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Abstract

The paper presents plus-minus ratings for use in association football (soccer). We first describe
the general plus-minus methodology as used in basketball and ice-hockey and then adapt it for use in
soccer. The usual goal-differential plus-minus is considered before two new variations are proposed.
For the first variation, we present a methodology to calculate an expected goals plus-minus rating.
The second variation makes use of in-play probabilities of match outcome to evaluate an expected
points plus-minus rating. We use the ratings to examine who are the best players in European
football, and demonstrate how the players’ ratings evolve over time. Finally, we shed light on the
debate regarding which is the strongest league. The model suggests the English Premier League is
the strongest, with the German Bundesliga a close runner-up.
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1 Introduction

In sport, there is great interest in evaluating and measuring the performance of players. In team sports,
owners, managers and coaches want to identify which players are key to their team’s success, so that
recruitment and retention of players can be properly informed. Unlike other industries, there is much
external interest in the performance of a sports team’s employees from, for example, fans and the media
wanting to know which players to support, and which to berate. As such, one of the main tasks of sports
analytics is to evaluate the performance of players and understand their contribution to the team’s
results.

In this paper we present two modifications of the well-known plus-minus (PM) ratings model previ-
ously used to identify key players in basketball (see, for example, Sill (2010)) and ice-hockey (see, for
example, Macdonald (2012a)). The PM ratings system is simple and intuitive, and provides an answer
to the question: ‘how does a team perform with a player, compared to without the player?’. The mod-
ifications we propose are specific to soccer - a game in which it is notoriously difficult to rate players
objectively.

For individual sports like tennis and chess, rating players is perhaps simpler than for team sports.
Paired comparisons models are well-established and several variations exist. McHale and Morton (2011)
provide a ratings system for tennis for example. A perhaps more complex task is to estimate time-varying
ratings for individuals which update following new information (the latest results). Elo ratings have been
used for over half a century for rating chess players. Similarly, the Glicko rating system (Glickman, 2012)
provides a more theoretically justified model for estimating time-varying ratings of individuals.

More recently, attention has moved to using machine learning techniques to estimate player ratings.
The TrueSkill rating (Herbrich et al., 2007) developed at Microsoft is a generalisation of the Elo ratings
and is used for dynamically rating video game players.

Rating players in sports teams is more problematic. Players often have different responsibilities with
some concentrated on offence (i.e. aiding scoring), whilst others are specialised in defence (i.e. helping
to prevent scores for the opposition). A commonly used approach is to assign a value to each of a set
of actions considered to be ‘of interest’ and to reward the player taking them with the associated value.
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This method was used for example in the EA SPORTS Player Performance Indicator (McHale et al.,
2012) and was used until the end of the 2017/2018 season by the English Premier League as its official
player ratings system. Due to its additivity, the previous approach provides simple, user-friendly player
ratings and rankings. However, a cost of the simplicity is the lack of context and a deeper understanding
of the situations in which actions were committed. Further, the data requirement is not trivial.

Models have been used to rate players for specific tasks. For example, Sáez Castillo et al. (2013) and
McHale and Szczepański (2014) present methods to identify the scoring ability of footballers whereas
López Peña and Touchette (2012), López Peña and Sánchez Navarro (2015), Brooks et al. (2016) and
Szczepański and McHale (2016) deal with passing. But identifying the overall contribution of a player
to a team’s success (or lack of it) has proven difficult in soccer. However, the concept of the PM ratings
provides hope.

The concept of the PM rating is fundamentally different to the rating mechanisms discussed above.
It directly measures the contribution a player has on a team’s success as measured by (the differential)
of a target metric (goals for example). It does not make use of event data, and is not concerned with the
number of actions a player might have achieved. All that matters is “whilst the player was on the pitch,
what happened to the target metric?”. The adjusted PM rating, first described in Rosenbaum (2004),
answers this question whilst taking account of the strength of the other players on the pitch.

Plus-minus ratings have been used extensively in ice-hockey (Schuckers et al., 2011; Macdonald,
2012a; Spagnola, 2013; Gramacy et al., 2013) and basketball (Sill, 2010; Fearnhead et al., 2011). Indeed,
PM ratings are now part of the statistics reported by the media (ESPN for example1) and professional
leagues (since 1968 the NHL has kept track of each player’s PM rating2) in US team sports. Plus-minus
ratings have yet to be widely adopted in soccer. To the best of our knowledge, the first academic study
presenting a method for calculating plus-minus ratings in soccer is Saebo and Hvattum (2015). More
recently, Schultze and Wellbrock (2018) presented a plus-minus ratings system for soccer in which betting
odds were used to proxy the strength of the two competing teams, and ‘reward’ players more or less
ratings points based on the relative strengths of the two teams. The concept of plus-minus ratings being
used in soccer is discussed in some specialised forums3 but very little work has been done on the topic,
despite it being such a widely used, and accepted metric in US sports.

In this paper we propose to fill the gap and adapt the plus-minus rating for use in soccer. We present
the model currently used in basketball, and reported by ESPN before suggesting modifications to adapt
the methodology for use in soccer. We then propose two extensions of the methodology using new target
metrics measuring team success: first, we present an expected goals (xG) plus-minus rating (xGPM);
and second, we present an expected points (xP) plus-minus rating (xPPM). For the xGPM ratings we
use a model to calculate the probability of a shot resulting in a goal. For the xPPM ratings we use an
‘in-play’ model to estimate the probability of each match outcome (win, draw, loss) given the current
game state at any moment during the game. These new targets are more suited to calculating plus-minus
ratings in soccer than the goal differential, which produced a very sparse target, and will mean we can
better discriminate between players. Both models are presented below.

The remainder of the paper is structured as follows: first, we describe the data used for this research
(Section 2). In Section 3 we present the naive plus-minus rating and the regularized adjusted plus-minus
rating currently used in basketball. In Section 4 we describe two new variations of the regularized
adjusted plus-minus ratings: an expected goals plus-minus rating (xGPM), and an expected points plus-
minus rating (xPPM). In Section 5 we use the ratings to look for the top players across European soccer,
and see how their ratings evolve over time, before using the model to examine the relative strengths
of European leagues, and investigate how the ratings might be used to inform recruitment decisions of
football clubs. We conclude with some closing remarks in Section 6.

