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Abstract

Abstract
Roughly one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana” — 
a disease caused by Tiypanosoina parasites similar to those that cause human “Sleeping- 
Sickness”. Laboratory mice can also be infected by trypanosomes, and different mouse 
breeds show varying levels of susceptibility to infection, similar to what is seen between 
breeds of cattle. We have applied next-generation technologies to identify shared 
polymorphisms between susceptible mice, and annotated these for potential function 
alongside publicly available SNP data sets. By so doing, short lists of genes at the QTL 
have been created to aid functional testing in cattle. This includes two promising 
‘candidate genes5: Praml and Cd244b which can now be tested to confirm their effect on 
response to trypanosome infection.

The human-infective parasite Trypanosoma bmcei rhodesiense generally causes an acute 
form of “sleeping sickness55 across Eastern Africa, compared to the more chronic T. b. 
gambiense infections found in Western Africa. The 1988—1993 Ugandan T b. rhodesiense 
outbreak constituted infections by parasites with differences in their clinical 
manifestation. Two such subtypes, termed Bnsoga 17 (B17) and Zambesi 310 (Z310), 
caused more acute, and more chronic infections, respectively. In order to investigate 
whether the major QTL that regulates survival in T congolense infections {Tirl) does so 
in a similar manner in T b, rhodesiense, mice congenic for the C57BL/6 allele (TirlCG) 
at Tirl were infected with Z310 and B17 zymodeme T b, rhodesiense parasites. Whilst 
Tirl was not found to have a significant effect on survival, all mice had a significantly 
shorter mean survival time when infected with B17 (~10.7 days) than those infected 
with Z310 (~15.6 days), in line with previous observations of human infections.

In order to identify genetic loci that might underlie differences in virulence between 
T b. rhodesiense zymodemes, cluster analysis was performed on the microsatellite 
genotypes of 31 T b. rhodesiense isolates that represented nine different zymodemes. 
Despite STRUCTURE identifying three population clusters, the Z310 and B17 
parasite populations could not be distinguished, suggesting that either multiple genes 
control virulence, that there is gene flow between similar parasite populations, or that 
the micro satellite genotyping is insufficient to distinguish between different parasite 
populations.

Finally, we present the first whole-genome sequences of T b. rhodesiense field isolates, one 
each of Z310 and B17. Genomic analysis of east African T b. rhodesiense and west 
African T b. gambiense has suggested that recombination may be occurring between 
them. SNP genotyping of 32 T b. rhodesiense isolates showed that differences in clinical 
phenotypes were associated with differences in alleles on chromosome 8. The genome 
sequence suggests that chromosome 8 is heterozygous for alleles of west African origin 
in the more virulent strain, suggesting that recombination may be associated with 
parasite virulence. This suggests that the human subspecies of T bmcei are not 
genetically distinct, which has major implications for the control of the parasite, the 
spread of drug resistance and understanding the variation in virulence and the 
emergence of human infectivity. Further genetic analysis of T b. bmcei populations from 
Western, central and Eastern Africa may be necessary to ascertain whether 
recombination is occurring directly between human-infective subspecies, or in the 
underlying animal-infective population.
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Chapter One: Introduction

Chapter One: Introduction

African Trypanosomiasis is a neglected disease that has a wide-ranging impact across 

sub-Saharan Africa [1, 2]. The causative agents, the trypanosomes, are parasites from 

the Kinetoplastida order of protozoa, so-called due to the presence of a distinctive 

structure, the kinetoplast, situated within the single mitochondrion at the base of the 

flagellum [3]. The Kinetoplastida order also includes the closely-related Ldshmania 

genus, that causes a range of diseases in tropical regions [4].

The molecular phylogeny of trypanosomes

Mammalian trypanosomes are split into two groups based on the location of their 

development within their insect vectors: the Stercoraria develop in the midgut or the 

hindgut (e.g. T. cmzi develop in both the midgut and hindgut of the triatomine bug); the 

Salivaria develop in the midgut and/or salivary glands (e.g. T. bmcei develops within the 

midgut and salivary gland of the tsetse fly).

A study of the sequences of 34 small subunit (SSU) rRNA sequences from different 

isolates of Tiypanosoma suggested an ancient separation into five distinct clades that 

correlated with host/parasite co-evolution (Figure 1.1; [5]). Salivarian trypanosomes 

split from the other trypanosomes approximately 500MY ago, possibly linked to a 

common ancestor developing the antigen-switching strategy to survive for long periods 

within the mammalian bloodstream. Fish and amphibian trypanosomes appear to have 

split from their bird-infecting counterparts some 130MY ago, although there is evidence 

for some host-switching having taken place [5].

Trypanosomes exist in both intra- and extra-cellular forms in a wide range of species, 

including man [6]. Fortunately, few species are human-infective: Firstly, Tiypanosoma 

cmzi causes “Chagas Disease” across South America [7]; Secondly, two subspecies of 

Tiypanosoma bmcei cause Human African Trypanosomiasis (HAT), commonly termed 

“Sleeping Sickness” [8].
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Chapter One: Introduction

Three species of African trypanosome are medically and economically important: the 

two human infective sub-species of T. brucei’. T. b. gambiense and T. b. rhodesiense, and the 

major animal infective species: T. vivax and T. congolense [6]. All medically important 

African trypanosomes are transmitted via the bites of different subspecies of infected 

Tsetse flies (genus Glossina). Table 1.1 shows a list of the principle African trypanosomes 

that infect man, other primates and wildlife. Indicated are the species of the parasite, 

mode of transmission (and associated vector) and host species.

Figure 1.1: Molecular phylogeny of Trypanosoma based on SSU rRNA sequence data. 
Phylogenetic tree represents a neighbour-joining tree of SSU rRNA sequences for 34 
Trypanosoma species and sub-species. Five clades are represented with high bootstrap 
values. Reproduced with permission from Haag et al (1998) [5].

2
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Chapter One: Introduction

Animal trypanosomiasis: “Nagana”

African animal trypanosomiasis affects over ten million square kilometres of Africa and 

some thirty percent of Africa’s 160 million cattle are at risk of infection. Some species of 

African trypanosome cause potentially fatal disease, such as T. simiae in pigs [14], T. 

evansi in camels [15], and T. b. rhodesiense in cattle [16]. T, vivax and T. congolense also 

cause significant disease in livestock, whereas T. brucd brucei, causes mild symptoms, or is 

asymptomatic [17, 18].

Keeping livestock, and cattle in particular, provides many benefits for rural Africans. 

Cattle are not only used for milk and food, but also aid crop production as they provide 

power for ploughing, manure and transport [Reviewed [19]]. The symptoms associated 

with animal trypanosomiasis to susceptible livestock include weight-loss, anaemia and 

cachexia. As such, as the disease renders the animals unsuitable for these uses, the losses 

associated with unproductive livestock and decreases in crop production are estimated 

at over $1 billion per annum [20, 21]. It has been estimated that a six percent reduction 

in disease in livestock equates to the ability to feed an additional 250 million people 

[14].

Human African trypanosomiasis: “sleeping sickness”

The two human infective T. brucd subspecies, and a third animal infective form, are 

morphologically identical. They follow similar life cycles in the insect and mammalian 

hosts but cause three distinct diseases. Tiypanosoma brucd hmcd, as described above, can 

be found across Sub-Saharan Africa and is not human infective. Secondly, Tiypanosoma 

brucd gambiense can be found in Western and Central Africa and represents 

approximately 90% of reported cases of sleeping sickness in humans. This parasite 

causes a chronic infection and can take months or even years to develop into an 

advanced stage [6]. Molecular studies have revealed two sub-types of T b. gambiense: 

Type 1 is genetically distinct from other T. bmcd subspecies whereas Type 2 T. b. 

gambiense is more similar to T b. brucd [22]. Thirdly, Tiypanosoma brucd rhodesiense 

represents around 10% of reported cases in humans and causes an often acute disease 

that rapidly develops into an advanced stage [23]. It is found in Eastern and Southern
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Africa, where incidences are increasing, particularly in endemic countries such as 

Uganda [24].

Human African trypanosomiasis (HAT) affects more than 36 countries across Sub- 

Saharan Africa wherever tsetse flies are present. Figure 1.2 shows a map of the 

incidences of HAT in 2009 [2]. Thought to have been almost eradicated in the 1960s, 

the World Health Organization now estimates that there are around half a million cases 

of disease each year, killing around 66,000 people and disabling 100,000, thanks in part 

to a lack of new treatments and the difficulties associated with treatment in war-torn 

areas [21]. Epidemics are now re-emerging in countries such as the Democratic 

Republic of Congo [25]; Sudan [26]; Uganda and Tanzania [2, 27].

The Atlas of human African trypanosomiasis (2000-2009): progress status Africa
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Figure 1.2: A map showing incidences of HAT (or “Sleeping Sickness”) between 2001- 
2009. Red circles represent the “Western” T. b. gambiense-mediated and blue circles the 
“Eastern” T. b. rhodesiense-mediated sleeping sickness. Map reproduced from Simarro 
(2010); © World Health Organization/Food and Agriculture Organization of the United 
Nations [2].

5



Chapter One: Introduction

The life cycle of the African trypanosome

A schematic depicting the trypanosome life cycle is shown in Figure 1.3. After 

inoculation by an infected tsetse fly (1), disease onset (also termed “early stage” or “stage 

1 disease”) is represented by long-slender trypomastigotes developing and multiplying 

within the blood, lymph and subcutaneous tissues (2-3). Some of these diverge to a 

morphologically-similar form, the short-stumpy trypomastigote (4), which is insect- 

infective. During this stage, further tsetse flies can become infected if the host is bitten 

(5). The short-stumpy forms thereafter transform into procyclic trypomastigotes within 

the midgut of the tsetse, wherein they undergo further replication (6). Subsequent 

migration to the insect salivary gland is accompanied by transformation to the 

epimastigote form (7) and mammalian-infective metacyclic trypomastigotes (8).

Tsetse fly Stages Human Stages
Eponastigote* multiply 
m taiivaiy gland They 
transform into metacyclic 
trypomastigoteso

Procycbc tryposmastigotes 
leave the muJgut and transform 
into epimastigotes

Bloodstream trypomastigotes 
transform *ito procycbc 
trypomastigotes m tsetse fly's 
rmdgut Procychc tryposmatigotes 
multiply by binary fission

O Tsetse tty takes 
a Wood meal

mrtacycfec trypomartgotet) Injected metacyclic. 
trypomastigotes transform 

£) *>to bloodstream
trypomastigotes which 
are earned to other sues

Trypomastigotes multiply by 
binary fission m various 
body ftmds e g . blood

Infective Stage 
Diagnostic Stage

Figure 1.3: Life cycle of Trypanosoma brucei ssp. showing the insect and human stages. 
Image reproduced from the US Centre for Disease Control Department of Parasitic 
Diseases.

Disease and symptoms

If left untreated, the parasites eventually cross the blood-brain barrier to infect the 

central nervous system. In T. b. rkodesiense infections, this can occur as quickly as 

between three weeks to two months after initial infection, or can take up to several years 

in the case of T. b. gambiense [28]. It is at this stage (often termed “late stage” or “Stage 

2” disease) where neurological symptoms can develop, including lethargy, lack of
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coordination and the inverted sleep pattern that gives the disease its name. Patients tend 

to die in coma from heart failure, malnutrition or from secondary diseases [29, 30].

As trypanosomes have evolved alongside several host species, some hosts exist in which 

no quantifiable symptoms manifest [31]. This presumably increases the likelihood of 

transmission as the parasites survive for longer inside the bloodstream, increasing the 

chance of being taken up by the vector at its next blood-meal. This is of particular 

significance to the zoonotic T. b. rhodesienseb which also infects wild animals (e.g. antelope 

and boar), and livestock (e.g. domesticated pigs and cattle) in which it shows few 

symptoms [32]. As such, this represents a problem in East Africa where humans and 

animals live in close proximity. This increases the likelihood of animal to human 

transmission and underlies the problem in controlling the disease as all vectors and 

potential hosts need to be monitored and/or treated [33, 34].

Immune response and antigenic variation

As trypanosomes are extra-cellular parasites, they are constantly under attack from the 

various components of the host immune system. Studies using the mouse model have 

shown that during early infection, trypanosomes initiate the innate immune response 

through the triggering of pattern recognition receptors (such as the toll-like receptors) 

that, in turn, signal for the production of inflammatory cytokines such as tumour 

necrosis factor alpha (TNFa), interferon gamma (IFNg) and nitric oxide (NO) [35] [30]. 

Triggering the IFNg [36] and TNFa [37] cytokine responses, confers a growth 

advantage to the parasite, despite TNFa having a trypanolytic effect [38].

The parasite’s primary form of defence relies on the expression of a variant surface 

glycoprotein (VSG), which creates a coat that acts as a physical barrier to attack by the 

adaptive immune system. Whilst the mammalian hosts produce specific antibodies (IgG, 

IgM) against this coat, the parasite has two associated evasion strategies: Firstly, the 

parasites are able to internalise and recycle the VSG on the surface, removing attached 

antibodies as it does so [39]; Secondly, they are able to shed the original coat and 

change the expressed VSG gene [40]. Taking place once in every approximately 100 

generations, this process occurs through recombination with a catalogue of several 

hundred 'silent5 gene components located around the genome [41, 42]. The parasites
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that carry an antigenically distinct coat avoid targeting whilst the older generations are 

removed, which gives rise to ‘waves’ of parasitemia as shown in Figure 1.4.

Importantly, animal-infective trypanosomes are unable to infect humans due to the 

presence of a ‘trypanosome lytic factor’ (TLF) in human serum. TLF is present in the 

host plasma and is a minor component of the high-density lipoprotein, made up of three 

proteins: apolipoprotein A (APOA), apolipoprotein L-I (APOL-I), and haptoglobin- 

related protein (HPR). TLF has been further characterised to consist of two forms: 

TLF-1, made up of HDL-bound APOA-I, APOA-II and HPR; and TLF-2, which is 

made up of an APOA-I/HPR/IgM complex [43]. APOL-I (and the associated TLF-1) 

is arguably the more important molecule for immunity. It is endocytosed by the 

trypanosome whereupon it disrupts the lysosomal membrane, releasing the contents 

into the cytoplasm and triggering auto-lysis [44]. The role of TLF-2 in vivo remains 

controversial: Whilst Raper et al have suggested that TLF2-based haptoglobin may be 

the main anti-trypanocidal molecule [45], studies have observed a reduction in lytic 

activity with increasing levels of TLF-2 [46] [Reviewed [47]]. Nevertheless, both of the 

human-infective forms of the parasite have evolved independent mechanisms to evade 

these processes, and thus infect man: Details of the process in T. b. gambiense are 

becoming clear, being due to the reduced expression of the haptoglobin receptor and a 

corresponding reduced uptake of TLF-1 [48]. 71 b. rhodesiense has evolved the “Serum 

Resistance Associated” (SRA) gene, which appears to have been derived from a VSG 

gene [49, 50], and works by binding APOL-I [51]. Interestingly, baboons are resistant 

to human-infective parasites (Table 1.1) due to the presence of a specific two amino- 

acid motif that renders SRA unable to bind to their version of APOL-I [52].

Treatment and prevention

Whilst a number of drugs are available to treat the disease, the type of drug used and 

their efficacy are largely dependant on the form of the disease (i.e. either 71 b. gambiense 

or 71 b. rhodesiense) and whether the parasites are present in the bloodstream or in the 

CNS. The five drugs listed in Table 1.2 are the most wide-spread, each with a 

particular target in terms of strain and stage of infection.
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Table 1.2: Drugs available for HAT treatment and their use in the different forms of the 
disease (Adapted from [53]). T. b. g. = T. b. gambiense; T. b. r. = T. b. rhodesiense.

Drug First
Marketed

Disease targeted Stage of 
Disease

Notes

Pentamidine 1937 T. b. gambiense Stage I Treatment failures
Suramin 1922 T. b. rhodesiense Stage I

Stage II
Can be used for T.b.g. 
but not 
recommended

Melarsoprol 1949 T. b. gambiense
T. b. rhodesiense

Stage II Treatment failures 
2-12% mortality

Eflornithine 1981 T. b. gambiense Stage II Large dose required. 
Difficult to administer

Nifurtimox 1960 T. b. gambiense 
(T.cruzi)

Stage II Treats Chagas disease; 
Not approved for
HAT. Effects on T.b. r. 
unknown

If diagnosed early. Suramin and Pentamidine are the drugs of choice, as they have 

relatively few side effects (there is a possibility of anaphylactic shock with Suramin). Late 

stage treatment is more complicated due to the drug having to cross the blood/brain 

barrier. Melarsoprol, an arsenic-based drug that inhibits parasite glycolysis, was, until 

recently, the only drug available for this, however it has significant risk of side effects 

[54]. Furthermore, there are signs of resistance to it in Central Africa [55],

Drug production, transport, storage and administration remain a major hurdle in the 

fight against HAT. Pharmaceutical companies had planned to halt production of anti- 

trypanosomatid drugs, however the WHO and Medecins Sans Frontiers campaigned 

against this, and secured a five-year, $25 million commitment from Aventis and Bayer 

to supply these five drugs over five years, ending in 2006 [6].
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Chapter One: Introduction

Due to the difficulties of treating the disease after infection and of immunising against 

Sleeping Sickness, the primary focus is on HAT prevention and therefore targeting the 

vector, the tsetse fly. Reducing the number of potentially infective flies in the wild is 

aided by the unusual life-cycle of tsetse - they are relatively slow to reproduce and lay 

larvae, commonly in ground-based leaf-litter. This renders them particularly susceptible 

to insecticides: the easiest and cheapest control programmes utilise pyrethroid-based 

insecticides on the ground, on odour-baited nets, or on cattle [57]. Additionally, sterile 

insect technique (SIT), previously used to control New World Screwworm in North 

Africa, Mexico and Central America, has been adapted to the tsetse fly, and has shown 

some positive results on G. austeni on Unguja island near Zanzibar [58]. SIT involves 

irradiating male flies, rendering them sterile, and releasing them into the wild to mate 

with the wild-type, female population, resulting in fewer offspring being born, however 

is only particularly useful after the application of more conventional techniques have 

already significantly reduced the population size. Nevertheless, simpler techniques such 

as the trapping of tsetse flies in nets and the spraying of insecticides (Figure 1.5) are 

more commonplace as they are relatively inexpensive, it is easier to transport and 

supply the necessary equipment and to train people in their effective use [59].
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Figure 1.5: Vector control in sub-Saharan Africa. The image on the left shows tsetse 
nets being laid out and set-up; top-right shows a helicopter spraying insecticides; 
bottom-right shows caught tsetse flies. Images are provided courtesy of the Wellcome 
Trust.
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Trypanosome genetics 

Genome structure

The genome of the trypanosome is split into two distinct “units”: the nuclear and the 

kinetoplast, or mitochondrial, genome. The nuclear genome is approximately 35Mbp in 

length and can be categorized into three sets of chromosomes based on broad size- 

ranges from their migration pattern in a pulsed field gel: The largest “megabase” 

chromosomes (l-6Mbp); The intermediate chromosomes (200-900Kbp) and the 

smallest “mini” chromosomes (50-150Kbp) [60],

At the time of publishing in 2005, the T. b. brucei genome sequence (GeneDB; version 3) 

had a total of 9068 putative annotated genes, 908 of which were related to VSG 

production [42, 61], A further 907 pseudogenes have also been annotated, although 

the traditional term ’pseudogene' perhaps doesn't apply to trypanosomes; Defined as: "A 

DNA sequence that was derived originally from a functional protein-coding gene that 

has lost its function" [33] it has been suggested that modular recombination can allow 

parts of these genes to come together to form new versions of existing "active" genes, 

rendering them immensely variable and less “inactive” than the classical definition 

suggests [62],

Megabase chromosomes

T. brucei ssp have 11 pairs of diploid chromosomes >lMbp in length (termed 

“megabase” chromosomes). The architecture of the chromosomes has been shown to be 

similar to that of other lower eukaryotes, sharing the same “three-tier” organisation of 

genes: a central core of housekeeping genes, proximal sub-telomeric domains 

containing species-specific genes and distal sub-telomeric domains containing variable 

surface glycoprotein (VSG) expression sites. Indeed, whilst most chromosomes have 

been shown to have differences along the length of the alternative homologues, the 

greatest variability in homologue diversity has been shown to occur at these sub- 

telomeric ends, presumably due to the necessity for the recombination associated with 

antigenic variation [63-65].

Unusual to T. brucei is the organisation of the genes along the chromosomes into 

“directional gene clusters” [66]. These regions are long stretches of coding sequences
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along the same DNA strand separated by “strand-switch regions” [67]. As such, 

transcription in trypanosomes, mediated by RNA polymerase II, is polycistronic: 

hundreds of genes are co-transcribed and then regulated post-transcriptionally 

[reviewed [68]].

Small and intermediate chromosomes

The small "minichromosomes" (~100x; 10-20% of the total genome) predominantly 

consist of an interior, tandem array of 177-bp repeats and the same (TTAGGG)n 

telomeric repeats shared with the largest chromosomes. It has been suggested that the 

presence of these, plus VSG or VSG-like elements, may have a role in antigen­

switching through interaction with the other copies on the main chromosomes [69]. 

There are also several intermediate chromosomes of uncertain ploidy, which vary in 

number and size depending on the strain. These have been also shown to contain VSG- 

like sequences and so may play a similar antigen-switching role to their smaller 

counterparts [70].

The kinetoplast
Contained within the single mitochondrion, the kinetoplast is arranged as a complex 

network of interwoven, circular kDNA and makes up around 20% (lOMbp) of the total 

DNA content of the organism. There are two types of these circles: minicircles (0.6- 

5.OK bp) and maxicircles (~22K bp), together encoding similar products to those of 

standard mitochondrial DNA in higher eukaryotes, including rRNAs and respiratory 

complexes [71]. Additionally, maxicircles also contain a number of so-called 

"cryptogenes" whose mRNA transcripts are edited from genes that initially don't have 

enough information to encode their respective proteins, to ones that can. This is 

achieved via a process directed by a set of guide (g)RNAs contained predominantly on 

the minicircles [7 2].
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Population structure

Monitoring T. brucei epidemics since 1900 has revealed changes between and within the 

causative subspecies of the particular outbreak. Certainly early outbreaks of chronic 

Ugandan T. b. gambiense gave way to acute T. b. rhodesiense after treatment of the G. 

juscipes vector with insecticide [73], Nevertheless, pauses in said treatments allowed for 

subsequent re-emergence, possibly due to the spread from animal-based reservoirs of 

the disease that harboured the disease throughout a decline in tsetse numbers [74].

Understanding the epidemiology and population structure of sleeping sickness is 

therefore important to understand the problems underlying treatment, re-emergence 

and monitoring the possible spread of insecticide and/or drug-resistance throughout T. 

brucei populations. Understanding gene flow between populations, the spread of 

virulence and potential barriers to such spreading (such as gaps in geographical foci) can 

help inform clinicians treating the disease and scientists generate new models in aiding 

in its control [Reviewed [75]].

In terms of population structure, current knowledge suggests that 

T. b. rhodesiense is clonal. T. b. brucei is either panmictic, or epidemic in nature [76]. 

Smith had previously reported that T. b. rhodesiense structure may be epidemic with 

rapid and extreme expansions of particularly virulent sub-types [7 7].

Whilst genetic exchange is now widely accepted to occur during the insect salivary- 

gland stage of the life cycle of T. b. bmcei ssp., as proven by experimental mixed 

infections in tsetse [78, 79], its occurrence in natural populations remains a contentious 

issue, particularly for the human infective forms [80], but an important one due to the 

possibility of the spread of drug resistance [76], or the spread of human infectivity [81]. 

It has been shown that human serum resistance can be passed between stocks of T. b. 

rhodesiense and T. b. brucei by transfection of the SRA gene [82]. This raises the possibility 

that if T. b. brucei and T. b. rhodesiense interact, the larger genotypic diversity of T. b. brucei 

in the African wildlife and livestock population [83] could serve as a pool of potentially 

virulent genotypes, which could become infective to humans upon gaining the serum 

resistance trait [84].
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Differences in clinical presentation and severity of infection can be found amongst 

different south-Eastern Ugandan Trypanosomiasis foci [85]. Similar studies show that 

these differences can even exist sympatrically; Bailey and colleagues reported that HAT 

patients presenting to Ugandan medical clinics between 1987 and 1993 showed 

different clinical manifestations of T. b. rhodesieme infection. In this study, one set of 

patients presented with short clinical histories with early symptoms such as fever and a 

chancre at the site of the Tsetse bite; others presented later, due to a lack of initial 

symptoms, and had a more chronic disease onset with symptoms that were more 

HIV/AIDS-like, including a lack of co-ordination and general malaise [86]. The 

existence of differing forms of T. b. r/wG^m^mediated sleeping sickness has been 

previously documented: It was observed that the symptoms in rats infected with T. b. 

rhodesieme differed based upon the geographical location of the origin of the parasite, 

and concluded that those strains that are more infective in man (from former epidemic 

areas) develop more slowly with lower levels of parasitemia in the rodent model [87].

Furthermore, Bailey reported that differential symptoms could be attributed to different 

genetic forms of the disease, as detected by isoenzyme analysis. Isoenzymes, or enzymes 

of similar function with different isoforms can be used to classify strains according to the 

assessment of their mobility on a thin-layer starch gel. At least two studies have 

attempted to classify T. b. rhodesieme according to similarities in their multilocus enzyme 

electrophoresis (MLEE) patterns [88, 89]. Several patterns can be grouped together to 

form a ‘barcode5 that uniquely identifies an individual or a group of isolates, and 

similarly, zymodemes can be grouped together into ‘strain groups’; classically “Busoga” 

and ^^ambesi^ strain groups were identified from the regions where the zymodemes 

predominated. Little is known about the underlying genetic differences: T. bnwei 

genome sequences currently only exist for T. b, brucei strain TREU927 [42], and more 

recently, T. b. gambieme [90]. T. b. rhodesieme is now thought to be a host-range variant of 

T. b. brucei^ with the acquisition of the SRA gene, which confers human serum resistance 

on the parasite [122].
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Many studies have attempted to characterise the population structure of, and the 

occurrence of genetic exchange between, T. brucd subspecies [91]. Whilst strains of 71 b. 

rhodesiense have classically been characterised by MLEE [22, 89, 92], more recent studies 

have used neutral polymorphic markers such as micro- and mini-satellites to do so [93, 

94]. This has allowed a genome-wide approach to study similarities between isolates 

from the same, and between different foci. Certainly, it is known that 71 b. brucd isolates 

are much more genetically diverse than 71 b. gambiense, which displays little diversity 

across much of its geographical range [95]. Outbreaks of 71 b. rhodesiense in countries 

such as Zimbabwe, Tanzania, Malawi, Kenya and Uganda, have been recorded since 

the 1980s [32], each with distinct genotypes. Similarly, three different outbreaks in 

Uganda have been described as each having different genotypes [96].

Genetic exchange between 71 b. brucd and 71 b. rhodesiense is a possible cause for the 

increased genetic diversity of the latter [Reviewed [97]], the occurrence of which has 

been established in the laboratory setting [98]. Field isolates of 71 b. rhodesiense are more 

closely related to sympatric 71 b. brucd isolates than 71 b. rhodesiense isolates from 

elsewhere, although 71 b. brucd and 71 b. rhodesiense isolates from the same focus 

remained distinguishable by a single minisatellite marker [76, 99],

Project objectives and methodology
This project seeks to utilise the improvements in genomic technology to identify 

candidate genes involved in parasite virulence and host resistance to Tiypanosoma 

infections.

Identifying genes that regulate host response to trypanosomiasis

Some animals are tolerant to the African animal trypanosomiasis, remaining productive 

despite infection and maintain their body-weight and better control parasitemia. 

Symptoms in susceptible livestock include weight-loss, anaemia and cachexia, which 

render the animals unsuitable for farming. The local term for the animal 

trypanosomiasis — ‘Nagana5 - comes from the Zulu word for ‘depressed’ [100]. The 

wider introduction of trypanotolerant breeds of livestock, such as the West African 

N’Dama {Bos taww), have been suggested as a method of controlling the effects of the
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disease across Africa in place of vector control, or where drugs have been rendered 

ineffective by drug-resistance [101], Whilst indigenous cattle are thought to be as 

productive as their trypano-susceptible counterparts [102], the latter are favoured by 

African farmers, hindering efforts to introduce tolerant breeds and thus control the 

disease in high tsetse challenge areas [103].

Mapping this trait in cattle has revealed 19 QTL on 17 Bovine chromosomes in 

N’Dama and Boran crosses [104], The relationship between genotype and resistance to 

disease is complex, however, as resistance alleles were present in both breeds, suggesting 

that a synthetic breed involving alleles from both N’Dama and Boran would be more 

resistant than either parent [104].

Susceptibility and tolerance to Trypanosomiasis in the animal model

Scientists are aided in the identification of candidate genes and pathways by the 

presence of a mouse model of trypanotolerance. C57BL/6 mice are relatively resistant 

to the disease and survive for a relatively long period after infection with T. congolense 

strain IL1180 (110 days). Other strains are more susceptible, such as A/J (16 days), 

BALB/c (49 days) and C3H/HeJ (59 days) [105-107].

Generally, the major symptoms associated with experimental murine infections are loss 

of body weight, splenomegaly and hepatomegaly and anaemia, the latter of which is 

shared with both animal (eg. cattle) and human disease [108]. Anaemia during 

trypanosomiasis has been suggested to be due to the macrophage-mediated 

phagocytosis of both parasites and red blood cells [109], Trypanotolerance in cattle is 

associated with the ability to control the associated anaemia and thereby remain 

productive despite persistent infection, which suggests that tolerant animals are better at 

controlling the pro-inflammatory and cytokine responses with a corresponding anti­

inflammatory response [110].

Murine trypanotolerance has been shown to have a genetic basis, for which three QTL, 

7w7, Tir2 and Tir3 respectively for Tiypanosoma Infection Response> have been identified in 

crosses between resistant and susceptible inbred mice. Whilst the QTL regions have 

been reasonably well defined, moving from QTL regions to QTL genes remains a
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major challenge: A review by Flint et al suggested that, at the time of publication, over 

2,750 such quantitative trait loci (QTL) had been mapped in mice and rats but only 

twenty causative genes had been characterised [111]. A more recent search of the MGI 

database lists 3,963 QTL in mice (http://www.informatics.jax.org/; Accessed August 

2010). The murine QTL described here still contain several hundred genes, any one of 

which, either individually, or in combination may be driving the resistance or the 

susceptibility phenotype.

Genome sequencing

Sanger and colleagues first developed the chain-termination method of DNA 

sequencing, and applying them to sequence the first microbial genome — that of the 

bacteriophage phiX174 in 1977 [112]. Despite alternative methods having already been 

developed [113], “Sanger sequencing” has been the bedrock for subsequent genomic 

studies, including that of the human genome project, completed in 2003 [114, 115]. 

The T, b. bmcei TREU 927/4 sequencing project took several years to complete, using a 

chromosome-by-chromosome Sanger sequencing approach that involved separating the 

genome into its respective chromosomes and sequencing them individually. Whilst 

reducing the complexity of the assembly process by not having to assemble on a 

'genome-wide3 scale, this resulted in the intermediate and small chromosomes and the 

kinetoplast genome not being sequenced. The sequence of Type \ T. b. gambiense 

(DAL972) was completed in 2010 using a Sanger-sequencing whole genome shotgun 

sequencing strategy [90].

Next-generation, (or better ‘second-generation3 sequencing instrumentation, as higher- 

throughput technologies are currently being released to market) now exist that allow for 

the sequencing of genomes in less than one week, trading decreased time and cost for 

decreased read-length (the length of a single stretch of a sequenced DNA fragment) 

[116]. Next-generation sequencing is not without its problems. Early “Sanger- 

sequenced33 projects, such as that of the original T. b. bmcei genome, were achieved due 

to the availability of relatively long read lengths sequenced in pairs. Such 'paired-ends3 

allow for sequence assembly across repetitive regions due to the ability to anchor a read 

in ‘unique3 sequence, even if its mate is within a repeat. Next-generation sequencing 

technologies are more difficult to assemble ‘de-novo* in this way, as read-lengths are
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much shorter, and paired-ends are more difficult to achieve without large amounts of 

starting material (>10ug in some cases). The highest throughput capillary-based Sanger 

sequencing machines generally produce 96 reads every 100 minutes at read-lengths of 

between 500-800bp (http://www6.appliedbiosystems.com; Life Technologies website. 

Accessed October 2010), By comparison, at the end of 2010, the highest throughput 

sequencer available, the Illumina HiSeq 2000, generates around two billion reads in 8 

days at read-lengths of around lOObp (http://www.illumina.com; Illumina Inc. website. 

Accessed October 2010).

As such, many next-generation sequencing projects rely on a high-quality, often Sanger- 

sequenced, reference to which to map the sequence reads. Such ‘aligning5 allows for 

resequencing and SNP and small insertion / deletion (indel) discovery, but precludes 

the discovery of large-scale insertions and differences from the reference on which the 

data are based. Nevertheless, these technologies offer the opportunity to rapidly 

resequence isolates of the same strain of parasite, or even similar species and accurately 

identify differences between them. Whilst alignments such as those described are much 

faster and require less computer power, it is often preferable to assemble reads de now 

without the use of prior information as described as this imparts no bias on the overall 

outcome. The ability to sequence and assemble reads in this manner is, however, 

dependent on a number of considerations, such as the available computing power and 

the read-length obtained by the sequencing technology, as shorter read lengths tend to 

preclude de novo assembly [116]. Generally, however, the read-length of the given 

technology used often dictates the experiment, namely, in the presence of a reference 

sequence, an ABI SOLID or Illumina instrument (with a shorter read length, but 

greater output) might be chosen; in the absence of such a reference, a longer-read 

instrument such as the Roche 454 GS-FLX might be used.

These technologies can also be applied to the host: Several human [117] and mouse 

[118] genome sequences are already publicly available. The size of mammalian 

genomes requires a large amount of sequencing, even on next-generation sequencing 

instruments, with only the newest instruments able to generate an entire human 

genome in a single run. Technologies have also been developed to focus the large 

number of reads generated on smaller, targeted regions. So called ‘targeted- 

resequencing5 can be achieved by the amplification of specific regions by PCR [119] or
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Chapter One: Introduction

by preferentially capturing regions of interest on microarrays [120], and subsequent 

sequencing on a next-generation instrument.

Inference of population structure in differentially virulent isolates of 

T. brucei rhodesiense

Various methods have been developed to elucidate the population structure of sleeping- 

sickness due to the importance of understanding instances of re-emergence or the 

emergence of new virulent epidemics. It is clear that there is variability within and 

between sub-species of T. brucei, established by a number of molecular methods 

including MLEE [121], minisatellite genotyping [76], microsatellite genotyping or 

DNA sequencing (of the SRA gene) [122].

