval relative to the estimated value or

µols,largeb (2015;u) =
Îb
ols,large

high (2015;u)− Îb
ols,large

low (2015;u)

T̂ ols,large(2015;u)

Using equation (16), the imprecision of the OLS-estimator can be computed analytically24.

The analytically computed 95% prediction interval is defined as

Îa
ols,large

(2015;u) = T̂ ols,large(2015;u)± 2

√
E
(

(T̂ ols,large(2015;u)− T large(2015))2
)

The analytical uncertainty µols,largea (2015;u) is defined in a similar way as the bootstrap

uncertainty. The estimated value added and their relative uncertainty for the large companies

at two assessments dates25 is shown in table 1 for the estimators T̂ ols, T̂mix, T̂ prop. Table 2 is

similar but for the small companies.

Table 1: Estimated values and their analytical uncertainty (µa) and bootstrap uncertainty (µb)
for the large companies for y=2015 (mio eur)

method u T̂ ∗,large(2015;u) µb/2 (%) µa/2 (%)

ols 2016-08-15 27 249.60 ±1.2(%) ±1.3(%)
mix 27 208.09 ±4.0(%) -
prop 27 229.77 ±3.5(%) ±3.8(%)
wls 27 281.41 - ±1.5(%)

ols 2016-08-31 27 238.33 ±0.6(%) ±0.4(%)
mix 27 136.24 ±1.7(%) -
prop 27 170.31 ±2.1(%) ±2.1(%)
wls 27 247.66 - ±0.8(%)

ols 2016-10-31 27 259.97 ±0.3(%) ±0.3(%)
mix 27 193.27 ±1.0(%) -
prop 27 205.93 ±1.8(%) ±1.9(%)
wls 27 248.19 - ±0.4(%)

23Note that, if the intervals would have been symmetric, this would imply that the interval could be written
as T̂ ols,large(2015;u) · (1± 1

2
µols,large
b (2015;u))

24The imprecision can be approximated using the simpler formula in equation (14), i.e. σ̂2 ∑
i(1−Ri), instead

of the exact formula (16).
∑

i(1 − Ri) is the number of companies for which the value added is unknown at u,
σ̂2 is the estimated residual variance given by equation (15). The latter value is part of the standard output of a
linear regression. The impact of this approximation is shown in annex B

25We choose Mid August and end August because these are the assessment dates we aim at. The conclusions
for other assessment dates u are similar however.
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The tables show that, as expected, the analytically computed uncertainty is very similar

to the bootstrapped uncertainty, but the former has the advantage of being more efficient to

compute and can also be computed at the individual company level (when homoscedasticity is

assumed)26. We did not derive an analytical formula for the uncertainty of the mixed model-

estimator. Remember that the ex-post observed value for the large companies is 27 196.86

million euro and 786.78 million euro for the small companies. For u =2016-08-15 the ex post

observed estimation error varies by estimator: 0.19% (ols), 0.04% (mix), 0.12% (prop), 0.31%

(wls) for the large companies and 1.72% (ols), 1.73% (mix), 1.6% (prop), 1.86% (wls) for the

small companies. It is noted once more that these errors are unknown at date u because the

total value added T (2015) cannot be observed at early dates u. The estimated errors µb and µa

on the other hand can be computed using data available at the assessment date u.

Note that the largest part of the uncertainty µa of the estimator T̂ prop for the large com-

panies comes from the term
∑n

i=1(1−Ri)(1− Si)E
(
ν2i |Zi

)
in equation (10). This term reflects

the uncertainty due to using fiscal data as a proxy for the value added in the annual accounts.

6.5 Violations of the assumptions; double robustness, MAR-test and the
MNAR-estimator.

Figures 3 and 4 did not show any signs of (strong) bias. From the theoretical considerations

in the first sections this is expected (except for the mixed model imputation) when the model

assumptions and the MAR assumption are fulfilled.

