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Abstract

The aim of this thesis is to study dynamical properties of pseudo-Anosov braids
on the n-times punctured disk D, making use of a particular coordinate system
called the Dynnikov coordinate system. The Dynnikov coordinate system gives
a homeomorphism from the space of measured foliations MF,, on I, (up to a
certain equivalence relation) to S, = R?"~4\ {0}, and restricts to a bijection from
the set of integral laminations (disjoint unions of finitely many essential simple
closed curves) on Dy, to Cp, = Z2"~4\ {0}.

In the first part of the thesis, we introduce a new method for computing
the topological entropy of each member of an infinite family of pseudo-Anosov
braids making use of Dynnikov’s coordinates. The method is developed using
the results in Thurston’s seminal paper on the geometry and dynamics of surface
automorphisms and builds on, more recent work of Moussafir. To be more spe-
cific, the method gives a so-called Dynnikov matriz which describes the action
of a given pseudo-Anosov braid £ near its invariant unstable measured foliation
[F, 1] on the projective space PSy, and the eigenvalue A > 1 of this matrix gives
the topological entropy of 3.

In the second part of the thesis, we compare the spectra of Dynnikov matrices
with the spectra of the train track transition matrices of a given pseudo-Anosov
braid, and show that these matrices are isospectral up to roots of unity and zeros

under some particular conditions.
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Chapter 1

Introduction

In the 1970s, Thurston classified surface automorplisms up to isotopy and de-
scribed his results in a preprint which was extensively studied. His preprint later
appeared as [29] in which he also discussed many more recent developments and
ramifications in the theory. As Thurston remarked in his preprint, the classifica-
tion of surface automorphisms began with the work of Nielsen in the 1920s which
is why the result is also known as the Nielsen-Thurston classification theorem.
This famous theorem states that each automorphism of a surface is isotopic to
either a finite order or a pseudo-Anosov or a reducible automorphism.

If some iterate of an automorphism is the identity, it is called finite order. If
an automorphism preserves a transverse pair of measured foliations [29] on the
surface, stretching one foliation uniformly by a real number A > 1 and contracting
the other uniformly by 1/A, then it is called pseudo -Anosov. We say that A is
the dilatation or the growth rate of the pseudo-Anosov. If an automorphism
preserves a collection of mutually disjoint essential simple closed curves (reducing
curves), it is called reducible. The surface can then be cut along these curves
into pieces which are permuted by the automorphism, and hence each piece is
preserved by some iterate of the automorphism. When the surface has been
cut as much as possible along such reducing curves, the action on each piece is

isotopic either to a finite order or a pseudo-Anosov automorphism.



Bach isotopy class is represented by an automorphism which is of one of these
three types, and the isotopy class is named by the type of the automorphism it
contains. The focus of this thesis is the study of pseudo-Anosov isotopy classes
on the n-times punctured disk D, making use of a particular coordinate system
called the Dynnikov coordinate system [13]. The Dynnikov coordinate system
gives a homeomorphism from the space of measured foliations MF,, on Dy, (up
to a certain equivalence relation) to R?*~4\ {0}, and restricts to a bijection from
the set of integral laminations (disjoint unions of finitely many essential simple
closed curves) on Dy, to "4\ {0}. We will use the Dynnikov coordinate system
to study two main problems. In the first part of the thesis, we shall introduce a
new method for computing the topological entropy of each member of an infinite
family of pseudo-Anosov isotopy classes (or indeed an individual isotopy class)
making use of Dynnikov’s coordinates; and in the second part of the thesis, we
shall compare the spectra of the so-called Dynnikov matrices with the spectra
of the train track transition matrices of a given pseudo-Anosov isotopy class on
D,,.

The topological cntropy of an isotopy class is defined to be the minimum
topological entropy of an automorphism contained in it. When the isotopy class
is pseudo -Anosov, all pseudo-Anosovs in the class have the minimum topological
entropy which is log A. Thus, the topological entropy of a pseudo-Anosov isotopy
class equals log A.

The normal approach to compute the topological entropy of an isotopy class
of surface automorphisms is to use train-track methods [5, 17, 22]. In [5], the
algorithm starts with a graph G which is a spine of the surface and the isotopy
class is represented by a graph map. The algorithm repeatedly modifics G and
the associated graph map until it either finds an explicit reducing curve for the
isotopy class, or a graph map which is the simplest possible. If the isotopy class
is pseudo-Anosov, this simplest graph map can be used to construct a train
track and train track map from which the growth rate of the isotopy class and

the singularity structure of the invariant foliations are obtained. However, for



complicated isotopy classes (that is, ones with high topological entropy), the
lengths of the image edge paths (represented by words whose letters label the
edges) of the train track are so long such that even a computer cannot store
them. Therefore, it is usually far from straightforward to describe an infinite
family of train tracks, in order to verify that they are indeed invariant under the
action of relevant isotopy classes.

On the other hand, the method developed here provides formulae which com-
pute the topological entropy explicitly in a much more computationally efficient
(such terms are used informally} way. The idea of our method lies in Thurston’s
seminal paper [29] and builds on more recent work of Moussafir [25]. Given a
surface MM, the Teichmiiller space 7 (A7)} of M is an open ball and the space of pro-
jective measured foliations PMF (M) forms its boundary. Let MCG(M) denote
the mapping class group of M (the group of isotopy classes of automorphisms
of M). The closure T (M) is a closed ball on which MCG(M) acts continuously.
By Brouwer’s Fixed Point Theorem each isotopy class [f] has a fixed point on
W, and the analysis of this fixed point yields the Nielsen-Thurston Classifi-
cation ‘Theorem.

When [f] is pseudo-Anosov, it has exactly two fixed points which both lie on
PMF(M), the projective classes [F¥, u¥] and [F*, ®] of its invariant foliations;
and every other point on PMF (M) converges to [F*, p*] rapidly under the
action of [f]. The induced action of [f] on PMF(A]) is piecewise linear and is
locally described by integer matrices. The matrix on any piece which contains
[F*, "] on its closure has an eigenvalue A > 1 since [F"“, 1"] is a fixed point on
PMF(M). Therefore, if we can compute the action of [f] on PMF(M) and
find a matrix with an eigenvaluc A > 1 with associated eigenvector contained
in the relevant piece, the eigenvector corresponds to [F¥,u%] and A gives the
growth rate and hence the topological entropy. We realize this idea on D, by
coordinatizing PMF,, using the Dynnikov coordinates and describe the action
of MCG(D,,) on PMF, using the update rules [13].

Let us be more specific about some of the details of this procedure. We first



take a particular collection of 3n — 5 arcs embedded in D, and describe each
measured foliation by an element of R3*~5, the associated measures of these arcs
(and similarly each integral lamination by an element of Z3*~°, its geometric
intersection numbers with these arcs). Dynnikov coordinates [13] are certain
linear combinations of these real numbers/integers which yield a one-to-one cor-
respondence between the set of measured foliations (up to isotopy and Whitehead
equivalence) on D,, and S, = R?"~4\ {0} (and between the set of integral lamina-
tions on Dy, and C, = Z2~*\ {0}). The space of projective Dynnikov coordinates
P8y is therefore a (2n — 5)-dimensional sphere and the action of the mapping
class group on PS;, is described by the update rules. The update rules induce
a piecewise linear action on this space. Often [F*, %] lies on the boundary of
several piecewise linear regions: in such cases, each region containing [F, %]
on its boundary is called a Dynnikov region, and the associated matrix is called
a Dynnikov matriz. Each Dynnikov matrix has an eigenvalue A > 1 with cor-
responding eigenvector the Dynnikov coordinates [a%, b*] of [F*, u*] which gives
the topological entropy of the isctopy class from the discussion above. There-
fore, the way to compute the topological entropy of a given isotopy class will
be achieved by finding a Dynnikov region and then computing the growth rate
using the associated Dynnikov matrix. This process will be described in detail
in Chapter 4.

The main reasons that our method works much faster than the train track
approach are: first, because of the simple way we put global coordinates on MF,;
and second, because it is easy to find the Dynnikov coordinates of [F*, u"] on
PMF,, numerically since it is a globally attracting fixed point of the induced
action. In addition, the method is more transparent since it relies on algebraic
calculations rather than on understanding the image of a train track under the
action of an isotopy class.

We note that since each isotopy class in MCG(D,,) is described by a braid in
Artin’s braid group B, [3, 4], the isotopy classes in MCG(D,,) will be represented

by sequences of Artin’s braid generators.



Our goal in the second part of the thesis is to compare the spectrum of a
Dynnikov matrix I} with the spectrum of a train track transition matrix 7" of
a given a pseudo-Anosov braid S € B,. The spectrum of T' is interpreted in a
recent paper [6] by Birman, Brinkman and Kawamuro. Their paper investigates
the spectrum of the transition matrix T of a given pseudo-Anosov automorphism
f on an orientable surface and shows that the characteristic polynomial of T°
factors into three polynomials: the first has the dilatation A of f as its largest
root; the second relates to the action of f on the singularities of the invariant
foliations (F*,u") and (F%,p%); and the third relates to the degeneracies of a
symplectic form introduced in [26]. Our aim is to prove that any Dynnikov matrix
shares the same set of eigenvalues with any train track transition matrix up to
roots of unity and zeros — this is proved in some cases but not in full generality.
The properties of the spectrum of T', which is difficult to calculate, can therefore
be studied using the spectrum of D, which is easy to calculate.

A train track T on Dy, is a one dimensional CW complex made up of vertices
(switches) and edges (branches) smoothly embedded on D,, such that at each
switch there is a unique tangent vector, and every component of D,, — 7 is either
a once-punctured p-gon with p > 1 or an unpunctuved k-gon with k& > 3 (where
the boundary of D, is regarded as a puncture). A transverse measure on 7 is a
function which assigns a measure to each branch of 7 such that these measures
satisfy the switch conditions (some particular linear equations) at each switch
of 7. Train tracks equipped with a transverse measure are called measured train
tracks: they provide another way to coordinatize measured foliations and integral
laminations [24, 26]. We write W(7) for the space of transverse measures asso-
ciated to 7 and say that a foliation (F, u) is carried by 7 if it arises from some
transverse measure in W(7). In particular, there is a homeomorphism from the
space of non-negative transverse m(;,asures W™ (7) on 7 to the space of measured
foliations MJF(7) carried by .

‘The action of a given pseudo -Anosov isotopy class [f] on W(r) is given by the

transition matrix associated to the (regular) invariant train track of [f]. Every



pseudo-Anosov automorphism f has an invaeriant train track: that is, a train
track 7 whose image under [f] is another train track which can be collapsed
onto 7 in a regular neighbourhood of 7 in a smooth way. The associated train
track transition matriz T has entries T;; given by the number of occurences of
e; in the edge path f(e;) where ey, ..., e, denote the branches of 7. The largest
eigenvalue of T" equals the dilatation A and the entries of the unique (up to
scale) associated eigenvector v* in W(7) are strictly positive and correspond to
(F¢ p®). If (F*, u*) has only unpunctured 3-pronged and punctured 1-pronged
singularities (which is a generic property in PMFy,), it is carried by a complete
train track 7. That is, 7 has the property that each component of I,, — 7 is either
& trigon or a once punctured monogon. In this case, MF(7) defines a chart in
MF, containing (F*, 4*) in its interior and hence there is a unique Dynnikov
matrix D. We use the change of coordinate function L : W (r) = S, and show
that D and T share the same spectrum. This part of the argument is relatively
straightforward: the main work is to show that the change of coordinate function
L is linear in some neighbourhood of v* in W+ (7).

If (F*, 1) has singularities other than unpunctured 3-pronged and punctured
1-pronged singularities, then 7 is not complete and therefore does not define a
chart. There are two subcases to consider: first, when 8 fixes the prongs of
(F*, ut); and second, when it permutes them non-trivially, Whichever is the
case, we construct a complete train track 7, from 7 so that (F*, u*) is carried by
7p and is contained in the interior of MF(7p). In order to do this, we make use
of the pinching move [24, 26]. However, 73, is not an invariant train track unless
relevant prongs of (F¥%, u*) are fixed by 8. Therefore, we use another move called
the diagonal extension mowe [24, 26] which constructs several complete train
tracks that give a set of charts which fit nicely in MF(7,), with the property
that the action in each of them is described explicitly. The results in Chapter 6
are mainly based on the interplay between the charts constructed from these two
different moves. Lemma 6.18 explains how these charts fit together. Using this

lemma, we shall prove that if 3 fixes the prongs of (F%, u*) then every Dynnikov



matrix is isospectral to T up to some eigenvalues 1. Then, we shall discuss the
case when 8 permutes the prongs of (F%, u*) non-trivially. The claim, which
has been confirmed with a wide range of examples, is that any Dynnikov matrix
D is isospectral to 7" up to roots of unity and zeros. Using Lemma 6.18, we
shall observe the problems which arise in this case and some approaches to their

solution.
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The main aim of this first part of the thesis is to describe a new method
for computing the topological entropy of each member of an infinite family of
pseudo-Anosov elements of the mapping class group MCG(D,,) on the n-times
punctured disk D, making use of Dynnikov’s coordinates on the boundary of
Teichmiiller space [19]. The method is illustrated in Chapter 4 by applying it
to two families of braids considered in [20], which are of interest in the study
of braids of low topological entropy. These families are {8, : m,n > 1}, and
{omm + 1 < m < n}, where (using the standard Artin braid generators o;)

-1 -1 -1 -1
Bmn = 0102...Om—10m O, 1%m42 - Omn—1%metn € Bmint1, and

Omnn = 0102 ... Om—10m OmTm—1..-0201 0102 ...0min-10min € Bm+n+1A

The tools to prove our results will be Thurston’s theory on surface automor-
phisms [29, 16], the Dynnikov coordinate system and the update rules defined for
Artin braid generators [11, 12, 13, 25]. This background material is summarized
in Chapter 2 and Chapter 3.

Chapter 2 serves as a background to the thesis and is divided into five sections.
Section 2.1 and Section 2.2 review the relevant basic results and terminology of
dynamical systems and surface automorphisms, Section 2.3 and Section 2.4 give
some background and results of Thurston’s theory on surface automorphisms
which will be necessary in proving our results in Chapter 3 and Chapter 4, and
Section 2.5 provides a brief introduction to braids.

The main tools on which the thesis is based are developed in Chapter 3.
It gives a detailed study of the Dynnikov coordinate system and update rules
for Artin braid generators [13, 11, 12] presenting new results and illustrative
examples, and motivates the reader to study Chapter 4. It is divided into five
sections. Section 3.1 describes the Dynnikov coordinate system [13] on D,, which
provides an explicit bijection between the set of integral laminations £, on D,
and Cp, = Z*"4\ {0}. An explicit formula is given for the inverse of the bijection
gt Ly, — Cp, which has not appeared in the literature before and has several useful
applications, An interesting problem is solved in Section 3.2: a recipe is given to
compute the geometric intersection number of an integral lamination £ € £, with
a particular type of integral lamination, known as a relazed integral lamination,
using the inverse of the Dynnikov coordinate function. This provides a way to
find the geometric intersection number of two arbitrary integral laminations when
combined with an algorithm of Dynnikov and Wiest [14]. Section 3.3 is also an
aside: it discusses the interpretation of the group operation on £, U {#} using
the bijection between £, U {0} (where § corresponds to the “empty lamination™)

and Z2—4,



The action of Artin’s braid group B, on C, is given by so-called update
rules. Section 3.4 gives the derivation of the update rules for the Artin braid
generators and Section 3.5 derives the update rules for some sequences of Artin
braid generators which are used to prove our results in Chapter 4. Finally,
Section 3.6 describes the Dynnikov coordinate function p : MJF, — R4\ {0}
which coordinatizes the space of measured foliations on D,,.

The main results of this part of the thesis are given in Chapter 4: a new
method for computing the topological entropy of families of pseudo-Anosov
braids is described. To be more specific, Section 4.1 gives the background and
motivation of the method; and Section 4.2 describes the method, introducing
Dymnikov regions and Dynnikov matrices of a given pseudo-Anosov braid with
an illustrative example. In Section 4.3 and Section 4.4, the method is applied
to the two families B, and oy, described above. In these sections, relevant
formulae are quoted and then proved: for readers interested in how these formu-
lae were derived, Section 4.5 provides a step by step guide for a simple family of

braids.
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Chapter 2

Background

2.1 Dynamical Systems

In this first section we begin with some basic terminology and definitions from

dynamical systems.

Definitions 2.1. A topological dynamical system is a pair (X, f) where X is a
topological space and f: X — X is a continuous self map. We say that (X, f) is
invertible if f is a homeomorphism.

For each n € Z, we define f™ as the n-fold iterate fo---o f if n > 0 and
flooftifn<o.
T tme

The orbit o(z, f) of a point © € X is the sequence {fi(x): i € N} if (X, f) is
non-invertible or the sequence { fi(z): i € Z} if (X, f) is invertible. We say that
% is a fixed point of f if f(z) = =, and that 2 is a periodic point if f*(z) =
for some n > 1. If » is the least positive integer for which f*(z) = z then n is
called the period of z and o(x, f) = {z; = fi(x) : §=0,...,n — 1} is called a
period n orbit of f. We denote the set of fixed points with Fiz(f) and the set of
periodic points of period n with Per,,(f).

Definitions 2.2. For a topological dynamical system (X, f) a lixed point zg € X
of f is attracting if there exists a neighborhood U of zq such that for every z € U,
fMx) = zo0 as n — oco. A fixed point zg of X is repelling if there exists a
neighborhood U of g such that if € U and x # =z, f*(2) ¢ U for some k > 0.

Definitions 2.3. Two dynamical systems (X, f) and (Y, g) are said to be topo-
logically semi conjugate if there exists a contimuous surjection h: X — Y such
that o f = goh. If h: X — Y is a homeomorphism then we say f and g are

topologically conjugate and that the homeomorphism h is a topological conjugacy.
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Now suppose A € X and B C Y with f(4) = A and g(B) = B. We
say f1 X - X and g: Y — Y are topologically conjugate relative to A and B if
there exists a homeomorphism h: X — Y such that h(A) = B and ho f =goh.

Topologically conjugate homeomorphisms are the same in terms of their dy-
namics since the conjugacy h: X — Y maps the orbits of f: X — X onto the
orbits of g: Y — Y homeomorphically. Clearly, zg is a fixed point/periodic point
of period n of f: X — X if and only if h(z) is a fixed point/periodic point of
period n of g: ¥ — Y since A(f™(xg)) = ¢™(h(xp)). Therefore two topologically
conjugate homeomorphisms have the same number of fixed points and the same
number of periodic points of each period.

Now, we shall define the topological entropy h(f) of f: X — X, which is a
non-negative number (possibly infinite) that is a measure for the complexity of
the system (X, f). Topological entropy was first introduced in [1] for compact
topological spaces. Later, Bowen [8] gave a different definition which is applicable

for metric spaces:

Definitions 2.4. Let X be a compact topological space. Given an open cover
C of X, denote by N(C) the number of sets in a subcover of minimal cardinality.
Define H(C) = log N(C) and the join of two covers C; and C by

CivCy={ANB|A€C; and B € (Cq}.
Given a continuous self map f: X — X, let f~2(C) = {f~1(4): A C}.

Definition 2.5 (Adler, Konheim, McAndrew). Let (X, f) be a topological dy-

namical system with X compact, and define

h(f.C) = 1im ZEVITOV -V ITTC)

n—00 7

The topological entropy h(f) of [ is given by sup h(f,C) where the supremum

is taken over all open covers C.
We note that the limit above always exists. See [1].

Definition 2.6 (Bowen, Dinaburg). Let (X, d) be a compact metric space with

a continuous map f: X — X. Define a new metric on X,
dul,y) = max{d(fi(z), f(y)) : 0 < i < n}

for every natural number n. A set F C X is said to be (n,¢)-separated if for

every z,y € B with o # y, dy(z,y) > €

12



Let S4(n,€) be the maximum cardinality of an (n,€)-separated set. The

topological entropy of f is defined as
. 1
h(f) = lim(lim sup — log Sy(n, €)).
=0 n—oco N

Thus, if we assume that two points can only be distinguished if they ave at
least ¢ apart, then the topological entropy is the exponential growth rate of the

number of ¢ distinguishable n orbits as 7 goes to infinity.

Remark 2.7. When X is a compact metric space and f: X — X is continu-
ous, these two definitions coincide. See [9]. It is clear from Definition 2.5 that

topological entropy is an invariant for topological conjugacy.

Theorem 2.8. Let f : X — X be a homeomorphism of a compact topological
space. Then h(f*) = |k|h(f) for any integer k.

See [1]. Note that if f: X — X is any function, then h(f*) = kh(f) for
E>1. O

2.1.1 Symbolic Dynamics

Given a dynamical system (X, f), a symbolic dynamical system serves as a model
of (X, f) to describe its dynamics in the simplest way. To do this, we set up the
so-called ‘shift map’ as the model map that acts on the space of infinite sequences
of N symbols. Here we shall introduce basic terminology. For more details see

for example [21] and [2].

Definitions 2.9. Take a finite set A = {1,...,N}. This is referred as the
alphabet or the state set for the sequences. Consider the two-sided sequence
space,

ZN = AZ - {( S T_T_1 " TpT1T - ) ;€ A}

A is a discrete metric space with the metric d(j, k) = d;;, where d;p is 1 if
j# kand 0if j = k. ¥y has the product topology and is compact since the
product of any collection of compact topological spaces is compact. The topology

on Xy is generated by
2\ 6
d(mﬁ y) = Z ;ll,fih .

i=—00

The shift map on Xy is defined by o(z); = %341 for all 4. In other words o shifts

all entries in a sequence one place to the left. That is,

o T_gm_1-wpr g -+ ) = (- T_a®_3To - B2 - ).

13



The shift map on Xy is a homeomorphism and we call the dynamical system
(Xn,0), the full two-sided N shift.

Remark 2.10. A fixed point in (Xy,0) is of the form (-- & - z2z--) while a

period p point in (Xn, o) looks like (- To®q - Tp—1 - ToZ1*** Tp—1 ).

The letters of the alphabet A denote various states and one can construct
certain ¢ invariant closed subsets of (3, 0) using a so-called transition matriz
by prohibiting the transition of a given state to another. That is, if the (4, Ic)th
entry of the transition matrix is 1, then transition from state a; to state ay is
permitted, if 0, then it is prohibited. This new subspace corresponding to the

matrix T is called the subshift of finite type defined by 7T". More formally,

Definitions 2.11. Given a matrix 7' = (73;)nxny with entries in {0,1}; the

subshift of finite type defined by T is the restriction op : Xy — Zp of o, where

Sr={zeXy:T, =1,Vi e Z}.

i1
We call T" the transition matriz and L the space of all sequences for T

Definitions 2.12. An allowable sequence of length k is a sequence sgsy - -« 851

where T,5,,, = 1 fori=0,...,k -2

We can determine the periodic orbit structure of the subshift from the tran-

sition matrix 1"

Lemma 2.13, Let Ng” denote the number of admissible sequences of length m+-1

that begin at i and end at j. Then N[} is equal to the i entry of T™.

Proof. The proof is standard, induction on m will be used. The first observation
is that the number of sequences that begin with ¢ and end with j of length m
(M{}L“) is equal to the sum of N]}* over all k& for which Ty; = 1. That is,
N
Ny = Y Mg

k=1

Now by definition N = T};. Assume that N = (T™);; for all ¢, 7. Then,
17 J if 2

N
NjH = Z(Tm)uz’fk:i = (T )y
k=1

i4



For example, let

T =

01
11
Thus there is no sequence of length 2 of the form (00) and there is 1 length 2

sequence of each of the forms (10), (01) and (11). Similarly, using the matrix
11
1 2

there is 1 length 3 sequence of the form (1 % 0) that is (110); 1 length 3

T? =

sequence of the form (0 1) that is (011); 1 length 3 sequence of the form (0 0)
that is (010); and 2 length 3 sequences of the form (1 1) that is (111) and (101).

The examples can be extended for 77 for allowable m + 1 length sequences.

Corollary 2.14. The number of fived points of oi* is equal to tr(1™) for all
m > 1.

Proof. An element s of Yp is a fixed point of of* if and only if it is of the
form (spS1...8m—1)" " (8081 . .- 8m—1)°. Bach such element defines a sequence
5051 ... Sm—180 of length m + 1 that starts and ends with sg. Conversely, given
such a sequence, a fixed point of ¢l can be constructed. Hence the number of
fixed points of o is equal to the number of allowable sequences of length m + 1
that start and end with the same symbol. Therefore the number of fixed points

of' is equal to the trace of T7". O

Definition 2.15. The spectral radius p of T is the smallest real number for

which p > |r| for any eigenvalue 7 of T

Definitions 2.16. An n x n matrix T = (I3;) is positwve if Tj; > 0 for all
1 <4,7 < n and eventually positive if there exists & > 1 such that TZ} > 0 for all
1<4,j<n

Theorem 2.17 (Perron-Frobenius). Let T' = (Tj;) be an n x n matriz with
Tij =0 foralll <4,5 <n. IfT is eventually positive, then the spectral radius p
of T' satisfies the following:

1. p is a simple root of the characteristic equation (i.e. p is an eigenvalue
with multiplicity 1). Hence the right and left eigenspace associated to p are

1-dimensional.



it. The right and left eigenvectors,
T = (*,Bl: s :-'1771,) and Y= (?/17 s 13/71.) € R"
associated with p can be chosen to have strictly positive entries

iii. For any other eigenvalue v, |r| < p.