There are numerous software tools that can aid researchers in understanding the 

population structure derived from genotyping or sequence data. Arguably the gold 

standard is STRUCTURE [123], which uses a Markov chain Monte Carlo (MCMC) 

method: By iteratively increasing the predicted number of populations it can simulate 

data based on a number of prior assumptions and assess the similarity of genotyping 

datasets to the said model. In this manner, it can estimate the proportion of each 

individual’s genotype that is derived from each of a set of pre-determined number of 

populations (e.g. given six populations, whether an individual is made up equally of said 

six populations, or there is more bias towards any particular population). 

STRUCTURE, however, is known to falter given hierarchical datasets: predictions of 

the number of populations within datasets tends towards the lowest number of 

populations regardless of whether some sub-structuring is present in the data. For 

instance, given a set of two closely related subspecies, STRUCTURE may 

preferentially report two populations, whereupon further analysis would be required to 

reveal any further populations within the data. As such, methods have also been 

established to further identify the number of populations within STRUCTURE-derived 

datasets [124]. Balmer et al, used such methods to identify eleven populations present 

within T. bmcei subspecies across Africa, including several mixed populations of T. b. 

brucei and T. b. rhodesiense, lending further weight to the hypothesis that 77 b. rhodesiense is 

a genotypically varied host range variant of 77 b. bmcei [122]. Software also exists that 

negates the need for prior assumptions: BAPS (Bayesian Analysis of Population
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Structure) adds Bayesian statistics to MCMC to automatically identify the most likely 

number of populations [125].

Sympatric (samples from the same focus) zymodemes of T. b. rhodesiense have shown 

differential virulence in humans and mice. It may be possible to infer the population 

structure of different zymodemes from the 1980}s/early 1990’s epidemic in Uganda and 

identify genetic loci that underlie differences in virulence between zymodemes. 

Furthermore, as T. b. rhodesiense is thought to be a host range variant of the Sanger 

sequenced (and well finished) T. b. bmcei [42], the 71 b. rhodesiense genome should be well 

suited for next-generation sequencing and mapping against the reference strain.
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Chapter Two

The identification of candidate genes that may be 
responsible for regulating survival in mice after 
infection with Trypanosoma congolense strain IL1180

Abstract
About one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana” - a 

disease caused by Tiypanosoma parasites similar to those that cause human “Sleeping 

Sickness”. Laboratory mice can also be infected by trypanosomes, and different mouse 

breeds show varying levels of susceptibility to infection, similar to what is seen between 

different breeds of cattle. Survival time after infection is controlled by the underlying- 

genetics of the mouse breed, and previous studies have localised three genomic regions 

that regulate this trait. These three “Quantitative Trait Loci” (QTL), which have been 

called Tirl, Tir2 and Tir3a-c (for Tiypanosoma Infection Response T3a-c) are well defined, 

but nevertheless still contain over one thousand genes, any number of which may be 

influencing survival.

By systematically combining mapping in an additional susceptible breed, next- 

generation DNA capture and sequencing and SNP annotation we have developed a 

strategy that can generate a short list of polymorphisms in candidate QTL genes that 

can be functionally tested. Mapping loci regulating survival time after T congolense 

infection in an additional cross revealed that susceptible C3H/HeJ mice have alleles 

that reduce survival time after infection at Tirl and Tir3 QTL, but not at Tir2. Next- 

generation resequencing of a 6.2 Mbp region of mouse chromosome 17, which includes 

Tirl, identified 1,632 common single nucleotide polymorphisms (SNP) including a non- 

synonymous SNP in Praml (PML-RAR alpha-regulated adaptor molecule 1), which is 

an intracellular adaptor involved in T-cell signalling. The protein is important for 

neutrophil function and shares structural homology with adaptor proteins involved in 

integrin activation, which is essential in leukocyte adhesion and subsequent cytotoxicity 

and inflammation in response to infection. The non-synonymous SNP was predicted to 

be ‘probably-damaging’ and as such, Praml is the most plausible candidate QTL gene 

in Tirl.
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Introduction
Animal African trypanosomiasis in livestock is mainly caused by two species of 

trypanosomes: T. vivax and ‘T. congolense. The disease affects over ten million Km2 of 

Africa and it is estimated that some thirty percent of Africa’s 160 million cattle are at 

risk of infection. Losses of livestock and crop production are estimated at over $ 1 billion 

per annum [20].

Scientists are aided by a mouse model of trypanotolerance, as African trypanosomes 

also infect laboratory mice in which susceptibility is measured by survival time after 

infection, which varies between inbred lines. Whilst C57BL/6 mice survive for a 

relatively long period after infection with 7. congolense IL1180 (110 days), some other 

strains, such as A/J (16 days), 129/J (23 days), BALB/c (49 days) and C3H/HeJ (59 

days) mice are relatively susceptible [105-107]. Mapping studies, initially undertaken in 

two independent F2 crosses: C57BL/6J01aHSD (C57BL/6) x BALB/cOlaHsd 

(BALB/c) and C57BL/6JO!aHSD x A/JOlaHsd (A/J), identified three major QTL 

regulating survival time [126]. These were mapped to mouse chromosomes 17, 5 and 1 

and have been designated 7w7, Tir2 and Tir3 respectively for Trypanosoma Infection 

Response.

There are a number of strategies available for the high-resolution mapping of QTL, 

including backcrosses, recombinant inbred lines, congenic mice and advanced 

intercross lines (AILs) (Reviewed [111]). AILs, which are generated by first producing 

an F2 intercross from an initial FI parental cross and then randomly intercrossing for a 

number of generations, have been estimated to produce confidence intervals that are 

N/2 smaller than similar results from the F2 progeny (where £N’ is the number of 

additional intercrossed generations) [127]. Using this method, trypanotolerance loci 

were refined using F6 crosses between A/J and BALB/cJ strains with resistant 

C57BL/6J [128]. This reduced the size of the confidence intervals for Tirl to less than 

1 cM, and Tir2 and 77V7, to within 5-12 cM and resolved Tir3 into three smaller 

regions, termed Tir3a, Tir3b and Tir3c. These lines were subsequently extended to FI 2 

generations, in which the sizes of the 95% confidence intervals of each of the QTL were 

substantially reduced to between 0.9 and 7.2cM. [129].
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The refinement of candidate gene numbers through comparative 

genomics

The completion of the C57BL/6J mouse reference genome sequence in 2002 [130] 

provided a backbone on which subsequent comparative studies could be performed. 

Initially, research was restricted to comparison with other, finished, vertebrate genome 

sequences - predominantly the human genome, which had been completed in the 

previous year [114]. Advances in array-based resequencing technology (Affymetrix) 

allowed Perlegen to rapidly resequence the genomes of an additional fifteen inbred 

strains of mouse. The technology used, however, was limited to identifying discordant 

bases in 25bp probes at an equivalent of 1.5X coverage if performed by Sanger 

sequencing. As such, the Perlegen dataset of approximately eight million 

polymorphisms has been estimated to be about 45% complete [131].

The polymorphisms discovered were not randomly distributed across the mouse 

genomes. Regions of high and low single nucleotide polymorphism (SNP) density can 

be found in a comparison between any two strains as a consequence of the mosaic of 

ancestral genomes from which laboratory mice are derived: High SNP density 

occurring in regions where the two strains had distinct ancestors and low SNP density 

occurring in regions of common ancestry. It has been estimated that at any given 

position there are usually two ancestral haplotypes [132]. Perlegen made available a 

haplotype map showing breakpoints between haplotype blocks derived from different 

ancestral strains for each of the sixteen available genomes, alongside the SNP data 

(http://mouse.perlegen.com/mouse/index.html; Accessed August 2010).

By assigning genomic regions to different ancestral haplotypes, it is possible to identify 

those that reside within regions of similar ancestry across strains with similar phenotypes 

[133, 134]. For instance, in the case of trypanotolerance, with resequencing data from a 

number of susceptible breeds across Tirl, the QTL can be refined to regions of shared 

ancestry that are different to that of the resistant C57BL/6.
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Next-generation sequencing technologies

New sequencing technologies are now making it possible to identify a large proportion 

of the differences between common inbred mouse strains. At present this is possible for 

defined areas of the genome (so called “targeted resequencing”), but public data sets will 

soon be available for whole genomes. Currently underway is the Mouse Genomes 

Project at the Wellcome Trust Sanger Institute (http://www.sanger.ac.uk 

/resources/mouse/genomes), which is resequencing the whole genomes of seventeen 

key laboratory strains of inbred mouse utilising the Illumina (Solexa) GA sequencing- 

platform. Their first publication, in October 2009, coincidentally compared the A/J 

and CAST/Ei mouse chromosome 17 (which includes TirT) to the C57BL/6 reference 

sequence and identified candidate genes regulating triglyceride levels in the liver [135]. 

The benefits of large-scale resequencing are two-fold: Firstly, one can identify novel 

SNP that are shared between susceptible lines and that may have a functional effect and 

thus may be driving differences in phenotype; and secondly SNP density can be 

increased across one, or several, QTL so as to increase the resolution of haplotype block 

assignment to candidate genes.

Next-generation sequencing technologies are not without their problems, and are 

particularly susceptible to false-positives and negatives under regions of low sequence 

coverage. Technologies also have problems specific to the particular technology: The 

Roche/454 technology is pyrosequencing based, and as such cannot reliably predict the 

number of bases within a homopolymeric tract. Nevertheless, 454 sequencing benefits 

from having longer read-lengths than other second-generation sequencers (mean 

>400bp), which enables both de novo assembly and high-confidence alignment against a 

reference. The proprietary software distributed with the Roche/454 platform — 

Newbler — was specifically developed with this in mind, and is adept at dealing with and 

correcting for 454-sequencing problems associated with long homopolymeric tracts.
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Aims and Objectives
Despite the mapping of the three Tir QTL, there still remains >1000 genes within the 

predicted boundaries of the QTL, any number of which may underlie the response to 

infection with T. congolense IL1180. In order to reduce this number, it may be possible to 

apply next-generation sequencing technologies and SNP annotation to novel, and pre­

existing, publicly available, sequencing datasets to prioritise genes for subsequent 

functional testing, and to discount genes without significant polymorphisms.

Assuming that where QTL overlap in multiple susceptible strains, that this effect is due 

to shared polymorphisms, then the number of candidate genes within a QTL can be 

reduced through the removal of any genes in a susceptible strain that share a similar 

allele, or ancestral haplotype, with the resistant (C57BL/6) strain. Although it is known 

that CSH/HeJ mice are relatively susceptible to T. congolense infections [105], it is 

unknown whether this is due to the presence of the Tir QTL. To that end, we have 

mapped QTL in a C57BL/6 x CSH/HeJ cross so that we now know whether a total of 

four mouse strains carry either the susceptible or the resistant allele at each Tir QTL. 

Furthermore, we have sequenced one of the QTL regions in three additional strains of 

susceptible mice to identify SNP that correlate with phenotype and have used Polyphen 

to identify the non-synonymous SNP in the QTL regions that are most likely to alter 

the activity or function of a candidate gene. A fourth mouse strain, 129P3, was included 

in the resequencing to assess whether the Tir QTL should be mapped in that strain.

By combining the resequencing data with publicly available SNP, SNP density at Tirl 

can be increased so as to improve haplotype block assignment. Genes residing in 

haplotype blocks with similar ancestry to the resistant strain can then be removed from 

lists of potential candidates.
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Materials and Methods

Care and use of laboratory animals

All C3H/HeJ x C57BL/6 animal work was undertaken at ILRI, Kenya and was 

performed under IACUC ref no 2003.19. The ILRI IACUC complies voluntarily with 

the UK Animals (Scientific Procedures) Act 1986 that contains guidelines and codes of 

practice for the housing and care of animals used in scientific procedures. All animals 

on survival experiments were regularly monitored to check for signs of terminal illness, 

and any showing such signs were euthanised by UK Schedule 1 procedures.

Identification of the Tir QTL in C3H/HeJ mice 

C3H/HeJ x C57BL/6 cross

Peris Amwayi and Fuad Iraqi (ILRI, Kenya), performed the cross of C3H/HeJ x 

C57BL/6 mice and subsequent phenotyping as follows: C57BL/6JO!aHSD

(C57BL/6) and C3H/HeJ mice were obtained from Harlan Laboratories. Mice were 

infected with 4xl04 T. congolense strain IL1180 intraperitoneally (i/p) as previously 

described [126]. Any mice that did not develop a microscopically proven parasitaemia 

were removed from the study. 345 F2 C3H/HeJ x C57BL/6 mice were phenotyped for 

survival time after infection with T. congolense strain IL1180.

Genotyping of the C3H/HeJ x C57BL/6 cross

All markers used and associated primer sequences are listed in Appendix I: Table 1. 

PCR reactions were performed using Reddymix (Thermo) with 20ng of template DNA. 

Cycling conditions were as follows: 95°C, 50secs; [Tm -5]°C, 50secs; 65°C, 50secs; 30x 

cycles. PCR products, including negative controls, were resolved by ethidium bromide 

stained agarose-gel electrophoresis and visualised under UV-light. Microsatellite 

primers incorporated a 5’-fluorescent label, which enabled the accurate sizing of SNP 

on an ABI-3130XL capillary sequencer. SNP were genotyped by directly sequencing 

PCR products as follows: Unincorporated primers and residual nucleotides were 

degraded using ExoSAP-IT (USB Corp, Ohio, USA) and sequencing products 

generated using Big-Dye v3.1 terminators (Applied Biosystems, Foster City, USA).
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Cycle sequencing products were ethanol precipitated and electrophoresed on an 

Applied Biosystems ABI-3130XL capillary sequencer. Microsatellite and SNP 

genotyping data were viewed using PeakScanner (Applied Biosystems) and GAP4 [136] 

respectively. Mean survival for mice at each marker for each given genotype is shown in 

Appendix I.

Tirl, Tir2 and 77r3(a-c)

345 F2 C3H/HeJ x C57BL/6 mice were phenotyped for survival time after infection 

with T. congoleme strain IL1180 by Fuad Iraqi and Peris Amwayi at ILRI, Kenya. 

Choosing only the extremes of a phenotypic distribution for subsequent genotyping 

reduces genotyping costs with little loss of power to detect QTL, however it does give 

exaggerated estimates of effect sizes [137]. The 94 animals that had the most extreme 

survival times (<62 days and >141 days; Figure 2.1) were genotyped at eighteen 

microsatellite and SNP loci across the three Tir loci.

Tlr4

C3H/HeJ mice cany a Pro to His mutation at position 712 of the Tlr4 gene that makes 

this mouse strain insensitive to LPS. This spontaneous Tlr4 null mutant makes it 

possible to test whether TLR4 is involved in regulating survival after infection with T. 

congoleme [138]. As such, the mice were genotyped at the Tlr4 locus using a closely 

related microsatellite marker (D4mitl78). Additionally, the functional SNP (rs3023006) 

was sequenced as previously described.

U4/U6

U4, a small nuclear RNA (snRNA) that is a member of the spliceosome complex [139], 

and U6) with which it forms a functional duplex, were identified to be candidate genes 

at two different QTL and 7ir3b> respectively). Microsatellite data for 676 F6 AIL 

C3H/HeJ x G57BL/6 crossed mice was obtained for four markers, two at each of the 

U4 and U6 snRNA [129]. These were used to identify significant linkage disequilibrium 

(chi-square test) between the two loci: D5mitll3 and D5mitl0 {U4}; and Dlmitl02 

and Dlmit425 {U6}.
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Targeted resequencing of Tirl in susceptible mice 

DNA capture and sequencing
Genomic DNA for BALB/cJ (Jackson #000651), 129P3/J Jackson #000690), A/J 

Jackson #000646) and C3H/HeJ Jackson #000659) were obtained from the Jackson 

Laboratories and submitted to Nimblegen for sequence capture [120]. Capture probes 

were designed to cover 4.5Mbp of non-repetitive sequence between 30,637,692bp and 

36,837,814bp on mouse chromosome 17 (NCBI37). 385,000 60mer probes were tiled 

at approximately 5bp intervals leading to a mean of 12 probes over each base.

Captured DNA was sequenced on a Roche 454 FLX Genome Sequencer using 

Titanium chemistry (Roche) according to the manufacturer’s protocols by Dr. Margaret 

Hughes, University of Liverpool. The four sequencing libraries (one for each mouse 

breed) were each sequenced on one region of a PicoTitrePlate© (PTP), using a total of 

two PTPs for the four experiments.

Sequence assembly and SNP calling were performed using the Newbler mapping 

algorithm, which aligned 454 reads against the Ensembl C57BL/6 mouse reference 

(NCBI37) and outputs lists of SNP and associated coverage metrics in a tab-delimited 

format. As pyrosequencing is known to miscall sequences either across, or either side of, 

homopolymeric tracts (long stretches of a single nucleotide), differences were removed 

from subsequent analysis if they were within 13bp of a homopolymeric tract ^5bp [118] 

using a bespoke perl script (Appendix IX: Additional data file 1). SNP were 

subsequently entered into a MySQL database wherein they were additionally filtered to 

those with at least eight-fold coverage and occurring in at least 87.5% of the reads 

sequenced across any polymorphic position.

14,440 high-confidence genotypes were submitted to dbSNP with SSIDs ssl59831440- 

ss 159845897. 454 reads were submitted to the European Short Read Archive under 

Accession number ERA000179.

A 24-bp insertion in Mdcl in susceptible strains was verified by PGR amplification and 

subsequent agarose gel electrophoresis and capillary-based dideoxynucleotide 

sequencing as previously described using the primers in Appendix Table A2.1.
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Functional SNR identification

SNP were aligned against coding sequences and non-synonymous SNP were identified 

using a bespoke perl script (Appendix IX: Additional data file 2). nsSNP were extracted 

by substituting the SNP into the reference coding sequence, translating the sequence to 

the associated amino acid code and identifying changes in this sequence. Similarly, 

BLOSUM scores [140] were obtained for any changes observed in this manner. SNP 

positions were compared to the mouse regulatory build to test for SNP that may alter 

transcription factor binding sites or promoter regions [141, 142]. nsSNP were manually 

annotated with Polyphen [143].

Publicly available functional SNP confirmation

Functional SNP at Tir2 and Tir3 in the Perlegen dataset, for which genotypes for all five 

mouse strains were not available, were confirmed in G57BL/6, A/J, BALB/cJ and 

129P3 mice using PCR and dideoxynucleotide sequencing as described for genotyping. 

Sequences that showed evidence of multiple copies were cloned using TOPO-TA 

cloning kit (Invitrogen) according to the manufacturer’s protocols and sequenced as 

previously described.
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Results

Identification of Tir1 and Tir3 QTL in C3H/HeJ mice

By increasing the number of breeds known to carry susceptible alleles at the QTL, 

candidate gene lists can be refined to remove those genes that are in QTL for T. 

congolense infection response but have the same ancestral haplotype as the resistant strain 

in at least one susceptible mouse breed. The three major Tir QTL have only been 

identified in C57BL/6, A/J and BALB/c mice, with C57BL/6 carrying the resistant 

allele at each locus. To that end, we measured survival after infection in an inter-cross 

between another susceptible breed, C3H/HeJ, and C57BL/6 mice. For the cross, the 

mean survival times of parental founder lines for the C3H/HeJ x C57BL/6 F2 cross 

were 63 days for C3H/HeJ and 87 days for C57BL/6. Out of the 345 F2 C3H/HeJ x 

C57BL/6 mice that were phenotyped, we selectively genotyped the 94 mice (Sic? and 

43$ p=0.41) that had the most extreme survival times (Figure 2.1) with microsatellite 

and SNP markers across the three known QTL. Figure 2.2 & Table 2.1 show that 

C3H/HeJ carries alleles that reduce survival time at the Tir3 QTL on Mmul and the 

Tirl QTL on Mmul 7. No QTL was discovered on Mmu5 in the region of Tir2.
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Figure z.i: uistnoution or survival times oi v>^n/nej x rz mice after
infection with T. congolense. Labels on the X axis indicate the start of each interval; 
hence the interval labeled 10 includes animals that died between days 10-19. The peak at 
210 days is for mice that were surviving at the end point of the experiment. These mice 
were marked as having survived for 141 days and were included in the genotyping.
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A null allele of the Tlr4 gene in C3H/HeJ does not affect survival

A functional Tlr4 gene is necessary for maximal control of Tiypanosoma cnizi in mice 

[144] and there is evidence that the GPI anchor of T. brucei VSG has endotoxin like 

properties that could stimulate Tlr4 [145]. C3H/HeJ has a polymorphism in the toll 

like receptor 4 (Tlr4) gene, on mouse chromosome four, that ablates its function, 

making these mice insensitive to LPS [138]. This spontaneous mutation was used to 

discover whether Tlr4 was as important in the response to T. congolense as to T. cnizi 

Since all previous mapping had been done in mice with intact Tlr4 genes, no QTL 

could have been detected at this locus even if Tlr4 is involved in the response to 

infection. The C3H/HeJ x C57BL/6 mapping population could therefore be used to 

discover whether this gene (or a closely linked one) is involved in the regulation of 

survival time after infection. Mice were genotyped with a microsatellite marker linked to 

the functional polymorphism and sequenced across the polymorphic position. There 

was no significant association with either of these markers and survival time, indicating 

that the Tlr4 pathway does not affect survival after T. congolense infection in mice (Figure 

2.2; Table 2.1 and Appendix I: Table Al.6.2).

U4 and U6 at Tir2 and Tir3b do not interact

U4 is a component of the spliceosome in which it forms a duplex with U6. It was 

interesting to observe that both members of the U4/U6 duplex appear under different 

QTL, at Tir2 and Tir3b respectively, however U6 is one of 582 other similar sequences 

in the mouse genome and analysis of mapping data for an F6 C3H/HeJ x G57BL/6 

ATT, showed no evidence for an interaction between the U6 and U4 loci at Tir3b and 

Tir2 respectively (Table 2.2).

33



Chapter Two

Figure 2.2: Mean survival of C3H/HeJ x C57BL/6 mice infected with T. congolense 
strain IL1180 at three trypanotolerance QTL (Tirl-3) and the Tlr4 gene. Bar chart of 
mean survival (days ± standard error) of 94 F2 C3H/HeJ x C57BL/6 crossed mice 
grouped by genotype at three trypanotolerance QTL and at the Tlr4 gene. Results are 
displayed grouped by resistant (C57BL/6) or susceptible (C3H/HeJ) genotypes for each 
locus, alongside the number of markers tested at each trypanotolerance QTL
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Chapter Two

Sequence capture and sequencing of Tirl

DNA from across the Tirl QTL was sequenced in order to characterise novel SNP and 

to improve the identification of alternate alleles for each haplotype block. DNA from 

four mouse breeds: 129P3, A/J, BALB/c and C3H/HeJ; was captured on Nimblegen 

arrays with probes for a 6.2Mbp region of mouse chromosome 17 between 30,637,692 

and 36,837,814 (NCBI37). 1.7Mbp of repetitive sequence was excluded. Captured 

DNA was sequenced on a Roche 454 Genome Sequencer FLX using Titanium 

chemistry. 1,308,175 reads were mapped to the C57BL/6 reference sequence giving an 

average ~15X coverage of each sequenced strain (read length ~282bp; total sequence 

~370Mbp). Plotting sequence coverage across the resequencing region revealed an 

increase in coverage at the proximal end of the target region in A/J (mean 3-fold), 

C3H/HeJ (mean 2-fold) and 129P3/J (mean 2-fold). No similar increase in coverage 

was observed for BALB/cJ (Figure 2.3).

SNP extraction and filtering

Three filters were applied to exclude false-positive SNP: Firstly SNP were excluded in 

genomic regions only covered by sequence coverage <8X; Secondly, SNP were 

excluded if <87.5% of the reads at a given position did not display the SNP; Finally, 

SNP were excluded if they were within a 13bp window of a homopolymeric tract <5bp. 

In this manner, 14,440 SNP loci were identified, 3,618 of which were not in dbSNP 

build 128. 1,588 loci were common to A/J, BALB/c and C3H/HeJ, but differed from 

G57BL/6. Furthermore, upon adding data for 129P3, there were 466 SNP loci 

common to all four sequenced mouse strains. Summary statistics for all SNP are 

available in Table 2.3. Figure 2.4 shows a circular plot of all SNP called by the 

Roche/454 mapping algorithm (Newbler) against the C57BL/6 reference. Haplotype 

blocks can be seen as clusters of high-densities and low-densities of SNP. Whilst at this 

resolution it is not easy to see haplotype blocks in the A/J, BALB/c or C3H/HeJ data, 

one haplotype block stands out in the 129P3 data where 81 common SNP clustered 

within a 430 Kbp region (33,245,853bp—33,675,688bp).
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Chapter Two

Table 2.3: Summary statistics for the 454 GS-FLX (Titanium) sequencing of Nimblegen 
array captured material from Mmul7 (30,637,692bp-36)837,814bp; NCBI37) in four 
breeds of mouse. Filtered SNP are those SNP remaining after filtering to remove SNP 
within a 13bp window of homopolymeric tracts and outside capture probe regions. SNP 
must have sequence coverage >8X, 7 of which must match the alternative allele. Novel 
genotypes are SNP either not previously characterised, or disagree with previous 
genotypes (dbSNP128).

Common Loci Common Loci
A/J BALB/cJ C3H/HeJ (3 strains) 129P3/J (4 strains)

Total SNP 19950 19136 12890 5616
Filtered SNP 7969 7435 6046 1588 2160 466
Novel Genotype 
% Novel

1615 7327 4207 150 2160 36

genotypes 
at novel loci 94% 25% 30% 9% 19% 8%

0 1.10* MS* »->0* Vto* 0 !.!«• no* >10* t-10* >10* >10*
Mapping Poaition (bp) Mapping Povlion (bp)

Figure 2.3: Sequence coverage of 454 resequencing of four breeds of inbred mouse. 
Sequence coverage across the Tirl resequencing region (Mmul7: 30,637,692bp- 
36,837,814bp) for four strains of experimental mice: A/J (A); BALB/cJ (B); C3H/HeJ 
(C) and 129P3/J (D). Increased read coverage can be seen at the proximal end 
(highlighted) for A/J (mean 3-fold increase), C3H/HeJ (mean 2-fold increase) and 
129P3/J (mean 2-fold increase), which correlates with a copy number variation (CNV) 
at the Glol locus in these strains [146]. Positions displayed are relative to the start of the 
resequenced region.
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Chapter Two

Susceptible mice have a 24bp insertion within the 3’-UTR of Mdd relative 

to C57BL/6 mice

454 pyrosequencing identified a 24bp insertion in A/J, BALB/cJ, C3H/HeJ and 

129P3/J mice relative to the C57BL/6 reference that mapped to the 3’-UTR region of 

Mdcl (Mediator of DNA damage checkpoint protein 1; Mmul7: 35,981,380- 

35,996,614bp). The insertion was confirmed by PCR, by which the insertion could be 

clearly seen as two different sized bands between C57BL/6 and susceptible mice (data 

not shown). The insertion was further confirmed by Sanger dideoxynucleotide 

sequencing. Figure 2.5 shows an alignment of the DNA sequences, with the deletion in 

C57BL/6 clearly marked by gaps in the alignment (indicated by asterisks) highlighted 

by a blue background. Positions on the figure are relative to the start of the DNA 

coding sequence.

6791 6847
A/J TCAGCTTTGGCTACATACCAAACTGGCGGCCAGTCTAAACTGCAAAAGATTCAAAAATGAAAAGCACTTGATGTTTTATC 

BALB/c TCAGCTTTGGCTACATACCAAACTGGCGGCCAGTCTAAACTGCAAAAGATTCAAAAATGAAAAGCACTTGATGTTTTATC 
C3H/HeJ TCAGCTTTGGCTACATACCAAACTGGCGGCCAGTCTAAACTGCAAAAGATTCAAAAATGAAAAGCACTTGATGTTTTATC  
129P3/J TCAGCTTTGGCTACATACCAAACTGGCGGCCAGTCTAAACTGCAAAAGATTCAAAAATGAAAAGCACTTGATGTTTTATC  
C57BL/6 TCAGCT.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . hhiummmmiiiCAGTCTAAACTGCAAAAGATTCAAAAATGAAAAGCACTTGATGTTTTATC

Figure 2.5: Confirmation of a 24bp insertion in the 3’-UTR region of the Mdcl gene 
An alignment of sequencing reads from PCRs across a predicted 24bp deletion by 454 
pyrosequencing in C57BL/6. The deletion can be seen clearly marked by gaps in the 
alignment (indicated by asterisks) highlighted by a blue background. Positions on the 
figure are relative to the start of the DNA coding sequence.

Non-synonymous polymorphisms

Using all available data, the Tirl region contained 70 nsSNP loci that correlated with 

phenotype (Appendix II: Table A2.2). Analysing both the 454, and publicly available 

data, there were seven ‘possibly damaging’ nsSNP and three ‘probably damaging’ 

(Polyphen) nsSNP in: PML-retinoic acid receptor alpha regulated adaptor molecule 1 

[Praml) (rs33399614); Rgl2 (Ral guanine nucleotide dissociation stimulator-like 2); and 

CR974462 (Table 2.4).
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Chapter Two

Regulatory polymorphisms

Differences between the susceptible strains and C57BL/6 were aligned to the Ensembl 

mouse regulatory build (NCBI37: Ensembl 54). Ten differences were predicted to fall 

within regions of accessible chromatin and may affect transcription factor binding 

regions. Furthermore, 13 differences mapped to within 2500bp of the upstream region 

of genes that may be associated with promoter regions. In total, 14 genes may be 

affected by SNP in this way (Table 2.5). Of the 13 genes for which microarray data 

were available, only phosphodiesterase 9A {Pde9d) showed any differences in gene 

expression, and these correlated with alleles of a SNP (rs33223038). A/J differed from 

C57BL/6 and BALB/c at this locus in both SNP genotype and Pde9a expression, but 

since this did not correlate with phenotype, it was discounted as a candidate SNP.

Validation of predicted nsSNP in Public Data

SNP in lir2 and Tir3 that were not resequenced by 454 pyrosequencing, and were 

predicted to be functional and have damaging effects upon the protein by Polyphen, 

were validated using PGR and Sanger sequencing. In the most part, SNP had been 

discovered on either Gelera data [147], for which only A/J data are available (from the 

strains used in this study), or on Perlegen (Affymetrix) data. The Perlegen dataset, which 

covers fifteen common strains of inbred mouse, has been predicted to be inaccurate and 

incomplete due to, in part, the low coverage generated, and partly because the 

algorithm by which SNP were detected was designed to focus on a low Talse-positive5 

rate [148]. As such, it is possible that the SNP actually reside in areas of repetitive DNA 

or high copy number regions, which could be interpreted as a SNP by base calling 

algorithms. Table 2.6 displays the loci that were resequenced in this manner. Blanks in 

the table represent a failure to basecall the sequences due to the presence of multiple 

sequences within the sequence “trace”, indicating that the SNP was probably miscalled 

due to multiple copies of the gene in question. nsSNP that correlated with phenotype 

were confirmed for rs 13468876, which has a single base insertion rather than the T>A 

substitution in the public dataset. Further nsSNP that correlated with phenotype were 

confirmed for rs45643169, ENSMUSSNP3206521, rs50073880, rs51259593 and 

ENSMUSSNP3208701.
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Table 2.5: Putative regulatory SNP within an extended definition of Tirl. A list of SNP 
at Tirl (Mmul7: 33J2711855bp-34,203)529bp) matching regions of accessible 
chromatin according to the Ensembl murine functional genomics database. SNP 
matched identically in all four strains of susceptible mice after mapping against the 
resistant C57BL/6 reference with at least 50% of the reads agreeing at a given consensus 
position. Differences are either within 2.5Kbp ‘upstream’ in possible promoter binding 
regions; or are in accessible chromatin regions within coding regions of genes that may 
be associated with transcription factor binding sites.

Difference
Position
(bp)

Reference
Allele

Alternative
Allele Data Type GenelD Region of 

Gene

31,011,574 G A H3K4me3:ESHyb AC165951.3-1 Upstream
31,194,080 T G H3K4me3:ES Abcgl Upstream
31,194,238 G C H3K4me3:ES Abcgl Upstream
31,522,166 A G DNasehES Pde9a Upstream
31,979,290 T C DNasel:ES Snfllk Upstream
35,669,957 C A DNaseTES Psorslc2 Upstream
35,771,262 T C DNasel:ES Dpcrl Upstream
35,772,620 T C H3K4me3:ES Dpcrl Upstream
35,790,848 T G DNase 1:ES Vars2 Upstream
35,790,864 T G DNasehES Vars2 Upstream
35,835,340 T C H3K4me3:ES U6 Upstream
31,046,212 G A DNasehES Glplr Within
31,991,185 A G DNasehES Snfllk Within
33,276,221 T C DNasehES Morc2b Within
35,692,027 T C H3K4me3:ESHyb Cdsn Within
35,692,042 T c H3K4me3:ESHyb Cdsn Within
35,692,339 T c H3K4me3:ESHyb Cdsn Within
35,705,160 T c DNasehES 2300002M23Rik Within
35,773,710 T c DNasehES Dpcrl Within
35,819,115 A T DNasehES Ddrl Within
35,819,115 A T DNasehES Ddrl Within
36,326,297 A G H3K27me3:ES H2-T3 Within
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Chapter Two

Discussion
To fully characterise candidate genes at the Tir QTL and to enumerate all functional 

SNP contained therein, a number of additional analyses were conducted by colleagues 

within the team as presented in Goodhead etal (2010) [149]: The physical boundaries of 

the QTL had to be identified from the mapping distances (i.e. converting centimorgans 

to base pairs); the novel 454 SNP data had to be combined with public datasets such as 

from Perlegen [131] and the Mouse Genomes Project [135] and subsequently 

annotated for potential functional damage; and ancestral haplotypes were derived from 

the combined sets of SNP to assign genes to having a shared ancestral haplotype with 

the resistant strain and thus remove them from lists of potential candidates. Full details 

of these analyses are available in Appendix III: Additional Analyses.

The survival time phenotype for mapping murine QTL associated with response to T, 

congolense infection was selected in the 1990’s because the large variance between strains 

made it more likely that there would be QTL of large enough effect to be identifiable. 

This prediction proved correct [126], however survival is likely to have a remote and 

complex relationship with the underlying quantitative trait genes (QTG). Given that 

trypanosomiasis is a systemic blood stream infection and the remote relationship 

between survival and the underlying QTG it is almost impossible to prioritise candidate 

genes on the basis of known functions. Previous work has included the measurement of 

parasitaemia, anaemia and fifteen clinical chemistry phenotypes in inbred and congenic 

mice, in order to identify correlations between survival and other traits that might be 

related to gene function, however no such associations have been found [150]. 