In section 4 the double robust estimator T̂wls was introduced and it was shown that, even if

the (OLS-) imputation model assumptions are violated, the estimator is still unbiased provided

that the model for missingness is correctly specified. Therefore, even if the OLS- imputations

would give biased results (when the underlying assumptions of the linear model are violated)

the WLS- imputation will be unbiased if the missingness model (18) is correctly specified. At

26This can be seen by analyzing equation (16): it is the sum of the estimation errors for the companies where
Ri = 0.
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an intuitive level, the WLS estimator gives more weight to observations with covariate levels Xi

where there is a lot of ‘missing data’ (i.e. P (Ri = 1|Xi) is closer to 0). They thus ensure that

the regression model fits well at covariate values Xi of companies who did not yet submit their

financial data; they thus target a good fit in the region of the covariate space where predictions

will be made (Vansteelandt, Carpenter and Kenward, 2010). In figure 5 the results for the OLS-

and the WLS- imputation are compared. The two estimators show comparable performance. For

the small companies (where there is more missingness) the prediction intervals are narrower, as

expected (cfr. supra). It must be said however that the WLS-estimator is computationaly much

more challenging and probably also more difficult to understand by non (expert) statisticians.

A bias could also arise from a violation of the MAR-assumption. This holds for all the

imputation models T̂ ols, (T̂wls), T̂ prop, T̂ prop. However, as argued in section 2.2, violation of the

MAR assumption is less probable when including more Xi variables. This is a disadvantage

of the proportional imputation strategy because it is based on a single Xi variable namely

Xi = Yi(y − 1).

The MAR-assumption can also be tested retrospectively. Firth regression (see Firth (1993),

Heinze and Schemper (2002)) was used for fitting the logistic model

logitP (Ri = 1|Xi, Yi) = γ0 + γ ′1X−1,i + θYi

and testing H0 : θ = 0 (i.e. missingness is at random) versus H1 : θ 6= 0 (i.e. missingness

is not at random). Alternatively the hypothesis H0 : θlog = 0 (i.e. missingness is at random)

versus H1 : θlog 6= 0 (i.e. missingness is not at random) was tested for the model:

logitP (Ri = 1|Xi, Yi) = γ0 + γ ′1X−1,i + θloglog(Yi)

To avoid the multiple testing problem, we also performed a likelihood ratio (LR) test27 for

27The fact that Firth regression uses a penalised likelihood was taken into account.
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Figure 5: Comparison of OLS and WLS estimations, result for y = 2015

38



comparing the nested models logitP (Ri = 1|Xi, Yi) = γ0 + γ ′1X−1,i + αYi + αloglog(Yi) and

logitP (Ri = 1|Xi, Yi) = γ0 + γ ′1X−1,i.

Tables 3 and 4 show the results for y = 2014 and y = 2015. θ̂ and θ̂log are the estimates of

θ and θlog, repectively, in the models supra, pY and plog(Y ) are the p-values of the corresponding

tests. pLR is the p-value of the likelihood ratio test for the comparison of the nested models. The

likelihood ratio test corrects for multiple testing. With one exception (y =2014,u =2015-08-15),

the null hypothesis (of the LR test) of missingness at random cannot be rejected at the 5%

significance level. Therefore, while the date at which a company deposits its annual account

may be related to its size (larger companies tend to deposit faster), as well as various historical

company characteristics, it seems unlikely that there would be a further dependence on the

value added in the current year. The missing at random assumption is therefore considered to

be reasonably plausible.

If the MAR-assumption would have been rejected then the estimator T̂mnar is recommended,

but in that case it must be assumed that the coefficient θ (θlog) is relatively stable in consecutive

years. Note that tables 3 and 4 can only be compiled ex post, when all Yi(y) are observed (so

for y = 2014 this is at earliest at u=2016-02-29 and for y = 2015 at earliest at u=2017-02-28).

7 Discussion

In this paper, we have developed several estimation methods for computing a branch’s total value

added from incomplete annual accounting data under a missing at random assumption, along

with careful uncertainty margins that incorporate finite population corrections. The importance

of the availability of these uncertainty margins should not be underestimated because they will

result in faster and higher quality publications.