2 Data

We collected data from 11 European leagues over the last 8 seasons as detailed in Table 1. For every
game in our data set, we collect the match date, the starting line-ups, timings of any goals, and timings
and player names of any substitutions and red cards.

1http://www.espn.com/nba/statistics/rpm
2http://www.nhl.com/stats/player
3http://www.soccermetrics.net/player-performance/adjusted-plus-minus-deep-analysis
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Table 1: Description of data used by league and season.

League Seasons Games

England Premier League 2009/10–2016/17 3,040
Germany Bundesliga I 2009/10–2016/17 2,448
Spain La Liga 2009/10–2016/17 3,039
Italy Serie A 2009/10–2016/17 3,037
Germany Bundesliga II 2015/16–2016/17 612
England Championship 2013/14–2016/17 2,227
Netherlands Eredivisie 2013/14–2016/17 1,242
Turkey Super Lig 2014/15–2016/17 918
Portugal Liga NOS 2016/17 306
France Ligue 1 2009/10–2016/17 3,039
Russia Premier League 2013/14–2016/17 960

Total 20,868

For the expected goals model developed in Section 4.1, additional information regarding shots is
needed. Specifically, the shot time, the shooter (x, y) coordinates and the type of shot (penalty, free-
kick, header or open play), are extracted from Opta F24 feed.

3 The Plus-Minus Rating

The plus-minus statistic, in some form or another, has been in use since the 1950s in ice-hockey but is
most seen nowadays applied to basketball. Indeed, the complexity of the game of basketball has led to
several developments of the original concept. In this section we will first describe the naive plus-minus
statistic, before presenting modifications that have been introduced in the literature. In what follows we
will define everything in terms of soccer.

3.1 The Naive Plus-Minus Statistic

In its simplest form, a player’s plus-minus statistic can be used to answer the question: “what happens
when the player is on the pitch, compared to when he is off it?”. Historically, goals (or points in
basketball) have been the preferred way to measure “what happened” and the raw plus-minus score
calculates the player’s contribution to the goal difference of his team (per ninety minutes) whilst he is
on the pitch. For example, consider a player who makes two match appearances. In the first match, he
plays the first 60 minutes during which the team concedes one goal and fails to score itself. The match
finishes in a 1-0 loss. In the second match, the player comes to the field with 30 minutes remaining and
his team is enjoying being 3-0 ahead. During the 30 minutes of play he is on the pitch, the score moves
to 5-0. The player’s plus-minus rating is then ((−1/60) + (2/30))× 90 = +4.5. In other words, when the
player was on the pitch the team scored 4.5 goals per 90 minutes more than the opposition.

The net raw plus-minus statistic (the naive plus-minus rating) can be used to measure the importance
of a player to his team. This is simply the raw plus-minus statistic when the player is on the pitch minus
the raw plus-minus statistic when the player is not on the pitch. In our example, the raw plus-minus
statistic without the player is ((0/30) + (3/60))× 90 = 4.5, so that the naive plus-minus statistic is 0. It
appears then that the team is equally successful with and without the player.

This is, of course, a very simplistic picture and several pieces of information are not taken into account.
For example, the effects of strengths of the other players on the pitch, or of the game situation (such as
a reduction in the number of players on a team following a red card), or of any home advantage have
not been accounted for. Further, if one was to use this naive plus-minus rating to compare players from
different teams, the results would be almost meaningless. Consider two different players: one playing
for the league champions and the other playing for the leagues worst team. Suppose both players had
naive plus-minus ratings of 0. Who is likely the better player? Most sports fans would say that the
player achieving a naive plus-minus of 0 whilst playing for the league’s worst team probably deserves
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more credit in this example.
To account for these factors, the regularized adjusted plus-minus statistic was introduced, and is

described next.

3.2 Regularized Adjusted Plus-Minus

The adjusted plus-minus player metric was first described in Rosenbaum (2004) who presented the
plus-minus statistic as a regression problem. Doing so means ‘adjustments’ can be made to the naive
plus-minus statistic to account for the strengths of the other players on a team, and of the opposition
players. The set up is again simple. Define a segment of play to be one where the same set of players
(usually two sides of 11 players) are on the pitch. A new segment is defined every time a new set of
players are on the pitch. This may occur when a substitution is made, or when a sending off occurs, or
for a different match. Each segment t = 1, · · · , T is an observation. The dependent variable is the goal
difference y = (y1, ..., yT ) per 90 minutes during segment t. Let there be N players in total (in the whole
league), then the independent variables form a T ×N design matrix X of dummy variables defined as

xtj =


1 if player j plays for the home team in the segment

−1 if player j plays for the away team in the segment

0 if he doesn’t play in the segment

where each player in the league is identified by a unique numeric index j. The adjusted plus-minus
statistics for the N players are given by the estimated α in the linear model y = Xα, where α is an
N × 1 vector of parameters measuring the contribution of each player to the response variable (in this
case, goal difference).

In basketball, the number of segments within a game is much higher than the number of players used
in the game, and the matrix X>X is ‘well-behaved’ so that α can be estimated. In soccer however, the
number of substitutions is limited to three per team and the number of segments is much smaller than
the number of players on the pitch. Further, over the course of a match and season, the same groupings
of players will play together for a large percentage of the total minutes the team plays. For example, a
partnership between two centre backs is commonplace in soccer meaning they are on the pitch together
for nearly every minute of play during an entire season. The result of all of this is that although the
matrix X>X is well-behaved for basketball, it is not so for soccer, and is singular, or near-singular, so
that attempts to estimate α using ordinary least squares for example will fail.