Therefore, in this study, we have identified the allele carried at each QTL in an 

additional strain (C3H/HeJ), and used this mouse strain to identify whether Tlr4 has a 

role in moderating survival after infection. Additionally next generation sequencing 

technology was utilised to capture and resequence the entire Tirl region in four strains 

of susceptible mouse, which was compared to the resistant G57BL/6 reference. In a 

subsequent chapter, we have included the influence of copy number variation (CNV) on 

gene expression through the course of disease, which will result in a comprehensive 

genome-wide study of the genetic aberrations that may be responsible for moderating 

murine survival after T. congolense infection.
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Chapter Two

Our objective for this study was to identify the SNP that were most likely to have an 

impact on function. These were considered to be nsSNP that altered the physical 

properties of the protein as judged by Polyphen analysis, SNP in essential splice sites 

and regulatory SNP that correlated with changes in expression. It should be 

emphasised, however, that many types of SNP can underlie QTL, for example the 

QTL SNP at the Idd5 locus appears to be a synonymous SNP that gives rise to a splice 

variant [151]. This SNP would not have been identified as a high priority by this 

pipeline. Furthermore, although we have substantially complete sequence coverage of 

the Tirl locus, at other loci we have used the Perlegen dataset, which is estimated to be 

about 45% complete [131]. Therefore although the candidate QTL SNP presented 

here are the most likely given the available data and annotation, both SNP data and 

annotation are incomplete and other candidates may be discovered in the future.

QTL mapping

The mapping studies showed that C3H/HeJ mice carry susceptible alleles at the Tirl 

and Tir3 loci. No QTL were observed at the Tir2 locus. The Tirl locus as defined by 

previous fine mapping studies is just proximal to the major histocompatibility complex 

(MHG) (Table 2.7), and the conversion of genetic distances to physical positions 

presented here shows that Tirl includes three classical MHG class I H2K genes. 

However, previous studies have found no correlation between MHG haplotype and 

response to infection [106], consistent with the QTL gene not being a classical MHG 

molecule. The mapping population was also screened for an association between Tlr4 

and survival; no association was found. This observation implies that the presence or 

absence of a functional Tlr4 gene has no effect on survival, but does not preclude the 

pathway from Tlr4 to MJkb (nuclear factor kappa-B) from responding to infection. Tlr4 

could still participate in the regulation of anaemia and parasitaemia, which are not 

correlated with survival [152].

Identification of physical boundaries of QTL

Whilst the exact assignment of physical boundaries to the QTL is not possible, different 

locations have been reported for the Tir2 and Tir3a-c QTL in the F6 and the FI 2 AIL 

generations [128, 129]. Furthermore, mice congenic for the G57BL/6 Tir alleles on an
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A/J background agreed with the F6 location for 7h‘2, but with the FI 2 location for 

Tir3a [150]. The estimates of numbers of candidate genes, based on position within the 

predicted boundaries of the QTL alone, were as follows: Tirl contained 43 genes; Tir2 

between 12 to 42 genes and Tir3 from 275 to 813, depending upon whether the F6 or 

the FI2 study is used (Table 2.7).

SNP in G/o7 copy number variant region proximal to Tirl

A two- to three-fold increase in read coverage compared to the overall mean coverage 

was detected at the proximal end of the targeted resequencing region. This region 

correlated with a copy number variant region at the Glol locus on chromosome 17 for 

A/J, C3H/HeJ and 129P3/J [146]. CNV may have an impact upon SNP calling, as 

repetitive sequences across a small area cannot be assembled easily by short-read 

technologies. In this manner, erroneous SNP may be detected that are, in fact, 

segmental copies with small differences. dbSNP build 128 contains 3,204 entries within 

the database that are associated with this region, and indeed, our resequencing detected 

373 SNP loci within this region that are likely miscalled due to CNV.

Whilst next-generation sequencing technologies probably exacerbate this problem due 

to the difficulties with mapping short reads, the extremely deep read coverage that they 

offer represents another method by which localised copy-number variants can be 

detected, potentially at single-nucleotide resolution. Indeed, recent studies have coined 

studies of this nature CNV-sequencing (CNV-seq), and have used this method to detect 

copy number variants in humans [153] and yeast [154].

Identification of functional nsSNP

Resequencing of the QTL region on the Roche 454 platform to 15X coverage 

discovered 3,618 novel SNP loci that were deposited in dbSNP. Comparison with a 

resequencing project on the Illumina platform at the Wellcome Trust Sanger Institute 

to 22X coverage [135] showed 99.98% consistency in SNP calls even when no 

minimum coverage criterion was applied for calling a SNP (Appendix III: Additional 

Analyses). Both datasets contained large numbers of SNP called as heterozygotes with 

alternative allele frequencies between 25-80%. These loci from both data sets were
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associated with significantly higher sequence coverage in our data indicating that the 

majority were likely to be due to mapping artefacts probably caused by copy number 

variants. The 454 data contained only 71% of the SNP discovered by the higher 

coverage Illumina data but both methods discovered the same set of nsSNP. The 454 

data discovered an additional 3% of SNP that were not in the Illumina data. Utilising 

all SNP from the 454, Perlegen and Illumina data sets, three probably damaging nsSNP 

were identified in genes at the peak of the Tirl QTL that correlated perfectly with 

phenotype (Table 2.4). Two nsSNP were in Praml, with the Praml537L/p polymorphism 

being scored as probably damaging by Polyphen. The Pra«zi103R/Iv polymorphism was 

classed as benign by Polyphen, but lies within a proline rich domain (PRINTS: 

PRO 1217) that is involved in binding the “SH3 domain of hematopoietic progenitor 

kinase 1 (HPK-l)-interacting protein of 55 kDa (HIP-55)”. This region is known to 

stimulate the activity of HPK-1 and c-Jun N-terminal kinase (JNK)” [155]. C57BL/6 

appears to have the derived allele of Praml537L/p since A/J, BALE/c and C3H/HeJ had 

the same allele as Hominidae and dogs.

Praml is almost exclusively expressed in myeloid cells [156] and specifically in 

granulocytes in terminal stages of differentiation [157] where it is induced by retinoic 

acid. It was thought that Praml might be a negative regulator of neutrophil 

differentiation since it is repressed in acute myeloid leukaemia. The deletion of Praml, 

however, has no effect on neutrophil differentiation and maturation but does disrupt 

reactive oxygen intermediate production and degranulation by neutrophils [158]. This 

may affect the early pro-inflammatory response to infection, or signalling downstream 

of TNFa, which has itself been shown to be differentially expressed between susceptible 

and resistant mice [159]. PRAM1 appears to have a key role in the inflammatory 

response, whose differential expression is involved in inflammatory responses such as 

asthma exaggeration [160], and may be associated with pathology as it has been shown 

to be differentially regulated in cases of Dengue-associated haemorrhagic fever and 

Dengue Shock Syndrome [161]. It also shares structural homology with ADAP adaptor 

proteins such as SLAP 130 (SLP-76-associated protein, 130 kDa), which are essential 

signalling molecules in integrin activation. Integrins have an essential role leukocyte 

adhesion and subsequent inflammation and the ability to fight infections [162]. Since 

C57BL/6 tend to have a more inflammatory phenotype, it is possible that the
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polymorphisms discovered lead to a gain of function with stronger binding to HIP55 

leading to faster and more persistent ROI induction and a more inflammatory state.

The other probably damaging SNP at Tirl were CR974462 and Rgl2. There is no 

annotation for CR974462. Rgl2 (Rif) is a small GTPase that is most highly expressed in 

macrophages and B cells and appears to be involved in Ras mediated signalling [163]. 

The Rgl2um~"Y polymorphism could affect the Ras pathway that plays a key role in 

leukocyte activation and is therefore a plausible candidate gene. The Fas death domain- 

associated protein (Doxx) gene, which has been previously reported to contain a deletion 

of a single aspartate residue in susceptible mice [164], is also under the peak of TirL 

Daxx is within the MAPK pathway, which was found to respond to T. congolense infection 

in microarray data. A new Polyphen analysis of the aspartate deletion in Daxx indicates 

that this polymorphism will be benign in effect. The aspartate deletion is within a run of 

11 aspartate residues and a region where 35/41 residues are acidic [164]. Therefore 

this polymorphism is probably less significant than the probably damaging ones 

reported here.

Regulatory polymorphisms could also cause the phenotypic difference: one SNP 

(rs33223038) was identified in Ensembl as being in a regulatory region upstream of 

Pde9a but although this SNP correlated with differential expression it did not correlate 

with survival differences between susceptible and resistant mouse breeds,

Haplotype block analysis

This strategy has been previously used to show a strong association between upstream 

haplotype differences and high confidence (p<0.005) differences in gene expression 

[165] and also short listed genes under QTL for differences in response to 

Heligniosomoides bakeri infection [166]. Candidate gene numbers were reduced by 

assigning genes to haplotype blocks under two hypotheses: That a haplotype block in a 

given region is derived from the same ancestor in all susceptible strains of mice tested, 

which is different to the resistant strain (hypothesis 1); or that, for a given region, that 

the haplotype blocks in susceptible mice are all different from the resistant strain, but 

not necessarily all derived from the same ancestor. By so doing, the numbers were 

reduced by about 76% (Hypothesis 1) and 45% (Hypothesis 2) from the 1193 genes that
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were under the 95% confidence intervals of the QTL. There were 283 genes where 

A/Jj BALB/c and C3H/HeJ had the same haplotype different from C57BL/6 and 651 

genes where C57BL/6 differed from the other three. The large number of genes that 

had haplotypes that correlated with phenotype is mainly because: 1) C3H/HeJ, A/J 

and BALB/c are more similar to each other than to any other strain based on analysis 

of 673 genome wide SNP in 55 strains [167]; 2) we used the stringent criterion that a 

gene was included if any haplotype block between the two neighbouring genes 

correlated with phenotype; 3) The high positive predictive power of the method means 

that whilst it is probably very reliable for excluding loci where susceptible strains share a 

haplotype block with the C57BL/6 resistant strains, it assigns too many haplotype 

blocks to different alleles.

Conclusions and Further Work
The aim of this study was to utilise the available genomic technologies in order to 

substantially reduce the number of candidate genes within the murine Tir QTL. 

Utilising next-generation sequencing technology, and annotation of public databases of 

variation within the mouse genome, we have increased the density of SNP within this 

region and improved haplotype maps so as to assign candidate genes to a resistant or 

susceptible ancestral mouse line. In this manner, genes that did not have an ancestry 

that correlated with phenotype could be removed from the short-list of candidate genes. 

Similarly, all non-synonymous SNP that may be having an impact upon the function of 

genes within the Tir QTL could be detected. 1,632 common SNP were identified, 

including a non-synonymous SNP in Praml (PML-RAR alpha-regulated adaptor 

molecule 1), which was the most plausible candidate QTL gene in Tirl. It should now 

be practical to test the function of the candidate genes identified and the associated 

causative polymorphisms to determine their role in response to infection with T. 

congolense.

QTL involved with resistance to other parasitic diseases overlap with the Tir QTL, 

raising the possibility that polymorphisms discovered here may be involved in the 

response to other parasites. Leishmania resistance 1 (Lmrl) [168], Plasmodium chabaudi 

resistance QTL 3 (CkarS) [169] and Heligmosomoides bakeri nematode resistance 2 (Hbnr2)
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[170] all overlap with Tirl. Similarly, the Tir3c QTL overlaps with a QTL for murine 

resistance to Plasmodium berghd-dviven experimental cerebral malaria {Beni) [171].

Thirteen genes around the peak of Tirl show conserved order and sequence homology 

to a ~311Kbp region of BTA7 (15,412,179:15,723,462bp) where there is a QTL in 

cattle that regulates the level of parasitaemia in cattle infections with T congolense [104], 

This region includes Praml, which has a probably damaging mutation that correlates 

with phenotype in mice and was the most plausible candidate gene in Tirl and is 

therefore a candidate QTL gene in cattle as well. However since trypanotolerance QTL 

cover approximately 15% of the bovine genome it would be expected that at least one 

of the five murine QTL would coincide with a bovine QTL by chance (p^O.SG).

By combining these SNP with publicly available data, annotating the subsequent lists 

and identifying genes within shared haplotypes amongst susceptible lines of mice, we 

have demonstrated how large QTL regions can be reduced to tractable short lists of 

candidate genes for functional analysis. Nevertheless, for this analysis to be truly 

‘comprehensive’, genetic aberrations other than SNP must be studied. Copy number 

variation is now widely regarded as a very important source of genetic variation: Redon 

et al reported that over 12% of the human genome is affected by CNV; with no large 

stretches remaining unaffected [172]. A similar study in laboratory mice has revealed 

variations between experimental lab strains [146]. The potential impact of CNV upon 

candidate genes within the Tir QTL will be covered in the next chapter.
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Chapter Three

The influence of copy number variation on candidate 
gene expression at Trypanosoma Infection Response 
QTL in mice

Abstract
Copy number variants (CNV) have been shown to constitute large proportions of 

mammalian genomes: Greater than 12% of the human genome shows variable copy 

number. CNV can alter gene expression by increasing or decreasing the number of 

coding sequences of the gene, or by affecting their regulatory elements, and have been 

shown to significantly overlap with QTL in a range of traits. We have used the 

microarray-based Complete Genomic Hybridisation (aCGH) to identify aberrant copy 

number shared between susceptible mouse breeds genome-wide. These have been 

correlated to previous gene expression assays that identified genes responding to 

infection. Genes with variations in copy number that are at the Tir loci and are known 

to respond to T. congolense infection may indicate plausible candidate genes. Whilst no 

CNV could be detected at 7w7, Tir2 orTirSa-b, a significant CNV was detected at Tir3c\ 

A two- to four-fold reduction in C57BL/6 copy number relative to A/J, BALB/c and 

129P3/J overlapped with Cd244\ a surface antigen that binds CD48 on lymphocytes 

and is involved in NK:NK cell and NK:T cell interactions leading to NK- and T-cell 

proliferation.

We have shown in a previous chapter that a nearby gene, Cd48y has a non-synonymous 

SNP, and since CD48 and CD244 directly interact, it is possible that the QTL is a 

consequence of the combined effect of the probably damaging nsSNP in Cd48 and the 

CNV in Cd244, It may be possible to subsequently test this by inserting an additional 

copy of Cd244 into the C57BL/6 background, so that it had a similar gene dosage to 

the susceptible strains.
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Introduction
In the previous chapter, we have sequenced one of the QTL regions, Trypanosoma 

infection response 1 (Tirl)^ in four strains of mice to identify novel SNP and candidate 

genes that may be responsible for regulating survival in mice after infection with 

Tiypanosoma congolense strain IL1180. These data was correlated with genome-wide 

resequencing projects that have been made publicly available. SNP and small 

insertions / deletions, however, do not account for all of the polymorphisms that can 

affect candidate genes at a QTL.

Copy number variants (CNV) range in size from >lKbp and <2Mbp. They are 

predicted to have an impact upon the expression of genes in a number of ways: As the 

affected regions are often segmentally duplicated, the expression of the genes contained 

therein may be proportionally affected, (e.g. If there are multiple copies of a gene, then 

expression may be increased). Likewise, if regulatory elements (either positive or 

negative) are duplicated or deleted, then expression could be similarly affected. CNV 

have been predicted to constitute greater than 12% of the human genome [172]. CNV 

have also been identified in the mouse genome, which vary between inbred lines: Cutler 

et al identified 2,096 CNV across 42 inbred mouse strains [173-175]. CNV have 

significant overlap with a number of quantitative traits in mice: Cho and colleagues 

demonstrated that 12/21 QTL significantly overlapped with CNV for the seven traits 

studied, including QTL involved with immunity on mouse chromosomes 13 and 17 

(p<0.006) [176].

Array-based comparative genomic hybridisation (aCGH) is a high-throughput assay 

used to quickly and accurately compare the relative fluorescence of experimental DNA 

probes against a target sequence. Targets can be specific regions of interest or, due to 

the increased density of probes on a single microarray, entire reference genomes.

The Agilent 244A platform has demonstrated the highest sensitivity of the 

oligonucleotide-based CGH platforms: The platform can detect differences using a 

single probe when using dye-flip replicates (repeating the experiment using the opposite 

dye and normalising the resulting data) [177], The Agilent 244A mouse array contains 

probes for approximately 235,000 coding sequences with an overall median probe
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spacing of approximately 7.8Kbp (Agilent Technologies website). As the distributed 

software (Agilent CGH analytics) requires at least three probes to display differences in 

probe fluorescence in order to identify a CNV, and the irregular probe distribution 

across the mouse genome (probes are biased towards coding regions) this results in the 

smallest CNV that the platform can detect being ~36Kbp [177]. In this manner, some 

CNV (>lKbp and <36Kbp) may not be detected, however given the predicted size of 

the Tir QTL is between 1 — 21Mbp (depending upon the QTL in question, and the 

cross in which it was identified; Chapter 2; Table 2.7), the QTL that has been mapped 

to the highest resolution {Tirl) should contain at least 13 probes.

We have used array comparative genomic hybridisation (aCGH) to identify CNV in 

QTL regions that correlate with survival in the four mouse strains. We have also 

correlated CNV with existing gene expression data from three of the mouse strains 

[152] to identify CNV that putatively cause expression differences.

Materials and Methods

CNV identification

Array CGH was performed using the Agilent Mouse Genome CGH Microarray 244A 

platform by Catriona Rennie [178]. Genomic DNA was obtained from Jackson 

Laboratories (JAX) for the reference mouse strain C57BL/6 (JAX mouse stock number 

000664), and for three test strains: BALB/cJ (#000651); 129P3/J (#000690) and A/J 

(#000646). Dye-flip replicates were carried out, and the data normalised as previously 

described [178].

Overlapping “aberrations” (significant differences in log2 fluorescence signal ratio) were 

grouped into CNVR (t-test analysis, P < 0.05, Overlap 0.9) by the Agilent CGH 

analytics software (v 4.0), using the ADM-2 algorithm (threshold 6.0), centralization 

(threshold 6.0, bin size 1) and Fuzzy Zero [179], CGH array data have been submitted 

to the NCBI Gene Expression Omnibus database (GEO) [GEO: GSE9669].
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Measurement of gene expression

Gene expression data were obtained for A/J, BALB/c and C57BL/6 mice before 

infection and at four time points post infection on Affymetrix 450_2 microarrays from a 

previous dataset [152]. All microarray data has been deposited at ArrayExpress under 

the accession number E-MEXP-1190. The expression data and plots like those 

presented here are also available for all genes on the microarrays from the authors’ 

website [180].

Results
To assess the impact of copy number variation regions (CNVR) upon the expression of 

genes that may influence response to T. congolense infection we performed array-based 

comparative genomic hybridisation (aCGH) on the complete genome of three mouse 

strains: 129P3, A/J and BALB/c, relative to C57BL/6.

Signals were obtained for 235,389 60-mer oligonucleotide probes across the whole- 

genome array, which equates to one probe every 11,5Kbp, assuming equal spacing of 

probes equally along the length of the entire 2.7Gbp mouse genome (NCBI build 37; 

Mouse Genome Informatics, Jackson Laboratories). Assuming the necessity for three 

probes to show significant changes in log2 fluorescence in order for the GNV to be 

detected by the Agilent software, the minimum sized GNV detectable under these 

conditions is approximately 34,5Kbp, in line with previous estimates [177].

The expression of genes within CNVR in A/J, BALB/c and C57BL/6 mice over the 

course of infection was evaluated using a previously described dataset [152]. In this 

manner, GNV that alter gene expression in all susceptible and/or the resistant mouse 

breed, and for which expression is modulated throughout infection, can be highlighted 

as good candidates for being a QTL gene.

A CNV at Tir3c affects the expression of Cd244 in susceptible breeds of 

mice relative to C57BL/6

One significant CNVR was detected close to the peak of Tir3c in the F6 population 

(DIMitllS: 173,734,61 Ibp). A two to four-fold reduction in C57BL/6 copy number
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relative to A/J, BALB/c and 129P3/J encompassed, or overlapped with, the coding 

sequences of Itlnl (intelectin 1), Cd244 (Natural Killer Cell Receptor 2B4), and 

AC083892.19-1 and may affect the nearby Ly9 (lymphocyte antigen 9) (173,441,746- 

173,499,029bp; 11 probes; p=0.0003; Figure 3.1A). There were expression differences 

in Cd244 (Figure 2A), but not Itlnl or Ly9 [180], over the course of infection between 

resistant C57BL/6 and susceptible A/J and BALB/c. AC083892.19-1 was not on the 

expression microarray. This CNV region has also been previously reported by Graubert 

etal [146] who showed that an additional susceptible strain, C3H/HeJ, carries the same 

variant as A/J and BALB/ c.

Other genome-wide CNV

No common CNVR were detected within Tirl or 7ir2. The CNVR that was previously 

reported to be the cause of differential expression of Glyoxalase 1 (Glol) [181], and is 

2.8Mbp from the peak of Tirl, was detected as a two to fourfold reduction in copy 

number for C57BL/6 and BALB/c relative to A/J and 129P3 (Chrl7: 30,176,153bp ~ 

30,650,413bp; 68 probes; p<0.001; Figure 3.IB). Since the CNVR did not correlate 

with phenotype, this polymorphism is unlikely to contribute to the difference in 

response to infection.

Genome-wide, one hundred and twenty-nine CNVR involving three or more probes 

were common to A/J, BALBc/J and 129P3/J. These encompassed a total of 317 genes, 

and ranged in size from 400bp to 6.4Mbp, although 96% were smaller than IMbp. 

Twelve CNVR, containing the complete coding sequences of genes and that had 

corresponding differences in gene expression, were common to all susceptible breeds of 

mice tested. A list of the genome-wide CNVR is shown in Table 3.1.
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173.7 Mb172.8 Mb 173.0 Mb 173.1 Mb 173.3 Mb 173.5 Mb

O Q . O 3

31.2 Mb30.9 Mb30.1 Mb 30.4 Mb29.6 Mb 30.7 Mb29.8 Mb

Figure 3.1: CNV plots from Agilent DNA Analytics software. A: Reduced copy 
numbers in C57BL/6 of Itlnb and Cd244 near Tir3c relative to two susceptible breeds of 
mice (Chr 1: 172,831>532-173,931)532bp). B: CNV data at the proximal end of Tirl 
showing a deletion of Glol and DnahcS in C57BL/6 and BALB/c relative to A/J and 
129P3. (Chr 17: 29,854)972bp-30,954,972bp). Probes are plotted at their genomic 
position relative to their respective log2 fluorescence intensity ratios (Y-axis) along with 
genes on the x-axis (filled blue rectangles). Green dots are negative ratios and red dots 
positive ratios (threshold 0.5). Lines are a moving average over a lOKbp window for A/J 
(blue); 129P3 (red) and BALBc (yellow). Genomic positions are based on mouse build 
mm8 (NCBI36). In this manner, positive averages indicate an increase in copy number 
in C57BL/6 and negative values indicate a reduction in copy number in C57BL/6, 
relative to the test strain.

57



Chapter Three

m 7.5

Days post infectionDays post infection

£8.5-

Days post infection Days post infection

Spleen Liver
□ A/J ■
O BALB/c •
A C57BL/6 A

Figure 3.2: Expression of A/J OlaHsdnd (A/J), BALB/cJ OlaHsdce (BALB/c) and 
C57BL/6J01aHSD (C57BL/6) mouse genes in the Tir3c locus at five time points in the 
course of T. congolense strain IL1180 infection (0 days; 3 days; Sdays; 9 days; 17 days). 
Graphs include a small x-axis offset to improve spatial clarity. A Cd244 in the spleen, B 
Cd48 in the liver, C Apes in the liver D Ifi202b in liver and spleen. Cd244 expression 
was low in liver in all strains until Day 7 when it rose above background and C57BL/6 
had slightly lower levels than A/J or BALB/c (data not shown).
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Discussion
CNV have previously been shown to be a major cause of qualitative trait differences 

[176]. We used Agilent whole mouse genome aCGH arrays to identify CNV between 

C57BL/6 mice and A/J, BALB/c and 129P3 mice. The aCGH data highlighted a 

CNVR containing three genes close to the peak of the Tir3c QTL: Cd244\ Ly9 and Itlnl 

(Figure 3.1 A). A nearby gene Cd48^ also had a probably damaging nsSNP (Chapter 2). 

Cd244> Cd48 and Ly9 are important genes involved in the production and regulation of 

IFNg by NK and T cells. CD244 binds CD48 on lymphocytes and is involved in 

NK:NK cell and NK:T cell interactions leading to NK and T cell proliferation [183], 

which are important mechanisms in innate resistance to protozoan infection [184, 185].

Spleen expression of Cd244 differed between strains with the resistant G57BL/6 mice 

having the lowest expression consistent with the low copy number of Cd244 in 

C57BL/6. Cd48 expression increased 16-fold in liver after infection with T. congokn.se> 

but this occurred in all strains tested (Figure 3.2). Since CD48 and CD244 directly 

interact, it is possible that the QTL is a consequence of the combined effect of the 

probably damaging nsSNP in Cd48 and the CNV in Cd244. Differences in expression 

could not be seen in Itlnb or Ly9.

Moving from candidate genes in mice to potentially useful candidate genes in cattle is 

difficult, as it is unlikely that a candidate gene for a mouse QTL would also be the 

QTG in cattle. More likely is that studies such as these highlight important pathways 

which may control response to the disease and may form the basis for tolerance, which 

in turn may help accelerate the discovery of candidate gene targets in cattle. A study 

into differences in gene expression between C57BL/6 and A/J mice in response to 

trypanosome infection highlighted the role of specific cytokines in the host-response to 

infection [186]. Recently, a similar approach of overlaying QTL mapping, DNA 

sequencing and gene-expression in bovine trypanosomiasis has identified two QTG 

candidates, TIC AMI and ARHGAP15: TIGAM1 is a Toll-like receptor adaptor 

molecule, involved with the innate immune response; ARHGAP15 is involved with 

regulating natural killer (NK) cell response after infection, and as such, the NK response 

may be a shared pathway involved with both murine and cattle trypanotolerance [187].
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Conclusions and Further Work
Whilst the large number of genes in Tir3c that have CNV, nsSNP or haplotypes that 

correlate with phenotype may make it difficult to identify the QTL gene at this locus, 

the CNV at Cd244 was the most substantial DNA polymorphism in the region making 

Cd244 a strong candidate QTL gene. It is also possible that the QTL is not a 

consequence of a single polymorphism but the combined effect of multiple 

polymorphisms in an extended haplotype, however Inserting an additional copy of 

Cd244 into the C57BL/6 background, so that it had a similar gene dosage to the 

susceptible strains, could test the effect of this CNV on the response to infection.

Two other loci, outside of the Tir QTL may also have genes that respond to infection 

and have altered gene expression that may be due to CNV: Abd on chromosome 4 and 

the Kira genes on chromosome 6, which may warrant further investigation.

The killer cell lectin-like receptor genes (Kir) genes in particular show remarkable 

variability in copy number between mouse breeds. Previous studies have shown this in a 

wider range on mice [174], and have suggested that these CNV may affect the ability of 

the mouse breed to respond to infection. Indeed, work on the BALB/c mouse suggested 

that there might be additional members of the Kir family present that have not been 

probed by aCGH arrays and may be detected by further sequencing [188]. 

Furthermore, whilst the other genome-wide CNV do not overlap with trypanosomiasis 

QTL, they may be responsible for QTL involving resistance to other disease, and 

notably, survival after infection with the closely related L. major. QTL have been 

detected on chromosomes 6 and X that affect Ldshmanm lesion size [189]. In this 

manner, murine copy number studies may reveal further overlaps between CNV and 

disease QTL.

Whilst microarray-based studies have clearly paved the way for copy number research, 

it is clear that these technologies are being surpassed by faster, cheaper, higher- 

throughput, and more sensitive techniques: microarray-based gene expression assays 

are being replaced by transcrip tome sequencing [190]; Chromatin immuno- 

precipitation (ChIP-chip) by next-generation ChIP-sequencing (ChIP-Seq) [191] and 

aCGH by CNV-seq, which uses the extremely high read depth generated by next-
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generation sequencing technologies to identify duplicated regions [153]. Indeed, in 

chapter two, we have utilised next-generation sequencing to elucidate SNP that may be 

driving resistance to disease. It may be that more current methods will have the 

resolution and reproducibility to detect a wider range of polymorphisms that may alter 

the copy number of other genes or regulatory elements that may be driving differences 

in resistance to a range of diseases that it is not possible to detect with the techniques 

used in this study. Nevertheless, using established high-throughput microarray 

technologies, and combining them with gene expression assays, we have discovered 

CNV that correspond with genes that show a change in gene expression during T. 

congolense infection. In this manner, the CNV may be the polymorphism driving the 

QTL gene at the Tir3c locus: specifically affecting the expression of Cd244 throughout 

infection.

By systematically combining aCGH and gene expression data from this chapter with 

next-generation DNA capture and sequencing and SNP annotation from the previous 

chapter, we have comprehensively analysed the genetic aberrations that underlie the 

Tiypanosoma infection response QTL in mice and have generated a short list of 

polymorphisms in candidate QTL genes that can be functionally tested in cattle.
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Chapter Four

Phenotypic and genetic analysis of T. b. rhodesiense 
field isolates reveals differences in virulence in mice 
that correlates with human disease

Abstract
The human-infective parasite Tiypanosoma bmcei rhodesiense generally causes an acute 

form of “sleeping sickness” across Eastern Africa, compared to T. b. gambiense infections 

in Western Africa, which are more chronic. The 1988 Ugandan T. b. rhodesiense 

outbreak constituted infections by parasites with different ‘zymodemes5: parasites that 

have variations in the electrophoretic mobility of a series of enzymes. The two 

predominant zymodemes, Busoga 17 (B17) and J(/imbesi 310 (Z310), each displayed 

differences in their clinical manifestation: Z310 infections were more chronic, and B17 

more acute. Differences in survival phenotype could be replicated in experimental 

infections in mice: CD-I, BALB/c and 129/sv mice infected with Z310 survived for a 

significantly shorter length of time than those infected with B17.

In order to investigate whether Tirl regulates survival in T. b. rhodesiense infections in a 

similar manner to T. congolense (Chapter Two), mice congenic for the C57BL/6 allele 

(TirlCC) at Tirl were infected with Z310 and B17 zymodeme T. b. rhodesiense parasites. 

TirlCC mice did not show any significant difference in survival to A/J controls 

(TirlAA), after infection with either Z310 or B17 zymodeme parasites. As T. b. 

rhodesiense infections are generally more acute than T. congolense infections, it may be that 

Tirl regulates long-term survival in mice after survival of the initial peak of parasitemia. 

Differences in survival were observed between zymodemes of the infecting parasite: 

Both TIR1CC and TIR1AA mice had a significantly shorter mean survival time when 

infected with B17 (~10.7 days) than those infected with Z310 (—15.6 days), in line with 

previous observations of human infections.
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Cluster analysis of the microsatellite genotypes of 31 T. b. rhodesiense isolates that 

represented nine different zymodemes could not distinguish between Z310 and B17 

parasite populations. STRUCTURE identified three population clusters, including a 

single cluster of Z366 parasites from a single 1993 outbreak in south-Eastern Uganda, a 

mixed population including Z310 and B17 isolates, and a single Z377 outlying 

individual. This suggests that either multiple genes control virulence, that there is gene 

flow between similar parasite populations, or that the microsatellite genotyping was 

insufficient to distinguish between different parasite populations. Further genetic 

analysis, utilising next generation whole-genome sequencing may be necessary to 

elucidate the loci responsible for the different virulence phenotypes between T. b. 

rhodesiense field isolates.
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Introduction
Human African trypanosomiasis, or “Sleeping Sickness”, is a vector-borne, parasitic 

disease caused by two subspecies of Tiypanosoma: T. brucd gambiense and T. brucd 

rhodesiense. HAT patients exhibit early stage symptoms of fever and malaise through to 

later stage symptoms of confusion, reversal of sleep patterns and coma if the infected 

patient remains untreated. There have been many major epidemics in East Africa since 

1896, with the latest epidemic in the Busoga region of Uganda running from 1971 to 

the present (Reviewed [192]).

Differential virulence phenotypes in Trypanosoma brucei

The clinical profiles of T. brucd infections vary depending on the subspecies of the 

infecting parasite: T. b. gambiense is classically defined as producing a chronic infection 

whereas T. b. rhodesiense infections tend to be very acute, with progression to late-stage 

disease often between 4-6 weeks [193], and 80% of deaths are within 6 months of the 

initial infection [194]. Differences in virulence phenotypes have not only been observed 

between subspecies but also been observed between isolates from the same subspecies. 

For instance, differences in pathogenicity have been observed in T. b. rhodesiense isolates 

from different Ugandan outbreaks [85] and for different isolates of T. b. brucd (strains 

TREU927/4 and STIB247) [195]. In the latter case, QTL underlying the observed 

differences in virulence in mice between T. b. brucd isolates have been established from 

artificial crosses of TREU927 and STIB247 [196].

Reports exist of differences in the severity of disease correlating with differences in 

parasite genotype [94, 197], which is not solely linked to parasitemia, as studies in T. b. 

gambiense have suggested that parasite isolates that generate elevated parasitemia do not 

necessarily result in increased pathogenicity [198]. Differences in T. rhodesiense 

morphology (linked to isolates from different disease foci) have been shown to correlate 

with their rate of growth in rodents [87], however it is likely that the effects of a 

combination of both the parasite and the host genotypes have an effect on the severity 

of the symptoms, and the speed of progression from early- to late-stage disease [94].
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T. b. rhodesiense infections from the 1989-1993 Ugandan outbreak follow 

different clinical profiles

Three recent studies have observed similar differences in clinical presentation from 

allopatric samples (samples from different foci) from the Soroti and Tororo districts of 

Uganda, and from Malawi [85, 197, 199]. A study of 275 patients showed that isolates 

from Soroti presented with severe symptoms, a more rapid progression to stage 2 

disease, and an earlier onset of neurological dysfunction. A greater percentage of 

Tororo patients had been infected for longer periods of time, and as such were more 

commonly associated with severe neuropathology. Samples from Malawi have been 

associated with a more chronic disease onset, with mild anaemia as the only common 

symptoms, and were rarely associated with chancre formation.

Whilst these observations have been made between spatially distinct foci in Uganda 

[85], few have shown similar results from sympatric isolates. One such study focussed 

on 42 isolates from Busoga, from an outbreak in Uganda from 1989-1993 [200]. 

Patients reporting to treatment centres suffering from T. b. rhodesiense sleeping sickness 

presented with two sets of symptoms: Patients, often from central villages, had short 

clinical histories with early symptoms such as fever and a chancre at the site of the tsetse 

bite; Those cases that had already progressed to late-stage disease had severe 

neurological symptoms. Other patients, who presented later due to a lack of initial 

symptoms and a more chronic disease onset, had symptoms that were more 

HIV/AIDS-like, including a lack of co-ordination and general malaise. These patients 

were often from areas close to the River Nile and Lake Victoria
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Characterisation of 7. b. rhodesiense by isoenzyme electrophoresis

At least two studies have attempted to classify T. b. rhodesiense according to similarities in 

their multilocus enzyme electrophoresis (MLEE) patterns. Initially zymodemes were 

grouped into two 'strain groups3: Busoga and J^ambesi, based on the regions from which 

they predominantly originated [88]. This is, however, less well represented in a more 

recent study using a reduced set of ten enzymes [201]. Whilst gjimbesi zymodemes 

remained relatively unchanged, the Busoga group was split into two further groups: 

Busoga and the more T. b. gambiense - like Bouqfle group. Nevertheless, Busoga and Zambesi 

strain groups still share up to 75% similarity according to the latter study.