For each proposed method we analyse the underlying assumptions, the estimation bias and

the estimation uncertainty. The proposed imputation procedures all rely on an assumption
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Table 2: Estimated values and their uncertainty (µa, µb) for the small companies for y=2015
(mio eur)

method u T̂ ∗,small(2015;u) µb/2 (%) µa/2 (%)

ols 2016-08-15 800.31 ±1.8(%) ±1.9(%)
mix 800.36 ±2.3(%) -
prop 799.36 ±1.9(%) ±2.0(%)
wls 801.38 - ±1.1(%)

ols 2016-08-31 794.51 ±0.9(%) ±1.0(%)
mix 793.35 ±1.1(%) -
prop 792.10 ±1.2(%) ±1.2(%)
wls 794.32 - ±0.8(%)

ols 2016-10-31 787.77 ±0.5(%) ±0.5(%)
mix 787.68 ±0.6(%) -
prop 787.45 ±0.6(%) ±0.7(%)
wls 787.51 - ±0.5(%)

Table 3: MAR test for large companies

y u θ̂ θ̂log pY plog(Y ) pLR
2014 2015-08-15 0.000 0.101 0.570 0.518 0.743
2014 2015-08-31 0.000 0.104 0.029 0.588 0.094
2014 2015-09-15 0.000 0.119 0.244 0.550 0.457
2015 2016-08-15 -0.000 0.343 0.899 0.053 0.161
2015 2016-08-31 -0.000 0.225 0.663 0.397 0.620
2015 2016-09-15 -0.000 0.217 0.757 0.578 0.809

Table 4: MAR test for small companies

y u θ̂ θ̂log pY plog(Y ) pLR
2014 2015-08-15 0.000 0.805 0.855 0.004 0.002
2014 2015-08-31 0.001 0.269 0.101 0.180 0.191
2014 2015-09-15 0.001 0.262 0.131 0.206 0.244
2015 2016-08-15 0.000 0.298 0.051 0.333 0.184
2015 2016-08-31 0.001 0.226 0.046 0.282 0.071
2015 2016-09-15 0.001 0.240 0.134 0.275 0.202
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of missing at random, namely that the values added in companies that did not yet deposit

their annual accounts are similar to those in companies with the same characteristics (e.g. the

same historical data) that did deposit their accounts by the evaluation date. The missing at

random assumption was made for mathematical convenience, though it should only be used when

considered plausible. In our opinion, the date at which a company deposits its annual account

may be related to its size (larger companies tend to deposit faster), as well as various measured

historical company characteristics, but it is unlikely that there would be a further dependence on

the value added in the current year. The missing at random assumption is therefore considered

to be reasonably plausible, but can be retrospectively assessed. We have moreover shown how

the proposed estimation methods can be relatively easily accommodated in case the missing at

random assumption fails.

Finally we retrospectively apply each strategy to data from the Belgian Port sector and

compare their performance at several evaluation dates. All the proposed methods show good

results on these data. The method using (ordinary least squares) regression is preferred because

it is very flexible in the use of auxilairy variables, requires weaker assumptions than currently

employed methods, has smaller estimation errors and is easily automatable. The use of more

flexible and automatable methods, compared to the currently used ad hoc and sometimes manual

methods, will result in faster publication. The automatization and the availability of estimation

errors will result in higher quality of the sector studies. Estimation errors at the individual

company level also fasten publication by making it possibe to focus on the cases with high

imprecision.

A practical problem with the proposed strategies may arise when some companies are

much larger than others, making them possibly very influential when fitting the imputation

models. Removing or down-weighting outlying companies based on their current added value

(or the magnitude of accompanying regression residuals) is not desirable as it may induce bias
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in the fitted prediction models. Removing or down-weighting outlying companies based on their

company characteristics (i.e., the predictors in the imputation model) is less problematic, so

long as none of the companies that did not yet submit their accounts is so extreme in terms of

these characteristics. One may therefore consider basing the fitting of the imputation models

only on those companies whose leverage is smaller than the largest leverage of companies with

missing data, as well as than the typical cut-off 2p/
∑n

i=1Ri, with p the number of unknown

coefficients in the regression model.

Further work remains to be done to evaluate how to best use the proposed methods in

practice, in such a way that they guarantee reliable results. In particular, further study is

warranted how to best model the value added in function of company characteristics with the

aim of avoiding model misspecification. In future work, we will extend these methods to other

sectoral and/or regional studies, just as well as to other variables than value added. We will

additionally evaluate the use of flexible statistical learning methods (smoothing splines, gradient

boosting, ...) to enable flexible modelling.

