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ABSTRACT  
 
Snow avalanches are among the most destructive natural hazards threatening human life, ecosystems, built structures, and 
landscapes in mountainous regions. The complexity of snow avalanche modelling has been discussed in many studies, but its 
modelling is not well-documented. Snow avalanche modeling in this study was done using three main categories of data, 
including avalanche occurrence locations, meteorological factors, and terrain characteristics. Two machine learning models, 
namely support vector machine (SVM) and multivariate discriminant analysis (MDA), were employed. A ratio of 70 to 30 of 
data was considered for calibrating and validating the models. Results indicated that both models had an excellent 
performance in snow avalanche modeling (area under curve, AUC > 90), although hits and misses analysis demonstrated the 
superior perfor-mance of MDA. Sensitivity analysis indicated that the topographic position index, slope, precipitation, and to-
pographic wetness index were the most effective variables for modeling. A snow avalanche map indicated that the high snow 
avalanche hazard zone was mostly near the streams and was matched with hillsides around the water pathways. Findings of 
study can be helpful for land use planning, to control snow avalanche paths, and to prevent the probable hazards induced by i t, 
and it can be a good reference for future studies on modeling snow avalanche hazards.   

 
 
 
 
 
1. Introduction 
 

Snow avalanches are among the most destructive natural hazards 
threatening human lives, ecosystems, built structures, and landscapes in 
mountainous regions. International Commission for Alpine Rescue (ICAR) 
(http://www.alpine-rescue.org) reports an increasing number of fatal accidents 
due to snow avalanches, with an annual average of 138, based on a 20-year 
survey in Alpine countries and North America. The actual number of deaths 
may be higher, as the database does not fully include the off-piste and 
backcountry incidents. The risk of snow ava-lanches is increasing worldwide 
due to climate change (Ballesteros-Cánovas et al., 2018). Among the climate 
change contributors, the climate warming is identified as one of the factors 
influencing the be-havior, uncertainty, and increasing hazard frequencies of 
snow ava-lanches (Martin et al., 2001; Castebrunet et al., 2014). In some 
areas, global warming, mainly, causes the thinning and shortening of the 
duration of snow cover contributing to increased risk and irregularity  

 
 
 

 
which increase the hazard (Gądek et al., 2017). Therefore, the predic-tion of 
changes in snow cover and snow avalanche behavior projection is vital for 
administering many crucial societal issues concerning dy-namic adaptation, 
risk mitigation, and resilience strategies (Komarov et al., 2017; Hovelsrud et 
al., 2018).  

The Geographic Information Systems (GIS) have been identified as a 
powerful tool for snow avalanche terrain recognition, suitable for mountain 
risk and disaster management, with high capacity to enhance terrain 
visualization models (Jaedicke et al., 2014; Bourova et al., 2016). GIS has 
long enabled the web-based visualizing terrain software packages for snow 
avalanche hazard assessment (Stoffel et al., 2001; Haid et al., 2008; Lan et al., 
2009). Furthermore, GIS is essential to enable the preparation of terrain’s 
database for reliable prediction models (Noetzli et al., 2006; Kumar and 
Srivastava, 2018). For instance, the analytical hierarchy process method 
(AHP) can be coupled with GIS to advance models of prediction and snow 
avalanche susceptibility mapping (Wu and Chen, 2009; Pourghasemi, et al., 
2016). Although 

 
 
Corresponding author at: Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. E -mail address: 
shahaboddin.shamshirband@tdtu.edu.vn (S. Shamshirband). https://doi.org/10.1016/j.jhydrol.2019.123929 

 
  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/237466508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.alpine-rescue.org/
mailto:shahaboddin.shamshirband@tdtu.edu.vn
https://doi.org/10.1016/j.jhydrol.2019.123929


 
B. Choubin, et al. 

 
these methods can detect snow avalanche hazards, however, the high amount 
of false alarm ratio is a drawback in using such models (Bellaire et al., 2017). 
 

The operational verification of regional forecasts is also a popular 
approach which relies on high-quality field observations. Such local nowcasts 
can be used for hazard verification. They include substantial uncertainty 
which makes them unreliable (Techel and Schweizer, 2017). Gauthier et al. 
(2017) developed a logistic regression (LR) model for daily prediction of 
snow avalanches in the cold maritime climate located in northern Gaspésie, 
Québec, Canada. Their model was re-ported as an efficient tool to enhance 
daily decision making and for reducing risk for the mobility in the region. 
 