Lemma 2.18. If T is eventually positive the topological entropy of o is equal

to h(or} = log p.
Proof. See for example [16]. g

Hence if 71" is eventually positive, the spectral radius p is an eigenvalue of T’
which is strictly greater than one and it dominates the trace. That is, tr(I™)
grows like p™ and the topological entropy is positive.

The next two sections will present some of the basic terminology and results

related to Thurston’s theory for surface automorphisms.

2.2 Automorphisms of Surfaces

This section presents some ingredients for Section 2.3 which focuses on Thurston’s
theory of surface automorphisms. Namely, surface automorphisms, isotopy of
automorphisms/paths/curves in surfaces and some essential theorems for isotopy
relation will be introduced.

Let M be a surface (by a surface we shall always mean a compact orientable 2-
manifold, perhaps with boundary). An automorphism of M is a homeomorphism
from M to itself. Let (M, A) denote a surface together with a finite subset A

where A is taken as a set of punctures/ distinguished poiunts on M.

Definition 2.19. An automorphism of (M, A) is a homeomorphism f: M — M
with f(A) = A. The set of all automorphisms of (M, A) is denoted Aut(i, A).

Definitions 2.20. A path in (M, A) is a continuous map «: [0,1] — M with
a((0,1)) € M\A. A path has two end points, the initial point «(0) and the
terminal point al). If v is an embedding then we refer to it as an arc.

A closed curve in (M, A) is a continuous map a: S — M\ A where S is the
unit circle. If o is an embedding then its image will be called a simple closed
curve in (M, A).

Every path is equipped with an orientation. However, for the purposes of

Thurston’s theory it is convenient to regard simple closed curves as unoriented.
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Therefore a simple closed curve is defined to be a subset of M rather than a map
whose image is that subset.
A homotopy between two continuous maps deforms one map into the other

in a continuous fashion:

Definitions 2,21. Two automorphisms f and g € Aut(M, A) are homotopic if
there is a continuous map F': M x [0,1] — M such that the map F, : M — M
defined for each t € [0,1] by Fi(z) = F(z,t) satisfies Fy = f and ] = g and
Fila = f|la = gla. We say that F' is a homotopy from f to g. If for each ¢ € [0, 1]
F; lies in Aut(M, A), then f and g are isotopic and Iy is called an isotopy from
f to g. We consider all homotopies/isotopies rel A when f,g € Aut(M, A) unless
otherwise stated.

We say that two paths a and 8 in (M, A) ave homotopic and write « o f8
if there is a continuous map [': [0,1] x [0,1] — M such that F(z,0) = a(z),
F(x,1) = p(z) for all z € [0,1] and F(0,t) = a(0) = 5(0), F(1,t) = a(1) = B(1)
for all ¢ € [0,1]; and F(z,t) ¢ A for all z € (0,1) and ¢ € [0, 1].

If o and B are arcs, then they are isotopic if they are homotopic through arcs.
That is, F' can be chosen so that for all ¢, 2 — ['(2,¢) is an arc.

Two simple closed curves C and D are homotopic/isotopic if there exist em-
beddings
a: St — M\A and B : ST —» M\A with a(S') = C and B(S') = D that are

homotopic/isotopic as maps into M\ A.

Definitions 2.22. We say that arcs « and 8 in (M, A) are ambient isotopic if
there exists an automorphism ~ € Aut(Ad, A) isotopic to the identity such that
B = ho . Similarly, two simple closed curves Cy and Cy in (M, A) are ambient
isotopic if there is an automorphism 7 in Aut(A4, A) isotopic to the identity such
that h(Cy) = Ca.

We do not distinguish homotopy and isotopy for simple closed curves; and for
arcs with common end points that lie in M and A. The following two results

are from [15].

Theorem 2.23 (Epstein). Let a and 8 be two arcs in (M, A) with end points
Ocr, OB such that SMNa = da = M NS = 88 and which are homotopic keeping
the end points fixed. Then they are ambient isotopic by an isotopy which is fizved
on OM and outside a compact subset of M\ A.
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Figure 2.3: Leaves near @ € M\OM
Figure 2.4: Leaves near 3-pronged and 4-pronged singularities in Int A/

=

Figure 2.5: Leaves near 1-pronged singularity x € A

7t

e each boundary component has a p-pronged singularity where p > 1 as
shown in Figure 2.6. In this case, the boundary component and the p
prongs which emanate from the singularity are all considered to lie in the

same leaf.

= 3

Figure 2.6: Leaves near a 1-pronged singularity and a 3-pronged singularity on
aM
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where the infimum is over all arcs 8 isotopic to o which are transverse to (F, i)
except at a set of measure zero. Similarly, we can define u(C) and i(F,[C]) for

an essential simple closed curve C' and its isotopy class [C].

Definitions 2.36. A Whitehead move on a measured foliation contracts a com-
pact leaf that joins two singularities or does the inverse. See Figure 2.11.
Two measured foliations are Whitehead Equivalent if one can be turned into

the other after a finite number of Whitehead moves.

Observe from Figure 2.11 that if two foliations are related by a Whitehead

move, then there is a natural one-to-one correspondence between their transverse

=X

Figure 2.11: An example of a Whitehead Move

measures.

Definition 2.37. Let (F,u) be a full or partial measured foliation on (M, A)
and let & > 0. (F,ku) is a measured foliation with the same leaves as those of

(F, ) such that any arc v transverse to J has measure kpu(c).

Let MF (M, A) be the set of measured foliations and partial measured foli-
ations on (M, A) up to isotopy and Whitehead equivalence. Then by Definition
2.37 there is a natural action of the positive reals R™ on MF (M, A).

Definitions 2.38. The space of Projective Measured Foliations, PMF (M, A),
on (M, A) is the quotient space of MF (M, A) modulo (F, u) ~ (F,kn), k > 0.
That is, PMF (M, A) is the space of equivalence classes [F, ] where (F, p) is
identified with {F, ku) for all k > 0.

2.4 Some results of Thurston’s theory on surface au-

tomorphisms

In this section we present some known results of Thurston’s theory on surface
automorphisms which we shall refer to in Chapter 3 and Chapter 4. In particular,

we shall see that each essential simple closed curve (or a union of them) is assigned
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a non-negative mumber by the elements of three different spaces MF(M, A),
E(M, A) and T (M, A). That is to say, there exist maps MF (M, A) — R‘;(OM’A),
E(M,A) — R‘;(OM‘A) and T(3, A) — Rg(OM’A) which can be shown to be injective

and therefore give embeddings of these spaces in ]Rg(OM’A).

Throughout this section (A4, A) will denote a surface of genus g with b
boundary components and s punctures, which has negative Euler characteris-
tic x(M,A)=2—-2g—b—s.

Definitions 2.39. Given «,f € £(M, A), denote by i(a, 8) > 0 the geometric
intersection number of a: and £, which is the minimum number of intersections
of a and b where a € o and b € 8. The function i: E(M, A) x E(M,A) = Zx

is called the geometric intersection function.

Let Ri(oM’A) be the set of functions from £(M, A) to non-negative reals Rxp
endowed with the product topology. There is an associated projective space

P (Rg%\/[’A) ) given with a projection
e ]Ré((;w’A) \0— P(R‘;(UM’A)).

P(]Ri(nM’A)) is given the quotient topology.

The map i: (M, A) x E(M, A) — Ry gives a map i : £(M, A) —» REGF
with 1.(a)(f) = i(e, #) which is known to be injective. We have,
in. mE(M,A E(M,A
E(M, A) = REMA T, pEUHA)Y

and 7o i, (E(M, A)) C P(R‘;(OM’A)) is known to have a compact closure. Let
PL(M, A) denote this closure.

Theorem 2.40. (/29/) PL(M, A) is topologically a sphere which has dimension
6g+25+20—-7.

See [16] for a proof.

Similarly 4 defines a map from MF(M, 4) to ]Rg(GM‘A) by Definition 2.35.

That is, ¢ : MF (M, A) x E(M, A) — R>¢ gives a map iy : MF(M, A) — R‘;(OM’A)
with 4. (F)(8) = ¢(F, 8). We have,

MF(M, A) LN R;‘(OM,A) x, P(Rc;(oM,A))
Theorem 2.41. ([29]) The topological sphere PL(M, A) is identified with

{moi(F): F e MF(M,A)}.
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See [16] for a proof.

Therefore PMF(M, A) can be identified with PL(M, A) and it follows that
PMF(M, A) is homeomorphic to a sphere with dimension 6g + 2s + 2b — 7.
E(M, A) is a dense set of rational points on this sphere. Using the coordinates
of such a point the corresponding essential simple closed curve can be drawn.
This can be done using Dehn-Thurston coordinates [26} or Dynnikov coordinates

when M is the punctured disk D,, (Chapter 3).

Definition 2.42. A hyperbolic metric on (M, 4) is a Riemannian metric on
M\ A of constant curvature —1. The Teichmiiller space T (M, A) is the space of
hyperbolic metrics on (M, A) modulo isotopy.

Let p€ T(M,A) and € E(M, A). i: T(M,A) x E(M, A) — Ry given with
i(p, ) = p(c) gives the length of a minimal geodesic in the isotopy class of a
and induces i, : T (M, A) — ]Rg(OM’A).

T (M, A) is endowed with a minimum topology such that each function i(p, a)
is continuous from which a continuous map wo i, : T(M,A) — IR;(OM’A) is ob-
tained.

The closure of w04, (7T (4, A)) is wotu (T (M, A)) UPMF (M, A) from which
T = T(M, A) UPMF(M, A) is endowed with a natural topology.

Theorem 2.43. ([29]) T = T(M, A)UPMF(M, A) is homeomorphic to a disk
of dimension 6g — 6 + 2s + 2b. Therefore, T (M, A) is an open ball of dimension
69 — 6 + 2s -+ 2b and PMF (M, A) forms its boundary.

If f € Aut(Af, A), there is an induced action f on P(R';(OA'I’A)) defined by

F&) (@) = &(FYa)). MCG(M, A) acts continuously on T and T is invariant
under f . Therefore by the Brouwer Fized Point Theorem f has a fixed point in
T. Analysis of this fixed point yields the famous Nielsen-Thurston classification
theorem which says that any automorphism f in Aut{id, A) is isotopic to an

automorphism g in Aut(M, A) which is either finite order or pseudo-Anosov or
reducible [29, 16].

Definition 2.44. An automorphism f: (M, A} — (M, A) is reducible if there
exists a collection £ = {L4,..., L} of mutually disjoint essential simple closed

curves in (M, A) such that for all 4 there is some j with f(L;) = £j.

Definition 2.45. An automorphism f: (M, A) — (M, A) is finite order if f* = id

for some integer n > 0.

Next, we define pseudo -Anosov automorphisms which are the main focus of

this thesis. First we give the following preliminary definition.
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Definition 2.46. Let f: (M, A) — (M, A) be an automorphism, and (F,u) be
a measured foliation on (A, A). Then, f((F,u)) is the measured foliation whose
leaves are the images under f of the leaves of F and which assigns the mea-

sure p(f~1(@)) to an arc o transverse to f(F).

Definition 2.47. An automorphism f: (M, A) — (M, A) is pseudo -Anosov if
there exists a transverse pair of (full) measured foliations (F*, 1*) and (F¥, u*) and

a number A > 1 (the dilatation) such that

P2 1) = (75, (1/ X))

FFS ) = (FY au).
We say that (F°, ) and (F*, u*) are the stable and unstable invariant foliations
of f respectively.

Before giving a list of properties of pseudo-Anosov automorphisms, we shall

state the classification theorem [29] once more:
Theorem 2.48 (Nielsen-Thurston). Any automorphism f: (M, A} — (M, A) is
isotopic to an automorphism g: (M, Ay — (M, A) which is one of the following
types:

i. g is finite order;

. g is pseudo-Anosov;
1t g is reducible.

If f is isotopic to a pseudo -Anosov automorphism, then it is not isotopic to

a reducible or finite order automorphism.

Definitions 2.49. An isotopy class that contains a reducible automorphism is
called a reducible isotopy class. It is irreducible otherwise. An irreducible isotopy
class is called finite order isotopy class if it contains a finite order automorphism

and pseudo -Anosov isotopy class if it contains a pseudo-Anosov automorphism.

Remark 2.50. Note that any iterate of a reducible, finite order or pseudo-
Anosov automorphism is reducible, finite order or pseudo-Anosov respectively.

Therefore the classification is invariant under powers, in MCG (M, A4).

2.4.1 Some properties of pseudo-Anocsov automorphisms

Our goal in this section is to introduce some basic properties of pseudo-Anosov
automorphisms which are essential in the remainder of the thesis. All the proofs

can be found in [16].
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Throughout this section f : (M, A) — (M, A) will denote a pseudo-Anosov
automorphism with invariant measured foliations (F*, s) and (F¥, u*) and di-

latation A > 1.

Theorem 2.51. If g: (M,A) = (M, A) is a pseudo-Anosov automorphism in
the isotopy class of f, then f and g are topologically conjugate by a homeomor-

phism that is isotopic to the identity.

See exposé 12 of [16] for a proof. This means that the pseudo-Anosov auto-
morphism in a pseudo-Anosov isotopy class is essentially unique.
We go on with the following important theorem which gives the topological

entropy of a pseudo-Anosov automorphism f: (M, A) — (M, A).

Theorem 2.52. Let g : (M, A) — (M, A) be in the isotopy class of f. Then
h(f) < h(g). Furthermore, h(f) = log \.

See exposé 10 of [16] for a proof.

Definition 2.53. Let [¢] € MCG(M, A). Then the topological entropy of [¢] is

defined as

Wl¢l) = gien[qu] h(g)-

Remark 2.54. Theorem 2.52 tells that a pseudo-Anosov automorphism min-
imizes the topological entropy in its isotopy class. Therefore, the topological

entropy of a pseudo-Anosov isotopy class equals log .

Theorem 2.55. Let p be a Riemannian metric on (M, A), a € (M, 4) and

lp(c) be the minimum length of a geodesic a € . Then,

Tim 3/1,(/(a) = A

See exposé 9 of [16].
There exists an f-invariant measure p which is given locally by the product
P ® pis. Since  is determined up to multiplication by positive constants, we can

suppose that ., & ps(M) = 1. If this is the case, we have the following theorem.
Theorem 2.56.
X TIP
(N )

n-»00 n

= pu([0]) s ([B])
for any two isotopy classes [a],[8] in E(M, A).

See exposé 12 of [16] for a proof.
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Therefore, the length of o and its geometric intersection number (e, ) with
a given essential simple closed curve 3 grows like A™ as we repeatedly apply f to
a. Hence, Theorem 2.55 and Theorem 2.56 suggest a method to find an estimate
for the dilatation A of f and hence compute its topological entropy log(A) by
Theorem 2.52. In fact Moussafir’s technique on computing braid entropy is based

on these two theorems. This will be elaborated in Section 4.1.

Theorem 2.57. For any essential simple closed curve «,

3 n — (3 w : T . 3 Ll
lim f*lo] = [F*,p"],  lm f""[a] = [F°, 4],

n—o0

and for any [F,p] € PMF(M,A) with [F,p] # [Fpu*] and [F,u) # [F3, 19

s n — U U : - — s S
rw,l-l—l)lclof []:»M]“[]: ,,U,], nlg%o‘f [‘Faﬂ']“‘[}‘xu]

See exposé 12 of [16] for a proof.
Theorem 2.57 says that any essential simple closed curve [¢], or measured
foliation [F,u| ([F,u] # {F3,uf]) in PMF(M, A) converges to the unstable

foliation [F*, %] under iteration of the induced action of f.

Theorem 2.58. The only fived points of f in T are [F4 1] and [F*%,1°] on
PMF(M,A).

Theorems 2.57 and 2.58 will be extremely important for the methods devel-
oped in Chapter 4.
We give two more properties regarding the invariant measured foliations of a

pseudo-Anosov automorphism f: (M, A} — (M, A).

i (F%, p) and (F¥, ) are unique up to multiplication with positive constants
and satisfy the following: No leal connects two singularities and no leaf of
(F5, %) or (F*, ™) contains a simple closed curve except for the boundary

components of M. See exposé 9 of [16].

Next, we give a formula which is known as “Euler-Poincaré formula” that
reveals the strong connection between the singularity structure of the invariant
foliations of f and the topology of the surface M. In particular, using this formula
we can tell the possible singularity structures of the invariant foliations for D,.

See exposé 5 of [16] for a prool.
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ii. We have
O

> (2 -p) =4(1-g)
p=1
where n, denotes the number of singular points (including boundary com-

ponents) with p prongs.

Therefore for D,, we have that,

an(Z -p)=4

We first note that l-prongs only occur at A and 9D,,. Also, the summand is
positive only when p = 1. Hence when n < 3 there can be no pseudo-Anosov

automorphisms of D,,.

When n = 3, the only possibility is to have a I-pronged singularity on the

boundary and l-pronged singularities at each of the three punctures.

When n = 4, there are three possibilities:

e a 2-pronged singularity on the boundary and 1-pronged singularities at

each of the four punctures or

¢ a 2-pronged singularity at one of the punctures and 1-pronged singu-

larities at the other punctures and the boundary.

¢ a l-pronged singularity on the boundary and 1-pronged singularities at

each of the four punctures, and an interior 3-pronged singularity.

2.5 Braids

It is well known (see for example [7]) that isotopy classes of orientation preserving
automorphisms on D,, are represented by braids. Since our principal goal in this
thesis is to study isotopy classes of pseudo-Anosov automorphisms on D, we
shall always work with braids.

We will start with some basic definitions and properties and explain the
group structure of geometric braids, and finally explain briefly why the braid
group modulo its center is naturally isomorphic to the mapping class group of
Dy,.

Definition 2.59. Let D, = (D? A,) be the standard n-punctured disk (see
Definition 2.26). A geometric braid 8 € B, is a collection of n disjoint arcs

Qt, ..., ap in D? x [0,1] connecting the points of A, x {0} to those of A, x {1}
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such that each level plane D? x {s} for s € [0,1] intersects each arc at only one
point. The arc with initial point (a;,0) and end point (a4, 1) is called the rth
string of B and mg is called the permutation induced by the geometric braid 3.

Note that everything is taken up to isotopy.

Figure 2.12: A braid on a 5-punctured disk

The set of geometric braids B, forms a group with the following composition
rule: Take two geometric n-braids Si, f2 embedded in D? x [0, 1] with the arcs
aj : [0,1] = D? x [0,1] and o : [0,1] = D? x [0, 1] respectively. Writing ¢ for
the projection ¢ : D% x [0,1] — D?, the arcs aj of 16, are defined by

(dlaz(2t)),1); t<1/2

(2.1)
((f)(a?—rl(j)(Zt —1)),t); t=1/2

a;(t) =

where 7 is the permutation induced by 8y. See Figure 2.13.

Informally speaking, this operation joins the bottoms of the strings of 3 to
the tops of the strings of B2, and then squashes the constructed braid in such a
way that it is embedded in D? x I. The set of geometric braids with this given

operation forms a group: The arcs of the trivial braid are defined by
aj(t) = (a;,t), 0<j<1

and the arcs of the braid which is the inverse to the braid given with the arcs o;
are defined by
af(t) = (dlay(1 - 1)), 0<sj<1L.

Observe that any geometric braid S € By, can be constructed as a composi-
tion of geometric braids o; and o ! as depicted in Figure 2.14 and satisfies the
relations as depicted in Figure 2.15 and Figure 2.16.

In fact this group is canonically isomorphic to the Artin Braid Group:
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Figure 2.18: A half and full twist on a 3-punctured disk.

Let f € d. Regard f: D? — D?. Then by Theorem 2.27 there exists an
isotopy {1} : D? = D? so that y9 = id: D? » D? and 7y = f : D> » D?. One
can construct a geometric braid by taking the union, { ;¢ 1) vt(An) x {¢}. Note
that this construction has been made taking a particular {v:}. If we picked
another isotopy {7}, we would obtain a different braid . However, choosing
different isotopies yields braids which differ by powers of &,,.

Therefore, we take the quotient B,,/ < 6, > to get a homomorphism from
MCG(Dy) to By/ < 0y >= By /Z(By).

Now we shall explain the inverse construction of a homeomorphism from a
braid.

Let B(0,7) denote the ball of radius r centred on the origin in R%. Define
f 1 B(0,2) — B(0,2) in polar coordinates by

fr,0) = 0+ el (2.2)
(ro+72—-r)); 1<r<2

For 1 <4 <n —1 choose disks Bi - Bg C Dy, which contain punctures 2 and
7+ 1 and no others.

Choose a homeomorphism ¢; : B? — B(0,2) such that ¢;(Bi) = B(0,1),
di(a;) = (—1/2,0) and ¢;(air1) = (1/2,0). Define f; : Dy, — Dy, by

¢;'ofo¢y m€ B
fi=< " ‘ ? (2.3)
id z ¢ Bl

Given 8 =] o,f,’:, the corresponding mapping class [f] € MCG(D,,) contains
the composition f = Qff. See Figure 2.19.
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Chapter 3

Dynnikov Coordinates

Given a suwrface M of genus g with s boundary components, a well known way of
giving coordinates to integral laminations and measured foliations is to use either
the Dehn-Thurston coordinates or train track coordinates. See [26] for details.

An alternative way to coordinatize integral laminations and measured folia-
tions on a standard punctured disk D,, is achieved by the Dynnikov coordinate
system. That is, Dynnikov’s coordinate system provides an explicit bijection be-
tween the set of integral laminations on D,, and Z2"~4\ {0}; and the set of mea-
sured foliations up to isotopy and Whitehead equivalence on D,, and R?"~4\ {0}.
The Dynnikov coordinate system together with the Dynnikov formulae (update
rules) which give the action of Artin’s braid group B, ou L, in terms of Dyn-
nikov coordinates, was introduced in [13]. Then, it was studied in [11, 12] as an
efficient method for a solution of the word problem of B, that is, the problem
of determining whether a given braid 8 € B, given in terms of the Artin gen-
erators, is the identity. (Heve, and throughout the thesis, we use efficient in an
informal sense and do not carry out any formal efficiency analysis.)

Later, Moussafir used Dynnikov coordinates in [25] and introduced a method
which gives an estimate for the topological entropy of braids. We shall explain
his method briefly in Chapter 4.

Our method to compute the topological entropy of families of pseudo -Anosov
braids which we shall introduce in Chapter 4 also uses Dynnikov coordinates and
is inspired by Moussafir’s technique.

This chapter provides background material for Chapter 4 and contains a de-
tailed study of triangle coordinates, the Dynnikov coordinate system and update
rules for Artin braid generators [13, 11, 12]. One difference when discussing up-
date rules will be that, in the cited papers B,, acts on D2 whereas here, B,

acts on Dy, The reason for this is the following:
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For the solution of the word problem using the Dynnikov coordinates, one
chooses an integral lamination which is changed under the action of any non-
identity braid. There is no such lamination on D, as if we take any “innermost
curve”, it bounds a punctured disk, and any action on that disk doesn’t affect
the lamination.

Theorem 3.19 gives the inverse of the Dynnikov coordinate function. That
is, it gives a formula that describes integral laminations from given Dynnikov
coordinates. We shall prove this theorem and therefore show that the Dynnikov
coordinates coordinatize integral laminations. We note that this theorem has not
appeared in the literature before. We shall then give an identical theorem for
measured foliations.

In Section 3.2 we shall use this theorem to give a recipe which gives the ge-
ometric intersection number of an integral lamination £ € £, with a particular
type of integral lamination, known as a relazed integral lamination. This pro-
vides a way to find the geometric infersection number of two arbitrary integral
laminations when combined with an algorithm of Dynnikov and Wiest [14]. This
algorithm takes an arbitrary integral lamination £ and finds an n-braid £ such
that S(L) is relaxed. That is the algorithm relazes integral laminations.

Because Dynnikov coordinates give a bijection between £, U {#} (where
corresponds to the “empty lamination”) and Z2"—4, they endow £, U {f} with
an abelian group structure. In Section 3.3 we shall introduce and discuss the
interpretation of the group operation on £, U {0}.

In Section 3.4 update rules for Artin braid generators are derived and in
Section 3.5 update rules for some sequences of Artin braid generators are given
which are also new and will be used in the proof of the results in Chapter 4.

Finally, in Section 3.6 Dynnikov coordinates will be extended to measured

foliations.

3.1 Dynnikov coordinates of integral laminations and

measured foliations

The aim of this section is to describe the Dynnikov coordinate system for the set
of integral laminations £, and prove that there is an explicit bijection between
Ly, and Z2*4\ {0}. We shall begin with the triangle coordinates which describe
each integral lamination by an element of Z3"~5 using its geometric intersection
number with given 3n — 5 embedded arcs in D,,. Dynnikov coordinates [13] ave
certain linear combinations of these integers and yield a one-to-one correspon-
dence between £, and C, = Z2"~*\ {0}. This will be proved by Theorem 3.19

37





















10 4 10 4 0 3 8 2 4 1 2
Qo A Ba | As| Ay | As| As | Ag Ag | Aol A An
.\\—. _.-—-""/ \\
| \-\ L~ -
" — | ~—l ™
N \Q —] -
\\
N , u\\ \I * ] °
L]
‘\_\ e~
S il gt B Ny gy Vs
P— \\ —_—] /
\ /__/
6 6 7 6 3
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Figure 3.10: (4,6,4,6,3,7,2,6,1,3; 10,10, 10,8, 4,2) gives £ € £,

Lemma 3.10. The triangle coordinate function v : Ly, — Zg’f}“‘:’ 18 injective.

