
Reactive Oxygen Species and Antioxidant 

Enzymes in the Lutzomyia-Leishmania

System

Thesis submitted in accordance with the requirements of the 
University of Liverpool for the degree of Doctor in Philosophy

By

Hector Manuel Diaz Albiter

September 2011



"I want to stay as dose to the edge as I can without going over. Out on the edge 

you see ail kinds of things you can't see from the centre."

Kurt Vonnegut, Jr.



CONTENTS

LIST OF TABLES...................................................................................................j

LIST OF FIGURES.................................................................................................j

ACKNOWLEDGEMENTS.......................  iv

DECLARATION...................................................................................................vi

ABSTRACT........................................................................................................ vii

CHAPTER 1 
INTRODUCTION

1.1. Phlebotomine sand flies............................................................................ 1

1.2. Leishmonia life cycle.................................................................................. 1

1.2.1. Overview.........................................................................  2

1.2.2. Physiology of parasite establishment.......................................... 4

1.2.2.1. Parasite LPG-mediated colonization...............................6

1.2.2.2. Parasite non LPG-mediated colonization........................7

1.2.3. Promastigote secretory gel (PSG)................................................ 7

1.3. Insect immunity......................................................................................... 8

1.3.1. History........................................................................................... 9

1.3.2. Systemic immune response..........................................  10

1.3.2.1. Anti-microbial peptides (AMPs).................................... 10

1.3.2.2. Regulation of humoral response................................... 11

1.3.2.3. Toll pathway................................................................... 11

1.3.2.4. Imd pathway................................................................... 12

1.3.2.5. Melanization.............................................  14

1.5.3.6. Nitric oxide and immunity............................................. 14

1.3.3. Microbe recognition................................................................... 16

1.3.3.1. Microbe-associated Molecular Patterns (MAMPs)....16

1.3.3.2. Peptidoglycan-recognition proteins (PGRPs)............... 17

1.3.4. Epithelial Immunity.....................................................................18

1.3.4.1. Anti-Microbial Peptides (AMPs) ................................... 18

1.3.4.2. Reactive Oxygen Species (ROS) .................................... 19



1.3.5. Microbiota regulation in the midgut........................................ 20

1.3.5.1. Sensing of pathogen-like behaviour of microbes
in the gut......... .............................................................. 21

1.4. Immunity in phlebotomine sand flies ...................................................21

1.4.1 Sand fly Immunity and Leishmania............................................ 23

1.5. Physiology and biochemistry of blood meal digestion.........................24

1.5.1. Haem degradation and toxicity................................................ 25

1.6. Redox homeostasis and parasites/pathogens...................................... 27

1.7. Aims of this Study................................................................................... 28

CHAPTER 2 
METHODS

2.1. General Methods.................................................................................... 30

2.1.1. Sand fly rearing........................................................................... 30

2.1.2. Parasites...................................................  30

2.1.3. Parasite infections......................................................................30

2.1.4. RNA extraction and gene relative expression
profile by RT-PCR........................................................................ 31

2.1.5. Statistical analysis ......................................................................32

2.2. Specific Methods.................................................................................... 32

2.2.3. Chapter 3..................................................................................... 32

2.2.3.1. Fecundity assays.............................................................32

2.2.3.2. Ascorbic Acid feeding.................................................... 33

2.2.3.3. Ovarian Catalase Activity............................................... 33

2.2.3.4. Ovarian Catalase Expression ..........................................34

2.2.3.5. Age-related expression of ovarian catalase................. 34

2.2.3.6. RNAi-mediated catalase knockdown............................35

2.2.3.7. Survival assays............................................................ ...36

2.2.3.8. Phenoloxidase assays................................................. ...36

2.2.3.9. Sequence analysis...........................................................37

2.2.3.10. Microarrays 37



2.2.4. Chapter 4.................................................................................... 38

2.2.4.1. Bacterial infections........................................................ 38

2.2.4.2. H2O2 profile..... ............................................................... 38

2.2.4.3. In vivo detection of ROS................................................ 38

2.2.4.4. Midgut Catalase Activity................................................ 39

2.2.4.5. dsRNA-mediated gene knockdown, insect survival
and parasite count........................................................39

2.2.4.6. H2O2 feeding...................................................................41

2.2.4.7. Uric acid feed (UA), insect survival and
bacteria counts............................................................. 41

2.2.5. Chapter 6.................................................................................... 41

2.2.5.1. Analysis of subpopulations of parasites....................... 41

2.2.5.2. Analysis of subpopulations of parasites in silico.........42

2.2.5.3. Validation of software output vs. manual
classification..................................................................42

2.2.5.4. Induction of metacyclogenesis and sampling.............. 42

CHAPTER 3
Differential expression of putative ROS-detoxifying 

genes in female Lutzomyia longipalpis

3.1. Introduction............................................................................................. 44

3.2. Results......................................................................................................48

3.2.1. Lu. longipalpis catalase...........................................  48

3.2.2. Lu. longipalpis SOD....................................................................48

3.2.3. Lu. longipalpis PrxR....................................................................53

3.2.4. Lu. longipalpis OXR1..................................................................53

3.2.5. ROS-regulatory genes are differentially expressed in
Leishmania-mfected flies.............................................................54

3.3. Discussion.................................................................................................59

3.3.1. Microarray vs. RT-PCR................................................................59

3.3.2. Gene expression and blood digestion....................................... 60

3.3.3. Modulation of ROS-detox enzymes by Leishmania.................. 62

Appendix 1.......................................................................................................65



CHAPTER 4
The effect of ROS-scavenging by catalase on fecundity 

and mortality of female Lutzomyia longipalpis

4.1. Introduction..............................................................................................66

4.2. Results..................    69

4.2.1. Age-related decrease of fecundity............................................ 69

4.2.2. ROS-scavenging reverses age related loss of fecundity.......... 70

4.2.3. Catalase activity is reduced in developing oocytes of older
flies and ROS scavengers reverse catalase depletion............... 73

4.2.4. Catalase gene RNAi mediated depletion leads to a
decrease in sand fly fecundity.....................................................77

4.2.5. Effect of ROS-scavenging in the survival of sand flies............. 77

4.3. Discussion.................................................................................................82

CHAPTER 5
Reactive Oxygen Species-mediated immunity against Leishmania 

mexicana and Serratia marcescens in Lutzomyia longipalpis

5.1. Introduction..............................................................................................87

5.2. Results...................................................................................................... 88

5.2.1. ROS-regulatory genes are differentially expressed in the
midgut of Leishmania and Serrat/o-infected flies......................88

5.2.2. Serratia and not Leishmania induces changes in H2O2

concentration in the midgut........................................................89

5.2.3. Leishmania induces changes in catalase activity in
the midgut................................................................................... 89

5.2.4. Serratia and not Leishmania induces changes in midgut
ROS production in vivo................................................................93

5.2.5. Continuous H2O2 feeding to sand flies negatively affects
Leishmania survival in vivo..........................................................93

5.2.6. dsRNA-mediated knockdown of catalase negatively
affects Leishmania survival in the midgut.................................. 93

5.2.7. Chronic feeding of a potent ROS scavenger reduces sand
fly survival in Serratia-’mfected flies and increases 
naturally-occurring microbiota.......... .........................................97

5.2.8. dsRNA-mediated depletion of OXR1 affects sand fly survival



but does not affect Leishmania
development in the midgut.........................................................98

5.2.9. H2O2 has a deleterious effect on
Leishmania mexicana in vitro......................................................98

5,3. Discussion..............................................................................................102

5.3.1. Gene expression....................................................................... 102

5.3.2. ROS production-bacteria..........................................................104

5.3.3. ROS production-le/shman/a.....................................................105

5.3.4. OXR1 knockdown...................................................................... 106

CHAPTER 6
Software-based image analysis of subpopulations of 

Leishmania mexicana using morphometric data

6.1. Introduction............................................................................................108

6.2. Results and Discussion..................................................  114

6.2.1. Software Development of Image SXM ParaMorph.............. 114

6.2.2. Differences between versions................................................115

6.2.3. Parasite subpopulation clustering......................................... 117

6.2.4. Validation............................................................................... 121

6.2.5. Limitations of the software....................................................126

6.2.6. Advantages of the software...................................................126

6.2.7. Further development.............................................................128

CHAPTER 7
CONCLUSIONS AND FURTHER RESEARCH

130

REFERENCES
138



LIST OF TABLES

Table 2.1: Oligonucleotides for dsRNA synthesis and Reverse
Transcriptase PCR 1.................................................................31

Table 2.2: Oligonucleotides for dsRNA synthesis and Reverse
Transcriptase PCR II................................................................35

Table 2.3: Oligonucleotides for dsRNA synthesis and Reverse
Transcriptase PCR III..........................................  40

Table 3.2: Putative ROS-regulatory genes..............................................49

Table 4.1: Contrasting effect on longevity of male D. melanogaster
with antioxidants added in food 68Table 6.1: Summary of attributes, 
morphometries and graphic

examples of subpopulations of Leishmania mexicana.....Ill

Table 6.2: Mean values of different morphometric parameters from
manual method vs. Software...............................................128

LIST OF FIGURES

Figure 1.1: Development of Leishmania (Leishmania) species
in the sand fly vector................................................................3

Figure 1.2: The life cycle of Leishmania in a competent vector.............. 4

Figure 1.3: Model of Toll and Imd pathway activation...........................13

Figure 1.4: Overview of some toxic molecules manifested in the innate
immune responses of various invertebrates........................15

Figure 3.1: Haem and iron promote lipid peroxidation by different
mechanisms............................................................................45

Figure 3.2: ROS regulation by antioxidant enzymes.............................. 46

Figure 3.3,1. Amino acid sequence alignment of selected catalases....... 50

Figure 3.3.2. Phylogeny of selected catalases............................................50

Figure 3.4.1: Amino acid sequence alignment of selected superoxide
dismutases.............................................................................. 51

Figure 3.4.2: Phylogeny of selected superoxide dismutases....................51

Figure 3.5.1: Amino acid sequence alignment of selected
peroxiredoxins...........................  52

Figure 3.5.2: Phylogeny of selected peroxiredoxins.................................. 52

Figure 3.6.1: Amino acid sequence alignment of selected oxidation
resistance proteins.................................................................55

i



Figure 3.6.2: Protein domains present in selected oxidation resistance
proteins from various animal species................................ 55

Figure 3.6.3. Phylogeny of selected oxidation resistance proteins........... 56

Figure 3.7: Putative ROS-detoxifying gene expression profile change
in flies infected with L mexicana........................................ 57

Figure 3.8: Midgut-specific relative expression profile
by semiquantitative RT-PCR of ROS-regulatory
genes in infected Lu. Longipalpis........................................ 58

Figure 3.9: Relative profiles of catalase expression and bloodmeal
digestion in female Lu. Longipalpis..................................... 61

Supp.
Figure 3.1: Effect of blood-feeding and L. mexicana infection in

expression of early and late trypsins in female 
Lu. Longipalpis.................................................................... 65

Figure 4.1: Effect of age at blood feed on subsequent fecundity of
female lu. Longipalpis.........................................................71

Figure 4.2: Effect of ascorbic acid supplementation on fecundity.
in Lu longipalpis.................................................................. 72

Figure 4.3: Changes in catalase in the developing oocyte of Lu.
longipalpis.......................................................................... 74

Figure 4.4.1: Amino acid sequence alignment of selected catalases.........75

Figure 4.4.2: Structure-based alignment of the aminoacid sequence of
Lutzomyia longipalpis catalase............................................ 76

Figure 4.5: RNAi-mediated depletion of catalase LlonKatl in female Lu.
longipalpis and its effect on fecundity................................ 79

Figure 4.6: Effect of dietary supplementation of ascorbic acid on
mortality of sugar fed Lu. longipalpis.................................. 80

Figure 4.7: Survival in female Lu. Longipalpis after RNAi-mediated
depletion of catalase...................  81

Figure 5.1: Midgut-specific relative expression profile
By semiquantitative RT-PCR of ROS-regulatory
genes in infected Lu. longipalpis......................................... 90

Figure 5.2: Hydrogen peroxide concentration in the midgut of
Leishmania and Serrot/o-colonised sand flies..................... 91

Figure 5.3: Catalase activity in the midgut of Leishmania-co\or\\sed
sand flies............................................................................. 92

Figure 5.4: In vivo detection of ROS in Leishmania and Serratia-
infected sand flies.............................................................. 94

ii



Figure 5.5: Leishmania infection after continuous feeding of
female Lu. longipalpis with a hydrogen peroxide- 
supplemented sucrose meal.............................................. 95

Figure 5.6: dsRNA-mediated knock down of catalase reduces
Leishmania population in the midgut................................ 96

Figure 5.7: Chronic feeding of a uric acid-supplemented sugar meal
reduces survival in Serratia-mfected flies and 
increases naturally-occurring microbiota........................... 99

Figure 5.8: dsRNA-mediated knock down of the OXR1 gene in
female Lu. longipalpis........................................................100

Figure 5.9: Effect of hydrogen peroxide on Leishmania mexicana....... 101

Figure 6.1: Overview of the Leishmania cycle.......................................110

Figure 6.2: Outline of Image SXM ParaMorph......................................116

Figure 6.3: Three-dimensional scatter plot of all parasite
subpopulations from 24 h, 48, h, 7d and 8 d post- 
metacyclogenesis from manual counts............................. 118

Figure 6.4: Three-dimensional scatter plot of all parasite
subpopulations from 24h, 48h, 7d and 8d 
post-metacyclogenesis from photographs analysed 
with ParaMorph V 3.0.......................................................119

Figure 6.5: Three-dimensional scatter plot of all parasite
subpopulations from 24h, 48h, 7d and 8d 
post-metacyclogenesis from photographs analysed 
with ParaMorph V 3.1....................................................... 120

Figure 6.6: Comparison of relative frequencies of
subpopulations of Leishmania mexicana obtained 
manually and from image analysis by ParaMorph 
software V 3.0 and V3.1....................................................123

Figure 6.7: Comparison of relative frequencies of
subpopulations of Leishmania mexicana obtained manually
and from image analysis by ParaMorph
software V 3.0 and V3.1.................................................... 124

Figure 6.8: Confirmation of parasites classification reported
from image analysis by ParaMorph software................... 125

Figure 6.9: Major limitations of manual measurements of
Leishmania with an eyepiece graticule............................ 127



ACKNOWLEDGMENTS

I am sincerely and heartily grateful to Dr Rod Dillon for providing me with an 

exciting opportunity to pursue my postgraduate studies in the United Kingdom. I 

wish to thank him for his valuable guidance and discussions throughout the 

production of this work, and the help he provided during my most difficult times 

at both a professional and personal level. I will always be grateful to Rod for his 

incessant efforts to bring out the best in me and for his critical comments on this 

thesis.

I am truly indebted and thankful to Prof Paul Bates and Dr Alvaro Acosta-Serrano 

for their supervision and guidance, especially during my first and final year. I owe 

a sincere and earnest obrigado to Dr Mauricio Sant'Anna for his expert advice and 

constant support since the beginning of my research. I would like to show my 

gratitude to Dr Fernando Genta for his enlightening lectures on biochemistry and 

endless discussions about whether or not sand flies have any protein at all. I am 

also obliged to Prof Steve Barrett for developing ParaMorph and to his students 

Paul Mulligan and Hannah Delemare.

This work would not have been possible without the constant support and help 

from staff and colleagues, past and present. Thanks to Davina Moore for looking 

after my winged hairy babies. Thanks to Michelle Bates for her advice on 

Leishmania handling and culture. My gratitude to Dr Lee Haines and Dr Dee 

Walshe for their help, feedback and friendship. Thanks to all the Vector Group 

gang and especially Gwen Finnegan, our fantastic secretary.

My parents have been a source of immense strength throughout this endeavour, 

the completion of which is a result of their trust in me. Thanks Dad for that 

colouring book of entomology when I was 6 years old and for playing The Beatles 

to me. Thanks Mum Teresa and Mum Adriana for your love, courage and trust.

IV



I would especially like to thank my partner Morvyn for her love and support 

during the last year and especially the last six months when I turned Into a 

reclusive, grumpy, and miserable creature. I would also like to thank my friends 

who have supported me throughout this project.

Lastly, I thank the Mexican Council of Science and Technology (Conacyt) for 

funding my tuition and bursary payments, without which I would have never 

been able to achieve this.

v



DECLARATION

In chapter three figures 3.3.1 to 3.6.2, amino acid sequence alignment and 

phylogeny trees were done by Dr Fernando Genta, Institute Oswaldo Cruz, 

Fiocruz. Also in chapter three, microarrays were designed and performed by Rod 

Dillon. Programming of Image SMX ParaMorph was done by Prof Steve Barrett, 

Department of Physics, University of Liverpool. Development of ParaMorph V. 3.0 

was done by Paul Mulligan and V 3.1 was done by Hannah Delemare, Department 

of Physics, University of Liverpool.

This declaration confirms that the work described within this thesis is my own 

with the exception of the methods mentioned above.

Hector Manuel Dfaz Albfter



ABSTRACT

Female phlebotomines are the vectors of Leishmania protozoa. Leishmonia reside in the 

gut of the sand fly and they share this niche with different microbes that interact with 

either sand fly or Leishmania, Reactive Oxygen Species (ROS) are a major component of 

the insect innate immune system regulating gut-microbe homeostasis in other insects 

but the importance of this component in sand flies and its impact on Leishmania is 

unknown. The sand fly ROS system was initially investigated by examining the expression 

of antioxidant genes in the midgut of Lu. longipalpis throughout blood digestion using 

semi-quantitative RT-PCR. Antioxidant genes were differentially expressed throughout 

digestion and exhibited a peak at 48 h after blood feeding. Catalase was the most 

upregulated gene. Sand fly fecundity was affected by age and redox balance, as 

suggested by a significant reduction in egg numbers from older flies as well as after RNAi- 

mediated silencing of catalase. ROS detoxification appeared to be important during egg 

development as suggested by the accumulation of catalase in developing oocytes as well 

as an increase in egg numbers after antioxidant per os supplementation. Sand fly 

longevity was affected by redox balance, as shown by a significant reduction in survival 

after RNAi-mediated abrogation of catalase. Dietary addition of antioxidant failed to 

rescue early mortality, but this group also showed higher levels of phenoloxidase, a 

potential indicator of bacterial infection. Antioxidant genes were differentially expressed 

in Leishmania and Serratia colonised guts. Overall, midguts exhibited downregulation of 

ROS-detoxifying enzymes while Serrot/a-infected ones displayed the opposite trend. 

RNAi-silencing of catalase reduced Leishmania populations in the midgut suggesting that 

oxidative stress is deleterious to this protozoan. Dietary addition of the antioxidant uric 

acid in Serrat/GMnfected flies increased sand fly mortality as in previous experiments with 

vitamin C. Although Serratia CPUs were significantly lower in the group with the highest 

mortality, the population of the resident microbiota was significantly higher in the same 

group. Interestingly, the numbers of resident microbiota were even higher in flies not 

infected with Serratia. The implications of the results are discussed in relation to gut 

immune homeostasis in other insect-microbe systems as well as the possibility of 

applying some of this information towards understanding the systems governing adult 

longevity in relation to vectorial capacity and the improvement of sand fly control.
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CHAPTER 1

Introduction

1.1. Phlebotomine sand flies

Phlebotomine members of the family Psychodidae, commonly known as sand 

flies, are of great medical and veterinary relevance since they are responsible for 

the transmission of the leishmaniases. This group is widely distributed in tropical 

and subtropical regions of both the Old and New World (Lane and Crosskey 1993). 

Approximately 700 species have been described so far, around ten percent of 

which have been incriminated as leishmaniasis vectors; sufficient evidence of 

vectorial capacity has been shown for around thirty species (Bates 2007; Antinori 

et al. 2011). Male and female adults feed on natural sources of sugar from plants 

through their lifetime, (Schlein and Warburg 1986; Cameron et al. 1995). 

However, females also feed on blood to provide nutrition for the developing eggs 

(Killick-Kendrick 1999) and this behaviour provides the only confirmed natural 

infection route of the Lelshmania parasite (Bates and Rogers 2004). It is at this 

stage, where parasites and sand flies meet, that an intricate set of interactions 

occur. Both species may be considered as a combined element; in effect The 

Leishmanla-Sand fly System. However, sand flies, in common with other animal 

and plant feeder, have to survive and develop in the midst of a myriad of 

microbes that may be beneficial, commensalistic or entomopathogenic and 

subsequently may benefit or suffer from this relationship. Lelshmania enter this 

potentially hostile ecological niche and yet they have evolved to survive and 

thrive in the environment of the sand fly gut. A series of relevant aspects 

emerging from this interaction in time and space will be reviewed in the following 

sections.

1.2. Leishmania life cycle

Lelshmania enters its phlebotomine host after the female fly has fed on blood 

from an infected vertebrate. The parasite is initially present as a non-flagellated
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amastigote (Figure 1.1a) found intracellularly in phagocytes such as macrophages 

(Handman and Bullen 2002), which are recruited into the bite site upon bite 

injury caused by skin abrasion. Sand flies are pool-feeders that cut through the 

skin and capillaries with their mouthparts (Lane and Crosskey 1993). Changes in 

temperature and pH are responsible for this transformation of the non- 

flagellated to the flagellated forms (Bates and Rogers 2004; Kamhawi 2006).

1.2.1. Overview

Development inside the invertebrate host starts with the transformation of the 

sessile amastigotes into the longer, flagellated procyclic promastigote (Figure 

1.1b) that replicates within the bloodmeal, all of which are separated from the 

midgut epithelium by a type I peritrophic matrix (PM) (Adler and Theodor 1926; 

Adler and Theodor 1957; Kamhawi 2006). Towards the end of blood meal 

digestion (72-94 hours), procyclics transform into long, slender and very motile 

nectomonads (Figure 1.1b) and migrate towards the anterior part of the PM, (for 

a detailed time-line of parasite development inside the sand fly refer to Figure 

1.2). Nectomonads are able to disrupt PM integrity by secreting a chitinase 

(Schlein et ai 1991; Shakarian and Dwyer 2000). Some nectomonads attach to 

microvilli in the midgut while others establish at the stomodeai valve and 

transform into the replicative leptomonads (Figure 1.1b) (Gossage et al. 2003). 

Leptomonads produce promastigote secretory gel, a gel-like matrix that plays a 

key role in transmission (Rogers et al. 2002; Rogers et al. 2004). A peculiar 

parasite subpopulation emerges from either nectomonads or leptomonads (it is 

still uncertain (Bates 2007)) named haptomonads that attach to the cuticle-lined 

surface of the stomodeai valve due to expansion of the flagellar tip into hemi- 

desmosome-like structures (Killick Kendrick et al. 1974; Wakid and Bates 2004). 

Some leptomonads transform into metacyclic promastigotes (Figure 1.1b) (Rogers 

et al. 2002), free swimming, fast, highly motile and complement-resistant forms 

that are highly adapted to infect the vertebrate host (Kamhawi 2006).

2
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Figure 1.1: Development of Leishmania (Leishmania) species in the sand fly vector, (a)
The morphology of amastigotes and promastigotes. Each form has a nucleus (N), 
kinetoplast (K) and flagellum (F). The kinetoplast is the mitochondrial genome. The 
flagellum in amastigotes is internal and non-functional; in promastigotes the flagellum 
extends from the cell body, beats and pulls the organism in the direction shown, 
emerging from the anterior end of the cell, (b) The developmental sequence of the five 
major promastigote forms: procyclic promastigotes, nectomonad promastigotes, 
leptomonad promastigotes, haptomonad promastigotes and metacyclic promastigotes. 
Adapted from Bates, (2007).
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Thoracic midgul

TRENDS in Parasitology

Figure 1.2: The life cycle of Leishmania in a competent vector, illustrating the time- 
dependent appearance of distinct morphological forms of promastigotes within the 
sand fly midgut. PSG=Promastigote secretory gel. Adapted from Kamhawi, (2006).

1.2.2. Physiology of parasite establishment

Suprapylarian Leishmania parasites develop within a gut which possesses 

chemical and physical barriers to prevent pathology due to microbial infections. 

Each developing stage bears a distinctive morphology and carries out particular 

functions to successfully establish and develop inside the sand fly. Once the 

digestion process begins, amastigotes are liberated from the macrophages in the 

blood meal and rapidly transform into promastigotes (Bates 2007). The resulting 

procyclics have to deal with deleterious hydrolytic enzymes released by the 

midgut epithelial cells (Pimenta et al. 1997). Parasite development in the midgut 

and digestion appear to be strongly correlated: experimental inhibition of 

digestive enzymes in Phlebotomus papatasi increased the number of L. donovani 

(Borovsky and Schlein 1987). Similar results were found in Lmp/or-infected P. 

duboscqi after oral supplementation of galactosamine, a lectin-binding 

carbohydrate that negatively affected the activity of alkaline proteases and
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trypsin in the midgut (Volf et a!. 2001). Promastigotes have been able to survive 

in vitro in a trypsin-supplemented medium, but these enzymes may harm in vivo 

if Leishmania development is not coordinated with the digestive process, (Dillon 

and Lane 1993b). During the early stages of digestion, survival has proven to be 

species-specific in experimental infections of sand flies with non-compatible 

Leishmania strains, (Lawyer et al. 1990; Schlein and Jacobson 1998). A significant 

number of parasites are killed during these first stages (Pimenta et al. 1997; 

Rogers et al. 2002); in different combinations of sand fly and parasite species 

(Nieves 2002; Rogers et al. 2002). It has been demonstrated that the peritrophic 

matrix (PM) plays a determinant role in parasite survival by limiting the exposure 

of amastigotes to proteolytic enzymes and providing time for them to develop 

into the more resistant promastigotes (Pimenta et al. 1997). Promastigotes 

overcome proteolytic damage by the expression of glycoconjugates, a group of 

phosphogiycans either attached to the cell surface via glycosylphospatidylinositol 

(GPI) lipid anchors (lipophosphoglycans (LPG) and phosphogiycans (PPG)) or 

secreted as protein-containing phosphogiycans (secreted phosphoglycan (sPPG) 

and secreted acid phosphatase (sAP)) which appear to confer protection to the 

parasite from the activity of proteolytic molecules (Sacks et al. 2000; Secundino 

et al. 2010). Altogether, these investigations suggest that timing is extremely 

important in parasite development and that Leishmania coordinates its 

development to take advantage of the sand fly behaviour and physiology to 

successfully complete its life cycle.