The complexity of snow avalanche modelling has been discussed in a 
multitude of studies (Sharma and Ganju, 2000; Gruber and Bartelt, 2007; 
Valero et al., 2016). The terrain, snowpack, and meteorology are the three 
principal interacting factors motivating the snow avalanche release (Fredston 
et al., 1994). The interaction of these factors which are involved in motion 
and runout of snow is referred to as avalanche formation (Schweizer et al., 
2003). Additionally, the human factor has been identified as a major 
contributor in forming snow avalanches and risk thereof (Voiculescu, et al., 
2016; Statham et al., 2018). Thus, ad-vancement of novel technologies for 
prediction as well as warning systems with higher accuracies has been 
encouraged in many studies (Helbig et al., 2015; Van Herwijnen et al., 2016). 
 

To the best of our knowledge, applications of machine learning (ML) 
algorithms to snow avalanche modelling have been very limited. Only limited 
studies applied artificial neural networks (ANN) as a promising approach for 
the prediction of avalanche. Singh and Ganju (2008) in-dicated the potential 
of ANN in detecting avalanche days in Indian Himalayas. Dekanová et al. 
(2018) proposed different architectures of ANNs and evaluated model 
performance and obtained promising re-sults. However, modeling snow 
avalanches, especially their spatial prediction needs to be more widely 
addressed. In this context, the contribution of this paper is to develop novel 
models of SVM and MDA for the prediction of snow avalanches. Although 
using the SVM and MDA in modeling snow avalanches is novel, their 
applications for the modeling of other destructive natural hazards and extreme 
events have recently received great interest in the literature. For instance, the 
SVM has been widely used for the prediction of earthquakes 
(Hajikhodaverdikhan et al., 2018; Asim et al., 2018), floods (Sharifi 
Garmdareh et al., 2018; Bafitlhile and Li, 2019), drought (Mokhtarzad et al., 
2017; Xu et al., 2018), and typhoons (Chang et al., 2018; Yang et al., 2018), 
as well as for landslide susceptibility analysis (Chen et al., 2017; Xie et al., 
2017). The MDA has also shown great performance in the modeling of 
various hazards, such as groundwater contamination and floods (Sajedi-
Hosseini et al., 2018b; Choubin et al., 2019). How-ever, the current study 
aimed to evaluate performance of the SVM and MDA models for the 
prediction of snow avalanches. The organization of the rest of this paper is as 
follows. Section two discusses the study area. Section three presents the 
methodology, data used for snow avalanche modeling, the description of the 
ML models used, and building of the models. Section four presents the results 
and discussion. Section five draws conclusions of the study and presents the 
future direction of the ML methods in snow avalanche prediction. 
 
 
 
2. Study area 
 

The study area extends in the Karaj watershed, which is between latitudes 
of 35° 52ꞌ to 36° 10ꞌ north, and longitudes of 51° 03ꞌ and 51° 36ꞌ east (Fig. 1). 
The study area is about 844.97 km2, where the highest point is 4365 m a.s.l. 
located in the east and the lowest elevation is 1633 m a.s.l. located in the 
southwest. The Karaj dam (or Amir Kabir) is located at the outlet of the 
watershed. This watershed is most im-portant, because it is the main source of 
drinking water for Tehran, irrigation water for Karaj plain, and also is the 
source of hydroelectric power production (Heidarnejad et al., 2006; 
Sakizadeh, 2015).  

 
 
 

 
Also,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Location of the study area. 

 
Karaj-Chalous road, as one of the most important and busier Iranian roads, is 
located in that. The road and watershed present a connection of Tehran to the 
north, the beautiful nature with the numerous re-sidential areas, and access to 
ski resort has made travelers boom this road. In recent years, with the boom 
of winter sports, this road also has significant traffic to reach the ski resort in 
the winter. The passage by road through the rocky and steep slopes that lack 
any preserving ve-getation or supporting structures for controlling snow has 
led ava-lanches to descend toward the passengers on this road. In many cases, 
people are killed and vehicles fall into the valley. Also, the North-Tehran 
Freeway is one of the most important construction projects in Iran, in that 22 
km of this freeway is located at the site of dangerous snow avalanches. 
 
