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Abstract

A Quadrupole Mass Filter (QMF) is a key component of a Quadmpole Mass 

Spectrometer (QMS) that provides the mass to charge discrimination required to 

separate the component species of a sample, A custom software package has been 

developed that accurately simulates the performance of the QMF. When used in 

conjunction with a public domain field solver program a powerful software toolbox 

is created that can accurately predict the performance characteristics of a range of 

QMF electrode geometries. This software toolbox has been used to investigate the 

effects of the ratio of circular electrode radius r to electric field radius ro for zone 1 (a 

~ 0.237, q ~ 0.706) and zone 3 (a ~ 3.16, q ~ 3.23) operation. The magnitude and 

variation of the 'taiP in the mass spectral peak shapes apparent for zone 1 is much 

decreased for zone 3 and does not influence QMF resolution.

In collaboration with the Atomic Weapons Establishment (AWE) the 

requirements for a QMF and Electronic Control Unit for integration into a QMS were 

investigated. The QMS is be used for the qualitative and quantitative identification of 

Hydrogen and Helium isotopes. To successfully separate Hydrogen Tritium (HT) 

from diatomic Deuterium (D2) a resolution greater than 930 is required. Simulation 

results demonstrated that this is achievable if hyperbolic profile electrodes are used 

in conjunction with operation in stability zone 3.

A second investigation undertaken as a collaborative project with the 

Massachusetts Institute of Technology (MIT) investigated the characteristics of a 

QMF manufactui’ed using Micro-Electro Mechanical Systems (MEMS) technology. 

The process technology employed is more suited to the manufacture of square 

electi’odes which produce electric fields that are far from optimum. Results show that 

this limitation in the electric field can be significantly overcome by operating the 

QMF in zone 3.

Some of this data together with infonnation provided by users of QMSs was used 

to develop a specification for an electronic control unit (ECU) for a QMS. An ECU 

has now been designed and manufactured. The testing and evaluation of the ECU has 

now commenced.
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Chapter 1

1. INTRODUCTION

1.1 Quadrupole mass spectrometer

The mass spectrometer (MS) is the generic name given to instruments used to 

undertake the analytical technique of mass spectrometry [1]. In mass spectrometry 

the mass-to-charge ratio (w/z) of charged particles (usually positive ions) are 

measured in order to identify the species present in a sample [2]. The quadrupole 

mass spectrometer (QMS) is a particular example of a MS. It selectively filters 

analyte ions on the basis of their mass to charge ratio {m/z) enabling the relative 

abundances of the constituent components to be measured [1].
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Figure 1.1. Outline representation of a quadrupole mass spectrometer system with the 

QMF outer casing being omitted for clarity.
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Figure 1.1 shows an outline representation of a typical QMS. It is comprised of a 

number of different sub-systems, each one of which influences its overall 

performance [1], they are;

a) Sample inlet

The sample inlet provides an interface between the analyte source and the 

ioniser. For the case of a gas phase analyte, pressure reduction with minimal 

mass discrimination effects are desirable attributes. Capillary tubes, leak 

valves, orifices and frits are all common types of sample inlet.

b) Ioniser

This sub system creates atomic and molecular charged particles (ions) from 

the input sample. A number of different types of ioniser exist and include 

electron impact (EI), inductively coupled plasma (ICP), electrospray (ESI) 

and chemical (Cl). A suitable arrangement of ion optics is provided between 

the ioniser output and the input to the QMF to achieve maximum transfer 

efficiency of the ions.

c) Quadrupole Mass Filter (QMF)

Provides the mass to charge ratio filtering action required to identify and 

quantify the constituent components of the ionised analyte.

d) Ion detector

Ions that successfully pass through the QMF emerge at the exit and impinge 

on the ion detector depositing a charge. The Faraday Cup is the simplest and 

most mgged form of ion detector. Where greater sensitivity is required, 

various forms of electron multiplier (EM) are used.

e) Electronic control unit (ECU)

The generation of the ioniser, QMF and ion detector control voltages and data 

acquisition interfaces are provided by the ECU. Mass spectra data can be 

transferred to a host computer or displayed locally.

f) Vacuum pumps

To achieve the correct operating pressure for the QMS, a vacuum pumping 

system is required. This usually consists of a combination of two pumps: (i) a 

low vacuum pump such as diaphragm or rotary, (ii) a high vacuum pump 

such as a turbomolecular, diffusion or ion.



1.2 Focus of thesis

It is the QMF and ECU that are the main focus of the work contained in this 

thesis. The emergence of the QMF is largely due to the seminal work carried out by 

Wolfgang Paul [3]. Originally QMFs employed hyperbolic profile electrodes but for 

reasons of manufacturing economy, QMFs fitted with circular electrodes soon found 

widespread acceptance in commercial QMSs [2]. QMFs constructed with circular 

electrodes provide inferior performance characteristics when compared to QMFs 

constructed with hyperbolic electrodes [2], [4]. While commercially available QMSs 

provide an operational specification that satisfies the majority of user applications, 

for some more specialised applications their performance has been shown to be 

inadequate [5-6].

For a large proportion of the time the QMF has been in existence computer 

simulation techniques have been used to investigate its performance characteristics. 

An early example of such research was by Lever who used a Fortran IV program 

running on an IBM 7094 computer with off-line curve plotter to investigate ion 

trajectories for a hyperbolic electrode QMF [7]. Since this time other researchers 

such as Dawson [8], Batey [9], Gibson, Taylor and Leek [10], Douglas and 

Konenkov [11], have all used computer simulation techniques to investigate different 

aspects of QMF performance.

The primary aim of this project was to apply computer simulation techniques to 

obtain a better understanding of the factors that determine the performance window 

of a QMF when operated in a manner that is applicable for more specialised 

applications. A secondary aim was the design of an electronic control unit (ECU) for 

incorporation into a QMS taking into account information obtained from the 

computer simulations.

1.3 Thesis organisation

A review of previous research relating to the QMS but more specifically to the 

QMF, is provided in Chapter 2. Firstly, the early years are briefly visited to provide a 

historical background to the origins of the Mass Spectrometer. The emerging 

application of electro-dynamic fields in Mass Spectrometry is identified as a 

significant milestone in the evolution of the Mass Spectrometer and specifically a



seminal point for the QMS. The QMF is then discussed in terms of hyperbolic and 

circular electrode profiles and the performance differences that the two types of 

electrodes provide. Alternative stability zones are then introduced followed on by a 

review of the impact of fringing fields on QMF performance. The related topics of 

alternative electrode geometries and miniaturisation are then discussed. Finally the 

characteristics of non-sinusoidal electrode drive are considered.

In Chapter 3 a brief overview of the physical principles that govern the operation 

of a QMF both for hyperbolic and circular electrodes is provided. The concepts of 

field solver methods for obtaining solutions to the electric field generated by a QMF 

are then explained. The modules of the public domain field solver package used for 

this work are discussed and the operational flow used in generating a field file for an 

electrode geometry is explained. The custom software packages developed to 

calculate the ion trajectories and generate mass spectra are then discussed. Examples 

of the graphical user interface (GUI) of the programme are provided as an aid to 

further understanding how the software is controlled and the facilities it provides.

The software previously discussed was then applied to investigating QMF 

operational perfonnance for stability zone 3 and the results are presented in Chapter

4. To validate the software, previously published results for operation in zone 1 were 

reproduced for each of the two investigations included in this Chapter. Then an 

examination of the perfonnance characteristics of a QMF when operating in zone 3 

for different electrode geometries was undertaken. Following on from this, the 

effects of displaced electrodes were considered together with a method of 

compensation using differential electrode drive.

Chapter 5 extended the investigation work of Chapter 4 with an investigation into 

two specialised applications. Firstly, a feasibility study was undertaken to consider 

the issues of separating low mass isotopes of hydrogen and helium. The second was 

an investigation into a miniaturised QMF consisting of square electrodes and 

manufactured using a monolithic process technology.

The design of the electronic control unit for a QMS is described in Chapter 6. The 

philosophy and reasoning behind the particular system design is justified. Each of the 

individual controllers is then discussed with salient design features highlighted. Each 

of the controllers is described through a combination of schematics and explanation. 

The firmware for each of the controllers is also discussed and the concept of 

finnware reuse explained. The commercial software packages used in the generation



of the circuit schematics, layout of the printed circuit boards and generation of the 

design files required for manufacturing are also briefly discussed. The firmware and 

hardware design and development are mentioned together with a brief outline of the 

design path. The custom application program for controlling the QMS is introduced 

and an example of the GUI associated with programme shown.

Finally in Chapter 7 the overall conclusions for the project are presented and 

discussed. Possibilities for future work are also identified.



Chapter 2

2. HISTORICAL REVIEW

2.1 Overview

Wolfgang Paul the German Physicist and co-inventor of the Paul Trap stated in 

his Nobel Lecture in December 1989 that '‘‘‘There are many examples in physics 

showing that higher precision revealed new phenomena, inspired new ideas or 

confirmed or dethroned well established theories'' [12]. This statement is still 

applicable today and precision is very pertinent to the operation of a Quadmpole 

Mass Spectrometer (QMS).

The QMS is one type of mass spectrometer which provides a method of 

identifying the relative abundances of the constituent components of an analyte by 

selectively filtering analyte ions. A QMS can be used in a wide range of applications 

which includes: residual gas analysis of the vacuum systems that are employed in 

high energy experimental physics, process control in the semiconductor industry, 

drug testing, pharmaceutical research and assaying. As a consequence of this wide 

ranging usage they are deployed in very differing environments ranging from the 

relatively benign situation of a laboratory, the more hostile environment of a process 

plant, to more extreme situations such as aquatic monitoring and aerospace 

deployment. Traditionally a QMS used in process applications is known as a 

Residual Gas Analyser (RGA) and is a more rugged implementation of the QMS 

found in a laboratory.

Any brief account of scientific history mns the risk of failure to mention key 

personnel as the process of science is often achieved through the small contributions 

of a large number of researchers. In these introductory paragraphs a number of 

researchers have been identified and their contributions outlined but they are not the 

only players that have contributed to this important sphere of analytical science. In 

this chapter a brief review of previous research that is pertinent to the remainder of 

the thesis is presented.



2.2 Early years

An early observer of charged particles was the German scientist Eugen Goldstein 

(1850-1930) who advanced the understanding of glow discharge tubes naming the 

observable light emissions as cathode rays [13]. This was followed by his discovery 

that discharge tubes with a perforated cathode produced a glow in the region of the 

cathode produced by positively charged ions which he called canal rays. The 

characteristics of the canal rays or positive ions were dependent on the residual 

gas(es) within the vacuum tube. A little later Wilhelm Wien identified anode rays as 

possessing positive charge [14]. He used a piece of apparatus known as a velocity 

filter, in which the magnetic deflection of positively charged ions is compensated by 

the superimposed force due to an electrostatic field.

Around the same time, J. J. Thomson discovered the electron and its associated 

mass to charge ratio (m/z) [15]. He went onto research positive ions and discovered 

that there are ‘different types of positive ions for each element’ [16], This was a 

seminal moment in the evolutionaiy path of mass spectrometry. Thomson then went 

on to identify two isotopes of Neon [1]. This work was further extended by another 

Cambridge scientist; Francis W. Aston (a student of Thomson) who produced a mass 

spectrometer with an order of magnitude improvement in resolving power. With this 

he was able to identify a number of isotopes including three isotopes of Lead [17]. At 

about the same time, A. J. Dempster of the University of Chicago improved the 

resolution by employing a sector magnetic analyser and also developed the first 

electron impact ion source [18]. He is also credited with discovering Uranium 235.

2.3 Electro-dynamic fields

Up until the early 1950s the majority of mass specti'ometers used magnetic fields 

for the focusing or mass discrimination mechanism. These are commonly termed 

‘static’ instruments due to their focusing field remaining largely constant [1].

To achieve rapid identification of a wide range of constituent components in a 

sample, a different type of instrument was sought. It is at this point that the use of a 

time varying (dynamic) focusing mechanism emerges, due in part to work in high 

energy particle accelerators. The development of this class of instrument which uses 

a quadrupole electro-dynamic fie ld  to achieve mass filtering action is attributable to



Paul and his co-workers at the University o f Bonn [15]. Their significant contribution 

in this field is signified by the patents they hold for a quadrupole filter [ 19-20] and 

the associated paper published in 1958 [3].

An electro-dynamic field provides a mechanism by which charged particles can 

be separated on the basis o f their mass to charge ratio (w/z). Devices that employ this 

mechanism are generically termed mass filters, but strictly they are mass to charge 

filters. The physical realisation o f this device can and has taken many forms. In the 

early stages o f their development there were (to name a few): the Quadrupole Mass 

Filter (QMF) [21] a linear device producing a two dimensional field, the Monopole 

Mass Filter [22] a linear device producing a quarter o f the QMF field. A third class 

of this type o f device is the Quadrupole Ion Trap (QIT) [3] which produces a three 

dimensional field. The first two filters rely on a continuous stream o f ions flowing 

through the filter for the duration o f the analytical scan, whereas the QIT stores a 

sample and then executes an analytical scan in a repeated periodic manner.

An example o f a mass spectra for a QMF showing the variation o f transmission 

against mtz and the method for calculating the resolution o f the QMF [23] is shown 

in Figure 2.1.
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Figure 2.1. Drawing o f a mass spectra showing the relationship o f m and Am for 

calculating the QMF resolution, where Am is measured at a nominated percentage o f

the peak height.

The first mass spectra using a linear QMF were obtained in 1954 for the element 

Rubidium [12], using frequency scanning, since then voltage scanning has been the



preferred choice. In less than ten years from this date exceptionally high resolution 

was demonstrated by von Zahn with a QMF of length 5.82 m, achieving a resolution 

of 16,000 [23]. The interest and take up in the technology is reinforced by feasibility 

studies undertaken by Brubaker for equipment for lunar crust and atmosphere 

analysis [24], and astronaut breath analysis [25] in the 1960s.

2.4 Quadrupole Mass Spectrometer -  A system

Following Dawson [26], a QMS or RGA is a system comprising of a number of 

individual functional blocks, each contributing to the overall perfonnance. 

Additionally the characteristics of the interface between each block also impacts on 

overall system performance. The achievable performance may be limited by: the ion 

source, mass analyser, length and mechanical tolerances [26]. Just as the QMS 

comprises a number of different blocks, so has previous research taken a number of 

different routes in characterising the QMS and the QMF.

2.5 Quadrupole Mass Filter

2.5.1 Overview

The theoretical basis of the operation of a quadrupole QMF relies on the fact that 

a certain configuration of hyperbolic electrodes, driven by a particular arrangement 

of voltages, produces a quadrupole voltage distribution in the central area between 

the electrodes. This results in an electric field that increases linearly with increasing 

displacement from the centi'al axis and is independent (uncoupled) in the two axes. 

The relatively simple construction coupled with a straightforward electronic drive 

requirement and the linear relationship between mass and drive amplitude has 

destined the QMF for widespread usage.

The equations of motion for the trajectory of ions in the % and y  direction for a 

hyperbolic electrode QMF (see Figure 2.2) can be defined by the Mathieu equation 

[2] (also see section 3.2.1). Solutions to this equation tenued Mathieu functions 

result in areas of stable and unstable ion trajectories [2], [27]. The Mathieu equation 

was originally devised by the French mathematician Emile Leonard Mathieu (1835- 

1890) in 1868 as a result of investigating another practical problem, that of the 

vibrational modes of a stretched membrane having an elliptical boundary [27]. These



functions and the associated Mathieu Stability Diagram provide an important tool 

and aid to understanding QMF operation [2].

v-axis

x-axis

Figure 2.2. Cross section o f a hyperbolic electrode QMF with a central field area o f  

radius ro and an enclosure o f radius Rc.

A convenient method o f visualizing these solutions is through the Mathieu 

Stability Diagram [2], [27]. Figure 2.3 shows the Mathieu Stability Diagram for the x 

and y  direction overlaid. Areas where jc stable and y  stable overlap are called stability 

zones and indicate that the ions overall motion will be theoretically stable. In practice 

the first o f these, stability zone 1 (a ~ 0.237, q ~ 0.706) [2] is the one in most 

common usage. The next two, zone 2 (a ~ 0, q ~ 7.547) and zone 3 (a ~ 3.16,  ̂ ~ 

3.23) provide characteristics that are beneficial for certain applications [2]. Zone 1 

and zone 3 are the two zones that are the focus o f the work contained in this thesis. 

Figure 2.4 provides an illustration o f stable and unstable ions within a QMF.

Much early work on the performance characteristics o f  QMF based mass 

spectrometers was undertaken by Brubaker in the 1960s. An early paper o f Brubaker 

demonstrated that for a circular electrode QMF, sensitivity is determined by the 

product o f the transmission efficiency and entrance aperture area [28]. The same 

paper reported that the excitation frequency was the single most important factor that 

determines the resolving power o f the QMF. He also made the point that the analysis
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Figure 2.3. Mathieu stability diagram showing the first three stability zones with the 

coloured areas defining the stable x and y  operating conditions.
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Figure 2.4. Quadrupole mass filter showing stable and unstable ion trajectories (the 

upper ̂ /-electrode has been omitted for clarity).
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of the performance of a QMF correlated with the degrees of freedom of the operating 

conditions, had so far hampered the development of the QMF/QMS. Considerable 

work was undertaken firstly by Brubaker [24-25], [28-29] and then by Dawson [30- 

33] since which time the application of computer based simulation techniques has 

emerged, providing a powerful tool for investigating the numerous performance 

sensitivities of the QMF.

A multitude of performance operating condition relationships has gradually 

emerged over the following 40+ years. Although this field of endeavour could be 

considered to be to some degree mature, the demand for smaller low power devices 

has opened up other areas of research, that of the methods for miniaturisation and the 

performance characteristics of more novel electrode geometries.

2.5.2 Hyperbolic electrodes

Batey used numerical integration of the Mathieu equations to demonstrate how 

the ion ti’ajectories in the x  and); axis varied as the mass scan line increased [9]. Ma 

reported on a turbo-PASCAL program which ran under DOS on a general purpose 

PC with a VGA monitor [34]. The program used a fourth order Runge-Kutta 

algorithm to solve the Mathieu equation, allowing the x  and y  trajectories of ions to 

be calculated independently. Provision for varying the input position of the ion and 

its phase relationship to the Radio Frequency (RF) electrode drive was also provided.

Varying the RF phase at the ions point of entry to the QMF produced different 

effects in the ions % and y trajectories. The distance into the QMF before ions became 

unstable was dependent on the RF phase at the point of entry, indicating that shorter 

mass filters may accept ions that are outside the predicted stable zone. Also 

investigated was the effect of increasing the number of RF cycles which ions 

experienced during their passage through the QMF. This showed increasing 

resolution and a small reduction in peak transmission as the number of RF cycles 

increased up to 200 cycles, above this, no effective improvement was predicted.

Voo applied the same program to investigating the effects of initial ion energy and 

found that as ion energy increases the percentage of transmitted ions increases [35]. 

They also found that Nitrogen ions only passed through the QMF when they entered
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the QMF with RF phases of 90° and 270°, drawing the conclusion that if the ions 

could be gated into the QMF, the transmission characteristics of the QMF could be 

improved. The spatial input conditions of the ions were found to possess some 

important characteristics: (i) they are symmetrical about the x and y  axis, (ii) the 

percentage transmission of ions decreases as the entry position moves further away 

from the centi'al axis, (iii) at very small excursions from the central axis with RF 

phase angles of 90° and 270°, 100% transmission was observed. All of these results 

were obtained for the normal combination of sinusoidal RF and DC electrode 

voltages. It was suggested that a square wave RF may be beneficial when driving 

miniature high frequency QMFs. This may decrease power dissipation and enable 

digital only RF stages to be implemented. The square wave was approximated by the 

successive addition of odd harmonics to the fundamental sine wave (Fourier series). 

The addition of these harmonics resulted in decreasing sensitivity as the number of 

harmonics was increased. Tunstall compared experimental results with those 

predicted by the same computer simulation program for the relationship between A M  

(where a minimum value corresponds to a maximum in resolution R^ax) and 

transmission for ions exposed to differing numbers of RF cycles (Nc) [36]. Good 

conelation between the two sets of results were reported and showed that the well 

known relationship between Rmax and Nc"̂  was approximately correct.

The simulation programs relied on predicting performance based on a relatively 

small number of ions and therefore only a small proportion of the available initial 

conditions for ions were represented in any of the results. Gibson extended this 

previous work with a new program incorporating an enhanced ion source 

representation [4]. Investigation of the behaviour of a large ensemble of ions (>10^) 

randomly injected in RF phase at each mass point on the mass scale was now 

possible. A comparison of experimental and simulated mass peaks for Helium at 

different instrument resolution settings was presented and good agreement between 

the two sets of results was obtained. Close examination showed differences in peak 

structure and shape but this was attributed to the fact that minor changes to the 

computer model resulted in large changes to peak transmission and shape. The radius 

of the uniformly illuminated ion source was shown to have a significant impact on 

transmission and shape, even though the resolution stayed almost identical. Contour 

maps provided a graphical representation of the spatial entry position of detected 

ions and how this entry position varied across the mass peak; on the low mass side
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ions close to the x  axis are successfully detected, gradually progressing to equal x  and 

y  axis detection success as the mass peak is approached, then moving increasingly to 

y  axis detection success with increasing progression along the high mass side. When 

the exit aperture was less than the radius of the QMF, peak structure was in evidence. 

Similar effects had been observed from experimental data. The results obtained 

suggested that a dependency between peak structure, amplitude and exit radius size 

existed.

2.5.3 Circular electrodes

As with other forms of instrumentation there is a continual drive to reduce power 

consumption, physical size and cost of manufacture. One widely used method of 

reducing cost was the early adoption of circular electrodes in place of the 

theoretically optimum hyperbolic [2]. Figure 2.5 shows the cross section of a QMF 

constructed from circular electrodes. Circular are cheaper to manufacture and easier 

to mount accurately (no rotational mounting precision required) during manufacture. 

This also applies to maintenance and repair operations where the instrument is 

disassembled and reassembled. These operations can introduce alignment errors 

between the electrodes, the ion source and ion detector [37].

y-axis

x-axis

Figure 2.5. Cross section of a QMF constructed from circular electrodes of radius r 

with a central field area of radius ro and enclosure of radius Rc.

Circular electrodes when mounted in the same nominal configuration as 

hyperbolic electrodes produce a voltage distribution that approximates to the
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quadrupole distribution generated by hyperbolic electrodes. Unlike the ideal 

quadmpole, these alternative electrode geometries result in more complex potential 

distributions and electric fields, consisting of quadmpole and higher-order 

components and are termed multipole distributions [38]. The relative magnitudes of 

these terms are defined by where N is the order of the multipole (see section 3.2.2 

for a more detailed explanation).

The ratio of electrode radius r to field radius ro and known as /Vro controls the 

relative magnitudes of the individual components of the multipole field [11]. Early 

empirical research undertaken by Dayton in the field of Quadmpole Magnets for 

high energy accelerators identified the ratio of 1.148 [39] as providing a close match 

to the quadmpole field. Unfortunately this value was erroneously reported as 1.16 in 

Paul’s [3] work and Bmbaker [28] also used the incorrect value of 1.16. Previous 

treatments of this problem assumed that zero potential was at an infinite distance 

from the electrodes. In a practical QMF the electrodes are enclosed within a 

conductive circular container to achieve the vacuum necessary for correct QMF 

operation. Denison employed a computer program to numerically calculate the 

potential distribution, using the results to obtain the value of r/ro where the Ae tenu is 

zero [40]. For the electrode configuration contained within a grounded enclosure of 

radius 3.54 x ro a value of r/ro = 1.1468 was found. The difference from Dayton’s 

value was shown to be due to the presence of an enclosure. The use of an r/ro =1.16 

was found to be detrimental to the achievable performance and that a value 1.1468 

provided superior performance [40].

Ions as they pass through the QMF are exposed to a linear restoring force when 

hyperbolic electrodes are used; this force is non-linear when circular electrodes are 

used. It was also shown that hyperbolic electrodes produce twice the resolution at the 

same sensitivity compared with an equivalent circular electrode QMF [28]. Bmbaker 

also observed that due to circular electrodes closely approximating the ideal field 

only in the central region, an increase in the field radius of a factor of two is required 

to achieve a similar perfonuance to the hyperbolic electrode QMF [28]. This has a 

large impact on the power requirement due to power varying to the fourth power of 

To [37]. This may be a deciding factor in applications such as space and covert 

monitoring, where power consumption, physical size and weight may be critical.
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Figure 2.6. Drawing of a mass spectra showing examples of a precursor peak and

peak splits.

Precursor (secondary) peaks on the low mass side of the main peak and peak 

splitting (see Figure 2.6) were frequently observed when operating at high resolution 

settings [33]. Whetten postulated that these artefacts could be due to the use of 

circular electrodes and the higher order field terms {A^ and ^lo) that they generate 

[33]. Calculation showed that the much larger ^6 term introduces a resonance line on 

the low mass side near the peak of the Mathieu stability diagram when operated at 

high resolution. Resonance lines are points on the stability diagram where distortions 

in the electric field generated by the QMF produce forces on the ion that reinforces 

the natural frequency of the ion trajectory. This produces an increase in the ion 

trajectory amplitude and can result in premature ejection of ions that would normally 

be stable. Figure 2.7 shows an example of these resonance lines superimposed on the 

stability diagram for zone 1. However the effect of the Aw term was not taken into 

account which may have impacted on their findings [11]. They suggested that these 

effects could be avoided by the use of hyperbolic electrodes or compensated by a 

small bias in the y-direction across the quadrupole. In arriving at this conclusion 

consideration was not given to the difficulty in avoiding rotational placement errors 

of hyperbolic electrodes, which may introduce similar artefacts in the peak shape.
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Figure 2.7. QMF zone 1 stability diagram showing an example of resonance 

instability lines due to field distortions [30].

Peak shape distortions and peak splitting can also be due to spacing errors in 

hyperbolic electrode assemblies that result in third and fourth order field distortions 

[30].These field imperfections give rise to resonance lines that pass through or very 

close to the apex of the Mathieu stability diagram and intersect with the mass scan 

line. Calculated ion trajectories showed that as the distortion is increased ions that 

were previously stable go unstable after a decreasing number o f RF cycles. Operation 

at high resolution requires lower distortions than required for operation at low 

resolution. Only a single ion RF phase entry condition was examined which is not 

representative of a real QMF where a complete range of RF phases would be 

experienced, but it was assumed that similar characteristics would be expected [30].

The r/ro problem was revisited by Reuban et al [41]. They used a semi-analytic 

conformai mapping approach to deduce the value of r/ro for a quadrupole electrode 

configuration contained in a grounded enclosure that provided a zero value for the A(, 

term [41]. A comparison of an ion trajectory for three cases: a pure quadrupole field, 

the Denison case, and for the new value were undertaken. The new value, 1.14511 x 

ro was found to provide a closer fit to the ion trajectory obtained when using 

hyperbolic electrodes. Again, only one ion entry phase was considered and it was 

concluded that if the trajectories of a large number of ions were simulated, peak
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shapes could be obtained and compared. A more recent investigation by Schulte 

proposed making Ae and Aio equal and opposite by suitable selection of r/ro [42]. 

This results in a decrease in non-linear resonance effects and improves the sensitivity 
of the QMF.

Gibson and Taylor observed that ensuring the A^ tenn is zero as a method of 

identifying the optimum value of r/ro was based on an assumption [43]. No proof that 

this provides optimum QMF performance had been previously demonstrated. 

Custom designed software was used to solve the electric fields for a range of r/ro 

ratios. The trajectories of a large number of ions were then calculated for ions under 

varying RF phase and spatial entiy conditions. They go on to show that peak shape, 

transmission and resolution are highly dependent on the value of r/ro for the range 

r/ro — 1.12 to 1.16 and that the effects of these variations are more pronounced at 

high instrument resolution settings. They suggested that an r/ro ratio in the range of 

1.12 to 1.13 achieves the best performance and that an electrode radius tolerance of 

1% should be sought to minimise the performance variability. Also noted were the 

very small differences in peak shape when changing the enclosure radius from 3.6 x 
ro to 4.2 X ro.

An alternative approach to understanding the optimum value of r/ro was 

undertaken by Douglas et al who explained the relationship in tenus of the Ao and Aw 

multipoles [11]. It was stated that simply making the Ao term zero is insufficient as 

the next higher multipole term Aw  also has a significant influence on performance. 

They anived at approximately the same value (r/ro ~ 1.130), which minimised to 

some extent the low mass tailing associated with circular elechodes. This value of 

r/ro is where the Ao and^io teims are approximately equal and opposite and interact 

in such a way as to cancel each other out [11].

2.5.4 Comparative performance

A comparison of performance between QMFs constructed from hyperbolic and 

circular electrodes is veiy difficult experimentally due to mechanical and system 

differences that may exist between the different instruments. These difficulties have 

been circumvented through the use of software simulation techniques. Gibson 

reported on a custom software package that enabled the perfonnance for both
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hyperbolic and circular electrode QMFs to be predicted [43]. The computer

simulation model calculated a grid of electric field values for the QMF and then

calculated the ion trajectories for a large number of ions entering the QMF under 

random RF phase and spatial position. For the case of hyperbolic electrodes the 

electric field was calculated from an analytical expression and for the circular 

electrodes a simple relaxation process was used to find the potential at each of the 

grid points. The field gradient was obtained by partial differentiation of the 

potentials. For the circular electrodes an r/ro ratio of 1.148 was used throughout. For 

the same instrument resolution setting the circular electrodes demonstrated reduced 

transmission and increased peak width, with increased mass tailing on the low mass 

side also being observed compared with the hyperbolic QMF. For the case where the 

ion experiences a low number of RF cycles (20 -  25) the difference between

hyperbolic and circular electrodes is small. This difference increases with an

increasing number of RF cycles to a value > 2, but exact differences were found to be 

dependent on the instrument resolution setting [4].

Abundance 
W3 sensitivity (As) is a 

measure o f  the 
contribution o f  the 
mass spectra o f  
to the peak height 

o f  the mass spectra 
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Figure 2.8. Drawing of mass spectra for m\ and m2 for a circular electrode QMF 

showing the effect of the mj low mass tail on the abundance sensitivity [44] o f m\. 