The clinical histories of Ugandan patients from the 1989-1993 Ugandan outbreak 

correlated with the zymodeme of the infecting parasite [200]: Busoga zymodeme 

infections caused acute infections in 93% of the tested cases, with 92% presenting with 

chancres. By contrast, Zambesi zymodeme infections occurred most frequently in those 

patients presenting with late-stage disease (Yates corrected Chi-Squared; p = 0.001) and 

without a chancre (Yates corrected Chi-Squared; p < 0.01), with the exception of the 

Zambesi 366 (Z366) zymodeme. Z366 infections were from a single, four-year outbreak 

in the Bugiri region that caused more Busoga-likc symptoms.

Table 4.1: Enzyme banding patterns for six different zymodemes sampled in this study 
(from Stevens et al (1992)). Numbers represent a pattern of bands on a thin-layer starch 
gel, and as such, each pattern of numbers represents a 'barcode5 from which a new 
zymodeme can be assigned. In this manner, B359 can be differentiated from B17 at the 
'‘NHD” (pattern 3 to pattern 1) and “SODb” (Pattern 8 to Pattern 9) loci. Enzyme 
abbreviations are as follows: NHI = Nucleoside hydrolase (utilising inosine); NHD = 
Nucleoside hydrolase (utilising deoxyinosine); TDH = Threonine dehydrogenase; ICD = 
Isocitrate dehydrogenase; MDH = Malate dehydrogenase; PGM = Phosphoglucomutase; 
ASAT = Aspartate aminotransferase; ALAT = Alanine aminotransferase; SOD = 
Superoxide dismutase. SOD production was deemed to be controlled by two genes and 
patterns attributed to either SODA (anodic group) or SODB (cathodic group). Details 
were not available for zymodemes Z375, Z377 or B376.

Zymodeme NHI NHD TDH ICD MDH PGM ASAT ALAT SODa SODb
B17 1 1 1 3 1 3 1 2 1 9
B359 1 3 1 3 1 3 1 2 1 8
Z309 1 3 1 1 1 1 1 2 1 7
Z310 1 3 1 1 1 1 1 2 1 8
Z311 1 3 1 1 1 1 1 2 1 9
Z366 1 3 1 1 1 3 1 2 1 9
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Host response to experimental T. b. rhodesiense infection

Studies in experimental rodents have shown differences in morphology and growth rate 

between strains of T. rhodesiense (now reclassified as T. b. rhodesiense) from Botswana 

[202]. It was subsequently found that those strains that were from former human 

epidemic areas, and as such were deemed to be more infective in humans, developed 

more slowly in the rodent model. Likewise, those parasites that were from endemic 

regions, and deemed to cause a more chronic disease, appeared to grow quicker in 

number [203]. Similar behaviour was observed in samples from a more recent 

Ugandan outbreak, with clear differences in histopathology between zymodemes [200].

Different strains of laboratory mice exhibit different levels of resistance to infection with 

T. b. rhodesiense [204]. BALB/c mice survive for mean duration of approximately 20 

days post-infection, whereas C57BL/6 mice survive for between 40-60 days. Similarly, 

C57BL/6 mice are relatively resistant to T. congolense infection, and A/J, BALB/c and 

129/J mice are relatively susceptible [105-107]. This is similar to the situation seen in 

previous chapters with infections with T. congolense, where resistance had been linked to 

three quantitative trait loci (QTL), Tirl, 2 and 3a-c (for Tiypanosoma Infection Response), 

with Tirl having the largest effect upon survival [126]. The effects of these QTL on 

murine survival after T. b. rhodesiense infection have not hitherto been established. 

Resistance to T. b. rhodesiense infection in rodents has been shown to be both IFNG 

[205] and sex-dependent [206], albeit not X-linked [207].

Genetic variability of T. b. rhodesiense

Despite the phenotypic differences, little is known about the genetic variability within 

the T b. rhodesiense subspecies; T. bmcd genome sequences currently only exist for T. b. 

bmcei strain TREU927/4 [42], and more recently, Type 1 T. b, gambiense [90]. 

Molecular characterisation has suggested that the T b. bmcei population is more 

heterogeneous than T. b. rhodesiense. Alongside this, similar studies have revealed that T. 

b. rhodesiense isolates from Uganda are more closely related to T. b. bmcei isolates from 

the same geographical focus than T b. rhodesiense isolates from Zambia [76]. Taken 

together, these data give rise to the hypothesis that T. b. rhodesiense is a host-range 

variant of the more genetically diverse T. b. bmcd, and different epidemic foci arise from
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T. b. billed variants that have gained the SRA gene through mating followed by the 

selection for human resistance and subsequent expansion.

Aims and Objectives
The three Tir QTL have been established as regulating murine survival after infection 

with 71 congolense, but have not been shown to affect mice infected with 71 b. rhodesiense. 

In order to establish whether this is the case, we can take advantage of several mouse 

resources that are available to study the effect of a given locus on a complex phenotype, 

including the advanced intercross lines (AIL) described in chapter 2. Figure 4.1 shows a 

schematic of two such lines: consomic (4.1 A) and congenic lines (4.2B). A consomic 

mouse strain is an inbred strain with one of its chromosomes replaced by the 

homologous chromosome of another inbred strain. Congenic mice are similar, except 

that they differ from a particular inbred strain at a single locus as a result of 

backcrossing whilst selecting for a particular allele at that given locus [208]. By using 

these mice, the difficulties of studying phenotypes that might be affected by loci outside 

of a QTL of interest can be reduced, albeit can be less reliable if two QTL are linked 

and interact. Mice congenic for multiple QTL can be used if this is the case, and have 

been used previously to study blood pressure QTL in rats [209].
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Figure 4.1: Diagram describing chromosome substitution strains and congenic strains 
of mice in relation to their parental strains. (A) A theoretical chromosome substitution 
strain with three chromosomes where one chromosome has been replaced with the 
chromosome of a resistant parent (or vice versa); (B) A similar theoretical strain that is 
congenic for a QTL on the same chromosome, which is created by genotyping offspring 
at the locus of interest and subsequently backcrossing to the unaffected line for several 
generations [208]. Strains such as these are important for the mapping and analysis of 
complex phenotypes.

A/J mice congenic for the resistant (C57BL/6) alleles at Tvrl have been experimentally 

infected with one zymodeme from each strain group, and survival time monitored. In so 

doing, difFerences in pathology between different zymodemes can also be studied. These 

data have been compared to previous data for CD-I mice, including parasitemia and 

cytokine response [210].

Additionally, in order to identify loci in the parasite genome that might be contributing 

to differences in virulence, we have analysed the multilocus genotypes of 31 isolates 

representing nine known zymodemes. Shared alleles between multiple isolates from the 

same zymodeme that differ between differentially virulent parasites may reveal those 

loci that underlie the observed differences in phenotype.
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Materials and Methods

Trypanosome Stocks

31 of the T. bmcei rhodesieme isolates used in this study (Table 4.2) have been previously 

described [200]. Zymodeme profiles discussed are according to Stevens and Godfrey 

[201].

Isolates stored as stabiliated blood were passaged through mice as follows: CD-I mice 

(Charles River, Kent, UK) were infected intraperitoneally with 0.2mL stabilated blood. 

After 3 days post-infection, levels of parasitemia were assessed by tail bleed and those 

mice found to have a high level of parasitemia (>30 parasites per field; wet film) were 

immediately sacrificed and ex-sanguinated by cardiac puncture into 4mM EDTA as an 

anti-coagulant. DNA was extracted from mouse blood using a DNEasy Blood & Tissue 

Kit (Qiagen) as per the manufacturer’s instructions.

In order to increase the amount of DNA available for PCR and subsequent storage, 

isolates that had previously been stored as stabilated procyclic cultures were additionally 

amplified using cj)29-based Whole Genome Amplification (Illustra GenomiPhi V2 DNA 

Amplification Kit, GE Healthcare). As microsatellite allelic dropout has been reported 

for whole-genome amplified material [211], amplifications were performed in triplicate 

and reactions were pooled prior to subsequent use.
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Table 4.2: T, b. rhodesiense isolates used in this study, including details of zymodeme, 
original storage conditions, and year of collection. Sample 32 was collected from a 
British tourist visiting Zambia in 2010 and is discussed in later chapters. All other 
isolates were collected as previously described [200]. Zymodeme profiles discussed are 
according to Stevens and Godfrey (1992).

Isolate
Number

Zymodeme Stage of
Infection at 
time of 
collection

Year of 
Collection

Storage
Conditions

1 Z375 Late 1993 Blood
2 B17 Early 1991 Blood
3 Z375 Early 1993 Blood
4 Z366 Early 1993 Blood
5 Z310 Late 1992 Blood
6 Z310 Late 1992 Procyclic
7 B17 Early 1991 Blood
8 Z366 Early 1993 Blood
9 Z309 Late 1993 Procyclic
10 B359 Late 1992 Procyclic
11 Z366 Early 1993 Procyclic
12 B17 Early 1990 Blood
13 Z366 Early 1993 Procyclic
14 Z366 Early 1993 Procyclic
15 Z366 Early 1993 Blood
16 B17 Early 1993 Blood
17 B17 Early 1991 Blood
18 Z375 Late 1993 Blood
19 Z366 Early 1993 Procyclic
20 Z311 Late 1991 Blood
21 B17 Early 1991 Blood
22 Z377 Late 1991 Blood
23 Z310 Early 1990 Blood
24 unknown Early 1993 Blood
25 Z366 Early 1993 Blood
26 Z310 Late 1990 Blood
27 B359 unknown 1991 Blood
28 B17 Early 1991 Blood
29 Z375 Early 1993 Procyclic
30 Z310 Early 1990 Blood
31 B376 unknown 1991 Blood
32 unknown Early 2010 Blood
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Multilocus Microsatellite Genotyping

Full details of all primers used in this study are available in Appendix IV (Table A4.1), 

ten of which have been described elsewhere [85, 212] Microsatellite repeats on 

chromosome 8 were identified on the Tiypanosoina brucd bmcei TREU927 v.4 genome 

sequence [42, 61] utilising a Perl script as previously described [213]. PCR primers 

surrounding these sequences were designed using PRIMERS [214].

PCRs were performed using: PCR buffer (45mM Tris-HCl, pH 8.8; llmM 

(NH4)2S04; 4.5mM MgCh; 6.7mM 2-mercaptoethanol; 4.4jiM EDTA; 113ng/ml 

BSA; ImM of each of 4 deoxyribonucleotide triphosphates), l|iM of each 

oligonucleotide primer and 0.5U of Taq polymerase (Thermo) was used per 10|iL 

reaction; Alternatively, Reddymix (Thermo) was used for some PCRs. In both cases, 

l|iL of template DNA (20ngV[iL) was used, except in the case of nested PCR, where 

l|iL of a 1/100 dilution of the first product was used in the subsequent nested reaction. 

The cycling conditions in every case were as follows: 95°C, lOsecs; 50-55°C, 30secs 

(melting temperature (Tm) minus 5°C); 72°C, lOsecs; 30x cycles. PCRs were resolved 

by ethidium bromide stained agarose-gel electrophoresis (Nusieve GTG, Cambrex, NJ) 

and visualised under UV-light.

Genotyping primers included a 5J fluorescent dye modification (FAM), which enabled 

accurate detection and sizing using a capillary-based sequencing instrument (ABI 3130 

/ ABI 3100; Applied Biosystems, Foster City, CA, USA) against a set of ROX-labelled 

proprietary size standards (GS-LIZ500; Applied Biosystems). Allele scores were 

generated using PeakScanner software (Applied Biosystems).

A bootstrapped dendrogram showing the relationship between the different 

T. b. rhodesieme multilocus genotypes was generated using an unweighted arithmetic 

average based on Jaccard’s similarity index [215]. One marker that was found to be 

uninformative across all samples (M12C12) was removed prior to subsequent analysis. 

Bootstrap values were based on 100 replicates and those >70 are indicated on the 

dendrogram. The clustering calculator was accessed at 

http://www2.biology.ualberta.ca/jbrzusto. The number of population clusters was 

estimated using STRUCTURE [123], wherein the estimated number of populations
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(K) was iteratively tested between one and ten; The most likely final value of “K” was 

taken as the lowest mean log likelihood score (LnP(D)) from twenty iterations. This was 

further tested using the Delta K analysis method [124]. The most likely number of 

populations was the highest value for the mean absolute rate of change between 

consecutive values for LnP(D) (across twenty iterations) divided by the standard 

deviation from the mean (| ALnP(D) |/SD). As delta K analyses on hierarchical data 

structures tend towards the simplest number of populations, additional cluster analysis 

was performed using the BAPS package (v5.2; [125]), which determines the most likely 

number of clusters present in the data.

Survival in TirICC congenic mice

Tirl has only been shown to mediate survival time in experimental infections with T. 

congohnse. In order to investigate the effect of Tirl in T. b. rhodesiense infections, congenic 

mice containing the resistant (C57BL/6) allele at Tirl, on a susceptible A/J background 

(termed TirICC mice) and controls with the susceptible (A/J) allele (TirlAA) were 

established by Susan Anderson (Roslin Institute, Edinburgh). In summary: C57BL/6 

mice were crossed with A/J and at every generation after the FI progeny, those mice 

that contain the C57BL/6 at Tirl were subsequently backcrossed to A/J for seven 

generations, resulting in <1% of additional C57BL/6 alleles elsewhere in the TirICC 

genome [150]. Colonies of the two congenic lines were established at the University of 

Liverpool and subsequently all offspring were checked for having the correct alleles by 

PCR and sequencing a known SNP between C57BL/6 and A/J (dbSNP ID: 

rs 13465576) as previously described (Appendix Table Al.1.1).

24 age- and sex-matched congenic mice were infected with 104 B17 parasites and, 

similarly, 25 mice were infected with 104 Z310 parasites (i/p) from CD-I donor mice. 

After positive parasitemia was established microscopically, mice were monitored until 

substantial symptoms were exhibited, at which point the mice were humanely 

sacrificed, and survival time noted. Differences in survival between mice of differing 

genotypes, sex and age at infection, and for those infected with different zymodemes of 

parasite were compared using Kaplan-Meier log-rank survival tests and linear 

regression (SPSS v.16).
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Results

Experimental infections with different T. b. rhodesiense zymodemes in 

TirICC congenic mice suggests a complex survival phenotype between 

isolates that is not controlled by Tir1

TirICC mice, which are A/J mice with a C57BL/6-derived allele that confers 

increased survival time after infection with T. congolense parasites, showed no significant 

difference in survival after T. b. rhodesiense infections to their Tirl/AA controls regardless 

of the zymodeme of the infecting parasite (Kaplan-Meier survival test; }(2=2.7; df= 1; 

p^O.OO; Figure 4.2). Z310 infected mice, however, survived for a significantly longer 

period than those infected with B17 zymodeme parasites, with Z310-infected mice 

surviving for an average of 15.6 days versus B17-infected mice surviving for an average 

ofjust 10.7 days (Kaplan-Meier survival test; %2“16.1; df—1; p<0.001). Table 4.3 shows 

a comparison of survival times for both congenic, and three breeds of inbred mouse. 

Figure 4.3 shows a survival curve, and associated boxplot for congenic mice infected 

with different T. b. rhodesiense zymodemes.

Table 4.3: Mean survival times (days ± standard error) for three common breeds of 
experimental inbred mouse (BALB/c; 129/sv and C57BL/6) and TirlAA and TirICC 
(grouped under TirlAA+CC) mice after infection with an isolate representing two 
different zymodemes of T. b. rhodesiense.

TirlAA+CC BALB/c 129/sv C57BL/6
Z310 15.6 ± 1.1 days 9.2 ± 0.4 days 15.4 ± 0.5 days 18 ± 0.7 days
B17 10.7 ± 0.3 days 16 ± 0.3 days 26.4 + 0.7 days 29 + 0.7 days

Whilst similar tests showed that, alone, the sex of the infected mouse did not have a 

significant effect upon survival, stepwise linear regression suggested a significant change 

in the goodness-of-fit statistic upon its inclusion (regression analysis; F-change:=:4.24; 

p=0.045). Figure 4.2b shows a box-plot of mouse survival similar to the inset box-plot in 

Figure 4.3, but with the results grouped by sex of the infected mouse. Whilst median 

survival does not appear to differ significantly, the variation in survival appears to be 

greater in female mice, with many more surviving for longer periods. Correspondingly, 

neither the age of the mouse at the point of infection, nor the mouse genotype 

significantly altered the regression statistic.
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Figure 4.2: Boxplots of congenic mouse survival after infection with 
T. b. rhodesiense Busoga 17 and Zambesi 310 zymodemes, grouped by the genotype of 
infected mouse (A), or the sex of the infected mouse (B). Upper and lower limits of the 
box represent the upper and lower quartiles of survival, respectively. Median survival 
(days) is shown as the dark line towards the centre of the box. Error bars represent 95% 
confidence values (SPSS version 16).
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Figure 4.3: Kaplan-Meier survival curve of congenic mice (and controls) infected with 
Z310 and B17 zymodeme T. b. rhodesiense parasites. Inset boxplot represents median 
survival time (days) for mice after infection, grouped by zymodeme of the infecting 
parasite: Error bars are 95% confidence values; Upper and lower limits of boxes are the 
upper and lower quartiles, respectively; The dark line towards the centre represents 
median survival in days (SPSS version 16).
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Analysis of the multilocus genotypes of 31 T. b. rhodesiense isolates was 

unable to distinguish between Z310 and B17 zymodemes

In order to examine the genetic similarity between T, b. rhodesiense strains originally 

grouped based on zymodeme, the multilocus genotypes of 31 isolates were determined 

by amplification at twelve microsatellite loci (Appendix IV). One locus was 

uninformative across the entire panel and removed from subsequent analysis. All except 

two isolates had been previously grouped into nine different zymodemes as previously 

described [200, 201].

Clustering the genotype data for the 1990-1993 samples using an unweighted pair 

group method with arithmetic mean (UPGMA) based on Jaccard’s similarity index 

revealed three distinct groups of individuals (Figure 4.4): The single Z377 zymodeme 

isolate clustered separately, with a bootstrap value of 100 (based on 100 replicates). Two 

other clusters separated with a bootstrap value of 85: Firstly, a group containing Z366 

isolates, together with a B376 isolate (bootstrap support of 73) and an additional isolate 

of unknown zymodeme. Secondly, a group containing a mixture of: Z309-Z311; Z375; 

B17 and B359 isolates and two isolates of unknown zymodeme. Within this cluster, all 

bootstrap values were less than five indicating that the branches therein were of low 

confidence. Population analysis using STRUCTURE (Figure 4.5A) revealed little 

difference between simulations of two or three populations, with similar log likelihoods 

between population estimates (K:r:2, -475.95; K=3, -476.91). Subsequent delta K 

analysis using the same data also suggested two populations was the most likely (Figure 

4.5B). As delta K analyses tend towards the uppermost number of populations given 

hierarchical data structures, the data was additionally evaluated using Bayesian cluster 

analysis using BAPS, which suggested that three populations was the most likely by 

further discriminating the Z377 sample as an out-group. BAPS groups were largely 

identical to those shown in the UPGMA cluster analysis, except for a single isolate of 

unknown zymodeme (Isolate 24; Figure 4.5A). Repeating the cluster analysis without 

the Z366 data revealed no further substructure between Z310 and B17 populations. 

Full genotyping results are presented in a BAPS data format in Appendix IV (Table 

A.4.2).
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Z375 [3]
B17 [6]
Z309 - Z311 [9]
B359 [2]
Unknown [1]

I------ 4 (Z366)
I----- i— 15 (Z366)

I— 16 (Z366)
— I----- 8 (Z366)

M-----  25 (Z366)
_ I-------  19 (Z366)

I-----  14 (Z366)
^-------31 (B376)

-----------------24 (Unknown)
------------------ 22 (Z377)

Figure 4.4: Dendrogram showing the relationship between 31 different T. brucei 
rhodesiense isolates at eleven informative microsatellite loci and their respective 
zymodemes (where known). Tree was generated using an unweighted arithmetic 
average (UPGMA) as the clustering method. Bootstrap values are based on 100 
replicates and those >70 are indicated on the dendrogram. Sample numbers (Table 4.2) 
are displayed alongside zymodeme (if known) for nodes with high bootstrap support. 
Tree has been collapsed for the node representing B17, Z309-Z311, Z375 and B359 
isolates due to low bootstrap support. In this case, the numbers of isolates associated with 
each zymodeme is shown in square brackets.
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Chapter Four

Discussion
T, brucei rhodesiense infections produce both highly acute infections, rapidly progressing to 

late-stage disease, and more chronic infections lasting many months - often 

indistinguishable from T. b. gambiense infections. Two zymodemes from the Ugandan 

outbreak that began in 1989 — Busoga 17 (B17) and ^ambesi 310 (Z310) are 

distinguishable by four isoenzymes, but tend to cause very different courses of infection 

in man. Z310 causes a more chronic infection and patients were often unaware of being 

infected due to a lack of a chancre at the site of a tsetse bite. Patients infected with these 

parasites often presented at clinics showing late-stage disease. B17 patients often 

presented earlier in the course of infection, especially as chancres were often present 

and patients learned to associate these with T. b. rhodesiense infections. Those patients 

that had been observed with late-stage B17 infections had progressed to this stage 

rapidly, with severe symptoms [200]. Whilst similar observations have been made for 

isolates from different foci of disease [197], this represents the only case of different 

isolates from the same focus showing differences in clinical manifestation.

7. b. rhodesiense virulence in humans correlates with survival in 

susceptible A/J mice

Despite their genetic similarity, differences in survival are consistently and reproducibly 

seen between Z310 and B17 parasite infections. No difference in overall survival 

(combined Z310/B17 infections) was detected between TirlCG and TirlAA congenic 

mice. Both TirlCC and TirlAA were more susceptible to the B17 isolate (Sample 11, 

Table 4.2) than the Z310 isolate (sample (Sample 26; Table 4.2) in line with human 

infections. For other wildtype mice, Z310-infected inbred strains of mice consistently 

had to be humanely sacrificed earlier than B17-infected mice due to substantial 

symptoms. Despite higher mortality in Z310, B 17-infections still appear to have a 

higher level of parasitemia at the initial peak (Figure 4.3). Whilst the sex of the mouse 

did not have a significant effect on survival alone, including sex data in a stepwise linear 

regression analysis significantly changed the goodness of fit statistic; Female mice 

survive significantly longer than their male counterparts, agreeing with previous studies 

[206].
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Multilocus microsatellite genotyping was unable to resolve populations of 

Z310 and B17 zymodemes

Z310 and B17 isolates are difficult to separate based on the markers used in this study 

alone. UPGMA, STRUCTURE and BAPS cluster analysis each organised both of 

these zymodemes into a single group, alongside Z309, Z311, Z375 and B359 

zymodemes. Eleven out of twelve microsatellite loci were informative for at least one of 

the samples tested, although two loci (5L5; 401/1) only distinguished the Z377 outlying 

individual. Cluster analysis on these markers was able to distinguish a separate 

population containing all Z366 isolates, and a third group containing a single Z377 

isolate. Z366 isolates correspond to a 4-year outbreak in the Bugiri region around 

1993. Patients suffering from Z366 infections presented to treatment clinics with early- 

stage disease exhibiting a B 17-like infection, often with a fever and a chancre at the site 

of a recent tsetse bite, and showed more intermediate symptoms in mice [200]. Indeed, 

isoenzyme analysis shows that Z366 is more closely related to B17 than Z310 (Table 

4.1): Z366 differs from B17 only by the mobility of two enzymes as compared to four 

between Z310 and B17. The inability to distinguish between differentially virulent 

subtypes suggests that virulence is a multigenic trait and/or that there may be some 

gene flow occurring between similar parasite populations.

Despite MLMT being arguably a more powerful molecular technique to infer 

population structure, the data presented here suggests that MLMT (or the currently 

used loci) may not be the most suitable method for studying the population genetics of 

T. bnicei ssp. as microsatellites designed at informative isoenzyme loci were unable to 

distinguish between parasites that cause severe- and less-severe disease (i.e.. Z310 and 

B17 parasites), relying on microsatellite data alone to characterise virulence is probably 

insufficient. Preferential amplification of a single microsatellite allele at a given 

heterozygous locus has been previously described [216], which may account for an 

inability to separate the strains. Interestingly, the microsatellite data presented 

(Appendix IV: Table A4.2) show that the Z366 isolates were distinguished by the 

presence of a unique heterozygous allele to that zymodeme at five loci (11/13; 407/1; 

Ch8_001; Ch8_002; 2/21). As such, further genetic analysis of isoenzyme loci may 

reveal differences that could not be detected on electropherograms.
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Four isoenzymes are informative for distinguishing between T. b. rhodesiense zymodemes 

Z310 and B17 (Table 4.1), and only one} isocitrate dehydrogenase (ICD), appears to 

distinguish fully between Busoga from gjmibed groups, wherein a heterozygous band 

identifies Busoga strain groups, in the place of a homozygous band for ^ambesi.

Using isoenzyme data to classify a species has been shown to be inconsistent with 

multilocus microsatellite genotyping (MLMT), for instance in the case of the 

classification of East African Visceral Leishmaniasis (VL). Originally, three species were 

identified by MLEE: Leishmania donovani, L. infantum and L. archibaldi^ albeit this 

classification was based on polymorphisms in a single enzyme — Glutamate oxaloacetate 

transaminase (GOT) [217]. Subsequently, neither clusters of L. archibaldi nor L. infantum 

were detectable using microsatellite genotyping, suggesting that a single species — L. 

donovani^ is responsible for VL in Sudan [218], Whilst this is an extreme case, this 

emphasises the fact that it is perhaps not possible to directly compare the population 

structures suggested by MLEE and MLMT.

Conclusions and Further Work
Despite inbred laboratory mice exhibiting resistance to 27 b. rhodesiense infection that 

differs between breeds, as measured by survival time after infection, this effect has been 

shown to not be under the influence of Tirf as is observed in 77 congotense infections 

(Chapters Two and Three).

Genetically similar field isolates of 77 b. rhodesiense) as characterised by MLEE have 

exhibited different clinical profiles in man. Experimental infections in A/J mice 

congenic for the C57BL/6 Tirl alleles with two 77 b. rhodesiense zymodemes (B17 and 

Z310), suggest that isolates that cause rapid and severe symptoms in man (zymodeme 

B17) cause hastened mortality in mice. Similarly, mice infected with samples from 

patients exhibiting a more chronic disease onset (zymodeme Z310) survive for a longer 

period of time.

Virulence in mice and rats had previously been shown to be inversely correlated to the 

phenotype observed in man: strains that cause more severe disease in man (are more
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pathogenic) are less pathogenic in mice, as exhibited by longer survival and less severe 

symptoms [87]. Data have also suggested that virulence may be linked to cytokine levels 

and parasite numbers at the early peaks of parasitemia (Appendix V). In this manner it 

may be the case that for mice that are able to overcome this initial phase, mouse 

mortality is inversely correlated to humans, however very susceptible mice (such as A/J) 

are unable to survive this initial period.

Genotyping at eleven informative loci did not resolve populations of more pathogenic 

(B17) 71 b. rhodesiense isolates from those that are less pathogenic in man (Z310). This 

implies that virulence is multigenic or that there is gene flow between parasite 

populations of different zymodemes. Whilst the host genotype has a major part to play 

in the overall phenotype of survival after infection and/or virulence, a more powerful 

study, utilising next generation sequencing technology, may be useful in studying the 

genetic diversity between 71 b. rhodesiense field isolates. This will be covered in the next 

chapter.
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Chapter Five

Epidemic T. b. rhodesiense strains have signatures of 
introgression with West-African trypanosomes that 
associates with altered virulence phenotypes

Abstract
Genomic analysis of East African T. b. rhodesiense and West African T. b. gambiense, has 

suggested that recombination is occurring between them. SNP genotyping of 32 T. b. 

rhodesiense isolates showed that differences in clinical phenotypes were associated with 

differences in alleles on chromosome 8. Genomic sequence of two isolates showed that 

chromosome 8 was heterozygous for alleles of West African origin in the more virulent 

strain, suggesting that recombination may be associated with parasite virulence. 

Combining SNP data with the observed patterns of heterozygosity has identified 

candidate genes that may underlie the observed differences in virulence. These parasite 

strains are from an outbreak that began in 1989 in Uganda, where both subspecies are 

found but thought to be in discrete geographical locations; however our data suggest 

that recombination has occurred at least once and that the human-infective subspecies 

of T. bmcd are not genetically isolated. Our data have major implications for the control 

of the parasite, the spread of drug resistance and understanding the variation in 

virulence and the emergence of human infectivity. Further genetic analysis of T. b. brucei 

populations from Western, Central and Eastern Africa may be necessary to ascertain 

whether recombination is occurring directly between human-infective subspecies, or in 

the underlying animal-infective population.
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Introduction
Hoare (1972) originally proposed the current three sub-species model of African 

trypanosomes on the basis of human-infectivity (i.e. both the ability to infect man, and 

the severity of the disease caused) and geographical location [3]; however problems with 

the classical assignment of the sub-species within the T. bmcei sub-species complex are 

being revealed: Molecular analyses now suggest that the east African T. b. rhodesieme is a 

host-range variant of the more widespread T. b. bmcei [219]; Similarly, west African 

human-infective trypanosomes have been split into two isoforms: Group \ T. b. 

gambiense are clonal [220], more prevalent, less virulent in experimental rodents [95] 

and lack the serum resistance associated (SRA) gene, with serum resistance mediated by 

an invariant TLF-1 resistance mechanism [48]; Group 2 T. b. gambiense is more like T. b. 

bmcei [99], more infective to experimental rodents [221] and whilst they also lack SRA, 

can lose serum resistance after serial passage [95].

The case that T. b. gambiense causes chronic disease, whilst T. b. rhodesiense causes acute 

disease is also under scrutiny. There is now evidence for both acute [222] and 

asymptomatic T. b. gambiense infections in Cote d’Ivoire [223]. Differential acuteness 

and severity also exists in T. b. rhodesiense infections throughout South-Eastern Africa, 

from asymptomatic carriers in Botswana [224], mild disease in Zambia [225] and 

Malawi [85], through to severe and acute disease in Uganda [200].

Genetics underlying virulence

Whether pathogenicity (i.e. the ability to cause disease) is a function of parasite or host 

genotype remains to be fully elucidated. Of particular interest, therefore, are the T. b. 

rhodesiense samples collected by J. Wendi Bailey between 1988 — 1993 in Southern 

Uganda [200], as these sympatric isolates show differences in disease severity within the 

same focus, removing the confounding factor of geographical location as seen in 

outbreaks described by Maclean (2007) [85]. The observed differences in virulence in 

man have been correlated to zymodeme strain groups: Busoga infections tended to be 

more acute with severe symptoms; Zambesi infections were relatively chronic, with 

patients often not recalling a chancre and presenting with late-stage disease. Earlier 

studies have reported that human disease correlates with differences in host survival in
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experimental rodents and corresponds to differences in parasite morphology and on the 

location from which the sample originated; those parasites from previously epidemic 

areas developed more slowly in the rodent model, and vice versa [203].

The population structure of T. b. rhodesiense has been suggested to be either clonal [76], 

or panmictic with a few subtypes undergoing local and rapid clonal expansion [77]. 

Genetic analysis of Ugandan isolates has added weight to the argument of an 

underlying clonal population structure [226]. The recent addition of a combination of 

microsatellite genotyping and DNA sequencing of 142 T. bmcei isolates from across 

Africa has suggested that recombination between T. b. rhodesiense and East African T. b. 

bmcei is relatively common and further suggests that Type \ T. b. gambiense is distinct 

from the other sub-species and Type 2 T. b. gambiense is more closely related to both T. 

b. bmcei and 77 b. rhodesiense [122].

Reviewing the dynamics of the trypanosome life-cycie

The complex life-cycle of trypanosomes involves multiple morphologically similar forms 

within both the mammalian host and the tsetse vector. Initially, the parasites rapidly 

proliferate as long-slender forms (slender), as which numbers generally double 

approximately every three hours in vivo. These parasites express, and continually change 

between forms of, variant surface glycoprotein (VSG), a surface coat by which they 

evade the adaptive immune response. This process also allows the parasites to maintain 

a chronic infection within the mammalian bloodstream as numbers generally dwindle 

as antibodies begin to recognise the currently expressed form of VSG whilst smaller 

numbers expressing a newer form continue to proliferate. This process of antigen 

switching results in the ‘waves* of parasitemia that are characteristic of these infections 

(Chapter One: Figure 1.4).

Towards the peaks of parasitemia, subsets of these long-slender forms differentiate into 

an alternative bloodstream form — morphologically short and stumpy (stumpy) - that is 

intermediate to the procyclic, insect form. Stumpy forms exhibit a number of 

adaptations that ready the parasite for survival within the tsetse midgut, such as pH 

changes and a sharp decrease in glucose levels [227]. Notably, stumpy forms express EP 

(glu—pro repeat) procyclin, an alternative surface coat to VSG; the combination of
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expressing procyclin and shedding unnecessary VSG into the host bloodstream is 

thought to increase the immune response against stumpy parasites as compared to the 

slender forms [39], As the differentiation to the stumpy form is irreversible, a balance 

between different forms is important for maximising the likelihood of transmission 

[228]. Differentiation from slender to stumpy bloodstream forms is mediated by cell- 

density sensing [229], and the release of a hitherto unidentified stumpy induction factor 

(SIF). SIF is known to be of low molecular weight (<500Da) that is thought to signal via 

the cyclic AMP pathway [230].

Some experimental monomorphic clones, which are unable to differentiate to stumpy 

forms, have been shown to be more virulent in C3H mice due to the consumption of up 

to 40% of the mouse carbohydrate intake, as compared to carbohydrate consumption 

being less than 30% in pleomorphic clones [228]. This leads to a hypothesis that if 

Z310 parasites differentiate less readily in the mouse model, then a greater number of 

the slender form will be present in the bloodstream. This would impart a greater 

burden upon the mouse metabolism and could lead to increased mortality. Similarly, 

one could speculate that for those mice that are able to survive the initial peak of 

parasitemia, B17 infections would contain proportionally more stumpy forms, which 

would have a lower burden on the mouse metabolism and are potentially more easily 

targeted by the immune system, and as such, parasite numbers could be more easily 

controlled [231].
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Aims and Objectives

Utilising next-generation sequencing technologies, we can now rapidly sequence 

representative isolates of differentially virulent T. b. rhodesiense and compare these 

sequences to the reference Kenyan T. b. brucei (TREU927/4), and to recently sequenced 

Type 1 (DAL972; [90]) and Type 2 (STIB386) T. b. gambiense, and other T. b. rhodesiense 

isolates (Unpublished data). In so doing, homology between chronic or virulent isolates 

may reveal genetic loci or candidate genes that underlie the observed differences in 

virulence. The addition of whole genome sequence data to recent microsatellite 

analyses [122] will shed light on the relationship between East African T. b. brucei and T. 

b, rhodesiense and other T. brucei isolates.