Two major events happen once the parasites had successfully survived the early 

stages of digestion: degradation of the PM and development of procyclics into 

nectomonads. The peritrophic matrix might play a protective role, presumably by 

slowing the diffusion of certain enzymes and allowing the diffusion of others. But 

the parasites have to cross this physical barrier since failure to do so results in 

their inability to establish an infection because trapped parasites are expelled 

with the rest of the digested meal (Walters et al. 1992; Coutinho-Abreu et al. 

2010). Lysis of the PM is facilitated by parasite-secreted chitinases that are able 

to break down the chitin-rich network of the PM, (Schlein et al. 1991; Shakarian
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and Dwyer 2000). When adding allosamidin, a chitinase inhibitor, to a blood meal, 

parasites were not able to escape the PM, (Pimenta et ai 1997). Sand flies are 

also able to express chitinases (Ramalho-Ortigao et al. 2005) which seem to 

facilitate Leishmania colonisation and to enhance transmission to the mammalian 

host (Rogers et al. 2008). Procyclic transformation into nectomonads confers 

physical advantages to escape the PM, since these forms are longer, slender and 

strongly motile (Bates 2007), However, higher motility is not enough to survive to 

the next stages of development; further attachment of parasites to the midgut 

wall is vital and it is mediated by the expression of phosphoglycans.

1.2.2.1. Parasite LPG-mediated colonization

Phosphoglycans not only confer protection against enzymatic activity, as 

discussed above, but also play a key role in the successful establishment of 

infection once the nectomonad promastigotes migrate outside the PM. 

Lipophosphoglycan (LPG) is the major glycoconjugate on the surface of 

promastigotes. Several studies in Old and New World species of Leishmania have 

examined the role of LPG in the binding process to the midgut epithelium,(Sacks 

et al. 2000; lig 2001; Sacks and Kamhawi 2001; Soares et al. 2002). In 

Phlebotomus papatasi, the LPG of L. major attaches to a midgut epithelial galectin 

(Pelletier et al. 2003; Kamhawi et al. 2004; Soares et al. 2004)and this specific 

binding appears to account for species-specific vector competence in sand fly 

species which are termed 'restricted, i.e if the Leishmania species is able to 

develop transmissible infections in that particular sand fly species. After binding 

to the wall, nectomonads develop into leptomonads, which are of particular 

importance, since they recommence replication into the infective metacyclic 

promastigotes (Gossage et al. 2003) and secrete promastigote secretory gel (PSG). 

Although successful binding to the midgut avoids expulsion during defaecation, it 

can be a "double-edged sword", since the parasite must liberate themselves 

when the sand fly feeds on the next mammal (Beverley and Dobson 2004). 

Metacyclics rely on the expression of a non-attaching LPG to allow anterior 

migration and subsequent transmission (Kamhawi et al. 2004). The mechanism 

of detachment is unknown although the binding process may be a more active
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process rather than a sessile one since microscopic observation of the flagella 

between the microvilli suggests that the nectomonads are actively swimming 

against the epithelium with the flagellar tip burrowing between the microvilli 

(Dillon unpublished observations).

I.2.2.2. Parasite non LPG-mediated colonization

The LPG-mediated Leishmanio microvillar binding process was previously thought 

to be the main mechanism of binding and explanation for species specificity. 

Recently this central tenant was challenged and a study confirmed that it was not 

the only molecular mechanism for Leishmanio attachment inside the midgut (Volf 

and Peckova 2007). The possibility of an alternative mechanism emerged after 

experiments with permissive vectors such as Lu. longipalpis infected with LPG- 

deficient L. mexicana or L. arabicus resulted in survival in the midgut similar to 

those from wild type parasites (Rogers et al. 2004; Myskova et at. 2007). It was 

also suggested that midgut O-glycosylated proteins with N-acetylgalactosamine 

(GalNAc) epitopes might also play a role in parasite attachment in permissive 

vectors such as Lu longipalpis (Svobodova et al. 2006; Myskova et al. 2007; Volf 

and Peckova 2007). This shows parasite establishment inside the gut is more 

complex than initially proposed. Another possibility is that parasites remain inside 

the gut without attaching at all. Leishmanio display chemotaxis to different 

molecules as well as to pH and sugar gradients (Bray 1983; Van Zandbergen et al. 

2002), and are also able to reduce peristalsis in the host (Vaidyanathan 2004). An 

alternative hypothesis for a mechanism of establishment without attachment 

would involve Leishmanio movement in an anterior direction in the gut with 

reduced peristalsis. Whatever strategies Leishmanio utilises for successful 

completion of the 'gut phase' of its' life cycle, it seems that the mechanisms are 

more diverse than the 'lock and key' (LPG-galectin) attachment system.

1.2.3. Promastigote secretory gel (PSG)

Probably the latest and most relevant finding so far on Leishmaniasis 

transmission (and the last key step in parasite gut development) is the secretion 

of the PSG. This high molecular weight filamentous glycoprotein has been proven
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to enhance transmission of the metacyclics in the mammalian host,(Rogers et al. 

2002; Rogers et al, 2004). it seems to promote successful infection when some of 

the plug, is regurgitated by the "blocked fly" before it can feed on the next host 

(Bates 2007). The PSG plug also embeds the majority of the metacyciic 

subpopulation and its acidic, low-oxygen conditions might induce 

metacyclogenesis of leptomonads (Rogers et al. 2002). It is possible that the PSG 

might be playing other additional roles, like protection of the parasites against 

gut immune effectors or potentially harmful bacteria from incoming sugar meals 

(Dillon, unpublished data). It has also been shown that the major constituent of 

PSG, the filamentous proteophosphoglycan, leads to long-term disease 

exacerbation (Rogers et al. 2004). The PSG causes partial blockage of the gut and 

the fly has difficulty in feeding thus promoting transmission of the metacyciic 

Leishmania (Rogers and Bates 2007).

How Leishmania manages to survive and thrive inside the midgut is still far from 

being fully understood. Recent studies, (Cohen-Freue et al. 2007; Leifso et al. 

2007) showed an interestingly low differential expression of mRNA between 

amastigotes and promastigotes. A study of this kind has not been performed in 

other promastigote subpopulations such as nectomonads, leptomonads, and 

haptomonads where production in vitro and separation in enough numbers is 

difficult (Rogers et al. 2002; Gossage et al. 2003). Such data could provide a 

better understanding of the survival of the parasite inside its insect vector.

1.3. Insect immunity

Insects are able to mount a robust innate immune response against potentially 

pathogenic microbes. They have evolved different strategies to sense the 

pathogenic non- self from self and they are able to recognize different 

microorganisms and to mount different immune defence mechanisms 

accordingly. Recent work has started to examine how insects are able to react 

differently to beneficial microbes compared to pathogenic ones in their guts and 

to regulate their microbiota in a molecular cross-talk (Ha et al. 2005a; Ha et al.
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2009a; Ryu et oL 2010) .The following section will review pathogen recognition, 

signalling pathways and antimicrobial response of systemic and epithelial 

immunity.

1.3.1. History

The early interest in insect immunity was associated with human activities of

economical relevance, specifically the silk industry of the 19th century. It was in

1835 that Agostino Bassi proved that the fungus Beauveria bassiana was the

etiological agent of the white muscardine disease in the silkworm Bombyx mori.

Bassi not only provided the first experimental proof of the germ theory of

disease, his works are also the first evidence of microbe pest control (Steinhaus

1957; Lord 2005). Pasteur himself spent several years studying two different silk

worm diseases and noted differential susceptibility of insects to the disease,

probably the first scientific record of pathogen resistance in insects (Bordenave

2003). The first practical use of insect susceptibility to pathogens came from Elie

Metchnikoff. After analysing a beetle's population fluctuation and its relationship

with disease outbreaks, he suggested to apply conidia of the green muscardine

Metarhizium anisopllae as pest control (Lord 2005).
*

Research on insect immunity during the following decades also led to a better 

understanding of vertebrate immunity. In 1895, Cuenot studied phagocytosis of 

pathogens in hematocytes of the domestic cricket Gryllus domesticus 

(Thompson 1930). Stephens demonstrated that the hemolymph of Galleria 

mellonella displayed microbicidal properties after injection of Pseudomonas 

aureuginosa (Stephens 1962). Observations as early as 1898 of haemolymph 

peculiar behaviour of darkening upon exposure to air (Biedermann and Moritz 

1898) eventually lead to the discovery of the role of phenoloxidase in immunity 

and nonself recognition and (Nappi 1973; Rye 1974). Ratciiffe and Rowley also 

provided the first detailed evidence of phagocytosis in haematocytes (Ratciiffe 

and Rowley 1974). Another notable discovery was that of Boman et al., who 

demonstrated that injection of the fruit fly Drosophila melanogaster with bacteria 

could confer protection to a subsequent infection (Boman et al. 1972). Although
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the biochemistry of this phenomenon was not clear at the time, further research 

culminated with the isolation of attacin and cecropin, the first antimicrobial 

peptides ever described (Steiner et al. 1981; Hultmark et at. 1983). A few years 

later, it was found that insects express immunosuppressive factors that were 

quite similar to mammalian NF-kB (nuclear factor kappa-light-chain-enhancer of 

activated B cells) (Sun and Faye 1992). In 1996, Lemaitre et al. reported that such 

similarities extended even further, they found that Toll receptors, only known for 

their role in embryo development, played an important role in immune response 

against fungi in Drosophila. (Lemaitre et al. 1996). Very shortly afterwards, a Toll- 

like receptor was cloned in humans. This receptor was found to activate NF-kB 

(Medzhitov et al. 1997). Perhaps one of the latest relevant discoveries is the role 

of reactive oxygen species (ROS) in epithelial immunity. Ha et al. showed that 

Drosophila effectively uses ROS as a first line of defence against pathogens and 

that ROS play a major role in midgut homeostasis and regulation of microbial 

population (Ha et al. 2005a; Ha et al. 2005b; Ha et al. 2009a).

1.3.2. Systemic immune response

Insects are able to mount a robust immune response against pathogenic 

microbes. They have evolved different strategies to sense the pathogenic non

self from the self and they are able to recognize different microorganisms and to 

mount different immune defence mechanisms accordingly (Lemaitre and 

Hoffmann 2007). Insects are even able to identify entomo-'beneficial' microbes 

from entomopathogenic ones in their guts and to regulate their microbiota via 

molecular cross-talk.

1.3.2.1. Anti-microbiai peptides (AMPs)

Insects are able to mount a systemic antimicrobial humoral response upon septic 

injury. This response consists mainly of a major release of antimicrobial peptides 

(AMPs) into the haemolymph after synthesis in different tissues such as the fat 

body and haemocytes. AMPs are small (>10 kDa, except for the 25kDa Attacin), 

usually cationic peptides with high specificity against fungi and bacteria (Imler 

and Bulet 2005). Fungi are sensitive to Drosomycins and Metchnikowins
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(Fehlbaum etal. 1994; Levashina et al, 1995), Gram-positive bacteria are labile to 

Defensins (Dimarcq et al. 1994), while Cecropins, Diptericins, Drosocins and 

Attacins attack Gram-negative bacteria (Wicker et al. 1990; Bulet et al. 1993; 

Asling et al. 1995). AMPs have also been found to exhibit activity against 

protozoan parasites like Crithldia, Trypanosoma, Plasmodium and Leishmania 

(Dimopoulos et al. 1997; Boulanger et al. 2002; Boulanger et al. 2004; Boulanger 

et al. 2006). The microbicidal mechanisms of AMPs are not fully understood, 

however it is believed that these peptides are detrimental to microbes by altering 

the cell membrane structure as well as inhibiting nucleic acid and protein 

synthesis (Yang et al. 2000; Brogden 2005).

1.3.2.2. Regulation of humoral response

AMPs gene expression is regulated by DIF (dorsal-related immunity factor) and 

Relish in Drosophila and they both belong to the nuclear factor-KB (NF-«B) family 

of inducible transactivators: DIF (dorsal-related immunity factor) and Relish. 

Gram-positive bacteria and fungi are mainly responsible for DIF activation, while 

Gram-negative microbes activate Relish in Drosophila. DIF and Relish are 

activated through two different signalling cascades: the Toll and Immune 

deficiency (IMD) pathways (Lemaitre et al. 1996; Ferrandon et al. 2007), which 

will both ultimately activate a nuclear factor-xB (NF-KB)/reticuloendotheliosis (Rel) 

family transcription factor (Hoffmann and Reichhart 2002; Leclerc and Reichhart 

2004).

1.3.2.3. Toll pathway

The Toll pathway is an evolutionarily conserved signalling cascade which was 

originally found to participate in the establishment of dorso-ventral patterning in 

Drosophila (Belvin and Anderson 1996), but a few years later it was found to play 

a major role in the regulation of the immune response (Lemaitre et al. 1996). The 

Toll pathway is reminiscent of the TLR/interleukin - 1 pathway which regulates 

mammalian inflammatory response (Silverman and Maniatis 2001). This pathway 

is triggered upon fungal or Gram-positive bacterial infection (Figure 1.3, left) 

(Leclerc and Reichhart 2004). Toll is a transmembrane receptor which is activated
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after binding of Spaetzle, a secreted protein which circulates the haemolymph as 

a pro-protein and is turned functional by a serine protease (Weber et al. 2003). 

Spaetzle induces dimerization of Toll and further recruitment of adaptors MyD88 

and Tube as well as the kinase Pelle. Pelle activates proteosomal degradation of 

Cactus, which allows translocation of Dif and Dorsal transactivators. This 

translocation results in induction of expression of immune-related genes such as 

Drosomycin (Belvin and Anderson 1996; Tauszig-Delamasure et al. 2002; 

Broderick et al. 2009).

1.3.2.4. Imd pathway

The Imd was pathway was initially deduced after research on a mutation in 

Drosophila defined as immune deficiency {imd). This mutation abrogated 

expression of different AMPs genes except for Drosomycin (Lemaitre et ai. 1995; 

Corbo and Levine 1996; Levashina et al. 1998). Gram-negative bacteria kill imd 

mutant flies and show higher resistance to fungi and Gram-positive germs 

(Lemaitre and Hoffmann 2007). The Imd pathway is activated mainly by Gram

negative bacteria (Fig 1.3, right). This pathway is mediated by the peptidoglycan 

recognition protein LC (PGRP-LC), a transmembrane PRR (Choe et al. 2002; Cottar 

et al. 2002) with a death domain similar to a mammalian receptor interacting 

protein that plays a role in both NF-kB activation and apoptosis (Georgel et al. 

2001). Upon infection, PGRP-LC recruits Imd which in turn recruits the dFADD 

adaptor and caspase Dredd, which is thought to associate with Relish. 

Translocation of Relish induces the expression of immune-related genes such as 

Diptericin (Broderick eta/. 2009).
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1.3.2.5. Melanization

In Drosophila, as well as other insects and arthropods, physical injury of the 

cuticle leads to a physiological process known as melanization, a de novo 

expression and deposition of melanin. This immediate defence response occurs 

in the wound site and is also observed on the surface of foreign objects in the 

haemocoel. Melanization is involved in a plethora of immune reactions such as 

injury repair, microbial sequestration, encapsulation of parasites and synthesis of 

toxic compounds with putative antimicrobial properties (Muta and Iwanaga 1996; 

Soderhall and Cerenius 1998).

Melanization occurs through the oxidation of mono- and diphenols to 

orthoquinones by the enzyme prophenoloxidase (proPO) and the non-enzymatic 

polymerization of orthoquinones to melanin (Fig 1.4). proPO exists as a proform 

and is activated to phenoloxidase (PO) by a serine protease known as 

prophenoloxidase activating enzyme (PPAE). Activation of PPAE is also mediated 

by serine proteases since this enzyme exists as an inactive zymogen. Research 

preformed in different invertebrate models has shown that melanization is 

started by either injury or recognition of Microbe-Associated Molecular Patterns 

(MAMPs) such as PGN, (3(l,3)-glucan, and LPS (Ochiai and Ashida 1999; Ma and 

Kanost 2000; Ochiai and Ashida 2000; Lee et at. 2004).

1.5.3.6. Nitric oxide and immunity

Over the past two decades, nitric oxide (NO) has been acknowledged as one of 

the most versatile components of vertebrate immunity, performing a dual role as 

immune effector molecule as well as major signalling molecule (Bogdan et al. 

2000; Pryor et al. 2006). Studies performed in different arthropod models such 

as the horseshoe crab Limulus polyphemus as well as the dipterans Drosophila 

and Anopheles have shown that NO plays similar roles in the invertebrate 

immune response (Radomski et al. 1991; Luckhart et al. 1998; Nappi et al. 2004). 

In different species of invertebrates, NO perse and after interaction with ROS and
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(SOD). Melanogenic intermediates such as quinones and semiquinones can react with 
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reactive nitrogen intermediates (RNIs) constitutes a common defence response 

against pathogens (Fig 1.4), showing cytotoxic activity against bacteria, virus and 

parasites (Torreilles and Guerin 1999; Weiske and Wiesner 1999; Nappi et al. 

2000; Beck et al. 2001; Novoa et al. 2002; Hao et al. 2003; Jiang et al. 2006). NO is 

catalyzed by nitric oxide synthase (NOS), an enzyme which activation upon 

parasitic challenge in invertebrate disease vectors seems to play a role in 

regulation of parasitemia in the host (Dimopoulos et al. 1998; Luckhart et al.
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1998; Bayne et al. 2001; Hahn et al. 2001). NO also acts as a signalling molecule in 

insect immunity (Stefano and Ottaviani 2002; Kumar et al. 2004). Upon bacterial 

challenge, NO is synthesised in haemocytes of Drosophila, which leads to 

activation of the Imd pathway and further expression of diptericin (Nappi et al. 

2000; Foley and O'Farrell 2003). Expression of diptericin and antibacterial activity 

in response to bacterial IPS also increases after experimental overexpression of 

NOS in Drosophila Malpighian tubule cells (McGettigan et al. 2005).

1.3.3. Microbe recognition

1.3.3.1. Microbe-Associated Molecular Patterns (MAMPs)

The immune system effectively recognizes and combats a plethora of pathogenic 

microbes in the environment associated with insects. It has been suggested that 

recognition of potentially hazardous bacteria relies on molecular structure 

patterns that are: a) shared by several pathogens, b) conserved metabolic 

products, and c) completely distinguishable from the insect-self; these structures 

are called pathogen-associated molecular patterns (PAMPs) (Medzhitov and 

Janeway 1997a), a more inclusive term that includes commensal and beneficial 

microbes is microbe associated molecular patterns (MAMPs). Some of the best 

studied MAMPs are lipopolysaccharides and peptidoglycans expressed by Gram

negative and gram-positive bacteria, respectively. Other MAMPs include double 

stranded RNA from viruses and mannans from yeasts (Medzhitov and Janeway 

1997a). These are all signature molecules produced exclusively by pathogens 

which are effectively recognized by receptors of the innate immune system called 

pattern recognition receptors (PRRs) (Janeway 1989; Medzhitov and Janeway 

1997b; Medzhitov and Janeway 2002). PRRs differ in both structure and function 

for recognition of a wide variety of MAMPs, as well as induction of different 

immune response mechanisms. Drosophila recognizes bacteria throughout 

particular forms of a glucopeptidic polymer denominated peptidoglycan (PGN). 

This is a cell wall component common to both Gram-positive and Gram-negative 

bacteria (Mengin-Lecreulx and Lemaitre 2005). Peptidoglycan shows two major 

differences between the two groups of bacteria. In Gram-negative bacteria it is 

known as DAP-type PGN, it has /rjeso-diaminopimelic acid (DAP) instead of a
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lysine in the peptide chain. DAP-type PGN is also single-layered and located 

underneath the lipopolysaccharide layer and the outer membrane. In Gram

positive bacteria, Lys-type PGN consists of several layers and it is found on the 

bacterial surface. (Ferrandon et al. 2007; Lemaitre and Hoffmann 2007). 

Drosophila is able to distinguish between both types of PGN and launch an 

immune response accordingly. Gram-negative DAP-type PGN induces the Imd 

signalling pathway, whereas the Toll pathway is induced by Lys-type PGN (Leulier 

et al. 2003). This differential sensing is possible due to specific peptidoglycan 

recognition receptors in Drosophila.

I.3.3.2. Peptidoglycan-recognition proteins (PGRPs)

Microbe sensing is achieved by recognition of particular petidoglycan patterns by 

PPRs called Peptidoglycan-recognition proteins (PGRPs). Gene sequences coding 

for these proteins have been identified in a wide variety of species, from insects 

to mammals (Kang et al. 1998; Werner et al. 2000; Liu et al. 2001) and show a 

common 160 amino acid domain similar to bacteriophage T7 lysozyme (Yoshida 

et al. 1996; Kim et al. 2003; Royet and Dziarski 2007). Recognition of Lys-type 

PGN Gram-positive bacteria is achieved by PGRP-SA, PGRP-SD and GNBP1 (Gram

negative binding proteinl, a historical application of a wrong name) (Lemaitre 

and Hoffmann 2007). GNBP1 is a PPR with a glucan-b'mding and a mutated 

glucanase domain (Lee et al. 1996), it has been suggested that this receptor 

hydrolyzes Lys-type PGN for recognition by PGRP-SA (Filipe et al. 2005). 

Activation of these PPRs triggers proteolytic cascades that result in the cleavage 

of Spaetzle and further activation of the Toll pathway. Detection of DAP-type 

Gram-negative bacteria is mediated by PGRP-LC and PGRP-LE (Ferrandon et al. 

2007). DAP-type PGN can be detected by PGRP-LC and PGRP-LE either intact or as 

shorter fragments, such as tracheal cytotoxin (TCT)(Leulier et al. 2003; Kaneko et 

al. 2004; Stenbak et al. 2004; Ferrandon et al. 2007) and results in activation of 

the Imd signalling pathway. Fungal recognition and further Toll pathway 

activation is mediated by Gram-negative binding protein 3 (GNBP3)(Gottar et al. 

2006) as well as Persephone, a serine protease (Ligoxygakis et al. 2002). This PPR
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domain binds to fungi upon identifying long chains of [3-1,3-gliJcans in the fungal 

cell wall as a major ligand (Mishima eta/. 2009)

1.3.4. Epithelial Immunity

The first studies on microbe-insect host interactions utilised cuticular wound-like 

model infections to analyse the immune response. However, although insects 

might face the challenge of a wound in nature {i.e. surviving a predatory attack or 

fungal pathogens), it is their natural orifices and connecting tracts that are the 

regions most likely to be challenged by microbes on a regular basis, specifically, 

the digestive and respiratory tissue. Gut and trachea are equipped with physical 

and physiological features against potential pathogens. The respiratory tract is 

coated with a protective chitinous lining (Merzendorfer and Zimoch 2003). The 

foregut and hindgut are protected by a cuticle layer, whereas the midgut 

epithelium secretes a peritrophic matrix that protect against abrasion and 

bacteria(Lehane and Billingsley 1996; Vallet-Gely et al. 2008). The midgut 

epithelium defence repertoire includes lysozymes that destroy microbes during 

digestion (Huitmark 1996), as well as anti-microbial peptides and reactive 

oxygen species (Lemaitre and Hoffmann 2007).

I.3.4.I. Anti-Microbial Peptides (AMPs)

Oral infection of the model insect Drosophila with Gram-negative bacteria 

triggers the Imd pathway in gut epithelium and induces the expression of 

different AMPs in a tissue-specific manner (Tzou et al. 2000). Infection with 

Erwinia carotovora activated the Imd pathway and induces the expression of 

Drosomycin and Diptericin in respiratory and digestive tissues (Basset etal. 2000). 

The Imd pathway plays a major role in oral infection, as confirmed by an increase 

in mortality of imd pathway mutants upon infection with Serratia marcescens 

(Nehme et al. 2007). It has also been demonstrated that bacteria have evolved 

strategies to overcome AMPs inside the digestive tract. Pseudomonas 

entomophila secretes ApraA, a zinc metalloprotease that protects it against 

Diptericin (Liehl et al. 2006). Recognition of PGN and subsequent activation of the 

imd pathway upon oral infection is achieved by PGRP-LC, the same
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transmembrane receptor responsible for triggering the Imd signalling cascade in 

the systemic immune response (Zaidman-Remy et al, 2006). So far, there is no 

evidence of Toll pathway activation in epithelial immune response, neither do 

fungi or Lys-type PGN Gram-positive bacteria stimulate AMP production in such 

tissues (Lemaitre and Hoffmann 2007; Ryu etal. 2010).