Also shown are the mass spectra (m{) for a hyperbolic electrode QMF highlighting 

the absence of a low mass tail and zero abundance sensitivity with respect to m\.

The presence of a low mass tail which occurs when circular electrodes are used is 

o f importance as it can affect the measurement accuracy for any closely adjacent
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mass peak [45] (abundance sensitivity). Figure 2.8 shows an example of this effect 

with the low mass tail of the mass spectra for m2 contributing to peak height of mass 

spectra for mi.

Austin undertook a large number of detailed experiments into the performance of 

QMS systems [37]. He found that low mass tails were present in mass spectia and 

that they can manifest themselves in a number of different forms. The relationship of 

this tailing to operating effects was investigated by Gibson and Taylor who 

reproduced using computer simulated mass spectra the presence of these low mass 

tails (see Figure 2.8) [45]. The general shape and position of the computed peaks 

were similar (ignoring calibration effects) to those reported by Austin, with the 

relative position of the secondary peaks with respect to the main peaks being 

approximately the same. There is however a significant difference in the amplitude 

of the computed secondary peak compared to the experimental one. Gibson and 

Taylor reported that the value of r/ro affected the shape and amplitude of the low 

mass tail but that the nature of the changes was the same for all values of r/ro 

investigated.

A number of interrelationships between main peak and the low mass tail were also 

investigated through computer simulation. Increasing the instrument resolution 

setting decreased the main peak width, while at the same time a less rapid decrease in 

the main peak height was observed. Accompanying this, there was a concuiTent 

change in the low mass tail which at low instrument resolution settings merges with 

the main peak. As the instrument resolution setting is increased the main peak and 

low mass tail visibly separate, fanning two distinct peaks. The amplitude of the low 

mass tail decreased less slowly than the main peak. In the limit, where no main peak 

is present, the low mass tail was still present. A well-defined peak shape was 

obtained when ions experienced approximately 80 RF cycles. The shape of low mass 

tail continued changing until the ions experienced over 200 RF cycles. The low mass 

tail was also found to be sensitive to the ion source radius and it was suggested that 

contiibutory ions to the low mass tail originate close to the x axis and at a large 

distance from the central axis [45].
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2.5.5 Mechanical imperfections

In general the prediction of the behaviour of QMF performance has assumed 

perfect electrode geometry and this is nearly always true for published experimental 

results. A systematic experimental investigation of the effects of mechanical 

tolerances on the QMF is difficult, due to the variability introduced during the 

assembly and disassembly cycle. One approach is the manufacture of a range of 

QMSs, each with one of the imperfections to be investigated. This would be a costly 

exercise and in all probability only a very limited number of the possible 

combinations could be economically considered.

One experimentalist, Stoiy did undertake a set of experiments on a QMS to 

investigate the effects of a misaligned QMF electrode [46]. One electrode of the 

QMF was mounted on micrometer screws, one at either end. The micrometer screws 

passed through the vacuum allowing fine adjustment of the position of each end of 

the electrode without recourse to dismantling of the unit. The alignment of the 

remaining three electrodes, ion source and ion detector were maintained across the 

experiments. Some of Stoiy’s experimental results are reproduced in Dawson [37]. 

Dawson investigated the relationship between mechanical or electrical imperfections 

and the resultant performance limitations [47] and the effects of bent or bowed 

electrodes [48].

It is known that imperfect construction of a QMF results in degraded performance 

and if excessive [37], it may not provide performance that is acceptable even for the 

least demanding of applications. The previously reported computer simulations 

techniques [4], [43] used a field solving technique that relied on the symmetrical 

characteristics of the electrode arrangement. When electrodes are misplaced this 

symmetry is destroyed. Taylor and Gibson [49] used Poisson/Superfish [50-51] a 

public domain software package to generate the electric fields for QMF electrode 

assemblies with a displaced electrode. Simulations using previously generated fields 

and those produced by Poisson/Superfish produced similar results [49]. Single 

electrode displacements were investigated. For an inward displacement of a single x 

electrode, the mass peak shifted to a lower mass scale position with a small increase 

in peak height. No significant change in peak shape was observed. Different
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outcomes were observed for a y  electrode displacement. For displacements up to 

0.001 X ro, the peak position moved to a lower mass scale position with a small 

reduction in peak height. As the displacement was increased further, a precursor peak 

emerged. Both the precursor and the main peak moved progressively to a lower mass 

scale point for increasing displacement. Similar characteristics were reported for 

outward displacements of the electrodes except that the shift on the mass scale was to 

a higher mass position. Adjusting the relative drive amplitude to compensate for the 

electrode displacement which is the subject of a number of patents [52-54] was also 

evaluated. Simulations generated showed that small errors in radial placement could 

be compensated satisfactorily for by this method [49].

2.6 Stability Zone3

Certain applications require performance that is outside the realms of that 

achievable from QMFs constmcted within acceptable physical limits and operated in 

stability zone 1. Although not in common usage, stability zone 3 provides a means of 

achieving a higher resolution fi'om a conventionally proportioned QMF [6], [56]. 

Zone 3 is of rhomboidal shape with an unequal aspect ratio (see Figure 2.3). Two 

operating areas provide high resolution, one close to the upper left hand tip (a ~ 3.16, 

q ~ 3.23), and the other close to the lower right hand tip {a ~ 2.52, q ~ 2.82). The 

increased a and q values for zone 3 result in higher RF and DC electrode drive 

voltages, limiting the maximum mass for given available maximum drive voltages. A 

higher resolution is achievable for ion exposure to a given number of RF cycles [56] 

compared to zone 1. Some researchers, term this zone as zone 2 [57] while others 

including the definition adopted in this thesis, refer to it as zone 3 [56].

For a given ion energy the velocity of ions is greater for low mass ions such as 

those found in thermonuclear experiments [57] and also helium leak detection in 

hydrogen rich environments [58]. Hiroki reported on a comparison of performance 

using the same QMS for operation in zone 1 and zone 3 [6]. The electrodes were of 

hyperbolic profile with a length of 200 mm, an ro of 4 mm and a RF frequency of 2.5 

MHz were used. Zone 3 provided sharper peak shapes and the tail components 

produced by adjacent peaks were less than for zone 1 operation, providing improved
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abundance sensitivity. Zone 3 sensitivity was about 2% of that obtained for Helium 

when operating in zone 1.

A common tracer gas is '^He which is used for the detection of small leaks. 

Deuterium is often found in certain physics experiments and standard QMSs are 

incapable of discriminating between "̂ He (4.0026 amu) and Di (4.0282) which 

requires a minimum baseline resolution of ~ 161. Minimum baseline resolution is 

determined by the difference between the two masses and the mass of the species the 

resolution is referenced to. Figure 2.9 provides a graphical illustration of the 

minimum baseline resolution calculation.
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Figure 2.9. Determination of minimum baseline resolution to identify two adjacent

species.

Hiroki used the same QMS previously reported [6] to successfully separate '^He 

and D] achieving a resolution of 320 with 18% valley separation [57]. Figure 2.10 

provides a graphical illustration of the calculation of valley separation. For ion 

energies > 20 eV increased peak tailing was apparent with an associated reduction in 

resolution. A later set of experiments were reported by Hiroki et al. again using a 

QMF of the same dimensions but operating at 3.58 MHz [58]. A peak ratio of ^He 

and HD of 0.1 was detected and a justification made that this could be improved with 

a proposed new controller operating at 7 MHz.
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Hiroki et al. also reported that the lower tip of zone 3, and zone 1, exhibit a longer 

peak tail on the low mass side than on the high mass side [59]. The upper tip of zone 

3 has a much shorter peak tail on the low mass side, making it more suitable for 

detecting ^He in the presence of a large abundance of D] [59]. The increased 

resolving power of the upper zone 3 tip was quantified showing that a resolution o f = 

200 is achieved with 23 % of the RF cycles, and 63 % for the lower zone 3 tip, 

compared to zone 1 operation. The ability to detect "*He at abundance levels of 10"̂  of 

D] was also demonstrated.
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Figure 2.10. Mass spectra of two masses and m-j illustrating the valley separation

between the two mass peaks.

Du reported on a set Inductively Coupled Plasma -  Mass Spectrometry (ICP-MS) 

experiments with a QMF for Magnesium [56], obtaining resolutions of 1000 and 

2000 for the zone 3 lower and upper tips respectively. A limiting resolution of 4000 

at 59 amu was obtained but acceptable sensitivity could be obtained for resolutions 

up to 1000. The upper tip was found to provide generally better performance in terms 

of resolution and sensitivity than the lower tip.

Pedder used a 200 mm long, 19 mm diameter QMF to investigate the relative 

performances of zone 1 and zone 3 when resolving "*He and D2 [60]. Typical 

simulated ion trajectories indicated much higher relative amplitudes of the higher 

harmonic frequencies for both x  and y  axis when operating in zone 3 compared to 

zone 1. Figure 2.11 shows a number of phase space acceptance ellipses for a QMF.
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The ellipses provide a method of depicting theoretical conditions for an ion to 

successfully pass through the QMF. The eye in the centre represents a ""sweet spot 

where i f  an ion enters within these conditions it will have a theoretical stable 

trajectory' [61].

Centre axis

X displacement

Figure 2.11. Example of a jc-axis phase space acceptance ellipse for a QMF. A 

similar ellipse can be produced for the j^-axis [61].

Pedder compared the phase space acceptance ellipses for zone 1 and zone 3, it 

was concluded that these predicted superior abundance sensitivity and resolution for 

zone 3 operation [60]. It was also pointed out that quantitative measurements of 

closely spaced species of wide dynamic range can be challenging for zone 1 

operation. This difficulty was attributed to poorer focusing in the y  axis. Zone 1 

spectra for ^He and D] when shown at high gain were characterised by a high inter­

peak valley indicating overlapping of the two peaks therefore reducing the accuracy 

of abundance measurements. For zone 3 the high gain mass spectra were well 

separated with only the noise floor of the electronic measurement system visible 

between the two peaks. The results also showed a distinct precursor present on the 

low mass side of the D2 peak. There is also an indication on the low mass side of the 

'^He peak that a similar artefact could exist. More recent research has demonstrated
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that this class of artefact can be a result of mechanical or drive voltage tolerances 

[49]. Pedder also makes the point that with zone 3 ultra-high resolution can be 

achieved but with the disadvantage of reduced transmission [60].

Other zone 3 characteristics that have been noted by Du et al. [62] are the 

presence of structure on the mass spectral peaks. They stated such features are due to 

focusing effects arising from the variation in the spatial excursions as the ions 

progress through the QMF and therefore varying the distance from the axis when 

they exit the QMF. The effect was more severe at higher ion energies.

2.7 Fringing fields

So far, only the two dimensional aspects of a QMF have been considered. In 

practice, the ions have to pass from the ionizer into the QMF, and out of the QMF to 

the detector. These transitions are not abrupt but diffuse. In the near vicinity of the 

QMF this diffuse zone arises because of fringing fields and gives rise to unwanted 

behaviour of the ion trajectories, with detrimental mass dependent effects on ion 

transmission (sensitivity). Brubaker observed that due to the shape of the jy-stability 

zone, the decreasing RF and DC amplitudes with increasing distance from the 

entrance of the QMF results in the instability of ions [29], which otherwise would be 

transmitted through the QMF. This effect reduces the number of ions that enter the 

QMF and are successfully transmitted, or alters their entry conditions in the y  axis 

ensuring rejection later in their passage through the QMF. He also observed that ions 

of low velocity suffered from significantly reduced effective aperture, producing a 

mass dependency to the effective aperture. The solution Brubaker identified [37], and 

which relied on the fact that an RF only field results in stable ions, was the 

introduction of a delayed DC ramp. Immediately in front of the main QMF a set of 

auxiliary electrodes with RF only excitation was introduced, ensuring that the RF 

fields increased to their instantaneous maximum amplitude, prior to the DC 

component of the field being encountered.

As a result of the computer simulations of fringing fields undertaken by Dawson 

[32] he concluded that short concurrent RF and DC ramps of less than approximately 

three RF cycles provided superior perfonnance to that obtained from an abrupt 

(ideal) entrance field. For ramps longer than this value smaller effective apeitures
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would result. It was suggested that these characteristics may result in unfavourable 

discrimination against high mass ions due to their lower relative velocity.

Hunter reported on three dimensional computer modelling of the fringing fields 

[63]. He showed that for a certain range of distances between the apeiture entrance 

plate and the QMF entrance there were marked differences from predictions obtained 

from a linear approximation. From computed results [63] it was concluded that the 

acceptance of the QMF was relatively insensitive to the distance between the QMF 

electrode ends and the aperture entrance plate.

Alternative methods of negating the effects of the fringing field have been 

reported by Marmet [64] and Fite [65]. Marmet proposed fitting a gridded box 

immediately in front of the QMF entrance and applying a parameterised time varying 

voltage to the box to eliminate the fringing field. A different method of achieving 

separation of the fringe fields by utilising characteristics of non-metallic materials 

was proposed by Fite. A hollow tube manufactured from a leaky dielectric material 

was positioned in front of and on-axis with the QMF. A small portion of the hollow 

tube projected into the QMF with the other end of the tube mounted on a grounded 

metallic faceplate with the ions focused so they entered the QMF through the hollow 

tube. The characteristics of this arrangement are such that the RF penetrates the tube, 

while the DC component is excluded, producing a delayed DC ramp [65].

All of the above were based on operation in stability zone 1. The effects of 

fringing fields for operation in zone 3 have been reported by a few researchers. 

Konenkov found that the fringing fields increased the QMF acceptance less 

effectively in zone 3 than zone 1 [66]. Hiroki found that the fringe length sensitivity 

is stronger for high resolution zone 3 operation than for zone 1 [67]. The resolution 

increased when both the inlet and outlet fringe field lengths were reduced. The 

effects of an RF only pre-filter were also investigated experimentally and 

theoretically by Hiroki [68]. A factor of two increase in Helium peak height was 

obtained when compared with the no pre-filter case.

2.8 Alternative electrode geometries

Traditionally QMFs have utilised hyperbolic or more usually circular electrodes 

arranged symmetrically. Other geometric shapes and non-symmetrical configurations
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have been discussed either from pure academic interest, to achieve a specific 

perfonnance change or because of the desire to use manufacturing technologies that 

are more suitable to non-standard electrode geometries.

Hayashi investigated the field characteristics produced by circular concave 

electrodes for both infinitesimal and infinite thickness electrodes [69]. hifinitesimal 

thickness circular electrodes can be formed on the inner surface of an insulating 

circular tube by selective vacuum deposition of metal films. With the conect pole 

angle it was shown that the tenn of the field could be eliminated providing a good 

approximation to the quadmpole field. Sakudo investigated the multipole fields 

produced by flat faced electrodes for two values of corner angles and obtained the 

conditions for approximating the ideal quadrupole field [70]. The field characteristics 

of a flat-plate quadmpole system were reported by Pearce [71]. He showed that over 

the central region a match to an ideal quadmpole field was possible to better than 

0.1% accuracy. A QMF constmcted from such electrodes demonstrated sufficient 

resolution to discriminate between masses of 17 and 18 amu. A ceramic single-piece 

hyperbolic quadmpole was constmcted by Hiroki [72]. Four individual quadrants of 

Si3N4 were machined and sintered with the hyperbolic surfaces coated with 10 pm of 

metal thin films. They were then precisely joined together to provide a quadmpole 

field. Experimental results showed no difference in performance between the ceramic 

quadmpole and a conventional metal unit.

The magnitude of the multipole field components can be altered by changing the 

symmetry of the electrode geometry [38]. Ding added an field component by 

increasing the diameter of one pair of electrodes with respect to the other pair [73]. 

For a particular arrangement of the RF and DC voltages a considerable improvement 

in resolution was obtained.

2.9 Miniaturisation

Traditionally the majority of QMS applications have been for laboratory 

instmmentation and process monitoring. There is an increasing interest in the 

application of this technology for environmental, covert monitoring, deployment in 

harsh environments and on-going airborne and space applications. Characteristic 

requirements of these applications include small size, low weight and power, and for 

at least some of these instruments, low manufacturing cost would be advantageous.
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Relatively large pumps and their high power requirements are required to achieve the 

low pressure operation for conventional systems. Henry reported that the National 

Aeronautics and Space Administration (NASA) scientists were ""working under a 

rule o f  thumb that an instrument should be no smaller than 1kg, occupy no more than 

1 or 2 L, and consume less than 5 W for the complete system" [74]. To minimise ion 

collisions with background gas molecules the dimensions o f the QMF are arranged 

so that the mean free path (1) of the background gas at the maximum operating 

pressure, is greater than the largest dimension of the QMF. Using Equation (2.1)

where kB is the Boltzman constant (1.3806488x10'^^) [75], T is the temperature (in 

K), d  is the sum of the radii of the stationary molecule and the colliding ion (in m), p  

is the pressure (in Pa) and A is the mean free path (in m) [1]. It can be calculated that 

for operation at a vacuum pressure of 1 x IQ"̂  Pa with a temperature of 300°K, a 

value of À. ~ 5 cm is obtained. Higher operating pressure can be achieved through 

size reduction, enabling smaller vacuum pumps to be used.

A number of options exist to miniaturise a QMF, some are suitable for low cost 

high volume manufacture, others using more traditional construction techniques are 

more suitable for low volume specialist applications. Conventional manufacturing 

processes such as centre-less grinding and wire and spark erosion, limit the size 

reduction possible due to handling difficulties and minimum process tolerances. The 

use of micro-electro-mechanical systems (MEMS) and/or micro-fabrication 

technologies create difficulties in realising hyperbolic shaped electrodes. They are in 

general more suited to producing rectilinear profile electrodes.

An early example of a miniaturised QMF was reported by Syms [76]. Four 

parallel cylindrical electrodes of 500 pm diameter formed from commercial silica rod 

with a 1000 Â Chromium surface coating were used. Pairs of the electrodes were 

mounted in V-grooves etched in a Silicon substrate. Two substrate assemblies 

separated by two additional cylindrical insulating spacers which are mounted in 

etched alignment grooves in the substrates fonn a quadrupole lens with a positional 

accuracy of 3%. Initial performance results for the 20 mm long device were reported
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by Taylor [77]. A typical mass spectmm for Argon and Air mixture at a gas pressure 

of 6.67 X 10'  ̂Pa with an RP frequency of 6 MHz was shown. For an ion energy of 6 

eV a resolution of 24 was obtained, close to the theoretically predicated value for 

operation in stability zone 1. An improved version of the QMF was reported by Syms 

[78]. Optimisation of the design to achieve good electrostatic perfonnance was 

discussed and the use of kinematic mounts etched into the silicon wafers were shown 

to provide immunity to groove width variation. The perfonnance improvements of 

this new design (MicroQuad) were presented by Taylor [79]. A directly coupled 

electrode drive was employed instead of the more common tuned load coupling. The 

same research groups later demonstrated improvements in perfonnance of the device 

by the application of a transverse magnetic field providing an improvement in 

resolution with provision of an electron multiplier detector to compensate for low ion 

cunent [80]. Further changes to the control of the MicroQuad provided increased ion 

current output [81]. This was achieved through use of a pole bias to the electrodes 

and careful optimisation of the ion source voltage, producing an eight fold increase 

in ion current compared to previous results [81]. Operation at pressures up to 1.77 Pa 

and with reduced sensitivity to 4.53 Pa was also reported.

Researchers at MIT devised a MEMS quadrupole which used commercially 

available dowel pins with 5 pm diameter precision, for the electrodes [82]. The 

electrodes were held in position by two microfabricated plates, a top alignment plate 

and the springhead base (pGripper). The assembly was completed by a set of four 

ceramic spacers. The pGripper incorporates silicon DRIE-pattemed deflection 

springs as an aid to precision hand assembly of the unit. The tested unit consisted of 

1.58 mm diameter electrodes with an aspect ratio of 57. Operation was in stability 

zone 1 at a RF frequency of 1.44 MHz with a constant peak width scan line. A 

dynamic range of 650 amu and a peak width of 1.9 amu at 69 amu were reported.

A second generation of the pGripper was developed with the aim of enhancing 

performance and improving robustness during mechanical assembly [83]. To ensure 

equipotential surfaces, the substrates were highly doped with antimony. A final 1 pm 

silicon-rich nitride coating was deposited to ensure the springs were scratch resistant. 

This was operated in stability zone 1 with a constant peak width scan line at an RF 

frequency of 1.44 MHz. With 1.58 mm diameter electrodes and an aspect ratio of 57, 

peak widths of 1.9 amu at 69 amu and 2.2 amu at 219 amu were achieved. The peak 

widening at higher masses was attributed to the ultimate resolution of the device
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being reached. Tests at RF frequencies of 2 MHz and 4 MHZ were also undertaken. 

Nan-ower peak widths with small precursor peaks and peak splitting on the high mass 

side were reported, the effects being worse at 2 MHz. Operation in stability zone 3 

using 2 MHz provided almost perfect peak shape without any evidence of precursors 

or peak splitting. Transmission was much lower than for zone 1 with the signal-to- 

noise ratio reduced by a factor of 10. Using 1.00 mm diameter electrodes with an 

aspect ratio of 37 produced poor results. Operation in zone 1 at an RF frequency of 4 

MHz produced a peak width of 4 amu at 69 amu. Reduced transmission with a 

signal-to-noise ratio comparable to zone 3 operation for the larger device was 

obseiwed. Peak splitting was present on the mass peaks, attributed to the relative 

increases in electiode misalignment. No signal above the noise floor could be 

obtained for operation in zone 3.

Another example of a miniature QMF of similar dimensions to the MicroQuad but 

manufactured by a different process is attributable to Geear [84]. A wafer scale, 

batch fabrication process was used and included deep etched features with springs 

fonned in the outer silicon layers for locating the precision-machined cylindrical 

metal electrodes in vertically etched slots. Integrated ion enti'ance and exit optics 

were similarly formed in the inner silicon layers. The completed QMF with 30 mm 

long 500 pm diameter stainless steel electrodes was tested. At an RF frequency of 6.1 

MHz and operated in stability zone 1, a mass range of ~ 400 amu was obtained, with 

a resolution o f -2 1 9  at 219 amu.

A reduction in the dimensions of a QMF by a factor n produces an reduction in 

sensitivity [84]. Arrays of miniature QMFs [85-86] provide a means of achieving 

sensitivity comparable to more traditional QMFs and coupled with operation at 

higher frequency, provides a method of maintaining acceptable resolution with 

reduced length [85]. Ferran produced a QMF composed of a 4 by 4 grid anay of 

identical electrodes precisely mounted and secured in a glass base, forming 9 QMFs 

operating in parallel, which they called a Micropole^^ [86]. The electrodes were 10 

mm long with a radius of 0.5 mm (ro = 0.435 mm) and the unit occupied a volume of 

4 cm^ with a weight of less than 25 g and was operated at 11 MHz. Additional 

supports were also mounted on the glass base for mounting filaments, lenses etc. A 

full width at half-maximum (FWHM) peak width of approximately 0.8 amu for 

components of air was obtained, with a mass peak at 17 amu being clearly resolved. 

The linearity of Argon partial pressure relative to the total pressure was linear up to
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0.133 Pa; above this the linearity increasingly degraded before "fold over' [86] 

occurred. The non-linearity above 0.133 Pa was attributed to ion space charge in the 

ion source and ion background gas collisions in the QMF.

Another array was developed by the Jet Propulsion Laboratory [85]. The number 

of electi'odes and configuration was the same as the Micropole but they were larger 

with a length of 25 mm and diameter of 2 mm. Two machineable ceramic (Macor) 

jigs, one at either end of the electrodes accurately located the electrodes. The 

accuracy of the electrodes was to 0.5% or better and positional accuracy was kept to 

0.1%. The QMF was tested at two frequencies. The first, 7.1 MHz was used over the 

mass range 34 - 137 amu to obtain mass spectra for Argon, Krypton and Xenon at a 

resolution of 0.5 amu (FWHM) and operation up to 300 amu was tested with a 

sample of C6F 12, of molecular weight 300 amu. A higher frequency of 12.9 MHz was 

used for analyses of Hydrogen and Helium, with peak widths of 0.1 amu (FWHM) 

for H2 and Helium and 0.2 amu (FWHM) for the monatomic Hydrogen peak were 

obtained.

2.10 Alternative periodic voltage waveforms

QMFs are normally driven with an RF that is sinusoidal, but any time varying 

periodic waveform can be used [2]. For power sensitive applications and/or where 

small QMFs with integi'ated electronics are required, the ability to drive the 

electrodes with non-sinusoidal periodic waveforms maybe desirable [87]. Richards 

has shown the feasibility of using a periodic rectangular drive and the use of variable 

duty cycle to provide the mass scanning [88]. This removes the requirement to 

provide a closely matched ratio of RF to DC, replacing it with a variable timing 

parameter.

2.11 Conclusions

Whilst an extensive body of knowledge about the QMS and in particular the QMF 

exists there are specific areas where only limited information is available. Operation 

using stability zone 1 is the usual choice for the majority of manufacturers. There are
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however certain demanding applications where the use of zone 3 provides the 

increased resolution and abundance sensitivity necessary.

Documented performance characteristics for zone 3 operation with hyperbolic and 

circular electrodes are very limited. For zone 1 operation an optimum value for rirç, is 

now widely accepted, no such value for zone 3 operation has been confirmed. The 

effects on performance of certain types of circular electrode displacements have 

recently been reported for zone 1 operation together with confirmation that using an 

unbalanced electrode drive can compensate for electrode displacement. Again, no 

similar information is yet available for zone 3 operation.

The use of stability zone 3 is emerging as a possible method of improving the 

limited performance envelope when operating with restricted length QMFs which are 

more likely when using micro-fabrication manufacturing techniques. Also associated 

with these manufacturing processes is the usage of rectilinear electrode profiles. 

Very little information about predicted performance for rectilinear electrodes for 

either stability zone 1 or zone 3 is available.

It is considered therefore that a better understanding of zone 3 operation and its 

associated performance sensitivities is an area that requires further investigation. At 

the same time the effects of electrode drive tolerances on achievable performance is 

another sphere requiring further investigation.
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Chapter 3

3. QUADRUPOLE MASS FILTER

3.1 Summary

In this chapter the theory governing the ideal hyperbolic electrode QMF is 

introduced, together with the Mathieu stability diagram as an aid to understanding 

the operation and control of the QMF [2].

In practice it is more usual for QMFs to be constructed from non-hyperbolic 

(circular) shaped electrodes. Figure 3.1 shows the arrangement of electrodes for a 

circular electrode QMF [23]. The implications of using these "non-ideal’ electrode 

geometries are discussed and the concept of multipoles is then introduced. To 

facilitate the calculation of ion trajectories in circular electrode QMFs, it is first 

necessary to solve the electric field within the QMF. One method of achieving this is

Field
area

Entrance

Figure 3.1. Photograph of a circular electrode quadrupole mass filter with the x and 

y  electrodes, the central field area and ion entrance and exit positions identified. The 

outer enclosure has been omitted for clarity.
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discussed, together with the numerical methods that are suitable for implementation 

in computer software. A public domain field solver program and the modules that 

have been used as part of this work are then reviewed. Finally, four custom computer 

programs that have been developed as part of this work are examined. These 

software packages provide tools for investigating the performance characteristics of 

hyperbolic and non-hyperbolic electrode QMFs.

3.2 Quadrupole Mass Filter

3.2.1 Hyperbolic electrodes

The ideal QMF would consist of a set of four hyperbolic profile electrodes of 

infinite size each one mounted on a side of an imaginary square to form a parallel 

array. In practice the closest approximation is obtained with finite sized hyperbolic 

electrodes as shown in Figure 3.2. With this electrode geometry, a quadrupole 

potential distribution in the central inter-electrode space is achieved by applying 

positive and negative potentials of equal magnitude to alternate electrodes [2], [89] 

and is defined by Equation (3.1)

-O

-O

Figure 3.2. Hyperbolic electrode QMF arrangement showing applied potentials

(see Equation 3.1).
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^ ( x , y )  =  ̂ (3,1)
2^0

where x and y  define the position in the central aperture ro and 0 a is the magnitude 

of the applied potential.

A quadmpole potential distribution produces an electric field that increases 

proportionally with increasing displacement from the cential axis, and in the ideal 

case is independent in x and y, and invariant in the z axis and is defined by Equation
(3.2).

E y = ~ ^  (3.2)
n> fo

where E{x) and E(y) are the electric field strengths for the x and y axes respectively, 

Oa is the magnitude of the applied potential to the x and y  electrodes, ro is the field 

radius and x and y are the displacements from the central axis.

When Oa is a combination of a DC and an RF voltage as defined by Equation

(3.3), the quadrupole potential distribution is still maintained while at the same time 

providing a time variant electric (electro-dynamic) field

O j ^ = U - V  COS cot (3 .3 )

where U  is the DC component of the applied potential in Volts, V is the zero to peak 

amplitude of the applied RF potential in Volts, co is the angular frequency of the RF 

in radians/secs and t is time in secs. With this applied composite potential the 

equations o f motion for positive ions in the two axis are defined by Equations (3.4) 

and (3.5) [2], [89]

d  X  g  / r r  \  ^
— y  + ----   - V  QOS>COt)=0 (3.4)
d t mr^
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d ^ y

d t^ mr^
( U - V  coscot) = 0 (3.5)

where e is the charge on an electron (1.602x10'^^ C) [3] in Coulombs (C), m is the 

mass of the ion in atomic mass units (1 amu = 1.660538 xlQ^? kg) [90] and the 

remaining parameters are as previously stated. Equations (3.4) and (3.5) are in the 

canonical fonn of the Mathieu equation [27] as shown in Equation (3.6)

d ^ u

~d^
2 + K  cos(2^))w  =  0 (3.6).

cot
When 4 = ~  and the dimensionless Mathieu parameters a» and [2] are 

defined as follows

^ e U

m cù^ri
(3.7)

= q . =  - q y  =
AeV

y 2 2mco K
(3.8)

where u represents x o r y  and all other symbols are the same as previously defined.

By suitable rearrangement of Equations (3.7) and (3.8), the Eand C7 voltages for a 

particular mass at an and value can be calculated by using Equation (3.9). This 

allows the Mathieu stability diagram to be transformed from a-q space to V-Espace

4e ’ Se (3.9).