Also the empirical performance of estimators obtained via the proposed missing not at

random strategy remains to be evaluated.
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A Derivations of the formula’s for the variance of the estimators

A.1 Variance of T̂ prop

To analyse the difference between β̂ =
∑n

i=1RiYi∑n
i=1RiXi

and β =
∑n

i=1 Yi∑n
i=1Xi

, let us simplify the notation

and note that
∑n

i=1RiXi ≡ X(O) is the total of X for the companies for which the value added

is observed at date u (because in that case Ri = 1), while
∑n

i=1Xi ≡ X(P ) is the total of X for

the whole population that will eventually be observed.

β̂ − β =

∑n
i=1RiYi
X(O)

−
∑n

i=1 Yi
X(P )

=
1

X(O)

(
n∑
i=1

RiYi −
n∑
i=1

Yi
X(O)

X(P )

)

=
1

X(O)

n∑
i=1

(
RiYi − Yi

X(O)

X(P )

)

=
1

X(O)

n∑
i=1

Yi

(
Ri −

X(O)

X(P )

)

=
1

X(O)

n∑
i=1

(βXi + εi)

(
Ri −

X(O)

X(P )

)

=
1

X(O)

(
β

n∑
i=1

XiRi − β
X(O)

X(P )

n∑
i=1

Xi +

n∑
i=1

εiRi −
X(O)

X(P )

n∑
i=1

εi

)

=
1

X(O)

(
βX(O) − β

X(O)

X(P )
X(P ) +

n∑
i=1

εiRi −
X(O)

X(P )

n∑
i=1

εi

)

=
1

X(O)

n∑
i=1

εi

(
Ri −

X(O)

X(P )

)
.

Here, the terms involving X(O)/X(P ) represent finite population corrections; they would reduce

to zero if an infinite population were considered.

Let
∑n

i=1(1 − Ri)Xi/
∑n

i=1(1 − Ri) ≡ X̄(0), from which
∑n

i=1(1 − Ri)X̄(0) = X(P ) −X(O).

The variance can be assessed as:
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E
(

(T̂ − T )2|{Xi, Ri; ∀i}
)

= E

{ n∑
i=1

(1−Ri)
(
Xiβ̂ − Yi

)}2

|{Xi, Ri; ∀i}


= E

{ n∑
i=1

(1−Ri)
(
X̄(0)β̂ + (Xi − X̄(0))β̂ − Yi

)}2

|{Xi, Ri; ∀i}


= E

{ n∑
i=1

(1−Ri)
(
X̄(0)(β̂ − β) + (Xi − X̄(0))(β̂ − β)− εi

)}2

|{Xi, Ri; ∀i}


=

{
n∑
i=1

(1−Ri)

}2 (
X̄(0)

)2
E
{

(β̂ − β)2|{Xi, Ri; ∀i}
}

+E

{ n∑
i=1

(1−Ri)
(

(Xi − X̄(0))(β̂ − β)− εi
)}2

|{Xi, Ri;∀i}


+E

 n∑
i=1

n∑
j=1

(1−Ri)(1−Rj)X̄(0)(β̂ − β)
(

(Xj − X̄(0))(β̂ − β)− εj
)
|{Xi, Ri; ∀i}


=

{
n∑
i=1

(1−Ri)

}2 (
X̄(0)

)2
E
{

(β̂ − β)2|{Xi, Ri;∀i}
}

+ E

[
n∑
i=1

(1−Ri)ε2i |{Xi, Ri; ∀i}

]

−E

 n∑
i=1

n∑
j=1

(1−Ri)(1−Rj)X̄(0)(β̂ − β)εj |{Xi, Ri; ∀i}

 ,
where we use that

∑n
i=1(1 − Ri)(Xi − X̄(0)) = 0 and that εi are independent and have mean

zero conditional on {Xi, Ri; ∀i}. Here, the first term equals(
X(P )

X(O)
− 1

)2 n∑
i=1

Var(εi|Xi)

(
Ri −

X(O)

X(P )

)2

;

it reflects the imprecision due to the estimation of β and the fact that we consider a finite

population and is generally small when the number of observed companies is large. The second

term equals

n∑
i=1

(1−Ri)Var(εi|Xi); (21)
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it reflects the imprecision due to Yi varying around Xiβ, which does not reduce as the number

of observed companies is larger. The third term equals

− 1

X(O)
(X(P ) −X(O))

n∑
j=1

(1−Rj)Var(εj |Xj)

(
Rj −

X(O)

X(P )

)

=

(
1−

X(O)

X(P )

) n∑
j=1

(1−Rj)V ar(εj |Xj);

it reflects additional uncertainty coming from the fact that we consider a finite population of

companies, which induces a (generally) small correlation between the estimation errors β̂ − β

and the prediction errors εi. This term would be zero if an infinite population were considered.