Proof. Working in each region S; as in Example 3.9 we can determine the number
of above, below and right/left loop components. Therefore, the path components
in each S; are connected in a unique way up to isotopy and hence £ is determined

uniquely. O

We have seen that the triangle coordinate function 7 : £, — Z‘i’})—‘r’ is in-
jective. However, is it always possible to construct an integral lamination from

iven triangle coordinates? Namely, is 7 : £,, — Z3%75 suriective?
Ys >0
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The answer to this question is “no” since 7(£) must satisfy the triangle in-
equality in each of the strips of Figure 3.1, as well as additional conditions such
as the equalities in Lemma 3.8. The next few examples will illustrate some cases

-5 . . . " >
where an element of Zi’g ° is not the triangle coordinates of any element of £,,.

2 1 3 2 1 3
. 3 —_— . = D) G\ .
- —~—
s —l \—’
3 3

Figure 3.11: s is odd

Example 3.11. Is it possible to construct an integral lamination £ € £z with
(o1, a2, B1, B2) = (1,8,2,3)7
No, it isn’t. Observe that fa is odd and every taut simple closed curve must

intersect By an even number of times (Figure 3.11).

Figure 3.12: a + a9 is odd

Example 3.12. Is it possible to construct an integral lamination £ € L3 with
(al y (X2, :61) ﬁQ) = (1a 2: 2: 2)?
No, it isn’t. ap+ vy is odd: Observe that every taut simple closed curve must

intersect o U az an even number of times (Figure 3.12).

Example 3.13. Is it possible to construct an integral lamination £ € L3 with
(a1,09,61,82) = (1,1,2,4)?

No, it isn’t. The triangle inequality is not satisfied in Ag: fo > og + a3
(Figure 3.13).
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Figure 3.13: a1 + a9 <
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Figure 3.14: 1 = B2 and as + a1 > fy

If a set of coordinates is not incompatible in any of the ways shown in exam-
ples 3.11, 3.12 and 3.13 — that is, if each §; is even, each ag; + ag;_; is even,
and the triangle inequalities are satisfied in each region — then it is possible to
construct a curve system with these triangle cordinates. However, this system of
curves may not necessarily be an integral lamination as the following examples

illustrate.

Example 3.14. Is it possible to construct an integral lamination £ € L3 with
(a1, 2,01, 02) = (1,38,2,2)7

No, it isn’t. Since £y = f and ag + o; > f1, Lemma 3.8 isn’t satisfied
(Figure 3.14).

In fact it is possible to draw a curve system whose minimal intersection with
the arcs is given by these coordinates, but it contains a curve that bounds a

puncture and therefore is not a representative of an integral lamination.

Example 3.15. Is it possible to construct an integral lamination £ € L3 with
(c1, @2, 1, B2) = (1,1,2,2)7

No, it isn’t. ven though Lemma 3.8 is satisfied, the resulting simple closed
curve is not essential. Observe that connecting the path components in §; and

the two end regions yields a curve parallel to 8D, (Figure 3.15).
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Figure 3.15: B1=0 and as + oy = B4

Next, we shall discuss what properties an integral lamination £ € £,, satisfies
in terms of its triangle coordinates and construct a new coordinate system from
the triangle coordinates which describes integral laminations in a unique way.
Namely, we shall describe the Dynnikov coordinate system.

Given a taut representative I of £ € £, one can initially observe the follow-

ing:

Remarks 3.16. i Every component of L intersects each 8; an even number
of times. Also recall that the number of loop components in S; is given as
in Definitions 3.6. That is, b; = g‘—_g# and |b;| gives the number of loop
components in S;. When b; > 0 the loop components are right and when

b; < 0 the loop components are left (Figure 3.16).

ii. Set x; = |ag; — agi—1| and m; = min{ag;_1 — |bi], o0 — |Bi]}; 1 < 6 < m— 2.
Then z; gives the difference between the number of above and below com-
ponents in S;, and m; gives the smaller of these two numbers by Lemma 3.7
(Figure 3.16). We note that x; is even since each simple closed curve in L

intersects cvg; U cra;.3 an even number of times.

fii. Set 2a; = agi—agi—1; 1 < i < n—2, (a; is an integer since |a;] = $t). Assume
that b; > 0. Then, 8; = ag; + ag;_1 by Lemma 3.8, Since 2a; = ag; — Q@21

it follows that

Qoi = a; + @; and g1 = —a; + éi
2 2
A similar calculation for b; < 0 gives
Qg = a; + 'B—i;;l-; and agi_1 = —a; + ﬂi;l.
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Figure 3.16: Number of above and below components in 5;
That is to say:
1N Brs .
0 = { CDfapegm + 75 il by 2 0;
tT i B[4 :
(=1)agije + =2 if bryym <0
where [2] denotes the smallest integer which is not less than z.
iv. From item ii. and item iii., it is straightforward to compute 8;; 1 < i < n-—1.
2m; + 2 |a; it b; <05
B; = i+ 2lail e (3.7)
2m; + 2)a;| +2b; if b; > 0.
That is,
Bi = 2 [|a;| + max(b;, 0) + my] .
i1
Since 8; = 51 — 2 ij by (3.1),
=1
i-1
B = 2 ||ay| -+ max(b;,0) + m,; + ij for 1<i1<n-—2.
j=1
v. A crucial observation is that m; = 0 for some 1 < ¢ < n — 1 since otherwise

there would be both above and below components in each 5; and hence the

integral lamination would have a curve parallel to 8D,,. Then,
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When m; = 0;

i—1

B =2 ||ag| + max(b;,0) + ij
Jj=1
When m; > 0,
i1
61> 2 ||ai| + max(b;,0) - ij
Jj=1

Therefore,

k—1
By = 151]1»‘1%:::_22 lag| + max(bg, 0) + ;bj

We have seen that a; and f; have been recovered from a; and b; where

Qi — Q94—
a; = ;2—2 and b; =

Bi ~ Biv1
—

Now, we are ready to define the Dynnikov coordinate system which has the
advantage to coordinatize L, bijectively and with the least number of coordi-

nates.

©»

Definition 3.17. The Dynnikov coordinate function p : L, — Z24\ {0} is
defined by

p(C) = (a,b) = (CLl, R s P, 1N l)l,. . .,b.nﬁg),

where for 1 <i<n-—2

Bi — Bixa

Q2 — Qi1 and by = SL_PiAl (3.8)

“= 2

Let C;, = Z*"~4\ {0} denote the space of Dynnikov coordinates of integral lami-

nations on D,,.
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Example 3.18. The Dynnikov coordinates of the integral lamination £ in Fig-
ure 3.3 are given by p(L) = (2,1,0,-2,0,2). We have,

ar—a; 6-—-2

a1:2, ,81=2, a,1: 2 = 2 32
Qg — 3 5—3

= = = Py :]_
(87] 61 ﬁz 8: ag 9 9
Qa5 — 4—4

a=3,  f3=8 a=—_t="—"_0

g =5, Ba =4, bl:ﬁl;_ﬂ?=4_;§:_2
- 8§—8

o5 =4, ”FMZT:U
Bs—Ps 8—4
Qg ) . b3 9 2

Note that b; can easily be read off from a picture of the lamination by counting
the number of loop components and checking whether they are left or right. For

example, there are two left loop components in 9y, therefore b; should be —2.

Theorem 3.19 (Inversion of Dynnikov coordinates). Let (a,b) € Cy. Then (a,b)

is the Dynnikov coordinate of ezactly one element L of £, which has

Bi =2 max
1<k<n—

k-1 i-1
) |ag| + max(bg,0) + Z bj| —2 Z b (3.9)
=1 =1

(3.10)

] »81' . p
= 4 a2 i by 2 05
(=1)afa + ﬁHgW] if brija) <0

where [z] denotes the smallest integer which is not less than .

Proof. p is injective: Let £ € Ly, with 7(£) = (o, 8) and p(£) = (a,b). We
showed in Remarks 3.16 that («, ) must be given by (3.9) and (3.10). Hence
there is no other £’ € £, with p(£') = (a,b) by Lemma 3.10.

p is surjective: Let (a,b) € Cn. We will show that (e, ) defined by (3.9) and
(3.10) are the triangle coordinates of some £ € £, which has p(£) = (a,b). It
is clear that if there is some £ with 7(£) = («, ), then p(£) = (a,b). By the
construction in Remarks 3.16, it is possible to draw in each S;, 1 < ¢ < n — 2
some non-intersecting path components which intersect 8, agi_1, o, and Biq
the number of times given by («, 8). Joining these components (and completing
in the only way in the two end regions) gives a system of mutually disjoint simple

closed curves in D,. There are no curves that bound punctures as every path
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Lemma 3.21. The number of above and below components in S; ; is given by
a : b :
s¢ .= min {agk—1 — |bi ond s;; = min {asg — |bg
oy isij{ ok—1 = |bx|} i isksJ‘{ ok — |bx|}

respectively. Therefore the sum s;; = i+ sli’yj gives the number of above and
below components in S; ;.
Proof. Foreach1 <k <n—2, s¢ = agp_1—|b| and s§ = ao—|by| by Lemma 3.7.

Then 8¢, = min {s?} and 5%, = min {s%}. Hence
i,J iSkSJ'{ l\,} 1,7 ‘iSkSJ’{ k} )

i {s® in fsb
sid = 50 sk} + i (k)
O

Remark 8.22. Notice that the number of path components in S;; which are

not simple closed curves is given by ﬁ,-+g L (Figure 3.17).

Definitions 3.23 (Dynnikov and Wiest [14]). Given an essential simple closed
curve C in Dy, {|C|| denotes the minimum number of intersections of C' with the

z-axis. Then, given £ € L,,, the norm of £ is defined as

Il = lcd

where {C;} are connected components of £. We say that C; is relazed if |C;|| = 2.

Then, L is relaxed if each of its connected components C; is relaxed [14].

It is always possible to turn a non-relaxed integral lamination £ € L, into
one which is relaxed. That is to say, for any £ € £,, there exists a braid 8 € B,
such that F(£) is relaxed. This is known as relaxing an integral lamination and
an algorithm to accomplish this is given in [14].

Given £; € L,, and £y € £, which are not relaxed, the geometric inter-
section number (L, Ls) can be computed by first relaxing one of the integral
laminations with an n-braid g by the algorithm described in [14] and then com-
puting 4(8(L1), B(L2)) (note that i(Ly,L2) = #(B(L1),B(Ls)) since geometric
intersection number is preserved under homeomorphisms). Now two questions
arise: I'irst, how do we compute S(£) in terms of Dynnikov coordinates? Second,
how do we find the geometric intersection number of an integral lamination with
one which is relaxed? This section presenis a formula in terms of Dynnikov co-
ordinates that gives the geometric intersection number of an integral lamination
L with a relaxed curve and hence answers the second question; and Section 3.4
describes update rules which gives 5(£) in terms of Dynnikov coordinates.

Definition 3.24 describes a relaxed curve in D, in terms of its Dynnikov

coordinates.
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Figure 3.18: Relaxed curves Chy, Ciy, Ciz in Dy from top to bottom

Definition 3.24. For 1 < i< j<norl<i<j<n, Cy € L, denotes the
isotopy class of relaxed curves in D, which bound a disk containing the set of

punctures {3,7+1,...,5}.
Hence, we observe that
p(Cz_;r) = (Oa oo 0, bl: veey bn—?)

where ;1 = —1if7> 1, bj_1 = 1if § < n and b, = 0 for all other cases.

Figure 3.18 shows some examples of relaxed curves.

Theorem 3.25. Given an integral lamination L € L, with triangle coordinates
(v, B) and Cij € Ly, 1(L,Cyy) is given by,

(L, Ci5) = Pic1 + B — 28-15-1. (3.11)

where s;; is defined as in Lemma 3.21.

Proof. Take a taut representative L € £ and a representative -y;; of Ci; which is
composed of subarcs of B;_; and 3; and horizontal arcs which are such that the
disk bounded by -;; contains all of the path components of L in S;_; ;3. The
number of intersections of -y;; with the path components of L in S;_1 ;1 is given

by Bi—1+ B; (See Remark 3.22). This number can be minimized by subtracting
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3.3 Aside: Addition on £,

For the sake of this section set C, = Z?"~%. This adds the empty lamination 0
to Ly. Then by Theorem 3.19 there exists an operation ® on £, such that the

diagram in (3.12) commutes.

Ly U{0} x £, U {0} —2— £,u {0}
pxpl P\[ (312)
F2n—4 o g2n—d L) 7.2n—4

In this section, we shall describe the operation @ on £, and concretely see what

addition of two integral laminations looks like.

Theorem 3.28. Let L1 € Ly, and Lo € Ly, have triangle coordinates (cvl, 51) and
(a2, 82). Then the integral lamination £ with p(L) = p(L1) + p(L2) has triangle

coordinates (e, B) given by

ay  =oap—D-By1<i<n~-2
g1 =0y —B-B; 1<i<n—-2 (3.13)
B =pB—2B; for1<i<n-—1
where,
ah; = o + 03y, 0 g =0y vodiy, Bi=6 + B
and

_ o + oy — max(B, B, )

P, -

;1<i<n—-2
- B ra 1h
B = 1‘11111(81’11_2, Sl,n~2)

where s, o and 5’11”71_2 are given by the formulae in Lemma 3.21, except that

g—g
by = = and oy = o).

Proof. Let L' denote a curve system which intersects each arc a; of times and
each arc f; B} times. This can be drawn piecing together arcs in each triangle
since of and B satisfy the triangle inequalities in each triangle (note that since
o}, B and o? and /32 satisfy the triangle inequalities so do o and f).

Let s1%, o and Sllb,n——Q denote the number of above and below components of

L' in §) -2 respectively as given in Lemma 3.21. If 51", , # 0 and $Pn_a #0,
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then some curves of L' are parallel to 80,. Observe that the number of such
curves is given by B = min(sy%, ,, s’f"nfz} {see Figure 3.22) and intersects each
a; once and ] twice.

Hence one can construct from L a new curve system L which does not contain
any curve that bounds a puncture by subtracting F; from the o coordinates;
and which has no curves that are parallel to 8D, by subtracting B from the
a:é coordinates and 2B from the ! coordinates (observe that if £1 and £q are
disjoint, £ is just their union).

Hence the formula in 3.13 realizes the triangle coordinates of an integral

lamination £ (See Figure 3.22) and £, U {0} becomes an abelian group. Let

Ll [.‘.2 Ll

4 220 20 2 2 342 432
6 56 263 4

(23» L0+ G D - A

)

[\

\

2 2 2 1 2 1 3 4 3
LI

6562635 4 9 2202 10

L1 ]

A ™ o) LT

ZN I
(§(>§i:):> > kiﬁa'

- ]

3 43 0o 2 1

Figure 3.22: Addition of integral laminations

(al,b}), (a2,b?) and (a,b) denote the Dynnikov coordinates of £i, L3 and £

respectively. Then p(L1 & Lg) = p(L)) + p(L3) since

1, 2 2
agi— i1 _ g +05 —P—B-oag_, —a} +F+B

a: = =
' 2 2
1 1 2 9
Oy — Qg Qg — Qgy
2
=a; +a
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and,

Bi = Binr _ Bl +6;—2B-pl,— B2, +2B
2 2

_ JBil “:Bil+1 +ﬁ12 - ﬁi2+1

2

b; =

= b; + b}

so that £ = Ly & Lo,
O

3.4 TUpdate rules for Dynnikov coordinates of integral

laminations

Given f € Aut(Dy,), f acts on £ € L, by sending £ to its image f(L£) which
gives a well-defined action of MCG(Dy) on £,,. Since MCG(D,,) is isomorphic
to Artin’s braid group modulo its center (Theorem 2.63), there is a well defined
action of B, on L.

In this section we shall explain how to compute the action of B, on C,. That

is for each B € B, we shall compute §: C,, — C,, given by,

B(a,b) = poBop(a,b).

To do this, we shall describe the action of Axtin’s braid generators oy, o L
(1 <4<n-—1)on Ly, using the Update rules [13]. Update rules tell us p(o;(L))
and p(o; (L)) in terms of p(£): that is, they describe the action of the Artin
braid generators in terms of Dynnikov coordinates. The integral lamination £ in
Figure 3.23 has Dynnikov coordinates p(£) = (1,2,1,—1,1,2). Using the update
rules we get the Dynnikov coordinates p(c102(L)) = (1,0,1,1,—1,2) of gy02(L)

depicted in Figure 3.24.

Figure 3.23: p(£) =(1,2,1,-1,1,2)

The difference between the update rules given here and those that appeared
in [13, 25] will be that here 3, acts on D,, whereas in the cited papers By acts

on the central n punctures in Dj,,2. Thus we have special formulae for the
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Figure 3.24: p(oi102(L£)) = (1,0,1,1,-1,2)

action of o1,0,—1 and their inverses. Also, for computational and notational
convenience, we shall work in the max-plus semiring (R, max, ). We also note
that the derivation of the update rules has not appeared in the literature before,

The following lemma [28, 11] will be used to obtain the update rules.

Lemma 3.29. (Quadrilateral Trick) Let Q be o quadrilateral in Dy, with oll of its
vertices at punctures (where 8Dy, is regarded as a puncture at co) and containing
no punctures in its interior. Let the four edges of @) be denoted X1, Xo, X3, X4
and its diagonals Xy and Xg as shown in Figure 3.25. Let L be an integral
lamination on D, and for each i let )NQ denote the geometric intersection number
between £ and X;. Then,

Xs + X = max{)rh + Xg,)?g + _/\~f4}

Xy

X3 Xg Xs | Xy

Xo
X X,
2\ SIS
X3 /lf& Xy X3 ) k-/ Xy
S (]

Xo

NG
X2
Figure 3.25: Components of L in ¢

Proof. Let L be a representative of £ which is taut with respect to the edges Xj.
For 1 <4 < j < 4, let X;; denote the number of components of L N K with

endpoints on X; and X; where K is the interior of ¢ (note that no component
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can have both endpoints on the same edge since there are no punctures in K).
Either X5 or X34 is zero since the components of L N K are disjoint. First
suppose Xi2 = 0. Then, )?3 + )?4 > )?1 - }"(:2 and

X1 = Xiz+Xu
Xo = Xog+ Xy
Xg = Xiz+ Xoz+ Xag
Xy = X+ Xog+ Xy
Xs = Xiz+ Xog+ Xay
Xs = Xig+ Xog+ Xs4.

Therefore,

Xs+Xe = Xig+ Xoz+ X1a + Xog + 2Xa4
= )?3-}-%4.

The argument when X34 = 0 is identical and we have ;\;1 + X'z > X’g + )NLL.

Hence,

Xs+Xo = 2Xig+ Xig + X1a + Xos + Xoa
= X’l-%-iz

which yields

}?5 + }?5 = ma,x{f(;l -+ 5(;2,)’53 + XL!}
as required. O

Definitions 3.30. For computational and notational convenience, we will work
in the maz-plus semiring (R, ®,®), in which the additive and multiplicative op-
erations arve given by a ® b = max(a,b) and ¢ ® b = a + b (so the multiplicative
identity is 0). It will be convenient to use normal additive and multiplicative
notation, and to indicate that these are to be interpreted in the max-plus sense

by enclosing the formulae in square brackets. Thus
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[a+b] = max(a,b)

[@ab] = a+b
l[a/b] = a—0b
i =0

a;—31a;b;

. . fo— | i@
For example, the formula a; = [ai-1 T+ Ta;

] will be just another way of

writing af = a;_1--a;+b;—max(a;—1 +max(0, b;), a;). Note that both addition and

multiplication are commutative and multiplication is distributive over addition:

[a@ + b] = max(a,b) = max(b,a) = [b+ a],
[abl =a+b=0b+a=[bd],
[a(b+ ¢)] = a+ max(b,c) = max(a+ b,a +c) = [ab + ac].

The symmetries described in the next two remarks will be useful for reducing

the amount of computations which we have to do.

Remark 3.31. Rotation through = about the center of D, conjugates each
braid generator o; to oy,-; and the corresponding transformation of Dynnikov

coordinates is given by
(@y,. . ap—2,b1,...,bp2) = (—an—2,...,—a1,—bp_2,...,—by1),
or, in max-plus notation,
(@ty.o s @no2,b1, .0 bpg) = [(1/an=2,...,1/a,1/bp_a,...,1/b1)].

Remark 3.32. Reflection in the horizontal diameter of D,, conjugates each
braid generator o; to o; ! and the corresponding transformation of Dyunnikov

coordinates is given by
(Ql, NN ,a.n_g,bl, - ,bn_g) — (—0,1, ey —an_g,bl, R ,bn_z),
or, in max-plus notation,
(al, s ,an_2,1)1, . ,I)n_z) — [(1/(1,1, ey l/an_g, by.... , bn_g)] .

The following theorem gives the update rules for the generators o;. We note
that while the rules have a complicated form, they are ideally suited for computer

implementation.
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Therefore, instead of computing the number of intersections of 03(£) with a;
(1<j<2n-4)and G (1 <j<n-—1)wecompute the number of intersections
of o = o7 ay) and B; = o7 1(B;) with £. Then we have,

! Vi '
G ke S RN ./ 0N
2 3

Throughout the computations we shall make use of an additional arc u; which
connects the i and i+ 1™ punctures as depicted in Figure 3.26. By Lemina 3.29
we have

u; + P = max{agi_g + @2i, oo + g1},

that is,

[a2i—3a2i + 0421'—20521'—1]
Uy = .

B

Before we start our computations we set 4; = 2a; (1 < j < n— 2) and
Bj = 2b; (1 £ § <n— 2). Therefore,

Y | B
A = [%_1] and B, [ ﬁm} .

We now consider the three separate cases of the statement.

e Suppose that 2 < ¢ < n— 2. Observe first (Figure 3.26) that B; = p; for
j#iand af = a; for j < 2 — 3 and j > 2i. Therefore, A = Ay and
Bj = Bj for except j =1 —1 and j = i. Next we shall compute A%, A, |,
B! and B!_,

i. We shall first compute A = [&,3’%} We have af; = agi—a. To

2i—1
compute a;_;, we choose a quadrilateral in which o, ; is a diagonal

as depicted in Figure 3.27. Then by Lemma 3.29,
01 + o = max{u; + i1, Qoina + a1}

That is,

/ uifiv1 + @2i—2a2i-1]
Q9
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Recalling that

o [a2i~3a2i + C€2i—2a2z‘—1}
;=

Bi

we obtain,

- Al v
B —ragi_gomi1 + Qo291 crgi—202i—1( fj_rl" +1)
’ i1 %(a’zzz—sazi + agi—o2i—1)
R ==l e A T
(A +Bi)(1+ Bi) + AiBi—l]
ol yy

as required.
Bi_y

7
i

iv. Now we shall compute B]_; = [ ] We have

y
.85_1 = Bi-1, :3'£+1 = Biy1 and B‘i,: = [ ’181 ] .

i1
Therefore,

B — [ Bi-1 ]
1 BlBiv1

Multiplying the numerator and denominator by f; gives

' BBy
Lo 1P

[ A;Bi_1B; ]
14,;,1(1 + B.L‘_l)(l + BL) + A;Biq

as required.

e Suppose that ¢ = 1. Observe as before that A;- = A; and B;- = By for all
7 > 1. Since there are no arcs joining the first puncture to the boundary,
our approach to compute A} and Bj is to add new arcs a1, ag and Sy as
depicted in Figure 3.30, which enables us to use the formulae for A} and

B in the previous statement. Then we have

r_ [ AgA1 By ond B — [Ao(l + Bo)(1 + B1) + A1 By
Ao(1+ Bo) + A ! Ay '

We observe that a1 = ag = %L and By = 0. Hence Ap = 0 and By = —f1.
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of Remark 3.31. Then we gei,

1 1
|: ]' :I _ [ An_2 Bn_2
! - 1 1
An_Q Ap—2 + B2 + 1

1
B |: Bynoo+ An—Q + An—‘ZBn—-2 ’

Hence
fe = [An—a(l+ By_g) + Bn_a].
And,
[_1_] _ [1+ 3,112] _ [A71_2(1+Bn_2)}
-2 Anl_2 B9 ’
Hence

B;'L—-2 = B :| .