The combination of the DC and periodically varying RF potential, produces 

differing time varying forces in the x  and y  direction. In the x-direction a net
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repulsive force and in the y-direction a net attractive force is experienced by the 

positive ions. This combination results in the x-direction acting as a low pass mass to 

charge ratio filter and the y-direction acting as a high pass mass to charge ratio filter, 

producing a net band pass mass to charge ratio filter.

There are an infinite number of solutions to the Mathieu equation [27]. Each 

successive solution when applied to the QMF, results in the increasing magnitude of 

one or both of the Mathieu parameters [2], [27]. From Equation (3.9) it can be seen 

that as the Mathieu parameters Ou and increase, there is a proportionate increase in 

the electrode voltages V and U. This imposes practical limitations on the suitability 

of these solutions because of the increasing operating voltages. The Mathieu 

stability diagram (see Figure 2.3) provides a convenient method of graphically 

presenting the theoretically stable and unstable operating zones. For an ion to 

successfully pass through the QMF, the ion must be stable in both the x and y 

direction, this occurs where the x and y stable regions overlap. Figures 3.3 shows the 

Mathieu stability diagram in more detail for zone 1 and figure 3.4 shows zone 3 in a 

similar level of detail.

X stable 
V stable 
X and V stable

Figure 3.3. Detail of the Mathieu stability diagram showing areas of stable x, y and 

xy ion trajectories that form stability zone 1.
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Q 2.6

X Stable 
y  stable 
X and y  stable

J______________L.
2.2 2.4 2.6 2.8 3 3.2

Figure 3.4. Detail of the Mathieu stability diagram showing areas of stable x, y and 

xy ion trajectories that form stability zone 3.

IhstRes =  100% 
IhstRes =  95%

Figure 3.5. Mathieu stability diagram for zone 1 {a^ ~ 0.237, ~ 0-706) with

superimposed mass scan lines at two instrument resolution {IntRes) settings.

For practical mass filtering action the pass band of the QMF must be kept narrow 

in order to provide adequate species discrimination but not so narrow that 

insufficient ions are transmitted, resulting in inadequate ion detector signal current.
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This trade-off between pass band and transmitted ions is achieved by varying the 

ratio of a!q. Increasing q, while keeping this ratio constant is termed a mass scan 

line. Figure 3.5 shows the approximately triangular zone 1 stability region, with two 

mass scan lines superimposed. The height of the stable area above the scan line gives 

a relative indication of the transmitted ions.

Instrument resolution {rj) provides a convenient measurement [10] of the slope of 

the scan line and when equal to 100%, the scan line just touches the tip of the zone I 

stability region. By decreasing q, the slope of the scan line reduces, moving below 

the stability tip and increasing the pass band (A^>. This relationship can be seen in 

Equation (3.10),

^utip
^si  = V  (Isi

^utip
(3.10)

where Osi is the value of a at a particular value of qsi on the scan line, autip is the value 

of a at the tip of the stability zone, qunp is the value of q at the tip of the stability 

zone.

 Transmission
 10% Peak Height
 50% Peak Height

^  0.8

0.4

0.2

0.80.7
q t i p

Figure 3.6. Normalised theoretical mass peak for an instrument resolution setting 

of 95% for operation in stability zone 1. Marker lines for at 10% and 

50% of peak height, and t̂ip are also shown [91].
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A theoretical indication o f the mass peak for an instrument resolution o f 95% 

(Figure 3.5) is shown in Figure 3.6. Observable in the figure is the narrowing peak 

width (A^) with increasing amplitude. The at 50% of peak height {t^qso) is 

narrower than the A^ at 10% o f peak height (A<7;o).

Mass resolution can be defined as where A^ is measured at some percentage

o f the maximum peak height. More usually the resolution is quoted as the ratio —
Am

which is effectively the same relationship scaled to the particular operating point o f  

the instrument by (see Equation 3.11). This relationship indicates that as the mass is 

increased with a constant mass scan line slope, then the peak width Am scales 

proportionally with m, producing constant mass resolution. Standard instruments are 

normally configured to operate with unit resolution i.e. Am is 1 amu. This requires 

that the mass scan line is moved closer to the stability tip with increasing mass.

3.2

2.9

2.8

2.7

2.6

2.5

IhstRes =  100.5% 
InstRes =  99.5%

27 2 8 2.9 31 3.2 33

Figure 3.7. Mathieu stability diagram for zone 3 with superimposed mass scan 

lines at the lower and upper tips o f the stability zone.

Similar mass scanning can be implemented with zone 3 where there are two tips 

that allow variable resolution control [59], [62], [92], the upper left hand tip (a„ ~ 

3.16, qu ~ 3.23) and the bottom right tip (üu ~  2.52, qu ~  2.81), and illustrated in 

Figure 3.7. It should be noted for the instrument resolution definition used above (see
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Equation 3.9) values of rj greater than 100% are needed to achieve a reduction in 

resolution at the lower tip of stability zone 3.

The instrument resolution control equation can be redefined in teiins of U and V 

using Equation (3.11) [10]

j  j  ̂ ^^utip
u  = n   (3.11).

^Utip

Alternatively the frequency for a given mass at a particular set of U and V 

voltages can be obtained by using Equation (3.12)

I
J  ~-xl T T  (3.12)

q^mr^ n

where ûtip is the value of the Mathieu parameter at the tip of stability zone and U is 

set at a value to achieve the desired resolution.

These two sets of relationships enable the QMF to be mass scanned either by 

increasing the magnitude of the voltages U and V while keeping their ratio and the 

frequency constant. This is the method that is in common commercial usage and 

provides a linear relationship between the mass and voltages. Alternatively the 

frequency /  can be decreased while keeping the magnitude of U  and V constant. 

Frequency scanning exhibits a non-linear relationship between mass and frequency. 

Both these scanning methods allow successfully higher mass to charge ratio ions to 

pass through the QMF.

The achievable resolution for a QMF is determined by the number of RF cycles 

the ions experience on their passage through the QMF [37] and can be calculated 

using Equation (3.13)

bm  K
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where Ne is the number of RF cycles experienced by the ions, m is the mass of the 

ion. Am is the mass peak width at some percentage of the peak height. The constants 

K  and n are dependent on the stability zone. For zone 1 a value of K ~ 10 - 20 and n 

~ 2 has been found [93]. For zone 3, Titov found that the values for the constants K  

and n only hold for small values of and that for large values of Ac (> 100), K  ~

0.5 and n = 4/3 [93] .

For voltage mass scanning, the number of RF cycles (Ac) experienced by the ions 

as they pass through the QMF increases with mass and is defined Equation (3.14)

( 3 ,4 ,

Whereas for frequency mass scanning, the number of RF cyeles experienced by the 

ions is independent of mass and is defined by

ion

where Ac is the number of cycles experienced by the ion, L  is the length of the QMF 

in metres, Aion is the energy of the ion in eV and the remainder o f the parameters are 

as previously stated.

3.2.2 Non-hyperbolic electrodes

The use of circular electrodes enables manufacturing and assembly complexity to 

be minimised thereby reducing production costs. Figure 3.8 shows the end view of a 

QMF constructed from circular electrodes with the same drive potential as previously 

discussed. Circular electrodes produce a potential field distribution that degenerates 

from the quadrupole fonn and consists of a quadrupole tenn plus higher order tenns 

[37], [94]. This is also true if the more general case of any shape electrodes is 

considered.
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Whereas for the quadrupole term the resultant electric field component is linear 

with increasing displacement from the central axis, higher order terms produce non­

linear electric field components. The multipole field can be represented by a 

multipole expansion [11] as defined in Equations (3.16) and (3.17),

00 J (Î)
N (3.16)

.0
4 4 ) 3

+  . .+  (3.17)

O a = - ( U -  Vcoscot)

<t>A = U -  V coscot

v-axis
I

-v-axis

Figure 3.8. End section o f a QMF constructed with circular electrodes where r is 

the radius o f the electrodes, ro is the field radius, /?c is the radius o f the enclosure.

where An is the amplitude o f the multipole 0^ consisting o f 2N poles with Aq 0q 

defining the offset potential, 0 \  defining the dipole potential, A2 0 2  defining the 

quadrupole potential, Â  0 3  defining the hexapole potential and continuing thereon. 

The electrode and drive voltage configuration o f Figure 3.8 has two axis of 

symmetry and two o f anti-symmetry and only multipole terms where A  = 4« + 2 for 

« = 0, 1, 2, 3, . .  contribute to the field. For electrode configurations where electrodes 

are displaced or o f different radii the degree o f symmetry is reduced. These
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geometrical imperfections will result in additional multipole terms being introduced 

and variations in the relative amplitudes of all the multipole components [38], [73].

3.3 Electric field solving - theory

3.3.1 Poisson and Laplace equations

To calculate the trajectories of ions in a QMF employing non-hyperbolic 

electrodes it is necessary to calculate the electric field for the area enclosed by the 

electrodes and in particular within the field radius ro. Equation (3.18) shows 

Poisson’s equation which enables a solution for an electrode structure to be obtained 

where volume space charge exists [95].

V "F  =  - - ^  (3.18)
Go

If the area being considered is free of space charge then Poisson’s equation 

simplifies to the Laplace equation as defined in Equation (3.19).

v ^ r = o  (3.19)

For the case where the QMF electrodes are invariant in the z-axis and ignoring 

fringing fields at the entrance and exit of the QMF then Equation (3.20) is obtained. 

This represents the 2-D version of Laplace’s equation which is an example of a 

second order partial differential equation (PDE). It is possible to solve this class of 

equation by analytical [95] or numerical methods [96].

a V  d ^ v  „
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3.3.2 Finite Difference Method

The finite difference method (FDM) [95], the finite element method (FEM) [97] 

and the boundary element method (BEM) [98-99] are all accepted methods for 

solving Laplace’s equation. In this thesis, only the FDM method will be considered. 

The Finite Difference Method (FDM) is an iterative numerical method which relies 

on dividing the free space contained within the electrode system into a grid or mesh, 

commonly termed 'meshing". For the purposes o f explaining the methodology of the 

process, the shape o f the individual mesh elements are unimportant but commonly in 

commercial systems they are triangular as any polygonal region can be triangulated 

[100].

Figure 3.9 shows a small area o f a 2-D potential field V. The potential gradient at 

a point on a grid line between two intersecting grid lines can be approximated to by 

the Equations (3.21) and (3.22).

(ij)

Figure 3.9. A small portion of a discretised region containing a 2-D potential

field.
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ôx
^( i j )

A x
(3.21)

d V

dx

V  ~ v  

A x
(3.22)

and

d V

d x

d V

a SX c _  ~  J )
dx^ 0 A x A x ^

d V d V

a V dy b ^

0 A y A ? '

(3.23)

(3.24)

Letting Ax = /iy = h

.2 0^.2 ~  , 2  — (3.25)d x  dy^ k

As h - ^ O  the following becomes true:

-  A C^,+V) +  ) (3.26)

An iterative process can be represented by Equation (3.27) which shows that the 

value of F(i,j) at step {n + 1) is the average of the four grid point potentials that 

suiTound it at step («). Using this, the sequence is repeated until the change in value 

between step n and is within acceptable limits. This method is commonly known 
as the Jacobian Iteration [97].

= 7 ( C ’.y) + C . . ,  +^"(ÏL , + C - . , ) (3.27)
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A quicker convergence can be obtained with the Gauss-Siedel [97] method which 

is shown in Equation (3.28).

) (3-28)

A much increased convergence rate can be achieved through the use of successive 

point over relaxation (S.O.R.) which is the method adopted in the Poisson/Superfish 

suite of software [101] and is defined in Equation (3.29).

K " ]?  =  0  -  +  «  ̂ 0 )  (329)

where a  is termed the relaxation parameter and an intermediate term

calculated using Equation (3.27) or (3,28). Whereas the previous methods require 

approximately iterations, the SOR method requires approximately N  iterations 

providing a significant improvement in operational speed [97].

3.4 Electric field solving - software

Poisson/Superfish [102] are a public access suite of programs for solving a range of 

magneto-static problems. They were originally written by R. F. Holsinger in 

collaboration with K. Halbach for particle accelerator design. Three modules from 

the Poisson/Superfish suite were used when undertaking this computer simulation 

work; Automesh, Poisson and SF7. Figure 3.10 illustrates the operational flow path 

and the use of the binary solution file for passing intermediate results between the 

various modules. Wsfplot, a utility program provided within Poisson/Superfish, was 

also used to generate check plots and the Figures. 3.11 and 3.12.

Automesh provides for the problem geometry; material electrical characteristics, 

electrode voltages and meshing grid pitch to be defined in a text file (see Appendix 

A). Geometric models were created for the range of electrode geometries that have 

been investigated. Automesh divides the free space between the electrodes and the 

problem boundary (a circular enclosure forms the problem boundary of the circular 

electrode QMFs considered) into a 2-D triangular grid. Figure 3.11 shows a plot of a
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low resolution discretisation o f a QMF with the triangles that comprise the meshed 

area visible.

■ "v :

GEOMETRY

1̂1

DEFINITION
ia

AUTOMESH

POISSON
FIELD

SOLVER

BINARY 
SOLUTION  

FILE

SF7 
FIELD 

INTERPOLATOR

DATA FILE

PROGRAM

SF7 DATA
FILE

Figure 3.10. Poisson/Superfish operational flow chart.
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Figure 3.11. Automesh plot showing mesh triangles with a low resolution mesh

used for clarity.

Figure 3.12. Poisson plot showing equipotential field contours.

The field interpolator program SF7, is used to process the Poisson field data to 

produce a user defined rectangular grid of electric field values. The resultant electric 

field values are written to a new SF7 data file. Figure 3.13 shows the SF7 GUI with 

the user control parameters entered.
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|SF7 7.16— Poisson Suporfish Fiold Interpolator — g a m

RunEnter the allowed data for your «election. Coordinate* PO.YI) and P<2,Y2) are the end 
point* for lines and arcs, or opposite corners of a grid. Plot fles can be created for lines, 
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be created for grids. Exit
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(*  Parm ela file f 7  Force EO = 1 fvlV/m (rf problem: 
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Problem fie C:\LANL\EXAMPLES\W0RK\QMF1127V3MS1127uAM 3-29-2010 
19:32:54
Problem description:
Electrostatic Quadrupole Lens (r/rO-1.127|
Circular poles with R adkis-1.127'Radial Aperture 
Pok-tip volages -  +A1 V

Figure 3.13. Poisson/Superfish SF7 field interpolator GUI.

The resultant SF7 data file was then processed by a custom developed post­

processor FieldCalc program, to format the data to the same standard as previously 

reported field files [43] enabling comparison and validation of the processes used.

3.5 Ion trajectory simulation software

3.5.1 Overview

Previously reported results [4], [43] have utilised custom software developed in a 

legacy version of the Microsoft development environment (Visual C-H- 6.0). It was 

considered timely to develop a new suite of programs using initially Microsoft 

Visual Studio.Net 2003 development environment, then Microsoft Visual Studio
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2005. Advantages of this undertaking were the ability to provide greatly enhanced 

user controls through an extensive graphical user interface (GUI). This GUI 

facilitated the easy configuration of control parameters and in the case of the ion 

trajectory programs, display of both mass spectra and individual ion trajectories. 

Further advantages were the provision of a range of output reports enabling post 

processing by Matlab for the generation of mass spectra and ion trajectory spatial 

power frequency graphs. The QMS2 suite of programs consists of an ion source 

program and three ion trajectory simulation programs.

The ion source generation program QMS2-ION (QMS2-I) is based closely on the 

program first reported by Gibson et al [10]. It has been rewritten where necessary for 

compatibility with later Microsoft development environments with some additional 

functionality added. The two major variants of the ion trajectory simulation software 

are called QMS2-Hyperbolic (QMS2-H) and QMS2-Field (QMS2-F), used for the 

simulation of hyperbolic and non-hyperbolic electrode QMFs respectively. For 

QMS2-F the ability to utilize field files produced by Poisson/Superfish has improved 

computation times and enabled asymmetric electrode geometiies to be efficiently 

handled. A further simulation program QMS2F-H was developed, this is a modified 

fonn of QMS2-H enabling frequency scanning of hyperbolic electrode QMFs to be 

investigated. It is not mentioned in any more detail in this chapter as it is 

operationally virtually identical to QMS2-H.

The design philosophy applied to the specification and development of these 

programs has been to keep as near as possible the same GUI for all the versions of 

the ion trajectory software, thereby minimising the users learning cui*ve when 

moving between different programs.

3.5.2 QMS2-I0I1

A GUI is provided to allow the user to control the physical and operating 

characteristics of the ion source. Additional facilities have been added to allow 

automatic generation of ion files for a range of values of a selected parameter 

(parametric). The ion souice generation program generates the entry conditions for a 

large number of ions, 10  ̂being the default value. User control is provided for larger 

numbers of ions to be generated (>10^), this being added to support further research. 

Figure 3.14 shows the QMS2-I GUI with parameter entry fields for the source radius,
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nominal energy, energy spread and beam spread visible. In the example of the GUI 

shown the parametric sweep facility has been enabled for the ion energy parameter.

QMS2-IONV19.il.2007

Source
Radius

Nominal
Enerov

Energy Spread In" 
IFul Width) '

Beam Spread fn" 
(Half Angle] '

mm

eV

eV

Degs.

rParametricControl

Start

Number 
of Ions

Result File

Steps [ s '

eV Stop r  ^

|lON ENERGY T ]

Set
Number of Ions

Run

rS e lec tM o d e- - - - - - - - - - - - - - - -
r  Single <• Parametric

Exit

Figure 3.14. QMS2-Ion graphical user interface.

The spatial entry conditions for the ions are bounded by the user defined source 

radius, with each ion entry point being completely random with respect to every 

other, generating a top hat profile for the ion beam. The ion beam is symmetrical 

about an origin which aligns with the central axis of the QMF. There is no provision 

within QMS2-I for introducing mechanical misalignments between the ion source 

and the QMF, this functionality is provided by the QMS2 ion trajectory simulation 

programs. The user can also specify a random spread in ion energy and a beam 

spread. The ion entry conditions generated by each run cycle are written to a separate 

ion file, which provide the ion entry conditions to the ion trajectory simulation 

software.
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3.5.3 QMS2-Hyperbolic

The QMS2_H program simulates the ion trajectories of a large number of ions 

enabling the performance of hyperbolic electrode QMFs to be characterised. Figure 

3.15 shows the program’s GUI which provides the user the ability to control the 

operational window of the QMF being investigated. As reported by Gibson and 

Taylor [10], much earlier simulation work relied on characterisation of the QMF 

based on a relatively small ensemble of ions and they suggested that a much greater 

number of ions were required to isolate more subtle performance characteristics. In 

producing these programs those previous comments have been noted and the facilities 

to handle a much greater number of ions have been provided. A large number of ion 

trajectories (>10^) can be computed at each mass step of the specified mass scan 

range and within practical limits the mass scan step size is unbounded.
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Figure 3.15. GUI for the QMS2-Hyperbolic program
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Figure 3.16. QMS2-Hyperbolic graphical user interface showing the result of a

mass scan simulation.

The spatial entry condition of each ion together with its velocity in the three axes 

X, y  and z are read from the specified ion file. The phase of the ion with respect to the 

RF electrode potential is controlled by the program and in the default setting this is 

totally random. The ion trajectory as it progresses through the QMF is calculated by 

solving the Mathieu equation using a fourth order Runge-Kutta algorithm for the x  

and y  axis independently. The core Runge-Kutta routine is largely based on previous 

software developed at the University of Liverpool [10] with the remainder of the 

software being specifically developed for this project.

Ions are deemed to have successfully passed through the QMF if they do not 

exceed the ro of the QMF and their position at the end of the QMF falls within the 

radius or annular portion of the detector. If the ion is successful, the total successful 

ion count is incremented. At the completion of the simulation cycle for each mass
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scan step, the mass and the total successful ion count are written to a results file and 

if enabled the mass spectra on the GUI is updated (see Figure 3.16).
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Figure 3.17. QMS2-Hyperbolic graphical user interface showing the result of an 

individual ion trajectory simulation.

The user interface provides controls for the generation of additional ion files 

which contain the initial conditions for each successful and/or unsuccessful ion of the 

mass scan. The program also supports the simulation and display of individual ion 

trajectories (see Figure 3.17) enabling the effects of phase entry position and 

operating point to be investigated with an immediate indication viewable on the GUI. 

The spatial position of the ion as it progresses through the QMF can be saved to a 

file. The text box above the ion trajectory window contains the initial conditions for 

the ion trajectory being displayed.
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Figure 3.18. Operational flow chart for QMS2- Hyperbolic and QMS2-Field

programs.
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For extended simulation a parametric sweep facility is provided allowing a large 

number of simulations to be undertaken without user intervention. At completion of 

each mass scan a user selected parameter is incremented by a defined amount and the 

next mass scan is commenced. An operational flow chart for the QMS2 ion trajectory 

programs is provided in Figure 3.18.

3.5.4 QMS2-Field

Ion trajectories for QMFs constructed from circular and other shaped electrodes 

were simulated using QMS2-F. This is a completely new custom program developed
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Figure 3.19. GUI for QMS2-Field program

by the author as part of the research work reported in this thesis. It was developed in 

the Visual Studio C+T. NET and Visual Studio 2005 development environments 

using managed C++. Figure 3.19 shows the GUI for QMS-Field. It is very similar to
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QMS2-Hyperbolic GUI but with additional fields to accommodate differences in 
control requirements such as field file selection.

The handling of the ion source simulation through the use of pre-generated ion 

source files is the same as for QMS2-H. The display of mass spectra and individual 

ion trajectories is also the same and GUI displays of these are not repeated in this 

section. The major difference between the QMS2-H and QMS2-F is the method of 
calculating the ion trajectories.

3.5.4.1 Ion trajectory calculation

Assuming that the geometry is consistent throughout the length of the QMF and 

ignoring the effects of fringing fields the 2-D field model used in Poisson/Superfish 

can be used in calculating the ion trajectories. A further assumption is made, that the 

X and y  fields are uncoupled; this is valid if small incremental movements of the ion 

are considered. With these assumptions the ion trajectories for circular and other 

shaped electrodes were calculated by solving the following pair of equations.

where e is the charge on the ion, — is the instantaneous electric field strength
ox

at the ions position (%, y), is the instantaneous electric field strength Ey at

the ions position (%,y).

These equations for ion motion are solved using a fourth order Runge-Kutta 

algorithm. To ensure that the assumption of small incremental movements of the ion 

is achieved, the incremental time step for successive evaluation o f the Runge-Kutta 

algorithm is kept small. The values for the time interval were arrived at by
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undertaking a number of mass scans and comparing the results. A value for the time 

increment of 150.1 steps for an RF period was found to more than adequate to satisfy 

this requirement. The software does make provision for varying the time step size 

through the integration control, and when set at the lowest value, 75.1 steps for an 

RF period is used. At the highest of the four available integration settings, the 

number of time steps is 300.1 for an RF cycle. The non-integer values for the step 

sizes are to avoid beat effects [103].

3.5.4.2 Field file

The SF7 field interpolator (see section 3.4) was used to create a 1600 x 1600 

square grid of electric field values for the central field area between the electrodes 

from the data contained in the binary results file created by Poisson. Figure 3.20 

shows the end view of a circular electrode QMF. The comer points of the square grid 

are x,yi, xiyi, xaya, X4y4 as shown in the figure.

Y-axis

X-axis

Figure 3.20. End section of circular electrode QMF showing electric field grid.
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The custom utility progiam FieldCalc was then used to format the data suitable for 

use by QMS2-F. FieldCalc was also used to generate field files analytically for 
hyperbolic electrode QMFs.

The electric field values Ex and Ey provided by Poisson are calculated for unit 

voltage applied to the electrode pairs, positive to the x-axis electrodes and negative to 

the _y-axis electrodes. For ions that are not directly on a grid point, the actual value 

for the electric field is calculated using bilinear interpolation [104]. The values o f Ex 

and Ey at the ions position are then multiplied by the instantaneous voltage of the RF 

and DC combination that is applied to the electrodes, thereby obtaining the actual 
instantaneous electric field values.

3.6 Runge-Kutta algorithm

To calculate the ion trajectories for both hyperbolic and non-hyperbolic electrode 

QMFs, it is necessary to solve second order ordinary differential equations (ODE) 

with known initial values. These equations can be reduced to first-order differential 

equations by suitable manipulation. Numerical integration methods provide a 

computei compatible procedure to obtain solutions to the above class of differential 

equation, and the fourth-order Runge-Kutta formula (see Equation 3.32) is an 

accepted numerical integration method [104], [105].

.>̂ «+1 -  +  -  %  + 2 /C2 + 2 /C3 +  /C4 (3.32)

where

K  = f { x „ , y „ )

* 2  ~ f ( x „  + - s , y „  + -k^s )

^3 — f ix„  + —s,y^ + — k^s)
1 1

K = f { x „ + s , y „ + k ^ s )

and 5- is the integration step size.
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Appendix B contains example code for the implementation of the Runge-Kutta 

method for the QMS2-F program.

3.7 Software validation

Validation of QMS2-H was undertaken by comparison of mass spectra obtained 

with previously reported simulation software [10] and by examination of individual 

ion trajectories with typical published data for zone 1 [9] and zone 3 [6]. QMS2-F 

validation was undertaken in two stages. Firstly an analytically generated field file 

was used in conjunction with the program to simulate mass spectra. These mass 

spectra were compared with ones simulated by QMS2-H and close correlation of the 

two was observed (see Figure 3.20). The second stage compared mass spectra 

obtained when using a field file created by a previous field solver [4] with one 

generated with Poisson/Superfish. Figure 3.21 shows the result of these simulations.

s i  4

.» 3
Ic
CO 2

Mathieu Equation 

Analytical Field

39.8 39.85 39.9 39.95 40 40.05 40.1
m/z

Figure 3.21. Mass spectra for operation in zone 1 with hyperbolic shaped 

electrodes using the QMF2-H and QMS2-F simulation programs.
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Figure 3.22. Mass spectra for operation in zone 1 with circular shaped electrodes 

using the QMS2-F simulation program for two 

differently derived field files.

QMF PARAMETER CONDITION
Length 254 mm
ro 2.76 mm
Frequency 2 MHz
Detector radius 2.76 mm
Housing radius 3.6 X ro
Ion Source
Ion energy 2.00 eV
Ion source radius 0.5 mm
Ion energy spread 0
Ion angular spread 0
Operating point
atiD (zone 1) 0.237
<7tiD (zone 1) 0.706
Instrument 0.9995
resolution (tj)
Ion species Argon (40 miz)

Table 3.1. Test conditions for simulations contained in Figures 3.22 and 3.23.
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The two simulations exhibit very similar characteristics, corresponding to results 

obtained by Taylor and Gibson [49]. The test conditions employed for the two 

comparative tests shown in Figures 3.21 and 3.22 are contained in Table 3.1.

3.8 Ion motion

The ion motion is oscillatory as it traverses the RP field of a QMF, consisting of a 

dominant secular oscillation (low frequency) modulated by micro-motion (high 

frequency oscillation) [94]. The component frequencies are determined by the value 

of and Py at the operating point. Equation (3.33) was used for calculating the 

spatial frequencies for zone 1 :

+ (3-33)

where Qzim is the set of secular spatial frequencies for w = x or w = 0, 1 , 2 , 3  the 

frequency ranking, pu -  f(ax, q%) or f(ay, qy) and m = RE excitation angular frequency.

For zone 3 the fundamental frequency at the upper stability tip are defined by 

Equations (3.34) and (3.35) [62]:

f o r l . 5 < p x < 2  (3.34)

-  Ay Y  for 0 < py < 0.5 (3.35).

The values of p  for zone 1 and 3 can be calculated from formulae quoted in Dawson 

[2] or March [94] and from published tables [106].

3.9 Discrete Fourier transform

The ion trajectories generated by the QMS2-H and QMS2-F programs are in the 

time domain. Applying the Discrete Fourier Transfomi (DFT) [107] as shown in
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Equation (3.36) to these trajectories it is possible to obtain the relative spatial power 

frequency components of the these trajectories.

X { m )  =  'Y^x{n)e  (3.36)
n~0

where Xm  is the DFT component and xn is the discrete sequence of time domain 

sampled values.

The ion tiajectory power frequency spectra were obtained by first simulating a 

single-ion trajectory and saving the discrete Ay coordinates for each incremental time 

step to a results file. A custom MatLab script was written which uses the MatLab 

DFT and PLOT functions to generate the relative power frequency spectra for the x  

and y ion trajectories held in the results file.

3.10 Conclusions

A combination of public domain and custom developed software has been 

developed which provides the toolset for the investigation of the perfonnance 

characteristics of hyperbolic and non-hyperbolic electrode QMFs. In the next two 

chapters this toolset will be utilised to investigate the behaviom' of the HdeaV QMF, 

and QMFs that are constructed Eom circular and more novel electrode geometries.
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Chapter 4

4. PERFORMANCE CHARACTERISTICS OF NON-IDEAL QMFs

4.1 Introduction

Non-ideal QMFs are classed as QMFs which are constructed from any electrode 

profile other than hyperbolic or QMFs whose electrode arrangement exhibit 

some form of imperfection such as asymmetries in their electrode geometry [38], 

[108]. In this chapter only QMFs constructed from circular electrodes are 

considered.

Firstly the effects of the ratio r/ro on QMF performance is investigated for 

operation in stability zone 3. From these results an optimum value for r/ro is 

deduced. An alternative method of qualitatively identifying the optimum value of 

r/ro  using the spatial power frequency spectra of ion trajectories is introduced 

and examples provided for operation in stability zone 1 and zone 3.

Finally the effects on QMF performance that arise from different types of 

electrode mechanical tolerances for operation in zone 3 are investigated. The 

results are used to provide acceptable production limits for the manufacturing 

process. Also examined is a method of compensating for certain types of 

electrode mechanical tolerance through the use o f unbalanced electrode drive.