 
 
3. Methodology 
 
3.1. Data used for snow avalanche modeling 
 

Appropriate circumstances creating snow avalanches are affected by the 
interactions of three main factors of snowpack, weather, and terrain (Fredston 
et al., 1994; Delparte et al., 2008). The snowpack information is mostly not 
available, while weather conditions and terrain char-acteristics are most 
important to initiate a snow avalanche (Delparte, 2008). However, in this 
study according to the data availability, three main categories of data, 
including avalanche occurrence inventory map, meteorological factors, and 
terrain characteristics were used for snow avalanche modeling. 
 
 
3.1.1. Snow avalanche occurrence inventory map  

In order to prepare a snow avalanche occurrence inventory map, the 
locations of avalanche occurrences were collected through many field 
observations and surveys. In this study, at first, the locations of re-corded 
points were approximately selected, based on different maps and digital layers 
(like slope and valleys) that affect snow avalanches. Then, through the Google 
Earth, these points were identified, and at the 
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Fig. 2. A sample of snow avalanches that occurred in the study. 

 
end, the locations of snow avalanches were confirmed by field surveys. 
Moreover, we surveyed different slopes, elevations, and lithological and 
morphometric structures to record snow occurrence locations. 91 lo-cations 
were recorded during field surveys (Fig. 1). A sample of re-corded snow 
avalanches in the study area with different zones is shown in Fig. 2. 
 
 
3.1.2. Meteorological factors  

Precipitation and temperature are the most important meteor-ological 
factors that affect snow accumulation and formation of weak layers within the 
snowpack. The amount of snowfall and the tempera-ture gradient within the 
snowpack contribute to the overall stability of snowy areas. Meteorological 
factors considered in this study were precipitation (PCP) and temperature 
(Temp) from cold months (December to March) when snow falls (Fig. 3a and 
b). The PCP and Temp data recoded by the stations (Fig. 1) were obtained 
from Iranian Meteorological Organization as well as Iranian Water Resource 
Man-agement Company (IWRMC). Although wind direction and exposing 
the slopes to wind are other important factors in snow accumulation and 
avalanche occurrence (Delparte, 2008) but were not available. 
 

 
3.1.3. Terrain factors  

Topography and terrain characteristics are the most important fac-tors that 
affect snow avalanche activity (Naaim et al., 2004). Con-sidering different 
terrain characteristics is the most important in snow avalanche modeling, for 
example, flat regions (which are distinct by slope or plan curvature) can be 
both safe and unsafe for the occurrence of avalanches. By elevation, they can 
be separated, as flat regions with low elevation are more hazardous areas than 
flat regions with high elevation. In this study we considered terrain factors, 
including eleva-tion, slope, aspect, curvature, drainage density (DD), 
topographic wetness index (TWI), topographic position index (TPI), vector 
rugged-ness measure (VRM), distance to stream (DTS), distance to fault 
(DTF), land use, and lithology (Fig. 3). An ASTER digital elevation map 
(DEM) with 10 × 10 m pixel size was used to extract most of the terrain fac-
tors. 
 

Elevation (Fig. 3c) can affect precipitation, temperature, solar ra-diation, 
and windward, so it is a significant factor and can produce favorable 
conditions for avalanche formation (Smith and McClung, 1997; Delparte, 
2008). Slope (Fig. 3d) is a necessary factor to create a 

 
slide. Aspect (Fig. 3e) affects solar radiation received at the snowpack and 
influences the temperature gradient and snow surface warming (Bakermans 
and Jamieson, 2006). Curvature (Fig. 3f) can indicate de-position and refuge 
areas (Delparte, 2008). Drainage density indicates the density of streams per 
unit ground that can be important for ava-lanche occurrence. The drainage 
density was produced in ArcGIS soft-ware through line density tool (Fig. 3g). 
 

TWI indicates the spatial variability of wetness and varies between 3.3 
and 18.3 (Fig. 3h). TPI is the difference in elevation in each cell with the 
mean elevation of the surrounding cells (De Reu et al., 2013). It indicates the 
upper and lower parts of a landscape. Positive values show locations which 
are higher than their surroundings (ridges), while negative values indicate 
locations that are lower than neighborhood cells (valleys). TPI in the study 
area varies between −58.8 and 74.2 (Fig. 3i). VRM (Fig. 3j) indicates the 
roughness of the ground that is most important in the movement of snow 
avalanches. Irregular surfaces such as rocks and rock outcrops may promote 
instability or stability. In some locations mostly the bottom of starting zone 
may control the movement of snowpack, while by creating higher temperature 
gra-dients and slope upstream of the starting zone may foster a very locally 
weaker snowpack. In this study, TWI, TPI, and VRM were created in the 
SAGA GIS environment. 
 