1.3.4.2. Reactive Oxygen Species (ROS)

AMPs production per se is not sufficient to mount a complete immune response 

in the midgut. Mutant Drosophila flies unable to express AMP were able to 

exhibit resistance to oral infection except when infected with ROS-resistant 

bacteria (Ryu et al. 2006). ROS are metabolic bi-products that exhibit microbicidal 

properties in the gut epithelium when released after bacterial infection (Ha et al. 

2005a; Ha et al. 2005b). Flies unable to express a secreted, immune regulated 

catalase (IRC) exhibited higher mortality after oral infection, as well as after 

challenge with dead bacteria. The latter mortality was proposed to be caused by 

oxidative stress through accumulation of ROS (Ha et al. 2005a). It has been 

shown that Dual oxidase (DUOX ) is the main source of ROS in Drosophila (Ha et al. 

2005a; Ha et al. 2005b). DUOX is part of a conserved family of NADPH-oxidases 

with a N-terminal peroxidase domain capable of regulated ROS 

production(Ritsick et al. 2004). Silencing of DUOX by RNA-interference reduces 

the levels of ROS in the gut and also increases the mortality after oral infection 

with E. carotovora (Ha et al. 2005a). ROS release by DUOX is not triggered by 

PGN, but by a non-PGN ligand (Ha etal. 2009a). These non-PG microbial ligand(s) 

appear to be recognized by unknown G protein coupled receptor (GPCR) and to 

transmit the signals to Gaq and phospholipase Cp (PLC(3) that lead to the 

mobilization of intracellular calcium via generation of inositol 1,4,5-trisphosphate 

(IPS). This PLCp/IPS-dependent calcium mobilization is sufficient for spontaneous 

DUOX activation and subsequent ROS generation to kill the bacteria (Ha et al. 

2009b)
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1.3.5. Microbiota regulation in the midgut

Bacteria have been present on Earth for at least 2700 million years (Brocks et al. 

1999) and organisms that appeared afterwards had to evolve within an 

environment dominated by microbes. Millions of different species of microbes 

co-habit with and within metazoans (Hooper and Gordon 2001). The intersection 

between microbes and the highly diverse Class Insecta over the millennia 

provided a particularly rich opportunity for the development of a diversity of 

microbe-host interactions leading to maintenance of immune homeostasis (Dillon 

and Dillon 2004). Insects like Drosophila host a simpler commensal microbiota 

(five to twenty species), compared to their vertebrate counterparts (Cox and 

Gilmore 2007; Ren et al. 2007). However, it is this simpler condition that makes 

some insects good models to study bacterial interactions. The traditional 

paradigm regards microbes as elicitors of the immune system (Ryu et al. 2010). 

However, gut microbes do not appear to trigger an antagonistic immune 

response in their metazoan hosts under regular conditions. Actually, vertebrates 

and invertebrates reared in experimental, germ-free conditions exhibit a reduced 

life-span (Dillon et al. 2005; Cheesman and Guillemin 2007). It has been shown 

that gut microbiota plays a beneficial role in human nutrient absorption (Gordon 

et al. 2005; Turnbaugh et al. 2006) as well as in protection against fungal 

pathogens in insects (Dillon and Charnley 1988; Currie etal. 2003).

However, commensal microbiota exhibits some of the same immunostimulator 

molecules (MAMPs) that are produced by pathogenic bacteria (Ryu et al. 2008; 

Salzman et al. 2010). How can the insect midgut differentiate between both? 

Some commensal bacteria are able to induce the expression of MAMP-degrading 

molecules in the midgut, hence avoiding stimulation of the immune response 

(Zaidman-Remy et al. 2006; Ryu et al. 2008). But one of the major differences 

between residents and pathogens is that the latter will ultimately damage the 

host. Pathogen associated damage will stimulate the release of danger signals 

within the host tissue, which together with the presence of MAMPs results in full 

activation of the immune response (Ha et al. 2005b; Liehl et al. 2006; Buchon et 

al. 2009; Lazzaro and Rolff 2011). This differential response may also explain the
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dilemma posed by some microbes that may be beneficial or pathogenic 

depending on the physiological status of the insect host.

1.3.5.1. Sensing of pathogen-like behaviour of microbes in the gut

In Drosophila, it has been proposed that PGRPs with amidase activity participate 

in bacterial tolerance by degrading microbe-derived PGN to a non-immune 

stimulatory form (Bischoff et al. 2006; Zaidman-Remy et al. 2006; Ryu et al. 2008) 

and that commensals differ from pathogens in the amount of released PGN due 

to higher growth rates of pathogens (Zaidman-Remy et al. 2006). It has been 

suggested that this PGRP amidase negative feedback protects the host from 

damage derived from a prolonged immune activity (Bischoff et al. 2006). Other 

immune regulators include PGRP-LC-interacting inhibitor of Imd signalling (PIMS). 

PIMS present at basal levels during commensal microbiota-host interactions 

suppresses the activation of the Imd pathway (Lhocine et al. 2008). One of the 

latest models of immune homeostasis suggests that the interplay of Relish (NF-kB 

insect homologue) and Caudal (patterning gene in Drosophila) is responsible for 

regulation of AMPs expression in the gut (Ryu etal. 2008).

1.4. Immunity in phlebotomine sand flies

Knowledge of phlebotomine sand fly immunity is still in its infancy. Much of the 

information available is inferred from better-studied species such as Drosophila 

and mosquitoes where genome sequence data is available. Mosquitoes are a 

particularly rich source of information for the elucidation of the sand fly immunity 

since they fall within the Nematocera and the adults exhibit the dual feeding 

mode for plant carbohydrate and blood.

Insects, unlike vertebrates, do not bear the outstanding and complex antigen- 

antibody system of adaptive immunity; they rely on innate immunity to survive 

the challenge of pathogens and parasites (Boulanger et al. 2006; Lemaitre and 

Hoffmann 2007). As mentioned in a previous section insects such as sand flies 

discriminate particular microbe-associated molecular patterns (MAMPs),that are
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typical of microbes, (Nurnberger et at. 2004) via pattern recognition receptors 

(PRRsMMedzhitov and Janeway 2002). The major and best-studied PPRs in 

insects are peptidoglycan recognition proteins (PGRPs) and Gram-negative 

bacteria binding proteins (GNBPs) (Osta et at. 2004). Other PPRs include, but are 

not limited to, galectins (GALE), thioester-containing proteins (TEPs) and 

scavenger receptors (SCRs), (Dimopoulos et ai 1998; Christophides et at. 2002). 

Analysis of a cDNA library of Lutzomyia longipalpis (Dillon et ai. 2006) identified 

the expression sequences with a predicted function for all of the aforementioned 

pattern recognition receptors. GALEs had been reported in similar studies of 

Phlebotomus papatasi (Ramalho-Ortigao et ai. 2007). Further research on the 

interaction of these PPRs and Leishmania infection needs to be performed.

Activation of PPRs by PAMPs starts a cascade of signals that orchestrates a series 

of molecular events against the pathogen. This innate humoral response model 

had been best studied in Drosophila, (Hoffmann 2003). One of the outcomes of 

this cascade is the expression of antimicrobial peptides (AMPs). Drosophila 

synthesizes specific AMPs against different pathogens, (Tzou et ai. 2002; Cherry 

and Silverman 2006). The role of AMPs in parasite infection has been discussed in 

mosquitoes (Osta et ai. 2004; Meister et ai. 2005; Luna et ai. 2006) and tsetse 

flies (Boulanger et ai. 2002; Lehane et at. 2004a; Hu and Aksoy 2006). These 

blood-sucking insects are able to express AMPs, such as defensins, against 

Plasmodium and Trypanosoma, respectively. In the sand fly Phlebotomus 

duboscqi, a defensin has been identified (Boulanger et ai. 2006). This AMP was 

found to be specifically active against promastigotes in vitro; its activity in vivo, 

with an infection using Leishmania mutants lacking the proper formation of LPG, 

suggested that parasite surface antigens could account for a weakening in 

recognition of Leishmania by the sand fly.

Another mechanism that helps in controlling pathogens is the production of 

reactive oxygen species (ROS). Drosophila has been used as a model to study this 

host protection response,(Ha et ai. 2005a). The homeostasis of redox balance, 

mediated by an immune-related catalase (IRC), was found to play a key role
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during permanent host-microbe interactions in the gut environment. The impact 

of ROS and antioxidant expression in pathogen-insect interactions will be 

discussed in the final section.

Antioxidant systems in blood-sucking insects are extremely important in other 

biological issues than pathogen control. The following section will review some of 

the most important adaptations that blood-sucking insects had to undergo during 

their evolution to cope with the challenges derived from such a specialised 

lifestyle. The biochemical features of dealing with toxic blood by-products, 

particularly on antioxidant systems, will be discussed later in this chapter.

1.4.1 Sand fly Immunity and Leishmania

There is evidence of ancestral Leishmania forms [Paleoleishmania) present in the 

midgut of reptilian-bloodfed phlebotomines from as early 100 million years ago. 

The Leishmania has probably eluded insect immunity ever since, evolving inside 

the insect gut from the time they stopped being free-living organisms and started 

colonising insects (Poinar Jr 2007; Tuon et al. 2008). Leishmania does not seem 

to elicit a specific immune response inside its phlebotomine host. The only 

phlebotomine AMP isolated is not Leishmania-spec\f\c and it only kills the 

protozoan in vitro at a high concentration (Boulanger et al. 2004). Also, sand 

flies seem to be able to mount a ROS response against pathogenic bacteria but 

Leishmania does not seem to elicit this biochemical defence mechanism (chapter 

5). Although Leishmania has developed different strategies to survive inside the 

gut, these seem to be more focused on enduring digestion and defecation rather 

than on the insect immune response (Kamhawi 2006). What is the net impact of 

Leishmania in the sand fly? Experimental colonisation of phlebotomines by 

Leishmania led to a reduction of survival of flies after oviposition but had no 

effect on fecundity (Rogers and Bates 2007). Moreover, these artificially 

infections used inocula that might be considerably higher compared to those 

expected in the wilderness and the effect of low vs. high inocula in transmission is 

significant (Lira et al. 2000). Perhaps under natural conditions the impact of 

Leishmania on sand fly survival might not be significant, at least not significant
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enough to mount an immune response against the protozoan. It could also be 

possible that Leishmania relationship with its host shifts from parasitic to 

commensal or even beneficial depending on the insect immune status in the 

same way gut microbes do in Drosophila (Lemaitre and Hoffmann 2007). Recent 

experiments are re-defining this relationship suggesting that Leishmania may 

'benefit' the sand fly host by creating an alliance against the entomopathogenic 

and Leishmania lytic Serratia marcescens: L, mex/cona-colonised flies exhibit a 

significantly lower mortality after oral infection with Serratia compared to non- 

colonised sand fly controls (Sant'Anna, Diaz-Albiter, Genta and Dillon, 

unpublished).

1.5. Physiology and biochemistry of blood meal digestion

Of all the feeding habits displayed by insects, blood feeding or haematophagy, is 

relatively rare. Approximately 14, 000 species distributed in five orders are 

hematophagous, (Adams 1999). If haematophagy is considered as a feeding 

habit of insects that bear piercing/sucking mouthparts and prey on significantly 

bigger animals, then it is mainly restricted to four orders: Phthyraptera (lice), 

Hemiptera (true bugs), Siphonaptera (fleas) and Diptera (true flies), (Lukashevich 

and Mostovski 2003; Lehane et al. 2004b). The earliest known example amongst 

insects of a structure specialized for blood sucking comes from the Late Carnian 

(Late Triassic, ca. 220 Ma) of Virginia, USA (Blagoderov et al. 2007). Since that 

time, these insects have evolved a multiplicity of adaptations in morphology, 

biochemistry, behaviour to deal with the challenge of blood-feeding. Of particular 

interest for the present research are the biochemical adaptations featured in the 

digestive tract, specifically during the digestion process.

Many hematophagous species are able to feed on large amounts of blood in a 

single meal (Graca-Souza et al. 2006). Mosquitoes and kissing bugs can take as 

much as three to ten times their own mass (Friend et al. 1965; Lehane et al. 

2004b; Graca-Souza et al. 2006). However, dealing with a blood meal is not only 

a matter of size. Blood is a very rich source of proteins. The most abundant in
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mammalian blood, reaching concentrations as high as 150 mg/ml, is haemoglobin 

(Hb). Degradation of this protein during the digestion process initiates a massive 

release of haem. This prosthetic group of Hb has the potential to have an adverse 

impact on midgut physiology (Graca-Souza et al. 2006).

1.5.1. Haem degradation and toxicity

The iron protoporphyrin IX, or haem, is a molecule involved in generation of the 

highly toxic reactive oxygen species (ROS). Iron is the central molecule of haem; 

when not coupled to oxygen, it constitutes a stable-state iron, the addition of 

oxygen might lead an electron to delocalize between both molecules and create 

the free radical superoxide ( 02 ), (Halliwell and Gutteridge 1985). Although this 

superoxide can be further modified by superoxide dismutase (SOD), resulting in 

oxygen and hydrogen peroxide (H2O2), the latter is still dangerous since it can 

lead to the production of more ROS via a Fenton-type reaction,(Graca-Souza etal. 

2006):

Fe+2 + H2O2 -> Fe+3 + OH" +OH#

The reaction is facilitated by the presence of iron which can be found as a bi

product of haem metabolism by haem oxygenase in blood feeding insects like 

Aedes and Rhodnius (Graca-Souza et al. 2006). To avoid the production of an even 

more reactive hydroxyl radical, insects (like all eukaryotes) are able to express 

catalase (CAT) and glutathione peroxidase (GPx), an organic hydroperoxide that 

uses glutathione (GSH). Both CAT and GPx break down hydrogen peroxide into 

water and other non-reactive oxygen species (Davies 1995).

Reactive oxygen species release is the price to pay for aerobic life. Superoxide 

and hydroxyl radicals and hydrogen peroxide are common products of life in an 

aerobic environment. These molecules have important deleterious effects on life 

systems which can lead to degradation of proteins, lipids, carbohydrates, DNA, as 

well as modifications of membrane permeability and selectivity (Gutteridge and 

Smith 1988; Schmitt et al. 1993). Blood sucking insects not only live in an aerobic 

environment, but also feed on a meal that is a significant source of ROS. To 

overcome its toxicity insects have developed different strategies: In Rhodnius
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prolixus, a haem aggregation process has been found to account for the 

insolubilization of a significant amount of free haem (Oliveira et ol. 2000). Haem 

dimers are linked together by reciprocal iron carboxylate bonds, these dimers are 

held together by hydrogen bonds(Slater et al. 1991) The resulting aggregate is 

called haemozoin (Hz) and it is found in Plasmodium as well as in other non-insect 

species (Oliveira et al. 2000). Formation of Hz has not been reported for other 

insects so far. Haem aggregation also occurs in mosquitoes; however, this process 

is mediated by the peritrophic matrix in an independent mechanism of Hz 

formation(Pascoa etal. 2002).

Aggregation by itself cannot account for all the free-haem clearance. Blood

sucking insects posses a set of antioxidant enzymes that constitute a strong line 

of defence against haem toxicity. Most of the traditional studies have focused on 

catalases, superoxide dismutases (Cu, Zn and Mn) and glutathione 

peroxidases(Graca-Souza et al. 2006). However, other antioxidant proteins found 

in insects have been described and studied. Thioredoxins (Trxs), for instance; are 

small, ubiquitous monomeric proteins with both reductase and peroxidase 

functions (Wagner et al. 1978). Thioredoxin reductase uses nicotinamide adenine 

dinucleotide phosphate (NADPH) as an electron donor, and is thought to make up 

for the absence of glutathione reductase in insects,(Kanzok et al. 2001). Another 

group that has raised interest in the past years is an expanding family of thiol- 

specific antioxidant proteins called peroxiredoxins (Prxs). These molecules are 

present in a wide range of species ranging from archaea to animals and, to some 

extent, may overlap the peroxide functions of glutathione peroxidases and 

catalases (Wood et al. 2003).

It is quite interesting to note that sequences with predicted functions for many of 

these enzymes have been found in blood-sucking insects like Glossina morsitans 

morsitans (Munks et al. 2005), Aedes aegypti (Sanders et al. 2003), P. papatasi 

(Ramalho-Ortigao et al. 2007) and Lutzomyia longipalpis (Dillon et al. 2006; 

Jochim et al. 2008). The increasing amount of gene-mining resources available
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has shed some light on how similar antioxidant enzymes are expressed in 

different blood-sucking insects.

1.6. Redox homeostasis and parasites/pathogens

Although the Duox system has not been described in hematophagous insects so 

far, it is interesting to note that antioxidant enzymes expression and ROS have 

been found to play a role in pathogen-insect interactions. In Anopheles Stephens!, 

the development of Plasmodium berghei was enhanced after dietary 

supplementation of mosquitoes with a strong oxidant scavenger, showing that 

oxidative stress has a negative impact on parasite development (Peterson et al. 

2007). In another study with a susceptible and a refractory strain of An. gambiae, 

levels of ROS were dramatically different between both. This was proved by the 

differential induction of midgut-expressed Cu/Zn SOD and catalase mRNA after 

blood feeding. The refractory strain was able to block Plasmodium development 

by keeping higher levels of midgut ROS and promoting parasite melanization. 

Catalase seemed to be responsible for this enhancement in encapsulation, 

(Kumar et al. 2003). Knocking down of this enzyme in An. gambiae resulted in a 

significant diminution in the numbers of P. berghei present in the midgut(Molina- 

Cruz et al. 2008). Brennan et al., (Brennan et al. 2008) showed and upregulation 

of other antioxidant enzymes in an Aedes albopictus cell line. It was suggested 

that the induction on expression of Cu/Zn SOD, Prx and glutathione peroxidase 

was caused by the infection with the endosymbiont Wolbachia pipientis. In the 

tse tse fly Glossina morsitans mositans, a range of antioxidants added in the 

blood meal dramatically increased survival of Trypanosoma brucei, suggesting 

that antioxidant-mediated reduction of the midgut environment can protect 

trypanosomes from death induced by ROS,(MacLeod et al. 2007b).

Although there is no evidence so far of the role of antioxidant enzymes in sand 

f\y-Leishmania interactions, three different cDNA libraries show sequences with 

putative oxidative-stress functions, in whole-body Lu. longipalpis, Dillon et 

a/.,(Dillon et al. 2006) found Cat, peroxidase, SOD, Prxs and thioredoxin reductase
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expressed sequence tags. In a different study Cat, Prxs and glutathione s- 

transferase were found in the analysis of the midgut transcriptome of the same 

species(Jochim et al. 2008). Another midgut transcriptome analysis, but in P. 

papatasi, showed the expression of putative glutathione s-transferase and Prxs 

(Ramaiho-Ortigao et al. 2007). Current validation of a cDNA microarray of Lu. 

longipalpis (Dillon, unpublished data), shows an upregulation of antioxidant 

enzymes in /.e/s/imcm/o-infected sand flies. Taken altogether, these investigations 

suggest that the presence of Leishmanla may somehow lead to the modification 

of the expression profile of certain sand fly transcripts and that such modification 

is important for the parasite successful development inside the vector.

1.7 Aims of this Study

This study was aimed at providing knowledge regarding the role of reactive 

oxygen species (ROS) in female phlebotomine sand flies during Leishmania and 

bacteria interactions. In particular, it was attempted to explore the expression of 

antioxidant enzymes during digestion of infected and non-infected blood to find 

out potential candidates for RNAi-mediated gene knockdown in the sand fly 

model as well as exploring regulation of ROS and its potential role in and midgut 

immunity. Another major aim of this research included the development of a 

computer program able to determine L mexicana subpopulations based on 

morphometric data extracted from image analysis. The specific aims of this study 

per experimental chapter are the following:

• Chapter 3-Differential expression of putative ROS-detoxifying genes in 

female Lutzomyia longipalpis: The aim of this chapter was to obtain a 

gene expression profile of different midgut antioxidant genes during 

digestion of non-infected and Leishmania-mfected blood.

• Chapter 4-The effect of ROS-scavenging by catalase on fecundity and 

mortality of female Lutzomyia longipalpis: The aim of this chapter was to 

analyze the effect dietary supplementation of ROS-scavengers
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(antioxidants) in fecundity and mortality. Another aim included the study 

of ROS regulation and its role in the aforementioned fitness components 

using RNAi-mediated silencing of catalase.

• Chapter 5-Reactive Oxygen Species-mediated immunity against 

Leishmonia mexicana and Serratia marcescens in Lutzomyia longipalpis: 

The aim of this chapter was to explore the ROS-midgut immunity against 

microbes, specifically a pathogenic bacterium and a protozoan. 

Specifically, midgut gene expression of infected sand flies and ROS 

biochemical assays were performed to understand differential ROS 

activation by microbes. Another aim was to perform gene knockdown of 

catalase to find out its relevance during Leishmonia colonisation. The final 

aim of this chapter was to analyse ROS regulation of gut microbiota by 

modifying midgut ROS levels using exogenous dietary antioxidants.

• Chapter 6-Development of software for analysing Leishmonia 

morphometries: The aim of this chapter was to develop an automated 

method for classification of L. mexicana subpopulations together with 

colleagues from the Department of Physics. This would be achieved by 

generating digital photographs of parasite smears and obtaining manual 

morphometric data. This would be compared with morphometric data 

calculated by the computer-based algorithm.
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Chapter 2 

Methods

2.1 General Methods

2.1.1 Sand fly rearing

All experiments were performed using insectary-reared Lu. longipafpis from a 

colony first started with individuals caught in Jacobina, Brazil. Insects were kept 

under standard laboratory conditions (Modi 1997). Sand flies were fed with 70% 

w/v sucrose solution in cotton wool (unless stated differently in experiments), 

kept under a photoperiod of 8 hours light/16 hours darkness, temperature of 

27°C (±2) and a relative humidity of >80 % inside the rearing cages. The females 

in the colony were fed on rabbit blood via a Hemotek membrane feeder 

(Discovery Workshops, UK) at 37°C. All procedures involving animals were 

performed in accordance with UK Government (Home Office) and EC regulations.

2.1.2 Parasites

L. mexicana MNYC/BZ/62/M379 promastigotes were kindly donated by Prof. P. 

Bates and kept at 26° C in M199 medium supplemented with 25 pg/ml 

gentamicin sulphate (Sigma), lx BME vitamins (Gibco) and 20% foetal calf serum 

(PAA). Promastigotes were sub-passaged into fresh medium when cultures 

reached late-log phase.

2.1.3 Parasite infections

Axenic amastigotes were obtained from promastigotes as previously described 

with some modifications (Bates 1994). Briefly, promastigotes were centrifuged at 

671 x g for 10 min, resuspended in Graces medium supplemented with 25 pg/ml 

gentamicin sulphate (Sigma), lx BME vitamins (Gibco) and 20% foetal calf serum 

(PAA) at pH 5.5 and incubated at 32°C until fully transformed amastigotes were 

present in the flask. Axenic amastigotes were maintained and sub-passaged in 

supplemented Graces medium at 32°C. For sand fly infections, amastigotes were
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resuspended in ImL of rabbit blood (2xl06 parasites/mL) and fed to the insects 

through a chick skin membrane via a Hemotek feeder at 37 °C. Insects were kept 

under standard laboratory conditions until required for experimental work.

Table 2.1. Oligonucleotides for dsRNA synthesis and Reverse Transcriptase PCR I

Oligonucleotide 5'-3'sequence Size (bp)

dsCAT1472 Forward

dsCAT1472 Reverse

TAATACGACTCACTATAGGGGCTCGCGGTCCAGCTGAAGA

TAATACGACTCACTATAGGGTGGCCCAAGCTTGCATCGAC
1472

dsGFP Forward

dsGFP Reverse
TAATACGACTCACTATAGGGACGTAAACGGCCACAAGTTC

TAATACGACTCACTATAGGGCTTGTACAGCTCGTCCATGCC
693

RT CAT484 Forward

RT CAT484 Reverse

TGTTGCAGGGACGTCTCTTTGCC

AG GTTGGAG CACTTCTTGCGTTCG
484

RT Ribo60$ Forward

RT Ribo60 Reverse
TCTCATCG G AAGTTTTCTGC

GGCTTGTGACACCCTTGAAT
850

RTSOD295 Forward

RTSOD295 Reverse

ATCCTGCACAGAACCCACAT

CACAGCACGTCCGATGATAC

295

RT Prxr200 Forward

RT Prxr200 Reverse

AGTGATTGCCTGCAGTGTTG

AAATGCCTCGGTGGTCAATA

200

RT OXR424 Forward

RT OXR424 Reverse

TGAGCCATTAGCGCCGCAGG

ACCCCCAATCGATACTCACGCACA

424

2.1.4. RNA extraction and gene relative expression profile by RT-PCR

Sand flies were infected with either Leishmania or Serratia after 3 DPE (days post

emergence). Control group was bloodfed, non-infected flies. Insects were 

dissected at 1, 24, 48, 72 or 96 h post-infection (PI). At each time point, 8 midguts 

were homogenised in 50 pi of TRI Reagent® (Ambion, Austin, TX) and kept at - 

80°C until needed. RNA was extracted following the manufacturer's protocol. 