4.2 Methodology

4.2.1 Background

Investigation of the effects of the ratio r/ro and/or misaligned electrodes is 

extremely difficult to achieve by experiment, due to the need to dismantle the QMS 

to change or alter the position of the electrode(s). Errors introduced due to the 

disassembly/reassembly cycle can introduce significant performance effects which 

cannot be isolated from the effects that are being investigated. Manufacturing a QMF
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for each r/ro and tolerance condition is a possible alternative which would remove 

the errors associated with assembly and disassembly. Each unit would be a custom 

build, requiring closer tolerance limits than those being characterised and would 

incur significant costs. Numerical simulation methods overcome these experimental 

and manufacturing cost burdens, enabling the effects of mechanical errors to be 

investigated and recommendations made on acceptable tolerance limits.

4.2.2 Com puter simulation

The methods that have been adopted herein are based on the application of 

computer simulation techniques using custom software. The QMS2D-Hyperbolic 

program (see Ch. 3.5.3) was used for the investigation of a QMF with hyperbolic 

profile electrodes. The QMS2D-Field (see Ch. 3.5.4) software together with the 

public domain software Poisson/Superfish [102] was used to characterise circular 

electrode QMF performance for a range of r/ro ratios and for a range of electrode 

displacements. Previous research carried out by the University of Liverpool Mass 

Spectrometry Research Group [43], [45], [49] and other reported research [11] have 

previously reported on certain aspects of these effects when operating a QMF in zone

1. When investigating the effects of the ratio of electrode radius r to field radius ro 

and the effects of mechanical tolerance on positional accuracy of the four electrodes, 

a common set of operating and simulation conditions have been used (see Table 3.1 

and Table 4,1). These values have been selected to enable direct comparison with 

previously reported results.

All simulations use 500 steps across the mass range with 2x10^ ions traced at each 

mass step. The QMF control setting q (InstRes) = 1 (see Equation 3.12), corresponds 

to the peak of the stability diagiam (i.e. atip~ 3.16, qtip~ 3.23 for zone 3. Decreasing 

rj so that it is less than 1, moves the operating point below the stability tip increasing 

the mass pass band and decreasing the resolution (see Figure 3.5 and 3.7). No 

account has been taken of fringing fields at the entrance or exit o f the QMF and ion 

velocity is constant through the QMF with ion velocity components = 0 and Vy = 

0 on entry to the QMF. An ion is successfully detected when its trajectory does not 

exceed the field radius over the length of the QMF and on exit falls within the active 

area of the detector.
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OPERATING ZONE ZONE
POINT 1 3

t̂io 0.237 3.16
t̂ip 0.706 3.23

Table 4.1. Tips of stability zones for riro investigation.

4.2.3 Ion trajectory power frequency spectra

Simulations of mass spectra with a large number of ions (2 x i o^) at each mass 

step are computationally intensive, requiring up to 24 hours or more on a high 

performance PC. It was considered that a faster method of converging on an 

optimum electrode geometry would prove a useful tool. The concept of ion 

trajectory power frequency spectra as a fast method for identifying an optimum value 

for rtro was investigated with this in mind.

4.3 Perform ance characteristics - hyperbolic electrodes

To provide benchmark perfonnance characteristics of a QMF, hyperbolic profile 

electrodes were first investigated using computer simulation both for operation in 

stability zone 1 and zone 3. This was undertaken using the custom software program 

QMS2D-Hyperbolic.

Figure 4.1 shows typical mass spectra for a hyperbolic electrode QMF operating 

in stability zone 1 and zone 3 for a single ion species of 40 m/z. Evident are certain 

differences between the two spectra. Zone 1 provides approximately three times 

greater transmission than zone 3 and a peak width at 50% peak height that is 

narrower than zone 3. However when considering the ability to resolve a low 

abundance species closely adjacent to a high abundance species then the peak width 

at 10% peak height is a more relevant parameter. For this parameter, zone 3 is 

superior due to the absence of the low and high mass tails that are present on the 

zone 1 spectra.
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39.8 39.85 39.9 39.95 40 40.05 40.1

Figure 4.1. Computer simulated spectra for a QMF with hyperbolic electrodes for 

operation in stability zone 1 and zone 3 at an instrument resolution setting of 0.9999 

with the ions experiencing 164 cycles of RF.

4.4 Methodology validation

The computer simulation techniques were validated by comparison with 

previously reported results for operation in stability zone 1; firstly for the 

performance changes as r/ro was varied, then for the effects of electrode 

displacement. Finally a comparison was made between computer simulated and 

experimental data.

4.4.1 Simulated data (circular electrodes)

Figure 4.2 shows the mass spectra for a range of r/rg. It can be observed that as the 

ratio of r/rg is varied the mass peak changes in character. In general as the ratio 

increases the peak transmission reduces with the shoulder moving from the high 

mass side to the low mass side. Also in evidence is a significant low mass tail whose 

amplitude and width increases with increasing ratio. Accompanying this is an
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increasing main peak width and a progressive shift to a lower mass position. These 

all confirm previously reported results [43], [45].

 r/t0=1.120
r/tO=1.127

 r/tO=1.148
r/t0=1.160

1
I

39.3 39.4 39.5 39.6 39.7 39.8 39.9
m/z

Figure 4.2. Simulated spectra for Ar^ ion (m/z = 40) single ion species operating in 

stability zone 1 at a fixed instrument resolution for a range of r/ro ratios.

10
Ideal

8
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4

2

O'—
39.6 39.7 39.8 39.9 40 40.1

m/z

Figure 4.3. Simulated mass spectra for Ar^ ion species {m/z = 40) for operation in 

stability zone 1 with no electrode displacement and for inward radial displacement of

0.005 X ro of a single x o v y  electrode.

70



The software was further validated by examining the resultant effects of the 

displacement of individual x  and y  electrodes when operating in zone 1. Figure 4.3 

shows the results of these simulations. For a shift of an %-electrode the mass peak 

shifts to a lower point on the mass scale accompanied by minor changes to the mass 

peak tip. For a displacement of a y-electrode the mass peak again shifts to a similar 

position on the mass scale but is accompanied with a significant decrease in the 

transmission and the emergence of a secondary peak on the low mass side 

confirming previously reported results [49].

4.4.2 Experim ental data

Experimentally obtained mass spectra for ^^Co^ ions with an energy of 63 eV are 

shown in Figure 4.4 which are derived from [62].

1.00

0.75 _

0.25

58.0 58.5 59.0 59.5 60.0
m/z

Figure 4.4. Zone 3 experimental mass spectra constructed from data in [62] for ^^Co^

ions with an ion energy of ~63 eV.

The simulated mass spectra for the QMF section of this instrument obtained using 

QMS2D-Field is shown in Figure 4.5. Simulated results show very good agreement 

with the experimental peak but do contain detailed differences. The low mass side 

contains an additional peak; there are detailed differences across the peak tip with
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smaller peak amplitude on the high mass side. The simulation model assumed: 

uniform ion source illumination about the centreline, ions enter parallel to the z-axis, 

no entry or exit fringing fields, parallel electrodes and a faraday cup detector. 

Similar simulations have shown that peak structure is highly dependent on; 

alignment of the ion source and detector, ion energy spread and on focusing effects. 

The exact data on the instrument operating point were unavailable, resulting in 

possible differences between the actual instrument and computational operating 

conditions. A number of simulations were undertaken and the results presented 

reflect the character of the peak shape previously reported. Any differences that do 

exist between the two spectra can be attributed to uncertainties in the chosen 

operating conditions.

.1

Ic
CO

0.25 -

0 00
58 00 58 50 59 00 59 50

m/z
Figure 4.5. Zone 3 simulated mass spectra for the QMF for ^^Co  ̂ions 

with an ion energy of -6 3  eV.

4.5 QMF performance -  the effects of r/ro

4.5.1 Overall impact

Mass spectra for a circular electrode QMF for a range of rtro ratios when operating in 

zone 3 are shown in Figure 4.6. A number of discernible characteristics are present 

which result in degraded performance when compared to hyperbolic electrodes. 

Peak position shifts along the mass scale as r/ro is increased, corresponding to
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the hyperbolic electrode peak position only when r/ro = 1.120. The peak height 

varies by a factor of 3 to 1 for the range of rIro considered with a minimum occurring 

at riro = 1-127.

 r/iO=1.120
— r/iO=1.127
 r/iO=1.148
 r/tO=1 160

«= 0 8

I
I
§

h -

0.4

0.2

39.3 39.4 39.5 39.8 39.7 39.8 39.9
m/z

Figure 4.6. Simulated mass spectra for Ar^ ion (m/z = 40) single ion species 

operating in stability zone 3 at a fixed instrument resolution for a range of riro ratios.

The mass peak edges are less sharp due to a broadening of the peak base and 

increased structure is present across the peak tips. Artefacts are discernible on the 

low and high mass peak sides, more apparent on the low mass side. For the range of 

riro ratios examined there is evidence of low mass tailing but not as significant as 

produced when operating in zone 1.

4.5.2 Multipole coefficients

Multipole coefficients (Table 4.2.) generated by the Poisson/Superfish software 

show that the dominant multipole {A2) coefficient varies from 1.0009 for riro = 1.117 

to 1.0037 for r/ro = 1.160. The quadrupole component {A2) of field strength increases 

with increasing riro, resulting in a proportionally higher field strength for a given 

excitation voltage when compared to that generated by hyperbolic electrodes. This 

shifts the mass scan line operating point to a lower mass value as r/ro increases. The 

additional multipole components in the field result in distortions to the ideal stability 

diagram. These distortions produce a defocusing of the stability boundaries, the
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effect being accentuated near the stability tip (two boundaries converging) and 

results in a spreading of the transition region between rejection and acceptance. This 

produces a spreading out of the mass spectral peak base resulting in less steep peak 

edges and more apparent mass spectral tailing. Defocusing near the stability tip also 

produces increased stmcture in the peak (noise) and distortions in peak shape.

4.5.3 Mass peak shape

Figure 4.7 shows a set of simulated mass spectral peaks for a range of riro at two 

instrument conti'ol settings {rf) for operation in zone 3. A number of observable mass 

spectra characteristics are dependent on the value of riro. Operation at // = 0.9995 

produces non-monotonic characteristics on the rising edge of the mass peak, greatest 

at riro = 1.140 and reducing either side of this ratio. At // = 0.9999 these 

characteristics are not apparent. Similar characteristics are just evident under certain 

operating conditions on the falling edge again at/y = 0.9995. For all test conditions, 

structure is present across the mass peaks, adding uncertainty to the mass peak 

position. This structure is marginally greater than that observed for hyperbolic 

electrodes. Experimental results previously reported have demonstiated similar 

characteristics including the presence of peak splits [6]. Peak splitting can occur 

because of misalignment of the ion detector, ion collection effects due to fringing 

fields at the exit of the QMF coupled with minimum and maximum amplitudes of the 

ion trajectory [62], and non-linear resonances. Simulations were undertaken for a 

range of ion energies from 2 eV to 40 eV at ;/ = 0.9995 for both constant UIV and 

constant U scanning. For these test conditions, the mass split amplitude (marked P in 

Figure 4.7.) decreased with increasing ion energy with no measurable shift in the 

position of the split on the mass scale. As ion energy is increased, ions experience 

fewer RF cycles resulting in a reduction in the strength of any non-linear resonance 

effects that may be present. These non-linear resonances are associated with 

partieular lines on the stability diagram and any characteristics associated with these 

resonanees will not shift on the mass scale as ion energy is varied. The obsei*ved 

behaviour of the mass peak split (Ps) conforms to that expected of a mass peak split 

due to non-linear resonances in the ion trajectories. Low mass tails are present at the 

two extremes of riro, the most pronounced occurring at an rlro = 1.160 for ?y = 0.9995
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with an amplitude of ~ 0.06%, insufficient to influence actual resolution. As riro 

moves away from these two extremes the low mass tail reduces, becoming barely 

detectable at r/rg = 1.127. Zone 3 performance exhibits a marked improvement over 

zone 1 where extensive low mass tails were evident which had a detrimental effect 

on abundance sensitivity and resolution. Results for zone 3 clearly indicate the 

improved abundance sensitivity that is obtainable due to the increased baseline peak 

separation provided by the minimal low mass tails confirming previously published 

experimental results [56-57].

4.6 Performance sensitivities

A performance sensitivity parameter a is now introduced as a method of 

quantifying the susceptibility of QMF performance parameters to variations in rlrg. 

Peak height sensitivity oph is defined in Equation (4.2)

5 {PH)
(4.2)

where apH is the peak height sensitivity, PH the transmission peak height of a mass 

peak and rlrgis as stated previously.

4.6.1 Transmission sensitivity

Peak height transmission (see Figure 4.8.) varies with riro and is dependent on rj. 

This dependency or performance sensitivity (o>//) is most marked at the highest 

setting of r/. Here transmission increases by the greatest percentage either side of a 

minimum at r/ro ~ 1.120. At the lowest value of ; / considered, peak height varies 

almost linearly, decreasing with decreasing rfro, with a lower percentage change and 

no obvious optimum setting. Performance sensitivity (Tph increases as rj increases, 

and is dependent on the value of r/ro. These results show that the QMF acceptance is 

also dependent on r/ro, with acceptance staying smaller than the field radius over the 
range tested.

77
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— I—  R88=0.9990 
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Ratio r/ro

Figure 4.8. Variation of transmission (peak height) for a range o f r/ro ratios at 

different instrument resolution settings for a single species Ar ion.

4.6.2 Peak width sensitivity

Figures 4.9 and 4.10 show the variation of peak width at 50% PH and 10% PH 

respectively for a range of r/rg values at three settings of rj. A peak width minimum is 

observable for all settings of rj at peak width definitions. These occur within a range

0.2
— I—  Res=0 9990  
— O—  Res=0.9995  

R es=0 99975

0.18

0.16

0.14

0.12

I
s  0 05: k. ..

CL

0.06 -

0.04

0.02

Ratio r/ro

Figure 4.9.Variation of peak width at 50% PH for a range of r/ro ratios at different 

instrument resolution settings for a single species Ar^ (40 m/z) ion.
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Figure 4.10. Variation of peak width at 10% PH for a range of r/ro ratios at different 

instrument resolution settings for a single species Ar^ (40 m/z) ion.

of r/ro = 1.117-1.122, the actual value being dependent on rj and the peak width 

definition. In a similar manner to equation (4.2) we can define a peak width 

sensitivity parameter opw as

_  S j PW)

(4.3)

where gpw is the peak width sensitivity, PW the peak width of a mass peak and r/ro is 

as stated previously. A maximum for cr̂ vv occurs when the peak width is measured at 

10% PH and due to small changes in mass tailing which is r/ro dependent. The value 

of rj has little influence on the magnitude of Op̂ .

4.6.3 Peak position sensitivity

The variation of the mass peak position with r/ro is shown in Figure 4.11. The mass 

peak position changes with r/ro, moving from a value equal to or just greater than the 

nominal of 40 m/z at r/ro =1.11 down to a value of 39.94 m/z or less at a r/ro = 1.16. 

This shift reflects the change in the magnitude of the A 2 multipole coefficient as
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discussed previously in this chapter. A peak position sensitivity parameter Opp is 

defined by Equation (4.4)

(4.4)

40.1
— K -  Res=0,999G 
— O—  Res=0.9995  
- - - - - - -  Res=G.99975

40,08

40.06

40 04

40.02

39.98

39.96

39.94

39.92

39.!

Ratio r/ro

Figure 4.11. Variation of peak position for a range of ratios for different 

instrument resolution settings for a single species Ar^ (40 m/z) ion.

where gpp is the peak position sensitivity parameter, PP the peak position on the 

mass scale and riro is as stated previously. The sensitivity {opp) to r/rg is largely 

constant for the range of r/rg considered with the absolute value being dependent on 

the value of rj, indicating that calibration of the instrument would be required when // 

changed.

4.6.4 Resolution sensitivity

QMF resolution is determined from the ratio of mass spectral peak width {Am) at 

a given mass (m). Resolution (m/Am) is defined with Am measured at 10% of the 

mass spectral peak height (10% PH) or 50% of the peak height (50% PH). Figures
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4.12 and 4.13 show the variation of resolution with riro for 50% PH and 10% PH 

respectively. /

900

— I—  Res=0.999G 
— C>— Res=Q,9995 
— 4 —  R es=0 99975

000

700

600

300

200

100

Ratio r/ro

Figure 4.12. Variation of resolution at 50% peak height with rIro for a range of 

instrument resolution settings for a single species Ar^ (40 m/z) ion.

For both peak width definitions, resolution varies with r/ro with a maximum value 

occurring for a range of r/ro = 1.115 and 1.122 with the value being dependent on 

peak width definition and the value of //. The mass resolution sensitivity parameter 

G r e s  is defined by

_ 6{ RES)

(4.5)

where gres is the mass resolution sensitivity parameter, RES the mass resolution and 

r/ro is as stated previously. The performance sensitivity gres is greatest for the 

highest setting of rj and when using the 50% PH definition. The value of gres 

decreases as tj is decreased for both definitions. In all cases the spread in measured 

mass resolution is greatest for values in the range r/ro = 1 . 1 15 to 1. 122 and the least 

when r/ro = 1.16.
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Figure 4.13. Variation of resolution at 10% peak height with r/ro for a range of 

instrument resolution settings for a single species Ar^ (40 m/z) ion.

4.7 Power frequency spectra

4.7.1 Hyperbolic electrodes

Figure 4.14 shows a typical ion trajectory when operating in zone 1 confirming 

previously reported results [9]. The x-trajectory ion motion consists of a waveform of 

sinusoidal appearance which is amplitude modulated to a depth o f approximately 

100% by a second lower frequency periodic waveform. The y-trajectory ion motion 

consist of a periodic waveform with a higher frequency superimposed on it. The peak 

excursion from the central axis is greater for the x-trajectory.

The ion trajectory power-frequency spectra for hyperbolic electrodes operating in 

zone 1 are shown in Figure 4.15. Dominant x  and y-direction spatial frequencies of ~ 

993 kHz and 18 kHz respectively can be observed. At the operating point, a = 

0.236813, q = 0.7060, the iso-fi line values are Px ~ 0.988491 and Py = 0.0151852 

[109]. The analytically calculated values for the fundamental frequencies using 

Equation (3.33) are Qzixo = 988.491 kHz and flziyo = 15.1852 kHz. These compare 

favourably with the results obtained through simulation.
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Figure 4.14. Ion trajectory of an Ar^ (40 m/z) ion for operation in stability zone 1 at

a = 0.236813 and q = 0.7060.
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Figure 4.15. Spatial power frequency spectra for trajectory of a Ar^ (40 m/z) ion 

operating in stability zone 1 at a  = 0.236813 and q = 0.7060 for a QMF with

hyperbolic electrodes.
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Differences are due to the resolution of the DFT algorithm and simulated data. 

Higher order spatial frequencies correspond to those obtained through analytical 

calculation. For both directions, the lowest spatial frequency component exhibits the 

highest relative power, with each higher order spatial frequency decreasing in 

relative power.

A computer simulated ion trajectory for a hyperbolic electrode QMF operating in 

zone 3 is shown in Figure 4.16, confirming ion trajectories reported by Hiroki [59]. 

For the chosen a-q operating point, they are markedly different to zone 1. Both x  and 

y  trajectories have similar appearance but with detailed differences. For both 

directions, the overall appearance is that of a sinusoidal waveform with a large 

harmonic content. Figure 4.17 shows the resultant power frequency spectra for the 

ion trajectory shown in Figure 4.16. At the selected zone 3 operating point, ion 

trajectory power spectra, display differences from those of zone 1. The lowest 

spatial frequency now occurs for the x-direction and exhibits a much sharper peak. 

The x-direction second order spatial frequency {n= 1) is now dominant and for they-

X 10

Xtraj
Ytraj

Z  0.5

« -0.5

-1.5

-2.5
40

Z Distance (mm)

Figure 4.16. Ion trajectory of a Ar^ (40 m/z) ion for operation in stability zone 3 for a 

QMF with hyperbolic electrodes at a  = 3.023 and q = 3.154.

direction the fundamental spatial frequency {n = 0) is still dominant but is only 

marginally greater than the second order one. A larger number of frequency peaks
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are apparent, reflecting the less sinusoidal (higher harmonic content) character of the 

zone 3 ion trajectories.

«
IÛ.
o>I0)0:

Frequency (Hz.)

Figure 4.17. Spatial power frequency spectra for trajectory of a Ar^ (40 m/z) ion 

operating in stability zone 3 at a  = 3.023 and ^ = 3.154 for a QMF with hyperbolic

electrodes.

4.7.2 Circular electrodes

An analytically derived hyperbolic field was used to validate ion trajectories 

simulated using QMS2D-Field. The trajectories obtained, and their associated power 

frequency spectra compared very strongly to those obtained by solving the Mathieu 

equations. This demonstrates that field derived ion trajectories do not introduce 

significant additional components to the power frequency spectra. Ion trajectories for 

a range of operating conditions and r/ro ratios were simulated for operation both in 

zone 1 and zone 3. Broadly, they reflect the general characteristics presented for 

hyperbolic electrodes.

4.7.2.1 Zone 1

For operation in zone 1 with circular electrodes (Figure 4.18.) base power levels are
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increased, accompanied by increases in the x and y direction peak relative power as 

r/ro is increased when compared to those obtained for hyperbolic electrodes. Small 

changes to the peak frequencies and their general character are also discernible. The 

power spectra are not as clean; there are additional spatial frequency components 

present. These additional frequency components increase in number and relative 

power the further riro deviates from 1.127. The power frequency spectra for zone 1 

with riro = 1.127 shows very strong correlation to that obtained for hyperbolic 
electrodes.

4.7.2.2 Zone 3

For zone 3 (see Figure 4.19.), the spatial frequency spectra are not as well defined, 

due to the added clutter of additional spatial frequencies. It is still possible to 

identify an optimum value for r/ro but there is not such a strong correlation to the 

hyperbolic power spatial frequency spectra. The additional spatial frequency peaks 

obseiwed for circular electrodes arise from non-linear resonances occurring due to the 

non-linear multipole fields. As r!ro deviates from the ideal, the net effect of these 

multipole fields varies, resulting in varying non-linear resonances. These manifest 

themselves as variations in the amplitude and number of spatial frequency peaks 

present in the power spatial frequency spectra.

4.8 Asymmetric electrode geometry

4.8.1 Introduction

111 addition to identifying an optimum value for the ratio of riro, it is also 

necessary to quantify acceptable limits for manufacturing tolerances for the electrode 

radius and for the positional accuracy of the electrodes. Manufacturing processes are 

not ideal; tolerances exist, which cause the instrument performance to deviate from 

the optimum [37]. For a QMF, these manufacturing tolerances result in variations in



QMF CONDITION
PARAMETER

Length 254 mm
ro 2.76 mm

r/ro 1.127
Frequency 2 MHz

Detector radius 2.76 mm
Housing radius 3.6xro

Ion Source
Ion energy 50 eV

Ion source radius 0.5 mm
Ion energy spread 0
Ion angular spread 0
O perating point

<3 tip 3.16
t̂ip 3.23

Ion species 40 miz

Table 4.3. Computer simulation test conditions for electrode displacement

investigation.

electrode radii due to tool wear and accuracy limits of the production machinery; 

misalignments of the electrodes arise from the electrode mounting systems and 

limitations of the assembly process. In the case of longer length QMFs, non-parallel 

alignment of the electrodes can arise due to bowing of the electrodes and/or slight 

differences in the mounts, all of which contribute to changes in the perfonnance 

characteristics of a QMF. Additionally, the mechanical design of the instrument has 

to minimise any thermo-mechanical effects that arise from thermal cycling of the 

instrument during bake-out and usage.

Investigation of the effects of misaligned electrodes is extremely difficult to 

achieve by experiment, due to the need to dismantle the QMS/QMF to change or 

alter the position of the electrode(s). Errors introduced due to the 

disassembly/reassembly cycle can introduce significant performance effects which 

cannot be isolated from the effects that are being investigated. Manufacturing a QMF 

for each tolerance condition is a possible alternative which would remove the errors 

associated with assembly and disassembly of the QMF but still may leave alignment 

issues between the ion source and detector assemblies. Each unit would be a custom 

build, requiring closer tolerance limits than those being characterised and would
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incur significant costs. Numerical simulation methods overcome these experimental 

and cost burdens, enabling the effects of mechanical errors to be investigated and 

recommendations made on acceptable tolerance limits. Table 4.3 shows the computer 

simulation conditions used for the investigation of electrode displacement and the 

actual electrode displacements are contained in Table 4.4.

4.8.2 Effects on resultant field

When one or more electrodes are displaced, the symmetry of the electrode 

geometry is altered. For the case of on-axis displacements, only one axis of 

symmetry is retained. A reduction in the degree of symmetry introduces additional 

multipole field terms that are not produced by an optimum QMF [38]. Previously 

published research has demonstrated the effects of multipole field differences on the 

resultant mass spectra by selective introduction of multipole field components. 

Examples include; making the radii of the electrode pairs different to introduce an 

octopole field component [73], [110]; shifting one of the electrode pairs further out 

from the axis centre to introduce a number of different multipole components of 

similar magnitude [110] and rotational shifts of the y-electrode to introduce a 

hexapole term [111]. These investigations used electrode displacements in excess of 

what could be expected as normal production tolerances and resulted in multipole 

terms several orders of magnitude greater than those considered here.

4.8.3 Single electrode radial displacement

The effeets of an inward radial displacement of a single x  and y  electrode were 

firstly investigated for a range of displacements up to 0.005 x ro, at which point an 

isolated satellite peak is identifiable in the case of a y-electrode displacement.

Figure 4.20 shows the results of inward axial displacement of a single x-electrode. 

We can observe that an inereasing displacement produces an increasing shift of the 

mass peak to a lower mass position. From inspection of the data in Table 4.4 it can 

be observed that the incremental mass peak shift is approximately proportional to the 

incremental electrode displacement. Accompanied with this shift there is a decrease 

in resolution and an increase in peak height (sensitivity) as inward displacement is
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Figure 4.20. Simulated mass spectra for Ar^ ion species {m/z = 40) for a range of 

inward radial inward radial displacements of a single %-electrode when operating in

zone 3.

increased. The shift on the mass scale would be correctable through calibration. As 

the sensitivity increases with increased displacement, it may be possible to increase 

the instrument resolution (//) to compensate for the reduction in actual resolution, 

without the sensitivity decreasing below that of the optimum QMF. Slight changes to 

the structure of the noise on each of the mass peaks are observable, but no significant 

change in the low and high mass tails is observable.

A radial inward displacement of a single y-electrode produces significant changes 

to the mass spectra as can be seen in Figure 4.21. An increasing inward 

displacement of a y-electrode produces a proportional shift of the mass peak to a 

lower mass value. This shift is approximately the same as for a displacement of an x- 

electrode. Decreasing peak height and a reduction in the steepness of the edges are 

observable as the y-electrode displacement increases. For small y-displacements, a 

shoulder emerges on the low mass side of the mass peak. The higher mass side of 

this shoulder decreases in amplitude while the low mass side increases with 

increasing electrode displacement.
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Figure 4.21. Simulated mass spectra for Ar^ ion species (m/z = 40) for a range of 

inward radial displacements of a single ^/-electrode for operation in zone 3.

Displaced
Electrode

Param eter Dis(placement
on-axis)

0 -0.001 -0.0025x7-0 -0.005x/*o

X

Peak position (m/z) 39.93 39.909 39.88 39.82
Peak height (%) 1.79 1.83 1.86 1.89

Resolution 50% PH 524 514 , 497 476
Resolution 10% PH 394 388 378 369

y

Peak position (m/z) 39.93 39.904 39.89' 39.84'
Peak height (%) 1.79 1.38 0.65' 0.33'

Resolution 50% PH 524 544 595' 937'
Resolution 10% PH 394 368 301' 248'

Table 4.4. Mass spectra characteristics for a range of radial inward displacements 

(negative) for x and y electrodes (Note ' main peak value, PH = peak height).

At the extremes of the displacement range, the shoulder separates from the main 

peak forming an isolated peak. On the high mass side of the main peak a secondary 

peak appears and disappears finishing with the formation of a concave edge at the 

limits of the displacement. Outward displacements of the x and y  electrodes result in 

very similar changes to those obtained for inward displacements of x  and y  electrodes 

except that the mass peak shifts to a higher mass position.
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4.8.4 Single electrode radius error

Differences in the radius of an electrode can also occur due to mechanical 

tolerances of the manufacturing process and can result in electrodes of different radii 

being present in a QMF assembly. Simulations undertaken for a single x  or y- 

electrode of differing radius with all the electrodes mounted on a common pitch 

centre, resulted in mass peak changes similar to those obtained with electrode 

displacement. Increasing the electrode radius resulted in mass peak changes 

corresponding to an inward electrode displacement of the corresponding x  or y- 

electrode and decreasing the electrode radius produced results similar to those for an 

outward electrode displacement of the same electrode.

4.8.5 Single electrode orthogonal displacements

Figure 4.22 shows the results of mounting errors which produce orthogonal shifts 

of an electrode with respect to its reference axis. For an %-electrode with a 

displacement in the y-direction, distortions to the mass peak were observable 

together with a reduction in transmission and the emergence of a secondary peak at 

the extremes of the displacement.

Ideal
-O.OOIrO
-0.0025r0
-O.OOSrO

c0
1 
ic
CO

0.5 ■

40 40.05

Figure 4.22. Simulated mass spectra for Ar^ ion species {m/z = 40) for a range of 

orthogonal displacements of an jc-electrode for operation in zone 3.
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The characteristics of the secondary peak are very similar to that observed for 

radial displacement of a y-electrode. No significant shift in the position of the main 

peak was observable. For progressive increases in the orthogonal displacement there 

was an accompanying reduction in the slopes of the mass peaks and a decrease in the 

peak width at 50% PH. For the case of a y-electrode shifted in the x-direction (Figure 

4.23), changes in peak structure with a variation in a peak split on the low mass side 

are observable. Peak position and peak width both stay approximately the same for 

the range of displacement investigated.

5?

Ideal
-O.OOIrO
-0.0025r0
-O.OOSrO

I'i0.5

40 40.05
m/z

Figure 4.23. Simulated mass spectra for Ar^ ion species {m/z = 40) for a range 

orthogonal displacements of a y-electrode for operation in zone 3.