Proteins that are more abundant in slender forms may represent important factors 

involved in parasite growth, replication and metabolism, or may be involved in slender 

to stumpy differentiation. Similarly, as stumpy parasites are thought to be more 

immunogenic, proteins that are expressed to a greater degree in stumpy forms may be 

important virulence factors. Of interest, therefore, is the study by Jensen et al (2009), 

who used microarrays to analyse the relative mRNA abundance between stumpy and 

slender forms of T, b. brucei TREU927/4 [232]. Genes that are preferentially expressed 

at different stages of the life cycle that contain nsSNP between Z310 and B17 may 

represent interesting candidate genes for further study.
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Materials and Methods

SOLID sequencing of Z310 and B17 isolates

Two isolates of T. b. rhodesiense, representing one each of zymodemes Zambesi (Z) 310 

(Sample 26: Chapter 4; Table 4.2) and Busoga (B) 17 (Sample 11) were cultured as 

described previously [233], and summarised as follows: SDM-79 culture medium was 

kindly donated by Annette MacLeod, University of Glasgow. SDM-79 was 

supplemented with sterile foetal bovine serum to a concentration of 10% (v/v) and 

streptomycin (lOmg/ml). Parasites were maintained in SDM-79 culture at 27°C in 

increasing quantities (2~5mL) until sufficient parasitaemia was established for DNA 

extraction and sequencing (~50ng genomic DNA).

DNA from cultured parasites was extracted using a Blood and Cell Culture DNA Kit 

(Qiagen, UK). Sequencing libraries were prepared and amplified by emulsion PCR 

according to the manufacturer’s protocols (Life Technologies, USA). Whole genome 

sequencing was performed on a single slide using the ABI SOLID Analyser version 3 

(Life Technologies, Foster City, USA). The resulting colour-space sequences were 

mapped to the T. b. brucei TREU927/4 v.4 genome sequence [42, 61]. Sequencing 

reads and associated coverage were visualised using the IGV browser (Broad Institute of 

MIT, USA). SNP were extracted using the BIOSCOPE pipeline (Life Technologies, 

USA) and deposited into a MySQL database using a bespoke Perl script (Appendix IX: 

Additional data file 3), wherein those associated with low coverage (<5X) were 

subsequently removed. The resulting filtered SNP were compared to generate lists of 

SNP shared by each isolate, and for unique homozygous and heterozygous SNP for 

each zymodeme.

SNP validation

33 SNP loci were validated using the PCR-based cleaved amplified polymorphic 

sequence (CAPS) method [234]. By choosing SNP that either create or destroy a 

restriction site for a given enzyme, SNP can be validated by comparing bands on an 

agarose gel to those predicted in silica in the absence of the SNP. Candidate loci were 

identified using the SNP2CAPS perl script [235] and PrimerS [214]. PCR products
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were generated as per those for the microsatellite genotyping, and the resulting products 

were digested using the BSTNI enzyme (NEB). Restriction patterns were compared on 

a 2% agarose gel. For those restriction patterns that were unclear, additional validation 

was performed by directly sequencing the PCR products on an ABI-3130XL capillary 

sequencer using BigDye v3.1 chemistry (Applied Biosystems) after the excess nucleotides 

and primers were digested using a mixture of Exonuclease I (Thermo) and Shrimp 

Alkaline Phosphatase (Thermo) as per standard protocols [236], All loci and primers 

are available in Appendix VI (Table A6.1).

Confirmation of Isocitrate dehydrogenase alleles

Two heterozygous, non-synonymous SNP that were 3bp apart within the chromosome 

8 copy of isocitrate dehydrogenase (Tb927.8.3690) were confirmed by 

dideoxynucleotide sequencing as previously described. The theoretical isoelectric point 

and molecular weight for the Z310 and B17 copies of Tb927.8.3690 were predicted 

using the ExPASy compute pl/mw online tool (http://expasy.org7tools/pi_tool.html). 

Motifs within amino acid sequences were predicted using PROSITE [237].

Candidate gene identification

The numbers of heterozygous non-synonymous SNP (nsSNP) between the sequenced 

Z310 and B17 isolates were totalled by gene. A list of genes containing heterozygous 

nsSNP were compared to those identified to be differentially expressed between slender 

and stumpy forms of the parasite byjensen et at (2009) [232] in a MySQL database, and 

shared genes identified. Additionally, as kinases represent potential drivers of 

differentiation from slender to stumpy parasites [238], Gene Ontology (GO) terms were 

downloaded into a MySQL database for all genes from GeneDB using the AmiGO tool 

(http://www.genedb.org7cgi-bin/amigo/go.cgi) and those genes that contain nsSNP, 

are differentially expressed between stumpy and slender forms and contain “kinase” 

GO terms were identified.

Selection of SNP loci for KASPAR genotyping

50 non-synonymous SNP loci (25 homozygous and 25 heterozygous) were selected from 

a MySQL database of all SNP between Z310 and B17 for subsequent typing of the

92

http://expasy.org7tools/pi_tool.html
http://www.genedb.org7cgi-bin/amigo/go.cgi


Chapter Five

remaining isolates. Loci were chosen to represent all eleven megabase chromosomes, 

and all were predicted to have an impact upon protein structure by way of a low (<0) 

BLOSUM50 score. BLOSUM scores are a prediction of the likelihood of a given 

substitution having an effect on function based on the frequency that similar 

substitutions are observed in a reference dataset [140]. For instance, two similarly 

charged residues or, alternatively, two polar residues, are more likely to be substituted 

for one another. In this manner, BLOSUM scores range from -4 to +4, with negative 

scores predicting a less frequent substitution, and positive scores being more frequent.

KASPAR genotyping

A lOObp window surrounding the SNP was extracted from a consensus sequence for the 

Z310 and B17 genomes using a bespoke perl script (Appendix IX: Additional data file 

4) and submitted to KBiosciences (KBiosciences Ltd, Hoddesdon, UK) for SNP 

genotyping using their proprietary KASPAR platform

(http://www.kbioscience,co.uk/). Loci are presented in Appendix VI (Table A6.2).

Of the 50 loci selected, 31 non-synonymous SNP loci between Z310 and B17 T. b. 

rhodesiense were successfully genotyped by KASPAR SNP genotyping according to the 

manufacturer’s protocols (Appendix VII: Figure 7.1.2). SNP were genotyped across 31 

T. b. rhodesiense samples collected from Uganda between 1989 — 1993 [86], and a single 

sample from a 2010 patient from Zambia (Chapter 4, Table 4.2). 28 of the Ugandan 

isolates had been successfully typed by MLEE at the University of Bristol as part of the 

original study.

SNP data for the publicly available T. bmcd ssp. genomes were analysed alongside the 

SNP genotyped by KASPAR. The number of populations was estimated using the 

STRUCTURE package as previously described (Chapter Four). A SPLITSTREE 

EqualAngle NeighbourNet phylogenetic network [239] was generated for all SNP using 

the default software settings.
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Publicly Available Sequence data

Publicly available genome sequences for T. bmcd ssp. were downloaded from the 

Sequence Read Archive (trace.ncbi.nlm.nih.gov) for: T. bmcd bmcd (TREU927/4; 

Accession number: ERX009953) and for the progeny of an artificial cross between T. 

bmcd bmcd STIB247 and TREU927 (ERX008996); a 1960 Ugandan T. bmcd rhodesiense 

(EATROS; ERX007603); a 1977 Kenyan T. bmcd rhodesiense (EATRO2340; 

ERX007601) and for the progeny of an artificial cross between Type 2 T. bmcd 

gambiense STIB386 and T. bmcd bmcd STIB247 (ERX000726). Similarly, sequencing 

reads for: T. bmcd bmcd (STIB247); a Type 1 T. b. gambiense isolate (DAL972) [90] and a 

Type 2 T. bmcd gambiense from the Ivory Coast (STIB386) were downloaded directly 

from the Wellcome Trust Sanger Institute (WTSI) FTP website 

(ftp://ftp.sanger.ac.uk/pub/pathogens/Trypanosoma/brucei/T,b.gambiense_sequenc 

es/). All publicly available sequence data were generated on an Illumina Genetic 

Analyser (GA), except for DAL972, which was sequenced using dideoxynucleotide 

(Sanger) sequencing [90]. As Sanger sequence read-lengths exceed the maximum read- 

length permissible by the BOWTIE aligner, in order to align all data using the same 

alignment software, Sanger reads were artificially split into 50bp reads using a bespoke 

Perl script and treated as per next generation sequencing data (Appendix IX: 

Additional data file 5). As the original SOLID sequencing reads were aligned using 

BIOSCOPE, a comparison was performed to ascertain whether new mapping 

algorithms affected the SNP data and subsequent analysis. A comparison of mean 

coverage and SNP is presented in Appendix VI, Table A7.1.

The Illumina GA and artificial 50bp Sanger sequencing reads were aligned to the 

T. b. bmcd TREU927/4 reference sequence using BOWTIE [240]. SNP were extracted 

using the PILEUP feature in the SAM tools package [241].

Genome-wide SNP analysis

123,543 genome-wide SNP were extracted for all six T. bmcd genomes where both a 

polymorphism was present in one genome, and all genomes had coverage > 5. Due to 

the large number of VSG elements present in the T. b. brucei TREU927/4 reference 

sequence, all SNP within VSG coding sequences were removed, leaving 118,161 SNP. 

Differential non-synonymous SNP between Z310 and B17 were compared in a pairwise

94

ftp://ftp.sanger.ac.uk/pub/pathogens/Trypanosoma/brucei/T,b.gambiense_sequenc


Chapter Five

fashion to both T. b. brucei (TREU927) and T. b. gambiense (Type 1, DAL972). SNP loci 

were colour coded (green = homozygous SNP; blue = heterozygous SNP) and plotted 

against genomic position to create a plot the introgression of alleles into T. b. rhodesiense 

from West African T. b. gambiense. A similar plot was created for a comparison of 

TREU927 and Type 2 T. b. gambiense^ and was found to show similar patterns of 

introgression and is therefore not presented.

A bootstrapped (based on 1000 replicates) Jukes-Cantor Neighbour Joining (NJ) tree 

was created using SPLITSTREE. A third tree was constructed showing the distances 

between strains based on the 9,443 SNP loci on chromosome 8. Non-synonymous SNP 

were then extracted and split into individual chromosomes using a bespoke perl script 

similar to that described previously (Appendix IX: Additional data file 2). Additional 

SPLITSTREE NJ trees for each individual chromosome are presented in Appendix 

VII, including a comparison of the SNP predicted by both the BIOSCOPE and 

BOWTIE mapping algorithms (Figures A7.2.1 to A7.2.11).
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Results

ABI SOLID sequencing reveals patterns of homozygous and heterozygous 

SNP between zymodemes

Alignment of the SOLID sequencing data for B17 and Z310 using BIOSCOPE 

revealed a total of 203,049 Z310 and 209,415 B17 raw SNP relative to the T, b, brucei 

TREU927/4 reference sequence. Removing shared SNP between the two samples 

revealed putative SNP loci between the samples as shown in Table 5.1. Plotting- 

numbers of homozygous and heterozygous non-synonymous SNP between the 

sequenced T. b. rhodesiense strains and both T b. brucei and T. b. gambiense (Type 1), 

respectively, revealed patterns of recombination across chromosomal regions (Figure 

5,2).

Table 5.1: ABI SOLID sequencing results. Raw SNP between two individual isolates 
representing each of the T. b. rhodesiense Z310 and B17 zymodemes after mapping to 
the T. b. brucei TREU927/4 reference sequence using BIOSCOPE.

Zymodeme Homozygous
Non-synonymous

Heterozygous
Non-synonymous

Total

Z310 (vs B17) 2,013 8,470 22,803
B17 (vs Z310) 2,464 9,061 29,169
Shared 55,178 32,429 180,246

The chromosome 8 copy of isocitrate dehydrogenase is responsible for 

differences in MLEE patterns between Zambesi and Busoga zymodeme 

strain groups

Isocitrate dehydrogenase (ICD) was identified as the only isoenzyme that differentiates 

between Busoga and ^ambesi zymodeme strain groups of T. b. rhodesiense [89]. ABI 

SOLID sequencing revealed the presence of three heterozygous, non-synonymous SNP 

within the chromosome 8 copy of the ICD gene (Figure 5.1). Two SNP, that occurred 

within a 3bp window (Tb927.8.3690; Genomic coordinates: 21,622,832-4bp) were 

tested by capillary-based dideoxynucleotide sequencing and were found to occur in all 

four of the B17 isolates tested, and in none of the four Z310 isolates (Figure 5.2). 

Assuming that the SNP are linked, these changes confer a change in isoelectric point
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(pi) and molecular weight of the protein sufficient for a change in mobility on a 

multilocus enzyme electrophoresis (thin-layer starch) gel [88] (Table 5.2). No non- 

synonymous SNP were detected in the chromosome 11 orthologue of ICD.

B17
2310

M|FBVACAAmifJIvacaa
2 5

s s vBa gal

s s v|n|a gal TpiF visTTip s f
tpIf!v!stt1pslg1i|

3 S

B17
2310 IvIf 11) s v aIlHjl aBs| i H

v|f I dsva| e|la|s|v|

A 3

Figure 5.1: Predicted amino acid sequence of two sections of the chromosome 8 copy 
of the isocitrate dehydrogenase gene. Three heterozygous SNP were predicted in the 
Z310 sequence by SOLID sequencing and confirmed in four each of B17 and Z310 
isolates by Sanger sequencing. Positions are relative to the initiation methionine. 
Polymorphisms are at amino acid positions 29 (F>L); 30 (D>G) and 435 (I>V).

Table 5.2: Predicted molecular weight and isoelectric point of isocitrate dehydrogenase 
(Tb927.8.3690) for B17 and Z310 SOLID sequenced isolates. Assuming that the SNP 
are linked, and as the SNP are heterozygous, the Z310 has another copy identical to the 
B17 copy.

Predictions: Isoelectric point Molecular weight (kDa)
Z310 (Heterozygous) 8.10 48.57
B17 7.66 48.67

SNP validation and refinement of SNP-calling criteria

33 genome-wide SNP identified between the Z310 and B17 SOLID sequenced isolates 

were chosen for CAPS-based validation. Of the 33 loci, 22 were confirmed and 12 

unconfirmed. 5 of the loci that remained unconfirmed were predicted to be within the 

coding sequences of VSG elements, which may have caused problems with alignment 

due to the number contained within the genome. As such it was deemed that SNP at 

VSG sites could not be reliably predicted, and were removed from subsequent analyses. 

Results are presented in Appendix Table A6.1.
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Figure 5.2: Difference in percentage similarity 
of two T. b. rhodesiense strains (zymodeme B17 
and Z310) to T. b. brucei (TREU927; red) and 
Type 1 T. b. gambiense (DAL972; blue).

Percentage similarity to TREU927 and DAL972 
was calculated for moving lOKbp windows 
across B17 andZ310. The values of Z310 were 
subtracted from B17, giving “Delta percentage 
similarity” (Y-axis).

Negative values indicate Z310 is more similar to 
the given reference; Positive values indicate B17 
is more similar to the given reference. 
Chromosomes are indicated by Roman 
numerals. In so doing, B17 chromosome 8 can 
be seen to be more similar to T. b. gambiense 
(blue), than Z310, which is correspondingly 
more similar to T. b. brucei (red). Other regions 
of introgression can be seen on chromosomes 3, 
5 and 10.
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Patterns of recombination between T. b. brucei, T. b. gambiense and T. b. 

rhodesiense differ between chromosomes

Comparing alleles from T. b. rhodesiense to both T. b. brucd TREU927 and to Type 1 

T. b. gambiense (DAL972) showed patterns of homology and heterozygosity. ~73% of 

B17 chromosome 8 is heterozygous for alleles of both T. b. brucei and T. b. gambiense 

(Figure 5.2); Z310 is homozygous and similar to T. b. bmcei. Overall sequence 

comparison of B17 and Z310 shows that the genomes of the sequenced Z310 and B17 

isoaltes are >99.8% identical, however at SNP loci between the two, the B17 isolate is 

23% more similar to Type 17%. gambiense than Z310.

Other chromosomes show similar patterns of haplotypes of either T. b. bmcei or T. b. 

gambiense origin: Z310 chromosome 5 appears to be heterozygous, in part, between T. b. 

gambiense and T. b. bmcei, B17 is more similar to T. b, bmcei at the same loci. 

Chromosomes 2, 3, 5, 8 and 10 showed such distinct heterozygosity patterns (Figure 

5.3).

Examining SNP data on a SPLITSTREE phylogenetic network revealed patterns of 

historical recombination, represented by interweaving at the centre of the tree (Figure 

5.4A). Z310 and B17 populations were close together, distinct from T, b, brucei and 7! b. 

gambiense, Z366 isolates were tightly clustered, distinct from other T. b. rhodesiense 

zymodemes and situated between T. b, brucd and T. b. gambiense.

Expanding these data to shared SNP loci between all six next-generation sequenced T. 

brucd ssp. strains agrees with the historical classification of the species. A Jukes-Cantor 

Neighbour Joining (NJ) tree of the 118,161 genome-wide SNP loci shows T. b. gambiense 

clusters separately to both T. b. bmcd and T. b. rhodesiense (Figure 5.4B). Different 

phylogenetic relationships can be seen on splitting these data into individual 

chromosomes: (Figure 5.4C) shows a similar Jukes-Cantor NJ tree wherein Z310 

chromosome 8 is more closely related to the represented T. b. brucd strains, whereas B17 

chromosome 8 is located between T. b. bmcd and T. b. gambiense.

Subsequent comparison of the newer mapping algorithm — Bowtie [240], showed 

concordance with the BIOSCOPE SNP data that was in line with the difference in 

number of sequence reads successfully aligned (Appendix Table A7.1). Subsequent
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analyses were not significantly affected by the differences in overall SNP number and as 

such the original BIOSCOPE results were used for Z310 and B17 sequences: 

SPLITSTREE NJ trees for each individual chromosome are presented in Appendix 

VII, including a comparison of the SNP predicted by both the BIOSCOPE and 

BOWTIE mapping algorithms showing little difference between the results from the 

different mapping algorithms (Appendix Figures A7.2.1 to A7.2.11).
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Figure 5.3: Introgression plot of T. b. brucei 
and T. b. gambiense (Type 1) alleles into two T. 
b. rhodesiense genomes (Z310 and B17). 
123,543 genome-wide SNP were identified 
between six T. b. rhodesiense genome sequence 
data as described in the main text (Genome­
wide SNP analysis).

Lines represent shared alleles between TREU927 |y 
(Tbb; left) or DAL972 (Tbg; right) with the two 
SOLID sequenced T. b. rhodesiense genomes,
Z310 and B17. Introgressed alleles are y
represented as follows: Two shared alleles (i.e. 
homozygous; green); One shared allele (i.e. 
heterozygous; blue); No shared alleles (red). yj
Polymorphisms are plotted alongside a 
comparison between TREU927 and DAL972 in 
the same manner. Chromosomes are represented 
in Roman numerals I - XL VII

In this manner, Z310 chromosome 8 can be 
seen to be homozygously similar to Tbb and not 
Tbg, whereas B17 shares one allele each with Tbb VIII 
and Tbg across much of the chromosome.

Z310 B17 Tbb

Tbb Tbg Tbb Tbg Tbg

IX

X
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Figure 5.4: SPUTSTREE
phylogenetic networks and trees:

A: EqualAngle phylogenetic network 
for KASPAR genotyped SNP loci and 
next-generation sequencing data at 
the same loci for 40 T. brucei isolates. 
Zymodemes and/or subspecies have 
been highlighted. Tbb = 
T. b. brucei strains TREU927, 
STIB247 and the TREU927 x STIB247 
cross; |Tbg = T. b. gambiense Type 1 
(DAL972) and Type 2 (STIB386); 
Tbr (2010) = Zambian T. b.
rhodesiense isolate (Sample 32; Table 
4.2); “Tbb x Tbg cross” = STIB247 x 
STIB386 cross.

B: EqualAngle Jukes-Cantor
Neighbour-Joining tree of next- 
generation whole-genome sequencing 
data. Bootstrapped tree (based on 1000 
replicates) represents 118,161 
genome-wide SNP filtered for SNP 
within VSG coding sequences. All 
bootstraps > 90%.

C: As B, but limited to 9,443 SNP loci 
on chromosome 8. All bootstraps > 
98%.

Colours symbolise groups of similar 
sub-species / zymodeme:
Blue: T. b. rhodesiense B17 
Red: T. b. rhodesiense Z310 
Green: T. b. rhodesiense Z366 
Grey: T. b. brucei 
Yellow: T. b. gambiense
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Genes affected by differences in heterozygosity between B17 and Z310 

zymodemes

Heterozygous non-synonymous SNP (nsSNP) between the sequenced B17 and Z310 

isolates were totalled by chromosome (Figure 5.5) Chromosome 8 was the most affected 

(B17: 507 genes contained heterozygous nsSNP; Z310: 21 genes). (Figures 5.1 and 5.2). 

Similar differences are observed for chromosome 3, 5 and 10 in line with having the 

largest regions of differential heterozygosity between zymodemes.

Genes that contained heterozygous nsSNP were compared to genes that are 

differentially expressed between slender and stumpy forms of the parasite [232]. Those 

genes identified by Jensen et al (2009) that were both among the most differentially 

expressed between slender and stumpy forms, and that contain nsSNP between 

zymodemes, are shown in Tables 5.3A-D.

£ 200

2345678 9 10 11
Chromosome

Figure 5.5: Genes on each chromosome in regions that are heterozygous in one 
zymodeme, and not in the other. Counts are the number of differential heterozygous, 
non-synonymous SNP between the sequenced B17 and Z310 isolates. Shared SNP loci 
vs. T. b. brucei TREU927 have been removed. Blue = B17; Red = Z310.
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Table 5.3: Genes with non-synonymous heterozygous SNP that are amongst the most 
differentially expressed between slender and stumpy bloodstream isoforms of the 
parasite. Genes are ordered by the number of nsSNP [232].

Table 5.3A Z310: Slender

Chromosome Gene Function SNP count
10 Tbl0.70.7320 Hypothetical, conserved 18
5 Tb927.5.4010 Hypothetical 14
10 TblO.70.4030 Hypothetical, conserved 11
10 Tbl0.70.7280 Hypothetical, conserved 9
10 TblO.70.1720 Dynein; Molecular motor 

activity
4

5 Tb927.5.1410 64kDa invariant surface 
glycoprotein

4

5 Tb927.5.1430 64kDa invariant surface 
glycoprotein

4

10 TblO.70.4020 Hypothetical 2

Table 5.3B Z310: Stumpy

Chromosome Gene GO Term SNP count
5 Tb927.5.4620 ESAG protein 11
9 Tb09.160.5430 ESAG9 associated protein 2
10 TblO.70.2840 Hypothetical 2
6 Tb927.6.1520 Transporter activity 2
9 Tb09.142.0370 Hypothetical, conserved 1
9 Tb09.160.5400 ESAG9 associated protein 1
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Table 5.3C B17: Slender

Chromosome Gene GO Term SNP count
5 Tb927.5.1410 64kDa invaiiant surface 

glycoprotein
2

5 Tb927.5.1430 64kDa invariant surface 
glycoprotein

2

3 Tb927.3.1910 Hypothetical, conserved 1
3 Tb927.3.930 Dynein; Molecular motor 1

Table 5.3D B17: Stumpy

Chromosome Gene GO Term SNP count
8 Tb927.8.1130 Calcium binding protein 

phosphatase
14

5 Tb927.5.4620 ESAG protein 3
8 Tb927.8.6930 S erin e/threon in e protein 

kinase NrkA
3

9 Tb09.142.0380 Hypothetical, conserved 1
9 Tb09.160.5400 ESAG9 associated protein 1
1 Tb927.1.5220 ESAG9 associated protein 1
8 Tb927.8.6170 Transketolase 1
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SNP genotyping reveals distinct populations of Z310 and B17 isolates

STRUCTURE analysis of thirty-one SNP loci for 31 Ugandan T. b. rhodesiense isolates 

and a single Zambian isolate from 2010 (Chapter Four, Table 4.2), combined with 

next-generation sequencing data for six T. brucei ssp. isolates (plus two artificial crosses) 

suggested that 5 populations were most likely present in the data, as demonstrated by 

the highest value of LnP(D) [123] and by delta K analysis [124] (Figure 5.6). BAPS 

analysis of the same dataset suggested a different structure, with six populations 

(p=0.84) predicted to be the most likely, by predicting that T. b. rhodesiense EATRO2340 

is an outlying isolate. A bar-plot for the STRUCTURE analysis using K=5 populations 

is shown in Figure 5.7, showing proportion of membership of each individual to the 

overall populations. The figure displays three populations ofZ366, B17 and Z309-311 

isolates, with two further populations of T. b. brucei with T. b. rhodesiense zymodeme TLZll 

and a mixed population of T. b. gambiense, T. b. rhodesiense B17 and B387, and T. b. 

rhodesiense EATR03 and EATRO2340.

-2000

-2200

-2400 _

-2600

-2800

-3000

Number of Populations

Figure 5.6: STRUCTURE analysis results for KASPAR SNP genotyping. Primary Y- 
axis (bar chart) represents Delta K analysis [124], where the most likely estimated 
number of populations from the data is indicated by the highest value of |ALnP(D)|/SD 
where |ALnP(D)| is the absolute rate of change between consecutive log probabilities for 
the estimated number of populations, and SD is the standard deviation from the mean 
for a given K. Secondary Y-axis (Line chart) is the corresponding log-likelihood that the 
number of popoulations estimated is the correct number. The most likely number of 
populations in the sample is the highest value of LnP(D) [123].
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Figure 5.7: STRUCTURE bar plot for KASPAR 
SNP genotyping where K=5 populations, which 
was the most likely number of populations 
estimated by both LnP(D) and Delta K analysis 
(Figure 5.6). The bar plot represents isolates 
broken into five coloured segments representing 
the estimated membership that each individual 
has within each of the five inferred clusters.

Zymodemes are described for all T. b. 
rhodesiense isolates where available.

Other labels are as follows:

Tbb = T. b. brucei (927 = TREU927; 247 = 
STIB247; 927x247 = artificial cross between the 
two);

Tbg = T. b. gambiense; 247x386 = artificial cross 
between STIB247 and STIB386;

Tbr = T. b. rhodesiense EATR03 and 
EATRO2340 isolates. Tbr (2010) = Zambian 
2010 isolate;

! = Isolate labelled as Z310 but suspected to be 
B17. * = ABI SOLID sequenced strains on which 
the SNP panel was based.
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Discussion

Isocitrate dehydrogenase as a marker for differences in virulence 

between Busoga and Zambesi strain group T. b. rhodesiense parasites

Whilst isoenzyme analysis has clearly distinguished between parasite strains, which 

correlated with differences in virulence [200], multilocus microsatellite genotyping at 

twelve sites genome-wide could not distinguish Z310 and B17 zymodemes (chapter 

four). Only one isoenzyme consistently differentiates between the ^ambesi and Busoga 

strain groups: isocitrate dehydrogenase (ICD), for which GeneDB lists two genes within 

the T. b. bmcei genome (v4; [42]). The two homologues are present on chromosomes 8 

and 11, respectively (Ch8: Tb927.8.3690; Chll: Tbl 1.03.0230), and as virulence 

appeared to be associated with the strain group of the given infecting parasite, it may be 

the case that the observed difference in virulence is linked to one, or both, of these 

markers.

Three non-synonymous SNP were predicted to occur within the chromosome 8 copy of 

ICD in the B17 isolate, relative to Z310. These are predicted to make three 

heterozygous changes in amino acid sequence (Figure 5.2), which in turn changes the 

predicted charge and isoelectric point of the predicted protein (Table 5.2). Thus, these 

changes may be sufficient to create the observed change in the mobility of ICD on an 

MLEE thin-layer starch gel, as observed between gjimbesi and Busoga strain groups (Dr. 

J. Wilson, personal communication). As no non-synonymous SNP were detected in the 

chromosome 11 orthologue of ICD, it is unlikely that this copy of the gene is 

responsible. On this evidence alone, differences in virulence between B17 and Z310 

may be associated with chromosome 8, and not 11.

Other enzymes that are informative for differences between Z310 and B17 may also be 

associated with differences in heterozygosity around the T. b. rhodesiense genome: Whilst, 

on the evidence available, it is impossible to know exactly which genes are tested on an 

MLEE gel, of the six annotated genes that may code for phosphoglucomutase, which 

differentiates B17 from Z310, but not from Z366, only one — also on chromosome 8 

(Tb927.8.980), contains a heterozygous, non-synonymous SNP. The SNP may affect an 

N-glycosylation site according to PROSITE [237], although POLYPHEN analysis
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predicts the amino acid (AA) change to be benign [143] (AA #291; AA change: D>G; 

BLOSUM50: -1). Annotated genes for the other informative enzyme, nucleoside 

hydrolase (NHD), are present on chromosomes 3 and 7, although no non-synonymous 

SNP between Z310 and B17 were detected in either of these genes after SOLID 

sequencing.

It is important to note that, whilst ICD appears to be a marker for differences in 

heterozygosity at chromosome 8, which may correspond to differences in virulence, this 

does not account for all instances of acute disease. Acute symptoms associated with 

Zambesi strain groups were occasionally noted by Bailey (1997), and correspondingly, 

the recent (2010) Zambian isolate which was not predicted to have the non-synonymous 

SNP shared by the Busoga isolates, also presented as an acute disease. Whether the 

virulence of the disease is linked to the genotype of the host remains to be elucidated, 

particularly as the original (1989-1993) isolates were from the indigenous population, 

whereas the recent Zambian isolate was from a tourist, host effects cannot be 

discounted.

Shared heterozygous SNP at chromosome 8 may underlie differences in 

virulence between Z310 and B17 zymodemes

Expanding the dataset to genome-wide SNP loci suggests that the Z310 and B17 

genomes are very similar (Figure 5.4B). The overall percentage difference between 

strains is less than 0.2%, which may underlie the problems with identifying the variation 

using microsatellite genotyping. Neighbour joining trees constructed in a chromosome- 

by-chromosome manner (Appendix VII: Figures A7.2.1-A7.2.11) suggests that variation 

between the Z310 and B17 zymodemes is restricted to differences at heterozygous loci 

on chromosomes 3, 5, 8 and 10. The largest difference was observed at chromosome 8, 

where B17, EATROS, and EATRO2340 are each heterozygous across ~70% of the 

2.5Mbp chromosome, with shared alleles from both Type \ T. b. gambiense^ and T. b. 

bmcd TREU927 (Figures 5.3; 5.4G). Z310, by contrast, shows little introgression on 

chromosome 8 and is notably similar to T. b. bmcei. A genetic cross between Type 2 71 

b. gambiense and 71 b. bmcd lies at a point on the phylogenetic tree between 71 b. gambiense 

and B17, highlighting the greater similarity between these genomes that between Type 

2 71 />. gambiense and Z310.
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Z310 shows similar patterns of heterozygosity on other chromosomes: Regions of 

chromosomes 3, 5 and 10 also display similar patterns of heterozygosity with T. b. 

gambiense, as shown by the extended distance of Z310 from B17 on the phylogenetic 

trees shown in Appendix VII (Figures A7.2.3; A7.2.5; A7.2.10, respectively). This is in 

contrast to, for example, chromosome 11, which shows little heterozygosity, and as such 

the isolates are closer together on the tree (Appendix VII: Figure A7.2.11). The 

KASPAR genotyping results suggest that similar variation occurs within the B17 

population, and it is variation at these sites that results in B17 isolates being split 

between two population clusters, and highlights the importance of the shared alleles at 

chromosome 8 possibly underlying differences in virulence between Z310 and B17 

zymodemes.

Through a combination of microsatellite genotyping and SRA and kDNA sequencing, 

Balmer and colleagues have identified T. b. rhodesiense in amongst seven (out of eleven) 

distinct populations of the underlying T. b. bmcei population, corroborating the 

hypothesis that T. b. rhodesiense is not monophyletic [122]. Delta K analysis of their data 

identified five populations, the same number as this dataset (Figure 5.6), but the authors 

suggested that the hierarchical data structure hid the true number of populations 

(eleven). Certainly, examining our dataset using the BAPS package suggested that six 

populations was the most likely, albeit doing so by predicting EATRO2340 as an 

outlier, which was not suggested by STRUCTURE. Additional data may reveal further 

sub-structuring and extend the predicted number of population clusters. The 

microsatellite data presented by Balmer et al did not show the introgression of T. b. 

gambiense alleles within T. b. rhodesiense isolates, however, in line with our microsatellite 

data (Chapter Four), that was unable to distinguish Z310 from B17. Nevertheless, both 

datasets suggest Types 1 and 2 T, b, gambiense are divergent from other T. bmcei sub­
species.
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Identifying candidate genes that may influence differential virulence 

between zymodemes

Tables 5.3A-D show the most differentially expressed genes with non-synonymous SNP 

between zymodemes [232]. Four differentially expressed genes with nsSNP were 

ESAG-related proteins and a further two are invariant surface glycoproteins, which are 

typically sub-telomeric, repetitive, and associated with antigenic variation. As such, any 

putative differences may be a function of the inherent difficulty in aligning short 

sequence reads to repetitive sequences. Similarly, eight genes have been annotated as 

‘hypotheticaP and as such further conclusions about the significance of nsSNP within 

these genes are difficult to draw.

Two identified genes: Tbl0.70.1720 (Table 5.3A) and Tb927.3.930 (Table 5.3C) 

encode dynein heavy chain molecules and contained four and one nsSNP respectively. 

The dynein complex is involved in flagellum manufacture, and as such, functional 

nsSNP may cause problems with motility. Indeed, motility is necessary for cell division 

as flagella induce the shearing forces necessary to separate daughter cells from their 

parents [242], and so it is, perhaps, unsurprising to find these genes as being 

preferentially expressed in the dividing, slender, bloodstream forms.