Total RNA was quantified using a Nanodrop® (NanoDrop Technologies, 

Wilmington, USA) and normalised to 10 ng/pl. RT-PCR was carried out with 

Superscript® III One-Step RT-PCR System with Platinum® Taq DNA Polymerase Kit 

(Invitrogen, San Diego, CA) performing 25 cycles and following the manufacture's 

protocol (primers listed in table 2.1). Relative expression was normalised using a 

housekeeping gene (GenBank Accession number: AM088777, 60S ribosomal 

protein L3). RT-PCR products were analysed by 1.5 % w/v agarose/ethidium 

bromide gel electrophoresis and changes in gene expression were determined by 

densitometric measurement of bands using GeneSnap/GeneTools software
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{Syngene, UK). Putative gene sequences of Lu. longipalpis catalase (CAT), Cu/Zn 

superoxide dismutase (SOD) and peroxiredoxin (PrxR) were obtained from a 

midgut-specific ESI library (ABV60342, ABV60343, ABV60347, respectively) 

(Jochim et al. 2008) . A putative gene sequence for oxidative resistance protein-1 

(OXR-1) was obtained from a cDNA library constructed from sand fly whole 

bodies (AIVI097733) (Dillon et aL 2006). BLAST was used to compare these 

sequences with the National Center for Biotechnology Information data base 

(Altschul et al. 1990). Conserved residues in those protein families were retrieved 

from the CDD database (Marchler-Bauer et al. 2011), Multiple alignment, 

phylogenetic analysis and Neighbor Joining cladograms were performed with 

MEGA package (Tamura et al. 2007). Relative expression data were shown as 

mean ± SEM (standard error mean) from three biological replicates.

2.1.5. Statistical analysis

Comparisons between means of two independent groups were carried put using 

a pair-wise t-test. Multiple comparisons were done by one-way ANOVA. Survival 

curves were analyzed with the Kaplan-Meier Log Rank x2 test. Relative 

frequencies were compared with the chi-square test. For nonparametric data, 

multiple comparisons were done with Kruskal-Wallis and pair-wise comparisons 

done with Mann-Whitney test. Significance was considered when p<0.05 unless 

stated otherwise. All data were analysed with the use of the SPSS Data Editor 

software (version 17.0, SPSS Inc).

2.2. Specific Methods

2.2.3 Chapters

2.2.3.1 Fecundity assays

Female Lu. longipalpis were allowed to mate under regular rearing conditions and 

fed with rabbit blood at three, six and nine days post-emergence (DPE). A batch 

of >500 flies was released into a large (20 m3) rearing cage and groups of ~100 

individuals were transferred to medium sized cages (5 m3) at 3, 6 and 9 DPE and
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blood-fed as above. Fifteen fully-engorged females were then transferred to a 

new medium rearing cage. Insects were dissected five days later to count 

developing oocytes.

2.2.3.2. Ascorbic Acid feeding

Fecundity assays were carried out as described above with female Lu. longipalpis 

fed on a 70% sucrose solution supplemented with 20 mM ascorbic acid and 

blood-fed at 9 DPE. Supplemented sucrose-meal was freshly changed daily and 

continued after blood-feeding. A 9 DPE control group was reared under the same 

conditions but fed with a 70% sucrose solution. Only fully engorged insects from 

both groups were selected for the experiments.

2.2.5.3. Ovarian Catalase Activity

Ovaries were collected from 5 female sand flies at 24 and 48 hrs post blood 

feeding (PBF). Samples were homogenised in 50 ul of 0.15 M NaCI solution, kept 

on ice and transferred to a -80 °C freezer until needed. Before assays, samples 

were centrifuged at 2700 x g for 2 minutes and 1 pi of the supernatant was 

diluted in 24.9 pi of 0.15 M NaCI solution. Catalase activity was determined using 

Amplex Red Catalase Assay Kit (Invitrogen Ltd) following the manufacture's 

protocol. Enzyme-specific activities were expressed as units/mg of protein. One 

unit of catalase activity was defined as 1 pM of H2O2 consumed per minute. All 

assays were carried out in triplicate. Fluorescence was measured using a 

Varioskan fluorescence spectrometer (Thermo Electron) with an excitation 

wavelength of 560 nm and an emission wavelength of 590 nm. Ovarian catalase 

activity was normalised using the total amount of protein in the whole body 

(minus dissected ovaries) using the BIORAD® Protein assay reagent following the 

manufacturer's protocol and using bovine serum protein as standard. Endpoint 

absorbance was measured at 595 nm in a 96 well plate with a microplate reader 

(VersaMax Microplate Reader, Molecular Devices Inc.).
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2.2.3.4. Ovarian Catalase Expression

Six DPE sand flies were blood fed and ovaries from 10 sand flies (two pools of 5 

flies) were dissected at 12, 24 and 48 hours PBF, homogenised in 50 pi of TRI 

Reagent® (Ambion, Austin, TX) and kept at -80°C until needed. RNA was extracted 

following the manufacturer's protocol. Total RNA was quantified using a 

Nanodrop®{NanoDrop Technologies, Wilmington, USA) and normalised to 10 

ng/pl. RT-PCR was carried out with Superscript® III One-Step RT-PCR System with 

Platinum® Taq DNA Polymerase Kit (Invitrogen, San Diego, CA) performing 19 

cycles and following the manufacture's protocol (primers listed on Table 2.2). 

Relative expression of catalase was normalised using a housekeeping gene 

(AM088777, 60S ribosomal protein 13). RT-PCR products were analysed by 1.5 % 

agarose/ethidium bromide gel electrophoresis and reduction in catalase 

expression was determined by densitometric measurement of bands using the 

software GeneSnap/GeneTools (Syngene, UK).

2.23.5. Age-related expression of ovarian catalase

To measure catalase LlongKatl mRNA expression levels in different age groups, 3, 

6 and 9 DPE sand flies were blood fed and ovaries from 10 sand flies (two pools of 

5 flies) were dissected at 48 hours PBF. Additionally, to evaluate the effect of 

feeding a ROS-scavenger in age-related expression of ovarian catalase, a group of 

9 days old sand flies was fed with ascorbic acid-supplemented sucrose solution as 

described above, blood fed and dissected at 48 hours. RNA was extracted and 

checked for catalase relative expression as above.
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Table 2.2

Oligonucleotides for dsRNA synthesis and Reverse Transcriptase PCR II

Oligonucleotide S^B'sequence
Size
(bp)

dsCAT484 Forward TAATACGACTCACTATAGGGTGTTGCAGGGACGTCTCTTTGCC 524

dsCAT484 reverse TAATACGACTCACTATAGGGAGGTTGGAGCACTTCTTGCGTTCG

dsGFP Forward TAATACGACTCACTATAGGGACGTAAACGGCCACAAGTTC 693

dsGFP Reverse TAATACGACTCACTATAGGGCTTGTACAGCTCGTCCATGCC

RT CAT484 Forward TGTTGCAGGGACGTCTCTTTGCC 484

RT CAT484 Reverse AGGTTGGAGCACTTCTTGCGTTCG

RT Ribo60S Forward TCTCATCG GAAGTTTTCTGC 850

RT RiboSO Reverse GGCTTGTGACACCCTTGAAT

2.2.3.6. RNAi-mediated catalase knockdown

Sense and anti-sense catalase-specific primers flanked by the T7 promoter site 

(Table 2.2) PCR amplified a 484 bp product from a plasmid obtained from a whole 

body Lu. longipalpis normalised cDNA library (Dillon et al. 2006) that was used as 

template for double-stranded RNA synthesis dsRNA. Transcription reactions and 

column purification were carried out using the Megascript RIMAi Kit (Ambion®) 

following the manufacturer's protocol. dsRNA purity was assessed by 1.5 % 

agarose/ethidium bromide gel electrophoresis and dsRNA was quantitated using 

a Nanodrop ND-1000 Spectrophotometer (LabTech, UK). dsRNA was eluted with 

nuclease-free water at 65°C, concentrated to 4.5 pg/pL with a Christ® RVC 2-25 

rotational vacuum concentrator and stored at -80°C until needed. Enhanced 

Green Fluorescent protein (eGFP) dsRNA was produced from a 653 bp amplicon 

of the pEGFP-Nl expression plasmid (Clontech) and used as a 'mock' injected 

control. RNAi was achieved by dsRNA injections as previously described 

(Sant'Anna et al. 2008). After injections, sand flies were transferred to cages and 

kept with access to 70 % sucrose solution ad libitum. Developing oocytes were 

dissected and counted 48 hours after blood feeding. Non-injected flies of the 

same age and kept under the same conditions were used a second control. Three
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pools of three whole sand flies were collected from each group to evaluate 

knockdown by RT-PCR.

2.2.3.7. Survival assays

To assess sand fly survival mediated by ROS-scavenging related to catalase 

activity, RNAi-mediated catalase knock down was carried out in a group of 50 

sand flies. Flies were injected with dsRNA for catalase (dsCAT) as described above. 

To exclude wound-related mortality, all dead flies at 24 hrs post-injections were 

removed and were not included in the experiment. Dead sand flies were counted 

and removed from the cage daily from day 2 to 7 after injection. Flies injected 

with dsRNA for GFP (dsGFP) and a needle-pricked group were used as controls. 

To assess exogenous ROS-scavenging related survival, 50 female Lu. longipalpis 

were collected upon emergence and sugar fed on a 70 % w/v sucrose solution 

supplemented with 20 mM ascorbic acid. Dead sand flies were counted and 

removed from the cage every day until day seven. A group of sand flies fed with 

70 % sucrose was used as a control.

2.2.3.S. Phenoloxidase assays

Phenoloxidase activity was determined by measuring the production of 

dopachrome from 3,4 dihydroxy-DL-phenylalanine (DOPA) (Pomerantz 1963; 

Genta et al. 2010). Briefly, single flies were homogenized in 60 pL of PBS and 

centrifuged at 25,000g for 5 min at 4°C to recover the soluble fraction. 20 pL of 

supernatant was mixed with 10 pi of PBS (spontaneous PO) or trypsin solution 

(for total PO activity; 1 mg/ml in PBS, FLUKA cat. no. 93614), incubated for 20 

min at 37°C followed by the addition of 20 pL of a saturated solution of DOPA (4 

mg/ml in PBS) and absorbance (490 nm) measured by kinetic assay for Ih at 5 

minutes intervals in a microplate reader at 30°C. PO activity was measured to 

ensure that activity was proportional to protein concentration and incubation 

time. Independent experiments showed that the PO activity was stable in the 

conditions above. Controls with no enzyme or no substrate were included. One 

unit of enzyme (U) is defined as the amount that produces 0.001 unit of 

absorbance/min.
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2.2.3.9. Sequence analysis

The coding sequence of LlonKatl was analyzed using the algorithms pl/Mw tool 

(Walker 2005), signal IP (Emanuelsson et al. 2007), PTS1 Predictor (Neuberger et 

al. 2003), PeroxiP (Emanuelsson et al. 2003), TargetP (Emanuelsson et al. 2007) 

based at the EXPASY Proteomics Server (http://expasy.org/). Selected amino acid 

sequences of catalases were aligned with catalase LlonKatl using the ClustalW 

Multiple Alignment tool in BioEdit Sequence Alignment Editor 

(http://www.mbio.ncsu.edu/BioEdit/BioEdit.html). Alignment was generated 

using Boxshade (http://www.ch.embnet.org/software/BOX_form.html).

2.2.3.10. Microarrays

DNA from the sequencing of the EST's was used as a template to generate PCR 

products to make the spotted array. A C6 amino modified T7 forward primer and 

a T3 reverse primer were used (T7 5' C6-TAATACGACTCACTATAGGG, T3 5' 

ATTAACCCTCACTAAAGGGA) (Invitrogen Ltd, Paisley, UK) PCR products were 

checked by agarose gel and any multiple band products were discarded. PCR 

products were filtered with Sodium Phosphate buffer final concentration 250mM 

pH8.5 (1M Sodium Phosphate pH8.5, 0.001% sarkosyl) prior to spotting in 

duplicate on CodelinkTM Activated slides(GE Healthcare UK Ltd., Little Chalfont, 

UK) with a BioRobotics MicroGrid II robot (Genomic Solutions® Inc, Huntingdon, 

UK). O.lug RNA was amplified using Amino Allyl MerssageAmpTM II aRNA Kit 

according to manufacures instructions (Applied Biosystems/Ambion, Warrington, 

UK) aRNA was labeled with CYTM dye post-labelling reactive dye (GE Healthcare 

UK Ltd., Little Chalfont, UK) Labeled samples were purified using RNeasy mini kit 

(Qiagen,Crawley, UK ) 2.5ug Cy3 and 2.5ug Cy5 labeled aRNA samples were co 

precipitated with poly A DNA and Herring sperm DNA, then re suspended in 

hybridization buffer (50% formamide, 5 X SSC, 0.1% SDS, 0.1 mg/ml BSA) prior to 

placing on the array and hybridizing overnight at 490C. The arrays were washed 

at room temperature (W1 2 X SSC, 0.2% SDS, W2 0.2 X SSC. W3 0.1 X SSC, W4 

0.01 X SSC) and scanned using a GenePix® 4000B Laser scanner (Molecular 

Devices, Sunnyvale, CA, USA). Resulting files were process using GenePix® Pro 

software (Molecular Devices, Sunnyvale, CA, USA) prior to analysis.
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2.2.4. Chapter 4

2.2.4.1. Bacterial infections

S. marcescens {NCIMB 1377) was inoculated on LB agar plates and incubated at 

26°C for 20 hours. Bacterial suspensions were prepared by transferring a colony 

of 5. marcescens into 5 mL of LB broth and incubating overnight at 37°C under 

shaking. The suspension was centrifuged at 19000 x g for 5 minutes, resuspended 

in PBS and diluted to a concentration of 5.7xl06 CFU/ml. Bacteria were then 

diluted in heat-inactivated blood to a final concentration of 1.14xl04 CFU/ml and 

offered to sand flies via a Hemotek feeder as explained above.

2.2.4.2. H202 profile

Sand flies were infected with either Leishmania or Serratia after 3 DPE (days post

emergence). Insects were dissected at 24, 48, 72 and 96 h PI. Control group was 

bloodfed, non-infected flies. H2O2 was also measured in sugar-fed flies one day 

before infection/bloodfeeding. At each time point two pools of four midguts 

were homogenised in 60 pi of PBS per pool containing 2mg/ml of the catalase 

inhibitor 3-amino-triazole (AT). Samples were flash-frozen in liquid N2 and kept at 

-80°C. Prior to assay, samples were thawed and centrifuged at 25 000 x g, 5 min 

at 4°C. Five pi of the supernatant were assayed for H2O2 using the Amplex Red® 

hydrogen peroxide/peroxidase Assay Kit (Invitrogen Ltd) following the standard 

protocol as recommended by the manufacturer. All assays were carried out in 

triplicate. The experiment was performed twice.

2.2.4.S. In vivo detection of ROS

Sand flies were infected with either Leishmania or Serratia after 3 DPE and 

dissected at 1, 24, 48, 72 h and 7 days PI. Control group was bloodfed, non- 

infected flies. ROS production was also measured in sugar fed flies, one day 

before infection/bloodfeeding. At each time point five midguts were dissected for 

in vivo detection of ROS as previously described (Owusu-Ansah et al. 2008). 

Briefly, midguts were dissected in L-15 (Leibovitz) medium (Sigma) and incubated 

with 30pM dihydroethidium (DHE) in L15-medium for 5 min in a dark chamber on
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a mini orbital shaker (70 RPM) at room temperature. After 3x5 minute washes 

under the same conditions to remove DHE, individual midguts were transferred 

to 10-well slides. ROS production was monitored via an inverted fluorescence 

microscope using a U-MWG fluorescence cube (excitation: 530-560 nm; emission: 

590 nm). Images were captured using a xlO objective and analyzed by Image J. A 

semi-quantitative approach was used to compare fluorescence between samples. 

Based on tiff image files saved using the NIS-Elements BR 3.00 imaging software 

(Nikon); the sand fly midguts were delimited using the paintbrush toot of the 

Image J program and mean intensity was measured inside the midgut, minimising 

interference from background fluorescence. Mean intensity values were then 

used to compare fluorescence between samples after incubation.

2.2.4.4. Midgut Catalase Activity

Sand flies were infected with Leishmania after 3 DPE and dissected at 1, 24, 48, 

72 and 96 h post blood feeding (PBF). 10 Individual midguts were homogenised in 

50 pi of 0.15 M NaCI solution, kept on ice and transferred to a -80 °C freezer until 

needed. Before assays, samples were centrifuged at 2700 x g for 2 minutes and 5 

pi of the supernatant was diluted in 25 pi of 0.15 M NaCI solution. Catalase 

activity was determined using Amplex Red Catalase Assay Kit (Invitrogen Ltd) 

following the manufacturer's protocol. Enzyme-specific activities were expressed 

as units per midgut. One unit of catalase activity was defined as 1 pM of H2O2 

consumed per minute. All assays were carried out in triplicate. Fluorescence was 

measured using a Varioskan fluorescence spectrometer (Thermo Electron) with 

an excitation wavelength of 560 nm and an emission wavelength of 590 nm. 

Experiment was performed once.

2.2.4.5. dsRNA-mediated gene knockdown, insect survival and parasite count

Sense and anti-sense catalase and OXRl-specific primers (Table 2.3) flanked by 

the T7 promoter site amplified by PCR a 1472 and a SOObp product (respectively) 

obtained from a normalised whole body Lu. longipalpis cDNA library (Dillon et al. 

2006) that were used as template for double-stranded RNA synthesis. 

Transcription reactions and column purification with the Megascript RNAi Kit
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(Ambion®) followed the manufacturer's protocol. dsRNA purity was assessed by 

1.5 % w/v agarose/ethidium bromide gel electrophoresis and dsRNA was 

quantitated using a Nanodrop ND-1000 Spectrophotometer (LabTech, UK). dsRNA 

was eluted with nuclease-free water at 65°C, concentrated to 4.5 pg/pL with a 

Christ® RVC 2-25 rotational vacuum concentrator and stored at -80°C. Enhanced 

Green Fluorescent protein (eGFP) dsRNA was produced from a 653 bp amplicon 

of the pEGFP-Nl expression plasmid (Clontech Ltd) and used as a 'mock' injected 

control. RNAi was achieved by dsRNA injections as previously described 

{Sant'Anna et al. 2008). After injections, sand flies were transferred to cages, kept 

under standard rearing conditions and infected with Leishmania 72 h after 

injections. Insects were dissected 94 h post-infection and 15 midguts were 

homogenised individually in 50 ul of PBS and parasites were counted using a 

haemocytometer. Three whole sand flies were reserved for individual RNA 

extraction and knockdown evaluation by RT-PCR. Survival was recorded in 

dsOXRl-injected flies up to 5 days after injections (n=50). Catalase-silencing 

experiment was performed three times, OXR1 experiment was performed twice.

Table 2.3
Oligonucleotides for dsRNA synthesis and Reverse Transcriptase PCR III

Oligonucleotide 5'-3'sequence Size (bp)

dsCAT1472 Forward TAATACGACTCACTATAGGGGCTCGCGGTCCAGCTGAAGA 1472

dsCAT1472 Reverse T AAT ACG ACTCACT ATAG GGTGG CCCAAG CTTG C ATCG AC

dsOXRl 800 Forward TAATACGACTCACTATAGGGGCCCCTACCCACCTCGGTCAT 800

dsOXRl 800 Reverse TAATACGACTCACTATAGGGATGCTGCGATCGCCCCTGATT

dsGFP Forward TAATACGACTCACTATAGGGACGTAAACGGCCACAAGTTC 693

dsGFP Reverse TAATACGACTCACTATAGGGCTTGTACAGCTCGTCCATGCC

RT CAT484 Forward TGTTG CAG G G ACGTCTCTTTG CC 484

RT CAT484 Reverse

RT RiboGOS Forward

AGGTTGG AGCACTTCTTG CGTTCG

850TlTCATLbGAAG I I I fCTGc

RT RiboGO Reverse GGCTTGTGACACCCTTGAAT

RT SOD295 Forward ATCCTGCACAGAACCCACAT 295

RT SOD295 Reverse CACAGCACGTCCGATGATAC

RT Prxr200 Forward AGTGATTGCCTGCAGTGTTG 200

RT Prxr200 Reverse AAATGCCTCGGTGGTCAATA

RT OXR424 Forward TGAGCCATTAGCGCCGCAGG 424

RT OXR424 Reverse ACCCCCAATCGATACTCACG CACA
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2.2.4.6. HzOz feeding

Sand flies were kept under standard rearing conditions and allowed to feed ad 

libitum on a cotton wool soaked in 5 mM H2O2 in 70% w/v sucrose solution since 

emergence and until the end of the experiment. Hydrogen peroxide solutions 

were freshly prepared from a H2O2 30% w/w stock solution (Sigma). Insects were 

infected with Leishmania 3 DPE. Control group was fed on plain 70% w/v sucrose 

solution. Flies were dissected 94 h post-infection and 15 midguts were 

homogenised individually in 50 pi of PBS and parasites were counted in a 

haemocytometer. Experiments were repeated twice.

2.2.4.7. Uric acid feed (UA), insect survival and bacteria counts

Sand flies were kept under standard rearing conditions and allowed to feed ad 

libitum on a cotton wool soaked in 10 mM uric acid in 7% w/v sucrose solution 

(pH=8.9) since emergence and until the end of the experiment. Uric acid solution 

was freshly prepared every day. Control group was fed on sucrose 7% w/v, no UA 

(pH=8.9). Insects were infected with Serratia 3 DPE as explained above. Control 

flies fed on non-infected blood. Survival was recorded every day. Twelve flies 

were collected at 48 h post-infection, dissected and four pools of three midguts 

were homogenised in 50 pi of PBS per pool. Serial dilutions were inoculated onto 

LB agar plates and colony forming units (CPUs) were counted after incubation at 

26°C for 24 h. Experiments were performed three times.

2.2.5 Chapter 6

2.2.5.1. Analysis of subpopulations of parasites

Fifty parasites per smear were randomly selected and analysed using bright-field 

microscopy. Parasites were observed and measured under oil immersion at lOOOx 

magnification with the aid of an eyepiece graticule. For the sake of consistency 

with the software, parasites were placed into 1 of the 5 more relevant categories 

out of the seven (Table 6.1), based on previous descriptions (Killick-Kendrick etal. 

1974; Molyneux and Killick-Kendrick 1987; Rogers et al. 2002), namely
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amastigotes; procyclic promastigotes, nectomonad promastigotes, leptomonad 

promastigotes and metacyclic promastigotes.

2.2.5.Z. Analysis of subpopulations of parasites in silico

Twenty photographs from a single smear per time point were taken at 400x 

magnifications and saved as Tagged Image File Format (TIF) with a resolution of 

2590x1920 pixels. To calibrate the software (i.e., convert pixels into pm) a 

haemocytometer grid was photographed at the same magnification and 

conditions and included in every set of parasite pictures. Images were run 

through two different versions of the software. ParaMorph V 3.0 and ParaMorph 

V 3.1, a newer version of the software that was modified to identify metacyclics 

that were not correctly located and classified by ParaMorph V 3.0 in preliminary 

runs.

2.2.5.3. Validation of software output vs. manual classification

Relative frequencies of parasite subpopulations obtained from manual counts 

were compared against relative frequencies reported by the software from both 

Paramorph V 3.0 and ParaMorph V 3.1. Further validation of parasite 

classification was performed by randomly selecting one photograph from the 

software set per time point and by manually selecting all parasite forms in the 

photograph that would have been selected during manual counts (i.e. non

overlapping, non-dividing).

2.2.5.4. Induction of metacyclogenesis and sampling

Metacyclogenesis was induced as previously described with some modifications 

(Bates 1994). Briefly, cultured promastigotes were centrifuged at 671 x g for 10 

min, re-suspended in Graces medium supplemented with 25 pg/ml gentamicin 

sulphate (Sigma), lx BME vitamins (Gibco) and 20% foetal calf serum (PAA) at pH 

5.5 and incubated at 32°C until metacyclic promastigotes were present in the 

flask. To collect a heterogeneous mixture of subpopulations, cultures were 

sampled at early (24 h, 48 h) and late (7d, 8 d) metacyclogenesis. Cultures were 

sampled by pipetting 10 pi volumes x 3 onto microscope slides, fixed with

42



methanol and stained with 10% (v/v) Giemsa's stain. Smears were scanned 

systematically and 50 parasites were randomly sampled.
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Chapter 3

Differential expression of putative ROS-detoxifying 

genes in female Lutzomyia longipalpis

3.1. Introduction

The gut of blood feeding insects constitutes a niche for different species of 

microbes, ranging from potentially beneficial and pathogenic bacteria to parasitic 

protozoa using the insect as a vehicle for transmission. A few species of the latter 

are transmitted to humans by hematophagous insects and cause morbidity and 

mortality affecting millions around the world. These 'blood dwelling' protozoa 

have evolved different strategies to overcome several barriers and insults from 

both vertebrate and invertebrate hosts. One of the major challenges happens 

during blood meal digestion, when a plethora of digestive enzymes and other 

compounds turn the midgut into a potentially hostile environment for incoming 

microbes. Reactive oxygen species (ROS) are a set of highly reactive molecules 

which seem to play an important role during blood-meal digestion as well as 

during insect-microbe interactions. The aim of this chapter was to analyse the 

expression of putative ROS detoxifying genes in Leishmania mexicana infected 

female Lu. longipalpis and to discuss gene differential expression in the context of 

blood meal digestion inside the phlebotomine sand fly.