The presence of streams or faults can accelerate the snowpack movement 
and create a snow avalanche. The areas near DTS and DTF must be more 
susceptible to the avalanche occurrence and were created using Euclidean 
distance tool in GIS software (Fig. 3k and l). Streams and fault layers were 
obtained from the IWRMC, and were used to calculate DTS and DTF maps. 
 

Other land factors, such as land use and lithology, influence snow-packs. 
In this study, the land use map (1:50,000) and geological map (1:50,000) were 
obtained from the Forests, Range and Watershed Management Organization 
(FRWMO) of Iran, and were converted to raster format (Fig. 3m and n, 
respectively). Landuse, such as the pre-sence of forest, can control 
avalanching. According to the land use map, rangelands cover most of the 
study area (Fig. 3m). Lithology and rock structures are the main factors 
responsible for the slope failure in nat-ural hazards, such as landslides, debris 
flows, and snow avalanches (Liu et al., 2014). Different lithological units may 
change the susceptibility of the study area into an avalanche zone. The 
lithology map indicates the Ek unit, well bedded green tuff, and tuffaceous 
shale (KARAJ for-mation) of Eocene Cenozoic have the most area of the 
Karaj watershed (Fig. 3n). 
 
 
3.2. Snow avalanche modeling 
 

Snow avalanche modeling was done using the location of avalanche 
occurrence (as the dependent variable) and 14 predictor variables shown in 
Fig. 3 as independent variables and input data. We used two machine learning 
models, namely support vector machine (SVM) and multivariate discriminant 
analysis (MDA), for modeling snow ava-lanche. A ratio of 70 to 30 of data 
was considered for calibrating and validating the models. The models used 
are described as follows: 
 
3.2.1. SVM  

Support-vector networks have progressed through the work of Cortes and 
Vapnik (1995), and emerged as SVM suitable for two-group classification 
problems. The special properties of decision surface in SVM ensure high 
generalization ability of the learning machine which makes it efficient in 
dealing with non-separable training datasets (Drucker et al., 1997). The 
continued advancement of SVM with the implementation of structural risk 
minimization inductive principle has improved its generalization in a limited 
number of learning patterns which makes it useful for recognizing subtle 
patterns in complex da-tasets (Basak et al., 2007). In SVM the vectors 
represent the selection criteria as the best boundaries for data classification 
with more safety margin. Kecman (2001) provides a detailed description of 
model 
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Fig. 3. Snow avalanche predictor variables: a) precipitation (PCP), b) temperature (Temp), c) elevation, d) slope, e) aspect, f) curvature, g) drainage density (DD), h) topographic 
wetness index (TWI), i) topographic position index (TPI), j) vector ruggedness measure (VRM), k) distance to stream (DTS), l) distance to fault (DTF), m) land use, and n) lithology. 
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Fig. 4. Illustrating two hyper planes with a maximum margin, including the boundaries of classification and support vector samples located on the borders (Kecman, 2001). 
 
 
building and implementation of SVM.  

The classification error reduces along with increasing boundary separation 
and the distance between two parallel hyper planes (see Fig. 4). The two-
parallel hyperplanes on both sides of the maximum margin hyperplane 
classifies the data with linear decision boundary and can be represented, 
following Raghavendra and Deka (2014), as: 

 
 

Compution of non-separable cases is done through kernel functions where 
× is mapped into the high-dimensional space ofφ. Linear kernel, polynomial 
kernel, Sigmoid kernel, and Radial basis kernel are pre-sented, respectively, 
as follows:  
K (x i ∙x j ) = φ (x i ) φ (xj) (8) 

 
w∙x + b = 0 (1) K (x , y ) = (xy + 1)p (9) 

where b, x, and w, represent the bias, points on the decision boundary; K (x , y ) = tanh (kxy − δ) (10) 
and n-dimensional weight vector orthogonal to the hyper plane, re-   
spectively.  K (x , y ) = e−∥  x − y ∥ 2  /2σ2 (11) 
w∙x i + b = 1 (2) Due to the flexibility of radial basis kernel in dealing with different 

    