Ice-hockey suffers from these same problems and Macdonald (2012a) presented a solution using ridge
regularisation (also known as Tikhonov regularisation) instead of ordinary least squares to estimate the
coefficients. The resulting methodology is known as the regularized adjusted plus-minus statistic. Ridge
regularisation is known to work well in the presence of colinearity and attempts to solve the problem
by making a trade-off between minimising the estimation error (suppressing noise) and minimising the
magnitude of the estimate (risking loss of information). In other words, instead of minimising the
objective function in the usual squared errors problem:

min ||αX − y||22
α = (X>X)−1X>y,

an alternative objective function, given by:

min ||αX − y||22 + λ||α||22
α = (X>X + λ2I)−1X>y,

is used. The penalty term, λ, penalizes large values of the parameters of interest. The advantage of
the ridge regression compared to other regularisation techniques such as the lasso for example is that it
shrinks the coefficients of correlated predictors towards each other. In the extreme case of k identical
predictors, the ridge regularisation will give each of them identical coefficients with a magnitude equal
to 1/k of the magnitude that any single one would get if it were the only one of the perfectly correlated
variables used as a covariate. This is very desirable in the case of estimating adjusted plus-minus ratings.
Consider the situation in which two players always play together (a pair of centre backs for example).
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Although the players may, in actual fact, have different abilities, and contribute a different amount to
their team’s performances, it is intuitively sound for the model to estimate their contributions to the
team as equal and thus award them identical ratings. Given the data that the model ‘sees’, there is no
reason to credit one player more than the other. The only way to identify a difference in the contributions
of the two players to team performances would be to use more information such as event data, or player
tracking data. The simplicity of the data requirements for calculating regularized adjusted plus-minus
ratings comes at the cost of not being able to differentiate between the contributions of such players.
Herein, we calculate only regularized adjusted plus-minus ratings but for brevity refer to plus-minus
ratings.

4 New Plus-Minus Ratings for Soccer

As a consequence of ice-hockey being a low scoring game, the latest developments in the plus-minus metric
have looked at using alternative dependent variables to measure the team’s success. The dependent
variable is often called the ‘target’ as it is in some sense what the players should be targeting to improve
during the match. In ice-hockey, Macdonald (2012b) and Schuckers and Curro (2013) use expected goals
rather than actual goals as the target variable, whilst Macdonald (2012a) presents plus-minus models
for shots. Instead of modelling a target such as goals, or shots, Thomas et al. (2013) makes the hazard
function for each team scoring in an ice-hockey match a function of the players on the ice at any moment
in time. In this section we present two new versions of the plus-minus metric for use in soccer: (a) a
plus-minus metric with difference in expected goals between the two teams as the target variable, and
(b) a plus-minus metric with change in expected points as the target. These new targets solve a major
problem with the goal-based plus-minus rating: the sparsity of the response. In our data, 72% of the
segments of play (periods of play in which the set of players on the pitch remains constant) have a goal
difference of 0. The two new targets we propose do not have this problem.

4.1 Expected Goals Plus-Minus

In recent years the concept of expected goals in soccer and ice-hockey has become popular in the media
(see, for example, Green (2012)). In the academic literature there has been limited interest with the only
exceptions being, to the best of our knowledge, Lucey et al. (2014) and Eggels et al. (2016).

The idea behind the notion of expected goals (xG) is simple: for each shot on goal that a team has,
the expected number of goals is the probability of the shot resulting in a goal. The probability of the
shot being successful depends on several factors: the location of the shot (proximity to the goal), the
player, the position of the defenders, the weather conditions, and the fatigue of the player, for example.
The reason xG has become a popular concept in soccer is that it has been shown to be more informative
than actual goals when judging how well a team has played4. Since goals are a rare event, they do not
always reflect properly a team’s performance on the pitch. An alternative is to use shots, which are an
order of magnitude more common, instead of goals, but this has the problem of considering all shots with
equal standing, regardless of how good a chance they have of being successful. An expected goals model
deals with this issue by assigning to each shot a measure of its quality, computed as the probability the
shot had of resulting in a goal.

In order to create our expected goals model, we compare the out-of-sample performance of several
probabilisitic classifiers trained on a large amount of shots. Earlier work on expected goals models has
focussed on finding models that predict expected goals that are as close as possible to the actual number
of goals scored which, in our opinion, defeats the purpose of calculating expected goals. Since we are
interested in predicting an accurate probability that a given shot will result in a goal, we use the Brier
Score as the target for model training, hyper-parameter tuning, and cross-validation. Note that the
definition of the Brier score adopted here follows the original formulation given by Brier (1950) and is

defined as BS = 1
N

∑N
i=1

∑R
j=1 (pji − oji)2 in which pji is the probability that was forecast for outcome

i, oji is the dummy variable equal to one if outcome i is observed and R = 2 corresponds to the two
possible outcomes of a shot: a goal, or no goal. Lucey et al. (2014), present an expected goals model for
football but use the mean absolute error as their target metric.

4See, for example, http://11tegen11.net/2016/02/21/predicting-league-football-using-xg-and-more/
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Shots in football come from many different situations. We have separated our shots into four different
categories: penalty, freekick, header, and open play. The latter category contains all shots taken with
the foot that did not result directly from a set piece. Since the nature of each of these four types of
shots is different, we designed our expected goals model by fitting four specialist models: one to each
shot category. This means the feature selection process can be refined for each type of shot, and any
redundant information is removed from the model (for instance, there is no point in using shot location
when designing a model for penalties).

Our dataset contains almost 400,000 shot events. Of those shots, roughly 41,000 resulted in a goal
(a conversion rate of 10.4%). The breakdown of shots by type is provided in Table 2. The baseline Brier
Score is determined by calculating the Brier Score for a model in which the estimated probability is equal
to the empirical frequency of scoring a goal for that particular shot type.

Table 2: Shot types and baseline Brier Scores. The baseline Brier Score is equal to the calculated Brier Score for
a model in which the predicted probability is equal to the empirical frequency for that type of shot.

Shots Goals Baseline Brier Score

Free Kick 19,723 1,229 0.058
Header 65,369 7,320 0.099
Open Play 304,398 29,168 0.087
Penalty 4,420 3,339 0.185

Total 393,910 41,056 0.093

We consider the following features in order to train our models, all of them normalized so that they
lie in the range from 0 to 1. The dataset is split into training and validation sets using an outer-loop
cross validation with three folds. The final scores are the averages of the scores in the three folds.

• Horizontal pitch coordinate: x, 1 corresponds to the goal line on the attacking side.

• Adjusted vertical coordinate: yadj, 0 corresponds to a central position, 1 corresponds to the edge of
the pitch (on either side).

• Goal view angle: the angle between the coordinates of the shot origin and the two goalposts.