Haematophagous arthropods are able to ingest an amount of blood many times 

their own body size in a single meal(Graca-Souza et al. 2006). This represents a 

particular physiological challenge considering the biochemical nature of 

vertebrate blood. Up to ninety percent of the protein in red blood cells is made 

up of haemoglobin (Barnhart and Steinmetz 1986), which is an oxygen-binding 

protein made up of four polypeptide chains, each with a haem prosthetic group 

(Names and Hooper 2005). As a consequence of haemoglobin digestion, larger 

quantities of haem are released in the gut. Haem promotes the formation of toxic 

reactive oxygen species and leads to oxidative damage of lipids, proteins and DNA 

(Gutteridge and Smith 1988). Haem is a low-molecular-mass form of iron
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(Gutteridge and Smith 1988), capable of inducing oxidative stress through two 

different pathways. In the presence of hydrogen peroxide (H2O2) it generates the 

strong oxidant hydroxyl radical (OH*) via a Fenton-like reaction. Additionally, OH* 

can also react with other molecules and ultimately lead to the production of 

highly reactive alkoxyl and peroxyl radicals (Fig 3.1).

FENTON REACTION

LIPID PEROXIDATION J

Heme -Fe+2 + ROOM Heme -Fe+3 + OH +

Heme .Fe^3 + ROOH

OXIDATIVE
STRESS

Figure 3.1: Haem and iron promote lipid peroxidation by different mechanisms. Iron- 
induced oxidative stress is thought to be mediated by the Fenton reaction which 
generates hydroxyl radicals (OH*) that can initiate lipid peroxidation chains by 
abstracting electrons from other molecules such as an unsaturated fatty acid (RH), 
generating an alkyl radical (Rd ). In contrast, haem-induced formation of radical species 
relies on the conversion of low-reactive organic hydroperoxides (ROOH) into highly 
reactive alkoxyl (RO*) and peroxyl (ROO*) radicals. Adapted from Graca-Souza (Graca- 
Souza et al. 2006)

Arthropods avoid haem-derived oxidative damage during blood digestion through 

different mechanisms including haem aggregation and degradation, as in the case 

of the kissing bug Rhodnius prolixus or the cattle tick Boophilus microplus (Graca- 

Souza et al. 2006), or peritrophic matrix-mediated concentration, as in the case of 

the mosquito Aedes aegypti (Pascoa et al. 2002). The other strategy developed to 

regulate oxidative balance in the host tissue is the production of antioxidant 

enzymes. This is an array of molecules produced by aerobic cells that are able to
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detoxify ROS. The main antioxidant enzyme systems are catalase (CAT), 

superoxide dismutases (SOD), and glutathione peroxidases (GPx) (Fridovich and 

Freeman 1986), which activate within the cell for the catalysis of toxic ROS such 

as superoxide anion (02*_)and H2O2 into innocuous water, oxygen and reduced 

glutathione (Fig 3.2) (Mates et al. 1999). However, other enzymes are also able to 

detoxify ROS. For example, peroxiredoxins (PrxR) are an expanding and 

ubiquitous family of thiol-specific antioxidant proteins (Wood et al. 2003). PrxRs 

reduce and detoxify H2O2, peroxynitrite and organic hydroperoxides (ROOM) 

throughout their peroxidase activity (R00H+2e“^R0H+H20) (Wood et al. 2003). 

Although they are less efficient compared to other traditional antioxidant 

enzymes, they seem to be the major ROS scavengers in taxa that lack catalase, 

such as kinetoplastids including Leishmania (Hofmann et al. 2002). Additionally, 

there is evidence for upstream gene regulation of antioxidant enzymes in insects. 

In Anopheles gambiae, oxidation protein 1 (OXR1) regulates gene expression of 

catalase and glutathione peroxidase (Jaramillo-Gutierrez et al. 2011).

SOD CAT
h2o2 H,0

GPx

Figure 3.2: ROS regulation by antioxidant enzymes. Superoxide dismutase (SOD) 
catalyzes de dismutation of superoxide (02*_) into hydrogen peroxide (H2O2), which 
is in turn reduced to water and oxygen by catalase (CAT), or decomposed by 
glutathione peroxidase (GPx) into water and oxidized glutathione.

Haematophagous insects exhibit an increment in expression or activity of 

antioxidant enzymes upon blood-feeding. Catalase and SOD levels were 

significantly higher in the midgut of R. prolixus compared with other tissues and 

organs (Paes et al. 2001); catalase expression was found to be upregulated upon 

blood-feeding in Anopheles gambiae (Kumar et al. 2003) and Aedes aegypti 

(Sanders et al. 2003). The use of gene silencing tools has also highlighted the 

importance of antioxidant enzymes in oxidative damage. Double-stranded RNA-
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mediated knockdown of catalase and superoxide dismutase induced a higher 

mortality in sugar fed Culex pipiens {Sim and Denlinger 2011). Similar results were 

observed in blood fed An. gambiae after silencing of catalase only (Magalhaes et 

ol. 2008).

Over the past few years, an increasing number of studies have discussed the 

relevance of midgut redox homeostasis and successful transmission of blood 

parasites. The malaria parasite Plasmodium cannot survive inside the continuous 

oxidative stress of a refractory strain of An. gambiae with high levels of 

hemolymph H2O2 and 02*”'(Kumar et al. 2003). A set of different antioxidants 

fed to the tsetse fly Glossina morsitans morsitans inhibited cell death of the 

sleeping sickness parasite Trypanosoma brucei brucei, suggesting a lethal effect of 

bloodmeal-induced ROS against trypanosomes (Macleod et al. 2007a; MacLeod et 

al. 2007b). In Trypanosoma cruzi, the etiological agent of Chagas disease, 

virulence is associated to in vitro resistance of epimastigotes and metacyclic 

trypomastigotes to H2O2. Both forms are found in the triatomine bug stage of the 

parasitic cycle (Piacenza et al. 2009).

Female sand flies must feed on blood to complete egg development. They are 

exposed to the same challenges presented by blood digestion like any other 

haematophagous arthropod. The generation of cDNA libraries from Lutzomyia 

longipalpis has allowed the identification of different putative ROS detoxifying 

genes. In a whole body cDNA library a putative copper-zinc SOD and a catalase 

were identified (Dillon et al. 2006). Additionally, results from a midgut-specific 

cDNA library allowed to identify catalase (CAT), copper-zinc superoxide dismutase 

(SOD) and a peroxiredoxin (PrxR) (Jochim et al. 2008), Species-specific expression 

profiling microarray hybridization of Leishmania-mfected vs. bloodfed female Lu. 

longipalpis suggested differential expression of putative ROS detoxifying genes 

(Dillon unpublished data). To investigate the effect of L. mexicana infection on 

female Lu. longipalpis ROS detoxifying gene expression, four putative 

antioxidant/ROS-regulatory genes were selected to explore changes in expression 

throughout the course of blood digestion using reverse transcriptase PCR (RT-
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PCR)-based semi-quantitative profiling. Over the following sections, sequence 

phylogeny, intraspecific comparative alignment, microarray and RT-PCR-based 

gene expression profiling results are shown and discussed.

3.2. Results

3.2.1. Lu. longipalpis catalase

Contig 142e04.qlk from a whole body cDNA library (GenBank AM105518) 

exhibited the most significant similarity (99%) to a putative catalase from a 

midgut-specific ESI library (Table 3.2). Lu. longipalpis CAT mRNA sequence 

contains 1930 bp and encodes a predicted peptide of 510 aminoacids (GenBank 

ABV60342). An alignment of four available catalases from four dipteran species 

revealed that this protein is highly conserved within the regions predicted to bind 

haem and NADPH (Marchler-Bauer and Bryant 2004; Marchler-Bauer et al. 2009; 

Marchier-Bauer et al. 2011) and that Ae. aegypti has the highest identity 

score(73.3%) (Fig 3.3.1). To examine these relationships more closely a 

phylogenetic analysis with other insect species was performed and it grouped Lu. 

longipalpis catalase within a clade formed with catalase amino acid sequences 

from Suborder Nematocera {An. gambiae and Ae. aegypti) (Fig 3.3.2).

3.2.2. Lu. longipalpis SOD

Contig NSFM-39d09.plk from a whole body cDNA library (GenBank AM095907) 

exhibited the most significant similarity (99%) to a putative Cu/Zn SOD from a 

midgut-specific EST library (Table 3.2). Lu. longipalpis SOD mRNA sequence 

contains 833 bp and encodes a predicted peptide of 205 amino acids (GenBank 

ABV60343). An alignment of four available SODs from four dipteran species 

revealed that this protein is highly conserved within the regions predicted to bind 

Zn+2 and Cu+2 (Marchler-Bauer and Bryant 2004; Marchier-Bauer et al. 2009; 

Marchler-Bauer et o/. 2011) and that An .gambiae has the highest
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Table 3.2. Putative ROS-regulatory genes

Contig

NSFM-
142e04,qlk

NSFM- 
39d09,plk

Accession
number

AM105518

AM095907

Best match 
to non- 

redundant 
protein 

database 
(NRPD) 

excluding Lu. 
longipalpis

putative
catalase

[Phlebotomus
perniciosus]

putative
Cu/Zn

superoxide
dismutase

[Phlebotomus
perniciosus]

NRPD 
E value

3e-ll

2e-73

Best match 
to Lu.

longipalpis 
midgut ESI 

library

putative
catalase

putative
Cu/Zn

superoxide
dismutase

Accession
number E value

ABV60342 le-13

ABV60343 le-95

NSFM- GI16636 putative
34h03.qlk AM10238° [Drosophila 7e-98 peroxiredo ABV60347 3e-126

mojavensis] xin

Identity Similarity
(%) (%)

99 99

99 99

99 99

NSFM-
22f08.plk AM097733

oxidation
resistance

protein
[Glossina
morsitans

morsitans]*

14.5 kDa 
5e-101 midgut 

protein
ABV60314 1.1 30 44

Best matched results and corresponding lowest BLASTX E value together with putative function based on this homology of 
a GenBank derived non-redundant protein database and a Lutzomyia longipalpis midgut cDNA library. The contig is given 
for each gene. A "q" following the clone identifier indicates that sequencing was from the 3' end of the clone. The lowest 
BLASTX E value (most significant similarity) together with putative function based on this homology is given. Asterisk 
represents best match with a putative oxidation resistance protein function.
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Figure 3.3.1. Amino acid sequence alignment of selected catalases. Sequences were 
retrieved from GenBank (GB). The listed proteins are respectively from Lu. longipalpis 
(ABV60342.1), Aedes aegypti (XP_001663600.1); Anopheles gambiae (ABL09376.1), 
Drosophila melanogaster (NP_536731.1), Glossina morsitans morsitans (ADD20421.1). 
Conserved residues are with black background, consensus alternatives are shaded. The 
symbols □, # and • mark catalytic, haem binding and NADPH binding residues, 
respectively.

Aedes

Anopheles

Drosophila

Glossina

Lutzomyia

Bombyx

Tribolium

Apis

Figure 3.3.2. Phylogeny of selected catalases. Non-rooted neighbour-joining 
consensus trees of selected sequences from catalase protein families. Sequences are 
from Aedes aegypti (Diptera: XP_001663600), Anopheles gambiae (Diptera: 
ABL09376), Drosophila melanogaster (Diptera: NP_536731), Glossina morsitans 
morsitans (Diptera: ADD20421), Lutzomyia longipalpis (Diptera: ABV60342), Bombyx 
mori (Lepidoptera: BAD38853), Tribolium castaneum (Coleoptera: NP_001153712), 
Apis mellifera (Hymenoptera: NP_001171540). Bootstrap values (above 50, 10000 
replicates) for each branch point are given.
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Figure 3.4.1: Amino acid sequence alignment of selected superoxide dismutases.
Sequences were retrieved from GenBank (GB). Partial sequences corresponding to the 
mature proteins (signal peptides removed) were used in the alignment. The listed 
proteins are respectively from Lu. longipalpis (ABV60343.1), Aedes aegypti 
(XP_001651857.1), Anopheles gambiae (XP_314137.4)/ Drosophila melanogaster 
(NP_001036536.1), Glossina morsitans morsitans (ADD19264.1). Conserved residues 
are with black background, consensus alternatives are shaded. The symbols # and • 
mark catalytic Zn+2 and Cu+2 binding residues at the active site, respectively.
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Figure 3.4.2: Phylogeny of selected superoxide dismutases. Non-rooted neighbour
joining consensus trees of selected sequences from superoxide dismutase (SOD) 
protein families. Sequences are from Aedes aegypti (Diptera: XP_001651857), 
Anopheles gambiae (Diptera: XP_314137,), Drosophila melanogaster (Diptera: 
NP_001036536), Glossina morsitans morsitans (Diptera: ADD19264), Lutzomyia 
longipalpis (Diptera: ABV60343), Bombyx mori (Lepidoptera:, NP 001037084), 
Tribolium castaneum (Coleoptera: NP_001164126), Apis mellifera (Hymenoptera: 
NP_001171498). Bootstrap values (above 50, 10000 replicates) for each branch point 
are given.
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Figure 3.5.1: Amino acid sequence alignment of selected peroxiredoxins. Sequences 
were retrieved from GenBank (GB). Partial sequences corresponding to the mature 
proteins (signal peptides removed) were used in the alignment. The listed proteins are 
respectively from Lu. longipalpis (ABV60347.1), Aedes aegypti (XP_001648972.1)/ 
Anopheles gambiae (XP_308336.4), Drosophila melanogaster (NP_525002.1), Glossina 
morsitans morsitans (ADD19060.1). Conserved residues are with black background, 
consensus alternatives are shaded. The symbols □, # and • mark the catalytic triad 
(including the peroxidatic cysteine), binding residues at the dimer interface and the 
resolving cysteine, respectively.
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Figure 3.5.2: Phylogeny of selected peroxiredoxins. Non-rooted neighbor-joining 
consensus trees of selected sequences from peroxiredoxin (PrxR) protein families. 
Sequences are from Aedes aegypti (Diptera: XP_001648972), Anopheles gambiae 
(Diptera: XP_308336), Drosophila melanogaster (Diptera: NP_525002,), Glossina 
morsitans morsitans (Diptera: ADD19060), Lutzomyia longipalpis (Diptera: ABV60347), 
Bombyx mori (Lepidoptera: AAR15420), Tribolium castaneum (Coleoptera: 
XP_970797), Apis mellifera (Hymenoptera: XP_393445). Bootstrap values (above 50, 
10000 replicates) for each branch point are given.
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identity score (52.8 %)(Fig 3.4.1). To examine these relationships more closely a 

phylogenetic analysis with other insect species was performed and it grouped Lu. 

longipalpis SOD within a clade formed with SOD amino acid sequences from 

Suborder Nematocera {An. gambiae and Ae. aegypti,) (Fig 3.4.2).

3.2.3. Lu. longipalpis PrxR

Contig NSFIVl-34h03.qlk from a whole body cDNA library (GenBank AM102380) 

exhibited the most significant similarity (99%) to a putative PrxR from a midgut- 

specific ESI library (Table 3.2). Lu. longipalpis PrxR mRNA sequence contains 874 

bp and encodes a predicted peptide of 248 amino acids (GenBank ABV60347). An 

alignment of four available PrxRs from four dipteran species revealed that this 

protein is highly conserved within the regions predicted for the catalytic triad, 

dimer interface binding and resolving cysteine (Marchler-Bauer and Bryant 2004; 

Marchler-Bauer et al. 2009; Marchler-Bauer et al. 2011) and that Ae. aegypti has 

the highest identity score (75.5 %) (Fig 3.5.1). To examine these relationships 

more closely a phylogenetic analysis with other insect species was performed and 

it grouped Lu. longipalpis PrxR within a clade formed with PrxR amino acid 

sequences from Suborder Nematocera {An. gambiae and Ae. aegypti) (Fig 3.5.2).

3.2.4. Lu. longipalpis OXR1

Contig NSFM-22f08.plk from a whole body cDNA library (GenBank AM097733) 

exhibited the most significant similarity (E value=5e-101) to a putative oxidation 

resistance protein from Gl. morsitans morsitans (Table 3.2). Lu. longipalpis PrxR 

mRNA sequence contains 1881bp and encodes a predicted peptide of 394 

aminoacids (GenBank AM097733). An alignment of four available OXR1 from four 

dipteran species revealed that this protein is moderately conserved within the 

regions predicted for the LYS1, OXR1 and TLDc domain (Schultz et al. 1998; 

Letunic et al. 2009) (Fig 3.6.1 and 3.6.2) and that D. melanogaster has the highest 

identity score (28.3%)(Fig 3.6.2). To examine these relationships more closely a 

phylogenetic analysis with other animal species was performed and it grouped Lu. 

longipalpis OXR1 within a clade formed with OXR1 amino acid
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acid sequences from Suborder Brachycera (D. melanogaster and Gl. morsitans 

morsitans) (Fig 3.6.3).

3.2.5. ROS-regulatory genes are differentially expressed in Leishmania-mfected 

flies

Comparison of fold changes of whole-body putative ROS-detoxifying genes from 

microarray data shows differential gene expression in L mexicana-mfecteti flies 

from 8 to 188 h PBF. Putative CAT shows expression levels below the mean fold 

change (MFC) from 8 to 24 h PBF and above MFC from 48 to 144 h PBF (Fig 3.7A). 

SOD exhibits expression levels above MFC at 8 hrs PBF and a reduction from 24 to 

48 h PBF followed by an increase above MFC from 27 to 144 h PBF (Fig 3.7B). PrxR 

shows an increment of ~ 60 % above MFC at 8 h PBF followed by a reduction 

below MFC from 24 to 144 h PBF (Fig 3.7C). Finally, putative OXR1 exhibited 

expression levels below MFC at 8 h PBF, a further increment above MFC from 24 

to 72 h and an expression level lower than MFC at 144 h PBF (Fig 3.7D). To 

analyse midgut- specific changes in expression of ROS-regulatory genes, sand flies 

were infected with L mexicana. Expression of four ROS-regulatory genes was 

assessed by semi-quantitative RT-PCR. Catalase exhibited the highest variation in 

expression among all ROS-detoxifying gene sequences analysed. Catalase from 

non-infected midguts showed significant changes in expression from 1 to 96 h 

PBF (Fig 3.8A; ANOVA, pcO.OOl). Catalase was downregulated in Leishmania- 

infected flies at 48 h PBF compared to control group (p<0.05, Fig 3.8A). A putative 

SOD was down regulated at 48 h PBF in Leishmania-mfected flies compared to 

control group (p<0.016) (Fig 3.8B). A Lu. longipalpis peroxiredoxin (PrxR) 

displayed a trend of upregulation at 1 and 24 h PBF in non-infected flies relative 

to the infected group but such differences were not statistically significant.(Fig 

3.8C). OXR1, a gene described in A. gambiae that regulates the expression of 

catalase and glutathione peroxidase (Jaramillo-Gutierrez et ai 2011) did not 

exhibit significant changes in expression after Leishmania mexicana infections (Fig 

3.8D).
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Figure 3.6.1: Amino acid sequence alignment of selected oxidation resistance 
proteins. Sequences were retrieved from GenBank (GB). The listed proteins are 
respectively from Lu. longipalpis (AM097736.1), Aedes aegypti (XP_001662202.1), 
Anopheles gambioe (XP_321331.4), Drosophila melanogaster (ACV53876.1), Glossina 
morsitans morsitans (ADD20017.1). Black background represents conserved residues 
whereas consensus alternatives are shaded.

L. longipalpis

D. melanogaster 

A. gambiae 

A. aegypti 

G. morsitans

Figure 3.6.2: Protein domains present in selected oxidation resistance proteins from 
various animal species. Sequences are same from Fig 3.4.1. Black, gray and white 
boxes correspond to LYS1 (smart00584), OXR (COG5142) and TLDc (smart00584) 
domains from SMART and COG databases, respectively.
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Figure 3.6.3. Phylogeny of selected oxidation resistance proteins. Non-rooted 
neighbour-joining consensus trees of selected sequences OXR1 protein families. 
Sequences are from Aedes aegypti (Diptera: XP_001662202), Anopheles gambiae 
(Diptera: XP_321331), Drosophila melanogaster (Diptera: ACV53876), Glossina 
morsitans morsitans (Diptera: ADD20017), Lutzomyia longipalpis (Diptera: NSFM- 
22f08), Bombyx mori (Lepidoptera: NP 001139127), Tribolium castaneum 
(Coleoptera: XP_967175), Apis mellifera (Hymenoptera: XP 393372), Daphnia 
pulex (Crustacea: OXR, EFX81439), Homo sapiens (ORX, AAQ76813). Bootstrap 
values (above 50, 10000 replicates) for each branch point are given.
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Figure 3.7: Putative ROS-detoxifying gene expression profile change in flies infected 
with L. mexicana. Bars represent fold change values from data by Dillon et al. 
(unpublished) derived from a microarray of L. mex/cono-infected female Lu. longipalpis 
versus blood fed, non-infected flies. A. Putative catalase. B. Putative superoxide 
dismutase. C. Putative peroxiredoxin. D. Putative oxidation resistance protein. Dotted 
line represents mean of fold change values.

57



CAT SOD

□ Blooctfed 
■ Leishmonia

OXR1

5

c 4
.fi
IA
IA

I 3 ^
M
O

.1 2
JOiw

1 -

o ¥

□ Blooctfed 1.6 □ Bloodfed 
■ Leistomania

Hours post-bloodfeeding

Figure 3.8: Midgut-specific relative expression profile by semiquantitative RT-PCR of 
ROS-regulatory genes in infected Lu. longipalpis. Female flies were fed with either a 
non-infected blood meal (Control), or a Leishmania mex/cono-infected bloodmeal. 
Midguts were pooled (N=8) and relative expression of the following genes was 
assessed: A, catalase (CAT), 6, Cu/Zn superoxide dismutase (SOD), C, peroxiredoxin 
(PrxR) and D, oxidation resistance l(OXRl). Bar charts represent mean ± SEM of 
combined samples from at least 2 independent experiments. Asterisk indicates 
statistical difference at p<0.05. Dotted line represents mean of relative expression 
values of L mex/cono-infected samples.
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3.3. Discussion

The work presented in this chapter shows that Lutzomyio ROS-regulatory gene 

expression changes throughout digestion and that gene expression of SOD and 

catalase is modulated in the sand fly midgut after infection with the flagellate 

protozoan L mexicana. Oxidation resistance! (OXR1) and peroxiredoxin (PrxR) 

did not show statistically significant differences in relative expression between 

bloodfed and Leishmania-'mfected groups.

3.3.1. Microarray vs. RT-PCR

Gene expression analysis from both microarray data and RT-PCR show differential 

expression in infected vs. non-infected flies. However, expression profiles from 

the same putative genes exhibit a different pattern when comparing microarray 

fold-change data with RT-PCR relative expression (Fig 3.7A-D and 3.8A-D). This is 

not surprising if we consider that microarray data emerged from a whole-body 

cDNA library with infection using L infantum (Dillon et al. 2006), while midgut 

cDNA was chosen for semi-quantitative RT-PCR gene expression profiling. 

Although present in the midgut, these putative genes are probably expressed in 

other tissues. In Drosophila, catalase has found to be highly expressed in the 

midgut, but also in oenocytes, fat body, testes and ovaries (Klichko et al. 2004). 

CAT and SOD are highly expressed in the ovaries, flight muscle and spermatheca 

of the honey bee Apis mellifera (Collins et al. 2004). In the silk worm Bombyx mori, 

CAT is expressed in the fat body, silk gland and haemocytes (Yamamoto et al. 

2005). Actually, ROS-detox enzymes have been found in a wide variety of tissues 

and organs in insect species large enough to allow multiple tissue-specific 

measurements. In Rhodnius prolixus CAT and/or SOD have been found in many of 

the aforementioned tissues as well in the cuticle, heart, crop, midgut content 

and salivary glands (Paes et al. 2001). The size of the sand fly precluded 

comparative measurements using other tissue.

The microarray data was derived from a whole-body cDNA library and although it 

is not completely accurate for specific-tissue level expression comparisons it still
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provides an informative picture of changes in gene expression. Semi-quantitative 

RT-PCR, real-time RT-PCR and Northern blot analysis are still the tools of choice 

for microarray data validation, however, it has been stated that validation 

consistency is only possible when genes possess more than a four-fold difference 

(Chuaqui et ol. 2002). It should be noted that none of the transcripts from the 

microarray data set had differences higher than four-fold (Fig 3.7). We could, 

nonetheless, measure significant differences in expression in at least two of the 

putative ROS-detox genes analysed.