[ An—Q(l + B’n,—Q)

O

Example 3.34. Given £ as depicted in Figure 3.23 with p(£) = (1,2,1,—1,1,2),

we can compute the Dynnikov coordinates (a’.d") = p(o102(L)) of o102(L) de-

picted in Figure 3.24 using the formulae in Theorem 3.33. We shall only compute

@} here. The rest is done similarly. First write (a”,b”) = oy(a,b). Then

. by
ol = | —H | G by — max(a ,D1,0
1 PEYET 1+01 {a1,01,0)

=1-1-max(1,-1,0) = -1 and,

[1
b’i’: :b1:| =max(h,0) —a; =0~1= —1.
1

Hence, applying the update rules for o9 to (a”,b”) we get

oy = max(af + max(b],0),ay + b])

= max(—1+ max(—1,0),2 - 1) =1

Theorem 3.35 (Update rules for inverse Artin generators). Let (a,b) € C, and

1<i<n—1, and write 7 (a,b) = (a”,0"). Then o/ = a; and b;-’ = by except

J

when j=1—1 or j =14, and:

e ifi=1 then
1+a;(1+b
a,{:[__alél_l)], W = [ar(1+b)];
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o if2<45<n—2 then

o = [ ai-10i ] "o [ ai—1bi-1b; ]
U L agebior Fa(THbg) |7 ! ai—1bi—1 +a;(L+bio1)(1+b;) |’
n_ | @im1+ai(l+b;) g | @im1bicr a4+ bi-)(L+bi) |
a; = bs ) bz = a1 )
2 T—

o ifi=n—1 then

d' .= an—2 Vo= n—2bn_2
n2 an—Zb-n—L’ + 14 bn—Q ’ n—2 1+ bn—Z ‘

Proof. We shall obtain the update rules for o ! by conjugating the rules of

Theorem 3.33 by the involution

(@15 s @2, b1, bp2) = [(1/ay, ., 1/ an_2,b1, ..., bp—2)]

ai-10:b;

of Remark 3.32. Take for example af. Since a} = {m] we get,

]

1 1
_ aj—1a; * — [ by }
[ L)+ o ai(1 +bs) + a1 |

aq

hence

"__ [ai(l‘f‘bi)"l“ail]
4 = | ——— |-
i

O

Working in the max-plus semiring, one can obtain the update rules for a
general n-braid using the usual composition of the functions in Theorem 3.33
and Theorem 3.35. We remark that the resulting rational functions correspond
to piecewise linear functions. We also note that these functions can be extremely
complicated. However, this is not the case for the families of braids with a
contiguous sequence of generators given in Section 3.5. These braid families will

be important to prove our results in Chapter 4.
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3.5 Update rules for sequences of contiguous genera-

tors

In this section the update rules for the n-braids
ki _
T = OkOk+1:+- 01101,
kI _
G’ = 01011 .. . Ok 10%,

-1
il = (57’2’!) = akflcr,:il .. .al__lloi‘l, and

-1
Bl (. k 11 11
Cn = (’Yn ) =0, 0y T 1% s

will be given where 1 < k < [ < n— 1. These update rules have a relatively
simple form. Their description is, however, complicated by the need to consider
separately the “end” cases k = 1 and [ = n — 1. Only the update rules for ol
will be derived directly. Those for the other families of braids will then follow

using the symmetries of Remark 3.31 and Remark 3.32.

Lemma 3.36 (Update rules for ’yfi’l). Letn>3, and for L <k <1I<n—1let
fyfi‘l denote the braid opopy1 ... 01—101 € By,
Given (a,b) € C, and an integer j with k — 1 < j < n — 2, write

J
P; = P;(b,k) = [(1+bk—1)Hbal :
i=k

(Note the interpretation of this formula in special cases: Pj(b,k) = [HLk bi]

ifk =1, Pi(bk) = [(L+bp—1)] 5=k —1, and Pj(b,k) = [1] if k = 1 and
i =0.) Similarly, for k < j <n—2, write

85 = Sy(a,b,k) = lfj A+ b)h b"ml} .

Py
i=k v

Let (V') = &' (a,b). Then a; = aj and b = b for j <k—1 and for j > L.

Moreover,

1. Ifk>1 andl <n—1 then

:b—10
t = Lagemr (14 b biet], b, =[ il ]
a1 = [@p—1(1 + bg—1) + agbp—1] 1 (L Do) (1 £ bp) + anbrs
b1+ ar-15; ,
P (i1 S + P =1, J k<j<l),
a; [@j41bg—1 + ap—1(aj+15; + Fj)], bj {bj-kl (bk—1 - a'kﬁlsj-l—l):l (k<j )
ap_1b)
a foLl b = [bg-1 + ax-15] .

I+ ap S
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2. If k> 1 and | =n—1 then the formulae in case 1 hold fork—1<j <n-—2,

while
’ _ ’ ;= 1 bie—1
Qp—2 = [bk—l +ap—1 (SH—Z + 5 —2)] ) n—2 — P,o a1 + ST!--2 .
n— c—
8. Ifk=1andl <n—1 then
aj = [ Pj+ aj115;], b = [bj+18;/S51] (1< <),
a=[P/(1+S)], b =1[8].

4. If k=1 and | =n — 1 then the formulae in case 8 hold for 1 < j < n — 2,

while

a;b—2 = [Pn—2 + Sn-2 ] ’ :»—2 = [511.—2/Pn——2] .

Proof. The proof is a straightforward induction on I > k for each k&, with the base
case | = k given by the update rules for single braid generators (Theorem 3.33).
1. Consider the case 1 < k& < n — 1 (cases 1 and 2). Putting | = k gives
By =[(1+bg1)bg] and S} = [(1+bg—1)(1 +bg)/ax]. The rules for aj_, and

b;c_l given in case 1 of the lemma are identical to those of Theorem 3.33, while

ap—1axby ] _ [ ap—1(1+ br_1)by
a1 (14 by) + ag T bp—g + ag_1 (1 + bp—1) (1 + by) /ax,

_ [ ap—10
14+ bp—1 + ax—15

by = b = [“k-—l(l 4 b-1)(1+ ) + agbyoy
Ak

a;,::a.ﬁ—[

] , and,

] = {1 + ap_1 (1 + br_1)(1 + bg)/ag |
= [br—1 + ax—151],

in agreement with Theorem 3.33.

Now assume the result is true for some [ with & < | < n — 1, so that
'yff’l(a, b) = (¢/,b") as given by case 1 of the Lemma. Let (a”,b") = fyf,f’Hl(a, b},
so that (a”,b"”) = ay11(d/,0'). In particular, a; = a; and U] = bf; for all j except I
and [ + 1. Consider @}, and b/, | for I+ 1 <n—1and of, b for [+1=n—1:
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If 4+ 1 < n— 1, then Theorem 3.33 gives

B I ’
o' @b
i+1 7 7 7
L a(1+0,,) +ay,y

_ [ a1t g1 P/ (14 bp—1 4 ag—151) }
| agr + (L +big)ap1 B/ (14 b1 + ag—15)
_[ ap—1F11 ]
| 1+ br—1 + ap_1(S; + (L + biy1) P/ ary1)

_ [ ag—1F541 ]
| 1+ bg—1 + ag—15111

and

/" ay(L+ ) (1 +byyq) + @y b }
+1 —

'
(pyy

_ [ a1 B (L + i) + aggy (b + ax-151) ]
L aj4-1

[ 140
= | Qf—1 (PLTI:—l + Sl> +bk—1}

= [agp—1S141 + bp—1] .

Similarly if [ + 1 = n — 1, then Theorem 3.33 gives

ag-—1
14+ bt + a3—15;

ai’ = [a;(l + bé) + bi] = [ (1 + bt @18 + b1 + ap—15;

= [bk.——-l - a}\:_l(an.—Z -+ Pn—Z)] y

bp—1 + ax_15
bll — bl CI,, 1+bl — |: ]
j [ b/ ai( 0] T el
1 bp
= — 35, .
Pn—z(%—l o 2)}

For k& <€ j < [ observe that
1+b;
Pip1 = [bj1Fy] and Sjiq = [Sj + '—JH'P]'] :
@j+1

From Theorem 3.33 and using the inductive hypothesis,
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@iy = [ @1+ i) 4+ af b ]

_ | ag_1 P41
L+ bg—1+ ag—15;5+1

(14 b1 + ag—1S541) + jp2(bp—1 + ag_1S541)

= [ajpeby—1 + ag—1(aj425541 + Pjy1) |,

r o Loy

" L = 2V +1Y5+2
w1 =

! | @ (L4 V) (L4 b5 0) + af by

ajt2(bk—1 + ap—155+1)bj+2

Sy
i M‘iﬁ—akfﬁsjﬂ(l + bk—1 + ak—18541) (1 + bja2) + ajr2(br—1 + ax_1Sj41)

_ bjra(br—1 + ar_15;11) ]
[ Dr—1 + ap—1Sj+1 + (ap—1F541(1 + bjy2)/aj12)
_ [ biza(br—y + ar—15541) ]
ap—1S512 + bp1 '

2. Now consider the case k = 1 (cases 3 and 4). If I+ 1 < n — 1 we have

J = [ abi P /1+ 5 ] _ [ Pibia ]
b1 L a1 + (L + b)) P /1 + S (B(1 + by1) + a1 + a4151) /@i
_ Py ]
L+ Spa
v [ b)) (L4 SR/ (L + 81) + a1Sy } B { Py(1+ big1) + Siap }
+1 - =
L a1 Gly1
= [S1].
Andif]+1=n—1 we have
) [ Y
"o / / "_
U;l = [al(l-l-bl)—l-bl], bl _————“a;(l—{—b;)}
L+ S)B/(L+ ) + 5] _| Ol ]
5,
_[H+Sl]3 __-I?[:|

Similarly for 1 < 5 < I, from Theorem 3.33 and using the inductive hypothe-

sis,
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P
ajyy = [aj (14 bfus) + aj ol | = [aj+25'j+1 + 1+ Sj+1)J—,]
]. + S_y+1
= [Piy1 + aj195541],
" L= a’;‘+2b.l’i+2b.;'+1
a | @y (U + 8 ) (4 V) + ) oby
_ aj+255+1bj+2 P 1] _ [ aj+25j+1bj+2
| (1 + Sj1) (L + Sjua) Pa /14 Sypa - 200 Pip1(1+ Sjyo) + ajraSi
[ bjt2Si+1 ]
= = [bj+25541/Si42]
| Sjr1 + Pira(l+ Sjea)/ajiz [5+25541/5i42]

O

We shall derive the update rules for 65! from those of Lemma 3.36 for o2 ~b"F

which will be used later. To do this we shall conjugate the rules for 'y,’f—l’n'"k by

the involution

((1.,]_, . ”aa'n—Z’bl:- - -1b'n,~—-2) — [(1/0‘1172:-- -71/a1:1/bn—2’ . '~)1/b1)]
in Remark 3.31.

Lemma 3.37 (Update rules for 5;“;’5). Letn>3,and for 1 <k <l<n-—-1let
6§’l denote the braid 01011 ... 0110 € By.

Given (a,b) € Cp, and an integer j with max(k — 1,1) < 7 <1 write

!
B = F(b,1) = (1+bl)ﬂb3

imj b

(In the special case | = n — 1, ﬁj(b,n - 1) = [H;:gzﬂl;} for 7 < [, while

P ilbn—1)= [1].) Sémilarly, for max(k —1,1) <7 <1 —1 write

-1 5
SO : B
S = S;(a,b,1) = E a_z(l.j.—%m

s K}

i=j

Let (a/,V') = 65 (a,b). Then o = aj and b = b; for j < k—1 and for j > L,

Moreover,
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1. Ifk>1 andl <n—1 then

p o arb)+ b@*l] o ab 1
Ay = = oo b= /=,
biPg—y | @+ bpSk—a

I _1ab [ S;_

= YA p= (e, (2 <<,
| +b:(S; + aj-1F;) i a; + biS;

o= | arab ] y = | @1+ b) (4 by) 4 aibiy ]

las U b) fa | ay '

2. If k=1 andl <n—1 then the formulae in case 1 hold for 2 < j <1, while

all ab b e blﬁl
a4+ oS+ Py | Y a+bS)
3. Ifk>1andl=n—1 then
aj—1 ~ ~ .
ay = | —L—— |, b= | b;_18:-1/5; E<j<n-—-2),
42_1 = [(1 + §k71)/13kﬁ1] ) %71 = [1/§k—1] .

4. If k=1 andl =n—1 then the formulae in case & hold for 2 < j < n — 2,
while
a’1:[1/(1’51+§1)], b’1=[ﬁl/§l].

Sketch of Proof. Let R, denote the rotation through w about the center of
D,,. Then,

(5k,l _ ,Yn—l,nmkR_

n T AT In T

and hence the update rules of 5% can be obtained by conjugating the rules of

o 1
nobn=F by the transformation a; <> [ ], bi © [
Ap—1—i bn—l—i

Remark 3.31. We shall prove the lemma for & < j < [ for the “central”case

] as stated in

k>landl<n—-1(m—10>1andn—%k <n-—1)and only doing a}. The
other cases can be checked similarly. Write (a?,b7) = Y2 ""®(R.(a), Rx (b))
and (a/,b') = 684(a, b). Define

1 n—1-k 1
Pi(b, k) = P;(Ra(b), ) = (1+b_) T L
ek i=71.—1—ji
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and

n—1-k 1
Sj(a,b,k) = Sj(Rx(a), Re(b), k) = [ > u <l+b_i> n-2-i(0, k)}

j=n—1—j

Ifk <j<li(thatis,n—I<j<mn—k) we have

a’,}:{ ! l+l( 8 (a,b,m — z)+P;(b,n—z))].
. Qpn—2—j

Qp—-2—j bl @y

Thenn—1l<n-—1-3j7<n—kand

1 1
a/v = [ ] = ]: ]
J ¥
Cp—1—5 aj - bz +L (%1 T So1glabn =0+ B, (bn— l))

Pi(0,1) = Py_;_;(b,n—1) and S;(b,1) = S,_;_;(a,b,n—1).

Then we get

L, ~

4 = 1 1 :
|k 2 (550, + Bk,

_ aj—1aib
L a;+b (gj(a’ b) l) + aj—l:éf(b:l)>

where

P(b )= Py, 1~ —1) = l(1+a

[y
N
T
D
&)=
| I——— |
| a———
P
-
..l_
-
S
p—
)=
| I———— |

i=j i=j
and
-1 -1
S; (e, b,0) = S5 _1_;(a,b,n—1) = |:Za1 (1+ bl) 13i+1(b,l)] _ [Z a; (1+b()) Pii(b, l)} .
=J i=j ¢

The update rules for the other two families €2 and C,’f’l will be given without
proof. The rules in Lemma 3.38 and Lemma 3.39 are obtained by conjugating

the rules in Lemma 3.36 and Lemma 3.37 respectively by the transformation
(@1y.. . ano2,b1,...,0p_g) — [(1/0'17 ooy 1/ap—2,b1, .. bn—2) ],
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Lemma 3.38 (Update rules for eﬁ’l). Letn >3, and for 1l <k <l<n-1
let 6§”;’l denote the braid ok_lak_il ... al__llal_l. Gwen (a,b) € C,, and an integer §
withk —1 <3< n—2, write

P; = Bi(b, k) =

J
(1 + bg—1) Hbz] :
ik

(Note the interpretation of this formula in special cases: lsj(b,la) = [ g:k b;]

if k=1, Pj(bk) = [(L+be1)] if 5 = k— 1, and Bj(b,k) = [1] if k = 1 and
j=0.) Similarly, for k < j<n—2, write

J
Sj = S8j(a,b, k) = {Z a;(1+ bi)ﬂ—l} :
i=k
Let (¢!, b') = ¥'(a,b). Then aj = aj and b = by for j <k —1 and for j > L.

Moreover,

1. Ifk>1andl <n—1 then

. apap—_1 ] oo ap—_1bp_1by ]
P (T bper) +aecabemr |0 P T L ap(l 4 b)) (L + be) + ap_1bp |’

] Sy [ b g

o = WAL | b= | by et O (k<j<l),
| @k—1bp—1 + S5 + aj1 P i ap_1bg—1 + Sj+1

r | e (L4 by1) + S ] B = ap—1bp—1 + Sy

a = = ) =

I P I k—1

2. Ifk>1 andl =n—1 then the formulae in case I hold fork—1<j <n—2,

while

! Ak—1 / 1 &3
Uy o = [ s = ] y U o= [ = (“l\:—lbl\:——l + 51;-2)] :
" ak—lbk—l + Spg + B2 " Pps

S Ifk=1andl <n—1 then

n,;=[_aii'1_]’ b;:lb{"‘_ls_{} (1<j<i),

aj1 P+ 8 Sj+1
148 y
aﬁ = -‘t L bf = [Sg] .
P,
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4. If k=1 andl =n—1 then the formulae in case & hold for 1 < j < n— 2,
while

1 o o
Upyg = [m] ; by g = [Sn,—z/ P«n,—z] .

Lemma 3.39 (Update rules for C::’l). Letn >3, and for Ll <k <l <n-—1let
f{"l denote the braid o*flol:]l ...o-,;_ilorgl € By.
Given {a,b) € C, and an integer § with max(k — 1,1) < j <! write

=7

I
Py = P;(b.1) = (1+bl)Hﬂ :

(In the special case | = n — 1, Pj(b,n — 1) = [H?—_—_sz%] for 4 < 1, while

Py 1(b,n — 1) = [1].) Similarly, for mex(k —1,1) < j < | — 1 write

-1 5

8= 5(ab,0) = {Zﬂ%z,lf“ﬂ] ,
. . 2
i=j

Let (a', V) = &Y (a,b). Then a = a; and by = by for j <k—1 and for j > I.

Moreover,

1. Ifk>1 andl <n—1 then

d = ab Py | by ]
k-1 i (L+b)+ agbZS'k_l ’ L L (leggk_1 +1]’

o = abi(aj—15; + Pj) + ajy = b azblsjA—l +1 k<j<l),
i by abyS; +1
4 [a+a+b) ] y— | @A+ b))+ B) + b ]
t by ’ | a1 '

2. If k=1 andl < n—1 then the formulae in case 1 hold for 2 < j <, while

a = aby (Pl + Sl) +1 ¥ = b Py
' by , ! 1T+ abSy |
3. Ifk>1andl=n—1 then
% = [Pj + “j*lgj] = b = [bj_léj_l/s‘j] (k<j<n-2),
a’i‘.—l = I:pfi"-l/(l + gk—-l)j| 3 2«,_1 = [l/gk_ljr .
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4. If k=1 andl =n —1 then the formulae in case 8 hold for 2 < j < n — 2,

while
d = [P1+§1], =2/

3.6 Dynnikov coordinates of measured foliations

The Dynnikov coordinates for integral laminations can be extended in a nat-
ural way to Dynnikov coordinates of measured foliations. We first recall from

Definitions 2.35 that if o € A,, then its measure u(c) is defined to be

k
) =sup »  play),
i=1

where the supremum is taken over all finite collections ay, ..., of mutually
disjoint subarcs of a which are transverse to F and the isotopy class [a] (under

isotopies through A,,), has measure
u(led) = i(F,[o]) = inf p(B),
Be€la}

which is well defined on MF,,.

Definition 3.40. The Dynnikov coordinate function p: MF,, — R*~4\ {0} is
defined by

p([’) = (G,,b) = (als ey On—2, bl) ‘. -:b1172);

wherefor 1 <i¢<n—2

o — Mlezil) = plloza) o s((B) — pl(Bia])

; s : . (314

Sp = R?™4\ {0} denotes the space of Dynnikov coordinates of measured

foliations on I,,.

Dynnikov’s coordinate system provides an explicit bijection p : MF, — Sy

that is, a global coordinate system on MF,,.

Theorem 3.41. Let (a,b) = (a1,a2,...,an-2,01,b2,...,bp2) € RZ*\{0}.
Then (a,b) is the Dynnikov coordinate of exactly one element (F,u) € MFp,
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which has

k-1 i—1
w([Bi]) =2  Jnax |ag| + max(by, 0) + Z bj| —2 z b;
== j=1 i=1

w(loa]) = 4 W arizm L
(_1)ia|_i/2_l X f-‘([ﬂl—i—zl'ilz]]) Qf b‘i S 0

Proof. The proof is identical to the proof of Theorem 3.19 O

Projectivizing Dynnikov coordinates yields an explicit bijection between S,, /R
and $2"=5 =2 PMF,. Let PS, denote the space of projective Dynnikov coordi-
nates and p(F, ) = (a,b). We shall write [a,b] € PS, to denote the Dynnikov
coordinates of the projective class [F, u] on PMF,,. Given a braid 8 € B,, the
update rules describe the action of 8 on PS,, and the various maxima in the up-
date rules induce a piecewise linear action of 8 on PS,. This will be illustrated

with an example in the next chapter.

80



Chapter 4

Computing topological entropy

of families of braids

In this chapter we shall desribe a new method for computing the topological
entropy of families of pseudo-Anosov braids, making use of Dynnikov’s coordi-
nates on the boundary of Teichmiiller space. The method will be illustrated with
two families of braids considered in [20], which are of interest in the study of
braids of low topological entropy. These families are {Bmm : myn > 1}, and

{oman + 1 <m < n}, where

— —1 -1 _ 1m m+1lm-+n
ﬁm,n =01 Om Oy O = ’Yn;,ﬁ-ﬂ,—{-l mAnrl  © B m+n+1, and

1,m 1,m 1,m+a
Omn =01+ Om Om.v 01 Ol Omin = Yt n i 19mna1 Ymenid € Bmgntl-

The normal approach to compute the topological entropy of an isotopy class
is to use train-track methods [5, 17, 22]. In [5], the algorithm starts with a
graph G which is a spine of the surface and the isotopy class is represented by a
graph map. The algorithm repeatedly modifies G until it either finds an explicit
reducing curve for the isotopy class, or a graph map which is the simplest possible
(that is, one with minimum growth rate). If the isotopy class is pseudo-Anosov,
this simplest graph map can be used to construct a train track and train traclk
map from which the invariant foliations are obtained.

However, for complicated isotopy classes (that is, ones with high topological
entropy), the lengths of the image edge paths (represented by words whose letters
label the edges) of the train track are so long that even a computer cannot store
them (note that the image edge paths grow like A). Therefore, it is usually
far from straightforward to describe an infinite family of train tracks and to
verify that they are indeed invariant under the action of relevant isotopy classes.

Nevertheless, until now computing the topological entropy of family of braids has
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been established only through train tracks. In 2006 Moussafir [25] approached
the problem making use of Dynnikov coordinates and update rules [14]. The
major advantage of his method which is described in Section 4.1 below, is that it
works much faster and is more direct than the train-track approach. However, the
method is numerical and only gives an estimate for braid entropy. The method

which we shall introduce in this chapter provides the exact topological entropy.

4.1 Topological Entropy of pseudo -Anosov braids and

Moussalfir’s iterative technique

Our aim in this section is to explain briefly why the topological entropy A(f)
of a given pseudo-Anosov map f € Aut(D,) is log A, where A is the dilatation
of f; and then Moussafir’s method [25] for estimating the topological entropy of
braids making use of Dynnikov coordinates and update rules [14], which is the
motivation for our method.

Let M be a compact manifold and f : M — M be a continuous map. There is
an important relationship between the topological entropy of f and the induced
action fx : m (M) — =w1(M) on the fundamental group w1 (M) of M. If A is
the growth rate of fi, then i(f) > logA [9, 16]. This follows from Manning’s
theorem {23] which states that A(f) > log|A| for all eigenvalues A of the induced
action fi1 : Hi{M;R) — H{(M;R) on the first homology group. If f € Aut(M)
is pseudo-Anosov we can obtain the reverse inequality, h(f) < logA, by con-
structing a subshift of finite type as described in [16]. Every pseudo-Anosov
map has a Markov partition [16] and one way to construct it is by means of its
invariant train track.

In [25] Moussafir introduced an alternative method for computing the topolog-
ical entropy of braids making use of Dynnikov coordinates and update rules [14].
The main idea of his approach lies in Theorem 2.56. That is, if A is the di-
latation of a given pseudo-Anosov braid 8 € B, then for any essential simple
closed curves o and 8, the geometric intersection number i(f"(«), 8) grows like
C x A" as n — 0. The method starts with a relaxed integral lamination which
is denoted Lf given with its Dynnikov coordinates p(LL) = (a,b), and assigns to

it a sequence
1
— 1 T?IL’II
e = — log c(A™L})

where p(8™Lg) is obtained from the update rules and ¢(6™LY}) denotes the min-

imum number of intersections of 8Ly with the z-axis. Given £ € L, with
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p(L) = (a,b), c(£) is given by the formula

6?171
5

n n—1
b
e(£) =D _Ihil+ D laiss — ail + lar] +lan] + 5+
i=1 i=1
(we note that B, acts on Dypyq in Moussafir’s paper and hence each integral
lamination is assigned a point from R?").
Then, the method ends when ¢ — ¢nt1| < € for a chosen € > 0. Therefore

an estimate for the topological entropy of 8 is obtained.

4.2 Computing Topological entropy of families of braids

In this section we shall introduce a new method for computing the topological
entropy of each braid in an infinite family, making use of Dynnikov’s coordinates
on the boundary of Teichmiiller space. The method will be illustrated on the

following two-parameter families of braids [20]

—1 -1 _ . 1m m—+1,m4+n
B =01...0m Tmt1 - Omin = Ymtntr1Cminti € Bmint1, and

_ _Am 1,m 1,m+n
Omn =01-..0m Om---01 O1l...0min = Viin+l 6Tr;,+n+1%r;,+n+1 € Biyny1-

The method, and in particular the transparency of the calculations, can be
contrasted with the train track methods in [20]. Fivst, we shall reinterpret some of
the results of Thurston theory in Section 2.4.1 in terms of Dynnikov coordinates.
We begin with the following lemma restating Nielsen-Thurston’s Theorem in

terms of Dynnikov coordinates.

Lemma 4.1. Let 8 € B,. Then
i. B is reducible if and only if there is some (a,b) € C,, with B(a,b) = (a,b).
i, If B is not reducible, then

e (3 is finite order if and only if there is some N > 1 such that 8% (a,b) = (a,b)
for all (a,b) € S,,.

o 3 is pseudo-Anosov if and only if there is some (a¥,0%) € S, and a
number A > 1 (the dilatation) such that B(a®,b*) = A(a®,b%). In this

case there is also some (a°,0°) € S, such that B(a®,b%) = %(as, b%).