• Inverse of the distance to goal : measured to the centre of the goal, 1 corresponds to a shot orig-
inating from the centre of the goal, whilst 0 corresponds to a shot originating from the furthest
position on the pitch.

• Time of play : 0 corresponding to the kickoff and 1 corresponding to the last minute of the match
(including any injury time played, such that 1 can correspond to more than 90 minutes).

• Goal value: a measure of how the winning probability would be affected if a goal was scored, given
as empirical frequencies, based on goal difference and game time remaining.

Although some of the features we consider are correlated (namely the pitch coordinates, the inverse
distance to goal, and the goal view angle) the relationships are nonlinear, and therefore some families of
classifiers benefit from the additional information.

We test four main families of machine learning models: logistic regression; Random Forests; Gradient
Boosting; and Neural Networks (Multi-Layer Perceptron). In order to fine tune the models’ hyper-
parameters, an inner-loop 10 fold cross validation is performed on the training set; the resulting model
is then evaluated on the validation set in order to get the out-of-sample score. Results are summarized
in Table 3.

As is often found with machine learning algorithms, no one type of model always performs ‘best’,
albeit random forest and gradient boosting models seem to present an overall performance superior to
logistic regression or neural networks. As a point of comparison, the mean absolute value from our
combined best models is very similar to the best model in Lucey et al. (2014). However, the model used
by Lucey et al. (2014) included information on the position of the defending players on the opposition
side.
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Table 3: Summary of model fits (Brier Scores) for each shot type. The best performing model is highlighted in
bold.

Penalty Freekick Header Open Play

Baseline 0.1848 0.0584 0.0994 0.0866
Logistic Regression 0.1848 0.0580 0.0904 0.0743
Random Forest 0.1850 0.05749 0.0875 0.0738
Gradient Boosting 0.1848 0.05748 0.0872 0.0739
Neural Network 0.1848 0.0584 0.0922 0.0743

It is worth noting some characteristics of the models for each shot type. Penalties require consideration
separately to other shots. All penalties are taken from the same spot so shot location variables cannot
be included in the model. Further, only a few models manage to outperform the baseline score, and the
improvement is so small that it is probably not significant. The bottom-line here seems to be that the
outcome of penalties are random conditional on the set of factors included in our dataset. Other factors,
such as player-dependent variables, are unaccounted for in our data and upon inclusion in the model,
might improve the predictive power of the model. Therefore penalties should all be awarded the same
value for expected goals.

For the freekick model, most of the predictive power comes from the location based features. Similarly
to penalties, the scores for all the models trained are very close to the baseline. Gradient boosting
outperforms random forests by a tiny, non-significant, amount.

The outcome of headed shots is heavily influenced by shot location, with the goal view angle being
the dominant variable in the model.

By far the largest subset of shots in our dataset is open play shots. All the features seem to add
value to the models, with the exception of game time. The dominant features are inverse goal distance
and goal view angle.

The resulting net expected goals for each segment of play (in which the same set of players is on
the pitch) is used as the dependent variable (or target) in our expected goals plus-minus (xGPM) player
rating.

4.2 Expected Points Plus-Minus

The ultimate objective of a soccer match is to win. Team managers and fans want to know which players
perform well when the match is tight and the scoreline is close. Using the goals-based (regularized
adjusted) plus-minus metric, or the xG plus-minus metric presented above, does not account for the
match situation. As such, we propose a new plus-minus metric based on expected points. In soccer
leagues around the world, a team is awarded 3 points for a win, 1 point for a draw and 0 points for a
loss. The expected points for the home team in minute t of a match is then

xPH
t = 3× PHW

t + 1× PD
t ,

where PHW
t is the probability of the home team winning the match evaluated at time t, taking into

account the current scoreline and the number of players on each team. PD
t is the probability of the team

drawing the match evaluated at time t.
In calculating our new expected points plus-minus statistic, we compare the expected points at the

start of a segment of play with those at the end of a segment of play. For example, suppose that the
first change in team lineups in a particular match happened in minute 60 (through substitution(s) or
a red card dismissal(s)). The change in expected points for the home team is ∆xPH = xPH

60 − xPH
0 ,

whilst the change in expected points for the away team is ∆xPA = xPA
60 − xPA

0 . The target variable we
propose is then the change in expected points for the home team minus the change in expected points
for the away team, y[0,60] = ∆xPH −∆xPA.

In order to calculate expected points variables we need an ‘in-play’ model to estimate the probabilities
of the home team winning, a draw and the away team winning at any moment of the match.

The model used here is a simplification of the random point process model described in Volf (2009).
This process is fully characterised by the scoring intensity functions (also known as hazards) of the home
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and away teams λH(t), and λA(t), t ≥ 0 which are non-negative, bounded, measurable functions of t. The
intensity is allowed to depend on some covariates Z(t). Z(t) is in turn an observed random process that
can depend on time. A common framework to model the effect of covariates on the intensity function is
to use a proportional hazard model, first described in Cox (1962).

Here, the hazards of each team scoring depend on two categorical covariates describing the game
context at time t. They are defined by:

• zGD(t) = −3 ≤,−2, . . . , 2,≥ 3 defines the goal differential with respect to the home team. We
found that a truncation at 3 goals difference works well in practice.

• zMP (t) = −3 ≤,−2, . . . , 2,≥ 3 defines the man power advantage with respect to the home team.

The model basically assumes that each team scores goals at a rate that depends on the time of the
match, the number of red cards received by the two teams, and home advantage. The simplification we
adopt over Volf (2009) is to not take account of the strengths of the two teams playing in any particular
match. As such, we are effectively using ‘average’ probabilities over all games. The justification for this
is that the identities of the players is already the focus of the estimation exercise and taking them into
account at this stage would, in some sense be double counting, and result in ‘punishing’ players on good
teams with high probabilities of winning matches.

The initial (average) probabilities of a home win, a draw and an away win at t = 0 can be computed
from the empirical frequency. Using the last eight years of results from the English Premier League,
these probabilities are 0.46, 0.26 and 0.28 respectively. The corresponding expected points at t = 0 are
then 1.63 for the home team and 1.11 for the away team. We computed similar quantities for every
league we have in our data.