4.8.6 Compound radial displacement

Figure 4.24 shows the effects of compound misalignments, where both x  and y 

electrodes are displaced. The resultant mass peak shapes are similar in character to 

those obtained for an inward displacement of a single y-electrode. However, there 

are differences that are worth noting. Table 4.5 shows that when the x  and y 

electrodes both have inward radial displacements, the peak position shift is greater. It 

is approximately equivalent to the sum of the individual shifts obtained for individual 

X and y displacements. The satellite peaks move slightly closer to the main peak, the 

peak heights are marginally greater and there is increased noise on the main peak. An
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inward displacement of a y-electrode coupled with an outward displacement of an x- 

electrode, results in the main peak being close to the optimum position. The relative 

peak positions of the main and satellite peak stay the same with a decrease in their 

peak heights. These effects demonstrate that the electrode tolerances of individual 

electrodes can self-compensate for the quadrupole term but the effects of the higher 

order field components on peak shape, are only marginally altered.

X&Y = Ideal
X=+0.005rO.Y-0.005rO
X&Y=-0.005rO

c0
s
1c10

0.5

39.6 39.7 39.8 39.9 40
m/z

Figure 4.24. Simulated mass spectra for Ar^ ion species {m/z = 40) for a range of 

compound inward radial displacements of an x  and a y  electrode.

Parameter

Displacemi
(on-axis]

ent

X = 0
y = 0

X = +0.005xro 
y — -0.005x^0

X = -0.005xro 
y = -0.005xro

Peak position (amu) 39.93 39.95 39.74
Peak height (%) 1.79 0.31 ‘ 0.36'

Res 50% PH 524 907' 968'
Res 10% PH 394 391' 358'

Table 4.5. Mass spectra characteristics for compound radial displacements of an x 

and y electrode (Note 'main peak value).

4.8.7 Effects of RF frequency with displaced electrodes

The number of RF cycles an ion experiences determines the quality of the mass 

peak [34], [48]. For zone 1 operation, this relationship is also true when the
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electrodes are displaced [49]. Figure 4.25 shows this relationship for zone 3. At 1 

MHz (lowest number of cycles) the main peak is very wide not decaying to the 0.1 % 

transmission value on the high mass side within the range of the graph. An isolated 

peak is apparent with the isolated peak to main peak valley greatly raised above the 
baseline.

1 MHz
2 MHz
3 MHz
4 Mhz

0.5 

E  0.4

5 0.2

0.1

Figure 4.25. Simulated mass spectra for Ar^ ion species {m/z = 40) for a 0.005 x 

inward radial displacement of a y-electrode for a range of RF drive frequencies.

As the frequency is increased, (number of cycles the ion is exposed to increases) 

the relative height of the isolated peak decreases more rapidly than the main peak 

with a defined base line separation appearing. Above 4 MHz (corresponding to 65 

cycles), the incremental changes are much smaller and above 8 MHz (130 cycles) no 

discernible difference can be detected with increasing frequency. This limiting 

condition occurs at a much lower value than for zone 1 [49].

4.9 Compensation techniques

The significant difference in the effects of % and y  displacements has been 

recognised within the industry for a number of years [49]. The practice of swapping 

the drive voltage feeds to the x  and y  electrode pairs have been used as an attempt to 

overcome problems of asymmetries in the electrode geometry. As can be deduced

96



from the previous results, this will only be effective for certain asymmetry situations. 

Modification of the drive voltage on the displaced electrode is a method of 

compensation that has previously been reported for zone 1 operation [49] and is the 

subject of a number of patents [52-54]. For an inward or outward displacement of an 

electrode, changes to the multipole components of the field will occur. Decreasing or 

increasing the drive voltage to the displaced electrode(s) provides a method of 

compensating for these electrode displacements. Simulated mass peaks when 

employing this compensation method for operation in stability zone 3 are shown in 

Figure 4.26. Comparing this figure to the uncorrected mass peak in Figure 4.20, 

shows that decreasing the electrode drive voltage alters the mass peak

39.6

Cf= 1.0 
Cf = 0.995 
Cf = 0.991 
Cf = 0.990 
Cf = 0.989

c0
8
1
C
2I-

0.5

39.7 39.8 39.9
m/z

40 40.1

Figure 4.26. Simulated mass spectra for Ar^ ion species {m/z = 40) for a 0.005 x ro 

inward radial displacement o f a y  electrode for a range of compensation factors {CJ). 

A voltage C f { -U  + V cos cot) is applied to the displaced y electrode. (See Figure 

4.20 for a comparison with the optimum mass spectra.

and with C f = 0.990 (where the applied voltage is  Q * x (-U+Vcoscot),) a close match 

to the optimum is obtained. This confirms the previously reported correction factor 

of twice the displacement error [49] for zone 1 and demonstrates that the electric 

field is defined by the electrode geometry and the relative magnitude and sign of the
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electrode voltages. It is therefore possible when considering the overall QMS system 

that a trade-off between the mechanical accuracy and electrode drive system 

complexity can be made. An important consideration when employing this method of 

correction is the stability and accuracy of the drive voltages, as a deviation in the 

relative y-electrode drive voltage will cause the mass peak to degrade in a similar 

fashion to that produced by a displaced electrode. These simulations suggest that the 

total error budget for the drive voltage should not be greater than +/- 0.1%.

— Ideal 
Uncomp

— X comp
— Y comp

c0
8
1
C(0

0.5

39.7 39.8 39.9 40 40.1 40.2
m/z

Figure 4.27. Simulated mass spectra for Ar+ ion species (m/z = 40) for a displaced x 

electrode shifted by 0.005 x ro in the y-axis, showing the effects of compensation 

(Cf = 0.990) applied to the x  and y electrodes individually.

Figure 4.27 shows the results of applying the compensation technique described 

previously for attempting to compensate y-displacements of an jc-electrode by 

applying the correcting voltage to one of the y-electrodes. The compensating voltage 

is applied to the upper electrode for a positive y-displacement and the lower electrode 

for a negative y-displacement. This compensation restores the mass peak shape and is 

accompanied by a marginal reduction in peak height and a shift to a higher mass 

position for both types of displacement. Application of the correcting voltage to the 

misplaced x-electrode, results in a shift in the mass peak but with no accompanying 

correction to the mass peak shape.
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4.10 Asymmetrical behaviour

When one or more electrodes are displaced, the symmeti'y of the electrode 

geometry is altered. This reduction in the degree of symmetry introduces into the 

field the 4N multipole tenus that are not present in the optimum QMF field [11], 

[38]. Table 4.6 contains the multipole coefficients for the range of electrode 

displacements investigated. For the optimum circular electrode geometry only the A 2 , 

Aq, a  10 and ^ 1 4  tenns are present. Firstly, consider the changes to these components. 

The A 2 multipole coefficient increases with increasing electiode displacement for 

both % and y  electrode displacements. Outward on-axis displacements exhibit a 

comparable decrease in this term. This increase/decrease in A 2 has an equivalent 

effect to an increase/decrease in 0 ^, and is the major contributor to the obseivable 

shift on the mass scale.

Considering next the remaining 4N+2 multipole tenns ^ 4, Aw  and ^ 74, our results 

show that these vary by a very small amount. Previous research has shown that these 

tenns depend on the r/ro ratio and that possibly Aq and A\o act in a way to self- 

compensate [11]. As these three terms do not vaiy significantly, it can be assumed 

that they do not contribute in any major way to the effects that are obseived for 

displacements of an electrode. Examination of Table 4.6 shows that for these 

displacements the A 4 , Ag and A u  multipole (4N terms) become non-zero and all are 

of the same sign and increase with increasing displacement. The magnitude of the A 4  

and Ag terms are approximately two orders of magnitude less than Ae and A\o and an 

order of magnitude greater than the .412 term. It can be deduced that the presence of 

the A 4 , As and A u  terms result in the shoulder forming and for the isolated peak 

appearing when the y-electrode is displaced. It is not possible to deduce from these 

results the exact contribution each of these terms make to the overall effect. It may 

well be the case that the three terms reinforce each other to achieve the overall effect 

or more likely given the non-linear nature of these coupled terms they interact in a 

more complex manner.

The results show that the effect of changes due to electrode displacement are not 

the same for x and y  electrodes. Although the optimum electrode geometry is 

symmetiical about the x  and y axis there is asymmetry due to the average (mean)

99



ï
O S

(N

X

<N

tO
Xr-os
csi

Xo
O s

2
X

OOos
CN

Xos
Tl"

k,
X

oo

X

?
CN

XsoOs
CN

Xos
so

to
Xoo
en

X

os

Xso
T T

CN

o
X

oo

K
X*n
i

k .
X

i
9

"O

I
0
%

t
1
i'n
I

(Ut
w
'oeu

I
i
s
o

oo

oA

vo
rr

I
H

§



potential that is applied to the electrodes and the charge on the ion. The mean 

potential averaged over a number of cycles is negative for the y-electrodes and 

positive for the %-electrodes. Due to the positive charge on the ions they will on 

average be repelled by the %-electrodes and attracted to the y-electrodes. This results 

in an increased instability of the ions in the y-axis with a distortion of the low mass 

side of the y stability region. These observed effects on peak shape are due to a 

combination of the A 4 , Ag and A u  multipole terms and the average polarity of the 

electrode potential. This inter-relationship between the effects of electrode 

displacement and electrode potential has been previously reported [73]. The 

relationship is also confirmed by the industry practice of exchanging the voltage 

drive to the x  and y electrodes as a method of improving QMF perfonnance [49].

4.11 Conclusions

A toolbox has been developed using a combination of public domain and custom 

written software that provides a flexible method for investigating performance 
characteristics of QMF.

Results obtained using this toolbox has shown that zone 3 provides improved 

immunity from the effects of variations in the nominal value of r/ro. The increase in 

mass tail amplitude and width, as r/ro moves away from the optimum which is a 

characteristic of zone 1, are negligible for zone 3. It has also been demonstrated that 

ion trajectory power spectia provide a quick and useful method of finding an 

approximate optimum value for r/ro.

Asymmetries in the QMF electrode geometiy introduced due to variations in the 

individual electrode radii or through electrode displacements produce degraded 

perfonnance. The effects depend on the plane of the displacement. Displacements in 

the y-direction or radii errors of the y-electrode result in the most serious 

perfonnance degradation.

These results also demonstrate that the previously reported method of 

compensation for axial displacement of an electrode by adjustment of the electrode 

drive voltages is also valid for a QMF operated in zone 3. This also holds for 

orthogonal shifts of an electrode. As this method of compensation can introduce peak
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shape errors similar in character to displaced electrodes, it is therefore necessary to 

maintain tight control of the differential electrode voltages.

The actual ratio r/ro is important in maximising the resolution and/or sensitivity 

of a QMF. However ensuring the symmetry of the electrode structure is more 

important as the errors introduced through poor symmetry have a more detrimental 

effect on QMF performance. The results obtained so far suggest that an acceptable 

range for r/ro is 1.12 to 1.13 which equates to 4-/- 0.005 x ro on the nominal value. 

While results show that a tighter asymmetry budget of +/- 0.001 x ro is required. 

These values demonstrate that when designing a QMF and the manufacturing 

process, more consideration should be given to maximising the quality of the 

electrode symmetiy than the absolute value o f r/ro.
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Chapter 5

5 .  Q M F s  -  H I G H  R E S O L U T I O N  A N D  M I N I A T U R I S A T I O N

5.1 Introduction

In this chapter, two particular but very different specialised implementations of a 

QMF are considered. The first is a high resolution instrument for in situ process 

monitoring of gases over the mass range 1 to 6.2 amu. The second is an investigation 

of the performance characteristics of QMF fabricated using Micro Engineered 

Electro-Mechanical Systems (MEMS) technology.

5.2 Measurement of low mass isotopes

In the previous chapter the effects of mechanical tolerances on QMF performance 

were investigated. In undertaking that investigation consideration was given to single 

species performance. For most practical applications a QMS/QMF is usually applied 

to identifying a number of species that compose the sample under investigation [112- 

113]. The actual application dictates the minimum performance requirement of the 

QMS/QMF to be used. Most commercial manufacturers make the performance 

specification as general as possible in order to target the maximum possible pool of 

end users. For certain specialised applications this generic specification will not be 

acceptable. For example the detection of traces of Helium (He) in a sample of CO2 

can easily be achieved with a standard unit mass resolution (constant peak width of 1 

amu) QMF and would be considered a relatively benign application given the large 

mass differences between the species. If the presence of diatomic Hydrogen (H2) is 

introduced into the sample, the application becomes more onerous due to the reduced 

mass difference between H2 and Helium. It is still achievable with a unit mass 

resolution QMS. If the presence of the Hydrogen isotopes Deuterium (D2) and
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Tritium (T2) are included, along with their molecular combinations, the application 

becomes much more exacting. This final scenario forms the basis of an application 

that is now investigated in more depth.

5.3 Operational requirement

This application was considered as part of a feasibility study carried out for the 

Atomic Weapons Establishment (AWE) under their outreach program. The study 

investigated the feasibility of manufacturing a QMS for use as an on-line hydrogen 

isotope process monitoring and surveillance system on a gas process line at AWE. 

The vacuum side of the QMS would have to be capable of being mounted within a 

Nitrogen filled glovebox to ensure safe containment of the process gases. This in turn 

places restrictions on the maximum dimensions of these elements of the QMS. A 

length of 300 mm was considered an acceptable maximum for the QMF section.

Table 5.1 shows the species that would comprise the process sample together with 

their masses and the calculated minimum resolution to separate them. The data 

shows that a maximum mass range of approximately 6.2 amu with a minimum 

resolution of 931 to achieve separation of HT from D2 is required. The next highest 

resolution of 513 is required for the separation of ̂ He and HD.

A number of similar but less demanding applications requiring high resolution for 

low mass ions already exist include Helium (% e) leak detection in the presence of 

high deuterium partial pressures D2 [114] and the separation of "̂ He and D2 [57], 

[59], [115-117]. The majority of commercial QMSs and in particular residual gas 

analysers (RGA) are designed to provide a mass range of 64 amu and upwards, 

combined with a fixed unit mass resolution, making them unsuitable for this 

application. The inability of standard commercial QMSs to resolve "̂ He and D2 is an 

easier task and has been observed by Winkel [114] and Day [5]. A specially modified 

QMS where the ions where shielded from the entrance fringing field with a higher 

specification RF control was successful in separating "̂ He and D2 [115], [118]. More 

recently Day applied a modified Balzers GAM400 to successfully separate % e and 

D2 [5]. This was achieved by decreasing the mass range to achieve a decreased mass 

step size, thereby increasing the achievable resolution of the QMS to a maximum of 

400, which is still insufficient for this application.

104



( Nm ( N m m m

m<N
OOtN ( N m

ON

m
( N

Os
OO

00
m
( N

O

<N

<N
odoo

m
NOm <N

CN<N m m
m
ONrs

m m m

m

< N ( N

< N

mON
< N g

NO
< N

ON
ON

< N
OO
t N

00
m
( N

C N
m( N

m m

S
’o
I
I

1
I
S

IIdj c3
c3

I
C/5

" 3

'S 1
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5.4 Choice of stability zone

The maximum resolution of a QMS is limited by; the constructional accuracy 

[37], the accuracy and stability of the drive electronics [93], and by the number of RF 

cycles the ions experience [37], [93]. For a QMF length of 300 mm and operated at 

an RF frequency of 6 MHz a "̂ He ion with an energy of 5 eV would experience 

approximately 116 cycles of RF. However, for zone 1 operation the ions would have 

to experience 200 cycles or greater to achieve a resolution in the order of 1000 [37]. 

Theiefoie, achieving high resolution with zone 1 with the physical constraints 

imposed by the application is not a practical proposition. Zone 3 is an alternative 

stability zone of approximately rectangular shape offering potentially higher 

resolution at two tips, the upper tip (o/, ~ 3.16, ~ 3.23) and the lower tip ~ 2.52,

~ 2.81) [93]. The upper tip provides potentially the greater resolution with 

marginally less sensitivity when compared with the lower tip, with a resolution of up 

to 4000 at 59 amu reported [120]. These characteristics were the basis for choosing 

to investigate the suitability of zone 3 for this application.

5.5 Factors affecting mass separation

In the previous chapter it was demonstrated that when using circular electrodes 

the ratio o f r/ro and the tolerance on the asymmetry of the electi'ode geometiy were 

contiibutory factors to the maximum achievable resolution. It was also demonstrated 

that differences in the drive potential applied to the elechodes had a similar effect to 

that of a displaced electrode and from this it can be inferred that accuracy of the 

drive potentials are also important in maximising performance.

Most modem instmmentation systems use a combination of digital and analogue 

techniques to measure and acquire information on the process variables they are 

measuring. In the case of a QMS, the process variable is a gas phase sample which is 

converted by ionisation into an ionic current. This is then measured by means of a 

Faraday Cup or Electron Multiplier. The ionic current is measured at discrete points 

as the mass scan line is varied. This enables mass spectra for the sample to be 

acquired. Normally the mass data would be assembled as a series of digital words, 

each word representing one point on the mass scale. This data acquisition system can
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be considered as a sampling system and must as a minimum satisfy the Nyquist 

criterion to capture the data without introducing aliasing effects [121-122]. This can 

be interpreted as the number of samples across the mass scan line must be sufficient 

to resolve the components present in the sample. The mass scan line sets the 

resolution of the QMF within the limits set by operational characteristics, such as the 

number of RF cycles the ion experiences. Any unintended shift in the scan line due 

to drift in the electronic control electronics will change the instantaneous resolution 

and affect the resultant mass spectra.

5.6 Comparison of circular and hyperbolic electrodes

Circular electrodes and their mounting systems are less costly to manufacture, 

although they have the disadvantage of inferior performance [4], [37] when 

compared with the more expensive hyperbolic electrodes.

CIRCULAR HYPERBOLIC
RESOLUTION

Length (mm) 10% PH 50% PH 10% PH 50% PH
125 258 863 206 629
250 686 944 755 1678
300 702 944 915 1777

Table 5.2. Variation of resolution with length, for circular and hyperbolic electrodes 

operating at 5 MHz with ion energy of 15 eV for a HD^(3.02 miz) ion operation in

zone 3.

Table 5.2 contains results of a number of simulations undertaken to quantify the 

achievable resolution for both hyperbolic and circular electrodes for operation in 

stability zone 3. Circular electrodes show increasing resolution as the length of the 

QMF is increased for 10% PH resolution, whereas at 50% PH the resolution does not 

improve for lengths above 250 mm. For hyperbolic electrodes there is no such 

limiting effect they provide superior perfonnance for lengths of 250 mm and above. 

Although this initial test is for a single species of HD , even when operating with 

hyperbolic electrodes of a length of 300 mm at 10% PH, the resolution just fails to 

achieve the requirement for separation of HT^ and D]^.
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5.7 Instrument resolution control

Applying Equation 3.9 the Mathieu stability diagram can be transformed into U-V 

space. Figure 5.1 shows a composite zone 3 stability diagram for "̂ He and D2 with 

scan lines at two instrument resolution {rj) settings superimposed. The two mass 

species have a small difference in their respective mass values (~ 0.0256 amu) this 

results in an overlap in their respective stable zones for certain combinations of U 

and V. For the values of rj shown the scan line does not enter this overlapping stable 

area, a clear separation between the two scanned areas exists. If the scan line is 

shifted negatively in the U  direction by greater than -0.65 volts with rj = 0.9995 or -

0.81 volts with rj = 0.9999 the scan line intersects the overlapping area. This situation 

increases the probability that ions of both types would pass through the QMF 

concurrently.

InstRes = 0.99 99 
InstRes = 0.99 95

359.5

358.5

357.5

731 732 733 734 735 736 737 738 739 740
V (Volts)

Figure 5.1. Zone 3 stability diagram in U-V space for '^He and D2 showing non­

overlapping and overlapping areas with superimposed 

scan line for two settings of rj.

Figure 5.2 shows a similar diagram for the species HT and D2 whose mass 

difference is much less (~ 0.00433 amu). The same two scan lines are again 

superimposed and it can be seen that when rj = 0.9995 the scan line intersects the 

area where both species are stable. Only with rj = 0.9999 is there clear separation
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between the unique stable areas. With rj = 0.9999, there is a margin of -0.1 Volt to 

the point where the scan line intersects the overlapping stable area. The margin in the 

positive direction is the same for both cases at +0.05 volt for rj = 0.9999.

InstRes = 0.99 99 
InstRes = 0 99 95360.2

360.1

360

359.9

2  359.8

359.7

359.6
HT and 0%

359.5

359.4

359.3

359 2 L ■ I .. .. I ■ ■ ■ I . 1  . I 1 . I 1
734.8 735 735.2 735.4 735.6 735.8 736 736.2 736.4 736.6 736.8

V (Volts)

Figure 5.2. Zone 3 stability zone in U-V space for HT and D2 showing non­

overlapping and overlapping areas superimposed scan line for two settings of q.

The effect of voltage offsets in [/fo r q = 0.9999 with an equal abundance of HT 

and D2 is demonstrated through computer simulation. The resultant mass peaks are 

shown in Figure 5.3. As the mass scan is shifted lower {U reduced by a negative 

offset); the transmission increases, the resolution decreases and the inter-peak valley 

minimum increases. At the extreme of the offset the valley becomes an additional 

peak with an amplitude greater than the individual HT or D2 peaks. This additional 

peak corresponds to where the scan line passes through the overlapping area (HT and 

D2 stable). This is very similar to the outcome that would be seen for a scan line with 

rj = 0.9995; where first the HT stable area is traversed, followed by the HT and D2 

stable area, then finally the D2 stable area. Additional simulations for a scan line shift 

in the opposite direction result in a reduction in the peak amplitude and width, to a 

point where the ion transmission becomes so low that the QMS would be unusable.
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This is the equivalent of operating the QMS at ^ > 1. This effect is similar to that 

reported by Gibson and Taylor for a QMF operating in zone 1 [4].

a)
-0.005

o 0.8

4.015 4.02 4.025 4.03 4.035 4.04 4.045
m/z

b) 3.5
00
-0.025
-0.05
- 0.12.5

I-

0.5

4.015 4.02 4.025 4.03 4.035 4.04 4.045
m/z

Figure 5.3. Mass spectra for ^He and D2 for a range of U voltage offsets: with QMF 

length (I) = 300mm, field radius (ro) = 2.76 mm, ion source radius {Rs) = 0.4 mm, 

ion energy {E^ = 15 eV, a) acceptable offsets, b) increasingly unacceptable offsets.

The scan line operating point and the tolerance on this setting is dependent on the 

application. The higher the resolution required by the application the smaller the
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acceptable operational tolerance. A similar situation exists for the RP amplitude. The 

important criterion is the maintenance of the ratio of the RP and the DC amplitudes

i.e the ratio of UfVmust be maintained to close limits.

5.8 Mass scan step size

As previously mentioned, the mass scan line can be viewed as a sampling system 

with respect to the gas phase sample. If the mass step size is too large with respect to 

the mass differences between the species to be separated, a species may be missed or 

an incorrect abundance may be measured. Sampling theory dictates that to preserve 

the information contained in a continuous signal a sampling rate of twice the 

minimum period is required [121-122]. For the requirement of a minimum resolution 

of 930 or a baseline width of 0.004329288 amu, then a maximum step size of 

0.004329288/2 amu -  0.002164644 is required to achieve the desired separation. 

Figure 5.4 shows a set of simulated mass spectra for HT and D2. This figure clearly 

demonstrates the effect of mass step size on the ability to separate adjacent species. 

For the case of a step size of 0.003 amu, only a single peak can be observed. 

Reducing the mass step size to 0.0015 amu (less than required by sampling criteria) 

two mass peaks are now visible but with limited peak shape and an imbalance 

between their relative abundances. At a step size of 0.001 amu the peak amplitude is 

approximately the same, with the peak shape possessing obsei*vable differences. 

Further reduction of the mass step size produces improvements in the peak shape, 

peak height and resolution. For a step size of 0.00025 amu the two peaks are nearly 

identical in shape and with similar peak structure in evidence.

The above results demonstrate that the mass step size required to adequately 

discriminate between the adjacent peaks of HT and D2 and provide an accurate 

abundance measurement is less than that calculated using sampling theory. However, 

additional information over and above basic separation is required in the form of the 

peak height and peak position. Because of the shape of the mass peaks, higher 

frequencies are present than those indicated by the baseline resolution. To sample 

these higher frequencies requires a much smaller mass step size.
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5.9 Effects of RF frequency on peak shape

When considering the quality of performance provided by a QMF, the abundance 

sensitivity is important as this provides a measure of the contribution an adjacent 

species makes to the measured abundance of its nearest neighbour(s). Figure 5.5 

shows computer simulated spectra for HT for a range of RF frequencies. Figure 5.5a 

shows the full mass peak. For the operating conditions investigated the peak width at

a )

2.5
4 MHz
5 MHz
6 MHz
7 MHz
8 MHz

§ 1-5 
8

1 1 st-
0.5

4.025 4.03 4.035
m/z

b)
0.25

4 MHz
5 MHz 

— 6 MHz
7 MHz
8 MHz

0.2

0.15

1
Ev>c
2 

I -

0.1

0.05

4.025 4.03 4.035
m/z

Figure 5.5. Variation of HT mass spectra with frequency (L = 300 mm, ro = 2.76 

mm, £ i=  15 eV, Rs = 0.276 mm; a) complete mass peak, b) detail of high and low

mass tails.
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Figure 5.6. Variation of mass spectra with frequency (L = 300 mm, ro= 2.76 

mm, £■{ = 15 eV, Rs = 0.276 mm; a) complete mass peak,b) detail of high and low

mass tails.

50% PH does not change, whereas at 10% PH the peak width decreases as the RF 

frequency is increased. The reduction in the high mass tail is the contributory factor 

to the peak width decreasing. This indicates that the main influence on abundance 

sensitivity will be between HT and the next higher mass species. This is different to 

the lower tip of zone 3 [67] where the low mass tail is more dominant. Figure 5.5b 

shows these mass tails in more detail. If the effect of the HT high mass tail on the D] 

(4.0282036 amu) peak is now considered. At an RF frequency of 4 MHz the
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contribution to a D2 mass peak at 4.0282036 amu on the mass scale is a transmission 

of 0.05% which if the relative abundances are the same, represents a 2.27% 

contribution to the total peak height. At a frequency of 5 MHz this contribution 

decreases by a fifth to 0.45%, progressively decreasing as the frequency is increased 

further. Above 6 MHz the contribution becomes negligible. The contribution is 

greater for lower mass points on the D2 peak but decreases more rapidly with 

increasing frequency due to the simultaneous contribution of a decreasing high mass 

tail amplitude and an increase in high mass side slew rate. The significance of this 

effect depends on the relative abundances of the two species. For a very small 

abundance of HT and large abundance of D2 the effect is not as severe as when the 

relative abundances are reversed. The extent that the low mass tailing spreads is such 

as not to influence the next lower mass ("̂ He).

A similar set of simulations are shown in Figure 5.6 for D2. They exhibit very 

similar characteristics. For this application the presence of the high mass tail will not 

influence the abundance of the next higher species T2, as the separation is over 2 

amu. The low mass tail will however make a small contribution to the high mass 

peak edge of HT as there is minimal baseline separation between the two peaks for 

the range of frequencies tested. Overall, the abundance sensitivity effects are due to 

the high mass tail contributing to the next heavier species. This is most severe for HT 

and D2, as these two species have the least mass separation.

2.5
4 MHz
5 MHz
6 MHz
7 MHz
8 MHz

c0

1c
(0

0.5

4.0354.034.0254.02
m/z

Figure 5.7. Mass spectra for HT^ and D2 for a QMF with L = 300 mm, 

ro = 2.76 mm, E,= 15 eV, Rs = 0.276 mm for a range of frequencies.
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Figure 5.7 shows the simulated results of HT in the presence of an equal 

abundance of D2. The influence of the high mass HT tail on the valley between the 

two species can be seen. As the frequency is reduced the floor of the valley lifts to 

above 10% of peak height at a frequency of 4 MHz. Resolution for the two species is 

nearly identical reflecting the close mass values and the result that the two species of 

ions experience very similar numbers of RF cycles. Limiting of the 50% peak 

height (PH) resolution occurs at approximately 6 MHz, indicating the maximum 

resolution that is aehievable for this instrument setting. The 10% PH resolution still 

increases with increasing RF frequency. The rate at which the 10% PH resolution 

increases slows above 6 MHz, but it still is significantly higher than the 50% PH 

resolution.

Frequency (MHz)
Species Resolution 4 5 6 7 8

HT 10% PH 914 1087 1183 1219 1257
50% PH 1749 1829 1829 1829 1829

Hz 10% PH 915 1118 1220 1258 1299
50% PH 1751 1831 1918 1918 1918

Table 5.3. Comparison of HD and D2 resolutions for a 300mm length QMF with 

E\ = 15 eV for a range of RF frequencies operating in zone 3.

5.10 Ion source alignment

The ion source provides the mechanism whereby the sample species are converted to 

positively charged particles or ions. In this section, the effects of mechanical 

misalignment of the ion source are investigated. This provides an understanding of 

how mechanical tolerance of the ion source to QMF alignment may impact on the 

performance of the QMF. Figure 5,8 shows computer simulated mass spectra for a 

range of x  and y  direction displacements of the ion source with respect to the QMF 

axis. Both x and y  displacements exhibit similar characteristics, with the y- 

displacement producing the greater decrease in ti'ansmission for a given 

displacement. These characteristics can be explained by the difference that exist 

between the x and y  acceptances [123]. It was also found that concurrent 

displacements in x and y  produce a cumulative decrease in transmission. Also in
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evidence are decreases in the slopes of the peak edges, more marked on the high 

mass side. This is accompanied by a reduction in peak width as displacement is 

increased. The relationship between these peak characteristics and displacement are 

the same irrespective of the direction of displacement. These characteristics indicate 

that the acceptance is symmetrical about the x  and y  axis and is greater than the ion 

source radius (Rs) o f 0.4 mm. For the conditions tested, a tolerance of +/- 0.2 mm in 

each axis is considered acceptable.

a)
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1

.1 0.8 
%
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0.2

-0.0 mm 
-0 1 mm 
-0.2 mm 
-0.3 mm 
-0.4 mm 
-0 5 mm 
-0.6 mm

4.015 4.02 4.025 4.03 4.035 4.04 4.045
m/z

b) 1.2

1

0.8

0.6

0.4

0.2

-0.0 mm 
-0.1 mm 
-0.2 mm 
-0.3 mm 
-0.4 mm 
-0 5 mm 
-0.6 mm

4.015 4.02 4.025 4.03 4.035 4.04 4.045
m/z

Figure 5.8. Effects of misplaced ion source for L = 300 mm, ro = 2.76 mm, Rs = 0.4 

mm, F=  6  MHz, E, = 15 eV; a) jc-direction displacement, b)y-direction

displacement.
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5.11 Miniaturisation

Traditional machining techniques used in the manufacture of a QMS may be 

suitable for low volume production and for equipment that is deployed in locations 

such as laboratories, process plants and land based vehicles. These traditional 

production techniques are characterised by weight, volume, power dissipation and 

manufacturing costs. For certain applications such as airborne, space and covert 

monitoring, the magnitude of these characteristics may be a banier to their use. 