The boundary of the maximum margin is obtained through the dimensionalities of data and its excellent generalization capability, it 
minimum magnitude of weights and maximum margins of classes:  has been found suitable for the proposed snow avalanche modeling 

max min ⌈ y (wx i + b) ⌉  
 (Jiao et al., 2016; Karballaeezadeh et al., 2019). The drawbacks to 

(3) 
modeling with SVM are generally associated with its difficulty to cap- 

 

w . b i = 1 ⋯L  
i|w| ture important modeling variables (Mosavi et al., 2018; Choubin et al., 

Eq. (3) can further be presented as: 
 

 2019).   
min  

1
 |w|2 , yi (wx i + b ) − 1 ≥ 0i = 1, ...,L  

2
w ∙ b  

 
 L   

1 
L   L      

min ∑ λ  − ∑ ∑ λ y (x x )y λ  
i 2 j 

λ …λi 
   i i j  j i 

i= 1    i= 1 j=1      
       l    

λ i    0  i = 1, . . . , L  ∑
 
λ

 i 
y

ii 
=

 
0 

      i=1    

 
 
 

w = λi yi xi 

 
λ i (yi (w∙x i + b − 1)) = 0 i = 1, ...,L 
 
 

 
L   

− 1 
L   L     

 max ∑ λ  ∑ ∑ λ y (φ (x ) φ (x ))y λ 
 i 2 j 

λ …λi 
    i i i  j i 

i= 1     i= 1 j=1      
C ≫ λi ≫ 0  

L 

∑ λ i yi = 0 
i=1 

 

(4) 3.2.2. MDA  
The principle of MDA was presented by Hair et al. (1998), and later 

advanced by Johnson and Wichern (2002) for the classification of ob-servations of 
multiple independent variables. MDA builds efficient linear combinations of 
independent variables which are called dis-criminant functions for the 
classification of observations into pre-determined nearest groups where the 

distance is calculated by the normal distribution of parameters while it is 
assumed that the corre-lation and variability among the parameters of each 
group are equal  

(5) (Lombardo et al., 2006). Accordingly, a discriminant function can be 
described as:  

Y = W1 X1 + W2 X2 + ⋯Wn Xn (12)  
where Y , W1, and X1represent the discriminant score, the discriminant 
weights, and the independent variables, respectively. MDA has shown an 
acceptable performance in critical modeling variables (Elith et al., 2008; 
Sajedi-Hosseini et al., 2018b; Choubin et al., 2019).  

(6) 
3.3. Sensitivity analysis 

 
The relative importance of the variables was assessed using the Jackknife 

test (Efron, 1982). We excluded one of the snow avalanche predictor 
variables (in turn) from the datasets and modeling, then calculated the 
performance of modeling at each time. Two statistics of 

(7) the decrease in area under the curve (DAUC; Eq. (1)) of the receiver 
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When the classes are non-separable and the linear decision bound-aries 
overlap, the error increases, the optimization problem, following Demyanova 
et al. (2017), can be formulated as: 

i= 1 
j=1 

∑ 
∑ 

L   
L 

When the classes are separable through the Lagrange multiplier of λi the 
optimization problem according to Chao and Horng (2015) can be 
reconfigured as: 



 
 
 

Fig. 5. Importance of variables in snow avalanche modeling: (a) and (b) decrease in AUC (%), (c) and (d) decrease in correlation (%).  

 
operator characteristic (ROC) plot and a decrease in correlation (DC; the contingency table (Stanski et al., 1989; Johnson and Olsen, 1998), 
Eq. (2)) were calculated after excluding the variables:  with a number of hits (H), false alarms (FA), misses (M), and correct 

DAUCi= 
[AUC all − AUC i ] 

  negatives (CN).  
  Accuracy indicates the fraction of predictions that are correct (Eq. 

AUCall (13)   (3)). Accuracy is between 0 and 1 where 1 shows the perfect prediction. 
 