3.3.2. Gene expression and blood digestion

Sequences corresponding to catalase (CAT), Cu/Zn Superoxide Dismutase (SOD) 

and Peroxiredoxin (PrxR) retrieved from a sand fly whole body cDNA library 

exhibited a high level of identity (>99%) and similarity (>99%) against sequences 

obtained from a midgut specific library (Table 3.2)(GenBank ABV60342, 

ABV60343 and ABV60347) (Jochim et at. 2008), suggesting that these genes are 

also expressed in the midgut of Lu. longipalpis. OXR1 could not be found in the 

midgut EST library, but specific oligonucleotides targeting the TLDC conserved 

domain from OXR1 amplified the expected product when included in the midgut 

expression profile. Also, a BLAST search performed in a preliminary Lu. longipalpis 

genome data base recently available on-line, after the completion of this work, 

has identified several sequences with significant alignments for An. gambiae 

OXR1, ( http://www.hgsc.bcm.tmc.edu/project-species-i-Lutzomyia_ longipalpis. 

hgsc).

Catalase was differentially expressed from 1 to 96 h post-blood feeding in non- 

infected Lu. longipalpis (ANOVA. P<0.001) (Fig 3.8A) in an expression profile that 

correlates with the process of bloodmeal digestion (Fig 3.9). It has been 

previously shown that expression of the main 'late' trypsin gene is detectable 

from 2 to 72h PBF, reaching its peak at 12 h (Telleria et al. 2007). Similar trypsin 

enzymatic profiles have been found in other species of sand flies such as 

Phlebotomus papatasi and Ph. longeron! (Dillon and Lane 1993a; Dillon and Lane 

1993b).
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Figure 3.9: Relative profiles of catalase expression and bloodmeal digestion in 
female Lu. longipalpis. Continuous purple line represents trypsin activity (pM/min/mg 
protein) in in midgut extracts after a bloodmeal, dashed purple line represents midguts 
infected with L. mexicana, (Sant'Anna et al. 2009). Red continuous line represents 
midgut catalase expression in Lu. longipalpis, dashed red line represents L. mexicana- 
infected midgut catalase expression (data from Fig 3.8A). Cartoons on top represent 
sandlfy midguts during digestion timepoints from 0 to 96 h after blood-feeding.
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A similar expression pattern of ROS-detoxifying enzymes occurs in other blood 

feeder taking discrete meals; since ROS are largely produced during blood 

digestion (Graca-Souza et al. 2006). in different blood-sucking insects, catalase is 

expressed upon blood ingestion (Paes et al. 2001; Sanders et al. 2003; Munks et 

al. 2005; Jochim et al. 2008; Magalhaes et al. 2008; Molina-Cruz et al. 2008). It 

has been postulated that this enzyme plays an important role detoxifying ROS 

derived from haemoglobin breakdown (Graca-Souza et al. 2005; Graca-Souza et 

al. 2006). An increasing expression of catalase could reflect the use of this 

enzyme during digestion. In Anopheles gambiae, mRNA levels of digestive 

enzymes peak around 20 to 24 h after blood feeding but immunoblot analysis of 

protein lysates displayed peak levels from 30 to 48 h after blood ingestion (Muller 

et al. 1995; Dana et al. 2005). In Drosophila, differences in catalase mRNA 

expression and protein accumulation profiles suggested that catalase expression 

might be affected by transcriptional and post-transcriptional regulation (Radyuk 

et al. 2000). Catalase could be present as an inactive storage proform for fast 

release to avoid ROS-induced damage during blood digestion.

There were no significant changes in OXR1 expression in the midgut of Lu. 

longlpalpis during blood digestion and Leishmania infections. In An. gambiae, 

OXR1 regulates the expression of ROS-detoxifying enzymes, specifically catalase 

and glutathione peroxidase (GPx) (Jaramillo-Gutierrez et al. 2011). In our study, 

primers were also designed to cover the carboxyl terminal TLDC domain, the most 

highly conserved region of the gene (Fig 3.6.1 and 3.6.2). However, gene 

expression between Lu longlpalpis OXR1 and catalase was not related and there 

was no indication that OXR1 expression controls catalase expression in a similar 

way previously described in A. gambiae.

3.3.3. Modulation of ROS-detox enzymes by Leishmania

Leishmania-'mfected sand flies displayed a constant and significant reduction in 

catalase expression in comparison to bloodfed controls up to 96h post infection 

with the highest fold-difference at 48 h (Fig 3.8A). Interestingly, SOD was also 

significantly reduced in infected midguts at this time point (Fig 3.8B). Previous
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studies in Anopheles gambioe have shown an increase in systemic expression of 

ROS detoxification enzymes at 24 and 48 h PBF (Molina-Cruz et al. 2008). During 

Plasmodium infection, catalase was downregulated 24h post-infection and it has 

been suggested that such suppression of catalase expression might be a response 

against the parasite that would ultimately lead to higher intracellular levels of 

H2O2, protein nitration and finally, apoptosis of infected cells {Molina-Cruz et al. 

2008). However, as Leishmania development is restricted to the sand fly midgut 

(Bates 2007), any reduction in catalase expression would result in increased 

oxidative stress, ultimately leading to an impact on Leishmania survival within the 

sand fly midgut. Although it is possible that a reduction in catalase expression in 

Leishmania-mfected midguts represents a response against the parasite (as 

suggested in Plasmodium-infected Anopheline mosquitoes), this would not 

explain how Lu. longipalpis is able to harbour heavy Leishmania infections in both 

experimental and field conditions (Deane and Deane 1954; Freitas et al. 2002; 

Killick-Kendrick and Rioux 2002).

What could be driving such a reduction in catalase? It has been demonstrated 

that Leishmania are able to modify the enzymatic environment inside the sand fly 

midgut during digestion. Experiments as early as the mid 1980s showed that L. 

major and L. donovani reduced the proteolytic effect of midgut homogenates in 

bloodfed Ph. papatasi (Schlein and Romano 1986; Borovsky and Schlein 1987). 

Specifically, alkaline protease, trypsin and aminopeptidase activity was found to 

be suppressed by L. major at the peak of digestion (30 h PBF), not only in Ph. 

papatasi but also in Ph. langeroni (Dillon and Lane 1993b). Digestive enzyme 

suppression confers protection to Leishmania during blood-digestion and has 

been found to play a major role in vector competence (Schlein and Jacobson 1998; 

Volf et al. 2001). Although the exact mechanism is still elusive, evidence so far 

suggests that protease suppression happens even before translation occurs. The 

presence of Leishmania modified the abundance of a transcript coding for a 

chymotrypsin molecule in the midgut of Ph. papatasi and Lu. longipalpis 

((Ramalho-Ortigao et al. 2007; Jochim et al. 2008) and supplementary Fig 3.1, 

Appendix 1). Suppression of PperTryp3, the major bloodmeal-induced trypsin
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occurred in the presence of L infantum-'mfected midguts of Ph. perniciosus 

(Dostalova etai 2011).

Trypsin activity in Lu. longipalpis peaks at 48 h PBF (Sant'Anna et ai. 2009), which 

means that major proteolytic events are expected to occur at that time point 

inside the midgut. Massive release of blood cell contents is expected. It is 

possible that Leishmania-mecWated suppression of digestive enzymes in Lu. 

longipalpis might have an impact in blood-derived ROS release and therefore, a 

decrease in expression of ROS-detox enzymes would be expected as postulated in 

Figure 3.9. It has already been shown that Leishmania is susceptible to hydrolytic 

enzymes inside the midgut, this susceptibility is stage-specific and highlights the 

importance of digestion dynamics and successful Leishmania colonisation 

(Pimenta et ai. 1997) . Regulation of digestion in sand flies by Leishmania might 

not just protect the protozoans from enzymatic breakdown, but also from 

oxidative stress caused by release of ROS from the bloodmeal. The importance of 

catalase and midgut ROS balance will be approached in the following chapters.
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Appendix 1

A
Early Trypsin

Late Trypsin

B

Uf 4f 4i 24f 24i 48f 481 no RT

Array
fold changa

8h 24h 48h 72h 144 h

Early -4 -8 -2 -1.7
Late 6 8 8 2.1 1.4

8h 24h 48h 72h 144h

Early 2.1 3 1.2

Late -4 -2.6

Ribo control

Effect of 
feeding

Effect of 
infection

Supplementary Figure 3.1: Effect of blood-feeding and L mexicana infection in 
expression of early and late trypsins in female Lu. longipalpis. A. Gel picture from 
RT-PCR in bloodfed (f) and uninfected (u) whole female Lu. longipalpis at 4 24 and 
48 h after blood-feeding/infection. Uf represents sugarfed negative control. B. 
Analysis of microarray data for early and late trypsin expression fold-change in L. 
mexicana infected and bloodfed sand flies. Early trypsin is downregulated after 
bloodfeeding and upregulated after infection. Late trypsin is upregulated after 
bloodfeeding and downregulated after infection. Data from Lewis and Dillon 
(unpublished).
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Chapter 4

The effect of ROS-scavenging by catalase on 

fecundity and mortality of female Lutzomyia

longipalpis

4.1. Introduction

Phlebotomine sand flies in the wilderness have a lifespan barely longer than a 

week (Dye etal. 1987; Ferro et al. 1995; Killick-Kendrick and Killick-Kendrick 1999; 

Schlein and Jacobson 1999). In those 8 to 10 days, sand flies have to find a sugar 

meal, a suitable mammalian source of blood to feed on and ultimately lay eggs; 

these tasks will employ most of the adult life and many flies will die soon after 

egg laying (Volf and Volfova 2011). A few, unknown, number of individuals, 

however, will live long enough to feed again on blood. Leishmania requires this 

second bloodfeed to be successfully transmitted to a mammalian host; therefore 

even a small reduction in sand fly life expectancy will have a significant impact in 

vectorial capacity. Better understanding of the biological factors involved in sand 

fly mortality and fecundity will provide new information towards reduction of 

Leishmania transmission.

Ageing or senescence can be defined as a time-dependant reduction in fitness 

and performance and is a common feature of all multicellular species (Ricklefs 

1998; Hughes and Reynolds 2005). Theories of ageing have focused on different 

mechanisms such as cellular signalling, dietary control of life span extension and 

oxidative stress resistance (Hughes and Reynolds 2005). It has been over 50 years 

since Harman first discussed his theory of ageing where he postulated that 

accumulation of free radicals derived from cell metabolism would lead to an 

increment in oxidative stress in macromolecules with a concomitant reduction in 

longevity (Harman 1956; Harman 2009). Since oxidative stress can also be caused

66



by non-free radicals such as peroxides and aldehydes, this model is currently 

known as the oxidative stress theory of ageing.

The fruit fly Drosophila melanogaster is the multicellular model par excellence for 

studying the role of ROS in longevity using a variety of approaches. For example, 

its genetic plasticity has been exploited to study the oxidative stress theory of 

ageing by modifying the expression of genes encoding for antioxidant enzymes 

(Aigaki et al. 2002; Muller et al. 2007). The majority of the work has focused on 

superoxide dismutase (SOD), which protects the cell from oxidative stress by 

transforming highly reactive superoxide anion {02 •) into hydrogen peroxide 

(H2O2). The first studies demonstrated that homozygote fruit flies for a mutant 

strain carrying a SOD-null mutation survived until adult stages but caused 

infertility and a reduced life-span (Phillips et al. 1989). Subsequent research 

focused on the overexpression of Sodl using a constitutive promoter. 

Interestingly, overexpression of this gene led to an increase in average lifespan in 

one study (Reveillaud et al. 1991) but had the opposite effect in another (Seto et 

al. 1990).

Drosophila has also been used to study the important antioxidant enzyme 

catalase, which is the most efficient H2O2 detoxifying enzyme in nature (Zamocky 

et al. 2008). Studies performed in catalase-nuli mutants showed that an 86% 

reduction in catalase activity did not have an effect on either lifespan or 

metabolic potential (Orr et al. 1992), whereas Drosophila overexpressing Catalase 

exhibited high levels of activity and tolerance against H2O2 but had no significant 

effect on lifespan (Orr and Sohal 1992). Overexpression of both Sodl and 

Catalase prolonged the metabolic life of flies (Sohal et al. 1995). Evidence so far 

shows that overexpression of antioxidant enzymes might not increase lifespan, 

but a depletion or reduction certainly diminishes survival.

Interestingly, oral delivery of antioxidant compounds to Drosophila has shown 

contrasting effects on survival, even when the same antioxidant was 

administered to different experimental flies (Table 4.1) (Le Bourg 2001). Although

67



Le Bourg et aL discussed that that such variation could be explained by 

differences in lots and strains of fruit flies, it is also true that these studies were 

performed before the discovery of the role of antioxidant balance in regulating 

microbes in the gut of Drosophila (Ha et aL 2005a). It is possible that oral 

administration of the same antioxidants had an effect in gut microbiota which in 

turn could have a positive or negative impact in Drosophila mortality.

Table 4.1
Contrasting effect on longevity of male D. melanogaster with antioxidants added in 
food

Antioxidant Percent change

Vitamin E 13.7*
Dinitrophenol 12.3*
Thiocentrophenoxine 14.7*
Ascorbic acid 1.7*
Propyl gallate 34.2*
N-Acetylcysteine -1.9
N-Acetylcysteine 26.6*
Xanthine 1.8*
Vitamin A palmitate 17.0*
Ascorbyl palmitate -3.2

The compound was given during both the developmental (from egg to pupae) and 
the adult stages or during the adult stage only. Asterisk denotes significant positive 
effects in longevity, negative values denote the opposite. When different doses have 
been used, the best result is given. Note that the same antioxidant may appear 
twice in the table, with contrasting results. Adapted from Le Bourg (2001).

Data derived from Drosophila has been successfully used to design studies on 

physiology of longevity in other insect species. Enzymes like catalase and SOD 

exhibit amino acid sequences that are well conserved throughout different insect 

taxa, including blood-feeding insects (Figs 3.3.1 and 3.4.1, Chapter 3). In contrast 

to fruit feeding flies, haematophagous arthropods not only have to detoxify ROS 

produced by cellular respiration, but also ROS released during digestion of the 

blood meal (Graca-Souza et aL 2006). Blood-derived ROS are also deleterious for 

the insect and antioxidant enzymes seem play a role in detoxifying blood-derived
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ROS. RNAi-mediated silencing of catalase increased mortality of Anopheles 

gambiae after a bloodmeal (Magalhaes et al. 2008). Also, the number of 

oviposited eggs decreased after a bloodmeal (DeJong et al. 2007). In the same 

study, it was shown that catalase accumulated in the developing eggs and it was 

speculated that such accumulation could be involved in oocyte protection against 

potential H2O2 damage. Moreover, RNAi-mediated silencing of catalase 

significantly reduced fecundity. Interestingly, although oral administration of an 

antioxidant restored fecundity of old flies, it produced a high mortality in an 

experimental mosquito strain that possessed high systemic levels of H2O2 

(DeJong et al. 2007).

To analyse the biological role of ROS-scavenging in fecundity and survival of the 

sand fly Lu. longipalpis, gene expression of the antioxidant enzyme catalase was 

analysed in different age groups of female sand flies. Also, changes in catalase 

activity and expression in the developing oocyte were assessed. ROS-scavenging 

via gene silencing of the endogenous antioxidant enzyme catalase and its effect 

on fecundity were analysed, as well as dietary supplementation of the exogenous 

antioxidant ascorbic acid. Mortality of antioxidant supplemented flies was 

explored.

4.2. Results

4.2.1. Age-related decrease of fecundity

To evaluate the effect of ageing on fecundity, females of different age groups 

were blood fed and dissected to examine potential differences in developing 

oocyte numbers. Female Lu. longipalpis from the older age group showed a 

decrease in the number of developing oocytes dissected five days after blood 

feeding in comparison to younger sand flies (Fig 4.1). Female Lu. longipalpis that 

were bloodfed 3 and 6 days post-emergence (PE) showed no significant 

difference in number of oocytes. However, sand flies bloodfed at 9 days PE 

showed a significant decrease in number of oocytes after dissecting 5 days after 

blood feeding (Fig 4.1; p <0.005, ANOVA).
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4.2.2. ROS-scdvenging reverses age related loss of fecundity 

To evaluate the role of ROS scavenging in age-related decrease of fecundity, 9 

day old female Lu. longipalpis were fed a sucrose meal supplemented with a 

ROS-scavenger upon emergence until end of the experiment. In similar 

experiments previously performed by Molina Cruz et al. (2008) in mosquitoes, 

ascorbic acid was used as ROS-scavenger and it was decided to follow the same 

direction in the sand fly model. In a preliminary experiment, the concentration of 

ascorbic acid fed to Anopheles (0.14 M) proved to be inadequate for Lutzomyia 

(/.e., flies did not feed). Sand flies were offered lower concentrations of 100, 50, 

20, 10 and 5 mM ascorbic acid in 70% sucrose to evaluate feeding and mortality 

and 20 mM ascorbic acid was the highest concentration with the lowest effect on 

mortality (data not shown). Sand flies were offered a 70% sucrose solution 

supplemented with 20 mM ascorbic acid and subsequently blood-fed on day 9 PE. 

The number of developing oocytes dissected 5 days after blood feeding was 

significantly higher (Fig 4.2; p <0.0001, t-test) in sand flies that received a sugar 

meal supplemented with 20 mM ascorbic acid in comparison to control sand flies 

fed on 70% sucrose solution. This suggests that exogenous ROS-scavenging can 

reverse age-related loss of fecundity in sand flies blood fed 9 days PE.
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80 N=28

3 6 9
Days Post-Emergence

Figure 4.1: Effect of age at blood feed on subsequent fecundity of female Lu. 
longipalpis. Bars represents average number of oocytes dissected 5 days after blood 
meal ± SEM Sand flies were blood-fed at 3, 6 and 9 days Post-Emergence. Asterisk 
indicates statistical difference at p<0.005 (ANOVA). Results represent two 
independent biological replicates.
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Figure 4.2: Effect of ascorbic acid supplementation on fecundity in Lu. longipalpis.
Flies were blood-fed 9 days Post-Emergence and bar chart represents average 
number of oocytes dissected 5 days after blood meal ± SEM (combined samples 
derived from 2 independent experiments). Sand flies fed on 20 mM ascorbic acid- 
supplemented 70% sucrose solution show significantly higher oocyte numbers in 
comparison to control sand flies (p <0.0001, t-test).
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4.2.3. Catalase activity is reduced in developing oocytes of older flies and ROS 

scavengers reverse catalase depletion

Flies were assayed at 24h and 48h to find out if catalase accumulated in 

developing oocytes. Ovaries of Lu. longipalpis dissected 6 days PE contained 

higher catalase enzymatic activity at 48h compared to 24h after blood feeding 

(Fig 4.3A; pcO.OOOl, t-test). Moreover, mRNA expression of catalase increased 

with oocyte development from 12 to 48 hours after blood feeding (Fig 4.3B).

To further understand the role of endogenous ROS-scavenging and ageing, flies 

from different age groups were assayed for catalase LlonKatl expression. Flies 

from different age groups (3, 6 and 9 days PE) showed a decrease in expression in 

ovaries dissected at 48 hours after blood feeding (Fig 4.3C; pcO.OOl, ANOVA). 

Interestingly, when 9 day old sand flies were fed with a 20 mM ascorbic acid 

supplemented sugar meal, catalase LlonKatl mRNA expression was significantly 

higher compared to flies of the same age fed on sucrose only (Fig 4.3C; p <0.002, 

t-test). The results show that a) catalase accumulates in the developing oocyte as 

shown by increase in enzymatic activity and relative expression, b) catalase 

expression is age-dependant and is lower in older flies and c) the dietary 

supplementation with an exogenous ROS-scavenger increases catalase expression 

in older flies.

Lutzomyia longipalpis catalase sequence was already described (Dillon et al. 2006; 

Jochim et al. 2008) and was retrieved from the GenBank (ABV60342.1). It codes 

for a protein (named LlonKatl in this chapter) with molecular mass of 57682 Da 

and isoelectric point of 8.28, without a signal peptide and mitochondrial or 

peroxisomal targeting sequences of types 1 and 2. LlonKatl has high identity 

(ranging from 46 --73%) to catalase sequences from other insects, crustaceans, 

yeast and mammals and lower identity to the bacterial catalase from 

Pseudomonas syringae (Fig 4.4.1). LlonKatl sequence contains the conserved 

residues His73 and Asnl47 (catalytic), Serll3, ValllS, Phel52, Phel60, Leu298, 

Met349, Arg353, Tyr357 (haem binding/coordination) and Hisl93, Arg202, Ile301, 

Gln304 (putative NADPFI binding pocket) (Fig 4.4.1).
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Figure 4.3: Changes in catalase in the developing oocytes of Lu. longipalpis. (A)
Catalase activity of developing oocytes after blood feeding. Six day old female Lu. 
longipalpis were blood-fed and dissected at 24 and 48 hours. Enzymatic activity in 
the developing oocytes was significantly higher at 48 hours compared to 24 hours 
after blood feeding (p <0.0001, t-test). Bar charts represent mean ± SEM of 
combined samples from 2 independent experiments. (B) Relative expression of 
catalase LlongKatl mRNA in developing oocytes dissected at 12, 24 and 48 hours 
from 6 days-old blood-fed female Lu longipalpis, (n=three groups of 20 females 
each). Asterisk indicates statistical difference at p<0.05 (ANOVA) Bar charts 
represent mean ± SEM of combined samples from 2 independent experiments. (C) 
Age-related decrease of catalase mRNA relative expression in developing oocyte. 
Flies were blood-fed at 3, 6 and 9 days Post-Emergence (n=three groups of 15 
females each) and whole ovaries were dissected 48 hours after blood feeding. 
Relative expression was statistically different in all 3, 6 and 9 days old flies (p<0.001, 
ANOVA). A 4th group (n=15 females) fed on an ascorbic acid-supplemented sugar 
solution upon emergence (9-AscA) showed catalase relative expression levels 
similar to groups of younger flies fed on 70% sucrose solution, and statistically 
higher than the non-treated, 9 DPE group (p <0.002, t-test). Bar charts represent 
mean ± SEM of combined samples from 2 independent experiments.
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Figure 4.4.1: Amino acid sequence alignment of selected catalases. Sequences were 
retrieved from GenBank (GB), Protein Data Bank (PDB) or from Peroxibase (PB). The 
listed proteins are respectively from Lutzomyia longipalpis (GB:ABV60342.1), Aedes 
aegypti (PB:5267), Anopheles gambiae (PB:5269), Bombyx mori (PB:5266), Drosophila 
pseudoobscura (PB:5273), Haemonchus contortus (PB:5270), D. melanogaster 
(GB:NP_536731.1), Glossina morsitans morsitans (GB:ADD20421.1), Culex 
quinquefasciatus (GB:XP_001848573.1)/ Penaeus vannamei (PB:5278), Saccharomyces 
cerevisiae (PDB:1A4E), Bos taurus (PDB:8CAT), Pseudomonas syringae (PDB:1M7S). 
Conserved residues in catalases are with black background, consensus alternatives are 
shaded. The symbols T, +, and * mark catalytic, haem binding and NADPH binding 
residues, respectively. The symbol # mark residues that define haem orientation. All 
sequences are from clade 3 of monofunctional catalases, with the exception of Psyr, 
which is a clade 2 enzyme. In catalases from clade 2 (Psyr numbering), haem orientation 
(His-IV) is defined by residues 301 (never Leu) and 350 (frequently Leu). In catalases 
from clade 3, these positions are commonly occupied by Leu and non-Leucine residues, 
respectively. NADPH binding catalases have the signature (Btau numbering) His 193, Arg 
202, Val 301 and His 304, which is not present in catalases from clades 1 (not shown) 
and 2 (Psyr). Insect catalases share some of the NADPH binding residues, but not all. 
However, catalytic residues and haem binding residues are fully conserved in all 
sequences.
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whole_body 301
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whole_body 361
midgut 361

whole_body 421
midgut 421
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MSARGPAEDQLKLYKKSQKGATSTVTTKHGAPIGVRSAAQTVGLNGPILLQDHNFLDEMS
MSARGPAEDQLKLYKKSQKGATSTVTTKHGAPIGVRSAAQTVGLNGPILLiQDHNFLDEMS

AFDRERIPERWHAKGAGAFGYFEVTHDEIQKYCAAKVFDTVGKRTPIAVRFSTVGGESG
AFDRERIPERWHAKGAGAFGYFEVTHDEIQKYCAAKVFDTVGKRTPIAVRFSTVGGESG

;adtvrdprgfpikfytedgiwdlvgnntpiffirdpilfpsfihtqkrnpqthlkdpdm|

|FWDFISLRPETTHQTAFLFSDRGIPDGYRHMNGYGSHTFKTINNKGEAFYVKFHYKTDQ(

iknldpvkanelaandpdysirdIynaiakgdypswtfyiqvmtfeqaekfrfnpfdltk
iknldpvkanelaandpdysirdSynaiakgdypswtfyiovmtfeqaekfrfnpfdltk

>>>>>>>>>>>>>>>>
IWPQAEYPLIKVGKMTLDRNPNNYFAEVEQIAFSPSHFVPGIEASPDKMLQGRLFAYADT
IWPQAEYPLIKVGKMTLDRNPNNYFAEVEQIAFSPSHFVPGIEASPDKMLQGRLFAYADT

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
HRHRLGANHLQLPVNCPYRVSPKTYQRDGPMCFTDNQGGAPNYYPNSFAGPDTCPRALKL
HRHRLGANHLQLPVNCPYRVSPKTYQRDGPMCFTDNQGGAPNYYPNSFAGPDTCPRALKL

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
NPPYKICGDVARFDSGETEDNYAQVTDFYRRVLDAPARERLAQNIAGHLCAASQFIQERA 
NPPYKICGDVARFDSGETEDNYAQVTDFYRRVLDAPARERLAQNIAGHLCAASQFIQERA

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
VKNFSQVDASLGQKLTELLNMYERKKCSNI-
VKNFSQVDASLGQKLTELLNMYERKKCSNL

Figure 4.4.2: Alignment of the aminoacid sequence of Lutzomyia longipalpis catalase,
translated from a whole body (GenBank AM105518)(Dillon et al. 2006)) and a midgut- 
specific (GenBank EU124624.1) cDNA library. Sequences show a 99% identity and a 99% 
similarity, /»»' represents the targeted region for dsRNA-mediated gene silencing.
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4.2.4. Catalase gene RIMAi mediated depletion leads to a decrease in sand fly 

fecundity

The gene sequence of Lu. longipalpis catalase was obtained from a cDNA library 

constructed from sand fly whole bodies (GenBank AM105518(Dillon etol. 2006)) 

and aligned with a previous described catalase obtained from Lu. longipalpis 

midguts (GenBank Accession number: EU124624) , showing a high level of 

identity (99%) and similarity (99%) (Fig 4.4.2). To confirm the role of endogenous 

ROS-scavenging in fecundity catalase was depleted using RNAi. Flies injected with 

144 ng of dsRNA for catalase (dsCAT) showed a dramatic decrease in oocyte 

number dissected 48 hours after blood feeding (Fig 4.5A; p<0.005/ ANOVA) 

compared to sand flies injected with a non-related dsRNA (dsGFP) and uninjected 

sand flies. A change in appearance of ovaries was observed during dissections 

with matured ovaries. In sand flies injected with dsRNA for catalase they 

appeared underdeveloped in comparison with both mock-injected and uninjected 

controls (Fig 4.5B). A dsRNA-mediated significant reduction in catalase expression 

in whole flies was observed by RT-PCR (Fig 4.5C). These results confirm that 

endogenous ROS-scavenging in developing oocytes plays a major role in female 

Lu. longipalpis fecundity.