Proof. The first statement i. is immediate from Definition 2.44. Suppose i. does
not hold. Then f is not reducible. Hence, by Theorem 2.48 f is either finite-order

or pseudo -Anosov. Assume that 3 is pseudo-Anocsov. Then, by Definition 2.47,
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there exists (a™,0") and (a®,0°) and A > 1 with A(a%,d") = A(a",b*) and
B(a®,b%) = %(a‘q, b%). Now assume that there exists (a®,b%) € S, and A > 1 with
B(a®, by = A(a*,b¥). Since B(a¥,b¥%) = A(a¥,b%) then Y (a,b%) = \*(a¥,b%).
Thus S is not finite order and hence is pseudo-Anosov.

Similarly, assume that 3 is finite-order with 8% = I'd. Then A" (a,b) = (a,b)
for all (a,b) € S,. Conversely, if there is some N > 1 such that 8" (a,b) = (a,b)
for all (a,b) € Sy, then f can’t be pseudo-Anosov since BV (a®*, b%) = AN (a¥, 1)

for some (a%,b") € S,. Therefore, f is finite-order. O

Let 8 € B, be a pseudo-Anosov braid with unstable and stable invariant
foliations having Dynnikov coordinates (a*,b*) and (a®,b%). Let [a%,b%] and
[@®,0%] denote the projective classes of (a%,b*) and (a®,b%) on PS,, respectively.

By Theorem 2.58 and Theorem 2.57, we get the following two lemmas.
Lemma 4.2. The only fized points of B on PSy are [a¥,b"] and [a®, b®].

Therefore, any (a,b) € S, satisfying B(a,b) = k(a,b) for some k > 0 is a

multiple either of (a*,b") or of (a®, b%).
Lemma 4.3. For any [a,b] € PS,,, with [a,b] # [a®,b],
s 7 _ Uw
nl_l_l}lgo«g ([O.", b]) - [Cb lb ]

In the previous chapter we stated that the update rules define piccewise linear
action of braids on PMF, since one obtains linear maps with integer coefficients
when the various maxima in the formulae in Theorem 3.33 and Theorem 3.35
are resolved. Now, we shall illustrate this with an example. That is, we shall

compute the action of o105 e By on PMFs.

Example 4.4. Let PMF3 = S! be the space of projective measured foliations
on Ds. In this example, we shall work out the update rules for o105 Lon PMFs.
That is, we shall explicitly compute the 2 x 2 integer matrices which describe the
piecewise linear action of o104, L on PMF3. This example is important since it
concretely illustrates the action of a pseudo-Anosov braid (which is the simplest
possible) on the whole space PMFs. Let (a,b) € S3, o1(a,b) = (a',b') and

oy (a, V') = (a”,b"). From Theorem 3.33,

' ab r 140

‘=i ey
that is

a’ = a+b—max{0,a,b} V' = max{b,0} —a
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From Theorem 3.35 acting by o5 ! yields

a’ = d — max{a’ +¥',V,0}, V' =d + V' — max{l/,0}.
There are four main cases to consider.

i a<0,b<0:

ad=a+b and ¥ = —a

a"=a+b—max{a+b—a,—a,0} b =a+b—a—max{—a,0}
=2a+0b =a-+b

Hence the action is given by the matrix;
21
11

o =a+b—a=0b and ¥ = —a.

ii.a>0,b<0:

a" =b— max{b - a,—a,0} V' =b—a—max{—a,0}

:b =b—a

The action is given by the matrix;
0 1
-1 1|

ad=a+b—b=a and V¥ =b-—a.

. <0,b>0:

a"=a-max{a+b-ab—a,0} V' =a+b—a—max{b—a,0}
=2a—-10 = a.
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The action is given by the matrix;
2 -1
10 |

a' = a+b—max(a,b) and b = max{h,0} —a=0b—a.

ivia>0,620:

Therefore, we distinguish two cases: @ > b and b > a.
e If a > b, we have ' = b and ¥ = b — a. Then,

@’ =a' —max{a' +¥,V,0} = b — max{2b — a,b — a,0}

and,
V'=d + b0 — max(t/,0) = 2b — a.

We distinguish two subcases: 2b > q and 20 < a.
— If 20> a we have

a"=a—-b and V' =20—a

and the corresponding matrix is

— If 2b < a we have

a"=a and ' =20—q

and the corresponding matrix is

1 0
-1 2

e If a <D, we have ¢’ = a and ¥/ = b — a. Then,

a"=b—a and V' =a

and the corresponding matrix is

e
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foliation [F*, "]. Similarly, the matrix

has an eigenvalue 1/\ and the associated eigenvector p® belongs to the region
a>0,b>0,0<a<2b Hence p® is a fixed point and corresponds to the
invariant stable foliation [F°, u®].

In this example, p* = ——(-1—%—@, 1)and A = gizi—g Therefore, the topological

entropy is 10g(3+T‘/‘F’ ).

The collection of linear equations (not necessarily independent) in various
maxima in update rules give each region on PS,, the structure of a polyhedron.
One can see this in Figure 4.1 by observing that each region is a solution set
for a system of linear inequalities induced by these equations. Let p¥ = (a¥,b¥)
and p® = (a®,b%) denote the Dynnikov coordinates of (F*, %) and (F%, uf) re-
spectively. Next we define the Dynnikov matrices which describe the action of 3

near p*.

Definition 4.5. Let 8 € By, be a pseudo-Anosov braid with invariant unstable
measured foliation (F*, u*) given by the Dynnikov coordinates p* = (a®, b*). The
action of B on &, is piecewise linear and each closed piece R; C &, containing
(a™,b*) is called a Dynnikov region. Then a Dynnikov matriz D; : Ry — Sp,
(1 <4 <k)isa(2n—4)x(2n—4) integer matrix which describes the behaviour

of the braid on a Dynnikov region R;. That is,
p(B(F,u)) = Di(a,b) for (a,b) € R;.
Example 4.6. There is one Dynnikov region for o107 ! which is
R ={[a,b] € S':ia<0,b< 0}.

Hence, the Dynnikov matrix is

as computed in Example 4.4,

Remark 4.7. There can be more than one Dynnikov region for a given pseudo-
Anosov braid 8. This happens when (a¥, 5%) is on the boundary of several regions

on S,.
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We shall illustrate this case with the following example:

Example 4.8. Take 8 = o109030 le Bs. By Theorem 3.33 and Theorem 3.35
we can compute the action of 01020304"1 on Ss. We restrict to the case in which
a; < 0 and b; <0 for all ¢ (it will be seen shortly that all of the coordinates of the
unstable foliation of B are negative). Let (a,b) € S5, and write (a/, ') = o1(a, b),

(@, ") = o3(a, ), (™, ") = o5(a”, ") and (@, 1) = o (", 6").
a'1 = a1 + b1, bfl =-—a
af = max(a} + b}, a} +b}) = max(by, az — a1)
b = af + by + by — max(a] + b, ab + b))
= ag — ay + by — max(by, ap — ay)
We distinguish two cases: b1 < as — a1 and by > as — a1.
e b1 < ag — a;. We have,
ai = max(by,az — a1) = ag — ay
O] = ab + b} + Uy — max(a) +b],ah + b)) = by
ay = a) + ab + by — max(a},ab) = a3 + by + be
by = max(ay + bi, a5 + b)) — ah = —ay
ay = max(ay + max(by,0), ay + by) = by + bg
by = ay + b + b — max(ay + max(bh,0), a3 + b)) = a3 —ay + bz — by — by
a3 = aj + af + b — max(aj + max(b,0),a}) = ag + b3
bg' = max(aj + max(by,0) + max(by,0),al + b = by + bs — a3
Finally,
ag’ = aj — max(ay +0§,0,05') = 2a3 — by — by + b3

b = ay + b ~ max(0,b5) = ag + bs.

Therefore the matrix induced by this action is
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Dy =

Dy

I}

Both of these matrices have eigenvalue , with the corresponding

3+v5+v6vE-2
4

eigenvector p¥ having all negative entries and satisfying the equality ap = a1 +b1.

Therefore, both D; and Dy are Dynnikov matrices. In fact D) and Dy are

isospectral, we shall return to this issue in Chapter 6.

Example 4.4 gives the idea of our method to find the dilatation of a given
braid 8 € B,: Compute the action of § € B, on &S, using the update rules, find
a matrix with an eigenvalue A > 1 and check whether the associated eigenvector
is contained in the corresponding region or not. In other words, find a Dynnikov

matrix for § and compute its dilatation A > 1.

4.3 The braids S,

The following results establish that S, ,; m,m > 1 and omp; 7 = M+ 2 as
defined on page 83 are pseudo-Anosov and give formulae for the topological

entropies h(Br,.n) and h(omn).
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Theorem 4.9. Let m,n > 1. Then Bpnn € Bnint+l 15 a pseudo -Anosov braid,

whose dilatation r is the unigue root in (1,00) of the polynomial
.fm,n(T) — (,,. . 1)(7,m+n+1 . 1) _ 21,(7,7” + 7,71.).
The Dynnikov coordinates (a*,b%) € Sppint1 of the unstable invariant measured
foliation of Bmn are given by
4 .
—r(r"™ 4+ 1){r* - 1) if 1<i<m—1
a; = q —(r™ —1)(rntt - 1) if i=m

(— (™ — 1) (emEe=_ yptem g b1 <i<mtn—1,

£ .
—(r = 1)(r" + 1)rt+! if 1<i<m—1
bi= 9 —(r+ 1™ —1) if i=m
—(r ~ 1) ™+ — 1)pim if m+1<i<m+n-—1.
Proof. fmmnm has a root r > 1 since fpn(l) = —4. It will be shown that

Bmnla,b) = r(a,b), from which the result (and the uniqueness of 7) follows.
Write N = m + n + 1 and recall that By, = 'y]l\;’ne}’\}H’N_l. Thus to show
that Bm,n(a,b) = r(a,b) it suffices to show that 'yll\;m(a, b) = 7‘5E+1’N “Ha,b). Tt

will be shown that each side of this equation is equal to (o', V'), where

(raj, rb;) 1<j<m
(@, )= (am b, 70"+ D 41)  G=m
(aj, b;) m<j<m+mn-—1
Observe that
Tem—1 — Gm + @1 = fmn(r) +2r(1+7") =2r(1+2") > 0. (4.1)

Consider fiust (a’,b') = 'y}\}m(a,, b), which is given by Lemma 3.36. The first
step is to calculate the quantities F; and S; from the statement of Lemma 3.36
for 1 £ 5<m.

Now P; = Z{:l bi, giving Pj = ~r2(r™ + 1)(#9 — 1) = ra; for 1 < j < m; and

hence P, = Pp—1 + by = 7am—1 + b, On the other hand,

S; = 11:;113% (max(0,b;) + Pie1 — a;) = 112?53{] (rai_y — ai)

(setting ag = 0), since b; < 0 for all 4. Now ra;_; — a; = —a; for all i < m, so
S§; = —ay for 1 < j < m. Finally by (4.1
f] J

Sy = 11133((—@1,7'Grn—1 - “m) = Tlm—1 — Om.
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Let 1 < j <m — 2. Then (using case 3 of Lemma 3.36)
a; = max(Pj, aj1 + S;) = max(raj, aj41 — a1) = max(raj,ra;) = ra;  and
by =bjr1 + 85 — Sjp1 = bjp1 = vb;
as required. Let j = m — 1. Then
ay, 1 = max(Pp_1, Gy + Sm-1) = Max(Tam_1,am — @1) = Tam—1
by (4.1), and

’
bm,—l =bn+Sm—1—Sm=bn —ar — ('ram—-l - am) = rbn—1

as requived.

Let j = m. Then
= P — max(0, Sp) = ram—1 + by — (P@m—1 — Qm) = am =+ bin
as required, while
Y, = Sm = ram-1— am = 2r(1L + ™) —ay

by (4.1), giving ¥, = »(r™ + 1)(r + 1) as required.

Now let (a”,b") = 6N =1(4,b), Showing that (a”,b") = (a’,¥)/r, will
complete the proof. The argument, using Lemma 3.37, is similar to the first
part of the proof. Calculating the quantities Igj and §j from the statement of

Lemma 3.37 gives

13j = I =M (Mt _ 1y (pmEnsd ) Sj = —r"(r— )™+ — 1) (G >m),
P = (™ —1)(7™ + 1), Sm=—(+1)("+1).
Then, by case 3 of Lemma 3.37,
apy, = max(0, Si) — Py = =Py, = (@m + b)) /7,
b = —Sp = (" + 1)(r + 1),
U1 = G — max(a, + Bt Soppt) = Gm — Sl = Q1 /75
;;1.+1 =bm + g'm - ~m+1 = bmy1/7 + fm,n(r) = bm-f—l/?‘,
aj = aj_; — max(aj_1 + P, S))=a;_1—8; =a;/r (j>m+1), and
0 =bjo1 + 8jo1 = Sy = b1 =bi/r (7> m+1)

as required. O
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Remark 4.10. The singularity structure of the invariant foliation [FJ, ., i, nl

can be seen in its Dynnikov coordinates. The equations
i1 = G+ b if1<i<m—-—2
Gir] = @i — b fm+l<i<m+n—2

correspond to the existence of an (m + 1)-pronged and an (n + 1)-pronged sin-

gularities respectively. This will be clarified in Section 4.5.

4.4 The braids oy,

In this section we study the braids oy = 01.. . O O o 01014+ O € B
For 1 < m < n, omy is pseudo-Anocsov if n > m -+ 2 and reducible if n =m 4 1.
The statement that oy, 4, is pseudo-Anosov if n > m+-2 can be proven analogously

to Theorem 4.9.

4,4.1 The pseudo-Anosov case: n > m -+ 2

Theorem 4.11 (The braids oy for n > m+2). Let 1 < m < n—2. Then
Omn € Bmtnt+1 8 a pseudo -Anosov braid, whose dilatation r is the unique root

in {1,00) of the polynomial
G (r) = (7 — D)™ 1) 4 20 (0™ — ™).

The Dynnikov coordinates (a®,b%) € Smyn+1 of the unstable invariant measured

foliation of ompn are given by

(r" = 1) (rH = Dr if 1<i<m-—1
a; = . )
(,[.17'z.+1 _ 1}(T7n,+n.—'z. . 1),,.~L+1—m zf m S 3 S m4n— 1,
; (r — )" — 1)+t if 1<i<m-—1
= .
(rr = D)(pmFL — 1)pt—m f m<i<m+n-—1

Proof. Rewrite the poynomial gp, »(r) as
(r—1) (P L g (L L)

and write g, (r) for the second factor of gnn(7) so that g n (1) = (r—1)gmn(r).

Then, gmn(1) = 2 — 2(n — m) and hence Gmp(l) < 0 since n — m > 2. There-
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fore, Gin,n must have a root r > 1. Now, assume that the following hold:

a; 20 b; >0
b; < biya, 1<i<m—-—2, m<i<m+n—2,
a; > b; 1<i<m+n-—1,

biy1 = ajp1 — ag, 1<i<m—-2

Diy1 = ai — Qi41, m<i<m+n-—2

bm—l—n—l S bm—l

(these conditions can easily be verified for (a,b) as given above).

1,m 51 m 1,m+n

Since Omn = Vmrot19mant1 Ymans1 € Bmin+1, the update rules for op, , can

be obtained by composing the rules for ’erﬂ-ln 15 O 11 4na1 and ’y},ﬂ_’:ﬂl by letting

(@', 0) =yt o1 (a,b), (@, 07) = 657 (a,b) and (a”,0") = ypltet (0, 07).

Then, under the assumptions given above, (a',b") are given by

e

ir1 — @1 + by 1<i<m—1;
m
o a,-+1+o,m—2bj m<i<mtn—2;
a; = G=1
m
—ij t=m-+n-—1
'bi+1 1<i<m-2,m<i<m+n-—2
m—1
A m a1 — ij i=m-—1
T - 3_2
Mn-+n—
Uy, — Z b; i=m+n—1
\ j=m+1

It is easy to check that if (", ") = oy n(a,b) where (a,b) are as in the statement
of the theorem, then (a”,0") = r(a,b).

Compute for example a/ for 1 <i<m — 1.
P P i

e Whenl1<i<m-—2

"
= (" = D) — 1)7? = ra,.

¢ Wheni=m —1,

@ = a1 — a1+ by = (" — DEE = e — " — )2 = Dr + (r — 1)(r" —

1)r?

flﬁi—1 =am—a1+b = (7,m+1 - 1)(,,.n - 1)7" - (Tn - 1)(7'2 - 1)7‘ + ('I" - 1)(,,,17. - 1)T2

=7 (7‘" — 1)(?‘7”' — 1) = Tlm—1-
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Finally a},lz) = P, — max(S,,0) = m — max(—1,0) = m, and b.,%) = S, = —1.
Thus
(+1,1) 1<i<m
(aﬁ”, b§1)) =< (m,—1) i=m
@m+1—-14,1) m+1<i<2m.
2. (a®,b?) is computed using case 2 of Lemma 3.37. The quantities 133 and

§j are given for j < by

m
]'Sj = max(b{}), 0) — Zbgl) =1l+j—m

i=j
and :S’uj = maxjgs,n,l(az(-l) + max(bgl),O) + ﬁH—l - bgl)) =m - 1. Hence
af?) = a) + b3 — max(af), b + max(51, P)
=m— 1 —max(m, -1+ max(m+ 1,2 - m)) = —1,
b§2) =0} + P, — max(all), b)) + §))
=—-14+(2—-m)—max(m,—1+m+1)=1-2m,
o) = al)L; +af)) + b)) — max(aly); +max(6(), 0),af}))
=m+m—1— max(m,m) =m — 1,
(1) (1)

b2 = max(a,, . ; +max(b,,”.;,0) + max(b,(,%l) ,0), af,l,‘) + bf?ll)m_l) —afl)

=max(m-+14+0,m+1)—m=1,
and for 2 < 7 < m

a§-2) = a.,(il_)l + afl) + o) — max(all), pll) - max(g.,-, a51_)3 + ﬁj))
=j+m—1-—max(m,—1l+max(m+1,2f+1—-m))=j+m-1-m=j4—-1,
4P 40, 4 (a2, + 5 2)  maslf 9+ §) =1, = 1.
Thus
(—1,1-9m) i=1
RTINS D 2<i<m

@Cm+1—14,1) m+1<i<2m.
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3. (a®,5®)) is computed using case 4 of Lemma 3.36. The quantities P; and

Sy are given by P; = E;;l bgg) =7 —2m (and Py = 0); and

2 2
Sj = nglfl%S(ll’l&X(b?( ), D) + Pi—1 - CL,E )>

Now 1nax(b§2), 0)+P _agz) is equal to 1 when ¢ = 1 and is negative for ¢ > 1, and

hence S; = 1 for all j. Thus agi)b = max(Pay, Som) = 1, bg?,)z = Som — Popy, = 1,
and for 1 <j < 2m

a§3) = max (P}, aﬁ)l +.55) = max(j — 2m, “;331 +1)= ;“21 +1
j+1 1<j<m—1
2m4+1—-(j+1)+1 m<ji<2m—-1,
3 2 2
bg-)= §'—31+Sj_sf+1:b§‘-21 =1.
Hence (a®,b53)) = (a,b) as required. O

The proofs of Theorem 4.9 and Theorem 4.11 are self-contained. However,
we haven’t explained how we computed the Dynnikov coordinates of the unstable
foliations, and the polynomials fmm and gms. To find the train tracks for an
infinite family of braids, the usual method would be to compute train tracks
[5, 20] for enough examples to spot a general pattern, and then to prove that the
conjectured pattern does indeed hold for all braids in the family. The method
here is similar. Since [F, ] is a globally attracting fixed point for the action of
Bmn on PMF,, it is easy to find the Dynnikov coordinates numerically (similarly
for oym;n = m - 2).

Having done this for several cases of m and n, we can guess how the various
maxima in the statements of Lemma 3.36 and Lemma 3.37 are resolved. That
is, we compute the Dynnikov regions and matrices for enough braids in the
family until we spot a general pattern, and conjecture that the pattern holds
for all braids in the family. Then the conjecture is proved. The next section
describes this process in more detail, illustrating the method on the family r, =

-1
a102...0, 1 € By,

4.5 Exposé of the method on the braid family Br—2.1

This section is a guide to those who want to compute the topological entropy
of each braid in various infinite braid families making use of Dynnikov’s coor-

dinates on the boundary of Teichmiiller space. The method will be illustrated
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on the pseudo-Anosov braids fy—21 = o102.. .0‘17,_20',;3 1 € Bp. Throughout the
section B2, will be denoted 7,,. We shall explain how we obtain the Dyn-
nikov coordinates of the unstable foliation, and hence a Dynnikov region with
asgociated Dynnikov matrix and characteristic polynomial for each braid T,.
The simplest braid in the family is 73 = o105 1 & B3 which has one Dynnikov

matrix as computed in Example 4.4. That is,
2 1
11

and (a“,b") has approximate Dynnikov coordinates (—0.850,—0.525). The

D=

following steps give a recipe to find the Dynnikov coordinates of the invariant

foliation and a Dynnikov matrix for each braid 7,.

1. Step 1: (Experiment) Since [F*, u¥] is a globally attracting fixed point for
the action of 7, € By, on PMF,, it is easy to find its Dynnikov coordinates
numerically. We use the Dynn.exe [18] program for this. The program picks
a random point (a,b) € R?™ 4\ {0} and iterates it with the given braid
7o, until it arrives in a region R in which there exists a point (a¥,b%) with
D[a®, 6] = [a¥,b"], where D describes the action of 7, in R. Thus, (a¥, b%)
corresponds to the Dynnikov coordinates of [F,u] and D is a Dynnikov
matrix. We note that there can be more than one Dynnikov matrix if
[F, 1] is on the boundary of several Dynnikov regions (see Example 4.8).
We first obtained Dynnikov matrices of 7, for different values of n. Below

are some of them, that is for n = 4,5 and 6.

e For 7y = o10203 !¢ By the program gives the following matrix

0 0 1 0

0 2 -1 1
D=

-11 -1 1

01 0 1

and (a", b") has approximate Dynnikov coordinates

a; = —0.151, ay = —0.732, b; = —0.347, by = —0.565.
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o For 75 = g109030, e Bs the program gives the following matrix

[ 00 1 0 0]
00 1 1 0
b 0 2 -1 -1 1
1 1 0 -1 1 0
11 0 -1 1

I 0 1 0 0 1|

and (a",b") has approximate Dynnikov coordinates

ay = —0.071, a9 = —0.225, ag = —0.680,
by = —0.153, by = —0.331, b3 = —0.589.

e For 75 = 0109030405 1 e Bg the program gives the following matrix

-11 0 0 0 0 0 O
000 0 1 1 00
000 0 1 1 1 0

Hol 00 0 2 111
00000 1 0 O
-1 0 1 0 -1 -1 1 0
00 -110 0 -11
000 0 1 0 0 0 1]

and (a¥,b") has approximate Dynnikov coordinates

a1 = —0.035, ap = —0.109, ag= —0.263, a4 = —0.650,
by = —0.074, by = —0.154, by = —0.320, by = —0.601.

We observe that the Dynnikov coordinates of (a¥,b") are all negative and
hence decide to compute the update rules under the assumption that a; < 0

and b; <0 for all 1 < j < n — 2 as the second step.

. Step 2: The aim of this step is to compute the update rules for 7, when
aj <0and b; <0for 1 <j<n—2 Let(d,V)=o0102...04-2(a,b) and
(a”,b") = o2 (!, V). Using Lemma 3.36 case 3 we shall compute (a’,').

The update rules are given by
a; = [ P + a;415;], by = [bj+18/Sjr1] (1<j<n—2),

a;L—Z = [_P.n_z/(l + SR—Z)] ) b;b—? = [Sn—-?] s
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where
J NP,
Pj(b,1) = [Hb} and S; ab,l):[zmti}; 1<j<n—2
=1

Since a; < 0,b; <0 for 1 <j <n—2 we have

J

Py = {Hbi:| =by+by+ - +b;, and
i=1

Sj= [Z ZL— jl=1nax(—-—a1,l)1-cﬂ2,bl+b2—(Lg...,bl-{-bg—}—-"—i-bj_]_—aj).
=1

To resolve S; we need to decide which is biggest of

-0y, bi—az, bi+br—as, ..., bi+bat+---4+bjio1—ay.
We go back to the examples in Step 1 and check the Dynnikov coordinates
(a*,b") for each 7,. We observe that in each of these examples (a¥,b")
satisty by_3 > an—o — ap—3 and b; = a;41 —a; for 1 < j < n —4. Hence, it
follows that

—a; = by—ags = bj+by—ag = -~ = by +bg+- - Abp_a—an_3 < b1+bot+  Abp_3—an_z.

It follows that there are 274 Dynnikov regions adjacent to (a*, %) since
for each 1 < j < n — 4 the update rules can be calculated either under the
asumption that a1 —a; < b; or under the assumption that aj.1 —a; > by.
We choose a region where a1 —a; <bj for 1 <j <n—3 and write yral)

to denote this region. In this region, we therefore have

Sj = ma.x(—al,bl —ag, by +by —ag...,by +bs + "'+bj—1 ——Cl.j) = Zbi-—a.j.