[C all − C i ] 
   

DCi=    Bias (or frequency bias) is calculated by the ratio of the predicted oc- 
 

 

currences divided by observed occurrences (Eq. (4)). The perfect score 
 

(14)   C
all 

where i is the variable, AUCall and Call are, respectively, the AUC and 
of bias is equal to 1. POD (or hit rate) is the ratio of the number of hits 

to the total number of observed occurrences (Eq. (5)). The perfect value 
correlation values computed with the existence of all variables in the 

of POD is equal to 1. FAR is the number of false alarms divided by the 
modeling process. AUCi and Ci are the values of the decrease in AUC 

total number of predicted occurrences (Eq. (6)). FAR is between 0 and 1 
and correlation, respectively, after excluding the ith variable. DAUCi 

that lower values are better. CSI (or threat ratio) is the ratio of suc- 
and DCi are, respectively, the decreases in AUC and correlation when 

cessfully predicted occurrences to the number of observed occurrences 
the ith variable has been excluded from modeling, and they were re- plus the number of FAs (Eq. (7)). CSI changes between 0 and 1, where 
presented as a percentage. 

 

 perfect prediction is equal to 1. Since some correct occurrence predic- 
      

3.4. Model evaluation 
 tions can be random, HSS (Eq. (8)) removes random predictions and 
 specifies the fraction of correct predictions (Sigaroodi et al., 2014). The       

The model evaluation was done using the AUC statistic which is the 
HSS varies between -1 and 1 for dichotomous (yes/no) forecasts. Ne- 

gative values show that the casual prediction is better, 0 means no skill, 
most popular criterion for evaluating spatial modeling performance while the value of 1 indicates a perfect prediction.  

(Sajedi-Hosseini et al., 2018a). Moreover, we calculated other statistics, 
 

 

H+CN  

 

including accuracy, bias, probability of detection (POD; Panofsky and 
Accuracy = 

 
Brier, 1968), false alarm ratio (FAR; Burke et al., 1988), critical success H+CN+M+FA (15)  
index (CSI; Stanski et al., 1989), and Heidke skill score (HSS; Heidke,  

1926) from hits and misses analysis. These indices are calculated  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Snow avalanche hazard map produced by SVM (a) and MDA (b) models.  

 (18) 

(Fig. 5a and c). Also, sensitivity analysis of the 
MDA model identified 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The area under the curve (AUC) of models for testing datasets. 

 
Table 2  
Statistics for model evaluation.   

Statistic Training dataset  Testing dataset  
     

 SVM MDA SVM MDA 
     

Accuracy 0.90 0.87 0.83 0.85 
Bias 1.11 1.16 1.11 1.07 
POD 0.95 0.95 0.89 0.89 
FAR 0.14 0.18 0.20 0.17 
CSI 0.82 0.79 0.73 0.75 
HSS 0.80 0.75 0.67 0.70 

     

 
that TPI (DAUC = 42.8%, DC = 49.3%), slope (DAUC = 39.0%, DC = 
46.0%), PCP (DAUC = 25.0%, DC = 36.8%), and drainage den-sity (DAUC 
= 9.8%, DC = 18.5%) were the main factors influencing snow avalanche 
occurrence (Fig. 5b and d). Moreover, TWI (DAUC = 6.0%, DC = 16.7%) 
and landuse (DAUC = 5.0%, DC = 16.0%) were of moderate importance due 
to the decrease in AUC or in correlation (Fig. 5b and d). 
 

Due to high complexity of snow avalanche processes, understanding the 
manner of governing parameters is not yet fully manifested (Singh and Ganju, 
2008). However, the terrain information, such as slope, affects snow stability, 
the characteristics of snow cover, and avalanche danger (Bakermans and 
Jamieson, 2006; Dekanová et al., 2018). Sen-sitivity analysis indicated that 
elevation was mostly an unimportant variable (Fig. 5). The recorded snow 
avalanches in this study indicated the elevation change from 1911 to 3396 m, 
so the high elevation dif-ference among snow avalanches that occurred can be 
a reason that elevation is an unimportance variable. 
 

Comparison of the results from the Jackknife indicated that the 
performance of the MDA model was more sensitive than the SVM model, as 
excluding one variable reduced the performance of MDA (Fig. 5) 
 

 
4.2. Snow avalanche hazard mapping 
 

The SVM and MDA models were employed for snow avalanche hazard 
mapping with the predictors and avalanche occurrence loca-tions. The model 
prediction output was classified into three classes of low, moderate, and high 
hazard zones, according to the natural breaks 

 
(Jenks) classification scheme.  

Fig. 6 indicates the snow avalanche hazard maps produced by the SVM 
and MDA models. As can be seen, the high hazard zone is mostly near the 
streams and matches with hillsides around the water path-ways. 