Two annotated genes identified as having nsSNP in B17 (relative to Z310) and being 

expressed to a greater extent in stumpy forms (Table 5.3D) are a transketolase 

(Tb927.8.6170) and a protein phosphatase (Tb927.8.1130). Transketolases are key 

metabolic enzymes involved in glucose metabolism via the pentose phosphate pathway 

and had been previously detected to be absent in the bloodstream form, versus the 

procyclic form [243]. The protein phosphatase on chromosome 8, Tb927.8.1130, has 

been recently functionally annotated with the aid of RNA-interference target 

sequencing and knockdowns shown to be non-lethal in bloodstream and procyclic forms 

[244], Tb927.8.6930, also on chromosome 8, codes for NrkA, a serine/threonine 

protein kinase that displays a 1.78-fold increase in expression in stumpy forms 

compared to slender [232] and as such was identified as being one of the most 

differentially expressed genes between bloodstream forms. Furthermore, sequencing of 

B17 identified 3 nsSNP compared to Z310 (Table 5.3D) and as such may represent an 

interesting candidate gene for differential virulence displayed between zymodeme strain
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groups. Protein kinases have been identified as possible drivers of slender to stumpy 

differentiation [238], and excreted proteins such as kinases and phosphatases represent 

good candidates for virulence genes, as transduction pathways will rapidly amplify the 

signals that they affect, and have multiple effects upon the host cell. Indeed, secreted 

kinases and phosphatases have been identified as potential virulence factors in bacteria 

[245], and polymorphic serine-threonine kinases are important effectors of disease in 

Toxoplasma gondii [246]. The interest in protein kinases and phosphatases is not limited 

to their potential as virulence factors as they have important roles in metabolism and 

cell development. Protein kinases and phostphatases play a pivotal role in controlling 

proliferation and differentiation in protozoa [247], including Tiypanosoma [248], [249].

STRUCTURE analysis suggests that T. b. rhodesiense is not clonal and 

monophyletic

STRUCTURE analysis of the KASPAR SNP data (Figure 5.7) suggests that the 

parasite isolates can be split into five populations. Firstly, a population of Z366 (and a 

single B376 isolate) and a second population of Z377 with T b. brucei and a recent acute 

Zambian infection were distinct. A third population cluster contained a single Z375 

isolate with zymodemes Z309, Z310 and Z311. B17 isolates were split between the 

remaining two population clusters: One distinct population (also including a J^ambesi 

375 isolate) and another population, more closely related to T b. gambieme, the Busoga 

387 isolate and two T b. rhodesiense isolates from earlier outbreaks (EATR03 and 

EATRO2340, from Uganda, 1960 and Kenya, 1977, respectively). The population 

containing Z310 isolates appears to be distinguished from the two populations 

containing B17 due to heterozygous SNP loci at chromosome 8. Differences at similar 

heterozygous loci on chromosomes 2, 3, 5 and 10 separate the two B17 populations 

(Appendix VII: Figure A7.1.1).

Given that the SNP loci assayed by KASPAR genotyping were chosen to represent 

differences between B17 and Z310 isolates, it is perhaps not surprising that the 

populations of the two zymodemes can be split in this manner. Nevertheless, SNP 

genotyping distinguishes more divergent zymodemes such as Z366, and suggests that 

variation within the Busoga strain-group is greater than within ^cimbesp as highlighted by
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the presence of two population clusters containing B17 isolates, and a single population 

of Z309-311.

Are T. b. rhodesiense and T. b. gambiense sympatric?

Our data suggests that the different HAT subspecies have been sympatric. Given that 

the host range of T. b. gambiense is mainly restricted to man, it is likely that any genetic 

exchange would occur in Tsetse co-infected with T. b. rhodesiense from either livestock or 

wild-animals, and from North-Western Ugandans or refugee Sudanese, with chronic T. 

b. gambiense disease. A 2005 study focussing on microsatellite data for in humans and 

livestock suggested that Ugandan foci remained discrete and existed only 150Km apart 

[250]. The prospect of the HAT diseases existing sympatrically raises the prospect of 

new, virulent, foci of disease, and complicates the process of monitoring and the 

treatment of infections. The prospect of spreading drug resistance throughout the T. 

brucei population is also a possibility.

Conclusions
Analysis of four T. b. rhodesiense genomes has revealed clear differences and 

recombination between isolates. Phylogenetic networks constructed on the basis of 

genome-wide SNP show Ugandan B17 and Z310 are similar and the Ugandan 

EATROS and Kenyan EATRO2340 are dissimilar to them, and to each other. A 

focussed analysis on 32 T. b. rhodesiense strains at 31 non-synonymous SNP loci (Figure 

5.4A) suggests recombination has occurred between strains, but with clear lineages of 

specific zymodemes. Previous analyses have suggested that the population structure of 

T- b. rhodesiense is either panmictic [7 7], with rapid clonal expansion of virulent epidemic 

sub-types; or clonal [76], and our data favours the former panmictic hypothesis.

Our data suggests that the genomes of T. brucei ssp. parasites are recombining regularly, 

resulting in differential virulence and pathogenicity in the field. Furthermore, hotspots 

of recombination, such as chromosomes 5, 8 and 10 suggest that these loci underlie the 

differences in phenotype; By way of contrast, chromosome 11 appears to be very 

conserved between species, in line with the T, b. brucei (TREU927) genetic map 

(recombination unit: 95.64 kb/cM) [251] and the T. b. gambiense (STIB386) genetic map
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(up to 170kb/cM) [252], which both suggested that little recombination was taking- 
place.

Whilst our data suggest that recombination between T. b. gambiense and T. b. rhodesiense 

has occurred, it remains to be elucidated whether this has occurred directly. It is 

possible that a lack of data from T. b. brucei populations in Western Africa may result in 

our data being solely a function of geographical isolation, i.e. has identified the presence 

of recombination between East-African and West-African T. b. bfiicai strains, which 

have each, in turn, crossed with other sub-species in their locality. In order to further 

reveal the underlying process of the spread of T. b. gambiense alleles through the T. b. 

rhodesiense population, it is important to further study the underlying T. b. brucei 

population: As T. b. brucei TREU927 is east African in origin, comparing our data to 

other T. b. brucei isolates from central and Western Africa may help resolve this issue.

It is still not known whether it the presence of T b. gambiense ~ like alleles in B17 directly 

leads to increased virulence, or whether the loss of these alleles (particularly across 

chromosome 8), leads to decreased virulence in Z310 due to it being more like T. b. 

brucei. Understanding the mechanism by which these differences arise may help solve 

this problem: Studies elsewhere on cultured forms of trypanosomes have suggested that 

a doss of heterozygosity5 can lead to benefits to growth in culture [252]. The ability to 

perform crosses in the laboratory setting may provide the opportunity to resolve this 

issue: Trypanosomes have been shown to self-fertilise [253], and so the selection of 

progeny from a ‘selfed5 B 17-line with a homozygous chromosome 8 (for alleles from 

both of T. b. gambiense and T. b. brucei), and subsequent phenotyping for differences in 

virulence may show whether this was the case: A corresponding loss of virulence 

corresponding to a A £. brucei - like chromosome 8, would suggest that it is indeed these 

alleles that contribute towards differential virulence.

Nevertheless, the presence of heterozygosity that may be correlating with differential 

virulence is an important observation. Furthermore, these data highlight the 

importance of monitoring the disease, particularly in Uganda where the two sub-species 

exist in close proximity to one another, particularly with respect to the possibility of the 

spread of drug resistance and of novel, virulent, epidemics arising
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Secreted protein kinases and phosphatases as potential drivers of 

differences in virulence

One explanation for the observed differences in virulence between parasite zymodemes 

is that virulence is driven by variable rates of differentiation from slender to stumpy 

forms, the latter being more immunogenic than the former due to VSG shedding [254]. 

Differentiation from slender to stumpy bloodstream forms is mediated by cell-density 

sensing [229] through the release of a, so-far unidentified, stumpy induction factor 

(SIF). SIF is a low molecular weight protein that triggers cell-cycle arrest in G1/G0 

[255] via the cAMP pathway [230], Whilst there are many candidates for molecules 

that fulfil this role, protein kinases are prominent candidates for being involved in the 

signalling transduction pathway as many signal via cAMP and, together, can act as 

negative regulators of the response of B lymphocytes, T lymphocytes and macrophages; 

key factors in trypanosome pathogenesis [256],

Key to understanding this mechanism is elucidating whether the relative numbers of 

stumpy and slender parasites exist within the bloodstream between experimental 

infections. The recent identification of a stumpy-specific protein, PAD1 [257] would 

allow for the construction of fluorescently labelled antibodies to aid the detection and 

counting of the relative numbers of the different bloodstream forms in experimental 

infections by fluorescent-based sorting methods such as FAGS. Assessing the relative 

numbers of the different forms of the parasite throughout infection would be crucial to 

understanding these mechanisms, and until this is resolved, has implications for 

studying virulence in 71 b. rhodesiense in the mouse model. Sequencing further isolates 

and comparing the patterns of heterozygosity and comparing this to the relative 

numbers of stumpy and slender forms throughout bloodstream infection may reveal 

whether the observed differential heterozygosity is responsible for decreased 

differentiation to the stumpy form, decreased transmissibility and whether an associated 

increased virulence in mice is connected.

Clones that do not readily differentiate to stumpy forms in mice, do so in cattle [258], so 

it is possible that the same phenotype would not be seen in humans and therefore that 

there exists a mouse (or rodent) factor that explains the apparent inverse correlation 

between virulence in man, and in mice other than the very-susceptible A/J strain.
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Chapter Six: Conclusions and Further Work

This project sought to utilise the recent advances in molecular genetics technologies to 

study of some of the genetic aspects underlying host resistance in the mouse to T. 

congolense infection and the factors underlying differential virulence between sub-types of 

T. b. rhodesiense from south-Eastern Uganda. As trypanosomes cause economically and 

clinically important diseases across much of sub-Saharan Africa, identifying genes that 

may be responsible for regulating response to infection, or that modulate the virulence 

of the parasite, may help reduce the burden of the disease on the population: 

Identifying candidate genes and the underlying pathways involved with resistance may 

aid scientists in breeding more tolerant cattle; Similarly, studying genes and loci 

involved with parasite pathogenesis represents useful data for monitoring the disease in 

the field, and any genes identified may represent useful therapeutic targets.

Candidate genes regulating response to T. congolense infection

T. congolense causes economic hardship to large numbers of farmers due to the effect of 

the parasite on cattle. Whilst trypanotolerant breeds of cattle exist (cattle that have an 

innate ability to remain productive despite infection), they are not taken up by the 

farmers due to their preference for larger breeds that are easier to handle and are 

generally more productive, relying instead on disease treatment and monitoring.

Different breeds of inbred mice exhibit a similar phenotype to cattle trypanotolerance: 

survival time after infection varies between breeds [105] and three major genetic loci 

have been shown to be responsible [126]. Comprehensive genetic analysis of these 

QTL has revealed candidate genes at two known QTL - Cd244 and Praml - that may 

suggest pathways that underlie tolerance in cattle [149]. CD244 is involved with NK 

cell immunity and cytokine production: it belongs to the signalling lymphocyte 

activation molecule (SLAM)-related receptor family, which in turn regulate a wide 

range of immune cell types [259]. Pram-1 is an important molecule involved with 

neutrophil function and cytokine production that initiate and amplify the inflammatory 

response [158], Both molecules are differentially expressed throughout the course of
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infection in mice and as such represent good candidates for functional testing in mice, 

to ascertain whether the genes are, in fact, the QTL genes.

Confirming candidate SNP and potential pathways involved in response 

to infection

Improvements to identifying causal genes within QTL are constantly sought [260, 261]. 

The approach that we have demonstrated of systematically reducing the number of 

candidate genes at a QTL by combining haplotype analysis, array-CGH, gene 

expression and next-generation DNA capture and sequencing has been shown to 

reduce the number of candidate genes at a QTL to a list of genes short enough to test 

for function. Nevertheless, confirmation of the role of the candidate genes in response to 

infection may be a necessary first step: Confirmation of the role of nsSNP in Praml may 

be difficult, as whilst knockouts for Praml exist, knocking out the gene will likely have a 

non-specific effect on survival after infection without providing information on the 

specific role of the polymorphism. Furthermore, currently available Praml knockouts 

are based on the 129/J background, which may have other susceptible alleles around 

Tirl, and as such any survival experiment would not only measure the effect of the 

knockout, but also of all 129 alleles in the region. Better would be the use of allele- 

substitution, such as utilising a C57BL/6N Praml knockout (for which embryonic stem 

cell lines for most genes now exist), to rescue them with artificial constructs containing 

the A/J and C57BL/6 alleles and looking for differences in survival time after rescue. It 

would be easier to confirm the suspected role of CNV involving Cd244 at TirSc by 

artificially inserting an additional copy of Cd244 into a C57BL/6 mouse, so that it had a 

similar gene dosage to the susceptible strains and observing survival time after infection.

Several of these QTL genes may also influence susceptibility to other infections. QTL 

involved with resistance to other parasitic diseases overlap with the Tir QTL: Ldshmania 

resistance 1 {Lmrl) [168], Plasmodium chabaudi resistance QTL 3 (Char3) [169] and 

Heligmosomoides bakeri nematode resistance 2 (Hbnr2) [170] all overlap with Tirl and the 

Tir3c QTL overlaps with a QTL for murine resistance to Plasmodium berghei-dvivcn 

experimental cerebral malaria {BenI) [171]. As such the identification of candidate 

genes and their associated pathways in trypanosomiasis, and their subsequent 

confirmation may contribute to our understanding of the wider response to infectious 

disease.
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Trypanosomiasis in cattle, humans and mice.

Clearly, it is difficult to draw parallels between the mouse model, bovine and human 

disease, and caution must always be exercised in extrapolating the results obtained in 

animal models to that of humans, particularly due to the greater complexity of the 

human nervous system with respect to parasite infection of the CNS. There are also 

differences in the response to trypanosome infection between host species — whilst both 

bovine and murine trypanotolerance are associated with effective parasite control, 

bovine tolerance is associated with decreased tissue lesions, whereas tolerance exhibited 

by C57BL/6 mice corresponds to an increase in associated lesions [108].

It is important to note, however, that there remains utility in using mouse models to 

study the effects of trypanosome infection. Whilst primary pathology in mice is not from 

CNS involvement, models do exist for such disease and such studies have proven useful 

in understanding the effects of arsenical-based treatment and the related post-treatment 

reactive encephalopathy (PTRE) [85], for IFNG-related passage of trypanosomes across 

the BBB [262] and even in displaying similarities in FIAT presentation, with respect to 

disturbance of circadian rhythm and sleep patterns associated with late-stage disease 

[263]. Similarly, the utilisation of the wide-range of animal models available has 

resulted in the discovery of some similarities in the genetics of trypanotolerance. These 

have included the identification of candidate genes involved in the NK cell response 

(ARHGAP15 in cattle; CD244/CD48 in mice [187]) and the critical role of cytokines 

such as TNFa in the development of anaemia [110, 264]. Interestingly, a study has 

identified the role for TNFa and IL-10 SNP in HAT resistance. As such, it appears that 

TNFa (and IL-10) response is crucial in all three of human, mouse and cattle disease 

progression [265].
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Variation in disease phenotype between inbred strains and in HAT

The problem with using mouse models to study HAT is confounded by two main 

factors, the genotype of the host, and the species of the infecting parasite. This is 

arguably best illustrated by the data in Table 4.3, where the strain of inbred mouse and 

the genotype of the infecting {T. b, rhodesiense) parasite had an effect on survival after 

infection: A/J mice (congenic for C57BL/6 alleles at Tirl) are more susceptible to B17, 

in line with human infection; BALB/c, 129/sv and C57BL/6 mice show the opposite 

correlation. A further confounding factor is that the sex of the mouse has been shown to 

have an effect on survival [206]. Death after infection in inbred mice can result from a 

number of routes, including systemic inflammatory response syndrome (SIRS), anaemia 

or CNS invasion [Reviewed [108]]. The degree to which these modes of mortality 

contribute to death also differs between breeds of mouse: mortality in A/J mice after T, 

congoleme infection is associated with higher parasitaemia than C57BL/6, which in turn 

develop severe anaemia towards the latter stages of survival that is not present in A/J 

[266]. Death in the early stages of T. brucei and T. congoleme infection (due to SIRS) in 

BALB/c mice is associated with increased IFNG [267]. Correspondingly, increased 

IFNG expression is associated with the increased prevalence of CNS involvement 

between spatially distinct T. b. rhodesiense HAT infections [85]. We have shown IFNG to 

be more greatly expressed in T. b. rhodesieme Z310 infections versus B17 (Figure A5.4b), 

which correlates with all breeds of inbred mouse examined except for A/J mice, and as 

such clearly confounds the situation in humans, wherein Z310 infections are more 

chronic in their presentation.

Epidemic T. b. rhodesiense strains have differential heterozygosity that 

may associate with virulence

Sympatric zymodemes of T. b. rhodesiense have shown differential virulence in humans 

and mice. In order to identify loci that may contain virulence genes that drive the 

observed differences, nine different zymodemes from the 19805s/early 1990’s epidemic 

in Uganda were initially characterised by microsatellite analysis. Subsequently, the 

whole-genome sequences of the two predominant zymodemes from the epidemic - 

£a?nbesi 310 and Busoga 17> were compared. Despite the two genomes being >99.8% 

identical, differential heterozygosity was identified between the two zymodemes that 

occurred in discrete regions of at least five chromosomes: chromosomes: 2, 3, 5, 8 and

119



Chapter Six: Conclusions and Further Work

10. Microsatellite data also suggested that Z366 isolates, which present an intermediate 

clinical profile to Z310 and B17 [200] , were distinguished by the presence of a unique 

heterozygous allele at five loci across chromosomes 1, 2, 8 and 11, further suggesting 

that heterozygosity may have an important role in differences in virulence between 

outbreaks. Whole genome sequencing of additional Z310, B17, Z366 and other isolates, 

alongside correlation of pathogenicity in experimental mice will be necessary to 

elucidate which genetic loci are driving these differences.

Identifying the loci driving differences in phenotype remains a major challenge. 

Colleagues at the University of Glasgow have identified a loss of heterozygosity 

associated with chromosome 10 that confers a growth advantage in culture [252]. The 

same group has identified a trypanosome QTL associated with enlarged liver and 

spleen in mice on chromosome 3 from a synthetic cross between two T, b. bmcei 

laboratory strains with different virulence phenotypes. The differential heterozygosity 

on chromosome 8 alone affects 507 genes (Figure 5.5); Many of these are annotated as 

‘hypothetical genes5 and as such, improvements to the annotation of T. b. bmcei 

TREU927 may yield insights into candidate pathways or genes that may affect 

virulence. In order to further investigate which genetic loci are responsible for the 

virulence phenotype, a similar synthetic cross to that produced by Cooper et al, between 

B17 and Z310, and subsequent phenotyping and genetic mapping may reveal QTL 

associated with differences in virulence between zymodemes. This however, represents 

a major effort, as phenotyping large numbers of parasite infections, and subsequently 

identifying the genetic loci that underlie these traits can be expensive and laborious. 

Despite these challenges, these data represents an important step in identifying loci that 

underlie differences in virulence between epidemic T. b. rhodesiense populations.

Whilst differences in virulence between zymodemes have been established in humans 

and the mouse model, they have not been established in tsetse. If, indeed, rates of 

differentiation are responsible for the virulence phenotype, experimental infections in 

tsetse may reveal differences in infection rates as those parasites that have 

predominantly greater numbers of stumpy forms should be more infective to flies.

Recent studies have been made into expression differences between stumpy and slender 

forms of T, b. bmcei TREU927 [226]. This has allowed for the hypothesis that
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differences in the rate of differentiation from slender to stumpy forms being responsible 

for differences in virulence between zymodeme strain groups to be further studied. 

Whilst speculative, by comparing those genes affected by non-synonymous 

polymorphisms with those showing differential expression between stumpy and slender 

forms, lists of potential candidate genes have been generated (Table 5.3). It would be 

useful to assess the relative numbers of slender and stumpy forms throughout mouse 

infection with T. b. rhodesiense. Assessing infections in a range of inbred mouse breeds 

with several zymodemes can now be facilitated by using fluorescence-based sorting- 

using an antibody against a stumpy-specific protein, such as PAD1 [257].

Examining the differences in expression between zymodemes of T. b. rhodesiense could be 

performed utilising the recent advances in expression studies on next-generation 

sequencing platforms. Holzmuller and colleagues have demonstrated that differences 

between the secretomes of genetically homologous strains of T. b. gambiense can be 

correlated to differences in virulence [198]. It may be possible to employ techniques 

such as allele-specific expression (ASE) assays [268], or RNA-seq to rapidly assess 

expression differences in a wide number of T. b. rhodesiense isolates. RNA-seq has 

previously been used to identify the expression profile of the laboratory adapted 

Ugandan T. b. rhodesiense strain YTatl.l [269].
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Appendix I: C3H/HeJ x C57BL/6 F2 Genotyping

Appendix Tables Al: Microsatellite and SNP genotyping primers.
List of markers and primers used to genotype F2 crosses for resistant (C57BL/6) or 
susceptible (C3H/HeJ) alleles at three trypanotolerance loci and at the Tlr4 gene

Table Al.1.1: Tirl

Marker 
Name / 
rsID

Chr Position (bp) Primer Sequences (5*-3*)

rsl 3465576 17 32688481 Primer 1: GGCTGCTTTCTGAGTCCAAG
Primer 2: GAACAGGGAAAATGGCTGAA

D17mit93 17 74149996 - 
74150148

Primer 1: TGTCCTTCGAGTGTTTGTGTG
Primer 2: TCCCCGGTGAATGAGTTATC

D17Mit68 17 47707105 - 
47707234

Primer 1: GTCCTGACATCATGCTTTGTG
Primer 2: CTACCGTTTGGAAGGCTGAG

D17Mitl84 17 67915804-
67915940

Primer 1: TGCACTACCCAAACATGCAT
Primer 2: ACTTCTGACAGGAAGCATCCA

D17mitl55 17 84900959 - 
84901098

Primer 1: TGAGAAGGTTGGGTTTATATATTTAGG 
Primer 2: CGATCATTTCCTTGCAACCT

D17mitll7 17 50270475 - 
50270596

Primer 1: AGTCCATTTATCGGGGGC
Primer 2: TTTAATGGCACATCTGGCAA
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Table Al.1.2: Tir2

Marker 
Name / 
rsID

Chr Position Primer Sequences (S’-S’)

rs46746692 5 75362301 Primer 1: GATCTGGGGCAGCTCTTGA
Primer 2: CATTTTACAGCAGGGTATTATGG

rs46742668 5 77357797 Primer 1: ACGGTTAGCAGAGGAGGATG
Primer 2: TGTTGTTGTTGTGTGTTTTGTTTT

rs47415520 5 84510178 Primer 1: CATCCTGATTGGTCATCTCC
Primer 2: TTTAGGGAGGCAAAATTCCA

rs31694652 5 87889493 Primer 1: GACCTGAGGTGTCTTTTTCTTCA
Primer 2: CCTCAGCTGGTTTCAGTACCA

D5mit81 5 50722564 - 
50722773

Primer 1: GGGAGTTCCAGGTTCATTGA
Primer 2: TGTGCATTATGGCATGTAAATG

D5mit255 5 55345578 - 
55345695

Primer 1: CCCTGTGCTCTGGATTAGTTG
Primer 2: TCAAGACCAGCATCAAACCA

D5mit201 5 75550712 - 
75550821

Primer 1: GAGGACTCCTTCGATTTCCC
Primer 2: TTCCTAAGCAGGAACTGACCA

D5mitl69 5 150226324 - 
150226436

Primer 1: CCAGGTCTCCAGGGTTGTAA
Primer 2: CTCCTGAGGGAACGAGTCAG
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Table Al.1.3: Tir3

Marker 
Name / 
rsID

Chr Position Primer Sequences (S’-S5)

Dlmit215 1 78202934 - 
78203082

Primer 1: GGAGCAGAGTGTGAGAAGGG
Primer 2: CCAGTGTGAGCCCATTCC

DlmitlSS 1 196255163 - 
196255414

Primer 1: ATGCATGCATGCACACGT
Primer 2: ACCGTGAAATGTTCACCCAT

Dlmit94 1 128076848 - 
128077001

Primer 1: CGACTTCCCTTGATGTCCAT
Primer 2: TTTGTGTTGTGCAGTCTGTCTG

Dlmit425 1 158554749 - 
158554869

Primer 1: CAAAAAAACAACACATTTTACTTTCA
Primer 2: ACTTTGTATTTCACATGATGTCCTG

Table Al.1.4: Tlr4

Marker 
Name / 
rsID

Chr Position Primer Sequences (5’-3’)

rs3023006 4 66502140 Primer 1: GGACTGGGTGAGAAATGAGC
Primer 2: GAAACTGCCATGTTTGAGCA

D4mitl78 4 66843059 - 
66843205

Primer 1: GCCCTGAAGGTAAATCAGTAACT
Primer 2: GCTCAGGAGGTACATTGCCT
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Table Al.1.5: U4/U6

Marker 
Name / 
rsID

Chr Position Primer Sequences (5’-3s)

D5Mitll3
(U4)

5 77684240 - 
77684338

Primer 1: ACAGTATTTTCTTTTTCCAAGTGTG
Primer 2: CAAAGACTCTAGGTGTGACCCC

DSMitlO
(U4)

5 104668024 - 
104668218

Primer 1: CGAGAAGTTGGAAAGACCCA
Primer 2: GGCACCCATGCCTCTATG

DlMitl02
(U6)

1 149096650 - 
149096762

Primer 1: AAATACCAGCAAAACAATAAAGGC
Primer 2: TGAATTAAAATTGCAGAGGCG

Dlmit425
(U6)

1 158554749 - 
158554869

Primer 1: CAAAAAAACAACACATTTTACTTTCA
Primer 2: ACTTTGTATTTCACATGATGTCCTG
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Appendix III: Additional Analyses for candidate gene number reduction and SNP

annotation

Appendix III: Additional Analyses for candidate gene 
number reduction and SNP annotation

To fully characterise candidate genes at the QTL and to enumerate all functional SNP 

contained therein, a number of additional analyses were conducted by colleagues within 

the team [149]: The physical boundaries of the QTL had to be identified from the 

mapping distances (i.e. converting centimorgans to base pairs); the novel 454 SNP data 

had to be combined with public datasets such as from Perlegen [131] and the Mouse 

Genomes Project [135] and subsequently annotated for potential functional damage; 

and ancestral haplotypes were derived from the combined sets of SNP to assign genes to 

having a shared ancestral haplotype with the resistant strain and thus remove them 

from lists of potential candidates.

Identification of boundaries

The two independent F6 and FI 2 mapping populations have reduced the 95% Cl of 

the QTL to exceptionally small regions, particularly at Tirl, the QTL of largest effect, 

where the physical size of the 95% Cl was 930 Kbp for the combined data from the 

A/J x C57BL/6 and BALB/c x C57BL/6 F6 crosses (Main text: Table 2.7). This was 

only twice the mean distance between markers at this locus (400 Kbp) and consequently 

the main limitation in identifying the boundaries of the QTL is m estimating the 

position of the peak. Initial numbers of candidate genes were estimated using the 

physical position of the peak marker in the F6 and FI2 AIL studies [128, 129] as the 

most likely position of the peak of the QTL. The physical size of the 95% confidence 

inteival (Cl) was estimated by using Mouse Genome Informatics data to find the 

median Kbp/cM ratio for the intervals between the ten flanking markers (which were 

spaced at ~0.3Mbp intervals). This ratio varied between 0.69 - 5.43 Mpb/cM and was 

used to convert the 95% Cl in cM to Kbp.
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Analysis of Public Datasets

Lists of published non-synonymous SNP (nsSNP), SNP in splice sites; and regulatory 

regions and SNP that cause gain or loss of stop codons were obtained from BioMart. 

nsSNP were annotated using Polyphen [143] in order to identify those most likely to 

modify gene function. Polyphen classifies nsSNP as benign, possibly damaging or 

probably damaging according to the likelihood that the polymorphism will modify 

protein activity. ‘Damaging5 implies a change of activity or function but this change 

could be beneficial to the animal. Additionally, phastCons conservation scores for SNP 

positions [270] were obtained from UCSC [2], which measure how conserved a 

position is amongst 30 mammalian species and are on a scale between 0-1 with the most 

conserved positions scored as 1. In this manner, nsSNP that occur at sites that are 

relatively conserved across species, having a phastCons score close to 1, are likely to 

have a greater effect on the function of a gene than at sites that are known to be 
polymorphic.

454 SNP validation

In order to validate SNP calls, 454-generated SNP were compared against those 

released in a recently published set sequenced on the Solexa/Illumina platform from 

flow-sorted mouse chromosome 17 for A/J [135], and similar, publicly available SNP 

from the concurrent Mouse Genomes Project (Wellcome Trust Sanger Institute) for 

BALB/c, C3H/HeJ and 129P2 mouse breeds [92]. Only 3 out of 36,784 (0.014%) of 

the homozygous calls (coverage > 1; alternative allele frequency (AAF) > 80%) were 

discordant between the two datasets. The 454 data included 53 - 71% of SNP in the 

Illumina data depending on the coverage required to call a SNP and the Illumina data 

contained 94 - 97% of SNP in the 454 data.

Haplotype Block Analysis

Whilst there are large numbers of reported SNP for A/J, 129Xl/SvJ and 129Sl/SvImJ 

due to the Celera sequencing project [271] and for BALBc/ByJ and C3H/HeJ from 

the Perlegen project [131], relatively few SNP are publicly available for the 129P3 

strain. The 454 resequencing of the Tirl region indicated that approximately 50% of 

the resequenced region could be excluded from the QTL if the allele carried by 129P3
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mice at this locus was known. If a QTL was identified at Tirl in a 129P3 x C57BL/6 

cross then the QTL gene could be assumed to be within the three blocks where 129P3 

differed from C57BL/6, If no evidence of a QTL was found then these regions could be 

excluded from the QTL on the assumption that 129P3 carried the same allele as 

G57BL/6 at this locus. This analysis indicates that mapping QTL for response to 

infection in a 129P3 x C57BL/6 cross should significantly refine the list of candidate 

genes. The availability of this haplotype data makes it possible to make more rational 

choices about the selection of strains for mapping experiments. This strategy has been 

used before with a much more limited SNP set [272] but the corresponding online 

resource is no longer available.

The correlation of Jukes-Gantor distances calculated from our 454 data and the 

published Perlegen dataset was only modest (r = 0.63). 32% of our 454 SNP loci were 

also in the Perlegen set} however the low correlation between the two sets shows that 

SNP discovery was uneven in one or both sets and inspection of the SNP distribution 

suggests that this was certainly the case in the Perlegen set. The uneven distribution of 

SNP discovery makes it much harder to undertake a consistent analysis across the 

genome using a single threshold for assigning alleles to haplotype blocks. However the 

high positive predictive value for identifying shared haplotypes suggests that this 

procedure should reliably exclude regions where C57BL/6 shares haplotypes with the 

susceptible strains. Nevertheless other more robust data types such as CNV and 

potentially functional SNP should still be surveyed in regions where haplotype does not 

correlate with phenotype. The more complete mouse resequencing projects that are 

currently underway should increase the predictive power of this approach substantially.
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Appendix IV: Supplementary Multilocus Microsatellite Genotyping Data

Table A4.2: Microsatellite genotyping data for eleven informative genome-wide loci in 
BAPS data format. Genotypes were manually assigned to a 'bin’ of of alleles with similar 
sized micro satellites. As the genome is diploid, each sample is displayed across two rows, 
representing each allele at a locus. Sample IDs are identical to those shown in the main 
text (Table 4.2).
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7 1 1 2 1 1 1 1 1 2 2 2 2 B17
7 1 1 3 1 3 1 2 2 3 3 3 2
8 1 1 3 1 2 1 1 1 1 3 1 1 Z366
8 1 1 4 1 3 2 2 1 3 4 3 1
9 1 1 2 1 1 1 1 1 3 3 2 2 Z309
9 1 1 2 1 3 1 2 1 3 3 3 2
10 1 1 2 1 1 1 1 1 3 2 3 2 B359
10 1 1 2 3 3 3 2 1 3 3 3 2
11 1 2 1 1 1 1 1 1 3 3 3 2 Z310
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16 1 1 1 1 3 1 1 1 1 3 1 1 Z366
16 1 2 2 4 3 2 2 2 3 4 3 1
17 1 2 1 1 1 1 1 1 2 3 2 2 B17
17 1 3 1 1 3 1 2 1 3 3 3 2
18 1 2 1 1 1 1 1 1 3 3 2 2 unknown
18 1 3 2 1 3 1 2 1 3 3 3 2
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Appendix V: Additional T. b. rhodesiense virulence 
phenotype data

Previous studies on cytokine-driven pathology

The causes of pathology have been attributed to the pro- and anti-inflammatory 

responses of the host. Early pro-inflammatory responses are required to control the 

initial peak of parasitemia [35, 273], however the subsequent expression of cytokines 

such as IFNG are suspected to be a major cause of pathology [274]. Furthermore, 

IFNG also acts as growth factor for the parasite [275]. In order to mediate 

inflammation-related pathology, a corresponding anti-inflammatory response involving 

cytokines such as TNFA and IL-6 is necessary. TNFA, whilst being toxic to the 

parasites, also contributes to immunosuppression [276] and correlates with severity of 

human disease [94].

Survival and cytokine response to parasite zymodemes in CD-1 mice

To determine whether different zymodemes elicit differences in levels of TNFa and 

IFNg, serum levels of these cytokines were previously monitored for seven weeks in 

Busoga and ^amberi zymodeme infections by Tanja Beament [210]. TNFa (Figure 

A5.1A) and IFNg (Figure A5.1B) concentrations in the serum of sacrificed CD-I mice 

infected with Z310 T. b. rhode.nen.se parasites were significantly higher than those infected 

with B17 zymodeme parasites at week 3 (Mann-Whitney; p < 0.01), but were not 

statistically significant at other time points. Similarly, the relationship between survival 

time and bloodstream parasitemia was previously investigated for B17- and Z310- 

zymodeme infections in mice. Parasitemia levels and the overall condition and 

behaviour of the mouse according to six “wellness” characteristics were monitored in 

CD-I mice. Figure A5.2 shows parasitemia throughout the course of infection in CD-I 

mice, as described by Tanja Beament, LSTM [210]. Mice infected with B17-zymodeme 

isolates survived for longer periods despite a higher first peak of parasitaemia at 3-5 

days post-infection, compared to Z310. B17-infected mice did not appear ill according 

to the wellness characteristics and were never sacrificed prior to the endpoint of the 

experiment (38 days post-infection). Z310-infected CD-I mice showed a generally
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higher, moie variable level of parasitaemia (with a lower initial peak of parasitaemia) 

and showed stiong'er symptoms associated with infectionj 72°/o of these mice were 

humanely sacrificed earlier due to deterioration in health. Z310-mfected mice had a 

significantly higher parasitemia at the time of sacrifice than B17-infected mice (Mann 

Whitney; p < 0.001). Mice infected with Z310 parasites lived for a significantly shorter 

length of time than mice infected with B17 trypanosomes (p < 0.01).

Figure A5.2 shows that for experimental infections of Zambesi 310 in CD-I mice, an 

increase in parasitemia towards the end of infection appears to correlate with survival. 