Therefore, alternative methods of manufacturing are actively being sought [78], [80], 

[84], [124-125] to achieve a reduction in the magnitude of some or all of these 

physical characteristics. To achieve these goals, mature process technologies that 

enable accurate electrode profile definitions to be manufactured are a lower risk 

option. One possible technology is used by the semiconductor industiy in the 

manufacture of integiated circuits. These process technologies enable feature sizes 

down to the sub-micron level to be constructed, Miniaturisation also brings the 

additional advantage of higher pressure operation, thereby reducing the vacuum 

pumping requirements. Higher pressure may also compensate to some extent for the 

loss of sensitivity that occurs when the field radius (ro) is scaled down [37].

While modem semiconductor processes are very accurate (absolute terms), at 

least when compared to traditional manufacturing processes, there are certain 

disadvantages in using them. The process is much more suited to the manufacture of 

QMFs with rectilinear profile electrodes [126] whose performance characteristics are 

not as well understood as their more conventional cousins.

5.11.1 A QMF with rectilinear electrodes

The effect of electrode geometry has been discussed in previous chapters where 

the effects of circular electrodes and the ratio of their radius {r) to the were 

assessed. Attempts to use other electrode profiles until recently have only attracted 

limited interest. Hayashi and Sakudo (Figure 5.9a) [69], Sakudo and Hayashi (Figure 

5.9b) [70], Pearce and Halsall (Figure 5.9c) [71], have all reported on non-standard 

electrode geometries.
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1
a) b) c)

Figure 5.9. Alternative electrode profiles; a) concave electrodes, b) fiat faced 
electrodes, c) flat bar electrodes.

In addition to these researchers. Sillon and Baptist reported on the use of silicon 

micro technologies to fabricate a low cost miniature mass spectrometer which was 

capable of working at a high vacuum pressure (>0.999 Pa). A quadrupole mass 

spectrometer, and a Wein filter had both been developed by them but only the Wein 

filter was reported [127]. A Wien filter uses simultaneous crossed electric and 

magnetic fields to produce a trajectory in the direction of a detector for ions of one 

particular mtz value. Other masses can be obtained by varying one or both of the 

fields. A micro-machined all silicon process was used to produce wafers containing 

the rectilinear electrode array. Channels were formed by bonding two wafers 

together with selective metallization and laser drilling to complete the device. The 

rectilinear electrodes are used to produce the electric field with strong external 

magnets for the magnetic field. Tests confirmed that for the applied operational 

conditions Helium ions behaved in the correct manner. The resolution was poorer 

than anticipated but sufficient to separate Helium from Hydrogen and Nitrogen. 

Another example of a micro-engineered mass filter is described in a patent by Baptist 

[128]. The patent covers the application of electrodes of polygonal section for the 

generation of multi-polar fields to act as a mass filter. Also covered is the use of 

standard semiconductor processing processes to fabricate polygonal shaped micro­

electrodes.
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5.11.2 An example of a micro-fabricated QMF

Cheung investigated the relationship between the aspect ratio of rectilinear cross- 

section electrodes, the central field area and the resultant electric field [129]. The 

potential field was solved with MAXWELL-2D and a MatLab script used to extract 

the multipole expansion for the potential fields [129]. For the particular case of 

square electrodes the odd terms of the multipole field were minimised reflecting the 

four fold symmetry of the electrode geometry. For square electrodes, a minimum for 

the ratio of the even multipoles A w and A 14 and the quadrupole term was found to 

occur when the spacing between the electrodes equalled the dimension of one side of 

an electrode. These findings were used by Cheung in his development of the MEMS 

Quadrupole Mass Filter. This new device was named the Micro-Square Electrode 

Quadrupole Mass Filter (MuSE-QMF). A diagram of the physical arrangement of the 

device can be seen in Figure 5.10. The device measured 4 mm x 15 mm x 3 3  mm 

and consisted of a QMF and associated inlet and outlet ion optics. Fabrication of the 

device was undertaken at the Massachusetts Institute of Technology (MIT) 

Microsystems Technology Laboratories. A photograph (Figure 5.11) of the 

completed device can be seen alongside a U.S.A. $0.25 coin to give a sense of scale. 

Integration of the electrodes, ion optics and housing into one monolithic block 

eliminates (minimises) the electrode to housing misalignments providing improved 

performance [129].

Exit Lens Elements
(Exit Ion Optics) Quadrupole Electrodes

Electrical 
Contact Vlas

Device Housing

Einzel Lens Elements
(Inlet Ion Optics) Inlet Aperture

Figure 5.10. General arrangement of a micro-fabricated QMF [128].
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Figure 5.11. Fabricated MuSE-QMF alongside a U.S.A. $0.25 coin [128].

5.12 Simulation and experimental methodology

Computer simulation studies were undertaken using QMS2-Hyperbolic and 

QMS2-Field (section 3.5.3 and 3.5.4) with the test conditions as stated in Table 5.4 

unless otherwise stated. For the experimental rig the MuSE-QMF was mounted in a 

much larger diameter housing 80.6 mm diameter to enable the mounting of the 

MuSE-QMF on a conventionally scaled test assembly. Figure 5.12 shows a cross 

section for a circular QMF and the MuSE-QMF with the relevant axis and other 

definitions shown. For a similar definition for hyperbolic electrodes see Figure 3.2.

Cheung characterised the quadrupole mass filter experimentally by measuring the 

residual gases from a leak of room air into a vacuum chamber in which the 

quadrupole was mounted on a flange mounted mass filter configuration [129]. In 

this configuration, an axial molecular beam ionizer was mounted onto the quadrupole 

housing, which was then mounted to a detector housing containing a continuous 

dynode electron multiplier. This complete assembly was then mounted to a feed- 

through flange. The emissive area of the ionizer was larger (9 mm diameter 

ionization region, and a 3 mm diameter extraction lens) than the acceptance of the 

quadrupole which had a 2 mm entrance lens positioned 1.00 mm from the front of 

the device followed b y a l  % 1 mm^ aperture in the micro-fabricated housing. The 

integrated optics at the front and back of the device are positioned 0.1 mm from the
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housing and the electrodes. The exit lens of the quadrupole was positioned 1.00 mm 

from the end of the device and had a 1 mm aperture, followed by a 9 mm diameter 

focusing lens and conventionally scaled detector.

QM F PARAMETER CONDITION
Length 30.6 mm
ro (all) 0.707 mm

r/ro (Circular) 1.127
MuSE-QMF 

electrode dimensions
1 m m xl mm

Housing radius 
(Hyp and Cir)

3.6xro

Housing dimensions 
(MuSE-QMF )

3.2 mmx3.2 mm

Frequency ( Zone 1) 4 MHz
Frequency (Zone 3) 2 MHz

Detector radius 0.707 mm

Ion Source
Ion energy (Eî) See results

Ion source radius 0.3 mm
Ion energy spread 0
Ion angular spread 0

Operating tip
a (zone 1, zone 3) 0.237,3.16
q (zone 1, zone 3) 0.706, 3.23

Ion species See results

Table 5.4. Computer simulation test conditions (electi'ode comparison)

An Extrel CMS Merlin [130] data acquisition system and control electronics, with 

a prototype Ardara Technologies [131] quadmpole power supply operated at 2 MHz. 

was used to control the QMF assembly. For optimum sensitivity higher ion energies 

were required for operation in zone 3 than for zone 1. For the zone 3 experiments, 

ion energy was maintained at 18 eV by biasing the ionization grid to +18 Volts and 

maintaining the pole bias offset of the quadrupole at 0 Volts.
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a)

Y-axis

X-axis

b)

VERTICAL

HORIZONTAL.
Y-axis X-axis

Figure 5.12. End section views of a QMF constructed from; a) circular electrodes, b)

MuSE-QMF.

5.13 Multipole differences

The dependency of the multipole coefficients of square electrode QMFs on 

electrode geometry and the resultant performance characteristics are not well 

documented. For a micro-engineered QMF constructed from circular electrodes, the 

effects of electrode to substrate distances are known to affect field asymmetries and 

hence the magnitude of the multipole field coefficients [78]. The previously reported 

optimisation [126] of the square electrode QMF used in these experiments 

demonstrated similar characteristics, finding that the optimum value for the electrode
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geometry was dependent on the distance of the electrode from the substrate and also 

on the ratio of the electrode size to the effective device aperture radius vq. Table 5.5 

shows the relative magnitudes of the multipole coefficients for the optimum 

rectilinear electrodes and for equivalent size circular electrodes. It can be seen there 

are significant differences; use of square electrodes results in a decrease of 

approximately 22% in the quadrupole coefficient (À2) with the next three higher 

terms all positive with much increased magnitudes. These significant differences 

suggest that there may well be a considerable degradation in the performance 

associated with the MuSE-QMF when compared with a more conventional QMF 

with similar dimensions.

/In
CIRCULAR

ELECTRODE
SQUARE

ELECTRODE
2 1.0016x10^ (178381x10"
6 1.2000x10-" 8.0909x10"^
10 -2.4325x10-' 3.2235x10’̂
14 -2.9680Exl0-^ 1.8101x10'^

Table 5.5. Multipole coefficients at radius ro, for circular and square electrode 

geometries, extracted from Poisson/Superfish for dimensions defined in Table 5.4.

5.14 Operation in zone 1

5.14.1 Hyperbolic and circular electrode QMFs

To provide a performance benchmark for comparison, computer simulations for 

hyperbolic and circular electrode QMFs for operation in zone 1 were first 

undertaken. Both electrode profiles are of the same length and with a comparable 

field radius to the MuSE-QMF that is discussed later in the chapter. The mass spectra 

for Oxygen (O) for these two electrode types are shown in Figure 5.13 and 

quantitative performance data is provided in Table 5.6.

The two mass spectra are very similar with the exception of the sensitivity (peak 

height) which is slightly lower for circular electrodes. The low resolution and the
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lack of a significant difference between the two electrode types is attributable to the 

low number of RF cycles the ion experiences under the operating conditions tested 

(20 cycles at 3eV). The low number of RF cycles experienced by the ion results in a 

low resolution and the presence of significant low and high mass tails.

Hyperbolic
2.5

Circular

cowv>
Ewc
2I-

0.5

13.5 14.5 15.5 16.5 17.5
m/z

Figure 5.13. Computer simulated mass spectra for Oxygen ions for a QMF with 

hyperbolic and circular electrodes for operation in stability zone 1.

5.14.2 MuSE-QMF

Figure 5.13 shows the simulated mass spectra for zone 1 operation for the MuSE- 

QMF operated with the same instrument resolution setting as for the hyperbolic and 

circular electrodes. Table 5.6 contains relevant quantitative performance data for the 

MuSE-QMF. Several characteristic differences are apparent when compared to the 

previous results for hyperbolic and circular devices; peak height is greater, the peak 

width is increased, the low and high mass tails are greater and the peak position is 

shifted to a higher point on the mass scale. The MuSE-QMF has a much-reduced 

mass filtering performance. This results in nearly a nine fold reduction in the 50% 

PH resolution when compared to hyperbolic electrodes for operation at an Ei of 3 eV. 

The shift in the mass scale can be largely attributable to the much reduced
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quadrupole coefficient produced by the MuSE-QMF (A2 (MuSE-QMF) 

0.78381, ^ 2  (circular) = 1.0016).

7
El = 3 eV 
El = 5 eV 
El = 8 eV

6

5

1 :c
2
I- 2

1

0
14 16 18 20 22

Figure 5.14. Computer simulated mass spectra for Oxygen ions with a square 

electrode QMF and operating in stability zone 1 with an uncorrected mass scale.

5.15 Operation in zone 3

Computer simulated mass spectra for the MuSE-QMF operating in zone 3 are shown 

in Figure 5.15. These exhibit a better formed mass peak shape when compared with 

zone 1. The low and high mass peak tails reduce significantly as does the sensitivity, 

with the peak position shifted a little higher up the mass scale. Operation in zone 3 

requires higher ion energies than for zone 1 to maximise the transfer of the ions 

through the increased fringing field in the proximity o f the QMF entrance. As a 

result, ion velocity is increased and the ions spend less time in the QMF and 

experience a lower number of RF cycles (5 cycles at E, = 12 eV for F  = 4 MHz) 

compared with zone 1 (20 cycles at Fi = 3 eV for F  = 2 MHz). In spite of the ions 

exposure to a reduced number of RF cycles, zone 3 provides improved performance 

compared to zone 1. The MuSE-QMF achieves a 10% PH resolution of 20.4 for an Fj 

of 12 eV for zone 3 operation compared to 22.52 for an Fi of 3 eV for hyperbolic 

electrodes operating in zone 1. This demonstrates that operation in zone 3 provides a
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means o f improving the resolution o f electrode geometries that generate electric 

fields that are far from the ‘ideal’ quadrupole field.

Ei = 12 eV 
Ei = 18 eV 
Ei = 22 eV0.8

c  0.6

: i
E
g 0.4
2

I -

0.2

20
m/z

Figure 5.15. Computer simulated mass spectra for {m/z = 14) ions for the 

MuSE-QMF for operation in stability zone 3 

(with uncorrected mass scale).

Except for very special cases, the QMF is required to discriminate between co­

existing species in the sample. Figure 5.16 shows experimentally obtained spectra for 

air when operating in zone 3 with the MuSE-QMF. The gain o f the experimental 

system is set to show the peaks for diatomic Nitrogen (N2), diatomic Oxygen (O2), 

Argon (Ar) and Carbon Dioxide (CO2). Simulated mass spectra for the same gas 

sample are shown in Figure 5.16. Comparing Figure 5.16, with the simulated mass 

spectra in Figure 5.17, we can observe that the simulated data shows the correct 

abundances for the four species simulated. For the experimental results we observe 

approximately correct abundances for N2 and O2 with Ar and CO2 showing higher 

than expected peaks. The sample abundances o f Ar and CO2 are very much smaller 

than the two major species and therefore more sensitive to background signal levels 

and electron multiplier noise (signal to noise ratio). The measured 10% peak height 

resolution for N2 is 16.6 (experimental) and 22.6 (simulated), which are o f the same 

order. A well-formed valley between the N 2 and O2 peaks is observable for both
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cases but better defined for the simulated spectra. Low mass tailing is also more 

evident for the simulated N2 peak.

vC

c

o
10 20 30 40 50

mIz

Figure 5.16. Experimental data for a square electrode QMF for operation in zone 3

with E\ equal to 18 eV [36].

oc
o

o

o
13.53 20.60 27.67 34.73 41.80 48.87

miz

Figure 5.17. Computer simulated mass spectra of air for a QMF with square

electrodes.
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The differences that do occur are attributable to scan line, baseline and ion source 

variations between the experimental equipment and the computer simulation model. 

In both cases a mass scale calibration has been performed and for the simulated data 

this was linear across the mass range. There is an increase in the low mass tail of the 

major peak which is possibly due to ion source alignment differences which are 

known to have a marked effect on this aspect of performance [43], There is a very 

strong similarity between the simulated and experimental results, providing 

validation of the computer simulation methodology. The performance obtained for 

relatively closely spaced species does not completely characterise the performance. 

This is especially valid where a relatively short QMF length is employed resulting in 

the ions experiencing a small number of RF cycles. This can result in differences 

between the low and high mass performance due to the differing number of RF 

cycles experienced across the ion mass range. The effect is accentuated in this case 

by the very low number of RF cycles experienced at the bottom end of the mass 

range (5 cycles at an of 18 eV for a 20 amu ion). Use of the QMF over a large 

mass range enables the mass scan linearity to be quantified and an accurately 

calibrated mass scan line to be defined. A calibration compound FC-43 as used 

previously [132], provided the range of species required and was used to 

experimentally verify this aspect of perfonnance [129].

5.16 Effects o f process tolerances on performance

As discussed in 4.8.1 the manufacture of a QMS instrument and in particular the 

QMF component requires careful consideration of the positional tolerances of the 

electrodes. The particular characteristics of the MEMS process can result in different 

combinations of electrode positional tolerances. When MEMS is used in conjunction 

with square electrodes the accepted tolerance limits for a conventionally engineered 

QMF with circular electrodes may no longer apply.

The effects of imperfect electrode position on QMF performance [49] have 

indicated that +/- 0.001 x ro is an acceptable tolerance limit for the displacement of a 

single circular electrode of a QMF. This relationship shows that the maximum 

acceptable value of the electrode tolerance scales with the field aperture of the QMF. 

It was demonstrated in Chapter 4 that for positional tolerances that occur on more
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than one electrode concurrently, a cumulative effect on QMF performance is 

observed. The absolute tolerance limits associated with MEMS processes are 

generally smaller but percentage tolerances can be larger than those achievable using 

traditional manufacturing methods. MEMS devices are usually much smaller with an 

accompanying smaller ro. Therefore, if  the above field radius relationship holds, 

careful control o f the tolerance is necessary to maintain adequate performance.

In the first instance the effects o f a single electrode displacement was examined. 

The manufacturing process used for the construction o f the MuSE-QMF would not 

result in this class o f electrode displacement due to the particular two wafer 

construction process. However, alternative manufacturing processes for achieving 

miniaturisation may well exhibit similar forms o f misalignment that are also found in 

traditionally manufactured QMFs. Figure 5.18 shows the end view o f the MuSE- 

QMF for two examples o f electrode displacement. Figures 5.19 and 5.20 show the 

effects on the mass peak for inward and outward displacements o f a single y- 

electrode respectively.

Y-axis 
VERTICALS

HORIZONTAL^
X-axis Y-axis 

/ X-axis

Figure 5.18. End view o f the MuSE-QMF showing single y-electrode; a) shifted 

inward in the y  direction, b) shifted outward in the y  direction.

(Note the electrode shift is not to scale)

For N2, as the y-electrode is displaced outwards on-axis, the mass peak shifts to a 

higher mass value in response to the decreased field strength. There is also an 

accompanying decrease in peak transmission and resolution as the electrode
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displacement increases accompanied by an alteration in the peak shape. For 

displacements below +25 pm, there are only fine detail changes to the mass peak 

shape and accompanied by an increase in peak width both at 10% PH and 50% PH.

2.5
 Ideal
 +7.0 um
 +25.0 um

+35.0 um 
 +70.0 um

2

1.5

1

0.5

0
34

m/z

Figure 5.19. Computer simulated zone 3 mass spectra o f (28 miz) ions for 

outward displacements o f the upper y-electrode (see Figure 5.17) 

for E\ = 18 eV with uncorrected mass scale.

At +35 um a definite shoulder emerges on the low mass side o f the peak which by 

+70 pm has developed into two very similar peaks separated by a valley. The valley 

has a transmission o f over 50% o f the individual peak height. For inward on-axis 

displacements o f a y-electrode a similar result is observable with the main exception 

being that the peak shifts to a lower mass point. The decrease in peak height is less 

for a -7 pm displacement than for a +7 pm displacement. Above this magnitude o f  

displacement, the decrease in peak height with displacement is approximately the 

same for both positive and negative displacements. For a -70 pm displacement there 

are again two peaks but they have structural differences. Their transmissions are 

different with the valley between them greater than for a +70 pm displacement. For 

the ideal electrode geometry and with electrode displacements, the low mass tailing 

is much greater than the high mass tailing.
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Figure 5.20. Computer simulated zone 3 mass spectra o f (28 amu) ions for an 

inward displacements o f the upper y-electrode (see Figure 5.17) for E\ = 18 eV

with an uncorrected mass scale.

Figure 5.21 shows the resultant mass spectra for C4F9 for a range o f inward 

displacements o f a ^/-electrode. In all cases the overall transmission is less than 

observed for N2. A definite shoulder now emerges at the much lower displacement of 

-7 pm. While at -25 pm a distinct secondary peak has formed which by -35 pm has 

nearly separated from the main peak. For outward displacements o f the y-electrode, 

peak position again moved to a higher position on the mass scale and the general 

characteristics o f the peaks are the same as for inward displacements. Table 5.7 

contains quantitative data for inward displacements for both and C4F9 .

From these results it is considered that for the lower mass ion the acceptable 

maximum displacement equates to a tolerance o f +/- 0.035 x ro, and for the higher 

mass ion the acceptable tolerance is +/- 0.01 x ô. These results demonstrate that the 

maximum acceptable process tolerance for this class o f positional error is dependent 

on the required maximum operational mass o f the QMF at the particular operational 

RF frequency. They can also be interpreted in terms o f the maximum number o f RF 

cycles that the ions experience (Table 5.7).
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Figure 5.21. Computer simulated zone 3 mass spectra o f C4F9 (219 amu) for inward 

displacements o f the upper y-electrode (see Figure 5.17) 

for an o f 18 eV with an uncorrected mass scale.

ION TYPE
ELECTRODE

DISPLACEMENT
(microns)

0 -7 -25 -35

N2"
(28 amu)

( ~ 5 RF cycles)

Peak position 35.57 35.36 35.03 34.82
Peak Height (%) 2.27 1.99 1.45 1.21

Res 10% PH 22.75 23.68 20.57 18.66
Res 50% PH 49.18 47.36 35.75 31.09

C4F9"
(219 amu)

( ~  15 RF cycles)

Peak position 278.47 277.17 273.93 272.42
Peak Height 1.31 1.18 0.76 0.53
Res 10% PH 52.01 60.39 39.50 68.17
Res 50% PH 95.50 111.58 126.82 152.87

Table 5.7. Performance parameters for differing inward displacements o f the y- 

electrode for operation in zone 3 with an £i o f 18 eV for N2  ̂and C4F9 .

For the process used in the construction o f the MuSE-QMF device two o f the 

most dominant misalignments are due to: a horizontal shift between the upper and 

lower electrode pairs during bonding; differential wafer thickness resulting in a
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vertical shift o f the upper electrodes with respect to the lower electrodes. The 

bonding process can also introduce rotational shifts between the upper and lower 

electrode pairs resulting in the horizontal misalignment mentioned, as well as a 

misalignment in the z-axis. The tolerance o f this form of misalignment is within +/- 

10 um, while the vertical shift is limited by the tolerance o f the wafer thickness, 

which is within +/- 5 um. The rotational shifts will result in varying degrees o f  

horizontal misalignments along the length o f the device. To investigate the effects o f  

these requires 3D simulation software which is outside the scope o f this work.

HORIZONTAL.

VERTICAL

X -axisX -axis Y-axis
/  NY-axis

Figure 5.22. End view o f the MuSE-QMF showing; a) vertical shift o f a jc and y  

electrode, b) horizontal shift o f a x and y  electrode.

(Note the electrode shift not to scale)

The process tolerance axis are at 45° to the electrode field axis (Figure 5.22) and 

result in compound displacements o f the electrodes with respect to the field axis. 

Figure 5.23 shows the effects o f these two types o f electrode displacements on the 

resultant mass peak. For the +50 pm and +100 pm horizontal shifts, there is little 

observable difference between the mass spectra for a correct electrode placement and 

the displaced electrodes. The mass peak shifts by small increments to a lower mass 

position with increasing electrode displacement and a small progressive increase in 

peak height is also observable. With this class o f process error, both the x and y  

electrodes are displaced in the x and y  field axis simultaneously. The x and y  field
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axis displacements are in the opposite direction and self-compensate, thereby 

minimising the resultant effect on the mass peak. A vertical and inward shift o f the 

upper electrodes results in a more marked effect on the mass peak. The mass peak 

now shifts with greater increments to an increasingly lower mass position. These 

increments are approximately proportional to the electrode positional shift and are 

accompanied by a decrease in the peak height (transmission). This type o f  

misalignment results in a compound displacement o f both electrodes in both the field 

axis. The x and y  field axis displacements are o f the same magnitude and in the same 

direction for both electrodes. As a result, the effect on the mass peak is cumulative; a 

much greater mass peak shift occurs and is accompanied by a reduction in 

transmission, this has been observed for simulations o f circular electrodes.

e
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Figure 5.23. Computer simulated zone 3 mass spectra o f Ne for horizontal and 

vertical displacements o f the upper electrodes (see Figure 5.21) 

for an o f 18 eV with uncorrected mass scale.

5.17 Conclusions

Certain QMS applications create barriers to achieving the desired performance 

window. In the examples that have been investigated they are due to the low number

136



of RF cycles experienced by the ions. The reasons for this are different in the two 

examples investigated.

5.17.1 Low mass isotopes

The separation of closely spaced low mass ions is particularly troublesome 

because of their high relative velocity resulting in the exposure of ions to a relatively 

low number of RF cycles. The factors influencing this are the ion energy, RF 

frequency and QMF length. For this particular application it is not possible to 

increase the length and RF frequency sufficiently to provide adequate performance in 

zone 1. It was found that zone 3 operation provides a promising method of achieving 

the desired perfonnance within the desired maximum length of the QMF electrodes. 

Reduced abundance sensitivity when using zone 3, is still an important consideration. 

For closely spaced species careful choice of operating frequency is required, the 

exact value being dependent on the abundance sensitivity required. Over a certain 

number of cycles the 50% PH resolution limits while the 10% PH resolution 

continues to increase due largely to the high mass tail decreasing in amplitude and 
width.

5.17.2 MEMS devices

These experimental and computer simulation techniques have demonstrated that 

the use of zone 3 operation for a QMF with square electrodes provides improved 

mass filtering action compared to that achievable with zone 1. The use of zone 3 

enables acceptable performance to be obtained even though the QMF produces a 

non-ideal electric field and its short length results in the ions being exposed to a 

relatively low number of RF cycles.

A displacement of a single electrode in the y  direction over a certain limit will 

result in a secondary peak before the main mass peak. The acceptable limit of the 

displacement is determined by the velocity of the ion, which for a given ion energy is 

mass dependent. Therefore, as the mass range is increased a reduction in the process 

tolerance is required (all other operating conditions being the same). Increasing the
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ion energy as the mass scan line is increased would provide a method of 

compensating or reducing this effect. Another approach would be through the use of 

RF scanning instead of the more common voltage scanning. This would ensure that 

for constant ion energy ions would experience the same number of RF cycles 

irrespective of their mass (see 3.15). However it does introduce complications in the 

coupling of the RF drive stage to the QMF due to the normal reliance of a tuned 

coupling stage to provide voltage gain.

The more common process errors associated with the manufacture of the MuSE- 

QMF are a concurrent displacement of both the upper % and y  electrodes. This 

produces equal magnitude shifts in both the field axis and does not result in a 

secondary peak over the range of displacements of interest. A mass scale calibration 

will negate the effects of the observable mass peak shifts that do occur. The expected 

range of the dominant process tolerances does not adversely affect the achievable 

performance of the QMF,

The lower quadmpole coefficient (weaker quadrupole field) produced by the 

square electrodes results in the drive voltage being approximately 1.28 times greater 

than for a comparable hyperbolic or circular electrode device operating under the 

same conditions. This results in a lower achievable maximum mass for the square 

electrode QMF for a given safe maximum operating voltage.

More simulation studies could be undertaken to investigate other aspect ratio 

electrodes. This work was based on a device that was designed with the criteria of 

minimising specific multipole terms. This has been previously shown not to provide 

the best performance when considering circular electrodes. This may also be the case 

for rectilinear electrodes.
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Chapter 6

6 .  Q M S  E L E C T R O N I C  C O N T R O L  U N I T

6.1 Introduction

This chapter firstly examines the operational requirements for an implementation 

of a QMS ECU and supporting application software capable of mnning on a standard 

laboratory computer. Requirements from two different target applications have been 

considered; firstly that required to support a commercial RGA application, and 

secondly the specific requirements to support experimental research including the 

validation of the computer simulation work reported on in this thesis and elsewhere 

[6], [49]. The operational requirement for a typical RGA application has been arrived 

at from examining manufacturer data sheets [133-135] and from information 

provided by a typical RGA user [136].

The aim of designing a custom QMS ECU was to provide a much wider range of 

user control than can be achieved with available commercial instruments and 

secondly to provide the facilities for operation in stability zone 3. At the same time 

the QMS ECU should support operation in a fall-back mode where the user would be 

unaware of the greater control that is available.

In undertaking this design certain novel facilities have been included both at a 

system level and at the circuit level and these are discussed in the relevant sub 

sections.

The electronic control unit (ECU) provides the overall control of the other 

modules that comprise a quadrupole mass spectrometer (QMS). To facilitate user 

control and interfacing to other controllers in a system, additional inputs and outputs 

(I/O) are usually provided. These additional I/O take the form of: optically-isolated 

inputs for monitoring of external conditions; volt-free relay contact outputs for 

controlling external equipment and/or indicating status; universal serial bus (USB) or
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alternatively an Ethernet for bi-directional communication with a host computer 

interface. There is no definitive method of implementing such an ECU and published 

research targets specific areas of the ECU design; RF generation and electrode drive 

[137-141], ion source control [142], high voltage amplifiers for driving capacitive 

loads [143-145], electrometer amplifiers [146-148]. One possible route to 

implementation is the use of a proprietary computer in conjunction with a collection 

of standard and custom designed add-on controllers. Alternatively, a custom 

designed standalone control unit with a USB port for communication to a 

commercial computer is another possibility. From a commercial viewpoint a custom 

designed controller is a superior choice as it maximises the added value to the QMS 

product as well as the control that the developer can exercise over the overall product 

design philosophy. This was the philosophy that was chosen.

6.2 Operational requirement

The two major requirements were to meet or exceed present commercially 

available ECUs and secondly to provide additional functionality so that the ECU 

would provide a flexible platform for fiiture research.