Returning to our example, we can calculate the target variable as

y[0,60] = (xPH
60 − xPH

0 )− (xPA
60 − xPA

0 ) (1)

= (3× PHW
60 + PD

60 − 3× PHW
0 − PD

0 )− (3× PAW
60 + PD

60 − 3× PAW
0 − PD

0 ) (2)

The model computes these probabilities and the corresponding target y[0,60] for this game segment can
be computed. This model is fitted as explained in Volf (2009, Section 4), and estimated probabilities are
obtained by simulation using the procedure detailed in Volf (2009, Section 5).

This new target directly rewards players for contributing to the final result. Previous plus-minus rat-
ings, including the expected goals plus-minus rating described above credits players for creating chances
and scoring goals irrespective of the influence of them on the final result.

4.3 Minor Modifications to Plus-Minus Ratings for Soccer

Adjusting for Man Power

The effect of receiving a red card has been studied in soccer (see, for example, Ridder et al. (1994) and
Liu et al. (2016)) and has been found to be beneficial for the opposing team in terms of scoring rate.
Further, the advantage is larger in the case of the home team benefiting from having more players on
the pitch.

In ice-hockey, the effect of player expulsion in plus-minus ratings has been modelled using a situation
specific coefficient for each player: a coefficient for even-strength situations and another one during
shorthanded situations (Macdonald, 2011). This solution has the effect of doubling the number of
estimated coefficients and is not suitable for large numbers of players, and given the extremely low
frequency of red cards in soccer, is unnecessary.

The solution we use here is different and follows that of Saebo and Hvattum (2015). The effect of
receiving a red card is accounted for using a dummy variable set equal to 1 when team is shown its first
red card. In effect, the player in question is replaced by the ‘first dismissal’ dummy player. In the rare
cases of a second red card, the offending player is replaced by a ‘second dismissal’ dummy variable, and
so forth. In games when the opposing team also receives a red card, the highest dismissal dummy is
reset to 0 as the team’s man power advantage is cancelled out. We use three dismissal dummy variables
to cover the maximum number of dismissals occurring in the data.
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Home Advantage

Home advantage in soccer was first discussed in the academic literature by Pollard (1986) and many
researchers have since measured its magnitude (Clarke and Norman, 1995) and tried to explain its
variation over time (Pollard and Pollard, 2005) and space (Pollard, 2006).

When computing the plus-minus statistic for basketball Winston (2012) accounted for home advan-
tage by adjusting the points differential (the dependent variable in the regression model) by the average
number of points by which the home team defeats the away team (3.2 per 48 minutes). Rather than ad-
justing the dependent variable, the solution we propose here is to add an intercept term to the regression
problem which represents the average home advantage over all teams in the competition. This is more in
line with what has been done previously in the soccer literature (see, for example, Maher (1982), Dixon
and Coles (1997), Koopman and Lit (2015), Boshnakov et al. (2017)).

Chronology of Performances

It is widely accepted in sports that recent performances are more informative when predicting future per-
formances. Dixon and Coles (1997) for example found that including a time-weighting in their likelihood
function such that more recent matches had a larger impact on the estimated team strength parame-
ters improved out-of-sample forecast accuracy. Therefore, in order to increase the predictive power of
our rating, we apply a weighting scheme to the different observations (segments) when fitting the ridge
regression. The weights are computed as follows:

wi = exp
(
ζ(datei − ratingDate)/3.5

)
with ζ being the time-weighting parameter (ζ = 0 corresponds to the non-weighted regression), datei the
date of the ith observation (segment) and ratingDate is the date when the rating is computed. Following
standard practise in soccer modelling (Dixon and Coles, 1997; Boshnakov et al., 2017), time distances
are scaled in half week units, hence the denominator 3.5 used for the weighting.

League Competitiveness

Since we have data covering several leagues across Europe, we must control for any differences in strengths
of the leagues themselves. For example, some leagues may have stronger players on average than other
leagues. Two players of equal ability will perform differently if one is in a strong league whilst the other
players in a weak league. The Union of European Football Associations (UEFA) itself acknowledges
the inequity of ability across leagues and publishes a ranking by country and awards slots in European
competitions accordingly. The consequence on our ratings of this is that a bias could be introduced
so that players in weak leagues have inflated ratings. This problem appears when data from various
competitions are used to fit the ridge regression.

We correct for this bias using a method similar to that of Saebo and Hvattum (2017) and use the
players traveling between leagues to compare the strengths of each league. To do so, we introduce one
coefficient xl per league in the data. Assume we have L leagues and let mil be the number of home
team players minus the number of away team players, considering only players who are considered at
time of match i to be adapted to competition l, l = 1, . . . , L. Unlike Saebo and Hvattum (2017), we
consider a player to be adapted to a competition if he plays at least 6 games in the current season in
that competition or if he played more games in this competition than in any other over the previous
18 months to the game date. Hence, xl is the weight of mil in the ridge regression and represents the
adjustment we need to apply to a player joining a new league.

The final ridge regression will need to estimate N+1+3+L parameters (N players, a home advantage
parameter, three dismissal parameters, and L league parameters). The model’s design matrix is very
sparse with a limited number of non-zeros entries per row. The model also has two hyper-parameters
(the ridge penalty λ and the time weighting ζ) which need to be fine-tuned using cross-validation.
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5 Computation Results and Discussion

5.1 Computation

The game segmentation algorithm (Section 3.2) as well as the minor adjustments described in Section 4.3
are applied to the data described in Table 1 using R Core Team (2016) and the result is stored in
sparse matrix object implemented in the contributed package Matrix (Bates and Maechler, 2017). The
computation resulted in 129, 988 segments and N = 10, 983 players’ ratings to be estimated. The ridge
regression was performed using the contributed package glmnet (Friedman et al., 2010) and a multi-
response Gaussian model using a “group” penalty on the coefficients for each variable (also known as
multi-task learning).