Therefore,

J Jj-1 J
a; = max(Fj, ajq + Sj) = max (Z by a1 + Zbi - aj> = Zb@-

i=1 i=1
-1
by =bjp1+ 85— Sjpa =bjp1+ Y bi—a;— }:bi—(—aj.,_l
i=1 i=1

= Qi1 — @5 + bj+1 - bj
n—2

(I';L—Z =Fypo— lllELX(O, Sn 2 Z b — max (0 Z b — dp— 2) = ap-2+ bn 2

n—3

n, 2= Sn— 2—Zb—a’n2
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To compute (a”,b"), we vefer to Theorem 3.35. Then we get aj = a; and
b;-’:bj for 1 <j<n-3,and

" 1 ’ ! /
Ap—g = Gy — Max (a'n—-2 + bn-2= O, bn—2)

n—3 n—3
-2 -+ byg — max (a'n—2 + b2+ Z b; — an—2,0, Z b; — GHQZ)

i=1 i=1

n—3 n—3 n—3
(p—2 + bp_p — max (Z b;, 0, Z b; — Cﬂn—z) = 2ap—2 + bp—g — Z b;

i=1 i=1 i=1

7 ! / /
n—2 = Qg2 + bn*2 — max (0’ b'n.fQ)

n—3 n—3
Un—2 + bp_o + Z b; — ap_2 — max (0, Z by — an—z)

i=1

Il

= Gp-2 + bp—2

To summarize, the update rules in RM are given by

p
> b 1<j<n-—3
ay = { =1 3 (4.2)
20p—2 + bp—2 — Z by j=n—-2
?:21
aj+1 — QG +bj1—b; 1<j<n-3
b;’ _ )l j T Uj+1 — 05 J (4.3)

An—2 + bp2 j=n-2

Write D for the update matrix in R, Thus, for example D) is given
by

00 1 0 0

00 1 1 0

pe_| 0 0 2 -1 -11
-1 1 0 -1 1 0

0 -1 1 0 -1 1

0 0 1 0 0 1|

It is easy to check that D®) is a Dynnikov matrix since it has an eigenvalue
7 > 1 and the corresponding eigenvector lies in RG), Our aim in the next

step is to prove that for each n, D™ is a Dynnikov matrix.

To do this we shall find a general form for the characteristic polynomial

fn(x) of D™ for each n and prove that fa(z) has eigenvalue r > 1 with
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corresponding eigenvector (a¥,b*) contained in R, and hence conclude

that R is a Dynnikov region and D is a Dynnikov matrix.

. Step 38: Let f,(z) denote the characteristic polynomial of D). An induc-

tive calculation using row and column expansion gives;
fu(@) = (@ + 1) (2" — 2271 — 22+ 1). (4.4)

Write f,,(x) for the second factor of fu(z). Then, f(1) = —2 so that f,
has a root r > 1. Next, we want to show that there is a unique eigenvector
corresponding to 7 > 1 in R™ and hence show that R is a Dynnikov

region and D™ is the associated Dynnikov matrix.

Because a; — ap < an_:lk by for 1 < k £ 7 < n—2 we have the following.

[e2] =ay+b +cg
a3 =a+bh+bh+tceta

< ay =a1+bi+0y+bs+cogt+c1+co (4.5)

an—2 =a1+b+-byztetectezttcopay

\

for ¢; > 0. Solving the system D™ (a,b) = r(a,b) for (a,b) gives that,

—r(r? —1); 1<j<n—2
o= ( ); <J (4.6)
(™l —D(r=1) j=n-2,

—pi*l(p 1) 1<j<n—2

&
i

4.7
(1 -1) j=n-2 )

Also observe that multiplying each of these coordinates with + -+ 1 gives
the coordinates of (a¥,b") of the invariant unstable foliation of fm . for

m=mn—2 and n =1 as given in Theorem 4.9.

Finally, we check that (a*, ") given with Dynnikov coordinates as above is
contained in R(™ for each braid 7, and hence corresponds to the Dynnikov
coordinates of (F¥, u*). We observe that for 1 < j <n —4,

aj = —r(rf —1) <0, by = =1t Hr —1) <0, ajp1 =~ —1) = a; +b;

and

o= (=" (r=-1)<r—r""=ay 3 +bn-s
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since 7" + 1 = 2(r"~! ) > 2"~ ! from (4.4). Our last note about this
family of braids will regard its singularity structure. Namely, we shall see
that the equation aj41 = a; +b;; 1 < § < n — 4 reveals the singularity

structure of the invariant foliation [F*, u¥] of 4.

Noting that a; <0 and b; < 0 and using Theorem 3.19 we get

g5 = a; + % (4.8)
Qg2 = Qjy1 + % (4.9)

We have aj +b; = aj4; for 1 < j <n-—4. Adding bj+1 on both sides of
the equation gives

a; + bj+1 + bj = Q541 + bj+1A
Since bj41 = M’—ﬂ we get

aj+ﬁ—1.2ﬂ+bj=aj+1+ﬁ—gﬂ+bj+1

By (4.8) and using b; <0, bjy1 < 0 we have

Qg — ij] = Qj42 — |bj+1[ ; 1 <7< n—4. (4.10)

'The equality in (4.10) implies that there exists a leaf which joins n — 3
3-pronged singularities. A Whitehead move contracts this leaf and yields
a n — 1 pronged singularity. For an explicit example, consider the braid
T5 = 0102036405"1 € Bg. Then by (3.4), r ~ 2.081 and from (3.9) and
(3.10),

a; ~ —1 by ~ —2.081
as ~ —3.081 by ~ —4.330
ag ~ —7.411 bg ~ —9.012
ay ~ ~18.27 by ~ —16.904

Thus, by Theorem 3.19 one can work out aj forall 1 <7 <2n—4and gy
forall 1 <7 <n—1 (Figure 4.3).

We observe that |og| — by = |au| — ba = |ag| — b3 hence there exists a
leaf which joins three 3-pronged singularities as depicted in Figure 4.3. A

Whitehead move contracts this leaf and yields a 5 pronged singularity.
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Part 11

On Dynnikov matrices and
train track transition matrices

of pseudo -Anosov braids
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In the first part of the thesis, we showed that Dynnikov coordinates provide an
explicit bijection between the space of measured foliations MJF, (up to isotopy
and Whitehead equivalence) on D,, and S, = R?"~1\ {0}. We described the
action of a given braid # € B, on the projective space PS, = S,/R™ using the
update rules and proved that these rules induce a piecewise linear action on PS,,.
Then, we introduced the so-called Dynnikov matrices which describe the action
of 8 near the invariant unstable foliation [F*, u¥] € PS,. Often, [F*. u¥] lies on
the boundary of several piecewise linear regions (as illustrated in Example 4.8):
each region containing [F¥, %] on its boundary is a Dynnikov region and the
associated matrix is a Dynnikov matriz. The fact that each Dynnikov matrix
has an eigenvalue A > 1 associated with the Dynnikov coordinates [a*,b%] of
[F*, 1¥], and that A gives the dilatation of 3, yielded the method introduced in
Chapter 4. That is, the topological entropy of each member of a given pseudo-
Anosov braid family can be computed by finding a Dynnikov region with its
associated Dynnikov matrix. This process was described in detail in Chapter 4.

The aim of this part of the thesis is to prove that any Dynnikov matrix D
and any train track transition matrix T of a pseudo-Anosov braid 8 € B, are
isospectral up to roots of unity and zeros. Chapter b provides the necessary back-
ground and Chapter 6 contains the results of this part of the thesis. To be more
specific, Chapter 5 first describes train tracks and defines the space of transverse
measures W(7) on a given train track 7. Section 5.1 then gives a description of
the construction of measured foliations (and integral laminations) from a given
train track and explains why train tracks can be used as coordinate systems,
introducing the homeomorphism from the space of non-negative transverse mea-
sures W (7) on a given train track 7 to the space of measured foliations MF(7)
carried by 7. This background material can be found in {24, 26]. Section 5.2 con-
tains some new material. It defines the measure p: W¥(r) — R™* of a train path
pin a train track 7, and shows that P is piecewise linear. Section 5.3 summarizes
some results from {5] regarding the dynamics of a given pseudo-Anosov isotopy
class [f] on its invariant train track 7. An important point here is that the
associated train track transition matrix 7' describes the action of [f] on W+ (7).

Chapter 6 is divided into three sections. One essential tool is described in
Section 6.1: the change of coordinate function from train track coordinates to
Dynnikov coordinates. Then, the main results of this part of the thesis will be
given in Section 6.2 and Section 6.3.

In Section 6.2 it is shown that when the unstable invariant measured foli-
ation (F*.u") of a given pseudo-Anosov braid 8 € B, has only unpunctured

3-pronged and punctured 1-pronged singularities, then there is a unique Dyn-
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nikov matrix D which is isospectral to T". Section 6.3 studies the case when
(F*, 1) has singularities other than unpunctured 3-pronged and punctured 1-
pronged singularities. In this case, (F¥, u*) is carried by a non-complete train
track 7, and the corresponding space MF(7) does not define a chart in MF,.
Two different ways of constructing a complete train track from 7 are described
in Section 6.3.1. These complete train tracks are called pinchings and diagonal
estensions of T [24, 26]. Our results are mainly based on the interplay between
the charts constructed from these two different extensions. In particular, we
shall introduce Lemma 6.18, which is new and plays a key role in our results: it
explains how these charts fit together. In Section 6.3.2, we shall use this lemma
and prove that if 8 fixes the prongs of (F*, u*), then every Dynnikov matrix is
isospectral to 1" up to some eigenvalues 1. Then, we shall discuss the case in
which # permutes the prongs of (F*, u*) non-trivially in Section 6.3.3. In this
case, we have not established that every Dynnikov matrix is isospectral to T' up
to roots of unity and zeros: this conjectured result has been observed in a wide

range of examples, one of which is presented in detail in Section 6.3.3.
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Chapter 5

Train Tracks

The purpose of this chapter is to explain some properties of train tracks which
will be necessary for the rvesults in Chapter 6. We shall start with some basic

definitions and results all of which can be found in [5, 24, 26].

Definitions 5.1. A train track T on D, is a one dimensional CW complex made
up of vertices called switches and edges called branches smoothly embedded on
D,, such that at each switch v there is a unique tangent vector Ty, (7). We require
that every component of D,, — T is either a once-punctured p-gon with p > 1 or
an unpunctured k-gon with £ > 3 (see Figure 5.1). Fixing a direction in T3,(7) at
each switch v we define incoming and outgoing branches as follows: a branch e
of 7 incident to the switch v is called éncoming at v if it agrees with the direction
of Ty(7), it is outgoing otherwise.

A train track 7 is called complete if each component of D, — 7 is either a

trigon or a once punctured monogon.

= = A )T

Figure 5.1: A punctured monogon, a punctured bigon, a trigon and a 4-gon

In Figure 5.2, D,, — 7 has 9 punctured monogons, a punctured 6-gon and a

punctured trigon. Note that we treat 0D, as a puncture.

Definitions 5.2. A transverse measure p on 7 is a function which assigns a real

number p(e) € R to each branch e of 7 called the measure on T such that:

e There is some e with u(e) # 0
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Figure 5.2: A train track on Dyg

e The switch condition holds at each switch v. That is,

> ple) = > u(e)

incoming branches at v outgoing branches at v

A measured train trock is a train track equipped with a transverse measure B

Definitions 5.3. Given a train track 7 on D,, with k& branches, W(r) c R*
denotes the space of transverse measures on T and W*(r) € W(r) denotes the set
of non-negative transverse measures on 7. Hence W (7) is a polyhedral convex
cone defined by the inequalities p(e;) > 0 for each branch e;, some ule;) > 0, and
the switch conditions (as linear equations) of 7. The subspace Wy (r) denotes
the space of positive integer transverse measures on 7. The dimension of W(T)

is denoted rank(7).

Since W*(7) is a convex cone, for all wy,ws € WH(r) and ki, ks € RY, we
have kjw; +kows € W (7). In particular, there is a natural action of the positive
reals R™ on WT(7).

Definitions 5.4. The space of projective transverse measures PWH(r) is the
quotient space of W*(7) modulo w ~ kw, k € R*. That is, PW™(7) is the
space of equivalence classes [w] where w is identified with kw for all k € RT. An

element of PW(7) is called a projective measure on 7.

Definitions 5.5. Endowing a regular neighborhood N, of 7 with fibres of the
retraction r : Ny ™\, 7 as depicted in Figure 5.3, we obtain a fibred neighbourhood
Ny of 7. Note that v is not a switch if and only if #~!(v) is an interval: that is,
for every switch v of 7, 771(v) is a singular fiber.

Given an integral lamination £ € L,, we say that £ is carried by 7 if it has
a representative L C N which is transverse to the fibres in N, (Figure 5.4).
Intuitively, the curves of £ can be realized by a train running along the track.

The space of integral laminations carried by 7 is denoted L(7).
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Dy, —, this collection of simple closed curves gives rise to an integral lamination.
This defines a function 9, : W (1) = £(). Conversely, if £ is carried by 7 then
the measures p(er), ..., u(er) assigned by £ on the branches eq,..., e of T are
given as the number of times a transverse representative L C N, of £ passes
over e; and they satisfy the switch conditions. This gives the inverse function
¥t L(r) = W (7). Therefore, ¢, : Wi (1) — L(r) is a bijection.

N\
Z

Figure 5.5: There is a unique way to join arcs at each vertex

W

Similarly, we can define a function ¢ : W¥(r) — MF, as follows: Replace
each branch e; which has non-zero measure with a Euclidean rectangle R; of
length 1 and height ((e;) and endow each R; with a “horizontal” measured
foliation where the transverse measure is induced from the Euclidean metrics
on the rectangles. At each switch glue the vertical sides of the rectangles as
depicted in Figure 5.6 and denote this union of glued rectangles R*. Since 7
satisfies the switch condition at each switch there is a unique measure preserving
way to glue together the horizontal leaves, hence there is a well defined transverse
measure on R*. A pre-foliation F* is the collection of leaves on R*. Collapsing
each component of D,, — F* which doesn’t contain any branch of zero measure

onto a spine as depicted in Figure 5.9 yields a full or partial measured foliation

¢T(/J') = ('7: f/‘) [5]

Definitions 5.6. We say that (F,u) € MF, is carried by 7 if it arises from
some transverse measure 4 on 7 in this way. We write MF(7) = ¢, (W*(7)) for
the set of measured foliations carried by 7 and PMF(r) for the corresponding

projective space.

Therefore, the measures on the branches of 7 provide (train track) coordinates

for integral laminations and measured foliations carried by 7.

Remark 5.7. We note that 7 is complete if and only if almost every foliation in
MF(7) is full and has only 1-pronged singularities at punctures and 3-pronged
singularities elsewhere. Moreover, a foliation (F, 1) carried by a complete train

track cannot be full if the measures on some branches are zero. Also a foliation
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(F, 1) Whitehead equivalent to a foliation with a k-pronged singularity & > 3
can be carried by a complete train track. In Figure 5.7, when a = ¢, the sin-
gular leaves emanating from the 3-pronged singularities join and give a compact
leaf. A Whitehead move collapses this leaf onto a point and yields a 4-pronged
singularity. In Figure 5.8, when @ = ¢ a 1-pronged singularity joins a 3-pronged
singularity and yields a regular point. Hence although the foliations in both cases
are carried by complete train tracks, they have singularities other than 3-pronged

and I-pronged singularities.

Lemma 5.8. The complete train tracks on D, give an atlas for the piecewise
integral linear structure of MJF,, and PMF,. That is, the transition functions

between charts are piecewise linear with integer coefficients.

Proof. See [26]. |

Figure 5.9: Collapsing complementary regions onto a spine

Noting that MF,, and PMF,, are homeomorphic to R?"~4\ {0} and §?"5

respectively, MF (1) and PMF(7) have the subspace topology and we have the
following:

Theorem 5.9. Given a train track T on Dy, the maps ¢ : W (1) = MF(7)
and ¢r - PWH () = PMF(7) are homeomorphisms where W (1) has the sub-
space and PWT (1) has the quotient topology.

Proof. See [24]. O
Lemma 5.10. Let T be a train track on D, with k branches and s switches. The
switch conditions on 7 are linearly independent and hence W(r) has dimension
rank(t) = k — s. Hence W(r) = R¥\ {0}. 7 is complete if and only if

rank(7) = 2n — 4. That s, T is complete if and only if rank(7) is the same as
the dimension of MF,,.

Proof. See [26). O
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in Section 5.1 are not connected.

5.3 Train tracks and pseudo-Anosov automorphisms

Definitions 5.14. Let 7 and 7/ be two train tracks on D,. We say that 7 is
carried by 7" and write T < 7/ if there is a homeomorphism 1 : D, — D,, isotopic

to the identity such that
. ’l[)(’l‘) g N. 7'
¢ Each branch of ¥(7) is transverse to the fibers in Ny,

o for each branch e; of 7 the end points of 1(e;) are contained in singular

leaves of N/,

Let {e;}1<i<k and {fi}1<i<ir be the oriented branches of T and 7' respectively.
Let 7' : N;» — 7' be the retraction. For each 1 < i < k, /(1(e;)) is an edge path
in 7' 7'(Pler)) = fil fi2 ... [, €j = =1, The incidence matriz associated to 7
and 7' is the &' x k matrix G : W(7) — W(7') whose ij*! entry T}; is given by

the number of occurences of £ in /(1 (e;)).

Lemma 5.15. Let 7 < 7', Then MF(r) C MF(7') and the following diagram

commutes:

wr) S wHr)
lér N
MF(r) = MF().

Proof. See [24]. O

Definition 5.16. We say that a train track 7 is invariant under [f] € MCG(D,),
if f(7) is carried by 7. Let 7 be an invariant train track of [f] and e1,...,e; be
the oriented branches of 7. Then, for each 1 < i < k, r(¥(f(e;))) is of the form
r(¥(f(e:)) = ejlei; ... e;f, €5 = +1. The transition matriz T associated to 7 is

1] 19

the k x k incidence matrix 7" : W(f(7)) — W(7) described as in Definitions 5.14.

Example 5.17. An invariant train track 7 for the 5-braid 8 = o10205 Yoy and
its image under /5 are depicted in Figure 5.11. Hence the image edge paths are

given by
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Therefore the transition matrix 7" associated to T is as given below.

010100000O0O0CO0OC
0211000000000

0221000000000

TI

il
o
[en]
[e=]
o
je]
o
[a=]
=
[an]
o
o
o
o

Notice that 77 has the form

T T 0
A P
where 7' is a 5 x § matrix giving the action on the edges a, b, ¢,d and e; and

P is a permutation matrix giving the action on the other edges.

Theorem 5.18. Every pseudo-Anosov automorphism f € Aut(D,,) has an in-

varient train track T. This train track T can be chosen so that

o The branches which bound interior p-gons (i.e. those which are disjoint

from 0D,,) are permuted by f.

o The transition matriz is of the form

T’—TO
A P

where P is a permutation matriz giving the action on the permuted branches

and T is the mairiz that gives the action on the other branches.
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e For each p, there are the same number of unpunctured (resp. punctured) p-
gons in T as there are unpunctured (resp. punctured) p-pronged singularities
in (F®, u*) (this includes the “exterior” punctured p-gon and the singularity

at infinity).
Proof. See [5]. O

The final point will be clarified in Lemma 5.20.

Definition 5.19. A train track 7 of the type in Theorem 5.18 is called a regular
train track. A branch of a regular train track is called infinitesimal if it is
permuted under the action of £ (that is, if it bounds an interior p-gon), it is

called main otherwise.

Lemma 5.20. Let f € Aut(Dy) be a pseudo-Anosov automorphism with di-
latation A, unstable foliation (F¥,u¥) and invariant regular train track T with
associated transition matriz T'. The largest eigenvalue of T' equals A and the
entries of the unique associated column eigenvector v* (up to scale) are strictly
positive. v" defines a transverse measure on T which yiclds a pre-foliation F*
as described in page 110 whose prongs do not join and from which (F%, %) is
constructed. That is, ¢ (V") = (F%, u*).

Proof. See [5]. O

Lemma 5.21. Let 7 be an invariant train track for f € Aut(D,). If oll com-
ponents of Dp — 7 are odd-gons (in particular, if T is complete), then there is a
basis for W(T) consisting of transverse measures i such that u(e) £ 0 for exactly

one main branch e.

Proof. If Dy, — 7 consists only of odd-gons, the switch conditions give a unique
solution for the measures on the infinitesimal branches given measures on the
main branches and a basis for W(7) can be obtained by assigning 1 to one main
branch and 0 to all other main branches of T since negative measures are allowed

on the infinitesimal branches (Figure 5.12). See also [6]. O

Remark 5.22. Lemma 5.15 gives the following commutative diagram

wHr) L W)
lér lor

MFr) L MF@).
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Chapter 6

Transition matrices and

Dynnikov matrices

The aim of Chapter 6 is to compare the spectra of Dynnikov matrices with the
spectra of the train track transition matrices of a given pseudo-Anosov braid
B € By,. Section 6.1 describes the change of coordinate function from train track
coordinates to Dynnikov coordinates which is crucial for proving our results in
Section 6.2 and Section 6.3.

In Section 6.2 it is shown that when the unstable invariant measured foliation
(F*, u*) of B € By has only unpunctured 3-pronged and punctured l-pronged
singularities, then there is a unique Dynnikov matrix D which is isospectral to
T. Section 6.3 studies the case when (F", ") has singularities other than un-
punctured 3-pronged and punctured 1-pronged singularities. First, two different
ways of constructing a complete train track from 7 are described in Section 6.3.1
[24, 26]. Then, Lemma 6.18 is given: this new lemma. plays a key role in our
results since it explains how the charts constructed from these two different ex-
tensions fit together. In Section 6.3.2, it is shown that if 8 fixes the prongs
of (F*,u*), then every Dynnikov matrix is isospectral to 7" up to some eigen-
values 1. The case in which § permutes the prongs of (F¥, %) non-trivially is
discussed in Section 6.3.3: a conjectured result, which has been observed in a

wide range of examples, is illustrated with an example.

6.1 Train track coordinates and Dynnikov coordinates

In this section we will show that, for any train track 7 on D,, the change of coor-
dinate function L : Wt (7) — &,, between train track coordinates and Dynnikov

coordinates is piecewise linear.
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Proof. Given a Dynnikov arc v and the branches {ey,...,e;} of 7 (standardly
embedded) let n; be the number of intersections of e; with . To compute ()
we need to subtract the measure on all independent train paths which form a
loop with . The only condition is that a train path should not be a subpath of
another (two train paths neither of which is a subpath of the other define disjoint
packets of leaves except perhaps their boundary leaves).

Thus the measure u(7y) of v is given by

k
) =D e =2 " plu). (6.1)
i=1

pEl‘IL,

We know that any p € I, is of the form e;, De;?, where ef! and ef? cross -y (e;,
contains §; and e;, contains J3). Note that  cannot contain the same branch
with the same orientation twice since then it would contain a non-trivial loop
which is impossible (a non-tight train path which contains a non-trivial loop is
not minimal). Hence u(v) is piecewise linear since IT, is finite and for each of
these train paths $(u) is piecewise linear by Lemma 5.12. Therefore the map

WT(r) = Sy is plecewise linear. O
Next, we shall illustrate Lemma 6.3 in the following example:

Example 6.4. Counsider the 4-braid 8 = ¢ 0203 ! on Dy. A standard embedding
of the invariant train track 7 of 8 with respect to Dynnikov arcs is as depicted
in Figure 6.2. Let a,b,c,d and my, mg, mg, ma, ms, mg, mr denote the measures
on the main and infinitesimal branches of 7. We first observe that the measures
on the infinitesimal branches of 7 are determined by a,b, ¢, d since the switch

conditions give
my=a/2, my="0/2, mg=(c+d)/2, myq=d/2
ms=(a+b—c)/2, msg=(b+c—a)/2, my=(a+c—b)/2

Since Dp — 7 only has an unpunctured trigon and punctured monogons, T is
complete and rank(t) = 4. We shall find the change of coordinate function
(a,b,c,d) = (ay,a9,b1,be) from train track coordinates to Dynnikov coordinates.
We have 8 = a, B2 = c and B3 = d since Iy, = 0 for i = 1,2, 3. Hence,
a—c c—d

bo =
2 and by 5

by =

We also have 1L, =1l = 0, and I, = {p1}, I, = {pa} where p; and p; are
as depicted in Figure 6.2.
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We observe from Figure 6.3, Figure 6.4 and Figure 6.5 that

P1(p) = min(mag, mg) and pe(p) = min(d, mg)
We have that
ay =mg =b/2 and ag = mg + ¢ — 2751 (u).

Hence

ag = -g— +c¢—min(b,b+ ¢ — a) = max(a,¢) — g,

and so,

op —ar  max(e,c) —Db
M= T 2

We continue with ag and a4. Observe from Figure 6.2 that

d
a3 =m3 = and a4 =mgz +d — 2p(p).

Hence

c—lz-d +d —min(2d,c+d) = ma-}{(c;da d;c

).

Qg =

and so, oy — az = max(—c, —d) giving

ag —a3z  max(—c,—d)
a=—F—= 5 .