This, however, cannot the only factor influencing virulence, as parasitemia was erratic 

and not significantly different throughout infection [210]. Furthermore, both A/J mice, 

and humans, appear to be more susceptible to the Busoga strain group of T. b. rhodesiense.
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A

U_ 400

CO 200

J____ I____ L

20 30
Days Post Infection

- B17

0) 800

Z 600

Days Post Infection

Figure A5.1: Mean serum levels (pg/ml ± standard error) of TNFa (A) and IFNg (B) 
throughout T. b. rhodesiense infection in CD-I mice infected with three isolates 
representing each of two zymodemes. Six mice were tested in each case, except for 
Z310-infections after day 31 (five mice) and day 38 (three mice). No Z310 mice were 
available after day 45 as all had to be humanely sacrificed due to severity of illness. Data 
courtesy of Tanja Beament and Wendi Bailey; LSTM [210].

179



Appendix V: Additional T. b. rhodesiense virulence phenotype data

Days post infection

Figure A5.2: Parasitemia in experimental T. b. rhodesiense infections in CD-I mice 
Line represents mean parasitemia CD-I mice infected with Z310 and B17 zymodeme 

T. b. rhodesiense parasites ± standard error (25 fields; thick film; x400 objective). A total 
of 30 mice per zymodeme were infected with three isolates representing each of two 
zymodemes. Six mice were sacrificed per week, not including mice that were sacrificed 
due to substantial symptoms. Number of mice available is shown (Bar chart, secondary 
Y-axis) [210]. 7
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Appendix VI: T. b. rhodesiense SNP Genotyping and 
Validation Primer Data

Table A6.1: CAPS-based SOLID SNP validation
CAPS loci, associated primers and confirmation status of 33 predicted SOLID SNP loci 
between T. b. rhodesiense Z310 and B17. Genomic coordinates are as per the T. brucei 
brucei TREU 927 v.4 reference sequence (GeneDB, [61]). Confirmation status 
represents whether the SNP locus was validated or not. In the case of unconfirmed SNP 
loci, whether the locus was within the coding sequence of a VSG element is highlighted.

Position
(bN Forward Primer Reverse Primer Confirmed?
144608 T GCCCT GGAGGTAAATGAAG TCCCGAATAAGCTCCTCCTT Y
939154 AACCTTCCCCATCCGTATTC GTT CCGCT CAGTGGAGAATC Y
1274873 GGCAAT GCGT AAAAAGGTTG TCCGT CATGTTGCGTAT GAG Y
1277045 GAT GATGGACAGACGAGTGC CCTCCACATAGCGTCCATTC Y
1277953 GCGCTTGAATGGGGAATA T GGCAGAT CAAAGAGCAAAA Y
1501007 CAGCGCTGGTTCTTCTCG GCCT CGAAGAAACGTGAGAG Y
1807834 GGTCACAGAAGCGTGGTTTC AAGGCT GAAGCCGT GT GTAG Y
4093840 TCCCCAACTCTTCCGTGTAG AAACCAGGT GAAATGGGTGA Y
6051486 AGAAGGATACTCCGCCCTTT TAGCGTCTTGCTCCTTCGTC Y
8219383 CACCAAT GCACACTGAACAA AACGAGAAGT GCGAGTAACATAA N
9749341 ACAGGCACCCTACTTTCAACT CGCTT GGAAGCAT GT CACTA N
11067004 T CGCT GAAGGATTTCTTCGT T GACAAAGAGCCAAAAGAGG N
11395646 ACATGAACCGCACACAATTT AACATTTGT CACATATATCATAACAGC Y
11884938 AGCT GCTGCTTTTGTGAGTTT CACAGGTGAAGTTCTCCCCTA N (VSG)
12141648 GGGT GAAGGT GAT GGAGACA CCCTCTCCTTCTTCCACTGA Y
12346430 GGGCT GCAGTGGTAATTGTC GT CGGT ACAT CCGCT CAT C Y
13553833 T CACAATCGTCTGCACAACA GCT GTCGAAGTTGGAGGAAA N
13649484 CCACT ACGGAGCCAAAAGG GGTGTTCCCGAATTTTCTCA Y
15069964 T GGT CAAGCAACCACTTTTT T GCT ACT ACAGAGATAGT GGAAGTCA N (VSG)
15525835 TTGTGTCTCGTACCGTGGTG GT GCACACACGCACACATAG Y
16352364 GCCAATCCTCATCCAATTTC AACGCT GACACGCT ACAACA Y
17925806 AGAGGGAAACGAAGACATCC CT GCAAAT GAGCAGACCGTA Y
19260317 GCGGT AT AGCACCT CT CCAA AT GTGGTACAACCCCTCCTG Y
20477885 CACGATTCCCGAAGGTTTTA CCGCTGTTAACGGAAGTCAT N
20985877 T GAAGTT GAACATTGCGT CA AGCGGGCTTTTGTGCTAAAC N
21209754 T GT ACCAGGGTGT GCAGAGA T GCCGT GT GT GT CAAAATA Y
21709517 GAGACCTGGGGAAACCAACT CATAGGCTTCCGATGCAAGT N
21858003 ACACACACGCTCACGACTTC GCGAACCTTCCAGAAAACAT Y
22409948 T GAAGGAGCCAAGGGAGTAA GCGGGATT CT AAGAAAACT GG Y
23086223 CCAAAAGACAACGCGGTATG TTCACCGCTGCTATGACATC N (VSG)
23293496 AGAT GT GGT CATTTTCCATCAA CGTAATCGCTGGTTCATGTG N (VSG)
25476959 T CCAAT ACGGGGTCGATAAA ACAGCGGCT GCAGAAGTAAT N
25812336 TTT GTT GTT CTTTCACGCAGA AGCATTTACGTTGCAGCTTG N (VSG)
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Appendix VII: T. b. rhodesiense SNP comparison data

Table A7.1: Comparison of BIOSCOPE and BOWTIE mapping algorithms for 
mapping SOLID T. b. rhodesiense sequences to the T. b. brucei TREU927/4 reference.

Z310 B17
Mean coverage at SNP loci
Bowtie 53x 52x
Bioscope 89x 94x

Number of SNP
Bioscope (total) 203,049 209,415
Bioscope (>10x coverage) 190,658 197,472
Bowtie (total) 132,389 137,665
Bowtie (>10x coverage) 116,065 121,202
Total shared loci (>10x coverage) 100,674 105,300
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Appendix VII: T. b. rhodesiense SNP comparison data

I
Figure A7.1.2: Map of KASPAR genotyping loci. n

Black lines represent loci designed for KASPAR ,,, 
genotyping that failed to amplify. Green lines 
represent loci that were successfully genotyped by 
KBiosciences Ltd.
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IX

X

XI
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Appendix \ II: rhodesiense SNP comparison data

•—'0.01

EATR03
EATRO2340

DAL972

STIB386 B17_bowtie 
- B17

Z310
Z310_bowtie

STIB247

TREU927

Figure A7.2.1: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 6,172 loci on 
chromosome ^ MB17” and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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•—<0.01

TREU927
STIB247

STIB386

DAL972
EATR03

. B17
B17_bowtie

EATRO2340

Z310_bowtie
Z310

Figure A7.2.2: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 8,177 loci on 
chromosome 2. “B17” and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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no.01

STIB386

DAL972

Z310_bowtie
Z310

B17
B17_bowtieEATR03

EATRO2340

STIB247
TREU927

Figure A7.2.3: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 6,938 loci on 
chromosome 3. “B17” and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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HO.01

STIB386

STIB247
TREU927

DAL972

EATRO2340
EATR03

B17
B17_bowtie

Figure A7.2.4: SPLITSTREE Jukes Cantor Neighbour Joining Tree for t 
chromosome 4. “B17” and “Z310” are BIOSCOPE mapping results; “B17. 
ZSlO.bowtie” are the BOWTIE mapping results of the same SOLID data.

,964 loci on 
_bowtie” and
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HO.01

STIB247
TREU927

EATRO2340

EATR03

Z310_bowtie
Z310

B17
B17_bowtie

DAL972

STIB386

Figure A7.2.5: SPLITSTREE Jukes Cantor Neighbour Joining Tree for ' 
chromosome 5. “B17” and “Z310” are BIOSCOPE mapping results; “B17. 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.

,502 loci on 
_bowtie” and
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HOI

TREU927
STIB247

B17_bowtie
B17

Z310_bowtie
Z310

EATRO2340
EATR03

DAL972

Figure A7.2.6: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 7,517 loci on 
chromosome ^. B17 and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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no.01

STIB386

DAL972

EATRO2340
EATR03

B17
B17_bowtie

Z310_bowtie
Z310

STIB247
TREU927

Figure A7.2.7: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 7,945 loci on 
chromosome “B17” and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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■*o. 1

STIB386

EATR03

B17
B17_bowtieEATRO2340

STIB247
TREU927 Z310_bowtie

Z310

Figure A7.2.8: SPLITSTREE Jukes Cantor Neighbour Joining Tree for ^ 
chromosome 8. “B17” and “Z310” are BIOSCOPE mapping results; “B17 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.

,154 loci on 
.bowtie” and
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*-io.oi

STIB386

DAL972
EATRO2340

EATR03

B17_bowtie 
B17

Z310
Z310_bowtie

STIB247
TREU927

Figure A7.2.9: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 12,375 loci on 
chromosome 9. “B17” and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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-10.1

STIB386

Figure A7.2.10: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 14,920 loci on 
chromosome 10. “B17” and “Z310” are BIOSCOPE mapping results; “B17_bowtie” and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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H0.01

STIB386
DAL972

EATR03

EATRO2340

STIB247
TREU927

B17
B17_bowtie

Z310_bowtie
Z310

Figure A7.2.11: SPLITSTREE Jukes Cantor Neighbour Joining Tree for 21,830 loci on 
chromosome Jl. “B17” and “Z310” are BIOSCOPE mapping results; “B17_bowtieM and 
Z310_bowtie” are the BOWTIE mapping results of the same SOLID data.
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Abstract

Background: African trypanosomes are protozoan parasites that cause "sleeping sickness" in humans and a similar disease 
in livestock. Trypanosomes also infect laboratory mice and three major quantitative trait loci (QTL) that regulate survival 
time after infection with T. congolense have been identified in two independent crosses between susceptible A/J and BALB/ 
c mice, and the resistant C57BL/6. These were designated Tirl, Tir2 and Tir3 for Trypanosoma infection response, and range in 
size from 0.9-12 cM.

Principal Findings: Mapping loci regulating survival time after T. congolense infection in an additional cross revealed that 
susceptible C3H/HeJ mice have alleles that reduce survival time after infection at Tirl and Tir3 QTL, but not at Tir2. Next- 
generation resequencing of a 6.2 Mbp region of mouse chromosome 17, which includes Tirl, identified 1,632 common 
single nucleotide polymorphisms (SNP) including a probably damaging non-synonymous SNP in Praml (PML-RAR alpha- 
regulated adaptor molecule 1), which was the most plausible candidate QTL gene in Tirl. Genome-wide comparative 
genomic hybridisation identified 12 loci with copy number variants (CNV) that correlate with differential gene expression, 
including Cd244 (natural killer cell receptor 2B4), which lies close to the peak of Tir3c and has gene expression that correlates 
with CNV and phenotype, making it a strong candidate QTL gene at this locus.

Conclusions: 2>y systematically combining next-generation DNA capture and sequencing, array-based comparative genomic 
hybridisation (aCGH), gene expression data and SNP annotation we have developed a strategy that can generate a short list 
of polymorphisms in candidate QTL genes that can be functionally tested.
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Introduction

African trypanosomiasis is a disease of both livestock and 
humans, largely caused by three species of Trypanosoma parasites. 
Two subspecies of T. brucei: T. b. gambiense and T. b. rhodesiense, 
cause severe disease in humans, whilst disease in livestock is mainly 
caused by two other species: T. vivax and T. congolense. The diseases 
affect over ten million Km‘ of Africa and it is estimated that some 
thirty percent of Africa’s 160 million cattle are at risk of infection. 
Losses of livestock and crop production are estimated at over $ 1 
billion per annum [1].

Some indigenous breeds of cattle, notably N’Dama {Bos taums), 
have the ability to tolerate the effects of an infection by Trypanosoma 
parasites, and remain productive. Other, introduced, breeds are

much more susceptible, and quickly show the classic symptoms of 
infection, such as anaemia, fatigue and muscle wastage [2]. This 
effect is under genetic control, and ten quantitative trait loci (QTL) 
have been mapped in F2 crosses between the N’Dama and 
susceptible Boran cattle {Bos indicus) [2].

Scientists are aided by a mouse model of trypanotolerance, as 
African trypanosomes also infect laboratory mice in which 
susceptibility is measured by survival time after infection, which 
varies between inbred lines. Whilst C57BL/6 mice survive for a 
relatively long period after infection with T congolense (110 days), 
some other strains, such as A/J (16 days), 129/J (23 days), BALB/c 
(49 days) and C3H/HeJ (59 days) mice are relatively susceptible 
[3,4,5]. Mapping studies, initially undertaken in two independent 
F2 crosses: C57BL/6J01aHSD (C57BL/6) x BALB/cOlaHsd
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Author Summary
About one-third of cattle in sub-Saharan Africa are at risk 
of contracting "Nagana"—a disease caused by Trypanoso­
ma parasites similar to those that cause human "Sleeping 
Sickness." Laboratory mice can also be infected by 
trypanosomes, and different mouse breeds show varying 
levels of susceptibility to infection, similar to what is seen 
between different breeds of cattle. Survival time after 
infection is controlled by the underlying genetics of the 
mouse breed, and previous studies have localised three 
genomic regions that regulate this trait. These three 
"Quantitative Trait Loci" (QTL), which have been called 
Tirl, Tir2 and Tir3 (for Trypanosoma Infection Response 1-3) 
are well defined, but nevertheless still contain over one 
thousand genes, any number of which may be influencing 
survival. This study has aimed to identify the specific 
differences associated with genes that are controlling 
mouse survival after T. congolense infection. We have 
applied a series of analyses to existing datasets, and 
combined them with novel sequencing, and other genetic 
data to create short lists of genes that share polymor­
phisms across susceptible mouse breeds, including two 
promising "candidate genes": Pram! at Tirl and Cd244 at 
Tir3. These genes can now be tested to confirm their effect 
on response to trypanosome infection.

(BALB/c) and C57BL/6J01aHSD x A/JOlaHsd (A/J), identified 
three major QTL regulating survival time [6]. These were mapped 
to mouse chromosomes 17, 5 and 1 and have been designated 
Tirl, Tir2 and Tir3 respectively for Trypanosoma Infection Response. 
These loci were further refined to five smaller regions using 
advanced intercross lines of the same crosses that were extended to 
the F6 and then FI2 generations, in which Ttr3 was resolved into 
three smaller regions, termed TirSa, Tir3b and Tir3c [7,8], Whilst 
these studies substantially reduced the size of the 95% confidence 
interval of each of the QTL to between 0.9 and 12 cM, each one 
still includes 17 to 650 candidate genes.

Moving from well defined QTL regions to QTL genes is still a 
major challenge: over 2,750 such quantitative trait loci have been 
mapped in mice and rats but fewer than 1% have been 
characterised at the molecular level [9], However, new sequencing 
technologies are making it possible to identify a large proportion of 
the differences between common inbred mouse strains. At present 
this is possible for defined areas of the genome, but public data sets 
will soon be available for the whole genome. We have used a 
combination of these methods and resources to demonstrate how 
large QTL regions can be reduced to tractable short lists of 
candidate genes for functional analysis.

We have mapped QTL in a C57BL/6 x C3H/HeJ cross so that 
we now know whether four mouse strains carry either the 
susceptible or the resistant allele at each QTL. This will reduce 
the number of polymorphisms that correlate with phenotype at any 
given QTL. The haplotype structure of the QTL regions has been 
determined using the 8 million public SNP from 16 mouse strains in 
the Perlegen set and identified regions where haplotypes correlate 
with survival time in the four mouse strains studied. Copy number 
variations (CNV) have been shown to be responsible for a significant 
number of quantitative traits [10], We have used array comparative 
genomic hybridisation (aCGH) to identify CNV in QTL regions 
that correlate with survival in the four mouse strains. We have also 
correlated CNV with existing gene expression data from three of the 
mouse strains [11] to identify CNV that putatively cause expression 
differences. Finally we have sequenced one of the QTL regions in 
four strains of mice to identify SNP that correlate with phenotype

and validated these against an additional publicly available dataset 
[12,13]. We have also used Polyphen to identify the non- 
synonymous SNP in the QTL regions that are most likely to 
change the activity of the protein.

By combining additional mapping with haplotype analysis, 
aCGH and resequencing we have reduced the initial long list of 
genes within QTL regions to a short list of candidate genes with 
defined genetic differences that correlate with phenotype. It is now 
practical to test the function of these genes and polymorphisms to 
determine their role in response to infection with T. congolense. The 
Perlegen and aCGH data is already publically available for many 
mouse strains and the Wellcome Trust Sanger Institute is 
resequencing the genomes of the common laboratory mouse 
strains so this strategy will soon be applicable to many QTL 
without further experimental work [13,14,15].

Methods
Ethics statement

All animal work was undertaken under LACUC ref no 2003.19. 
The ILRI IACUC complies voluntarily with the UK Animals 
(Scientific Procedures) Act 1986 that contains guidelines and codes 
of practice for the housing and care of animals used in scientific 
procedures. All animals on survival experiments were regularly 
monitored to check for signs of terminal illness, and any showing 
such signs were euthanised by UK Schedule 1 procedures.

C3H/HeJ x C57BIV6 cross
C57BL/6J01aHSD (C57BL/6) and C3H/HeJ mice were 

obtained from Harlan Laboratories. Mice were infected with 
4xl04 T. congolense strain IL1180 intra-peritoneally (ip) as 
previously described [6]. Any mice that did not develop a 
microscopically proven parasitaemia were removed from the 
study.

345 F2 C3H/HeJ x C57BL/6 mice were phenotyped for 
survival time after infection with T. congolense strain IL1180. 94 
animals that had extreme survival times (^62 days and >140 
days) were selected for genotyping using the markers shown in 
Table SI in Supporting Text SI. Selective genotyping significantly 
reduces genotyping costs with little loss of power to detect QTL, 
however it does give exaggerated estimates of effect sizes [16]. The 
F2 mice were also genotyped at the Tlr4 locus since C3H/HeJ 
carries a proline to histidine mutation at position 712 of the Tlr4 
gene that makes this mouse strain insensitive to LPS and might 
modify response to infection with T. congolense [17].

PCR reactions were performed using Reddymix (Thermo) with 
20 ng of template DNA. Cycling conditions were as follows: 95°C, 
50 secs; [Tm —5]°C, 50 secs; 65°C, 50 secs; 30x cycles. PCR 
products, including negative controls, were resolved by ethidium 
bromide stained agarose-gel electrophoresis and visualised under 
UV-light. SNP were genotyped by sequencing PCR products 
using primers shown in Table S2 in Supporting Text SI. 
Unincorporated primers and residual nucleotides were degraded 
using ExoSAP-IT (USB Corp, Ohio, USA) and sequencing 
products generated using Big-Dye v3.1 terminators (Applied 
Biosystems, Foster City, USA). Cycle sequencing products were 
ethanol precipitated and subject to electrophoresis on an Applied 
Biosystems ABI-3130XL capillary sequencer. Microsatellite and 
SNP genotyping data was viewed using PeakScanner (Applied 
Biosystems) and GAP4 [18] respectively.

Allocation of strains to haplotypes
Strains were allocated to haplotypes as previously described 

[19,20]. Briefly, Perlegen SNP and haplotype boundaries were
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downloaded from Perlegen [15]. Strains were allocated to 
haplotypes for each haplotype block using a local Perl script that 
extracted all alleles from the Perlegen dataset within a haplotype 
block, substituted them into the G57BL/6 reference sequence and 
submitted the resulting aligned sequences to the Jukes-Gantor 
algorithm in DNADIST in PHYLIP to calculate generic distances 
between each pair of strains [21]. Strains were given a binary 
“barcode” with all possible pairs of strains assigned a 1 or a 0 
depending on whether the genetic distance for that pair was above 
or below a threshold value. Strains that had the same “barcode” 
were allocated to the same haplotype number. C57BL/6 was used 
as tlte reference strain for block allocation and assigned to 
haplotype one; Succeeding strains were allocated to the same 
haplotype block as another strain that they shared a haplotype 
with or, if there was none, to the next available haplotype number 
(Full details are available in Supporting Text SI; Allocation of 
strains to haplotypes).

CNV discovery
Array GGH was performed using tire Agilent Mouse Genome 

CGH Microarray 244A platform. Dye-flip replicates were carried 
out on tire G57BL/6 reference strain and three test strains 
(129P3/J, A/J and BALB/cJ) and analysed as previously described
[22] . Overlapping aberrations were grouped into CNVR (t-test 
analysis, P<0.05, Overlap 0.9) using tire Agilent CGH analytics 
software (v 4.0) and using tire ADM-2 algorithm (threshold 6,0) 
using centralization (threshold 6.0, bin size 1) and Fuzzy Zero
[23] , CGH array data have been submitted to the NCBI Gene 
Expression Omnibus database (GEO) [GEO: GSE9669].

DNA capture and sequencing
Genomic DNA for BALB/cJ (Jackson #000651), 129P3/J 

(Jackson #000690), A/J (Jackson #000646) and C3H/HeJ 
(Jackson #000659) were obtained from the Jackson Laboratories 
and submitted to Nimblegen for sequence capture [24]. Capture 
probes were designed to cover 4.5 Mbp of non-repetitive sequence 
between 30,637,692 bp and 36,837,814 bp on Mmul7 (NCBI37). 
385,000 60mer probes were tiled at approximately 5 bp intervals 
leading to a mean of 12 probes over each base. Captured DNA 
was sequenced on a Roche 454 FLX Genome Sequencer using 
Titanium chemistry (Roche). Sequence assembly and SNP calling 
was performed using the Newbler mapping algorithm, which 
aligned 454 reads against the EnsembI C57BL/6 reference 
(NCBI37) and outputs lists of SNP and associated coverage 
metrics.

As pyrosequencing is known to miscall sequences either 
across, or either side of, homopolymeric tracts (long stretches of 
a single nucleotide), discrepancies were removed from subse­
quent analysis if they were within 13 bp of a homopolymeric 
tract &5 bp [25], SNP were additionally filtered to those with at 
least an eight-fold coverage and occurring in at least 87.5% of 
the reads sequenced across any polymorphic position. 14,440 
high-confidence genotypes were submitted to dbSNP with 
SSIDs ss 159831440-ss 159845897. 454 reads were submitted to 
the European Short Read Archive under Accession number 
ERA000179.

SNP were aligned against coding sequences and non-synony- 
mous SNP were identified. SNP positions were compared to the 
mouse regulatory build to test for SNP that may alter transcription 
factor binding sites or promoter regions [26,27], A 24-bp insertion 
in Mild in susceptible strains was amplified by PGR and verified 
by agarose gel electrophoresis, but could not be shown to have any 
functional effect (data not shown).

Identification and annotation of single nucleotide 
polymorphisms (SNP)

SNP outside tire Tirl region were obtained from the 8 million 
Perlegen SNP set [15]. phastCons conservation scores for SNP 
positions [28] were obtained from UCSC [29]. These scores are a 
measure of how conserved a position is amongst 30 mammalian 
species and are on a scale between 0-1 with the most conserved 
positions scored as 1.

SNP within exons were annotated using the EnsembI SNP 
annotation API to identify non-synonymous SNP (nsSNP) and 
SNP in splice sites. nsSNP in the 454 data were identified with a 
local Perl script. Publically available functional SNP were also 
obtained from BioMart and the Wellcome Trust Sanger Institute 
website [12].

nsSNP were annotated with Polyphen [30] using the Polyphen 
batch submission tool. Publicly available functional SNP identified 
at QTL for which complete genotypes were not available were 
confirmed in C57BL/6, A/J, BALB/cJ and I29P3 mice using 
PCR and dideoxynucleotide sequencing as described for genotyp- 
ing, Sequences winch showed evidence of multiple copies were 
cloned using TOPO-TA cloning lut (Invitrogen) and sequenced.

Measurement of gene expression
Gene expression was measured for A/J, BALB/c and C57BL/6 

mice before infection and at four time points post infection on 
Affymetrix 450_2 microarrays as previously described [11], All 
microarray data has been deposited at ArrayExpress under the 
accession number E-MEXP-1190. The expression data and plots 
like those presented here are also available for all genes on die 
microarrays from die autiiors’ website [31].

Results
Refining numbers of candidate genes within the T\r QTL

Determination of QTL boundaries and initial candidate 
gene identification. Different locations of the Txr2 and 
Tir3asbsc QTL have been published at the F6 and FI 2 
generations [7,8]. QTL have also been physically mapped using 
congenic mice [32]. The congenic data supports the F6 location in 
one case (Ttr2) and die FI 2 location in one other {Tir3a). 
Consequentiy we have annotated genes under both definitions of 
QTL positions and discuss their relative merits, case by case, 
below. In order to refine die number of candidate genes within Tir 
QTL it is necessary to first convert die 95% confidence intervals of 
die QTL from centiMorgan (cM) positions to megabase (Mbp) 
positions. Whilst the exact assignment of physical boundaries to 
the QTL is not possible, we have used the physical position of die 
peak marker in the F6 and F12 advanced intercross studies [7,8] as 
the most likely position of the peak of die QTL. We estimated the 
physical size of the 95% confidence interval (Cl) by using Mouse 
Genome Informatics data to find the median Kbp/cM ratio for 
the intervals between the ten flanking markers (which were spaced 
at ~0.3 Mbp intervals). This ratio varied between 0.69- 
5.43 Mpb/cM and was used to convert die 95% Cl in cM to 
Kbp. These positions are then used to identify die candidate genes 
contained within the QTL prior to furtiier refinement (Table 1),

Identification of QTL in C3H/HeJ mice
By increasing die number of breeds known to carry susceptible 

alleles at die QTL, candidate gene lists can be refined to remove 
tiiose genes that are in QTL for T. congolense infection response but 
have die same ancestral haplotype as die resistant strain in at least 
one susceptible mouse breed. The three major Tir QTL have only 
been identified in C57BL/6, A/J and BALB/c mice, with
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Table 1. Physical locations of QTL and counts of candidate genes.

QTL Tirl T/W-Ffi 77r2-F12b 77ria-F6 77r3a-F12 Tir3b-ff> 77rJb-F12 Tir3c-T6 77a?c-F1 2
Chromosome 17 5 5 1 1 1 1 1 1
Peak marker D17Mitl6 DSMitl 14 DSMitSB D1 Nds2a DiMit286 D1 Mill 02 D1 Mill 02- 

DiMitlOS
D1Mit113 D1 Mill 07- 

DiMit16
95%CI (cM) 0.9 12 1 1.8 6 10 7 8 2
Median Mbp 
per cM

1.04 1.77 1.46 3.9 1.93 5.49 1.92 0.69 1.16

Start (Mbp) 33.27 71.02 73.45 100.54 124.71 121.63 148.15 170.96 164.3
End (Mbp) 34.2 92.3 73.91 10757 136.19 176.56 161.44 17651 166.6
Size (Mbp) 0.93 21.25 1.46 7.03 11.56 54.93 13.44 5.54 2.23
# Genes 43 210 27 20 127 650 113 143 35
Number of 
Candidate
Genes (HI)

0 42 12 10 33 144 30 54 8

Number of 
Candidate

27 74 14 10 63 355 61 122 8

G«n*s (H2)

454 Sequencing Data

Common SNP 194
(d)

Common nsSNP 2

Additional Data from lllumina Comparison [13] 

nsSNP 0

S'-UTR SNP 0

Synonymous
SNP

Positions were interpolated using NCBI37 from peak marker positions and 95% confidence intervals. The physical position of the D1 Nds2 marker is not known, so its 
position was estimated from the intervals between its flanking markers. Lists of the genes with different haplotypes are shown in the Supplementary Data S2- 
GenesAndHaplotypesjds. Number of SNP common to the three susceptible strains of mice: A/J; BALBc/J and C3H/HeJ. bAt Tir2-F12 we have estimated the physical 95%
nc»«rrcQCe the D5,'f1158 peak marker and this 1 46 Mb region contained 27 genes, however the exact position of the peak is hard to identify since both
DSMITSB and DMIT258 are at 41 cM in the MGI map although they are 7 Mb apart on the physical map.

uf Canuidate,9?MeS Were ca!culated under two hypotheses: Hypothesis 1: all four susceptible strains have the same haplotype as each other and different from 
C57Biy6. Hypothesis 2: All susceptible strains have a different haplotype from C57BL/6 but not necessarily the same as each other. Hypothesis 1 is a special case of 
hypothesis 2 and all genes included under hypothesis 1 are also included under hypothesis 2. Only A/J and BALB/c are known to carry susceptibility alleles at Tir2 and so 
at this locus only the correlation of C57BL/6, A/J and BALB/c was considered. * nsSNP loci submitted to dbSNP. 
doi:l 0.1371 /joumal.pntd.OOOOBBO.tOOl

C57BL/6 carrying the resistant allele at each locus. To that end, 
we measured survival after infection in an inter-cross between 
another susceptible breed, C3H/HeJ, and C57BL/6 mice. For the 
cross, the mean survival times of parental founder lines for the 
C3H/H$J x C57BL/6 F2 cross were 63 days for C3H/HeJ and 
87 days for C57BL/6. Out of the 345 F2 C3H/HeJ x C57BL/6 
mice that were phenotyped, we selectively genotyped the 94 mice 
(5lcr and 439; P = 0.41) that had the most extreme survival times 
(Table SI in Supporting Text SI) with microsatellite and SNP 
markers across the three known QTL. Table 2 shows that C3H/

HeJ carries alleles that reduce survival time at the Tir3 QTL on 
Mmul and the Tirl QTL on Mmul 7. No QTL was discovered on 
Mmu5 in the region of Tir2.

Refining numbers of candidate genes by allocation of 
alleles to haplotype blocks

Over eight million SNP and haplotype block boundaries derived 
from them have been published for the whole mouse genome [15], 
however the haplotype alleles carried by each strain are not

Table 2. Loci regulating survival after T. congolense infection in the C3H/HeJ x C57Biy6 cross.

Chr F-value LOD score 95% Cl (CM) QTL position (cM) QTL effect days Peak marker
17 17.22 6.344 17 16 32 D17mit81
1 9.13 3.614 47 94.9 24 D1mit356

94 mice were genotyped with markers across known QTL regions but not elsewhere in the genome. QTL effects are the mean number of days difference in survival 
e een mice that are homozygous for the alternate alleles at a QTL. Positive QTL effects indicate that longer survival was associated with C57BL/6 alleles. The QTL 

effects are likely to be biased upwards as a consequence of selective genotyping of the extremes of the phenotypic distribution [16]. Phenotype distribution is shown in 
Figure SI in Supporting Text SI. 
doi:10.1371/joumal.pntd.0000880.t002
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available on a genome-wide basis. Full details of the allocation of 
strains to haplotype blocks and associated figures are available in 
Supporting Text SI; Allocation of Strains to Haplotypes. Results 
are briefly presented here:

In order to identify haplotype alleles that con-elated with 
phenotype we obtained tire Jukes-Cantor distance between each 
pah- of tire four mouse strains (C57BL/6, A/J, BALB/c and C3H/ 
He]) for each haplotype block across each QTL. The distribution 
of the natural logarithm of Jukes-Gantor distances was approxi­
mately normal and the fifth percentile of the distribution 
corresponding to a distance of 5 X10-5 was selected as a threshold 
(Figure S2 in Supporting Text SI). Strains were allocated to the 
same haplotype allele if the Jukes-Cantor distance between them at 
that block was less than 5xl0-5.

Under tire assumption that where QTL coincide in multiple 
crosses, it is likely that it is due to the same polymorphism in all 
breeds tested, there are only two possible distributions of resistant 
and susceptible haplotypes. In the present case, C57BL/6 was the 
only strain carrying a haplotype for longer survival at any QTL, 
therefore either: all susceptible breeds have the same haplotype 
that is different from C57BL/6 (hypothesis one); or G57BL/6 has 
a unique haplotype that differs from all susceptible breeds but that 
these might differ amongst themselves (hypothesis two).

A list was compOed of the genes for which the susceptible strain^ 
were on a different haplotype or immediately upstream or 
downstream of a different haplotype from the resistant (C57BL/ 
6) strain (Supplementary Data S2: GenesAndHaploippes.xls). Table 1 
shows the number of candidate genes in each locus under the two 
nested hypotheses: HI) Short survival time is caused by a common 
deleterious allele in all three susceptible strains; or H2) that the 
difference in survival is attributable to a beneficial allele in the 
single long surviving line (C57BL/6) and the susceptible lines may 
carry any non G57BL/6 haplotype. Under HI the number of 
candidate genes was reduced from 1193 to 283 and under H2 tire 
number was reduced from 1193 to 651.

A null allele of the Tlr4 gene in C3H/HeJ does not affect 
survival

A functional toll like receptor 4 (Hr4) gene is necessary for 
maximal control of Tiypanosoma cmzi in mice [33] and there is 
evidence that the GPI anchor of T. brucei VSG has endotoxin like 
properties that could stimulate Tlr4 [34], C3H/HeJ has a 
polymorphism in the Hr4 gene, on mouse chromosome four, 
which ablates its function, making these mice insensitive to LPS 
[17]. We used this spontaneous mutation to discover whether Tlr4 
was as important in the response to T. congoknse as to 71 cmzi Since 
all previous mapping had been done in mice with intact Tlr4 
genes, no QTL could have been detected at this locus even if Tlr4 
does modulate tire response to infection. The C3H/HeJ x 
C57BL/6 mapping population could therefore be used to discover 
whether this gene (or a closely linked one) is involved in the 
regulation of survival time after infection. Mice were genotyped 
with a microsatellite marker linked to tire functional polymorphism 
and sequenced across the polymorphic position. There was no 
association with either of these markers and survival time, 
indicating that the Tlr4 pathway does not affect survival after T. 
congoknse infection in mice (Table SI in Supporting Text SI).

Comparative genomic hybridisation and gene expression
To assess the impact of copy number variation regions (CNVR) 

upon the expression of genes that may influence response to T. 
congoletm infection we performed array-based comparative geno­
mic hybridisation (aCGH) on the complete genome of three mouse 
strains: 129P3, A/J and BALB/c, relative to C57BL/6. The

expression of genes within CNVR in A/J, BALB/c and C57BL/6 
mice over the course of infection was evaluated using a previously 
described dataset [11].