6.2.1 Minimum requirement

Figure 6.1 (see also Figure 3.1) shows a top level block diagram for a quadrupole 

mass spectrometer showing the connectivity between the ECU and the remainder of 

the QMS modules and external units. The ECU provides control or interfaces to the 

following modules;

a) Electron impact ion source.

b) Quadiupole mass filter.

c) Ion detector

d) Optional user interface

e) Other instrumentation.

f) Computer.
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The optional user interface provides facilities for displaying mass spectra and a 

keypad for setting up the operating conditions of the QMS. More usually this 

functionality is provided by an attached computer connected via a USB or Ethernet 

communications link. In this mode an application program mnning on the computer 

would provide a GUI for a user to control the QMS, display mass spectra and handle 

data storage.

As well achieving the functional requirement for the QMS, the requirement of a 

user has to be taken into account. In doing so, the instmment does not usually sit in 

isolation but usually fonus part of a bigger system which may provide the process 

monitoring and instmmentation system for a plant. Alternatively, it may sit 

independently and collect data which is then stored on a supporting computer and 

sent to other parts of the system via a network.

A typical application of a small QMS is that of a vacuum quality monitoring 

instmment and is often called a Residual Gas Analyser (RGA). A typical operational 

requirement for such a device has been kindly supplied by The Vacuum Science 

Group at Daresbury and is reproduced in Appendix C [136]. This is comparable with 

the specification of commercially available equipment offered by manufacturers such 

as Thermo Fisher [133], Extrel [134] and Stanford [135].

6.2.2 Additional facilities to support research

For research applications there is usually a requirement to exercise more control 

over an instmment in order to investigate interrelationships between operating 

conditions and realisable performance. An additional set of operating controls to 

facilitate these requirements is contained in also Appendix D.

6.3 Electronic control unit

6.3.1 Overview

To achieve the greatest flexibility for the user interface and data processing, it was 

decided that a standalone ECU connected to a standard computer offered the best 

solution. To maximise the intellectual property reuse for the ECU, an architecture
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based on a number of individual controllers each associated with one of the major 

functional blocks was selected. Although this does result in a certain degree of 

redundancy, it does offer a greater degree of flexibility for reconfiguring the ECU. 

Furthermore by judicious selection of the microcontroller, the design offers a 

relatively easy route to creating standalone controllers for the ion source, mass scan 

and data acquisition functions. These would then be capable of independently 

interfacing to a computer. Figure 6.2 contains a top level system block diagram for 

the ECU showing the main functional blocks which are:-

a) System controller-motherboard

b) Ion source controller

c) Mass scan controller

d) Data acquisition controller

e) Drive controller

f) Power output.

The complete ECU consists of six printed circuit boards. Four of these (a -  d) are 

intelligent controllers and each incorporates an on-board microcontroller. The other 

two (e - f), consist of solely analogue circuitry.

6.3.2 Microcontrollers

The Microchip PIC32MX family of microcontrollers was chosen for their low cost 

coupled with flexible options for the number of SPI and USB interfaces that are 

available on the different variants [149-150]. A further consideration was the 

availability of low cost in-system programming and debugging equipment, together 

with the availability of a free cross assembler and C cross compiler. The central 

processing unit (CPU) of the PIC32MX3XX/4XX family of microcontrollers is 

based on the MIPS Technologies Inc. MIPS32® M4K 32 bit synthesisable core [151- 

152]. Also integrated into the device is an; non-volatile program memory, random 

access memory (RAM) together with a range of on-chip peripherals. The peripherals 

include universal serial bus (USB), serial peripheral interface (SPI), timer counters, 

digital input-output (DIO), interrupts and a multiplexed analogue to digital convertor
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(MUX-ADC). The PIC32MX has two on-chip phase lock loops (PLL), 

programmable dividers and a crystal controlled oscillator. This clock control 

circuitry enables a large range of processor clock speeds and peripheral bus speeds to 

be programmed from a single crystal frequency.

Two variants of the PIC32MX are used. The PIC32MX440F512 (PIC32-4) is 

used in the system controller and motherboard (SCM) and the PIC32MX340F512 

(PIC32-3) is used in the other three intelligent conhollers (SSC). The major 

difference between the two is that the PIC32-4 incorporates one USB port and one 

SPI port whereas the PIC32-3 has two SPI ports but no USB port. The USB port on 

the SCM provides the communications link between the ECU and the computer.

Each intelligent controller is equipped with a connector to support in system 

programming (ISP) and debugging of the firmware using an ICD3 [153] and if fitted 

with programmable logic, a connector to support ISP of these devices using a USB- 

Blaster [154, 155].

6.3.3 Inter-controller communication

The SPI port of the SCM is buffered and routed through to four backplane 

connectors [156-157]. Each connector provides a position that a SCC can be 

plugged into. Four slave select lines derived from the PIC32-4 are also routed to each 

of the connectors. On board links on the SCCs provide a method of allocating a 

unique salve select to the SSCs. For SCM to SCC transfers the SCM always acts as 

master. An SSC can indicate to the SCM that it requires servicing by asserting its 

own unique request line. These act as interrupt request inputs to the PIC32-4 on the 

SCM and also form part of the backplane signalling.

Data transfer size is dependent on the target device for on-board transfers but is 

always 32 bits for backplane transfers. For backplane transfers the most significant 

bit (MSB) is bit 31 and is always transmitted first. The 32 bit word is divided into 

three fields with bit 31 determining the action (read or write) of the transfer. The next 

field, bit 30 down to bit 24 determines the source or destination of the transfer and 

the third field bit 23 down to bit 0, is the data.

For on board transfers, the organisation and size of the transfer is dependent on 

the peripheral being addressed.
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6.3.4 Internal controller peripheral control

Control within a specific controller is achieved through a number of mechanisms. 

For the SCM the SPI and the PIC32-4 DIO are used to control the on-board 

peripherals. In the case of the SCCs the first SPI port is used for backplane 

communication with SCM. While the second SPI port and i/o are used for general 

on-board control. For the mass scan (MSC) and the data acquisition controllers 

(DASC) there is additional control provided through dedicated progiammable logic 

controllers.

6.3.5 Universal serial bus

The PIC32-4 provides a universal serial bus (USB) [158] which meets the USB 

2.0 standard [159-160]. Implementation of the USB PIC32-4 firmware was based 

around the USB stack [161] provided by Microchip. A human interface device class 

was used as this offered the option of using the Windows® inbuilt drivers [162-163]. 

This has saved considerable effort in developing custom drivers. An improvement in 

the effective USB bandwidth could be achieved by providing customised drivers.

6.3.6 Miscellaneous

An on-board light emitting diode (LED) and a programmable link are provided on 

each intelligent controller and are directly connected to the microcontroller digital 

i/o. They are intended as an aid to testing and development.

6.4 System controller-motherboard

6.4.1 Introduction

The system confroller-motherboard (SCM) provides the overall control of the 

ECU, providing the link between the applications program running on the computer, 

the external interfaces and the SCCs that comprise the ECU. A schematic for the top
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level hierarchy is shown in Figure 6.3 and an image of a completed printed circuit 

board is shown in Figure 6.4. The SCM hierarchy is comprised of five functional 

blocks; the main processor, analogue interface, panel input-output, USB connector 

and the backplane.

6.4.2 Main processor

This block contains the PIC32-4 microcontroller, ISP connector, SSC slave select 

lines, SCC request lines and SPI interface to the backplane. Provision is also made 

for fitting a serial electrical erasable programmable read only memory (EEPROM)

[164], which can be used to store a board serial number and other ECU specific data.

In addition to connecting to the backplane the SPI port provides the interface 

between the PIC32-4 and EEPROM with digital outputs from the PIC32-4 which 

provide other control functions. The USB interface provides a communications 

channel between the application program running on the computer and the ECU.

6.4.3 Panel inpnt output

The panel input/output block contains the external interface signal conditioning 

for the input and output signals that are available via the on-board 15 way D-type 

connector. This connector provides the method of connecting external signals to the 

ECU. Three optically isolated inputs are provided. One, a fast vacuum interlock 

(FSTVIL) enables the ion source filament to be powered down in the event of a high 

pressure vacuum situation being detected. The other two, are general purpose and 

can be defined by the PIC32-4 fiiinware. Two sets of normally closed volt free relay 

contacts are provided whose functionality can be user defined. A connector is also 

provided for four general purpose LEDs.

6.4.4 Backplane

The backplane area consists of 4 off 15+15 way connectors mounted vertically 

with respect to the SMC PCB allowing up to four SSCs to be connected. The
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connectors provide access to a SPI interface, four SSC slave select lines (SEL[0..3] 

and four SSC request lines (REQ[0..3]), the digital +3.3 and +5 voltage rails together 

with the main +24 Volt rails. A system reset signal (_SYS_RESET) and a fast 

vacuum interlock signal (_FSTTINL) complete the available signals. Also included 

in this functional block are the connections for the main power input feed for the 

ECU. The ECU requires + 24 volts from an external power supply. The physieal 

arrangement of the PCBs also allows for an internal mains power supply to be fitted 

in the space between the front panel and the position of the first SSC if so required. 

Filters are provided on the power input to attenuate external power noise and to 

minimise conducted noise out of the ECU. A XP Power JCA series dc-dc convertor

[165] and a LM340S linear regulator produce the +3.3 and +5.0 Volt supply rails 

respectively.

6.4.5 USB connector

A USB type B connector is provided to support the USB 2.0 port. A transient 

voltage suppressor (TVS) is mounted adjacent to the connector providing protection 

for the data lines.

6.4.6 Analogue interface

Two types of analogue interface are provided. The first consists of a buffer 

amplifier feeding a high resolution single integrated circuit ADC. This provides a 

method of controlling the mass scan ramp via an external analogue signal. The 

second consists of a set of resistive networks for signal conditioning of the ECU 

voltage rails. The outputs of the networks connect to some of the multiplexed 

analogue inputs of the PIC32-4. This allows the PIC32-4 to monitor the voltage rails 

for correct operational voltage limits and provide status information back to the 

connected computer.
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6.5 Ion source controller

6.5.1 Overview

The ion source controller (ISC) is one of the SSCs that form the ECU. The ISC 

provides control of the ion source emission current and the voltages required for the 

ion source. An optional power supply is provided for generating an electrode pole 

bias supply if  required. A top level schematic of the ISC is shown in Figure 6.5.

6.5.2 Main processor

This block contains a PIC32-3 microcontroller, a four channel digital to analogue 

convertor (DAC), a two channel analogue to digital convertor (ADC) and an optional 

EEPROM. The DAC is used to control; the set point for the cage voltage, the repeller 

voltage, the filament current and the optional pole bias voltage. The ADC is used to 

read the magnitude of the emission and filament currents. The FSTVIL from the 

backplane is connected to a digital input line of the PIC32-3 which is configured as 

an interrupt input. This allows the ISC to react quickly to a critical increase in 

vacuum pressure if an external pressure sensor is used.

The SPI-1 port of the PIC32-3 connects to the backplane via a transceiver and 

always operates in slave mode. The SPI-2 port of the PIC32-3 is used to control the 

on-board ADC, DAC and EEPROM.

6.5.3 Filament drive

The filament drive (FIL DRV) together with a software control algorithm which is 

part o f the firmware developed for the ISC PIC32-3 forms a thiee terai controller 

(PID) [166-167] for maintaining the desired emission current. The filament cun'ent is 

controlled by a voltage controlled pulse width modulated (PWM) fly-back convertor 

operating at approximately 200 kHz. A schematic for part o f the circuit is shown in 

Figure 6.6. A DAC controlled by the PIC32-3 generates a voltage which controls the 

output pulse width of the modulator U14 (Linear Technology LTC6922). The 

modulator output is buffered by U13 a metal oxide silicon field effect transistor 

(MOSFET) gate driver (National Semiconductors LM5112) before being fed to the
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gate of the power MOSFET Q3 (ST Micrelectronics STD15NF-10). Q3 controls the 

current switching through the primary of transformer T1 (Coilcraft FA2677). Two of 

the secondary windings of the transformer are fed to a half wave rectifier and filter 

circuit comprising Schottky diode D2 (ON Semiconductors MBRD1035CTL) and 

low equivalent series resistance (ESR) capacitors C37-C39 (Remat Coiporation 

C0805C106K8PACTU), inductor L4 (Vishay Dale IHLM2020CZERR10M11) and 

bulk capacitor C40 (Rubycon 10TZV220M6.3X8). The positive output of the filter is 

connected via a Hall-Effect cun'ent sensor to one side of the filament with the 

filament common (repeller) connected to the negative output of the filter. The Hall- 

Effect sensor provides galvanic isolation of the filament circuit from the signal 

conditioning and ADC current monitoring circuit.

A feedback stabilised voltage controlled dc-dc convertor (not shown) is used to 

float the filament common (repeller) at a nominal -70 volts with respect to ground. 

The magnitude of the voltage can be varied between 20 to 100 volts providing a 

facility for soft ionisation or appearance potential methodology [168]. Figure 6.7 

contains the results for an efficiency test undertaken for a nominal 1 ohm filament 

resistance for operation centred about a nominal 2 amp filament current.

6.5.4 Cage control

A DAC controlled cage voltage circuit controls the ion energy( together with the pole 

bias if provided) of the ions exiting the ion source. A sense resistor is provided on the 

output of the circuit across which is connected a high side current-sense amplifier 

(Analog Devices Inc. ADM4073). This generates a voltage proportional to the 

emission current and feeds into one channel of an ADC providing a measurement of 

the emission cun'ent for use by the software emission cunent control algorithm.

6.5.5 Lens 1 control

The lens 1 contiol consists of a voltage controlled dc-dc convertor (EMCO High 

Voltage Coiporation, Model QOl-24) to provide a bias voltage for one of the lenses. 

The output from the QOl-24 is controlled by a high speed gating system. The on-time
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Figure 6.7. Efficiency characteristics obtained for a typical filament current centred

about the nominal operating current.

of the gate can be varied in phase relative to the RF frequency providing for phase 

synchronised pulsed ion injection. This provides support for an investigation of the 

relationship between the RF phase at the entry point of ions into the QMF and the 

resultant mass peak tailing [123].

6.5.6 Pole bias control

A facility to generate a pole bias offset voltage is incorporated onto the ISC. This 

has been included on this controller as the pole bias voltage together with the cage 

voltage determines the overall ion energy at the entrance to the quadrupole mass 

filter. A similar circuit to the lensl circuit is used to generate this voltage.

6.5.7 Analogue to Digital convertor

This block contains the analogue to digital convertor (ADC) which digitises the 

voltages that represent the filament and emission current magnitudes. A dual channel
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12 bit ADC (Analog Devices Inc. AD7887) with a three wire SPI interface to the 

PIC32-3 is used. Each of the analogue signals are buffered by operational amplifiers 

(OPAMPS) and processed by anti-aliasing filters before connection to the ADC input 

pins. Two linear regulators provide low noise voltage rails for the OPAMPS and an 

accurate voltage reference provides the voltage rail for the ADC from which the 

reference voltage is also derived.

RJ45 CONNECTOR 
FOR 

IN SYSTEM 
PROGRAMMING 

CONNECTOR

PULSE WIDTH MODULATED 
FILAMENT CURRENT POWER 

SUPPLY

PIC32MX340

POLE BIAS 
POWER 
SUPPLY

w/i * t t  -- n  rpk a K i i r n  r i

----------------->

BACKPLANE
CONNECTOR

, ■ C l . P . » •■•O • . *  O { ■ ■ ■ o n  9 -

izzW" nn'- ” s o’ar"j m -'I "

o ' - r i l E i  o
^  _ I I m y  QMS21t}0-ISC -R E V lA U

LENS POWER 
SUPPLY

REPELLER 
POWER SUPPLY

Figure 6.8. Photograph of the ion source controller with major 

functional blocks identified.
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6.5.8 Connectors

A 15+15 way plug provides connection to the mating connector on the SMC for 

access to the backplane. Provision for accessing the various control signals are 

provided by means of edge mounted connectors. An edge mounted RJ45 connector is 

provided for connecting an ICD3 for program development and programming the 

PIC32-3. Additional Molex eonnectors are provided on the other edges of the board. 

A set of links are provided to select one of the slave select lines to as the ISC select.

6.5.9 Physical appearance

A photograph of the assembled ISC with the main functional blocks annotated is 
shown in Figure 6.8.

6.6 Data acquisition controller

6.6.1 Overview

The data acquisition controller (DASC) together with the ion detector provides the 

funetionality to capture the magnitude of the ionic current exiting from the 

quadrupole mass filter at each step of the mass scan. The ionic current is measured 

using either a faraday cup (PC) or an electron multiplier (EM) mounted near the exit 

of the QMF. The output of the ion detector is connected by coaxial cable to the input 

of the high input impedance amplifiers on the DASC before being further processed, 

digitised then stored in the PIC32-3 on-chip random access memory (RAM). These 

stored values are passed onto the SCM and then finally to the computer for display 

and storage. The input amplifiers, gain switching relays, selectable inverting/non- 

inveiting amplifiers are contained within a grounded screened enclosure to minimise 

stray coupling from other parts of the ECU. Figure 6.9 shows a high level schematic 

of the DASC.
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6.6.2 Input amplifier

There are two input amplifier blocks providing for two input amplifiers (Analog 

Devices Inc. AD549) although only one is required if enhanced auto-ranging is not a 

requirement. The amplifiers are very low input bias current amplifiers with external 

switchable feedback resistor networks. The feedback switching is achieved with low 

thennal EMF reed relays (GOTO Technology Inc. 3500 series). The amplifier input 

leads are mounted on Teflon standoffs (Gambian Ltd. 570-1510-01-05-19) to 

minimise stray leakage paths at the amplifiers inputs. The output from each of the 

input amplifiers is fed via an additional operational amplifier (OP-AMP). On-board 

links are provided to configure the OP-AMP as inverting or non-inverting, thereby 

accommodating the different polarity of the FC and EM output cun*ents. The output 

from these OP-AMPs feed into the input multiplexor. A circuit schematic showing 

the major components for one of the input amplifiers and gain switching circuit is 

shown in Figure 6.10. Also shown is a low temperature coefficient 2.5 Volt reference 

voltage to correctly bias the output of U ll  for compatibility with downstream 

circuits.

The dual input amplifier configuration provides the facility to interface to two 

detectors or can be configuied to provide an auto-ranging font end providing faster 

response than the more conventional single switched gain amplifier which can have a 

significant recovery time if overdriven. By using two input amplifiers it is possible 

with the correct gain options to switch between the amplifiers allowing one amplifier 

to recover while using the other amplifier.

In an RGA it is relatively common for both a Faraday Gup (FG) and an Electron 

Multiplier (EM) to be provided with their outputs both eonnected to the QMF output 

pin. The FG is mounted on-axis and the EM off-axis and with no bias applied to the 

EM, ions exiting the QMF will hit the surface of the FG. This results in a current 

flowing into the input of the DAS G input amplifiers. With a negative bias voltage 

applied to the EM, ions are attracted off-axis away from the FG and hit the EM. The 

EM amplifies the ion current through a conversion to an electron cuiTcnt and results 

in a current flowing out of the input amplifier. The dual input amplifier can be 

configured to provide software controlled switching between the FG and the EM 

increasing the available dynamic range of the measured partial pressures.
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6.6.3 Input multiplexer

The input multiplexer (Analog Devices Inc. ADG1219) allows the input signal to 

be dynamical, sourced from the output of either input amplifier. This forms part of 

the auto-ranging facility of the DASC or dynamic switching between the FC and 

EM. The input multiplexer is controlled by a digital output from the DASC 

microcontroller. If only one input amplifier is fitted the firmware sets the input 

multiplexer source accordingly. The output from the multiplexer feeds the input to 

the analogue to digital convertor (ADC) block.

6.6.4 Analogue to digital convertor

This block takes the single ended output from the input multiplexer and using an 

OP-AMP (Analog Devices Inc. AD8021) and anti-aliasing filters converts the single 

ended signal to a differential signal compatible with the input requirements of the 

sigma-delta analogue to digital convertor (Analog Device Inc. AD7765) [169-171]. 

A number o f local linear voltage regulators and voltage references are provided to 

achieve a set of low noise voltage rails and references for the OP-AMP and AD7765.

6.6.5. Controller

A programmable logic controller (Altera Corporation EPM570) provides the 

digital interface between the microcontroller, the ADC block and the synchronisation 

of the ADC operation with the mass scan controller to achieve programmable dwell 

time at each mass sample point. A local crystal oscillator provides the reference 

timing clock for the CPLD which generates the timing clocks for the AD7765. The 

PIC32-2 provides overall control using both SPI communication and control through 

the digital i/o lines.
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6.6.6 Electron multiplier bias voltage

For operation with an EM detector a high voltage negative bias is required for 

correct operation and gain control A voltage controlled programmable DC-DC 

convertor (EMCO High Voltage Corporation Model Q25N-24C) generates the 0 to - 

2500 bias voltage. A DAG controlled by the PIC32-3 provides the contiolling 

voltage for setting the bias voltage. Load stability of the bias is achieved using a high 

impedance sense network coupled with an OP-AMP. A high voltage cable directly 

soldered to the PCB provides the output connection to the ECU flange connector.

6.6.7 Voltage regulators

A JTC series DC-DC convertor (XP Power pic Model JTC0624D09) generates 

the intermediate voltage rails from the +24 Volt backplane rail. These intermediate 

voltage rails are post regulated by linear regulators and further filtered to achieve low 

noise analogue voltage rails.

6.6.8 Connectors

A 15+15 way plug provides connection to the mating part on the SMC for access 

to the backplane. An edge mounted RJ45 connector is provided for connecting an 

ICD3 for program development and programming of the PIC32-3. A board link area 

enables the one of the slave select lines to be selected as the DASC select.

6.6.9 Microcontroller

A microconti'oller section viitually identical to that used on the ISC is 

implemented on the DASC.
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Figure 6.11. Photograph o f the data acquisition systems controller.

6.6.10 Physical appearance

An photograph o f the assembled DASC with the main functional blocks annotated 

is shown in Figure 6.11.

6.7 Mass scan controller

6.7.1 Overview

The mass scan controller (MSC) provides the source o f the RF and DC ramps 

required to produce the analytical mass scan required for correct operation o f the
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quadrupole mass filter (QMF). A top level schematic for the MSC is shown in Figure 

6.12 and an image of a completed PCB is contained in Figure 6.13.

A proprietary dual channel direct digital synthesis (DDS) [172] provides the 

reference RF signal (Analog Devices Inc. AD9958). Each DDS RF output is 

transformer coupled to a reconstruction filter to minimise the harmonic content of the 

RF signal. Haimonic content has been shown to degrade QMF performance [35]. 

Only one DDS channel is required for basic QMF operation. The second channel 

offers the facility for investigating the effects on QMF perfoimance of differential 

phase between the x and y  electi'ode RF drives. It also provides a mechanism for 

correcting for certain mechanical tolerances in the QMF electrode geometiy [49].

Each output of the DDS module feeds into the input of a variable gain amplifier 

(National Semiconductors LM6503) which is used to generate the variable amplitude 

RF signal under control of the mass sequencer module. These amplifiers can be used 

in standalone mode or in conjunction with the Drive controller to provide automatic 

gain control for amplitude stabilisation. A schematic of the mass sequencer module is 

shown in Figure 6.14.

A PIC32-3 is included on-board together with an interface to the backplane which 

perform a similar function to those already described for the other SSCs. A number 

of on-board regulators and voltage references are derived locally to improve noise 

performance and to support standalone operation.

6.7.2 Mass sequencer

The mass sequencer module consists of a complex programmable logic device 

(CPLD) Altera MAXII EPM570, a dual channel 16 bit DAC (Analog Devices Inc. 

AD5547), voltage references and operational amplifiers.

The CPLD contains a SPI port allowing the PIC32-3 to write to the internal 

control registers and read status infonnation back from the CPLD. The value of the 

mass scan start, mass scan step size and the mass scan end points are contained in 

registers within the CPLD and are set by the PIC32-3. At the end of each mass scan 

step the CPLD calculates the next mass step value and when the mass scan end point 

is reached indicates to the microcontroller the completion of the active mass scan. 

The MSC sequencing is interlocked with DASC by the SMP CMD and SMP ACC
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Figure 6.13. Photograph of the mass scan controller.

signals so that MSC dwells on a scan point until the DASC has acquired data. The 

flexibility in control offered by these programmable registers enables non-linear scan 

line generation and variable mass scan step size to be achieved. This flexibility also 

enables zone 1 and zone 3 scan lines to be achieved through firmware control.
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6.8 Drive controller

6.8.1 Overview

The drive conti'oller (DRVCON) consists of two identical channels for providing 

stabilisation and the coiTect ratio between the RF and DC ramps. It also provides the 

buffer amplifiers required for introducing the DC component onto the RF voltage 

applied to the % and y  electrodes. The controlling ramps are sourced from the output 

of the MSC, The DC signal paths allow for the introduction of a variable pole bias 

and a mass scan offset voltage to achieve an approximation to a unit resolution mass 

scan if  required.

A standard backplane connector is fitted to the board to derive voltage rails from 

the backplane and provide a means of mechanical registration with respect to the 

remainder of the system. No backplane signalling is required for operation of the 

DRVCON. On-board regulators are used to generate a number of local voltage rails. 

Figure 6.15 shows a schematic for the top level hierarchy of the DRVCON which 

consists of a total of nine modules.

6.8.2 DC drive control

The DC drive control consists of a common module DCGEN connected to the 

electrode specific modules DCDRIVE X and DC DRIVE Y. The DCGEN provides 

signal conditioning and level shifting of the ramp control signals derived from the 

MSC. The two outputs (DCSCAN X and DCSCAN Y) each act as an input to the 

DCDRIVE X or DCDRIVE Y modules respectively. The DCDRIVE X and 

DCDRIVE Y modules are identical and provide an OP-AMP based summing circuit 

for introducing the common pole bias (VPOLE) and the mass scan offset voltage 

OFF DCX or OFF DCY. The output of the summing circuit is buffered by a PA240 

high voltage power amplifier before connecting to the DC input of the respective 

channel of the PA.
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6.8.3 Peak detection

It is possible to use a number of different methods to measure the amplitude of RF 

electrode drive signals; root mean square (RMS) detection [173], precision 

rectification [174], peak detection [175]. The RF drive signal for reasons already 

discussed is required to be kept free of harmonic content so can be assumed to be a 

pure sine wave. It is therefore possible to use any of the above methods for 

measuring the RF amplitude. In general, commercially available RMS measurement 

integrated circuits (IC) are suitable for frequencies less than 1 -  2 MHz or much 

higher frequencies. Similarly for precision rectifiers and peak detectors no standard 

ICs are suitable due to their limited frequency response. A custom design based on 

one originally proposed by J. McLucas [176] was designed and a schematic showing 

part of this circuit is contained in Figure 6.16. Two peak detector modules are 

provided PKDET_X and PKDET Y. If single channel RF drive with transformer 

coupling to the QMF is employed only one peak detector circuit needs populating. A 

sense network in each channel of the PA generates the RF feedback signals 

VSENSE_X and VSENSE_Y which act as input to their respective peak detectors. 

The output of each peak detector VPEAK_X and VPEAK_Y feed into their 

respective gain contiol modules. A prototype circuit was built to optimise the design 

but it is considered that there will in all probability be a need for additional 

development work during the testing and development phase.

6.8.4 RF Amplitude control

The RF amplitude control system is comprised of the four modules VGA_X and 

VGA_Y together with their respective peak detectors PKDET_X and PKDET Y. 

These foiin a dual channel RF amplitude controller. The purpose o f these controllers 

is to maintain a constant relationship between the mass ramp control signal produced 

by the MSC and the amplitude of the RF electrode drive voltage. By achieving this, 

the ratio between the RF amplitude and the DC amplitude can be maintained.
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Each peak detector output and the mass scan ramp contiol signal are used to form 

an error signal which acts as a gain control signal for a voltage controlled gain 

amplifier.

6.8.5 Physical appearance

Figure 6.17 shows a photograph of the completed DRVCON with each of the 

connectors identified.

6.9 Power amplifier

6.9.1 Overview

The power amplifier (PA) provides a dual power output stage for driving the 

QMF electrodes together with filtering networks for coupling the RF and DC 

voltages to the QMF electrodes. A PAl 19 (Apex Microtechnology Corp.) is used for 

each of the RE power amplifier output, two are required if independent x  and y  

electrode drive is being used. The circuit also allows either direct coupling using 

separate series tuned circuits to achieve voltage amplification or if much higher 

output voltages (> 350 Volts peak to peak) are required tiansfbnner coupling can be 

employed. Two pi-network filters are provided for coupling the x and y  electrode dc 

voltages to their respective electrodes. This provides protection for the dc driving 

circuits from the RF drive voltages but still maintain a low source impedance source 

for the DC electrode drive thereby maximising scan speed. Figure 6.18 shows a 

schematic for a single power output channel.

6.9.2 RF amplitude sensing

A capacitive potential divider network is provided for each of the output channels 

to generate feedback to the RF amplitude control on the DRV PCB. The PCB
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Figure 6.19. Photograph of the main component side of the dual channel

power amplifier.

tracking arrangement enables the network to monitor the output of the PA when 

operating in direct coupled mode or the output from the transformer secondary if 

transformer coupling is employed. Two trimmer capacitors are fitted one for each 

sense network to compensate for tolerances in the capacitive divider.
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6.9.3 Power supply requirements

The boards are designed to mn from the ±24 Volt main voltage rails or from a 

separate voltage supply of up to ±36 Volt allowing higher electrode drive voltages to 

be achieved. CuiTent limit resistor positions are provided on the PCB and if the 

resistors are fitted the PAl 19s are capable of sourcing up to 4 amps peak output 

cunent. When not fitted the cun*ent output is detennined by the internal cuiTent limit 

of the PAl 19 which is set to provide 0.5 amps. Power line LC filtering is provided to 

minimise conducted noise to the rest of the ECU.

6.9.4 Physical arrangement

The PCB is designed so as to allow for the board to be mounted on the back-plate 

of the enclosure where the vacuum flange interface connector would be mounted. 

This arrangement enables the co-axial cables used for coupling the board to the 

connections feeding the QMF electrodes to be kept short, thereby minimising the 

additional capacitive load of the interconnection system. The PAl 19 amplifiers are 

mounted on the back-plate to allow their heatsinks to make direct contact with the 

back-plate so as to minimise the thermal resistance between the PAl 19 package and 

ambient.