Hence,

(a1, 02, b1, b) = (nmx(a, ¢) —b max(—c,—d) a—c c— d)

2 ’ 2 27 2

6.2 The spectrum of a Dynnikov matrix when 7 is

complete

Let [f] € MCG(D,,) be a pseudo-Anosov isotopy class with unstable invariant
foliation (F*, u") and dilatation A > 1. Let [a%, b%] denote the Dynnikov coordi-
nates of (F%, u*) on the projective space of Dynnikov coordinates PS,. Recall
that the action of [f] on PS, is piecewise linear and each piece R; C PS,, asso-
ciated with a different matrix and containing [a*, b%] is called a Dynnikov region.
Then a Dynnikov matriz D; : Ry — PSy, (1 <4 < k) is the (2n —4) x (2n —4)

integer matrix which describes the action of [f] in a Dynnikov region R;.
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We also want to remark once more that finding Dynnikov matrices is much
easier than finding train track transition matrices: given an infinite family of
braids, train tracks are computed using, for example, the Bestvina-Handel algo-
rithm [5] for enough examples to spot a general pattern. Then, we prove that
the conjectured pattern holds for all isotopy classes in the family. The drawback
in this method is that if the isotopy class is complicated that is, if its topological
entropy is high, then it is far from straightforward to describe an infinite family
of train tracks to verify that they are invariant under the relevant isotopy classes
since the image edge paths will be too long to track. On the other hand, a Dyn-
nikov region for [f] is easy to find since [a¥, 6] is a globally attracting fixed point
for the action of [f] on the boundary of PS,, (see Chapter 4). We encourage the
reader to take a random braid and try the two different methods using the train
track and Dynnikov programs implemented in the C++ code by Toby Hall and

both of which can be found at [18]. Take for example the 4-braid

-1 _—8 -5 4
gy dy

- -2
O3 T109

1 19 -8 -1 2

-2 —1
1 “0503

o5 010203“2(020'52) o oy 01_10203010510‘{1.

where the growth rate is approximately 8.6 x 10! (entropy is ~ 34.38). This
means the initial image edge paths have length approximately 8.6 x 10*4. An
edge path of this length occupies approximately 105 GB of memory and hence the
train track program can not even start, whereas the Dynnikov matrix is found

in less than a second (it is

[ —68900596045753  200002959211464  146825523685804  —943752747512 |
—181490417757959  526825930446403  386751743244292  —2485930314639
—188609831321041 547491989409364  401923043417627 —2583447121425

76020009608848  —220669018174468 —161996823859176 1041269554295

with spectral radius 215222411843143 + 4 1/2895042909973767357229710094 +
2 1/23160343279789934495527869988 + 430444823686286 +/2895042909973767357229710094).

This section focuses on the case where the invariant unstable foliation (F*, u*)

has only unpunctured 3-pronged and punctured 1-pronged singularvities. In this
case, we shall show that there is a unique Dynnikov region R (and hence a unique
Dynnikov matrix D) and the transition matrix T' associated with a (complete)
invariant regular train track of [f] is isospectral to D. We shall then prove that
the same result holds for any invariant train track of [f] up to roots of unity and

zeros. This will follow from a result by Rykken [27] given in Theorem 6.6 below.
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Theorem 6.5. Let [f] € MCG(D,,) be a pseudo -Anosov isotopy class with unsta-
ble invariant foliation (F*, ™) and dilatation A > 1. Let T be a regular invariant
train track with associated transition matriz T. If (F*, u*) has only unpunctured
3-pronged and punctured 1-pronged singularities, then 5 has a unique Dynnikov

matriz D, and D and T are isospectral.

Proof. Since (F*, u*) has only unpunctured 3-pronged and punctured 1-pronged
singularities, 7 is complete. That is, W* (7} has dimension 2n — 4. Therefore,
MUF(r) is a chart on MF, by Lemma 5.8. By Lemma 5.20, the eigenvec-
tor v associated with the dilatation A > 1 is a transverse measure on 7 with
(F*, p1*) = ¢,(v). Furthermore, the entries of v are strictly positive. Therefore,
W*(r) and MF(r) are neighbourhoods of v and (F%,u*) respectively. Con-
struct the pre-foliation F* from 7 as described in Section 5.1. Because none of
the prongs of F* are connected by Lemma 5.20, it follows from Remark 5.13
that there is a neighbourhood U of ¥ € W*(7) on which the change of coordi-
nate function L = po ¢, from train track coordinates to Dynnikov coordinates
is linear. Write R = L(U) C &,, which is a neighbourhood of L(v). We have the

following commutative diagram:

WH(r) —2 WH(r)

o | |
MEF(r) =2 MF(r) (6.2)
/| ‘|

R g Sn L’ S'n.

Then Flg = D = Lol o L™! is linear and isospectral to T
|

In the above we considered the transition matrix for a regular complete train

track. A similar result follows for general train tracks from a result of Rykken [27]:

Theorem 6.6 (Rykken). Let f € Aut(M) be a pseudo-Anosov automorphism
on an orientable surface of genus g with oriented unstable manifolds. Let T be
a train track transition matriz for f. If [ preserves the orientation of unstable
manifolds, then ihe eigenvalues of fix 1 Hi(M;R) — Hi(M;R) are the same as

those of T', including multiplicity, up to roots of unity and zeros.

Lemma 6.7. Let 8 be a pseudo -Anosov isotopy class on Dy, with invarient train

track T and associated transition matriz T. Let f be the lift of f to the orientation
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double cover M. Let ¥ and T' be the lifted invariant train track and transition

matriz associated to [f]. Then T and T' are isospectral up to roots of unity.

Proof. Let {e;}1<i<n be the oriented branches of 7. Take a copy e} of each e;
and endow it with the opposite orientation. The lifted train track 7 is obtained
by gluing together the branches e; and e] following the pattern of the original
train track =, but in such a way that the orientations of all of the branches at
each switch are consistent. By construction, the edge path f (e;) is obtained from
the edge path f(e;) by replacing each occurence of & with e;-; and similarly, the
edge path f (e}) is obtained from the edge path T(?J by replacing each occurence
of &j with ej.

Let Aj; be the number of occurences of e; in f(e;) (that is, the number
of occurences of e; in f(e;)), which by construction is equal to the number of
occurences of e in f (e}); and let B;; be the number of occurences of € in f (ej)
(that is, the number of occurences of & in f(e;)), which by construction is equal

to the number of occurences of e; in f (e}). Hence the lifted transition matrix T

. (A B
7= ,

where A+ B = T (and we have restricted to the main branches ¢; (1 < i < k)

is of the form

and their copies e}). Hence we have

(L‘Ik—A mIk—T

x(T) = ‘ﬂ?fzk—le B al,-T

G}IkmA -B _
-B HJIk—A

ey — A+ B O
~B xl, — T

= |zl — A+ B| |zl — T

That is, the set of eigenvalues of T is the union of the set of eigenvatues of T" and
the set of eigenvalues of A — B. It remains to show that the eigenvalues of A— B
are roots of unity.

Now for each m > 1, let Az(;n) denote the number of occurences of e; in f™(e;),
and Bi(;-n) denote the number of occurences of & in f™(e;). A straightforward

induction shows that the matrix A™ is the sum of all products of m copies of A
and B having an even number of Bs, and B{™ is the sum of all products of m
copies of A and B having an odd number of Bs: therefore A™ —B0™) — (A—B)™.

Let m be such that f™ fixes all of the prongs of 7. Then for each e;, the initial

and terminal points of ¢; and of f™(e;) are the same. Since each real branch
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disconnects 7, it follows that Ag-n) = Bi(;-n) for all 7 # j, and Agn) = Bz(;m ) + 1 for
all ¢ (the number of times that f™(e;) crosses e; in the positive direction is one

more than the number of times it crosses in the negative direction). That is
(A _ B)m — A(m.) _ B(m) = Id,
so that all of the eigenvalues of A — B are roots of unity as required. O

Corollary 6.8. Let [f] € MCG(D,) be a pseudo-Anosov isotopy class with
unstable invarignt foliation (F*, ") and dilatation A > 1. Let T be any complete
invariant train track with associated transition matriz T. Then T and D are

isospectral up to roots of unity and zeros.

Proof. If f € Aut(Dy,) is a pseudo-Anosov automorphism it lifts to a pseudo-
Anosov automorphism f € Aut(M) where M is the orientation double cover [27].
Pick a regular invariant train track 7, and an arbitrary invariant train track 7 of
f € Aut(D,,) with associated transition matrices T, and T. Given two matrices
A and B, write A ~ B if A and B are isospectral up to roots of unity and zeros.
Then, D ~ T, by Theorem 6.5, T} ~ T} by Lemma 6.7, T ~ T by Theorem 6.6
and T ~ T' by Lemma 6.7. Therefore, D ~ T O

Example 6.9. The 4-braid 8 = o105 103020102“ ! has an invariant train track as

depicted in Figure 6.6 with associated transition matrix

20 21
2031

11 20

10 40|

and the coordinates of the eigenvector of T corresponding to the Perron-Frobenius

eigenvalue A = 4.61158 are given by
(0.50135,0.59215, 0.41871, 0.47190).

(F*, ¥} is in the interior of a Dynnikov region R and the action on this

region is given by the Dynnikov matrix

5 -2 3 1
3 0 1 -2
D=
I -1 1 1
(11 0 -2




Figure 6.6: Invariant train track for o105 lagcrgolaz_ 1

Both ) and T have spectrum

{1+v2Ey/2+2v2,1 - vV2+iy/2v2 -2}

6.3 The spectrum of a Dynnikov matrix when 7 is not

complete

Let 8 € By, be a pseudo-Anosov braid with unstable invariant foliation (F, u®),
dilatation A > 1 and regular invariant train track = with transition matrix 7.
This section studies the case where the invariant unstable measured foliation
(F*, 11*) has other than punctured 1-pronged and unpunctured 3-pronged sin-
gularities. In this case 7 is not complete and since rank(r) < 2n — 4, MF(1)
does not define a chart on MJF,,. We shall study this case considering the two
possibilities: first, where the prongs of the invariant foliations (the cusps of 7)
are fixed by f3; and second, where they are permuted non-trivially.

If 3 fixes the prongs, we shall see that every Dynnikov matrix is isospectral
to 7" up to some eigenvalues 1. If B permutes the prongs non-trivially, then for
some power m, B™ fixes the prongs and it follows that every Dynnikov matrix
for f™ is isospectral to 7™ up to some eigenvalues 1 and zeros.

However, since the induced action of 8™ on PS, is a product of several
Dynnikov matrices, we can not conclude in the permuted prongs case that a
Dynnikov matrix D; and T are isospectral up to roots of unity. This point will
be clarified in Section 6.3.3.

The main tool to prove our results will be to extend non-complete train tracks
to those which are complete. We shall use two basic moves: pinching and diagonal

extension [24, 26]. The moves will be described in Section 6.3.1.

6.3.1 Pinching and diagonal extension

In this section, we shall describe the two moves pinching and diagonal extension

to construct a complete train track from a non-complete one [24, 26]. We shall
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begin with the pinching move.

Definition 6.10 (Pinching unpunctured t-gons). Let 7 be a train track with
an unpunctured ¢-gon P, where ¢ > 4. Let ey,...,¢; denote the (infinitesimal)
edges of P. Pinching across e; is a move which constructs a new train track 7/ > 7
by pinching together the two edges e;_1 and e; 11 adjacent to e;!. See Figure 6.7.
The train track 7’ has three additional edges denoted e_q, e 41 and e in place of
the &-gon P it has a (£ — 1)-gon and a trigon. The function v, : W(1) = W(')
is defined as follows.

Fw=(w,...,wsWe1,. .., w5) € W(T), then 1, (w) gives weights w;_, to
€j_1, Wir1 tO €4, wi_1 + Wiy to € and w; to e; for 1 < j < k. We remark that

if every component of w is positive, then the same is true for e, (w).

€3 €4

Figure 6.7: Pinching move (across e3) on an unpunctured 5-gon

Definition 6.11 (Pinching punctured t-gons). Let 7 be a train track with
a punctured ¢-gon P where ¢ > 2. Let ej,...,e; denote the (infinitesimal) edges
of P. Pinching of ¢; is a move which constructs a new train track 7/ > 7 by
pinching e; to itself around the puncture as depicted in Figure 6.8. The train
track 7' has three additional edges denoted ¢, e}, e/ in place of the punctured
i-gon, it has an unpunctured (¢ -+ 1)-gon and a punctured monogon.

The function e, : W(r) — W(r') is given as follows.

Ifw=(wr,...,ws,Wet1,... wg) € W(T), e, (w) gives weights 2w; to €, w; to
e; and e, and w; to e for 1 < j < k. We remark again that if every component

of w is positive, then the same is true for 1), (w).

Definition 6.12. We say that a complete train track Tp on Dy, is a pinching of 7

if it is constructed from 7 by a sequence of pinching moves.

Remark 6.13. Given a train track 7, pinching each punctured t-gon with ¢ > 2
yields a train track with only punctured monogons and unpunctured ¢-gons for
t 2 3. Pinching each unpunctured t-gon ¢ — 3 times then yields a pinching of 7.

Observe that there are many different pinchings of 7 (Figure 6.9). The main

Mere and in what follows, indices are taken modulo ¢
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€1
(51
: : es .
€2

€1

€1
€
e} 1
€ : €1
; 1"
el ey es
€3

es

Figure 6.8: Pinching move (of e;) on a punctured bigon and a punctured trigon

result about pinched train tracks in Lemma 6.18 doesn’t depend on the choice of

pinching.

Therefore, pinching constructs a complete train track 7, from a non-complete
one 7 in such a way that 7 < 7, with the important feature that a strictly positive
measure on 7 induces a strictly positive measure on 7. Hence, MF(7,) defines
a chart on MJF,, which contains (F“, u*} in its interior. However, it should be
noted that if 7 is an invariant train track for 8, 7, will not be invariant unless
relevant prongs of (F%,u*) are fixed by f. Therefore, we need a set of charts
that fit nicely in MF(7) with the property that the action in each of them is
described explicitly.

We shall use the diagonal extension move to describe such charts. Diagonal
extension gives a collection of diagonally extended train tracks 7; in such a way
that © < 7;. The disadvantage of diagonal extension is that a strictly positive
measure on 7 induces zero measure on the additional branches of 7; and hence
(F*, u*) is on the boundary of each MF(71;). However, Lemma 6.18 gives that
the charts MJF(7;) fit together nicely and have union MF(7p): moreover for
each 7 there is some j such that S(MF(r;)) = MF(7;), and this action can be

simply described with respect to appropriate bases.
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n U4

€1
€a ea
v2 es
v3

V1 Vg

ey ell
€2 eq

es ey

U2 U3

Figure 6.9: Two different pinchings of an unpunctured 4-gon

Definition 6.14 (Diagonal extension on unpunctured t-gons). Let 7 be
a train track with an unpunctured t-gon P where £ > 4. Let vy,...,%; denote
the vertices of P. Diagonal extension of P is a move which constructs a new
train track 7/ > 7 by adding ¢ — 3 branches (with disjoint interiors) inside P such
that each additional branch joins two noun-consecutive vertices v; and v; and is
tangent to the (infinitesimal) edges of P at these vertices. See Figure 6.10. The
train track 7’ has ¢t — 3 additional edges denoted €;; for appropriate choices of §
and j with |¢ — j| > 1: in place of the ¢-gon, it has £ — 2 unpunctured trigons.
The function ¢ : W(7) — W(7') is given as follows.

If w= (wi,...,wy) € W(r), ¥(w) gives zero weights to each ¢;;, and weight
wj; to e; for 1 < i < k.

T T’
V1
Vs ”n s
o
Uz
V4 r2 "
U3 vs

Figure 6.10: Diagonal extension on an unpunctured 5-gon

Definition 6.15 (Diagonal extension on punctured t-gons). Let T be a
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train track with a punctured f-gon P where ¢ > 2. Let vy,...,v; denote the
vertices of P. Diagonal extension of P is a move which constructs a new train
track 7/ > 7 by first adding a branch ¢; which encircles the puncture with both
end points at a single vertex v; (so that P is divided into a punctured monogon
and an unpunctured (¢ 4+ 1)-gon); and then adding ¢ — 2 additional branches to
divide the (¢+1)-gon into £—1 trigons as in the unpunctured case. See Figure 6.11.
The train track 7/ therefore has a punctured monogon and ¢ — 1 unpunctured
trigons in place of the punctured t-gon P. The function v : W(7) — W(7') is
given as follows.

fw=(wi,...,wr) € W(r), ¥(w) gives weight w; to e; for 1 < j < k, and

weight zero to the other edges.

%
o _O— s vy O
v

v1

A A

U U3

Figure 6.11: Diagonal extension on a punctured bigon and a punctured trigon

Definition 6.16. We say that a complete train track 7 on D, is a diagonal
eztension of 7 if it is constructed from T by a sequence of diagonal extensions.

We write 71,72, ..., 7 to denote the different diagonal extensions of 7.

Remark 6.17. Note that the number of diagonal extensions of an unpunctured

w=(1)-(2)

is the ¢*® Catalan number, since the Catalan number gives the number of different

t-gon is & = ¢;—p where

ways to divide a polygon into triangles by joining its vertices with additional

edges. See Figure 6.12.
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L2 ™ T3 T4 T5 76
UL Ui

v v 1 vy
3 g x Vg Ug ] Vs
Uy vy Vg V2 VU2 ) Uy
s Us Us Us U5 Us
vs 4 3 Uy vz U4 U3y

Uz oy U3 Vg

Tii T12

1 v

4 TS T9 T10
v ) v U
vg vg U6 i s U UG
vy Uz Vo V2 V2 Vo
U5 U5 5 Vs ug vs
vy oy v3 Uy v3 ! v3 vy vz oy vz wus
3 Ti4
U1 it
6 U6
Uy v2
%% s
U3 g LET

Figure 6.12: There are ¢4 = 14 different ways to diagonalize an unpunctured

G-gon.

Similarly, the number of diagonal extensions of a punctured t-gon is € = t-¢;_1:
alter adding the encircling branch e;; at vertex v; (¢ choices), P is divided into an
unpunctured (£+1)-gon and a punctured monogon. Since there are ¢;—; different
ways to divide an unpunctured (¢ + 1)-gon into triangles the result follows.

Given a train track 7, let G denote the set of unpunctured polygons of 7, and
given P € G write np for the number of vertices of P. Similarly, let G’ denote
the set of punctured polygons of 7, and given P € G’ write np for the number

of vertices of P. Then the number of diagonal extensions of 7 is given by

§= (H cnp~2) - (H np~cnp_1) .
Pe@G PeG/!

The fact that £ can be large for relatively simple train tracks explains why there
can be many Dynnikov regions for braids on relatively few strings (recall from
1 € Bu). It

will be seen in Remark 6.24 that the number of Dynnikov regions is bounded

Section 4.5 that there are 274 Dynnikov regions for o .. .cfnﬁgcr,ﬂ

above by the number of diagonal extensions of .

Since each pinching 7, and diagonal extension 7; of 7 is complete, they define
charts on MJF,, by Lemma 5.8. The following key lemma describes how these

charts fit together.



Lemma 6.18. Let 7 be a regular invariant train track for B with associated
matric T : W(r) — W(T). Let 7 be a pinching of 7, and let 71,...,7¢ denote

the diagonal extensions of 7. Then,

i | MFR) = MF(n).

1<i<g
w. If i # j, then MF (1) and MF(1;) intersect only on their boundaries.

. For each i there is some j such that B(MF(1;)) = MF(7;), and the induced
action of B : W(r;) — W(r3) is given by a matriz of the form
7 x
T =
0 Id

with respect to an appropriate choice of bases of W(r;) and W(;).

w. For each i, the change of coordinate function po ¢r, : W (1) — S, is linear
in a neighbourhood in W¥(7;) of v* = ¢ (F¥, ).

Proof. Assume first that every component of D, — 7 is a punctured mono-
gon or unpunctured trigon, except for one unpunctured ¢-gon P (¢t > 4). Let
V1,2, ..., denote the vertices of P. Let 7, be a pinching of 7 and N denote a
regular neighbourhood of the pinched ¢-gon. Let a1, ..., a; denote the gates of N
(that is, the components of the subset of &N which is not comprised of leaves).
See Figure 6.13.

Vs

v2 v3

Figure 6.13: The regular neighbourhood N of a pinched unpunctured 5-gon

To each (F,u) € MF(r,) we associate the collection of two element sets
{7k} (|7 — k| > 1) such that (F,u) has a leaf which enters N through a; and
exits through a;. Denote this label set T'(F, 1) and observe that the cardinality
|T'(F, 1)| <t — 3 since leaves don’t cross.

Similarly, to each diagonal extension 7; of 7, we associate the set of pairs
(J, k) such that 7; has a branch joining v to v. Denote this label set A(r;). It
is clear that (F, ) € MF(%) if and only if T'(F, u) € A(r).
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as Qg

ay
ag
as N
Up s
U1 vy
.
Vg 4
Vg b2
u3 v3
T1 To

Figure 6.14: If I(F, p) = {{2,5}}, then (F, u) € MF(11) N MF(13).

If |T(F, u)| = ¢t — 3, then there is a unique 7; with I'(F, 1) = A(r); while if
|T(F, )] < t— 3 then there are several 7; with I'(F, u) € A(r;) and for each of
these 73, ¢} (F, 1) has some zero coordinates (see Figure 6.14). This establishes
that

3
i MF(mp) C U MUF(1;); and

i=1

ii. If 7y # 75, then MF(7;) and MF(7;) can only intersect along their boundary.

3
To show that UM.F (m) € MF(1p), we observe that any two vertices of
i=1

the pinched polygon of 7, can be connected by a smooth path in 7, and hence if
(F, u) is carried by any 7;, it is also cairied by 7.

Next assume that every component of D,, — 7 is a punctured monogon or
unpunctured trigon, except for one punctured {-gon P (¢ > 2). Let vi,vq,...,9
denote the vertices of P. Let 7, be a pinching of 7 and NV denote a regular neigh-
bourhood of the pinched ¢-gon. Label the gates ay,...,a; of N in anticlockwise
cyclic order and let I; (1 < 4 < ¢) denote the leaf of (F, u) in &N which joins a;_;
to a;. See Figure 6.15.

The label set I'(F, 1) of a measured foliation (F, u) € MF (1) will consist of
pairs (j, k) € {1,...,t} x{1,...,t}. This contrasts with the case for unpunctured
t-goms, since there are two possible paths for leaves joining the gates a; and ay,
one on each side of the puncture. To describe this label set, first orient each gate

a; and each leaf [; anticlockwise around ON. Then (j, k) € I'(F, p) if and only if

¢ there is a leaf segment L of (F,u) in N which joins a; to ag;
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I f
a)
==
v3 l2 ag
I3

vy az
Figure 6.15: The regular neighbourhood N of a pinched punctured trigon
e when L is oriented from a; to ay, the oriented loop consisting of I and a

subset of /N bounds a disk containing the puncture in its interior; and
® k# 7+ 1 (we don’t include leaves which must necessarily be part of N).

See Figure 6.16. Notice that (j,j) € I'(F,p) if and only if the leaf from the
1-pronged singularity exits N through a;. Of course, it is possible that this leaf
doesn’t exit N (e.g. if (F,pu) = (F¥ p*)). Also, observe that the cardinality

|T(F, )| £ ¢~ 1 since leaves don’t cross.

a1

as

Figure 6.16: The label set I'(F, u} is given by {(1,1), (1,5), (1,4),(2,4)}.

To describe the label set A(7;) for a diagonal extension 7; of 7, we label the
vertices vi,...,v; of P in the anticlockwise cyclic order and put arrows on the
edges of P pointing from v; to v;y;. For each additional branch, we place an
arrow on the branch so that the loop composed of the branch and of edges of
P which encloses the puncture is oriented consistently, Then A(7;) is the set of
pairs (J, k) such that there is an additional branch from v; to vy,. Sce Figure 6.17.
It is clear that (F, u) € MF(7;) if and only if T{F, pu) C A(n).

If [I(F, p)| = t — 1, then there is a unique ; with T'(F, i) = A(7;), while if
ID(F, 1)| < t—1 then there are several 7; with T'(F, 1) C A(7;) and for each of
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v3

Vs

Figure 6.17: The label set A(7;) is given by {(1,1), (1,5),(1,4),(2,4)}

these 7;, gb;_l(.F , 1) has some zero coordinates. See Figure 6.18.

V1 V1

v3 v

k%] U2

1 T2
Figure 6.18: I I'(F, u) = {(3,3)}, then (F,u) € MF(r1) N MF (7).
This establishes that
¢
i. MF(rp) C U MF(r;); and
i=1

il. If i # 75, then MF(7;) and M F(7;) can only intersect along their boundary.
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To show that OM}' (r:) € MF(1p), we observe that any two vertices of the
i=1

pinched polygon of 7, can be connected by a smooth path in 7, and hence if

(F, ) is carried by any 7, it is also carried by Tp.

Therefore, we have proved the first two statements of the lemma in the case
where 7 has only one polygon which is not a punctured monogon or an unpunc-
tured trigon. For the general case, we argue for each punctured and unpunctured
polygon of 7 in the same way as above and observe that if (F,pu) € MF(7,),
then there is a diagonal extension 7; of 7 so that (F, i) € MF(r;). Conversely,
if (F,p} € MF(r;) for some diagonal extension 7; of 7, then (F, ) € MF (7p)
since any two vertices of each pinched polygon of 7, can be connected by a
smooth path. Also, if (F,x) is carried by two diagonal extensions 7; and T,
then qb;‘il (F, p) has some zero coordinates from the argument above and hence
MF(7;) and MF(7;) can only intersect along their boundary.

For the proof of the third statement, we first note that 8 permutes the vertices
of 7. Hence, given a diagonal extension 7; of 7, the permutation on the vertices of
7 sends each additional branch of 7; onto another additional branch, and so gives
another diagonal extension 7; of 7. Therefore, we have B(MF(r;)} = MF(r;).
Then, g : W¥(7;) = W (7;) is described by the matrix

T X
0 Id

with respect to the natural coherent choice of bases of Wt (r;) and W ().
We remark that if all components of D, — 7 are odd-gons then W*(7;) and
W (7;) have bases consisting of weights on the main branches of 7 and the
additional branches and hence X is zero. If D, — 7 has an even-gon then X can
be non-zero since the bases of W™ (7;) and W™ (7;) consists of weights on edges
which includes infinitesimal and additional ones. For some main branch e of
7i, the corresponding weight wy is the sum of weights on some infinitesimal and
additional branches and f(ex) may cover some basis elements. See Example 6.23.