5.2 Results

5.2.1 Model Tuning

As mentioned in Section 4, the model has two hyper-parameters namely the ridge penalty λ and the
time weighting ζ which need to be fine-tuned. The strategy adopted here is to use the new PM player
ratings in an ordered probit regression model to predict the match outcomes (home win/draw/ away win)
and use the value of the hyper-parameters that minimised the out-sample Brier score. Referring to the
definition of the Brier Score given earlier, we now use R = 3 to account for the three possible outcomes:
home win, draw, away win. A 10-fold cross-validation was used to split the data into training and testing
sets and the process was repeated three times. The covariates used are the average PM ratings derived
in Section 4 for the starting 11 players using data from the two years prior to the game date5. The best
model achieved an average Brier score of 0.292 (sd = 0.003) which is similar to the accuracy achieved
by the betting market for the same set of games6 with λ = 0.042 and ζ = 0.002.

Expected goals models from Section 4.1 were fitted using 10-fold cross-validation, with hyper-parameter
tuning in the inner loop. Logistic regression and random forest models used the implementation in
scikit- learn (Pedregosa et al., 2011). Gradient boosing models were fitted and tuned using xgboost

(Chen and Guestrin, 2016). Neural network models were fitted and tuned using Keras (Chollet et al.,
2015).

5.2.2 Fitting Results

Before we investigate the actual players ratings, we first look at the significance of the other adjustments
we introduced in Section 4.3, namely man-power and home advantage. The ridge regression was fitted
using the last two seasons and the results are summarised in Table 4. The first red card has a large

Table 4: Impact of red cards on the three plus-minus ratings.

Parameter PM xGPM xPPM

Red Card 1 -1.25 -1.18 -0.12
Red Card 2 -0.16 -0.15 -0.01
Red Card 3 -0.012 -0.005 -0.001
Home Advantage 0.006 0.005 0.0004

negative effect on all three ratings, whereas additional dismissals contribute a much smaller effect. One
explanation is that a first red card is very likely to be followed by a considerable change in team tactics,
and may happen early enough in a match to leave the opposing team with enough time to take advantage
of the extra man-power. Further reductions will have an added negative effect, but will not be associated
with a further change in tactics, and are very likely to occur late on in a game, when there is less time
to change the match result.

5Different length windows were tried and two years was found to perform best in terms of Brier score.
6The adjusted probabilities deduced from bet365 pre-match betting odds achieved a Brier score of 0.295, after removing

the bookmaker vigorish, for the same set of games.
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The estimated home advantage effect is surprisingly very small for the goal and expected goal based
PM rating and almost zero for the xPPM one suggesting that players do not perform, on average,
differently playing home or away. It is worth noting here that finding a home advantage of zero for the
xPPM rating is expected as we have already accounted for it when setting the initial expected points as
explained in Section 4.2.

5.2.3 Identifying Europe’s Best Players

One ‘test’ of our plus-minus ratings is to simply look at which players are highly rated. In this section
we present the best three players for each calendar year since 2011, and for 2017-18, the best five players
for each playing position.

The Ballon d’Or7 is the most prestigious individual distinction in soccer and is awarded to the player
deemed to have performed the best over the previous calendar year, based on voting by expert journalists.
Our plus-minus ratings provide us with an alternative way to make a top-player classification for every
calendar year. As a proof of concept, we have computed the average of the three variations of the plus-
minus rating, each of them previously normalized to the [0, 1] range using min-max normalisation, and
filtered out players who didn’t play at least 900 minutes (the equivalent of 10 full games). The results
are summarized in Table 5. Despite the fact that the Ballon d’Or award was awarded to either Lionel
Messi or Cristiano Ronaldo in every one of the years between 2011 and 2017, our scores suggest that
perhaps some other players might have deserved the recognition.

Year Ranking Player Score

2011 1 Cristiano Ronaldo 0.7674
2 Lionel Messi 0.7486
3 Pedro 0.7335

2012 1 Eden Hazard 0.7635
2 Lionel Messi 0.7610
3 Mirko Vucinic 0.7535

2013 1 Cristiano Ronaldo 0.7576
2 Robert Lewandowski 0.7465
3 Mats Hummels 0.7397

2014 1 Jérôme Boateng 0.7774
2 Manuel Neuer 0.7751
3 Lionel Messi 0.7663

2015 1 David Alaba 0.8130
2 Robert Lewandowski 0.7855
3 Claudio Bravo 0.7465

2016 1 Luis Suárez 0.7446
2 N’Golo Kanté 0.7373
3 Nick Viergever 0.7282

2017 1 Marc-André ter Stegen 0.7787
2 Luis Suárez 0.7689
3 Mohamed Salah 0.7590

Table 5: Top three players for each calendar year according to the average of the three plus-minus ratings
calculated using matches played during the 12 months from January to December of that year.

The top five players by position during the 2017-18 season are shown in Table 6. In general, for the
outfield positions in Table 6, the ratings seem reasonable. Each of the players featured are known to be
very good. Perhaps most intriguing is that one of the hottest properties in world football, as at the time
of writing, Matthijs de Ligt, features in the top five defenders in the 2017-18 season. Following Ajax’s

7https://en.wikipedia.org/wiki/Ballon d%27Or
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run to the semi-finals of the UEFA Champions League (2018-19), every big club in Europe is trying
to recruit him. It is promising that the plus-minus ratings recognised his performances a whole year
earlier. For the goalkeepers however, we would encourage more caution to be taken when looking at the
ratings. Goalkeepers typically play a very high proportion of minutes for the team. Further, if they do
not play, they are typically replaced by a single reserve goalkeeper. As such, the plus-minus rating for
a goalkeeper becomes a comparison of the team’s performances when that player plays versus when the
reserve goalkeeper plays. If the reserve goalkeeper is poor, or the team’s results are relatively poor when
he is on the pitch, then this will inflate the plus-minus rating of the first choice goalkeeper. Effectively,
in these circumstances, the plus-minus rating becomes a measure of the comparative importance of the
two players to their team. Nevertheless, the ratings are informative, and as of the 2017-18 season, strong
candidates for Europe’s top players are Lionel Messi, Kevin De Bruyne and Jordi Alba.