Under a homoscedasticity assumption that the variance in εi does not depend on Xi, the

variance of T̂ then reduces to

σ2

[
n∑
i=1

(1−Ri)
{

1 +

(
1−

X(O)

X(P )

)}
+

(
X(P )

X(O)
− 1

)2 n∑
i=1

(
Ri −

X(O)

X(P )

)2
]
,

where σ2 = Var (εi|Xi) can be estimated as

σ̂2 =

∑n
i=1Ri

(
Yi − β̂Xi

)2
(
∑n

i=1Ri)− 1
. (22)

The homoscedasticity assumption is quite strong. Its violation is likely, but generally does

not impose major concerns. Indeed, suppose for instance that Var (εi|Xi) = σ2Xi for some Xi.

Then the key component of the imprecision of T̂ equals

n∑
i=1

(1−Ri)Var (εi|Xi) .

When the homoscedasticity assumption is made in error, then the estimator (5) of Var (εi|Xi) is

an approximately unbiased estimator of σ2
∑n

i=1RiXi/ (
∑n

i=1Ri). It then follows that the key

component of the imprecision of T̂ is expected to equal

σ2
n∑
i=1

(1−Ri)
∑n

i=1RiXi∑n
i=1Ri

.
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This approximates σ2
∑n

i=1(1− Ri)Xi when R is independent of X. When this approximation

is poor, one may alternatively make progress under a specific model for the residual variance

Var (εi|Xi). For instance, under the assumption that Var (εi|Xi) = σ2Xi, one may estimate σ2

as ∑n
i=1Ri

(
Yi − β̂Xi

)2
/Xi

(
∑n

i=1Ri)− 1
.

This is the estimator for the residual variance upon using weighted least squares, with weights

1/Xi (Xi > 0).

A.2 Variance of T̂ ols

To assess the variance of T̂ ols, we proceed in a similar way as in section 3.1.3. We first evaluate

the imprecision of β̂ in terms of how much it differs from

β =

(
n∑
i=1

XiX
′
i

)−1 n∑
i=1

XiYi,

the value that β̂ takes when the data of all companies have come available:

β̂ − β =

(
n∑
i=1

RiXiX
′
i

)−1 n∑
i=1

RiXiYi −

(
n∑
i=1

XiX
′
i

)−1 n∑
i=1

XiYi

=

(
n∑
i=1

RiXiX
′
i

)−1 
n∑
i=1

RiXiYi −

(
n∑
i=1

RiXiX
′
i

)(
n∑
i=1

XiX
′
i

)−1
︸ ︷︷ ︸

≡r

n∑
i=1

XiYi


=

(
n∑
i=1

RiXiX
′
i

)−1 [ n∑
i=1

RiXiYi − r
n∑
i=1

XiYi

]

=

(
n∑
i=1

RiXiX
′
i

)−1 [ n∑
i=1

(RiIp×p − r)Xi(X
′
iβ + εi)

]

=


n∑
i=1

RiXiX
′
i︸ ︷︷ ︸

≡A


−1

n∑
i=1

(RiIp×p − r)︸ ︷︷ ︸
≡Bi

Xiεi,

= A−1
n∑
i=1

BiXiεi,
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where Ip×p is the p×p identity matrix, r = (
∑n

i=1RiXiX
′
i) (
∑n

i=1XiX
′
i)
−1, A =

∑n
i=1RiXiX

′
i

and Bi = (RiIp×p − r). Here, the term involving r represents a finite population correction; it

would reduce to zero if an infinite population were considered. In the last step we used the fact

that (
∑n

i=1RiXiX
′
i)
−1 [
∑n

i=1(RiIp×p − r)Xi(X
′
iβ)] = (

∑n
i=1RiXiX

′
i)
−1 (

∑n
i=1RiXiX

′
i)β −

(
∑n

i=1RiXiX
′
i)
−1 r (

∑n
i=1XiX

′
i)β and after substitution of r this becomes zero.