 
The MDA model indicated the most significant class of hazards was the 

low class (421.84 km2; about 50% of the study area), while the greatest area 
in the SVM was the moderate class (344.51 km2; about 41% of the study 
area) (Fig. 6; Table 1). Predicted maps indicated low hazard class in the SVM 
model was about 34% of the study area, while the MDA model covered about 
50% of the study area. Approximately 41% and 24% of the study area 
belonged to the moderate class, re-spectively, for the SVM and MDA models. 
The high hazard classes predicted by the models were approximately equal, as 
SVM indicated 24.93% and MDA showed 25.85% of the study area (Fig. 6; 
Table 1). 
 
4.3. Model evaluation and comparison 
 

The AUC statistic from the ROC indicated that models had excellent 
performance (> 90%, Yesilnacar, 2005; Choubin et al., 2019), as the values of 
AUC were equal to 0.912 and 0.942, respectively, for the MDA and SVM 
models for the testing periods (Fig. 7). In addition to AUC, we investigated 
hits and misses with the calculation of accuracy, Bias, POD, FAR, CSI, and 
HSS (Table 2).  

From Table 2, the models indicated good accuracy, equal to 0.83 for SVM 
and 0.85 for MDA. The values of the Bias in models were close and equal to 
1.11 and 1.07, respectively, for SVM and MDA in testing da-tasets. Results 
indicated that the probability of snow avalanche detec-tion in the models was 
the same in both training (POD = 95%) and testing (POD = 0.89%) phases. 
Although SVM had a lower FAR (FAR = 0.14) in the training phase, MDA 
indicated lower FAR  
(FAR = 0.17) than SVM (FAR = 0.20) in the testing phase. According to the 
CSI and HSS indices, although the difference in performance of the models 
was not high, the MDA indicated higher values (CSI = 0.75 and HSS = 0.70) 
than did SVM (CSI = 0.73 and HSS = 0.67) in the testing phase (Table 2). 
 

Due to the lack of any related previous studies on the SVM and MDA 
models used for snow avalanche modeling, a direct comparison of the models 
with previous studies was not possible in this regard. However, in other 
natural hazard assessment fields, applications of SVM and MDA have been 
recently compared in the literature. For instance, Sajedi-Hosseini et al. 
(2018b) indicated that the SVM model had a superior performance to the 
MDA (respectively accuracy was equal to 81% and 87%) for the prediction of 
nitrate groundwater contamination. In an-other study, like our results, 
Choubin et al. (2019) confirmed approxi-mately the same performance of 
MDA and SVM (respectively, with accuracy 89% and 88%), which applied 
for flood susceptibility pre-diction in the Khiyav-Chai watershed in Iran. 
 
 
5. Conclusion 
 

This study modeled snow avalanche hazard using two machine learning 
methods. Results from the models indicated that the two models had an 
excellent performance in snow avalanche modeling (AUC > 90). Sensitivity 
analysis indicated that the topographic posi-tion index, slope, precipitation, 
and topographic wetness index were the most effective variables for 
modeling. A snow avalanche hazard map indicated that the high hazard zone 
was mostly near the stream and matched with hillsides around the water 
pathway. The recorded locations of snow avalanches can be a challenging 
issue to study snow avalanche hazard, because a snow avalanche includes 
starting, track, and runout zones for which the topographic information of 
each zone (like slope, TPI, DTS, and curvature) is the difference. It seems that 
applying different zones (as the location of occurring avalanches) can create 
different hazard mapping results. In this study, we had recorded the locations 
of starting zones and used them in snow avalanche 
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modeling. Therefore, comparison of hazard maps concerning different snow 
avalanche zones used in modeling can clarify this issue and help improve 
snow avalanche modeling. Adding other important informa-tion, such as 
snowpack data, the frequency of snowfall, and wind di-rection, which were 
not available in the study area, can improve snow avalanche modeling. The 
snowpack information, such as the volume of snowpack, snow stability, and 
the presence of weak layers, are effective for snow avalanche movement. 
Also, wind direction is an important factor in snow avalanche occurrence and 
causes deposition of snow on the leeward side and scouring of snow on the 
windward side. Our suggestions can be used in future studies for better 
modeling snow avalanche hazards. Our findings can be helpful for land-use 
planning, controlling avalanche paths, and preventing probable hazards, and 
can be a good reference for spatial modeling of snow avalanche hazard for 
future studies. 
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