Genome-wide, one hundred and twenty-nine CNVR involving 
three or more probes were common to A/J, BALBc/J and 129P3/ 
J. These encompassed a total of 317 genes, and ranged in size from 
400 bp to 6.4 Mbp, although 96% were smaller than 1 Mbp. 
Twelve CNVR containing the complete coding sequences of genes 
and that had corresponding differences in gene expression, were 
common in all susceptible breeds of mice tested. Lists of the 
genome-wide CNVR is shown in Table S8 in Supporting Text SI.

One significant CNVR was detected close to the peak of Tir3c in 
the F6 population (DlMitl 13: 173,734,611 bp). A two to four-fold 
reduction in C57BL/6 copy number relative to A/J, BALB/c and 
129P3/J encompassed, or overlapped with, the coding sequences 
of Itlnl (intelectin 1), 0(1244, and AC083892.19-1 and may affect 
the nearby Ly9 (lymphocyte antigen 9) (173,441,746-
173,499,029 bp; 11 probes; p = 0.0003; Figure 1A). There were 
expression differences in Cd244 (Figure 2A), but not Itlnl or Ly9 
[31], over the course of infection between resistant G57BL/6 and 
susceptible A/J and BALB/c. AC083892.19-1 was not on the 
expression microarray. This CNV region has also been previously 
reported by Graubert et al [14] who showed that an additional 
susceptible strain, C3H/HeJ, carries the same variant as A/J and 
BALB/c.

No common CNVR were detected within Tul or Tir2. The 
CNVR that was previously reported to be the cause of differential 
expression of Glyoxalase 1 (Glol) [35] and is 2.8 Mbp from the 
peak of Tirl, was detected as a two to fourfold reduction in copy 
number for C57BL/6 and BALB/c relative to A/J and 129P3 
(Chrl7: 30,176,153 bp-30,650,413 bp; 68 probes; pCO.OOl; 
Figure IB). Since the CNVR did not correlate with phenotype, 
this polymorphism is unlikely to contribute to tire difference in 
response to infection.

Identification of functional SNR
Lists of published non-synonymous SNP (nsSNP), SNP in splice 

sites; and regulatory regions and SNP that cause gain or loss of 
stop codons were obtained from BioMart. nsSNP were annotated 
using Polyphen [30] in order to identify those most likely to modify 
gene function. A complete list of annotated SNP is in 
Supplementary Data SI: AnnotatedFunctionalSJIP.xls. Polyphen 
classifies nsSNP as benign, possibly damaging or probably 
damaging according to the likelihood that the polymorphism will 
modify protein activity. ‘Damaging’ implies a change of activity or 
function but this change could be beneficial to the animal.

Tirl. The physical size of the 95% Cl for Tirl based on the 
combined data from the A/J x C57BL/6 and BALB/c x 
C57BL/6 F6 crosses [7] was 930 Kbp and contained 43 genes, 
Tirl was not reassessed with tire FI 2 data. Assessing the Perlegen 
dataset against the smallest Tirl definition, none of the genes had 
haplotypes that correlated with phenotype under hypothesis 1, but 
there were 27 genes that correlated with phenotype under 
hypothesis 2 (Supplementary Data S2: GenesAndHapIotypes.xls). 
SNP that might modify phenotype at Tirl are discussed under 
sequencing of Tirl below.

Tir2. The Tir2 QTL contained 210 genes in the 21.25 Mb 
(F6) QTL or 27 genes in the 1.46 Mb (FI2) region, which was a 
subset of the F6 region. Congenic mice that were bred to 
physically map the Tir2 QTL had a region of C57BL/6 DNA in 
an A/J background between 75.1 Mb and 89.7 Mb on 
chromosome 5 [32]. This was within the large F6 QTL (71.0- 
92.3 Mbp) but distal to the much smaller FI2 QTL (73.5- 
73.9 Mbp). Since the QTL was physically mapped in the congenic
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Figure 1. CNV plots from Agilent DNA Analytics software. A: Reduced copy numbers in C57B176 of Itlnb and Cd244 near Tir3c relative to two 
susceptible breeds of mice (Chr 1: 172,831,532-173,931,532 bp). B: CNV data at the proximal end of Tirl showing a deletion of Glol and DnahcS in 
C57BL/6 and BALB/c relative to A/J and 129P3. (Chr 17: 29,854,972-30,954,972). Probes are plotted at their genomic position relative to their 
respective log2 fluorescence intensity ratios (Y-axis) along with genes on the x-axis (filled blue rectangles). Green dots are negative ratios and red dots 
positive ratios (threshold 0.5). Lines are a moving average over a 10 Kbp window for A/J (blue); 129P3 (red) and BALBc (yellow). Genomic positions are 
based on mouse build mm8 (NCBI36). 
doi:10.1371/journal.pntd.0000880.g001

mice, they are expected to provide a more accurate prediction of 
location than genetic mapping methods. There were 21 and 52 
genes consistent with hypotheses 1 and 2 respectively within the 
congenic region (Supplementary Data S2: GtnesAndHaplotypes.xls). 
There were probably damaging nsSNP in Srp72 (signal recognition 
particle 72 kDa) and Ugt2b38 (UDP glucuronosyltransferase 2 
family, polypeptide B38) (Supplementary Data SI: 
ArmotaUdFunctiomlSNP). The SNP in Ugt2b38 and Srp72 had 
phastCons scores of <0.1 and 0.998 respectively indicating that 
the Srp72 was in a highly conserved position. Therefore the Srp72 
SNP was the SNP with the greatest probability of having an effect 
on gene function in the Tir2 congenic region, although what this 
might be and whether it would modify response to T. congolense is 
not known.

Tir3a. The F6 Tir3a locus, at around 103 Mbp on 
chromosome 1, is within a region that was tested for its effect on 
survival after T. congolense infection by breeding congenic mice that 
had a fragment of C57BL/6 origin between 93-123 Mbp on an 
A/J background [32]. There was no difference in survival between 
mice that carried the region derived from C57BL/6 and littermate 
controls without the C57BL/6 region indicating that the F6 region 
was not likely to contain the QTL gene. The FI2 Tir3a locus was

'•^w. www.plosntds.org 6

distal to the congenic region and is consequently a more likely 
candidate region for this QTL than the F6 QTL. It contains 33 
and 63 candidate genes under hypotheses 1 and 2 respectively. 
These include IL10, Cd55 (complement decay-accelerating factor) 
and Cxcr4 (CXC chemokine receptor 4), which all have plausible 
roles in the response to infection but there were no published SNP 
in exons of any of these and no SNP in conserved intergenic 
regions. Thsd7b (Thrombospondin type-1 domain-containing 
protein 7B Precursor) was the only gene in the region with a 
probably damaging (Polyphen) SNP and this SNP was also in an 
evolutionary conserved position. However there are no published 
studies of Thsd7b and expression levels are low in all tissues 
measured [36].

Tir3b. The TtrSb region was the largest QTL in the F6 
(54.9 Mb) and F12 (13.4 Mb) and contains 650 and 113 genes 
respectively, of which 144 and 30 have haplotypes that correlate 
with phenotype. The F6 Tir3b QTL overlaps the Tir3a and Tir3c 
loci but exclusively contained Ptprc (protein tyrosine phosphatase, 
receptor type, C; Leukocyte common antigen Precursor, CD45 
antigen), which had a probably damaging nsSNP in a highly 
conserved position (phastCons score 1). 7tr3b FI2 and F6 both 
contained Soatl (Sterol O-acyltransferase 1), which had a probably
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Figure 2. Expression of A/J OlaHsdnd (A/J), BALB/cJ OlaHsdce (BALB/c) and C57BL/6JOIaHSD (C57BL/6) mouse genes in the Tir3c 
locus at five time points in the course of infection (0 days; 3 days; Sdays; 9 days; 17 days). Graphs include a small x-axis offset to improve 
spatial clarity. A Cd244 in the spleen, B Cd48 in the liver, C Apes in the liver D Ifi202b in liver and spleen. Cd244 expression was low in liver in all strains 
until Day 7 when it rose above background and C57BI76 had slightly lower levels than A/J or BALB/c (data not shown). 
doi:10.1371 /journal.pntd.0000880.g002

damaging SNP. SoatJ expression increases eight-fold after infection 
with T congolmse in A/J, BALB/c and C57BL/6 [31], and 
expression was up to four-fold higher in C57BL/6. Soatl is clearly 
responding to infection and the probably damaging SNP could 
affect its function and may be contributing to the difference in 
expression.

Tir3c. There were 122 and 8 genes at the F6 and FI2 Tir3c 
loci that had haplotypes that correlate with phenotype, 54 and 8 of 
which had identical haplotypes in all the susceptible strains. Cd244 
(natural killer receptor 2B4) has a haplotype and expression 
pattern that correlates with phenotype (Figure 2A), as well as a 
CNV that may be the cause of the observed expression differences. 
It is a strong candidate for being a QTL gene at Tir3c. CD244 
binds CD48 on lymphocytes and Cd244 is about 60 Kbp from 
Cd48, which has a probably damaging nsSNP (rs31533394).

Additional candidate genes at Tir3c were Apes (serum amyloid P- 
component; Sap) and IJi202b (interferon activated gene 202B). The 
expression of Apes, a major acute phase protein, rose after infection 
in all strains, but was consistently lower in C57BL/6 (Figure 2C). 
This was associated with a SNP (rs47990301) in a regulatory' 
region that correlated with expression and phenotype and a SNP

in a splice site in the 5'-UTR. (rs47985673). Likewise, expression of 
Ifi202b increased to high levels after infection in A/J and BALB/c 
but remained at the threshold of detection in C57BL/6 in both 
liver and spleen. The Ifi200 cluster, which includes Ifi202b, is at 
the distal end of Tir3c and contains genes that are all IFN- 
inducible and contain a highly conserved 200 amino acid motif 
[37]. Fcgr3, a low affinity immunoglobulin receptor that is 
associated with chronic inflammation [38], had a probably 
damaging nsSNP that correlated with phenotype. Arhgap30 a little 
known rho-GTPase that is most highly expressed in macrophages 
and monocytes, had a probably damaging SNP (rs31539487) that 
correlated with phenotype in all strains tested. Similarly, we 
confirmed nsSNP in KlhdcS (rs45643169); Dare (Dully blood group, 
chemokine receptor; rs51259593); Slam/8 (signalling lymphocytic 
activation molecule F8; rs50073880) and E430029J22Rik (EN- 
SMUSSNP3208701) that correlated with phenotype within this 
QTL region.

Sequence capture and sequencing of Tirl
DNA from across the Tirl QTL was sequenced in order to 

characterise novel SNP and to improve the identification of
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alternate alleles for each haplotype block DNA from four mouse 
breeds: 129P3, A/J, BALB/c and C3H/HeJ; was captured on 
Nimblegen arrays with probes for a 6.2 Mbp region of mouse 
chromosome 17 between 30,637,692 and 36,837,814 (NCBI37). 
1.7 Mbp of repetitive sequence was excluded. Captured DNA was 
sequenced on a Roche 454 Genome Sequencer FLX using 
Titanium chemistry. 1,308,175 reads were mapped to the C57BL/ 
6 reference sequence giving an average ~15x coverage of each 
sequenced strain (mean read length 282 bp; total sequence 
-370 Mbp).

As 454 pyrosequencing is known to suffer from sequencing 
errors within, or close to long homopolymeric tracts, SNP were 
filtered to exclude those that were within a 13 bp window of 
homopolymeric tracts ^5 bp. Furthermore, SNP were addition­
ally filtered for those that were not outside regions covered by 
capture probes even if they were within the Tirl region. After 
filtering, 14,440 SNP loci were identified, 3,618 of which were not 
in dbSNP build 128. 1,588 loci were common to A/J, BALB/c 
and C3H/HeJ, but differed from C57BL/6. Furthermore, upon 
adding data for 129P3, there were 466 SNP loci common to all 
four sequenced mouse strains. Summary statistics for all SNP are 
available in Table S4 in Supporting Text SI.

Figure 3 shows a circular plot of all SNP called by the Roche/ 
454 mapping algorithm (Newbler) against the C57BL/6 reference. 
Haplotype blocks can be seen as clusters of high-densities and low- 
densities of SNP. Whilst at this resolution it is not easy to see 
haplotype blocks in the A/J, BALB/c or C3H/HeJ data, one 
haplotype block stands out in the 129P3 data where 81 common 
SNP clustered within a 430 Kbp region (33,245,853- 
33,675,688 bp).

In order to validate SNP calls, 454-generated SNP were 
compared against those called in a recently published set sequenced 
on the Solexa/Illumina platform from flow-sorted mouse chromo­
some 17 for A/J [13], and similar, publicly available SNP from the 
concurrent Mouse Genomes Project (Wellcome Trust Sanger 
Institute) for BALB/c, C3H/HeJ and 129P2 mouse breeds [12]. 
Only 3 out of 36,784 (0.014%) of the homozygous calls (coverage 
>1; alternative allele frequency (AAF) >80%) were discordant 
between the two datasets Table S7 in Supporting Text SI. The 454 
data included 53—71% of SNP in the Ulumina data depending on 
the coverage required to call a SNP and the Illumina data contained 
94—97% of SNP in the 454 data (Figure S5 in Supporting Text SI). 
Full details of the comparison are available in Supplementary Data 
S3; SNP validation.xls.

J3326SSOO 133333900 j333*3300 | 33440700 |33499100 

Mortlb Zfp422rsl ZfpSl ZfplOl

133557900 133615900 ( 33674300 ( 33733700 J3379U0^33*49MO (33907900 ( 33966300^34024700 (MM3100 (34141500

Hnmpm March2 Robllb Rps28 CT030732.2 B3gotM Rmgl
AngptU H2-Ke2 RpslS H2-K1 H2-Ke6

CR974462 2 Slc39o7

Figure 3. Array-based sequence capture and next generation sequencing of a 6.2 Mbp region of Mmu17 in four breeds of mice: A/J; 
BALB/c; C3H/HeJ and 129/J (Mmul 7:30,637,692-36,837,814 bp). Plot is circular for ease of display [56]. Tirl is highlighted in black on the 
inside track. Genomic positions are in Mbp. The outer tracks (blue and brown) show genes and designed capture probes, respectively. The four, 
coloured, inner tracks show SNP called in each of the four sequencing experiments, with the black tick marks highlighting areas of common SNp! 
Haplotype blocks can clearly be seen as clustering of high- and low- density regions of SNP. A magnified region around Tirl is displayed underneath 
the circular plot. Tracks are identically coloured and include a moving average (window 1 Kbp) of sequence read coverage across the region (top). 
Genes in the region are displayed for the forward strand (above) and reverse strand (below). 
doi:10.1371/journal.pntd.0000880.g003
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Structural polymorphisms
Using all available data, the Tirl region contained 80 nsSNP 

loci that correlated with phenotype. There were seven “possibly 
damaging” (Polyphen) nsSNP and “probably damaging” nsSNP 
in PML-retinoic acid receptor alpha regulated adaptor molecule 1 
(Praml) (rs33399614), Rgl2 (Ral guanine nucleotide dissociation 
stimulator-like 2) and CR974462 (Table 3). Nine genes contained 
splice site polymorphisms (See Supplementary Data SI: Annota- 
UdFunctionalSNP.xls).

Regulatory polymorphisms
Differences between the susceptible strains and C57BL/6 were 

aligned to the Ensembl mouse regulatory build (NCBI37: Ensembl 
54). Ten differences were predicted to fall within regions of 
accessible chromatin and may affect transcription factor binding 
regions. Furthermore, 13 differences mapped to within 2500 bp of 
the upstream region of genes that may be associated with promoter 
regions. In total, 14 genes may be affected by SNP in this way (Table 
S5 in Supporting Text SI). Of the 13 genes for which microarray 
data was available, however, only phosphodiesterase 9A (Pde9a) 
showed any differences in gene expression, and these correlated 
with alleles of a SNP (rs33223038). A/J differed from C57BL/6 and 
BALB/c at this locus in both SNP genotype and Pde9a expression, 
but since this did not correlate with phenotype, it was discounted as 
a candidate SNP. There were also SNP in non-essential splice sites 
in nine genes that may modify their exon usage (Supplementary 
Data SI: AnnotaUdFunctiomlSNP.xls).

Correlation of haplotype assignments using 454 and 
Perlegen data

Jukes Cantor distances were calculated for each haplotype block 
in the Ttrl region using the 454 and Perlegen datasets. A more 
detailed description of the analysis is presented in Supporting Text 
SI. Shared haplotypes had high positive predictive value and 
specificity for shared SNP alleles but low negative predictive value 
and sensitivity (Table S3b in Supporting Text SI), indicating that 
having shared haplotypes is a good indicator of shared SNP alleles 
but that the converse is not true. This means that assignments will 
be accurate where C57BL/6 has been assigned the same 
haplotype allele as susceptible strains but less accurate where 
C57BL/6 has been assigned to a different haplotype block allele 
from the susceptible strains. Therefore the data may be reliable 
way of excluding loci as candidate QTL regions but less accurate

Table 3. nsSNP loci within the extended Tirl definition.

for including loci. The correlation between the distances 
calculated from the 454 and Perlegen SNP sets was modest 
(r = 0.63). The slope of the regression line was 0.67 reflecting the 
greater number of SNP in the 454 dataset. A high degree of scatter 
was observed in a plot of distances based on Perlegen and 454 data 
(Figure S3 in Supporting Text SI). The scatter suggests that SNP 
coverage is uneven in one or both datasets, and therefore 
increasing SNP density should increase the reliability of haplotype 
calls. Inspection of a plot of SNP coverage in the two data sets 
shows that the ratio of the number of SNP that were found in the 
two data sets varied substantially between haplotype blocks 
(Figure 4 and Figure S4 in Supporting Text SI).

Plots like those shown in Figures 4 and S3 can be obtained for 
any region of Tirl from our website [31], Plots of SNP and 
haplotypes and tables of Jukes Cantor distances between alleles at 
each haplotype block based on Perlegen data can be obtained for 
any part of the mouse genome at the same site.

Discussion
The survival time phenotype for mapping murine QTL 

associated with response to T. congolmse infection was selected in 
the 1990’s because the large variance between strains made it 
more likely that there would be QTL of large enough effect to be 
identifiable. This prediction proved correct [6], however survival is 
likely to have a remote and complex relationship with the 
underlying quantitative trait genes (QTG). Given that trypanoso­
miasis is a systemic blood stream infection and the remote 
relationship between survival and the underlying QTG it is almost 
impossible to prioritise candidate genes on the basis of known 
functions. We have previously measured parasitaemia, anaemia 
and fifteen clinical chemistry phenotypes, in inbred and congenic 
mice, in order to identify correlations between survival and other 
traits that might be more proximally related to gene function, 
however no such associations have been found [32]. Therefore in 
this study we have identified the allele carried at each QTL in an 
additional strain (C3H/HeJ), formally identified the physical 
boundaries of the QTL and enumerated CNV and functional SNP 
that fall within those boundaries.

QTL mapping
The mapping studies showed that C3H/HeJ mice carry 

susceptible alleles at the Tirl and Tir3 loci. No QTL were

Position C57BL/6 A/J BALB/c C3H/HeJ Phast Cons Gana Polyphen Consaquanca Paptida shift

33,283,941 A G G <0.1 Zfp421 possibly damaging Y/C
33,781 MS T C C C <0.1 Praml probably damaging 1VP
33,956,791 T C <0.1 Kank3 possibly damaging S/P
34,069,285 C T T T 0.928 Rgl2 probably damaging H/Y
34,112,420 T C C C <0.1 CR974462.5 probably damaging H/R
34,114,833 C - - <0.1 CR974462.5 possibly damaging G/R
34,119,278 G A <0.1 AA388235 possibly damaging R/H
34,119,383 G A <0.1 AA388235 possibly damaging G/D
34,119,473 T C 0.337 AA388235 possibly damaging F/S
34,134,481 T C C <0.1 H2-K1 possibly damaging H/R

Genes within TJrt (Mmu 17:33271855-34203529 bp) with damaging nsSNP that correlate with survival phenotype. A full list of annotated SNP is available in 
Supplementary Data SI: AnnotatedFunctionalSNPxIs. 
doi:10.1371 /joumal.pntd.0000880.t003
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Figure 4. SNR plots of Tlrl between 31 and 31.65 Mbp. The C57BL/6 row represents the reference allele for all loci that are polymorphic in 
either the Perlegen set or our 454 set. The SNR density is much greater in the 454 data set, in which haplotype blocks are clearly identifiable by eye. It 
appears that SNR are much better represented in the Perlegen data set in some regions than in others. Between 31.2 and 31.30 the two data sets are 
very similar with high density of SNR in BALB/c and 129 substrains in each dataset. However in the region between 31.1 and 31.20 the SNR in BALB/c 
and 129 are relatively much sparser in Perlegen than in the 454 data. 
doi:10.1371/journal.pntd.0000880.g004

observed at the Tir2 locus. The Tirl locus as defined by previous 
fine mapping studies is just proximal to the major histocompat­
ibility complex (MHC) (Table 2), and the conversion of genetic 
distances to physical positions presented here shows that Ttrl 
includes three classical class I MHC H2K genes. However 
previous studies have found no correlation between MHC 
haplotype and response to infection [4] consistent with the QTL 
gene not being a classical MHC molecule.

The mapping population was also screened for an association 
between Ur4 and survival; no association was found. This 
observation implies that the presence or absence of a functional 
Ur4 gene has no effect on survival, but does not preclude the 
pathway from Tlr4 to NJkb (nuclear factor kappa-B) from 
responding to infection. Ur4 could still participate in the 
regulation of anaemia and parasitaemia, which are not correlated 
with survival [11].

Identification of physical boundaries of QTL
The two independent F6 and FI2 mapping populations have 

reduced the 95% Cl of the QTL to exceptionally small regions, 
particularly at Tvrl, the QTL of largest effect, where the physical 
size of the 95% Cl was 930 Kbp for the combined data from the 
A/J x C57BL/6 and BALB/c x C57BL/6 F6 crosses (Table 1). 
This was only twice the mean distance between markers at this 
locus (400 Kbp) and consequently the main limitation in 
identifying the boundaries of the QTL is in estimating the position 
of the peak.

Identification of functional nsSNP
Resequencing of the QTL region on the Roche 454 platform at 

Liverpool to 15x coverage discovered 3,618 novel SNP loci that 
were deposited in dbSNP. Comparison with a resequencing 
project on the Illumina platform at the Wellcome Trust Sanger 
Institute to 22 x coverage [13] showed 99.98% consistency in SNP 
calls even when no minimum coverage criterion was applied for 
calling a SNP. Both data sets contained large numbers of SNP 
called as heterozygotes with alternative allele frequencies between 
25—80%. These loci from both data sets were associated with 
significantly higher sequence coverage in our data indicating that 
the majority were likely to be due to mapping artefacts probably 
caused by CNV. The 454 data contained only 71 % of the SNP 
discovered by the higher coverage Illumina data but both methods 
discovered the same set of nsSNP. The 454 data discovered an 
additional 3% of SNP that were not in the Illumina data.

Utilising all SNP from the 454, Perlegen and Illumina data sets, 
three probably damaging nsSNP were identified in genes at the 
peak of the Tirl QTL that correlated perfectly with phenotype 
(Table 3). Two nsSNP were in Praml\ the Pram 1537L/^polymor­
phism was scored as probably damaging by Polyphen. The 
Praml'03R/K polymorphism was classed as benign by Polyphen but 
lies within a proline rich domain (PRINTS: PR01217) that is 
involved in binding the “SH3 domain of hematopoietic progenitor 
kinase 1 (HPK-l)-interacting protein of 55 kDa (HIP-55),” which 
is known to stimulate the activity of HPK-1 and c-Jun N-terminal 
kinase (JNK)” [39]. Praml is almost exclusively expressed in 
myeloid cells [36] and specifically in granulocytes in terminal 
stages of differentiation [40] where it is induced by retinoic acid. It 
was thought that Praml might be a negative regulator of neutrophil 
differentiation since it is repressed in acute myeloid leukaemia. 
The deletion of Praml, however, has no effect on neutrophil 
differentiation and maturation but does disrupt reactive oxygen 
intermediate production and degranulation by neutrophils [41], 
This may affect the early, pro-inflammatory response to infection 
or downstream TNFa signalling, which has been shown to be 
differentially expressed in susceptible and resistant mice [42]. 
C57BL/6 appears to have the derived allele of PramP':>7L,p since 
A/J, BALB/c and C3H/HeJ had the same allele as Hominidae 
and dogs. Since C57BL/6 tend to have a more inflammatory' 
phenotype, it is possible that the polymorphisms lead to a gain of 
function with stronger binding to HIP55 leading to faster and 
more persistent ROI induction and a more inflammatory state.

The other probably damaging SNP at Tirl were CR974462 and 
Rgl2. There is no annotation for CR974462. Rgl2 (Rif) is a small 
GTPase that is most highly expressed in macrophages and B cells 
and ajDjsears to be involved in Ras mediated signalling [43], The 
Rgl2U polymorphism could affect the Ras pathway that plays 
a key role in leukocyte activation and is therefore a plausible 
candidate gene.

The Fas death domain-associated protein (Daxx) gene, which we 
have previously reported to contain a deletion of a single aspartate 
residue in susceptible mice [44], is also under the peak of Tirl. 
Daxx is within the MAPK pathway, which was found to respond to 
T. congolense infection in microarray data. However a new 
Polyphen analysis of the aspartate deletion in Daxx indicates that 
this polymorphism will be benign in effect. The aspartate deletion 
is within a run of 11 aspartate residues and a region where 35/41 
residues are acidic [44]. Therefore this polymorphism is probably 
less significant than the probably damaging ones reported here.
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Regulatory polymorphisms could also cause the phenotypic 
difTercn.ee: one SNP (rs33223038) was identified in Ensembl as 
being in a regulatory region upstream of PdeQa but although this 
SNP correlated with differential expression it did not correlate 
with survival differences between susceptible and resistant mouse 
breeds. There were also SNP in non-essential splice sites in nine 
genes.

Copy number variation at Tir QTL
CNV have previously been shown to be a major cause of 

qualitative trait differences [10], We used Agilent whole mouse 
genome aCGH arrays to identify CNV between C57BL/6 mice 
and A/J, BALB/c and 129P3 mice. The aCGH data highlighted a 
CNVR containing three genes close to the peak of the 7ir3c QTL: 
Cd244\ LyQ and Itlnl (Figure 1A). A nearby gene Cd48 had a 
probably damaging nsSNP. Cd244, Cd48 and Ly9 are important 
genes involved in the production and regulation of IFNg by NK 
and T cells. CD244 binds CD48 on lymphocytes and is involved in 
NK:NK cell and NK:T cell interactions leading to NK and T cell 
proliferation [45], which are important mechanisms in innate 
resistance to protozoan infection [46,47].

Splenic expression of Cd244 differed between strains with tire 
resistant C57BL/6 mice having tire lowest expression consistent 
with tire low copy number of Cd244 in C57BL/6. Cd48 expression 
increased 16-fold in liver after infection with T. congoknse, but this 
occurred in all strains tested (Figure 2). Since CD48 and CD244 
directly interact, it is possible that the QTL is a consequence of the 
combined effect of the probably damaging nsSNP in Cd48 and the 
CNV in Cd244. Differences in expression could not be seen in Ithb 
or Ly9.

The large number of genes in Tir3c that had CNV, nsSNP or 
haplotypes that correlated with phenotype may make it difficult to 
identify the QTL gene at this locus. It is possible that the QTL is 
not a consequence of a single polymorphism but tire combined 
effect of multiple polymorphisms in an extended haplotype. 
However the CNV at Cd244 was tire most substantial DNA 
polymorphism in tire region making Cd244 a strong candidate 
QTL gene. Inserting an additional copy of Cd244 into the 
G57BL/6 background, so that it had a similar- gene dosage to tire 
susceptible strains, could test tire effect of this CNV on tire 
response to infection.

Haplotype block analysis
We have previously used this strategy to show a strong 

association between upstream haplotype differences and high 
confidence (p<0.005) differences in gene expression [19] and also 
short listed genes under QTL for differences in response to 
Heligmosomoides bakeri infection [20]. We reduced the number of 
candidate genes in this study by about 76% and 45% under 
hypotheses HI and H2 from the 1193 genes that were under the 
95% confidence intervals of the QTL. There were 283 genes 
where A/J, BALB/c and C3H/HeJ had the same haplotype 
different from C57BL/6 and 651 genes where C57BL/6 differed 
from tire other three, The large number of genes that had 
haplotypes that correlated with phenotype is mainly because: 1) 
C3H/HeJ, A/J and BALB/c are more similar to each other than 
to any other strain based on analysis of 673 genome wide SNP in 
55 strains [48]; 2) we used the stringent criterion that a gene was 
included if any haplotype block between the two neighbouring 
genes correlated with phenotype; 3) The high positive predictive 
power of tire method means that whilst it is probably very reliable 
for excluding loci where susceptible strains share a haplotype block 
with the C57BL/6 resistant strains, it assigns too many haplotype 
blocks to different alleles.

Whilst there are large numbers of reported SNP for A/J, 
129Xl/SvJ and 129Sl/SvImJ due to the Celera sequencing 
project [49] and for BALBc/ByJ and C3H/HeJ from tire Perlegen 
project [15], relatively few SNP are publicly available for the 
129P3 strain. The 454 resequencing of the Tirl region indicated 
that approximately 50% of tire resequenced region could be 
excluded from tire QTL if tire allele carried by 129P3 mice at this 
locus was known. If a QTL was identified at Tirl in a 129P3 x 
C57BL/6 cross then tire QTL gene could be assumed to be within 
the three blocks where 129P3 differed from C57BL/6. If no 
evidence of a QTL was found then these regions could be 
excluded from tire QTL on tire assumption that 129P3 carried the 
same allele as C57BL/6 at this locus. This analysis indicates that 
mapping QTL for response to infection hr a I29P3 x C57BL/6 
cross should significantly refine the list of candidate genes. The 
availability of this haplotype data makes it possible to make more 
rational choices about tire selection of strains for mapping 
experiments. This strategy has been used before with a much 
more limited SNP set [50] but tire corresponding online resource is 
no longer available,

Our objective was to identify the SNP tirat were most likely to 
have an impact on function. These were considered to be nsSNP 
tirat altered the physical properties of tire protein as judged by 
Polyphen analysis, SNP in essential splice sites and CNV and 
regulatory SNP that con-elated with changes in expression. It 
should be emphasised, however, drat many types of SNP can 
underlie QTL, for example tire QTL SNP at tire Idd5 locus 
appears to be a synonymous SNP that gives rise to a splice variant 
[51]. This SNP would not have been identified as a high priority 
by our pipeline. Furtirermore, although we have substantially 
complete sequence coverage of the Tirl locus, at other loci we 
have used the Perlegen data, which is estimated to be about 45% 
complete [15]. Therefore although the candidate QTL SNP 
presented here are tire most likely given tire available data and 
annotation, both SNP data and annotation is incomplete and 
other candidates may be discovered in the future.

The correlation of Jukes-Cantor distances calculated from our 
454 data and the published Perlegen dataset was only modest 
(7 = 0.63). 32% of our 454 SNP loci were also in the Perlegen set, 
however the low correlation between tire two sets shows that SNP 
discovery was uneven in one or both sets and inspection of tire 
SNP distribution suggests that this was certainly tire case in tire 
Perlegen set. The uneven distribution of SNP discovery makes it 
much harder to undertake a consistent analysis across the genome 
using a single threshold for assigning alleles to haplotype blocks. 
However tire high positive predictive value (Table S3 in 
Supporting Text SI) for identifying shared haplotypes suggests 
tirat this procedure should reliably exclude regions where C57BL/ 
6 shares haplotypes with tire susceptible strains. Nevertheless other 
more robust data types such as CNV and potentially functional 
SNP should still be surveyed in regions where haplotype does not 
correlate with phenotype. The more complete mouse resequen­
cing projects that are currently underway should increase the 
predictive power of tiris approach substantially.

QTL involved with resistance to other parasitic diseases overlap 
with the Hr QTL, raising tire possibility that polymorphisms 
discovered here may be involved in the response to other parasites. 
Leishmania resistance 1 (Lmrl) [52], Plasmodium chabaudi resistance 
QTL 3 (CharS) [53] and Heligmosomoides baken nematode resistance 
2 (Hbnr2) [54] all overlap with Tirl. Similarly, tire TtrSc QTL 
overlaps with a QTL for murine resistance to Plasmodium berghei- 
driven experimental cerebral malaria (Beni) [55].

Thirteen genes around tire peak of Tirl show conserved order 
and sequence homology to a ~311 Kbp region of BTA7
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(15,412,179:15,723,462 bp) where there is a QTL in cattle that 
regulates the level of parasitaemia in cattle infections with T. 
congoknse [2]. This region includes Praml, which has a probably 
damaging mutation that correlates with phenotype in mice and 
was the most plausible candidate gene in Tirl and is dierefore a 
candidate QTL gene in catde as well, However since trypanoto- 
lerance QTL cover approximately 15% of the bovine genome it 
would be expected that at least one of the five murine QTL would 
coincide with a bovine QTL by chance (p = 0.56).

Conclusions
By linking genes to haplotypes, we have reduced the number of 

candidate genes in Tirl to 43. Within these there were three genes 
with probably damaging nsSNP; CR974462.5, Rgl2 and Praml. 
CR974462.5 is an anonymous gene in which the effects are hard 
to predict. Praml regulates oxidative stress in neutrophils and Rgl2 
is involved in Has signalling which can regulate inflammation, 
Praml is the closest to the peak of the QTL and has the best 
understood function making it the most attractive candidate at 
Tirl however Rgl2 is also a plausible candidate. Probably 
damaging polymorphisms were identified in Srp72 in Tir2 and 
Thsd7b in Tir3a but litde is known of their functions so it is hard to 
interpret these observations. Ptprc (Cd45) and Soatl in Tir3b had 
probably damaging polymorphisms in conserved nucleotides, 
CD45 is the common leukocyte antigen and has multiple roles 
in cytokine signaling and cell regulation making it plausible 
candidate. Tr3c has a CNVR encompassing Cd244, which is 
differentially expressed and has a haplotype that correlates with 
phenotype in the four strains tested. Since gene dosage is lower in 
C57BL/6 it will be possible to test this hypothesis by inserting an 
extra copy of the Cd244 gene into the G57BL/6 background. 
Several other genes in Tir3c had haplotype and nsSNP that 
correlated with phenotype but none had such a distinct CNV and 
such strong differential expression.

By combining haplotype analysis, array-CGH, gene expression 
and next-generation DNA capture and sequencing, we have
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Appendix IX: Example Perl Scripts (attached CD)

Appendix IX: Example Perl Scripts (attached CD)

Additional data file 1: Removal of SNP within 13bp of a homopolymeric tract aSbp. 

Additional data file 2: 454 non-synonymous SNP identification.

Additional data file 3: SOLID SNP extraction (BIOSCOPE).

Additional data file 4: KASPAR genotyping data extraction script.

Additional data file 5: Artificial splitting of Sanger (PASTA) reads into pseudo next- 

generation sequencing reads for subsequent alignment using BOWTIE (50bp).
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