Position Ranking Player Team Score

Goalkeeper 1 André Onana Ajax 0.6999
2 Marc-André ter Stegen Barcelona 0.6995
3 Sven Ulreich Bayern Munich 0.6934
4 Alphonse Areola PSG 0.6871
5 Ederson Manchester City 0.6777

Defender 1 Jordi Alba Barcelona 0.7539
2 Matthijs de Ligt Ajax 0.7149
3 Gerard Piqué Barcelona 0.7051
4 Thiago Silva PSG 0.6734
5 Nicolás Otamendi Manchester City 0.6717

Midfielder 1 Kevin De Bruyne Manchester City 0.7248
2 Hakim Ziyech Ajax 0.7119
3 Fernandinho Manchester City 0.6937
4 Ivan Rakitic Barcelona 0.6835
5 Sergio Busquets Barcelona 0.6767

Forward 1 Lionel Messi Barcelona 0.7346
2 Luis Suárez Barcelona 0.7048
3 Thomas Muller Bayern Munich 0.6823
4 Edison Cavani PSG 0.6807
5 José Callejón Napoli 0.6780

Table 6: Top five players for each position for the seasons 2017-18 according to the average of the three plus-minus
ratings.

Lastly in this section, we look at how the performance of selected players has evolved over time. In
Figure 1 we plot the relative contributions of three of football’s biggest stars to their respective teams:
Cristiano Ronaldo, Lionel Messi, and Neymar. The plus-minus ratings have been calculated using a
rolling 12-month window of matches played up to, but not including, the date shown on the x-axis.

Over the last three seasons, the ratings of all three players have been remarkably close, though in
recent months Messi is rated as contributing more to his team than both Neymar and Ronaldo.

5.2.4 Using plus-minus ratings to inform recruitment decisions

Nowadays, the transfer market on footballers involves mind-boggling sums of money. In January 2018,
Liverpool player Philippe Coutinho was sold to Barcelona for a reported £146m. At the time this was
somewhat controversial as many pundits and fans believed Coutinho to be Liverpool’s best player, and
an essential element in the team being successful. Figure 2 plots the relative contributions of Liverpool’s
four main forwards, and the players around which the debate centred: Philippe Coutinho, Mo Salah,
Sadio Mane, and Roberto Firmino.

Contrary to the belief at the time of the transfer, Figure 2 provides clear evidence that of the four
players, Coutinho was the least valuable to Liverpool as both his expected goals plus-minus rating, and

12



his expected points plus-minus rating is the lowest of the four players. Hence, it would appear that, based
on footballing reasons only, it was not a poor decision by the Liverpool management to sell their ‘best’
player. Coutinho’s relatively unsuccessful season at Barcelona in 2018-19, and the fact that Liverpool
won the Europe’s most prestigious trophy, the UEFA Champions League, in the same season, is perhaps
further evidence of Liverpool’s decision being a good one.

Using the plus-minus ratings to inform recruitment decisions (both incoming and outgoing) is an
area of research we hope to do in future work. For now, we present the results of a simple experiment.
When recruiting players, it is important to try to predict the future performance levels of players, not
to describe past performances. As a preliminary investigation into whether this is possible using our
plus-minus ratings, for players playing in consecutive seasons, we looked at the correlations of the ratings
from one season to the next. This correlation was 0.35. The correlation from one season to two seasons
ahead was 0.30. This is promising as the correlation reveals that performances one season, or even two
seasons, ahead can be predicted by the plus-minus ratings. Of course, in practice, one would wish to use
additional information to predict future performances such as the age of the player and the position the
player plays in.

5.2.5 Comparing League Strengths

In this section we examine the results of adjusting for league strength in the PM ratings (Section 4.3). An
interpretation of the estimated coefficients on each league is that they serve to shift a player’s estimated
plus-minus rating up (or down) when a player moves from a league that is of higher (lower) average
strength to a league that is of lower (higher) average strength. As such, the parameter estimates can be
used to compare the average strength of players in a league and how a particular player might perform if
he is transferred to another league. Such insights are of great importance to clubs considering recruiting
a player from another league and will help them understand the likely performance of a new player once
playing in the new league. Table 7 shows the results where the parameters are again normalized to the
[0, 1] range (using min-max) for each of our PM ratings in. The normalized values show how far each
league lies between the weakest and the strongest leagues. For example, for the xGPM rating, the Italian
Serie A league lies 64% of the way between the worst league (the Portuguese Liga NOS) and the best
league (Spain’s La Liga). The final column of the table shows the mean league strength across the three
plus-minus ratings. There is no theoretical reason to take a simple average, other than to identify which
league is, on average, the strongest.

Competition Name PM xGPM xPPM mean PM

1 England Premier League 1.00 0.67 0.97 0.88
2 Germany Bundesliga 0.92 0.32 1.00 0.75
3 Spain La Liga 0.43 1.00 0.49 0.64
4 Italy Serie A 0.61 0.64 0.66 0.64
5 Russia Premier League 0.49 0.52 0.61 0.54
6 Germany Bundesliga II 0.55 0.18 0.86 0.53
7 England Championship 0.63 0.27 0.53 0.48
8 Portugal Liga NOS 0.69 0.00 0.49 0.39
9 France Ligue 1 0.25 0.45 0.18 0.29

10 Turkey Super Lig 0.12 0.10 0.38 0.20
11 Netherlands Eredivisie 0.00 0.32 0.00 0.11

Table 7: League Ranking according to the PM rankings.

The English Premier League dominates the ranking with high scores in goals and points based PM
ratings. The second strongest league appears to be the German Bundesliga. The Spanish league scores
the highest in terms of expected goals PM but is slightly behind in terms of goals and expected points
which may suggest that players trained in this league have a worse conversion ratio (converting opportu-
nities to goals). We note that these league strength ratings are estimates of average league strength, and
do not reveal the strength of the very best teams in the league. As such, although the Spanish giants
Barcelona and Real Madrid would likely have very high strengths, these are tempered by the weaker
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strengths of other teams in the Spanish league. Surprisingly, the second divisions in Germany and Eng-
land seem to perform better than the top divisions in France and Portugal. One possible explanation
for this result is that teams get promoted from the second tier divisions in Germany and England and
perform better in the top leagues than the players moving from Ligue 1 into these leagues. This may be
a result of the players from the second tiers divisions being more familiar with the environment as they
have not had to move countries to move leagues. Netherlands seem to be the ‘weakest’ league among
the set of leagues we analysed.