6.10 Physical implementation

6.10.1 Printed circuit board material

All of the printed circuit boards (PCB) are constructed to a similar mechanical 

standard. The PCBs are of four layer construction using 35 micron copper laminate 

on FR4 base material. The external two copper layers are used for signal traces with 

the inner two layers providing the power and ground planes. All the PCBs are of a 

nominal 1.6 mm thick laminate with the exception of the PA which is 2.4 mm. To 

minimise effects of the coupling of circulating currents into sensitive circuit areas the 

power and ground planes are split into isolated areas with single point connections
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between them. The mechanical characteristics for the individual PCBs are contained 

in Table 6.1.

Controller Part
identiRcation

Size
length

X

width
(mm)

Height
(mm)

Weight
(gms)

SMC OMS2100-ECU1 175 X 125 20 142
ISC QMS2100-ISC 125 X 125 21 115

MSC QMS2100-MSC 125 X 125 19 102
DASC QMS2100-DAS 125 X 125 21 136
DRV QMS2100-DRV 125 X 125 33 106
PA QMS2100-RSC 125 X 125 47 170'

Table 6.1. Physical characteristics of the controller printed circuit boards, 

excludes rear panel mounted heatsinks)

6.10.2 Printed circuit board assembly

The majority of components are mounted on the upper layer of the PCB but a 

number of PCBs also have a small number of components mounted on the lower 

surface. In the majority o f cases these are decoupling capacitors and are placed there 

to achieve more localised decoupling of power rails. In general all components are of 

surface mount construction the exceptions being; the connectors, high powered 

components such as the PAl 19 and PA240, power supplies and a small number of 

high power resistors.

Assembly of the PCBs was carried out by EPS Ltd Cambridge using conventional 

hand placement and soldering. For this prototype batch, this was significantly 

cheaper than using automatic placement and reflow soldering due to the one off set­

up charges associated with this manufacturing process.

6.10.3 Complete assembly

Figure 6.20 shows an image of a complete ECU housed in a skeleton enclosure. 

The heatsinks associated with the dual PAl 19 amplifiers are visible on the external
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surface of the backplate. A space between the left most SSC and the front edge of the 

enclosure can be used to house an internal power supply if required.

Figure 6.20. Photograph of the assembled electronic control unit mounted in a 

skeleton enclosure with internal cabling omitted for clarity.

6.11 Design tools

To support the design, development and manufacture of the ECU a number of 

software packages were utilised. These split logically into three groups; schematic 

capture and printed circuit layout, programmable logic design, software and 

firmware development.

6.11.1 Schematic capture

The schematic drawings were produced using Cadence OrCad Capture [177-178] 

software. Each of the control boards are specified in a hierarchical manner and from
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the top level it is possible to drill down to the individual circuits. The package allows 

the design to be verified against a set of design rules. On satisfactory completion of 

the design rule checking (DRC) a bill of materials was generated. Finally a net list 

was generated which provides a connectivity list and footprint identification for the 

circuit. The net list provides the mechanism for data exchange between the schematic 

capture and pcb layout systems.

6.11.2 PCB layout

Vutrax produced by Computamation Systems Ltd. [179] was used to design the 

PCB layouts and to generate their manufacturing. Firstly for each footprint used in 

the circuit, a physical shape was generated and stored in the project physical library. 

At this stage a board outline was also generated which incorporates any fixed 

mounting holes and/or routing cut-outs that are required. Next a set of appropriate 

design mles were generated. These specify the required attributes of the PCB such as 

minimum ti'ack thicknesses, minimum track clearances, names for power plane 

signals. Next the net list produced in Oread is imported and associated with the 

physical library to produce a rats nest. This is a database which contains all the 

design information.

Each electi'onic component is physically located in a position within the board 

outline taking into account signal path lengths and physical constiaints. A ripup and 

retry autorouter is then run to obtain an initial track routing solution. Manual editing 

was then used to achieve a completed layout. Power and groundplane layers were 

then designed. The designs were then checked against the design mles. Finally the 

Gerber photoplot and computer numeric control (CNC) drilling plots required to 

generate the manufacturing artworks are obtained by mnning the plotting module.

6.11.3 Programmable logic design

The DAS and MSC controllers use Max IIEPM570 (Altera Corporation) complex 

programmable logic devices (CPLD) to provide some of the real time control 

functionality. Design entry of these was specified using the Very High Speed
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Integrated Hardware Description Language (VHDL) [180-181] in the Altera Quartus 

11.0 Web base edition [182] development environment. The wavefoma entry tools 

were used to generate a test bench for functional and timing analysis. A USB Blaster 

(Altera Corporation) was used to program the devices using the controllers ISP at the 

initial controller testing stage.

6.11.4 Microcontroller firmware development

The firmware for each of the controllers was written in C using the Microchip C 

compiler and developed within the Microchip MPLAB IDE environment. As the 

PIC32 is a common microcontroller to each of the controllers, certain high level 

functions are made common to all them. This provides for easier development and 

on-going maintenance.

Testing and development of the firmware was carried out using the software 

simulator MPLAB SIM then the MPLAB ICD3 for final code optimisation and 

development on the target controller. When the code was completed, the ICD3 was 

used to program the flash program memory on each of the PIC32 microcontroller.

6.11.5 PC software development

To support user control, data extraction and storage a PC based application 

software package was developed. It provides a gi*aphical user interface (GUI) to 

enable a user to; control the operation of the ECU, retrieve mass scan data, and 

display and store the data. To support this development and also as a manufacturing 

aid, a test harness was developed to facilitate testing and debugging of the hardware 

and associated firmware.

The GUI is shown in Figure 6.21 and consists of a number o f group boxes on the 

left to enable an operator to enter the operating conditions of the QMS. Control 

switches are provided along the bottom of the GUI to start a mass scan, save results, 

abort a scan and to exit the program. The largest white rectangular area on left of the 

GUI provides a means of displaying the results of a mass scan. The program was 

developed in the Visual.Net environment and has been tested on Windows® XP 

professional and Windows® 7 64 bit professional [183].
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6.12 Testing

6.12.1 Controllers

For each of the controllers, firmware test harnesses were developed and if 

necessary hardware test boxes designed and built. Each controller was then tested 

individually to check for correct functionality. Then each of the SCCs were 

connected to the SMC to verify correct communication between the computer, SMC 

and s e e .

6.12.2 System testing

Initial testing of the ECU coupled to the remainder of the modules that form the 

QMS has commenced. Figure 6.22 shows a QMS system with the ECU loosely
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coupled to the flange connector together with bench power supplies that were used in 

the used in the tests. Details of the equipment associated with the suitcase are 

contained in Appendix E and the pin allocation for the vacuum flange connector in 

Appendix F.

Firstly the ISC was connected to the Ion source and tests confirm that an emission 

current in excess of 1 milliamp was obtained at a total pressure of IxlO'^ T o i t . 

Additional tests were carried out to characterise the change in emission current 

against total pressure while keeping the filament current constant. The results of 

these tests are shown in Figure 6.23. As expected, the emission current measured is 

proportional to the filament current and falls with increasing pressure due to the 

electron collisions with the neutral gas molecules. Additional tests are required to 

characterise the response characteristics of the ion source and tune the control loop.

The dual channel FA was connected to the two sets of electrodes and frequency 

and coupling network adjusted to maximise the peak to peak RF voltage at a 

frequency of 3.1 MHz derived from the DDS on the MSC. With suitable changes to 

the tuning components, the ECU can be operated at lower or at higher frequencies 

up to approximately 5 MHz. The relative phase parameter of the DDS was adjusted 

to ensure correct 180° relative phase between the x and y  electrode RF drive was 

obtainable.

An initial value for the gain of the electrometer amplifier has been set based on 

tests carried out with a fixed RF voltage and no DC voltage on the QMF electrodes 

and using the FC as the ion detector. A value of IG ohm for the electrometer 

amplifier feedback resistor was selected based on these initial measurements. Further 

total pressure tests were carried out for approximate emission currents of 200 and 

400 micro-amps and are displayed in Figure 6.24. From these tests it can be 

calculated that the ion current is approximately 0.3 x 10'^ A and 0.65 x 10"̂  A at 200 

and 400 micro-amps emission current respectively for a total pressure of 4x10^ Torr. 

This corresponds to a sensitivity in the order of 1 x 10'^ A/Torr which compares well 

with commercial instmments [133]. The non-linearity of the output voltage against 

pressure in the case of the emission current of 400 p A is attributed to the variation in 

emission current when undertaking the tests.
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6.13 Conclusions

A QMS ECU controller has been designed, developed and manufactured which 

takes into account the knowledge gained from the simulations reported upon in this 

Thesis. This has enabled the desired flexibility in tenus of mass scan step size and 

UIV ratio to be provided. These are important characteristics when attempting to 

resolve the Hydrogen isotopes and their molecular combinations that were discussed 

in Chapter 5. The existence of a QMS ECU with this functionality opens up the 

possibility of undertaking experimental validation of the AWE feasibility study 

conclusions which are also discussed in Chapter 5.

The provision of a dual channel mass scan controller and dual RF power 

amplifiers provides the functionality required to investigate the effects of differential 

phase offsets between the x  and y  electrode drive. It also provides the functionality 

required to investigate the effects of differential electrode drive as a method of 

compensating for electrode positional tolerances.

These novel features are not provided by commercially available QMS ECUs and 

it would be very difficult, if impossible to modify a commercial unit to provide this 

functionality in order to undertake the experimental investigations mentioned above.
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Chapter 7

7 .  C O N C L U S I O N S  A N D  F U T U R E  W O R K

It has been demonstrated that the combination of public domain software and 

custom designed software provides an efficient method for developing a software 

toolkit targeted at understanding and investigating a range of operational conditions 

that influence the performance window of a QMF and in turn the QMS. The effects of 

different electrode geometries on the performance of a QMF when operating in 

stability zone 3 have been investigated and it has been demonstrated that zone 3 

provides a method of reducing the effects of non-optimum electrode radii.

The investigation of displaced electrodes showed that these effects can have a 

cumulative effect on QMF perfonnance. It was also shown that asymmetric electrode 

drive voltages can contribute in a similar manner and their effects can reinforce or 

compensate for the displaced electrodes. These characteristics indicate that when 

specifying the QMS the inter-relationship of each of the modules must be considered.

The demand for miniaturisation of the QMS means that non-traditional 

manufacturing processes are being considered. These do not always lend themselves 

to realising the classic hyperbolic or circular electrode geometry but more novel 

electrodes of rectilinear profile. This profile coupled with the reduction in the length, 

results in very poor performance if stability zone 1 is used. The results obtained with 

stability zone 3 indicate that this is a more suitable operating mode and provides 

adequate perfonnance for at least some applications.

The importance of the ECU in achieving the required QMF performance has also 

been investigated. Results obtained demonstrate that the accuracy of the electrode 

drive voltages and the mass scan step size used for generating the mass scan are very 

important in detennining the maximum realisable mass resolution. These results have 

also been important inputs to the specification, design and development phase of the 

ECU.

Additional operational facilities have been incorporated into the ECU to support 

future experimental investigations. The symmetry of the inter-relationship between 

asymmeti'ic electrode geometry and asymmetric electrode drive voltages has been
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demonstrated. The ability of the ECU to provide unbalanced electrode drive voltages 

enables experimental data to be obtained on the resulting QMS performance. From 

these results it will then be possible to draw conclusions about experimental 

performance of a QMS incorporating a QMF with displaced electrodes. The provision 

of a DDS RF generator provides a basis at least for miniature QMFs to investigate the 

characteristics of frequency scanning as an alternative scanning mode.

One aspect of the QMF that was considered for investigation was that of a 

comparison between the effects of mechanical accuracy for hyperbolic and circular 

electrode QMFs. This was attempted but the Automesh module of Poisson/Superfish 

exhibited a problem when using the hyperbolic shape definition command. Contact 

was made with Los Alamos National Laboratories who accepted that a problem 

existed but they did not have the resource to correct the problem at that time. This is 

still an interesting study to carry out as it would provide quantitative data enabling a 

costing of the relative merits of the two electrode profiles (circular and hyperbolic) to 

be made.

The development and commissioning phases of the ECU are not yet finished but 

are continuing and is hoped that these will be concluded satisfactorily over the next 

few months. Higher levels of circuit integration could take the fonu of soft or hard 

processer cores and a DDS module integrated into a field programmable logic array 

(FPGA). This may lead eventually to a QMF and control electronics integrated into a 

multi-chip module.

The information that has been collected while undertaking this work confirms that 

Wolfgang Paul’s statement ‘T/iere are many examples in physics showing that higher 

precision revealed new phenomena, inspired new ideas or confirmed or dethroned 

well established theories"' is as relevant today as when he made it over thirty years 

ago.
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Appendices

Appendix A Automesh geometry definition file

Quadmpole consisting of 4 circular electrodes 
with radius (r) = 1.127 * Radial Aperture (lo) 
Excitation voltage = ± 1 volt 
;TEST FOR QMS2FIELD 
;Multipole control added Hannonic analysis

&reg kprob=0,
xjfact=0.0,
dx=0.0020,
icylin=0,
ibound=-l,
voltage=0.0
ktype=l,
conv=l 00.00,
nteiin=14,
xorg=0.0
yorg=0.0
nptc=10000
rint=1.0
anglz=0,
angle=360,
morm=l,
xazero=0.0
yazero=0.0
epsila=5.D-15

! Poisson or Pandira problem 
! Electrostatic problem 
! Mesh interval 
! Cartesian coordinates
! Potential is specified on this region's boundary 
! Potential for this boundary 
! No symmetry assumed in harmonic analysis 
!use cm as scale use 0.1 for mm 
! Number of tenus in harmonic analysis 
! Arc centre X coordinate for harmonic analysis 
!Arc centre Y coordinate for harmonic analysis 
'Number of arc points for interpolating the potential 
! Radius of arc for interpolated points 
! Starting point on arc for interpolating potential 
! Extent of arc for interpolating potential 
! Normalization radius for harmonic analysis 
! Physical X coordinate where A=0 
! Physical Y coordinate where A=0 
! Convergence parameter for air and interface points

&
&po x=3.6,y=0.0 &
&po nt=2,r=3.6,theta=180.,x0=0.,y0=0. &
&po nt=2,r=3.6,theta=360.,x0=0.,y0=0. &

&reg mat=0,ibound=-l,voltage=-1.0 &
&po y=3.254,x=0. &
&po nt=2,r=1.127,theta=270.,y0=2.127,x0=0. & 
&po nt=2,r=1.127,theta=90.,y0=2.127,x0=0. &

&reg mat=0,ibound=-l,voltage=-1.0 &
&po y=-3.254,x=0. &
&po nt=2,i-1.127,theta=90.,y0=-2.127,x0=0. & 
&po nt=2,r=1.127,theta=270.,y0=-2.127,x0=0. &

&reg mat=0,ibound=“l,voltage=+1.0 &
&po x=3.254,y=0. &
&po nt=2,r=1.127,theta=180.,x0=2.127,y0=0. &
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&po nt=2,i-1.127,theta=360.,x0=2.127,y0=0. &

&reg mat?=0,ibound="l,voltage=+1.0 &
&po x=-l,y=0. &
&po nt=2,r=1.127,theta=180.,x0=-2.127,y0=0. & 
&po nt=2,r=1.127,theta=360.,x0=-2.127,y0=0. &
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Appendix B Code for calculating ion trajectories QMS2-Field

//Provides the conti'ol for the main trajectory calculation loop including parametric 
control

int run_control(StringBuilder* outfile,StringBuilder* ionfile,StringBuilder* 
par 1 ,StringBuilder*par2)
{

int eiTor;

String* trajfile;
eiTor = ERROR NONE;

R n d l  = Safe_C+20;
Rnd_2 = Safe_C+20; 

while (run flag == TRUE)
{

if (parametric_flag == false && results_file_flag == true && trajectory flag 
== false)
{

W rite_HdrRes_Information(outfi le) ;
}
else if(parametric_flag == true && para count <= para_steps)
{

parametric_conti'ol(outfile); 
histogram_clear(); 
if(histogiam_flag == true)
{

histogram_initialize();
}
if (results file flag == true)
{

Write_HdrRes_Information(outfile);
Add_Header_Infonnation(outfile);

}
}
else if (trajectory flag == true && results file flag == true)
{

W riteH drT rjlnformation(outfile) ;
}

Idx_v = 0; 
do 
{

Ttl_v[Idx_v] = 0;
} while (++Idx_v < MaxMass); 
lo n T y v  = 0; 

do 
{

sqrt(mass_specs [IonTy_v] [0] )/Dbl_H_v;
Step_Fac_v = qm length mtrs * sqrt(mass_specs[IonTy_v][0])/H_v;
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Rt_Fac_v = 2 /(rf_ohmega_freq * sqrt(mass_specs[IonTy_v][0 
B_Fac_v = 2 * active_q/mass_specs[IonTy_v][0]; 

mass_charge = ElecChg_C/(AmuToKg_C*mass_specs[IonTy_v][0]); 
Idx v -  0;

do
{

csnT[Idx v] = cos(Idx_v*rf_ohmega_freq*H_v); 
sinT[Idx_v] = sin(Idx_v*rf_ohmega_freq*H_v);

} while (++Idx_v<=MxStps_v);
I d x v  = 0; 
do 
{

mas_v = mass_start+(Idx_v * scan_interval_amu 
V volt = mas_v * scale_factor_v ; 
textBox V->T ext = Convert: :ToString(V_volt); 
textBoxV->Update();
U volt = (uv_ratio * V volt * scale_factor_u) - dc_offset; 
textB oxU->T ext = Convert: :ToString(U_volt); 
textBoxU->Update();
B_v = mass_charge*V_volt;
A_v = (U volt * B_v)/V_volt; 
pass_update_flag = false; 
fail_npdate_flag = false;
Ix2_v = 0;
if ((Rnd l + mass_specs[IonTy_v][0]) > Safe_C)
{

if (ion_phase_mode == PHASE_FIXED_START) Rnd l = 0; 
else Rnd l = static_cast<int>(20000 * Ran2_Rnd(&du__v));

}
if  ((Rnd 2 + mass__specs[IonTy_v][l]) > Safe_C)
{

if (ion_phase_mode == PHASE_FIXED_START) Rnd_2 = 0; 
else Rnd_2 = static__cast<int>(20000 * Ran2_Rnd(&dn_v));

}
lo n C o n v  = 0; 
do
{

float X  =0;
if (trajectory flag == false)
{

Xp_v = x_p[Rnd_2] + ion offset x ;
Yp_v = y__p[Rnd_2] + io n o ffse ty ;
Yp_v_old = Yp_v;
Wx_v = vx[Rnd_2]*Rt_Fac_v;
Wy_v = vy[Rnd_2]*Rt_Fac_v;
R nnS tpsv  = int(Step_F acv /vz  [Rnd_2] ) ; 
vz_start = vz[Rnd_2];
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}
else
{

if(ion_phase_mode == PHASESET)
{

double tmpphase;
tmpphase = Convert::ToDouble(textBoxIonPhase->Text); 
tmpphase = D Pi* tmpphase/360; 
snjp[Rnd_l] = sin(tmpphase); 
cs_p[Rnd_l] = cos(tmpphase);

}
else if (comboBoxSelectParameter">SelectedIndex = -  ION_PHASE) 
{

double tmpphase;
tmpphase -  Convert: :ToDouble(ion_phase); 
tmpphase = D Pi* tmpphase/360; 
snjp[Rnd_l] = sin(tmpphase); 
cs_p[Rnd_l] = cos(tmpphase);

}
sinphistart = sn_p[Rnd_l]; 
cosphi_start = cs_p[Rnd_l]; 
xp_start = x_p[Rnd_2]; 
y p s ta r t = y_j)[Rnd_2];

Xp_Y = Convert: :ToDouble(textBoxPosx->Text);
Yp_v = Convert: :ToDouble(textBoxPosy->Text);
Wx_v = traj_start_para[3]*Rt__Fac_v;

Wy_v = traj_start_para[4]*Rt_Fac_v;
v zm ass  = traj_start_para[6]/(sqrt(mass_specs[IonTy_v][0]));
RunStps__v = int(Step_Fac_v/ti*aj_start_para[6]);
Rnd 1 = 0;

if(ionjphase_mode == PHASESET)
{

double tmpphase;
tmpphase = Convert: :ToDouble(textBoxIonPhase->Text); 
tmpphase = D Pi* tmpphase/360; 
sn_p[Rnd_l] = sin(tmpphase); 
cs_p[Rnd_l] = cos(tmpphase);

}
else
{

sn_p[Rnd_l] = traj_start_phi[0]; 
cs_p[Rnd_l] = traj_start_phi[l];

}
}
Stepldx_v = 0;
D e tec ty  = true;
Detect X = true; 
do
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{

cs_v = csnT[StepIdx_v]*cs_p[Riid_l]-sinT[StepIdx_v]*sn_p[Rnd__l]; 
sn_v = sinT[StepIdx_v]*cs_p[Rnd_l]+csnT[StepIdx_v]*sn_p[Rnd_l]; 
cs H V — cs_v * est “ sn_v * snt; 
cs_2H_v = cs_v * csd - sn_v * snd; 

if((trajectory_flag == tme && Detect y == tme) j| trajectory flag == 
false)
{

quad_field =
Get_F ield_Y (Xp_v, Yp_v,radius_rO_mtrs ,x_electi'ode_offset,y 

electrodeoffset);
Fly_v = (A_v-(B_v*cs_v))*quad_field; 
quad_field =
Get_Field_Y(Xp_v,Yp_v+(Hlf_H_v*Wy_v),radms_rO_mtrs,x
_electrode_offset,y_electrode_offset);
F2y_v = (A_v-(B_v*cs_H_v))*quad_field; 
quad_field =
G e tF ie ld Y  (Xp_v,Sqt_H_v*Fly_v,radius_rO_mti's,x_electro 
de_offset,y_electrode_offset);
F3y_v = F2y_v+(A_v-(B_v*cs_H_v))* quad_field; 
quadfleld  =

Get_Field_Y(Xp_v,(Yp_v+(H_v*Wy_v))+(Shf_H_v*F2y_v), 
radius_rO_mtrs,x_electrode_offset,y_electrode_offset);
F4y_v = (A_v-(B_v*cs_2H_v))* quad_field 
Yp_v = Yp_v + H_v*Wy_v +

S sq_H_v* (F1 y_v+F2y_v+F 3 y_v) ;
}

double ytemp; 
ytemp = Y p v ;
if ((Yp_v < -radius_rO_mtrs) || (Yp_v > (radius rO mtrs*( 1+ 
yelectrodeoffset))))

{
Detect y = false;
if(fail_trajectory_flag ~== tme && results_file_flag == tme)
{

if(fail__update_flag == false)
{

trajfile =
Write_HdrIonSource_File(outfiledonfile,parl,p
ar2);
fa ilu p d a te flag  = tme;

}
Write_IonS ourceF  ile(traj file,MODE_F AIL) ;

}
}
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else
{

Wy_v = Wy_v +
Sxt_H_v*(F 1 y_v+2*F2y_v+2*F3y_v+F4y_v);

}
if((trajectory_flag == tme && Detect x == tme) || (trajectory_flag == 
false && Detect v === tme))

{
quad_field =
Get_Field_X(Xp_v,Yp_v_old,radius_rO_mtrs,x_electrode_off
set,y_electi”ode_offset);
FI XV = (A_v-(B_v*cs_v))*quad_field; 
quadjdeld =

Get_Field_X(Xp_v+(Hlf_H_v*Wx_v),Yp_v_old,radius_rO_m 
trs,x_electrode_offset,y electrode_offset);
F2x_v = (A_v-(B_v*cs_H_v))*quad_field; 
quad_fleld =
Get_Field_X(Sqt_H_v*Flx_v,Yp_v_old,radius_rO_mtrs,
x_electrode_offset,y_electrode_offset);
F3x_v = F2x_v+(A_v-(B_v*cs_H_v))*quad_field; 
quad field =

Get_Field_X((Xp_v+(H_v*Wx_v))+(Shf_H_v*F2x_v),
Yp_v_old,radius_rO_mtrs,x_electrode_offset
y_electrode_offset);
F4x_v = (A_v-(B_v*cs_2H_v))* quad field;

Xp_v = Xp_v + H_v*Wx_v +
Ssq_H_v* (F1 x_v+F2x_v+F3x_v) ;
if  ((Xp_v < -radius_rO_mtrs) || (Xp_v > (radius_rO_mtrs *
(1+ x_electrode_offset))))
{

Detect V = false;
D etectx  = false;

if(fail_trajectory_flag == tme && 
results_file_flag == true)

{
if(fail_updatejElag = -  false)
{

trajfile =
Write_HdrIonSource_File(outfile,
ionfile,parl,par2);
fail update flag = tme;

}

Write_IonS ource_F ile(traj file,M ODEF AIL) ;
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else
{

Wx_v = Wx_v + Sxt_H_v*(Flx_v+2*F2x_v+2*F3x_v+F4x_v); 
Yp_v_old = Yp_v;
if (trajectory flag == true && results file flag == true)
{

Write_Trajectory_File(outfile); //Write if ion still valid
}

}
}
if(trajectory_flag —  TRUE)
{

plot_update();
}

} while ((++Stepldx_v < RunStps v) && ((Detect v &&
trajectory_flag == false)|| (trajectory_flag == tme && (Detect x || 
Detect_y))) );

Xp_v = Xp v - det_offset_x;
Yp_v = Yp_v - det_offset_y; 

if ((Detect_v) && (((Xp_v * Xp_v) + (Yp v * Yp_v)) < 
exit_areaouter_mtr2) &&

(((Xp_v * Xp_v) + (Yp_v * Yp_v)) > exit_areainner_mtr2))
{

Ttl_v[Idx_v]++; // ion reached detector
if (pass traj ectory flag == tme && results file flag == tme)
{

if(pass_update_flag == false)
{

trajfile = Write_HdrIonSource_File(outfile,ionfile,parl,par2); 
passu p d a teflag  = tme;

}
Write lon S ource Fi le (traj file,MODE PAS S) ;

}
if  (exit file flag == tme && results file flag == tme && Idx v = 0 )

{
W riteE xitV  alues_F ile(outfile,Xp_v, Y p_v, Wx_v,Wy_v, vz_start) ;
}
}

Rnd_l++; Rnd_2++; 
if(Rnd_l > Num C Rnd)
{

Rnd_l == 0;
}

} while (++IonCou_v < mass_specs[IonTy_v][l]);
Application: ;DoEvents();

int X = Ttl_v[Idx_vj;
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if(histogram_flag == true && trajectory_flag == false)
{

histogram_update(Idx_v, x);
}
if((Idx_v% 2) == 0)
{
}
if  (IonTy_v == (num beriou types-1 ))
{

if  (trajectory flag == false && results file flag == true) 
{

Write_Results_File(outfile) ;
}

}
if (m asssteps ==0)
{

++Idx_v;
}

} while ((++Idx_v <= mass_steps));

update_count++;
} while ((++IonTy_v < number ion typ es)) ; 

para_count++;
if(parametric_flag == true && para mount > para steps)

{
ru n flag  = false;

}
else if (parametric flag == false)
{

run flag = false;
}

}
return (error);

}
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Appendix C RGA specification as supplied by The Vacunm Science Group.

1. Minimum of 2 filaments

2. Low Outgassing Ion Source (XHV materials and preparation)

3. Minimum of 50amu although lOOamu is more desirable and 200amu is our 

standard but thinking is that this could be relaxed.4.Degas function that allows user 

to input power settings and dwell time (as well as recommended settings)

5. Simple diagnostic feature that removes gas phase ions and only allows BSD ions 

thorough to the collector.

6. Analogue Scan with full control of mass range and pressure range

7. Leak chase mode

8. Multitrend/peak jump

9. Bakeable to at least 25OC

10. Some level of operation while at temperature thus requirement for a bakeable 

cable

11. Minimum detectable partial pressure, noise free! (minimum of le-12mbar but 

ideally down to le-16mbar)

12. Uses a 2.3/4 inch connection flange

13. Ideal operation can be achieved without the need for an increased bore size on 

housing.

14. Software to be very simple to use at the top level while underneath more complex 

functions can be performed

15. VG Gas style calibration and tuning functions

16. MKS style feedthrough which is intrinsically safe against damage

17. A functional data storage facility, with stiaightforward recall and replay - 

preferably with a clock feature to enable timescales to be readily assessed.

18. Option for XHV preparation and assembly of all in vacuum components (vac 

fire, clean room, pre-bake sub assembly etc..)

19. When scanning peaks, the readout should plot peaks solidly, not trace an outline; 

otheiivise it's really quite hard to read the plot.

20. Offer of provision of elbow for housing with optional fitted and self regulated 

heating system.

21. An automatic tuning system would be good if it was reliable!

22. Selected Icons chosen/designed to reflect what the button actually does - most are
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random!

23. Spare filament set as part of a new package

24. Filaments to be easily replaced.

25. Choice of filament materials

26. Resolution to allow identification of CO from N2 at 28amu.
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Appendix D Additional ECU control functions to support research.

1. Operator control of instrument resolution.

2. Ability to change RF frequency easily

3. Operator control of the mass step increment size.

4. Provision for pole bias.

5. High speed gating circuit to support phase control of ion injection to QMF.

6. Support both faraday cup and electron multiplier detectors.

7. Facility to easily switch between Faraday cup and electron multiplier ion 

detectors.

8. Two channel RF drive to support investigation into phase errors between x 

and y electrode drive. This facility can also be used to support investigation 

of asymmetrical x  and y  electrode drive.

9. Auto-ranging electrometer amplifier(s).

10. Ability to support series tuned coupling or transformer coupling of QMF.
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Appendix E QMS test equipment

Pressure sensor Oerlikon Leybold Model ITR90

and Centre one display unit 

Rotary vacuum pump Edwards model E2M 1.5

Turbomolecular pump Pfeiffer Balzers TMH

Turbomolecular controllers Pfeiffer Balzers DClOO turbo controller

and DCUlOO display

QMF ro = 0.9 mm, length = 100mm custom manufactured.
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Appendix F Vacuum flange connector signal pin allocation.

Electron
Ion source repel 1er multiplier bias
(filament common) voltage

Ion source 
filamentRF electrodes (X)

f .

Ion source 
cageRF electrodes (Y)

Ion source 
Focussing lensNo connection No connection
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