Let
∑n

i=1(1 − Ri)Xi/
∑n

i=1(1 − Ri) ≡ X̄(0). The variance of T̂ (assuming it is unbiased)

then equals

E

[ n∑
i=1

(1−Ri)
{

(β̂ − β)′X̄(0) + (β̂ − β)′(Xi − X̄(0))− εi
}]2
|{Xi, Ri; ∀i}

 .

This equals

E

[ n∑
i=1

(1−Ri)(β̂ − β)′X̄(0)

]2
|{Xi, Ri; ∀i}


+E

[ n∑
i=1

(1−Ri)
{

(β̂ − β)′(Xi − X̄(0))− εi
}]2
|{Xi, Ri; ∀i}


+E


n∑
i=1

(1−Ri)(β̂ − β)′X̄(0)

n∑
j=1

(1−Rj)
(
β̂ − β)′(Xj − X̄(0))− εj

) |{Xi, Ri;∀i}


= E

[ n∑
i=1

(1−Ri)(β̂ − β)′X̄(0)

]2
|{Xi, Ri; ∀i}

+
n∑
i=1

(1−Ri)E
(
ε2i |{Xi, Ri; ∀i}

)

−E


n∑
i=1

(1−Ri)(β̂ − β)′X̄(0)

n∑
j=1

(1−Rj)εj

 |{Xi, Ri;∀i}


From the formula supra, it follows that the first term equals{

n∑
i=1

(1−Ri)Xi

}′
A−1

 n∑
j=1

Var (εj |Xj)BjXjX
′
jB
′
j

A−1{ n∑
i=1

(1−Ri)Xi

}
.

The second term equals

n∑
i=1

(1−Ri)Var(εi|Xi). (23)

50



The third term equals

−

{
n∑
i=1

(1−Ri)Xi

}′
A−1

n∑
j=1

Var (εj |Xj) (1−Rj)BjXj (24)

=

{
n∑
i=1

(1−Ri)Xi

}′
A−1

n∑
j=1

Var (εj |Xj) (1−Rj)rXj (25)

Assuming homoscedasticity, the sum of these 3 terms reduces to

σ2

[
n∑
i=1

(1−Ri)

{
1 +X ′iA

−1r

{
n∑
i=1

(1−Ri)Xi

}}]

+σ2

{
n∑
i=1

(1−Ri)Xi

}′
A−1

 n∑
j=1

BjXjX
′
jB
′
j

A−1{ n∑
i=1

(1−Ri)Xi

}
.

Here, Var(εi|Xi) can be estimated as the residual variance∑n
i=1Ri(Yi − β̂′Xi)

2

(
∑n

i=1Ri)− p
, (26)

with p the dimension of β.
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B Approximation of the uncertainty of the OLS estimator.

Remember that the analytical relative uncertainty of the OLS-estimator was defined as:

µ(ols)a (y;u) =

4

√
E
(

(T̂ (ols)(y;u)− T ols(y))2
)

T̂ ols(y)

where E
(

(T̂ (ols)(y;u)− T ols(y))2
)

is the imprecision of the estimator as given by equation (16).

The latter formula differs from the much simpler, but approximate, equation (14) by a ”finite

population correction”. Analyzing equation (14) it can be seen that it is equal to the number of

companies for which the value added is unknown at u times the residual variance. An estimate

for the latter is part of the standard output of a linear regression. Table 5 illustrates the impact

of using the much simpler but approximative formula (14) instead of the more precise but more

complex formula (16) on the relative uncertainty; the column µa/2 uses the above definition for

µa, using equation (16) for the imprecision of the estimator (i.e. the expression under de root),

column µ̃a/2 is similar but it uses the (simpler but) approximate equation (14).

Table 5: Approximated uncertainty of the OLS estimator for year 2015 of the Ports study

u size T̂ ols µa/2(%) µ̃a/2(%)

2016-08-15 large 27 249.60 ±1.27% ±1.13%
2016-08-31 27 238.33 ±0.44% ±0.42%
2016-10-31 27 259.97 ±0.31% ±0.3%

2016-08-15 small 800.31 ±1.89% ±1.55%
2016-08-31 794.51 ±0.95% ±0.89%
2016-10-31 787.77 ±0.52% ±0.51%

The results in this table are the same as in tables 1 and 2 for the OLS-estimator, except

for the last column µ̃a/2, where the uncertainty was approximated using the equation (14). The

differences between the exact formula and the approximation are small and, as expected, become

smaller when more observations become available.
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