4.2.5. Effect of ROS-scavenging in the survival of sand flies

To evaluate the role of exogenous ROS scavenging in survival, female Lu. 

longipalpis were fed with an antioxidant-supplemented sugar meal upon 

emergence. Mortality was recorded from day 1 PE up to day 7 PE. Survival curves 

depict an increase in mortality due to exogenous ROS-scavenging by an 

exogenous antioxidant (Fig 4.6A). In order to assess whether the higher mortality 

rate was related to an effect on sand fly immune homeostasis, phenoloxidase (PO) 

activity was measured in control and antioxidant-supplemented females. 

Spontaneous PO is defined as the activity measured upon reaction with 3,4 

dihydroxy-DL-phenyialanine (DOPA), and corresponds to the enzyme that is 

already activated in physiological conditions and total activity was the activity 

observed after in vitro activation of the enzyme, by pre-incubating the sample 

with bovine trypsin. Sand flies fed on ascorbic acid-supplemented sucrose
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showed a significant increase in spontaneous PO (Fig 4.6B; p<0.05, t-test) but no 

difference in total PO activity. To further investigate if ROS-scavenging was 

implicated in increased mortality, catalase LlonKatl was depleted via RNAi 

injection in female Lu. longipalpis and mortality was recorded from day 1 PE up to 

day 7 PE. Mortality rates were higher in knocked down (dsCAT) sand flies (Fig 4.7), 

compared to flies injected with a non-related dsRNA (dsGFP) and non-injected 

flies. These results show that ROS-scavenging by either endogenous or exogenous 

antioxidants play an important role in female Lu. longipalpis survival.
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Figure 4.5: RNAi-mediated depletion of catalase LlonKatl in female Lu. Longipalpis 
and its effect on fecundity. (A) Average number of developing oocytes dissected 48 
hours days after blood meal ± SEM of combined samples from at least 2 independent 
experiments. (B) Relative development of female Lu. longipalpis ovaries observed 
upon catalase gene knockdown by RNAi, in comparison to mock-injected and 
uninjected control sand flies. Bar=lmm. (C) Relative expression of catalase LlongKatl 
mRNA in whole fly homogenates from dsRNA-injected catalase knock-down sand flies. 
Bar charts represent mean ± SEM of combined samples from at least 2 independent 
experiments. Asterisk indicates statistical difference at p<0.05 (ANOVA).
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Figure 4.6: Effect of dietary supplementation of ascorbic acid on mortality of sugar 
fed Lu. longipalpis. (A) Female sand flies were offered a 70 % sucrose solution 
supplemented with 20 mM ascorbic acid or a non-supplemented sucrose solution. 
Experimental flies (sucrose + 20 mM ascorbic acid) exhibited a significantly lower 
survival rate compared to control flies, (p< 0.001, Kaplan-Meier, Log Rank x2 test). (B) 
Spontaneous and total phenoloxidase (PO) activity in Lu. longipalpis females after 7 
days of feeding with 70% sucrose solution or 70% sucrose solution supplemented with 
20mM ascorbic acid. Spontaneous PO activity in ascorbic acid supplemented flies was 
significantly higher than control flies (p <0.05 , t-test). Results are mean ± SEM from 3 
independent experiments with 10 sand flies per experiment.
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Figure 4.7: Survival in female Lu. Longipalpis after RNAi-mediated depletion of 
catalase LlonKatl . Experimental group (dsCAT) exhibits a significantly lower survival 
rate compared to both dsGFP and pricked control groups, (p<0.0001, Kaplan-Meier, 
Log Rank x2 test). Results represent mean ± SEM of 3 independent biological 
replicates.

81



4.3. Discussion

The present results suggest that catalase-mediated ROS scavenging has a 

significant impact on female Lu. longipalpis fecundity and survival. Female Lu. 

longipalpis from different age groups showed differences in developing oocytes 

numbers, with the oldest (9 days PE) presenting the lowest number of oocytes 

(Fig 4.1). The age-related loss of fecundity could be reversed with dietary 

supplementation of a potent exogenous ROS-scavenger (Fig 4.2). This underlines 

the importance of catalase in the reproductive success of blood sucking 

phlebotomines. Evidence from other dipterans show that aging results in an 

increase of oxidative stress and loss of enzymatic antioxidant efficiency (Sohal et 

al. 1990; Van and Sohal 2000; Das et al. 2001). Moreover, inactivation or silencing 

of catalase in Drosophila melanogaster (Mackay and Bewiey 1989), Musca 

domestica (Allen et al. 1983), Rhodnius prolixus (Paes et al. 2001)and Anopheles 

gambiae (Magalhaes et al. 2008) led to increased mortality due to increase in 

ROS levels. It is likely that accumulation of ROS in older flies could account for the 

decrease of female sand fly fecundity due to an increase in oxidative stress, loss 

of antioxidant enzymatic efficiency or both. In An gambiae, fecundity of female 

mosquitoes declined with age, with reduction of number of eggs oviposited and 

number of larvae hatched per female (DeJong et al. 2007). We did not measure 

differences in fecundity in terms of larval development but it is likely that the 

age-related differences in fertility would have resulted in less viable larvae being 

produced from older flies, as they would be presumably exposed for a longer 

periods to oxidative damage.

Catalase enzymatic activity as well as catalase LlonKatl mRNA relative expression 

increased in the ovaries of older female sand flies (6 days PE) after the blood 

feeding (Fig 4.3A and B). Protein expression and accumulation increased upon 

blood feeding in maturing ovaries of mosquitoes due to nutrient allocation for 

egg production (Wheeler 1996; Ahmed et al. 2002). It has been shown in 

different insect species that antioxidant activity increases in the ovaries to
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protect the embryo from oxidative damage (Logulio et at. 2002; Freitas et al. 

2007). It is conceivable that such accumulation of catalase in sand fly ovaries also 

provides the means to protect developing eggs from oxidative damage. 

Additional support for this hypothesis was given by the dramatic decrease in 

developing oocyte numbers upon successful catalase gene depletion by RNAi in 

female sand flies (Fig 4.5A and B).

Interestingly, oral delivery of ascorbic acid seemed to stimulate catalase LlonKatl 

mRNA expression in older flies to levels similar to that of younger flies (Fig 4.3C). 

It has been shown that age-related accumulation of ROS/oxidative stress leads to 

loss of efficiency in cellular processes (Sohal et al. 1990; Sohal et al. 1993; Yan 

and Sohal 2000; Das et al. 2001; Ferguson et al, 2005), therefore it is possible that 

ROS-scavenging by an exogenous antioxidant slowed or lowered such deleterious 

effects in either catalase LlonKcatl mRNA or in other molecules involved in its 

upregulation. On the other hand, it has been shown that (Orr 1967a) ascorbate is 

a potent inhibitor of catalase, the inhibition being independent of substrate 

concentration and pH and strongly influenced by temperature. Furthermore, 

catalase incubation with ascorbate leads to degradative changes to the catalase 

molecule (Orr 1967b). In our experiments, the increase in catalase gene 

expression might reflect a compensation response to replenish normal catalase 

levels in the sand fly body after catalase was degraded, by an unknown 

mechanism, during ascorbic acid supplementation with the sugar meal.

Catalase LlonKcatl does not have a signal peptide or targeting sequences to 

mitochondria or peroxisomes. These features suggest a cytosolic location but this 

needs confirmation. Based on the identities with other catalases retrieved from 

Peroxibase (Koua et al. 2008), LlonKatl seems to belong to the monofunctional 

clade 3 of catalases, which includes sequences from bacteria, archaebacteria, 

protists, fungi, plants and animals. These enzymes have small subunits with 

molecular mass ranging from 43-75 kDa (Zamocky et al. 2008), which is consistent 

with LlonKatl monomer predicted molecular mass (57.7kDa). All conserved 

catalytic and haem binding residues are present in LlonKatl sequence, suggesting
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a full catalytic activity, and the presence of residues Leu298, Met349 indicate that 

His70 is above the ring III of the haem molecule (His-MI orientation), as seen in 

other clade 3 catalases (Chelikani et al. 2004).

ROS-scavenging by dietary supplementation of ascorbic acid (Fig 4.6A) led to a 

reduction in sand fly survival. When antioxidants were provided to a susceptible 

strain of Anopheles gambiae to Plasmodium infection, a similar but more drastic 

effect was observed with female mosquitoes (DeJong et al. 2007). Magwere et al. 

(Magwere et al. 2006) observed that antioxidant supplementation did not extend 

the lifespan of wild type Drosophila. Similarly, Bayne et al. (Bayne et al. 2005) 

showed that overexpression of MnSOD and catalase, despite protecting 

Drosophila from oxidative stress, were detrimental for lifespan and physical 

fitness of the insects. Kang et al. (Kang et al. 2008) observed a reduction in the 

lifespan of Anopheles Stephens! when the mosquitoes were bloodfed with the 

antioxidant MnTBAP in comparison with the buffer control. It has been 

hypothesized that a minimal level of ROS might be required to maintain the 

balance of the gut microbiota and that a baseline level of ROS activity might be 

crucial for basic midgut physiology. Previous studies done with other dipteran 

species had showed that ROS release constitutes a first line of defence against 

pathogens in the midgut (Hoffmann 2003). Experiments in D. melanogaster have 

demonstrated the existence of a midgut-specific active ROS releasing system 

against orally delivered bacteria (Ha et al. 2005a). In the present study, higher 

activities of spontaneous PO were recorded and this might be due to an increase 

in microbial infection associated with sand flies that fed on an ascorbic acid- 

supplemented sugar meal. In insects, PO activation is often related to bacterial or 

fungal infections (Pye 1974; Ratcliffe et al. 1984; Leonard et al. 1985; Cerenius et 

al. 2008; Kanost and Gorman 2008; Eleftherianos and Revenis 2010). Since only 

the soluble form of PO was measured, it is more likely that the activity was 

related to the immune response rather than to the melanisation of the adult 

cuticle or egg shell. PO has already been described in gut tissues or adhered 

haemocytes in other dipterans (Gillespie et al. 2004). It is possible that mortality 

in our experimental group fed with sucrose supplemented with ascorbic acid
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may be due to a decrease in ROS production inside the midgut and that ROS 

activity, similar to the events in certain strains of mosquitoes, may play a role in 

sand fly immunity towards opportunistic microbes or be involved in important 

cellular signalling pathways (Kamata and Hirata 1999; Morey et al. 2003). The 

putative role of ROS in immunity against bacteria will be further investigated in 

chapter 4.

There is evidence of other antioxidant enzymes with catalase-like functions found 

in the sand fly midgut, such as peroxiredoxins (Dillon et al. 2006; Jochim et al.

2008) . These are a family of thioredoxin-dependent peroxidases, found in several 

insect species (Radyuk et al. 2001; Kim et al. 2005; Wang et al. 2008; Hu et al.

2009) , that function as ROS-scavengers as well as other cellular processes. 

However their efficiency in converting H202was found to be significantly lower 

compared to catalase (Wood et al. 2003). The role of dietary antioxidants in 

regulating microbial populations and its effect in sand fly mortality will be 

approached in chapter 5 of this thesis.

Recent studies on transgenic Anopheles Stephens! (the leading malaria vector in 

India and parts of Asia and the Middle East) overexpressing the protein kinase 

AKT gene increased the insulin signalling in the mosquito midgut, significantly 

reducing mosquito lifespan and inhibiting P. falciparum development (Corby- 

Harris et al. 2010). The role of genes involved in stress responses in Plasmodium 

survival within the mosquito midgut was investigated by Jaramillo-Gutierrez et 

o/.(Jaramillo-Gutierrez et al. 2011) . RNAi gene knockdown of the OXR1 gene 

(oxidation resistance gene) in Anopheles gambiae showed that this gene 

regulates the basal levels of catalase and glutathione peroxidase expression and 

that OXR1 gene knockdown decreased Plasmodium berghei oocyst formation. An 

OXR1 gene homologue for Lu. longipalpis was identified after completion of this 

study (unpublished); investigating this gene would shed further light on the 

regulation of ROS production within the sand fly gut and will also help to 

understanding how ROS production impacts on Leishmania development in the 

sand fly midgut.
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Current sand fly vector control strategies rely on spraying of residual insecticides 

to control vector population. Insect transgenesis and paratransgenesis are novel 

strategies that aim at reducing insect vectorial capacity by using genetic 

manipulation of disease vectors, rendering them incapable or less efficient to 

transmit a given pathogen (Coutinho-Abreu and Ramalho-Ortigao 2010) or even 

reducing the longevity and fecundity of a given insect vector. This chapter 

confirms that catalase is a key gene in determining survival and fecundity of 

phlebotomine sand flies and future developments may warrant this gene being 

included as a potential target to reduce female sand fly fitness and reproductive 

capacity in the field.
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CHAPTER 5

Reactive Oxygen Species-mediated immunity against 

Leishmania mexicana and Serratia marcescens in 

Lutzomyia longipalpis

5.1. Introduction

In recent years, evidence from other dipteran species has highlighted the 

immunity role of reactive oxygen species (ROS) in regulating potential insect 

pathogens and influencing the profile of the commensal gut microbiota (Ha et al. 

2005a; Munks et ol. 2005; Molina-Cruz etal. 2008).

ROS are oxygen-derived radical species formed during cell respiration, mainly 

derived from mitochondrial electron transport. This group includes superoxide 

anion (02 •), the hydroxyl radical (•OH) and hydrogen peroxide (H2O2). Although 

H2O2 does not have unpaired electrons, it is usually considered as a ROS since it 

can be easily transformed into the highly reactive *OH via a Fenton-like reaction 

(Thannickal and Fanburg 2000; Bonekamp et al. 2009). ROS production in excess 

has deleterious effects in the cell, damaging lipids, proteins and DNA (Freeman 

and Crapo 1982). Eukaryotic cells are able to regulate ROS levels through the 

production of antioxidant enzymes. 02 • is produced by a NADPH oxidase and 

transformed to H2O2 by superoxide dismutase, whereas H2O2 is reduced to H20 

by catalase (Thannickal and Fanburg 2000).

ROS are actively produced in the midgut of Drosophila melanogaster at a basal 

level in the presence of a commensal microbiota (Ha et al. 2005a; Ha et al. 2005b) 

and highly generated upon allochthonous bacterial oral challenge (Ha et al. 

2009b). In Anopheles gambiae, ROS modulate immunity against bacteria and 

Plasmodium (Kumar et al. 2003; Molina-Cruz et al. 2008). Studies done with A. 

gambiae showed that Plasmodium refractory strains were in a constant oxidative
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stress state exacerbated by bloodfeeding and contributed to a higher 

Plasmodium melanisation rate in comparison to strains susceptible to the malaria 

parasite(Kumar et al. 2003). Superoxide anions are secreted into the midgut 

lumen of the adult Aedes aegypti mosquito and bloodmeal ingestion decreased 

ROS levels via blood haem activated protein kinase C (Oliveira et al. 2011). The 

complexity of the role of ROS in gut microbe homeostasis was further underlined 

by the suggestion that gut bacterial derived ROS may kill Plasmodium in the 

Anopheline mosquito (Cirimotich etal. 2011).

In chapter 4 it was shown that ROS scavenging by means of antioxidant 

supplementation decreased survival of adult Lu. longlpalpis and led to activation 

of the phenoloxidase cascade, which was proposed to be due to bacterial 

proliferation (Diaz-Albiter et al. 2011). The purpose of the work presented in this 

chapter was to investigate the ROS activities in the gut of Lu. longlpalpis after 

feeding Leishmania mexicana and Serratia marcescens - an insect pathogen also 

found in wild sand fly populations (Gouveia et al. 2008). We analysed the 

expression of ROS-regulatory enzymes during infection and also manipulated ROS 

balance in infected flies to analyse its effect on gut- microbe homeostasis. The 

results suggest that Leishmania infections do not elicit ROS production within the 

Lu. longlpalpis midgut, whereas Serratia infections increase ROS generation inside 

the sand fly gut.

5.2. Results

5.2.1. ROS-regulatory genes are differentially expressed in the midgut of 

Leishmania and Serraf/er-infected flies

To analyse changes in expression of ROS-regulatory genes in the midgut of Lu. 

Longlpalpis the sand flies were infected with either S. marcescens or L. mexicana. 

Expression of four ROS-regulatory genes was assessed by RT-RCR. Non-infected 

blood-fed flies were used as negative control. Catalase (CAT) exhibited the 

highest variation in expression among all ROS-detoxifying gene sequences 

analysed. CAT was downregulated in Leishmania-mfected flies at 1, 24 and 48 h
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PBF compared to control group (p<0.05, Fig 5.1A). Serratia-'mfected flies exhibited 

CAT upregulation at 24 and 96 h PBF compared to Leishmania-mfected flies 

(p<0.05/ Fig 5.1A). A putative superoxide dismutase (SOD) was down regulated at 

48 h PBF in Leishmania-mfected flies compared to control group (p<0.016) (Fig 

5.IB), A Lu. longipalpis peroxiredoxin (PrxR) displayed a trend of upregulation at 1 

and 24 h PBF in non-infected flies relative to the infected groups but such 

differences were not statistically significant (Fig 5.1C). OXR1, a gene described in 

A. gamblae that regulates the expression of catalase and glutathione peroxidase 

(Jaramillo-Gutierrez et al. 2011) did not exhibit significant changes in expression 

after L mexicana and S. morcescens infections (Fig 5.ID).

5.2.2. Serratia and not Leishmania induces changes in H2O2 concentration in the 

midgut

Catalase degrades toxic H2O2 into water and oxygen. To understand whether 

these changes in catalase expression have an effect on hydrogen peroxide levels, 

midgut-specific H2O2 concentration was measured in L mexicana and 5. 

morcescens-infected Lu. longipalpis. Sand flies were infected and midguts were 

assayed for H2O2 at 24, 48, 72 and 94 h PBF. Time zero was considered as H2O2 

concentration of non-blood-fed flies before infection. Only Serratia-'mfected flies 

exhibited a significant increase of H2O2 concentration at 48 h PBF compared to 

the Leishmania-mfected group (p<0.05. Fig 5.2). These results show that L 

mexicana infection does not induce changes in hydrogen peroxide concentration 

in the midgut of Lu. longipalpis from 24 to 96 h PBF, in contrast to S. marcescens 

which induced a significant increase in H2O2 concentration at 48 hours after 

inoculation.

5.2.3. Leishmania induces changes in catalase activity in the midgut

To investigate whether a reduction in midgut-specific catalase expression would 

be reflected in a concomitant decrease in catalase activity, midguts were 

dissected at different time points and assayed for enzymatic activity. Leishmania- 

colonised flies exhibited a significantly lower midgut-specific catalase activity at 

48 h PBF (Fig 5.3, p<0.05).
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Figure 5.1: Midgut-specific relative expression profile by semiquantitative RT-PCR of 
ROS-regulatory genes in infected Lu. longipalpis. Female flies were fed with either a 
non-infected bloodmeal (Control) or a Serratia morcescens-infected bloodmeal. 
Midguts were pooled (N=8) and expression of the following genes was assessed: A 
catalase (CAT), B Cu/Zn superoxide dismutase (SOD), C peroxiredoxin (PrxR), and D 
oxidation resistance protein l(OXRl). Bar charts represent mean ± SEM of combined 
samples from at least 2 independent experiments. Asterisk indicates statistical 
difference at p<0.05 between groups under solid line. Charts combine expression data 
from Serrot/o-infected flies with previous ones from Leishmania-co\on\se6 midguts (Fig 
3.8, chapter 3).
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Figure 5.2: Hydrogen peroxide concentration in the midgut of Leishmania and 
5errot/o-colonised sand flies. Female flies were fed with either a non-infected 
blood meal (Control), a Leishmania mexicana or Serratia morcescens-infected 
bloodmeal. Midguts of sucrose fed sand flies were dissected 24 h before blood 
feeding and included in the analysis. Midguts were pooled (N=8) and assayed for 
H2O2 concentration. Bar chart represents mean ± SEM of combined samples from 
2 independent experiments. Asterisk indicates statistical difference at p<0.05.
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Figure 5.3: Catalase activity in the midgut of Leishmania-co\on\sed sand flies. Female 
flies were fed with either a blood meal (Bloodfed) or a Leishmania mexicana - 
inoculated bloodmeal. Individual midguts and assayed for catalase activity (N=10). 
Bar chart represents mean ± SEM of combined samples from one experiment. Asterisk 
indicates statistical difference at p<0.05.
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5.2.4. Serratia and not Leishmania induces changes in midgut ROS production in 

vivo

To further investigate in more detail ROS generation within Lu. longipalpis 

midguts, superoxide anion production was monitored in vivo in Leishmania and 

Serrat/o-infected sand flies. Serratia-mfected midguts showed a significant 

increase in superoxide production at 24, 48, and 72 h PBF compared to both 

Leishmania-mfected and negative control midguts (p<0.02, Fig 5.4A). Leishmania- 

infected midguts did not show significant differences in ROS production 

compared to bloodfed negative controls (Fig 5.4A). All Serrat/o-infected flies were 

dead at 7 days post-infection. ROS production significantly decreased at 24 and 

48 h after blood feeding compared to sugar fed flies (Fig 5.4A, p<0.05) returning 

to similar values from sugar fed flies after 72 h and 7 days after blood feeding (Fig 

5.4A). These results show that Serratia inoculation dramatically increases 

superoxide production within Lu longipaipis midgut, whereas activity of 

superoxide in Leishmania infections did not increase in comparison to blood-fed 

control insects up to seven days post-infection.

5.2.5. Continuous H2O2 feeding to sand flies negatively affects Leishmania 

survival in vivo

To analyse whether F^C^has a negative effect in Leishmania survival inside the 

midgut, sand flies were allowed to feed ad libitum throughout the experiment on 

a 5 mM F^CVsupplemented 70% w/v sucrose solution followed by Leishmania 

infections to determine the effect of chronic H2O2feeding on Leishmania survival. 

Midgut homogenates of 96 h PBF sand flies fed on H2O2 had significantly fewer 

parasites compared to negative controls fed on plain sucrose (p<0.05, Fig 5.5). 

These results show that H2O2 exposure in vivo decreases L mexicana survival 

within the Lu. longipalpis midgut.