For the fourth statement, we recall from (the proof of) Lemma 6.3, that
the fact that each change of coordinates from train track coordinates W (7;) to
Dynnikov coordinates is only piecewise linear is a consequence of the piecewise
linearity of the function $: W*(r;) — R¥, where p is a minimal non-tight train
path with respect to some Dynnikov arc. The function p makes a transition from
one linear region to another at measures for which some leaf which follows the

train path p connects two singularities (see the proof of Lemma 5.12).
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At o* = ¢l (F%, u*) € MF(r) there are several such leaves connecting
singularities but the choice of diagonal extension 7; is precisely a choice of the
relative configurations of these leaves when the connection between singularities

are broken, and therefore L : Wt(7;) — S, is linear near v O

6.3.2 The spectrum of the Dynnikov matrices when S fixes the
prongs of 7

Let # € By, be a pseudo-Anosov braid with unstable invariant foliation (F%, u),
dilatation A > 1 and regular invariant train track 7. In this section we shall prove
that when £ fixes the prongs of 7, then every Dynnikov matrix is isospectral to

T up to some eigenvalues 1.

Theorem 6.19. Let § € B, be ¢ pseudo-Anosov braid with unstable invariant
measured foliation (F,u ") and dilatation X > 1. Let T be a regular invariant
train track of B with associated transition matriz T. If B fizes the prongs at all
singularities other than unpunctured 3-pronged and punctured 1-pronged singular-

ities, then any Dynnikov matriz Dy is isospectral to T up to some eigenvalues 1.

Proof. Let 7, be a pinching of 7 and 7; (1 < ¢ < £) be the diagonal extensions
of 7. Since each strictly positive measure on 7 induces a strictly positive measure
on 1, Wt(7,) and MF(7,) are neighbourhoods of v* and (F*, u*) respectively.
Furthermore, by Lemma 6.18, U MF (1) = MF(1p) and for i # j, MF(ry)
1<i<e

and MF(7;) intersect only on their boundaries. Since B fixes the prongs at all
singularities other than unpunctured 3-pronged and punctured 1-pronged sin-
gularities, for each 7 we have S(MF(r;)) = MF(r;) and the induced action
B : W¥(r;) = WT(r;) is given by the matrix

N T X
T =
0 Id

Using the fourth statement of Lemma 6.18, the change of coordinate function
podr i WH{(ry) = 8, is linear in a neighbourhood in W(7;) of v* = qb;il(F S 1)

Therefore, for each 7; we have the following commutative diagram:
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WHm) —Fs W)

qsni br, l

MEF(r) —Ls MF(m) (6.3)

/| /|
jo
Sn — Sn
where Ly = p o ¢y, is linear in a neighbourhood U; € W* () of v®. Let (a*,b")

denote the Dynmnikov coordinates of (F%, %), For each 1 < i < , We write
) M

Ri = Li(U;): by the above, U R; is a neighbourhood of (a*,b%*). Then in R,
1<i<g

Di=Flg,=1L; oTo L7 ! is linear and isospectral to 7" up to some eigenvalues 1.
These matrices D; (1 < i < &) are precisely the Dynnikov matrices for 8 € By
O

In fact, if Dy, — 7 has only odd-gons all of the Dynnikov matrices are equal

and hence there is only one Dynnikov region in the fixed-pronged case.

Theorem 6.20. Let 8 € B, be a pseudo-Anosov braid with unstable invariant
measured foliation (F*,u") and dilatation A > 1. Let T be a regular invariant
train track of B with associated transition matriz T. If all components of Dy — T
are odd-gons and f3 fives the prongs at all singularities other than unpunctured
3-pronged and punctured 1-pronged singularities, then there is a unique Dynnikov

TEgLon.

Proof. We use the notation in the proof of Theorem 6.19. Let k = rank(r) and
N = 2n — 4 be the dimension of &,,. We first note that each I; is of the form

(L|X;) for some fixed N x k matrix L, where L is the change of coordinates from

A
WT (1) to S, on the hyperplane MF(7). Then each L' is of the form (?)
i
for some fixed & x N matrix A which gives the change of coordinates from the
k-dimensional subspace of S, corresponding to MF(7) to W (7). Therefore we

have,
_ A
Li'Li = (;) (LIX3)

Since L, L, = Id, AX; and Y;L are zero matrices for all 7. It follows that for

any ¢,j we have
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Id; 0

L7'L; =
0 Py

for some (N — k) x (N — k) matrix P;;. In particular, Lj"lLi commutes with

T 0

0 Id
Hence, D; = L;TL;' = L;TL;* = Dj for all i and j. 0

In the above we considered the transition matrix for a regular non-complete
train track. A similar result follows for general train tracks from Rylkken’s result

Theorem 6.6 and Lemma 6.7.

Corollary 6.21. Let B € MCG(D,) be a pseudo-Anosov braid with unstable
invariant foliation (F*,u") and dilatation N > 1. Let 7 be any invariant train
track with associated iransition matriz T. If B fizes the prongs ot all singular-
ities other than unpunctured 3-pronged and punctured L-pronged singularities,
then any Dynnikov matriz is isospectral to T up to roots of unity and zeros. Fur-
thermore, if Dy, — T consists of only odd-gons then there is a unique Dynnikov

matriz.

Example 6.22. Consider the 4-braid v = 6202010905090 020%030901. v has

Dynnikov matrix (as given by the Dynn.exe program [18])

[17 0 12 4]
28 1 20 6
D=
24 0 17 4
L 0 0 0 1|
and transition matrix
5 8 4

T=1]12 21 8
12 20 9

associated to the invariant train track 7 depicted in Figure 6.19. T has

spectrum {1,17 & 12v/2} and the eigenvector v® corresponding to the largest
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Figure 6.19: Invariant train track for «

B @1 B2 o3 Ba

g Qg

Figure 6.20: A standard embedding of the pinched train track 7,

eigenvalue A = 17+ 12v2is (1,1 + V2,1 + V/2). That is,
= (FS;I(FHL;#'ZL) — (1,1 + \/57 1+ \/5)

Since Dn — 7 contains a punctured bigon, 7 is not complete and we have
rank(7) = 3. Pinching across an edge of the punctured bigon gives a complete
pinched train track 7,. We depict a standard embedding of Tp with respect to
the Dynnikov arcs in Figure 6.20. Since -y fixes the prongs of 7, the transition

matrix associated to 73, is given by

5 8 4 0
12 21 8 0
Tp =
1220 9 0
Lz y z 1|

for some x, y, 2 which will be determined later as x = 2, y = 3, z = 1.

We now compute the change of coordinate function L : W¥(7,) — Sy in a
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neighbourhood of v*. First observe that 8; = a, B2 = b, 83 = ¢. Therefore,

b—c
5

a—b
by = —5— and by =

We have a; = “Qﬂ, Qg = "—’;—C —d. Since agi—1 + a9y = max{f;, Bir1) we have,
a+b b+c
g = max(a,b) — 5 and oy = max(b,c) — +d.
Since b > a at v¥, ag = Q;—“ and
b—c
b—c >e
4y = 2
&2 +d <ec
s0 @) = —5 and
g — 4 max(b, c) b+c+i d—5 b>c
9 = = —_ a =
2 2 2 d-% b<ec

Therefore, when b > ¢, L : WH(1,) — 8, is given by

[ ~1/2 0 0 0

0 -1/2 0 1
L]_ = 3
/2 -1/2 0

S

0 1/2 -1/2 0

and when b < ¢, L: Wt () — S, is given by

[ —1/2 0 0 0

0 0 —1/2

—

Loy

il

/2 —1/2 0 0

0 1/2 -1/2 0

The Dynnikov matrices of 8 are therefore Dy = LlTpo;l and Dy = LoTpLy L
Using

[
co
iy
e

12 21 8 0

12 .20 9 0
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Figure 6.21: Diagonal extensions of 7

we compute that, for both 7 = 1 and i = 2, D; is given by

17 0 12 4
40-22—-2y—-22z 1 28—2y—22z 8-2z
D=
24 0 17 4
0 0 0 1

Therefore, there is a unique Dynnikov matrix D as expected by Theorem
6.20. Comparing the second row of D; with the known Dynnikov matrix D gives

x =2,y =3, 2=1 as claimed above. The spectrum of 7}, and D is
{1,1,17 +£ 12V2}.

Figure 6.21 depicts the two possible diagonal extensions 71 and 75 of 7. Ob-
serve that, given (F,u) € MF(7,), (F,u) € MF(m) if and only if b > ¢, and
(F,p1) € MF(mp) if and only if ¢ > b, corresponding to the two linear regions in

the above coordinate change.

Example 6.23. Consider the 5-braid g5 = rrlagagagl on Ds. A regular invariant
train track 7 and its image under 85 are depicted in Figure 6.22.

Let a,b,c,d and e denote the measures on the main branches of 7 and
@1, 2,x3 and x4 the measures on the branches of the 4-gon, as in Figure 6.22.

We first observe that the measures on the branches of 7 are determined by
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Figure 6.22: Invariant train track of f5 = 01020304"1 and its image

T1, T2, T3, %4, b since the switch conditions give
a=21+24, c=22+23, d=23+ 24, =21+ Ta.

Hence the set of measures (w1, %2, ¥, %4,0) forms a basis for the 5-dimensional
space W (7). We note that the vectors in W™ (r) corresponding to a,b,c,d and
e do not form a basis since @ + ¢ = b + d for every element of W+ (r). We also
observe from Figure 6.22 that in the image B5(7), 21 is covered by 24 and b, 29
is covered by w1, @3 is covered by ws, x4 is covered by a3 and b is covered by b
twice and d. Since d = @3 + x4, the matrix which describes the action of 8 on

WH(7) with respect to the chosen basis is given by
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We note that 1" doesn’t give the images of the branches, but how a set of measures
(z1,22, 3, %4,b) is transformed by B to new measures. Working to three decimal
places, the largest eigenvalue of T'is A = 2.154 and the associated eigenvector v*

corresponding to (F*, u*) is given by
v* = (21, T2, T3, 24, b) = (0.487,0.226,0.105, 0.049, 1).

In order to find the change of coordinate function L : WF(7) — RS in a neigh-
bourhood of v* we use a standard embedding of 7 with respect to the Dynnikov

arcs as depicted in Figure 6.23.

Qs

B1 B2 By Ba
Figure 6.23: A standard embedding of 7 with respect to some of the Dynnikov
arcs

Then we get,

Pr=w3+z4, Po=ws+ay, Bzs=a1+wq, Ba=0b

To -+ 23 1+ 2o Ty +ax4 40
:————2 ,C}:3=v—-—-— Oy = ———————.

@1 7 2

Since ag; = max(f;, Bir1) — ami—1 we obtain,

T2 -+ @ T1 + o
ap = max(z3 -+ x4, Tg + 24) — —2—3, oy = max(ze + 24, 1 -+ 2g) — 5
T1+ a4+ b

ag = max(xy + @4, b} — 5

Since 1 > 39 > x3 > x4 and b > z1 + z4 at v* we have,
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: > T 5 Z +b
a2=$2+$4—3)2;a'3, Oz4=:1:1—|—:1,’4—%1-i2—a’2, aﬁzb__—ml_‘_zl .
Therefore,
1 1 1
a = 5 (@~ 23), ag = 5(@1—m), az= 5 (=1 =),
1 1 1
by = '2'(3"3_3;2); by = '2‘(1152_«'151), by = §(w1+w4~b).

60 0 -1 1 0

in a neighbourhood of v*. Now we shall construct the diagonal extensions of +
and observe the connection between the associated change of coordinate functions
and L. Figure 6.24 depicts the two different ways of diagonalizing an unpunctured

4-gon.

Kal To

Figure 6.24: There are 2 different ways to diagonalize an unpunctured 4-gon

Hence, there are two diagonal extensions of T and we shall compute the
change of coordinate functions for each of these. We begin with 7 as depicted in
Figure 6.25. We observe that the measures on the branches of 7 are determined

by 1,22, %3, 24, b, € since the switch conditions give

a=21+xy, c=Tyg+a3+¢ d=x3+24+¢ e=21+ 29
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‘We compute that,

Br=az3+m4, Pao=2a+z4te, Ba=zx1+aa+e Pa=b,

To + T3+ ¢ z1 + a9 T1+zat+bte

O!]Z—E'——, Qg = B) ) CH5-_—-—2———.
as

b’

B3 Ba

B B
Figure 6.25: A standard embedding of the diagonal extension 7 with respect to

some of the Dynnikov arcs

Since ag; = max(f;, Bit1) — qo;—1 we obtain,

- ks ax T+ T
Oﬂz=111ax(w3+w4,w2+m4+6)_“——2~i_23—67 cg = max(wy + T4 + €, 21 + 24+ €) — 12 :
C g+ b
ag = max(wy + x4 + €,b) — M_&;.‘mi'j
Therefore,
a 1( ) 1(’1, N ) ( E)
:—‘-'Ez—“’ = —(q4 — 2 ), = T — g — ,
1= 5@ =), a2 =gz —aate), ag=5(-w1 24
1 1 1
by = 5(:53 —a2—¢), ba= 5(312 —x1), by= 5(931 + x4 —b+e).

150



That is, the change of coordinate function Ly : W¥ (1) = S is given by

Ly

B | =

in a neighbourhood of v* in W*(7;). Similar computations for the change of
coordinate function Ly : W(mp) — Sg associated to the other diagonal extension

To give

Ly =

MO =

In this example, we have B(MF(r1)) = MF(r2) and B(MF(12)) = MF(11).
The induced action Ty : WH(m) = WH(r) and Tp : WH(m) — WH(r) are

given by the matrices

(000110‘

T =
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and

Ty =

with respect to the above choice of bases of W(r1) and W(m). We remark that
T1 and T3 are different matrices. The reason for this is the following: Since b is
covered by b twice and d, and that in 79, d = £33+ z4-+¢, while in 7, d = 23+ 24,
the (5,6)™ entries of T} and Th are 0 and 1 respectively. We therefore have the

commutative diagram

Wt (n) LN W (7i41)

| «bwl

MF(r) =5 MF(741) (6.4)
”l p
S — n

where L; = po ¢, is linear in a neighbourhood U; of v* in W (7). For each
i (1 <4 < 2) write R; = Li(U;). Let (a%,b%) be the Dynnikov coordinates

of (FY, u%). Then, U R; is a neighbourhood of (a%,b%), and in each R,
1<i<?

D; = F|r, = Liy10Tio L] ! is linear. These matrices D; (1 << 2)are precisely
the Dynnikov matrices for g € Bs.

Remark 6.24. Since there is a unique Dynnikov region that corresponds to a
diagonal extension 7; of 7, the number of Dynnikov regions is bounded above
by the number of diagonal extensions of 7 (which is given by the formula in
Remark 6.17).

Let us calculate the Dynnikov matrices in our example and see how it is possi-

ble to determine the corresponding Dynnikov regions. In MF (11}, the Dynnikov
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matrix is given by

Dy =Ly L7t =

Observe that

L7t =

-1 1 0 -1 0 0

and from the bottom row of this matrix we can see that the relevant Dynnikov
region is determined by the inequality ¢ = —a; + a2 — b; > 0.

Similarly, we compute the other Dynnikov matrix for 4, and have that

Dy = LW/ I2 Lyt =

is the Dynnikov matrix in the region a; — ag + b; > 0.
6.3.3 Future work: The spectrum of Dynnikov matrices when
permutes the prongs of 7 non-trivially

Let 8 € By be a pseudo-Anosov braid with unstable invariant foliation (F%, u%),

dilatation A > 1 and regular invariant train track 7 with associated transition
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matrix 7. In this section we shall discuss the case when 8 permutes the prongs
of (F¥, u*) non-trivially. We would like to prove that any Dynnikov matrix D;
is isospectral to T up to roots of unity: this has been confirmed with a wide
range of examples. The problems which arise in this case, and some approaches

to their solutions are illustrated in the following example.

Example 6.25. Consider the 6-braid S = 0109030405 Ton Dg. A regular
invariant train track 7 and its image under S are depicted in Figure 6.26 and

Figure 6.27. The image edge paths of the main edges are therefore:

b

Figure 6.26: Invariant train track of Bs = 0109030407 1

a— fmsb, b—=¢ c—d, d—e, e—a, f— ciabmsfmgf

Therefore the transition matrix 7" associated to 7 is given by

000010
1 00001
010001
001000

000100

1 0000 2

Let a,b,¢,d, e, f and @1, w2, %3, T4, T5, M1, Mo, M3, My, M5, Mg denote the mea-
sures on the main and infinitesimal branches of 7. Working to three decimal
places, the largest eigenvalue of T is A = 2.081 and the associated eigenvector v¥

corresponding to (FY, u¥) is given by
v = (a,b,¢,d,e, f) ~ (0.057,0.370,0.521, 0.250, 0.120, 0.714).
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We observe that the weights 1,22, 23, 24, 5, 7111, Mg, M3, M4, Ms, Mg on the in-

finitesimal branches are determined by a,b,¢,d, e, f since the switch conditions

give
at+tb+d—c—e b+ct+e—a—d at+ct+d—b—e
I = , &g = y T3 = 3
2 2 2
. _bt+dte—a-—c . _atete—-b—d e = @ oy = &
4 = 9 y wh — 9 3 1*2: 2—‘27
_d e b+ f _f
m3_2, m4—§, 7n5——2——, ms—§

At v¥, (a,b,c,d,e, f) = (0.057,0.370,0.521,0.250,0.120, 0.714) and so,

1 = 0.018, =z9=10.352, z3=0.169,
z4 = 0.081, x5 =0.039, my =0.028, mq = 0.06,

mg = 0.125, my = 0.260, s = 0.542, mg = 0.357.

Figure 6.27: The image train track of 7 under 8

In order to find the change of coordinate function L : W (7) — R8 in a
neighbourhood of v* we use a standard embedding of 7 with respect to the
Dymnnikov arcs as depicted in Figure 6.28.

Observe that p; (1) = min(xs, d/2) and pa(u) = min(ws, b/2) where p; and py
denote the minimal non-tight train paths depicted in Figure 6.28. Since z3 < d/2
and w2 < b/2 at v*, we have in some neighbourhood of v¥ that p;(u) = 3 and

Pa2(p) = zo. We compute that,



g [a 7% ag g

Figure 6.28: A standard embedding of 7 with respect to Dynnikov arcs

Br=a, Ba=b+c+d—2p1(p) — 2Pa(p)
Bs=b+c—2p(n), Bi=b Bs=f
Q) = Mg, Q3 =Mms3, &5 =My, Q7 =1mMs;.

That is,

Br=a, fao=b+d—c, Ps=a+d—e, Ps=b Bs=7Ff

p_ € _d e b
1*2; CL3—2, 0—23 T = 5 "

Since ag; = max(f;, Bir1) — aaj—1 we obtain,

a2=ma,x(a,,b—|—d—c)—§, m:max(b—i—d—c,a-l—d—e)—g

bt/

oag = max(a+d — e, b) — g, ag = max(b, f) — 5

Since b+d—¢c>a,a+d—e>b+d—c,b>a+d—ec and f > b at

v* =~ (0.057,0.370,0.521, 0.250,0.120,0.714) we have,

e d c b+
a2:b+d—c—§, a4=a~|—d~c—§, a5=b7—2~, (xg:f-Tf.

Therefore,
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1 1 1 b
a=glb—ctd—e), a=jla—c) a=30b-0), g ===,
1 1

[a—

bgzé(a—wd—e), b= 10— ).

b

That is, the change of coordinate function L : W¥(7) — Sg is given by

0 1 -1 1 -1 0

10 0 0 -1 0

in a neighbourhood of v*. Now we shall construct the diagonal extensions of 7
and observe the connection between the associated change of coordinate functions
and L.

AaRanekakia

Figure 6.29: There are 5 different ways to diagonalize an unpunctured 5-gon

Figure 6.29 depicts the five different ways of diagonalizing an unpunctured
9-gon. Hence, there are five diagonal extensions of T and we shall compute the
change of coordinate functions for each of these. We begin with 7, as depicted
in Figure 6.30. The measures on the infinitesimal branches of 7; are determined

by a,b,¢,d,e, f,€1,€s since the switch conditions give,

a+bt+d—c—e b4+ct+e—a—d at+c+d—b—e
T = — €3, Tg= +e2, Tz = — €1 €,
2 2 2
b+d+e—a—c at+ct+e—b—d
Ty = 5 +€, Ts= 5 — €.

We observe that,
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Br=a, fa=b+d—c—2;, Bz=a+d—e+20, By=0b fs=f

o= & _d _c b+ f
1—‘2: 6143—2, CM5—2, Qy = 2 .
And,
€ d
a2=111a’x(a,b+d—c—261)——2—, Cl'4=1’113.X(b+d—c—2€1,a+d—6+2€2)—5
b
aﬁzmax(a—l—d—e—f-QeQ,b)——;-, cg = max(b, f)__%f.
Therefore,

1 1 1 —b
alma(b—c—i-d—e)—el, a2:§(a—e)—|—ez, agza(b—c), =

1 1
blz-é(a—b+c-d)+e1, b2=§(—a+b—c+8)—61—62,

1 1
1)3=§((L—l)—l—d—€)+€2, by = §(b—f)

That is, the change of coordinate function Le : W (1) — Ss is given by,

o 1t -1 1 -1 0 -2 0

Lo

I
NN

in a neighbourhood of v* in W*(r3). Similar computations for the change of
coordinate matrices associated to the other three diagonal extensions 73, 74 and

Ts give:
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[0 1
1 0
0 1
0 -1
Lz = %
1 -1
-1 1
1 -1
0 1
[0 1
1 0
0 1
0 -1
-]
1 -1
-1 1
1 -1
0 1
and
[0 1
1 0
0 1
1 0 -1
L5 - "2—
1 -1
-1 1
1 -1
0 1

161




In this example, we have B(MF(r;)) = MF(7i41) and the induced action
B W(m;} = W(Tit1) is given by the matrix

- T o
T=
0 Id

with respect to the above choice of bases of W(r;) and W(ri41). We therefore

have the commutative diagram for each ¢:

WH(T) —— WH(rig1)

br, l Brons l

MF(rs) 2 MF(ris) (6.5)
/| dl
S, 8,

where L; = po¢r, is linear in a neighbourhood U; of v* in W (7). For 1 <4 <5,
write Ry = L;(U;). Let (a*,b*) be the Dynnikov coordinates of (F*, u*). Then,
U R; is a neighbourhood of (a*,b*), and in R;, D; = Fl|r, = L1 0 To sz"l
1<i<g
is linear. These matrices D; (1 < 4 < 5) are precisely the Dynnikov matrices for
B € Bs.
Let us calculate the Dynnikov matrices in our example and see how it is possi-
ble to determine the corresponding Dynuikov regions. In MF(71), the Dynnikov

matrix is given by

LTI =Dy =

Observe that
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| —
=

[
3
o

|
v
o]
[
)
()

1 -1 0 0 100 O

and from the bottom two rows of this matrix we can see that the relevant
Dynnikov region is determined by the inequalities ¢; = as — az + by > 0 and
€2 = a1 — ag + by > 0. Similarly, we compute the other Dynnikov matrices for 3,

and have that

I

LyTLyt = Dy

0 601 0 0 0 1

is the Dynnikov matrix in the region —aq +ag—b; > 0 and —ag +as —by > 0.
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LyTL7 =Dy =

0 6 -1 1.0 0 —-11

0 0 0 1.0 0 0 1

is the Dynnikov matrix in the region —ai+as—b; > 0and a;—az+bi+by = 0.

LsTL{' = Dy =

is the Dynnikov matrix in the rvegion a; —az +by > 0 and —ag +az —be > 0.
And,

LyTL;'=D

[%2]




is the Dynnikov matrix in the region —aj+az—5b1—bs > 0 and as —az+by > 0.
We observe that Dy = L3TL5 Land Dy = Llngl are the same and hence
there are four Dynnikov matrices, and all these Dynnikov matrices are isospectral

to T" up to roots of unity.

Question 6.26. Let 8 € B, be a pseudo-Anosov braid with unstable invariant
foliation (F*,u"), dilatation A > 1 and regular invariant train track T having
transition matriz I'. If B permutes the prongs of (F¥, u*) non-trivially, is every

Dynnikov matriz D; isospectral to T up to roots of unity?

Remark 6.27. Note that when £ permutes the prongs of (F*, u*) non-trivially,
then for some m € Z*, ™ fixes the prongs. The transition matrix for £ on a

diagonal extension of 7 is of the form

™ 0
T =
0 Id

By Theorems 6.19 and 6.20 every Dynnikov matrix for £ is isospectral to

T™ up to some eigenvalues 1. In the above example we have
M}-(’Tl) - M]:(Tz) — M]:(Tg) - M]:(’Tzl) e d M.F('i‘5) —+ M.F(Tl)

and D; = Li_,_lTLi_ ! Hence, for i = 1,2,3,4,5 the Dynnikov matrix for 8° on
MUF(1;) is given by

DiyaDiy 3Dy oD Dy = LT L1

which is clearly isospectral to T° up to two eigenvalues 1. By Theorem 6.20, the

five Dynnikov matrices D; = L,{I_"5L;1 are all equal, and given by

2 6 14 33 4 8 16 31

-1 -3 -6 =12 -2 -2 -6 -—12
-1 -3 -7 —-14 -2 -4 -6 -—-14

13 7 17T 2 4 8 16
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