In this analysis we have assumed the league strengths are static over time. Future work could
investigate whether league strengths have changed over time.

6 Conclusions

The paper presents plus-minus ratings adapted to soccer. We have proposed two new versions of the
plus-minus model designed to react to particular aspects of the game. Our first new plus-minus rating
identifies players who change the net expected goals of a team. We have called this the expected goals
plus-minus rating, xGPM. The second new plus-minus rating we propose is designed to identify players
who change the results of teams by affecting the expected points of a team. We call this rating the
expected points plus-minus rating, xPPM.

We have used the new ratings to look at the best players in Europe and to compare three of football’s
biggest stars: Ronaldo, Messi and Neymar. At the time of writing, Lionel Messi has the highest average
plus-minus rating in Europe. We also used the model to examine the transfer of Philippe Coutinho
from Liverpool to Barcelona. According to the plus minus ratings, Coutinho was not Liverpool’s most
important player, and the transfer made more sense than many fans and pundits assumed at the time.
Lastly, we used the model to explore the relative strengths of the top leagues across Europe. It appears
the English Premier League is slightly stronger than the German Bundesliga, followed by Spain’s La
Liga. Somewhat surprisingly, France Ligue 1 is rated as weaker than the second tier divisions in both
England and Germany.

Plus-minus ratings in football are not likely to produce meaning ratings if calculated over a single
game, or even a small number of matches since team line-ups do not change as frequently as in basketball
for example. However, when estimated over a longer period of time, the ratings are meaningful. Indeed,
we have begun to work with a Premier League club to use these ratings to help identify talent across
Europe and aid its player acquisition department. We believe this is an indication that the ratings are
informative and useful: that industry experts find the ratings useful is a promising sign. However, in
certain circumstances the ratings should be treated with caution. There are four circumstances that we
can think of:

• a player plays all, or almost all, minutes: in this circumstance, the player’s plus-minus rating will
converge on the plus-minus rating of his team;

• a player plays a very small number of minutes: in this circumstance, as a consequence of the ridge
regression, the player’s plus-minus rating will lie close to the global average plus-minus rating for
all players;

• a group of players always play together : in this circumstance, the group of players will have identical
plus-minus ratings, and the ratings cannot be used to differentiate between these players;

• a player is always replaced by the same player : in this circumstance, the plus-minus rating is
informative as a comparison of the importance of these two players to their team, but it may
produce an inflated rating for one of the players if his replacement is particularly weak. This can
happen in the case of goalkeepers for example.

Future work may look at using these ratings as part of a forecasting model for match results. Alter-
natively, to aid those who make decisions regarding team lineups, one could investigate how pairings of
players perform together. For example, a coach may be interested in knowing which central defensive
pairing is the most effective.

Another area for development of plus-minus ratings in sport is to use alternative target metrics to
measure team performance. For example, instead of using the change in expected points as the target

14



as done in our xPPM rating here, one might look at using targets set further in the future such as the
change in the probability of winning a league, or avoiding relegation for example.

For now, we hope that the objectivity of these new ratings and the seemingly ‘expected’ results may
mean that plus-minus ratings are used more readily in the soccer industry - both by clubs, fans and the
media.
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McHale, I. G. and Szczepański,  L. (2014). A mixed effects model for identifying goal scoring ability of
footballers. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177(2):397–417.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

Pollard, R. (1986). Home advantage in soccer: A retrospective analysis. Journal of Sports Sciences,
4(3):237–248.

Pollard, R. (2006). Worldwide regional variations in home advantage in association football. Journal of
sports sciences, 24(3):231–240.

Pollard, R. and Pollard, G. (2005). Long-term trends in home advantage in professional team sports in
north america and england (1876–2003). Journal of Sports Sciences, 23(4):337–350.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Ridder, G., Cramer, J. S., and Hopstaken, P. (1994). Down to ten: Estimating the effect of a red card
in soccer. Journal of the American Statistical Association, 89(427):1124–1127.

Rosenbaum, D. T. (2004). Measuring how NBA players help their teams win. 82Games.com
(http://www.82games.com/comm30.htm), pages 4–30.

16



Saebo, O. D. and Hvattum, L. (2015). Evaluating the efficiency of the association football transfer
market using regression based player ratings. NIK Proceedings.

Saebo, O. D. and Hvattum, L. (2017). Modelling the financial contribution of soccer players to their
clubs. Working paper.

Sáez Castillo, A., Rodŕıguez Avi, J., and Pérez Sánchez, J. M. (2013). Expected number of goals
depending on intrinsic and extrinsic factors of a football player. an application to professional Spanish
football league. European Journal of Sport Science, 13(2):127–138.

Schuckers, M. and Curro, J. (2013). Total hockey rating (thor): A comprehensive statistical rating of
national hockey league forwards and defensemen based upon all on-ice events. In 7th annual MIT
sloan sports analytics conference.

Schuckers, M. E., Lock, D. F., Wells, C., Knickerbocker, C., and Lock, R. H. (2011). National hockey
league skater ratings based upon all on-ice events: An adjusted minus/plus probability (ampp) ap-
proach. Unpublished manuscript, 59.

Schultze, S. R. and Wellbrock, C.-M. (2018). A weighted plus/minus metric for individual soccer player
performance. Journal of Sports Analytics, 4(2):121–131.

Sill, J. (2010). Improved NBA adjusted+/-using regularization and out-of-sample testing. In Proceedings
of the 2010 MIT Sloan Sports Analytics Conference.

Spagnola, N. (2013). The complete plus-minus: A case study of the Columbus Blue Jackets. Scholar
Commons.
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(a) Expected goals plus-minus, xGPM.

(b) Expected points plus-minus, xPPM.

Figure 1: Evolution of expected goals plus-minus, and expected points plus-minus ratings for football’s “big
three”: Ronaldo, Messi and Neymar. The ratings are calculated using rolling 12-month windows of matches up
to the date shown on the x-axis.
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(a) Expected goals plus-minus, xGPM.

(b) Expected points plus-minus, xPPM.

Figure 2: Evolution of expected goals plus-minus, and expected points plus-minus ratings for Coutinho, Salah,
Mane and Firmino. The ratings are calculated using rolling 12-month windows of matches up to the date shown
on the x-axis.
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