5.2.6. dsRNA-mediated knockdown of catalase negatively affects Leishmania 

survival in the midgut

To further understand the deleterious effects of ROS on the development of L 

mexicana within the sand fly midgut, a Lu. longipalpis catalase was knocked down
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Figure 5.4: In vivo detection of ROS in Leishmania and Serrot/a-infected sand flies.
Female flies were fed with either a non-infected, a Leishmania mexicana or a Serratia 
marcescens-mfected bloodmeal. Individual midguts were DHE-stained and photographed 
to analyse superoxide production. Midguts of sucrose fed sand flies were dissected 24 h 
before blood feeding and included in the analysis. A, Bar charts represent mean values of 
net colour intensity ± SEM of at least five individual midguts. Asterisk indicates statistical 
difference at p<0.05.Symbol t indicates statistical differences at p<0.05 compared to 
Sucrose group. Dagger represents no survivors (Serratia 7days). B-D, selected 
representative images of non-infected, Leishmania and Serratia infected midguts, 
respectively. Scale bar represents 200 pm.
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Figure 5.5: Leishmania infection after continuous feeding of female Lu. longipalpis 
with a hydrogen peroxide-supplemented sucrose meal. Flies were fed ad libitum 
from emergence on either 70 % sucrose (Sucrose) or a 5mM H202-supplemented 70% 
sucrose solution (Sucrose+ H2O2) and infected 3 days post-emergence. Individual 
midguts were dissected and sampled for L mexicana at 96 h after infection. Circles 
represent number of parasites per individual midgut. Horizontal line represents mean 
± SEM of combined samples from 2 independent experiments. Groups were compared 
using the Mann-Whitney U test.
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Figure 5.6: dsRNA-mediated knock down of catalase reduces Leishmania 
population in the midgut. A, relative expression of catalase mRNA in whole fly 
homogenates from catalase dsRNA-injected and "mock-injected" sand flies. B, effect 
of dsRNA-mediated catalase silencing on Leishmania infection. Individual midguts 
were dissected and sampled for L. mexicana at 96 h after infection. Circles represent 
number of parasites per individual midguts. Horizontal line represents mean ± SEM 
of combined samples from 3 independent experiments. Groups were compared 
using the Mann-Whitney U test. Asterisk indicates statistical difference at p<0.05
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by RNA interference (RNAi). A dsRNA-mediated catalase knockdown of >50% was 

achieved at 96h post injection (pcO.OOl, Fig 5.6A). Catalase gene depletion was 

detrimental to L mexicana survival within Lu. longipalpis midgut at 4 days after 

infections {p<0.05, Fig 5.6B), suggesting that changes in catalase activity within 

the sand fly gut had a negative outcome on Leishmania survival and development.

5.2.7. Chronic feeding of a potent ROS scavenger reduces sand fly survival in 

Serrot/a-infected flies and increases naturally-occurring microbiota

To test if ROS depletion by chronic feeding of an antioxidant would have an effect 

on Lu. longipalpis survival after Serratla inoculation, insects were fed from 

emergence and throughout the experiment on an uric acid-supplemented 

sucrose solution in cotton wool and then infected with S. marcescens in rabbit 

blood. Serrot/o-infected sand flies fed with uric acid-supplemented sucrose 

(Serr+UA) exhibited a significant decrease in survival compared to Serratia- 

infected flies fed on plain sucrose solution (Serr) (pcO.OOl, Fig 5.7A). Uric acid- 

supplementation had no effect on survival as no significant reduction could be 

observed in bloodfed control flies chronically fed with uric acid (Ctrl+UA) in 

comparison to blood-fed control flies (Ctrl) (Fig 5.7A). To analyse whether 

reduction in insect survival was due to an increase in Serratla bacterial cells 

within the sand fly gut, midguts of sand flies inoculated with Serratla with or 

without UA were dissected at 48 h PBF and homogenates were diluted in PBS and 

inoculated onto LB agar plates. Serratla population in flies fed on UA- 

supplemented sucrose were significantly lower compared to controls (p<0.012, 

Fig 5.7B). However, control flies (non-infected) fed on UA-supplemented sucrose 

exhibited larger population of resident microbiota, (p<0.009, Fig 5.7C). To 

investigate whether naturally-occurring microbial growth displayed a similar 

behaviour in Se/rot/o-infected samples, colony counts of resident microbes were 

performed. UA supplementation significantly increased resident microbiota 

numbers in Serratia-mfected flies (p<0.037, Fig 5.7B).
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5.2.8. dsRNA-mediated depletion of OXR1 affects sand fly survival but does not 

affect Leishmania development in the midgut

To investigate the putative rote of OXR1 in redox homeostasis and Leishmania 

colonisation, OXR1 was knocked down by RNA interference (RNAi). Gene silencing 

was extremely efficient as a significant reduction in relative expression was 

achieved up to 7 days after dsRNA injections (p<0.05, Fig 5.8A). However, 

silencing of OXR1 did not decrease expression of SOD and CAT transcripts (Fig 

5.SB) nor did it affect development of Leishmania in the midgut (Fig 5.8C). 

However, OXRl-knockdown sand flies exhibited lower survival compared to 

'mock' injected controls (p<0.05, Fig 5.8D).

5.2.9. H2O2 has a deleterious effect on Leishmania mexicana in vitro. To

investigate the effect of hydrogen peroxide in L mexicana cultures, 

promastigotes were incubated for 24 h in different concentrations of 

supplemented M199 medium. Parasites numbers in 500 pM and 5 mM- 

supplemented groups were significantly lower than both negative control and 5 

pM-supplemented groups (p<0.01. Fig 5.9).
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Figure 5.7: Chronic feeding of a uric acid-supplemented sugar meal reduces survival 
in Se/rof/a-infected flies and increases naturally-occurring microbiota. A, percentage 
survival of sand flies fed with: Serratia diluted in blood and 70% sucrose solution ad 
libitum (Serr); Serratia diluted in blood and 10 mM uric acid-supplemented 70% 
sucrose solution ad libitum (Serr+UA); non-infected blood and 70% sucrose solution 
ad libitum (Ctrl); and non-infected blood and lOmM uric acid-supplemented 70% 
sucrose solution ad libitum (Ctrl+UA). B, effect of uric acid-supplemented sucrose 
feeding on Serratia and resident microbiota within the sand fly midgut; C, effect of 
uric acid-supplemented sucrose feeding on resident microbiota in non-inoculated 
sand flies. Bar charts represent mean ± SEM of combined samples from at least 3 
independent experiments (N=60). Groups were compared using the Mann-Whitney U 
test. Asterisk indicates statistical difference at p<0.05. Survival curves were compared 
using the Kaplan-Meier Log Rank x2 test
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Figure 5.8: dsRNA-mediated knock down of the OXR1 gene in female Lu. 
longipalpis. A, relative expression of OXR1 mRNA in whole fly homogenates from 
OXR1 dsRNA-injected and "mock-injected" sand flies up to seven days after injection 
(N=15). B, relative expression of OXR1, SOD and CAT in whole fly homogenates from 
OXR1 dsRNA-injected and "mock-injected" sand flies on day 7 after injections (n=3). 
C, effect of dsRNA-mediated OXR1 silencing on Leishmania infection. Individual 
midguts were dissected and sampled for L mexicona at 96 h after infection. D, 
cumulative survival of dsRNA-injected and "mock-injected" sand flies up to five days 
after injections (N=50). Bar charts represent mean ± SEM of combined samples from 
at least 1 independent experiment. Asterisk indicates statistical difference at p<0.05. 
Survival curves were compared using the Kaplan-Meier Log Rank x2 test and 
significance at p<0.05 is denoted by * symbol.
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Figure 5.9: Effect of hydrogen peroxide on Leishmania mexicana. Promastigotes were 
incubated in different concentrations of hydrogen peroxide-supplemented M199 
medium for two hours, washed and incubated in regular medium for 24 h before 
parasite count using a haemocytometer. Bar chart represents mean ± SEM of 
combined samples from 2 independent experiments. Asterisk indicates statistical 
difference at p<0.01.
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5.3. Discussion

The results presented in this chapter suggest that ROS-regulatory gene expression 

changes throughout digestion and that gene expression of CAT and SOD is 

modulated in the sand fly midgut after infection with the flagellate protozoan L 

mexicana or per os inoculation with the insect pathogenic gram-negative 

bacterium S. marcescens. The catalase enzymatic activity was lower in the 

Leishmania-co\or\\seti midgut and it was concluded that ROS regulation influences 

the sand fly host-Leishmania parasite-gut microbiota interaction. It was 

demonstrated that changes in midgut ROS activities after oral administration of 

uric acid (an exogenous ROS scavenger) alters the dynamics of sand fly midgut 

homeostasis, favouring the growth of commensal sand fly gut bacteria.

5.3.1. Gene expression

CAT was differentially expressed during blood feeding in Lu. longipalpis (Fig 5.1A) 

in an expression profile that correlates with the process of bloodmeal digestion. 

Expression of blood-induced digestive trypsin enzyme in Lu. longipalpis is 

detectable from 2 to 72h PBF, reaching its peak at 12 h (Telieria et al. 2007). A 

similar expression pattern of ROS-detoxifying enzymes should occur, since ROS 

are largely produced during blood digestion (Graca-Souza etal. 2006). In different 

blood-sucking insects, catalase is expressed upon blood ingestion (Paes et al. 

2001; Sanders et al. 2003; Munks et al. 2005; Jochim et al. 2008; Magalhaes et al. 

2008; Molina-Cruz et al. 2008). It has been postulated that this enzyme plays an 

important role detoxifying ROS derived from haemoglobin breakdown (Graca- 

Souza et al. 2005; Graca-Souza et al. 2006). An increasing expression of catalase 

could reflect the use of this enzyme during digestion. In Drosophila, differences in 

catalase mRNA expression and protein accumulation profiles suggest that 

catalase expression might be affected by transcriptional and post-transcriptional 

regulation (Radyuk et al. 2000). Catalase could be present as an inactive storage 

proform for fast release to avoid ROS-induced damage during blood digestion. 

Previous studies in Anopheles gambiae have shown an increase in systemic 

expression of ROS detoxification enzymes at 24 and 48 h after blood feeding.
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During Plasmodium infection, catalase was downregulated 24 h post-infection 

and it was suggested that such suppression might be a response against the 

parasite that would ultimately lead to higher intracellular levels of H2O2, protein 

nitration and finally, apoptosis of infected ceils (Molina-Cruz et al. 2008). 

Interestingly, Leishmania-mfected sand flies showed a significant reduction in 

catalase expression in comparison to bloodfed controls up to 96h post infection. 

Such a reduction in catalase expression could reflect a midgut-specific 

physiological reaction in response to Leishmania infection. As Lelshmania 

development is restricted to the sand fly midgut (Bates 2007), any reduction in 

catalase expression would result in increased oxidative stress, ultimately leading 

to an impact on Leishmania survival within the sand fly midgut. Although it is 

possible that a reduction in catalase expression in Leishmania-mfected midguts 

represents a response against the parasite (as suggested in Plasmodium-mfected 

Anopheline mosquitoes), this would not explain how Lu. longipalpis is able to 

harbour heavy Leishmania infections in experimental and field conditions (Deane 

and Deane 1954; Freitas et al. 2002; Kiliick-Kendrick and Rioux 2002). However, 

H2O2 measurements in Leishmania-mfected midguts were not significantly higher 

compared to non-infected controls (Fig 5.2). As we measured the H2O2 steady- 

state levels, it is possible that the activity of the enzymes that generate ROS 

(midgut NADPH oxidases) could be diminished, if we consider the killing effect of 

some bacteria on Leishmania parasites (Moraes et al. 2009), we can speculate 

that parasites would not elicit a complete reduction of ROS levels in the sand fly 

midgut, as this would favour potential competitor microorganisms.

There were no significant changes in OXR1 expression in the midgut of Lu. 

longipalpis during blood digestion and Leishmania or Serratia infections. In An. 

gambiae, OXR1 regulates the expression of ROS-detoxifying enzymes, specifically 

catalase and glutathione peroxidase. In our study, primers were also designed to 

cover the carboxyl terminal TLDc domain, the most highly conserved region of the 

gene. However, gene expression between Lu longipalpis OXR1 and catalase was 

not related and there was no indication that OXR1 expression controls catalase
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expression in a similar way previously described in A. gambiae (Jaramillo- 

Gutierrez etal. 2011).

5.3.2. ROS production-bacteria

The H2O2 concentration was significantly higher in Serratia-'mfected flies two days 

after blood feeding (Fig 5.2). Additionally, in vivo detection of superoxide 

confirmed high levels of this species from 1 to 72 h after bacterial challenge (Fig 

5.4A). It is possible that the increase in ROS was due to epithelial cell death 

caused by pathogen proliferation (Buchon et al. 2009). Alternatively, this increase 

could be part of the oxidative burst against pathogenic bacteria that has been 

observed in Drosophila (Ha et al. 2005b). A similar inverse correlation between 

bacterial growth and ROS levels has been shown recently in Aedes aegypti 

(Oliveira et al. 2011). In chapter 4 we showed that feeding sand flies with the 

ROS-scavenger ascorbic acid was detrimental to survival (Diaz-Albiter et al. 2011) 

and suggested that mortality could be caused by bacterial infections due to ROS 

reduction in the midgut. In the present study oral administration of a ROS- 

scavenger also decreased survival in Se/ratva-infected flies continuously fed on 

uric acid compared to Serrot/o-infected flies fed on sucrose solution. It is very 

unlikely that differences in mortality were caused by uric acid toxicity since flies 

fed on this antioxidant did not show any differences in survival compared to 

control. The choice of uric acid instead of ascorbic acid in this chapter was due to 

the fact that ascorbic acid has been shown to inhibit phenoloxidase (PO) activity 

(Ballarin et al. 1998). This inhibition of PO could have had an undesired effect on 

midgut bacterial populations with concomitant misleading results.

The addition of dietary uric acid increased resident gut microbiota in both 

Serrot/o-infected and non-infected flies but had an opposite effect on the Serratia 

population. In similar experiments performed in Aedes with Enterobacter asburiae, 

the addition of dietary ROS inhibitors increased both endogenous microbiota and 

Enterobacter (Oliveira et al. 2011). In our work, midguts were dissected 48 hours 

after infection, when mortality reached ~80%. It is possible that survivors 

sampled at that time point were more resistant to infection and harboured a
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lower Serratia load. Another possibility is that the increase in the Serratia 

population was impeded by resident microbes, which were indeed significantly 

higher in Serrat/CHnfected flies supplemented with uric acid.

5.3.3. ROS production-ie/s/iman/a

We have shown that hydrogen peroxide can kill Leishmanio in vitro (Fig 5.9) and 

that oral administration of H2O2 to infected flies is detrimental to Leishmania 

survival within the sand fly gut. RNAi mediated gene silencing of the H2O2- 

detoxifying enzyme catalase led to lower Leishmania population in the gut 

providing further confirmation that Leishmania parasites are sensitive to ROS 

generation. An estimated reduction of ~50% in catalase expression was achieved 

in catalase dsRNA-injected sand flies in comparison to "mock-injected" controls. 

Catalase knockdown sand flies exhibited a reduction in parasite numbers when 

compared to dsGFP-injected insects. Since only fully engorged females were 

selected for the experiments, it is unlikely that the size of the bloodmeal could 

account for the difference in parasite numbers. It was quite intriguing to find a 

lack of ROS activity in Leishmania-mfected sand flies in comparison to Anopheles 

and Plasmodium (Molina-Cruz et al. 2008). The fact that two different ROS (02 • 

and H2O2) and their associated enzymes (superoxide dismutase and catalase) did 

not exhibit induction in either expression profiles or biochemical assays in sand 

fly midguts raises the possibility that Leishmania could "evade" the oxidative 

burst by an unknown mechanism or avoid eliciting a ROS-based response to 

ensure survival within the gut.

One potential scenario would be detoxification of ROS by the Leishmania during 

blood meal digestion using the protozoan's antioxidant enzymes, especially if we 

consider the reduction in catalase enzymatic activity in Leishmania-colomsed 

midguts (Fig 5.3). Antioxidant enzymes are crucial for Leishmania parasites during 

infections inside the macrophage. It has been shown that virulence in Leishmania 

correlates with antioxidant enzyme expression in the parasite (Krieger et al. 2000; 

Steenkamp 2002), as well as with its resistance to hydrogen peroxide toxicity 

(Goyal et al. 1996; Acestor et al. 2006; Pal et al. 2010). Moreover, in an
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interspecies microarray performed in L mexicana, one of the most upregulated 

genes in promastigotes compared to lesion amastigotes was peroxidoxin (Holzer 

et al. 2006) which when expressed as a protein was able to break down ROS in 

protozoa (Levick et al. 1998; McGonigle et al. 1998; Barr and Gedamu 2001). The 

hypothesis of a Leishmania-mediated ROS detoxification during bloodmeal 

digestion is currently being studied in our laboratory.

5.3.4. OXR1 knockdown

Although the OXR1 gene was successfully silenced in female sand flies as shown 

by a consistent and prolonged reduction in expression as well as a decrease in 

sand fly survival, Lelshmania-mfected sand flies did not exhibit a concomitant 

significant reduction in parasite population after gene knock down. Results from 

similar experiments performed in the malaria vector Anopheles gambiae showed 

that OXR1 protects mosquitoes against oxidative stress and that silencing of this 

gene also reduces the expression of catalase and glutathione peroxidase and 

negatively affects the development of Plasmodium berghei (Brandt et al. 2008; 

Jaramillo-Gutierrez et al. 2011). The OXR1 gene is highly conserved from yeast to 

humans (Stowers et al. 1999a; Volkert et al. 2000; Fischer et al. 2001; Elliott and 

Volkert 2004), and has been found to provide protection against DNA damage 

from endogenous and exogenous oxidants (Volkert et al. 2000). OXRl-silenced Lu. 

longipalpis displayed a change in phenotype as mortality was higher in 

experimental flies. It is possible that such mortality was due to DNA damage. 

OXR1 is the homologue of Drosophila L82, a gene that belongs to a novel family 

involved in metamorphosis and controlled by both ecdysone-dependent and 

ecdysone-independent regulatory mechanisms. Mutations in L82 in led to 

developmental arrest and death upon eclosion of Drosophila (Stowers et al. 

1999b). Although gene knockdown was performed in adult specimens, it is 

possible that OXR1 could be involved in an unknown process and negatively 

affect survival when silenced in fully developed flies.

As the body of sand fly sequence data increases (Dillon et al. 2006; Ramalho- 

Ortigao et al. 2007; Jochim et al. 2008; Dostalova et al. 2011) we can begin to
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infer that the sand fly gut immune response is similar in overall organisation to 

that of the more extensively studied dipterans; mosquitoes and Drosophila. In 

these insects there is a reliance on the innate immune response mainly via the 

two types of effectors; ROS and AMPs (antimicrobial peptides). Manipulating the 

sand fly ROS system revealed the potential complexity underlying immune 

homeostasis in the gut. The challenge for the fly is to regulate ROS production 

within the gut to attempt suppression of potential pathogens whilst allowing 

development of potentially beneficial microorganisms. Our results suggest that 

the ROS is harmful to the Leishmania and that experimental activation of the ROS 

system in the sand fly results in a reduced Leishmania population. But there is an 

apparent tolerance of the Leishmania by its sand fly host allowing the 

development of large populations. Addition of antioxidant to the gut and 

subsequent effects on co-habiting bacterial species provide us with a glimpse into 

the fine 'tuning' between ROS levels, bacterial communities and the sand fly 

vector of Leishmania.
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Chapter 6

Development of software for analysing Leishmania

morphometries

6.1. Introduction

It has been 113 years since the publication of the first description of amastigotes 

of Leishmania by the Russian surgeon Peter Borovsky from smears of an infected 

patient (Borovsky 1898; Hoare 1938). Today, Leishmania are still stained and 

analysed under the microscope as they used to over a century ago. The present 

chapter charts the development of a software- image analysis program for 

Leishmania; we compare morphometric data obtained manually from stained 

smears of cultured parasites with data produced using the same samples from 

software using a computer program developed by collaborators from the 

Department of Physics, University of Liverpool.

The Leishmania genus spans over 30 different species, 20 of which are of medical 

and veterinary relevance (Bates 2007; Antinori et al. 2011). The life cycle of 

Leishmania involves two major stages: non-motile, amastigote forms that occur 

inside macrophages of mammals, and motile flagellated promastigote forms that 

develop inside the invertebrate sand fly host from amastigotes ingested after 

blood feeding from the infected vertebrate (Fig 6.1). Subsequent developmental 

changes in amastigotes produce different promastigote morphological forms 

(Kiliick-Kendrick 1979). The development of Leishmania inside its insect host is 

restricted to the midgut in two distinctive subgenera-specific colonization 

patterns. The subgenus Leishmania are suprapyiarian {/.e., that develop in the 

midgut and foregut), while subgenus Viannia are peripylarian (/.e., that also 

colonise the hindgut) (Lainson and Shaw 1987). Regardless of colonisation 

preferences in the midgut, Leishmania development ultimately leads to 

metacyclic promastigotes (Bates 2007). These are the flagellated forms that
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bridge the transfer of the Leishmania between vector and mammalian host 

during the bite of the sand fly (Bates and Rogers 2004).

Because of its medical importance, the amastigote stage of Leishmania has 

received more attention compared to the flagellated stage (Handman and Bullen 

2002). Different promastigote forms were described inside the phlebotomine 

host two decades ago (Lawyer et ai. 1987; Killick-Kendrick 1990; Walters 1993), 

but there was a lack of general agreement in the scientific community as 

reflected by the fact that flagellated forms other than metacyclics were 

collectively denominated as procyclic promastigotes in some references (Pinto- 

Da-Silva et ai 2002; Soares et al. 2002). The publication of two seminal papers 

using Leishmania (Leishmania) mexicana and Leishmania {Leishmania) infantum 

(syn. Leishmania chagasi) as models (Rogers et al. 2002; Gossage et ai. 2003) 

provided evidence robust enough to define six types of flagellated 

subpopulations, namely procyclic promastigotes, nectomonad promastigotes, 

leptomonad promastigotes, haptomonad promastigotes, paramastigotes and 

metacyclic promastigotes. The authors also included morphometric information, 

such as body width, body length and flagellum length for the first time on four of 

the flagellated forms (Table 6.1).
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Migration of infection to anterior 
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infective forms
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Parasites multiply at bite 
site and/or internally

Sand fly phase Mammalian phase

Figure 6.1: Overview of the Leishmania cycle. Adapted from Bates and Rogers (2004).
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Table 6.1. Summary of attributes, morphometries and graphic examples of subpopulations of Lelshmania mexicana. 
Modified from (Rogers et at. 2002; Bates and Rogers 2004)

Morphological
subpopulation Description Morphometries Illustration

Amastigote

Taken up by sand flies in the bloodmeal, 
may undergo limited division but mainly 
transform to procyclic promastigotes.
First experience a period of trypsin 
sensitivity as surface membrane is 
remodelled (Pimenta eto/. 1997).

Ovoid body form, no flagellum 
protruding from flagellar pocket %

Procyclic
promastigote

Develop from amastigotes taken up in 
the bloodmeal in 24-48 hours dividing 
forms responsible for initial expansion of 
parasite population in the abdominal 
midgut (bloodmeal phase).

Body length 6-5 - 11-5 pm, 
flagellumcbody length (body 
width variable)

Nectomonad
promastigote

Develop from procyclic promastigotes 
non-dividing migratory forms responsible 
for anterior spread and establishment of 
the infection in the thoracic midgut 
(Killick-Kendrick eto/. 1974).

Body length £12 pm, (body 
width and flagellar length 
variable)

Leptomonad
promastigote

Develop from nectomonad 
promastigotes, dividing forms 
responsible for further expansion of the 
population in the thoracic midgut and 
foregut produce Promastigote Secretory 
Gel (PSG) a gel-like substance important 
in transmission (Rogers etal. 2002).

Body length 6-5 - 11-5 pm, 
flagellum £ body

Haptomonad
promastigote

Developmental origin uncertain, probably 
from leptomonad promastigotes 
attached forms that possess an expanded 
flagellar tip and bind to cuticular surfaces 
via hemidesmososme-like attachment 
plaques (Killick-Kendrick et al. 1988).

Disc-like expansion of flagellar 
tip (body form and flagellar 
length variable) —

Metacyclic
promastigote

Mammalian-infective stage, pre-adapted 
for survival in the mammalian host, they 
become complement resistant, express 
stage-specific genes and are 
biochemically part-way to becoming 
amastigotes (Sacks 1989).

Body lengthsS pm, body 
width<10 pm, 
flagellum> body length

Paramastigote Not a promastigote sensu stricto, 
developmental role and origin uncertain.

Kinetoplast adjacent to nucleus, 
external flagellum present

The applied use of quantitative information derived from morphological features 

in organisms has a long history. It seems that Robert E. Blackith coined the term 

'morphometries' from his research on morphological changes in the 

grasshopper's carapace and its association with the development of the 

swarming phase of locusts (Blackith 1957; Reyment 2010). Morphometries is a 

vast field and probably the most up-to-date definition is that of Elewa who 

devised it as "quantification and visualization of shape to solve numerous 

problems related to wide ranges of scientific research" (Elewa 2010). Current 

applications cover a wide variety of subjects, from shape variation of butterfly
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wings and evolutionary ecology (Breuker et al. 2010) to typology of ceramic 

materials and archaeology (Martmez-Carrillo etal. 2010).

The development of computer-assisted image analysis has also played an 

important role in the evolution of morphometric data analysis with many lines of 

research currently using image analysis software (Brown et al. 2011; Drake 2011; 

Lee et al. 2011; Markiewicz 2011; Mosher et al. 2011). Although software 

capacity for shape recognition is presently far behind that of the human brain, it 

is also true that computers have proven far superior and more reliable in 

performing certain carefully designed monotonous and repetitive tasks much 

more rapidly than the human operator. Quantitative examination of microscopic 

biological samples such as bacteria, yeast and blood cells used to be a laborious 

process when performed manually under the microscope. This task has become 

more efficient with the aid of different devices such as coulter counters and 

modern flow cytometers (Andersson and Berg 2004). The latter are able to 

measure complex parameters such as volume, nucleic acid content, enzymatic 

activity, apoptosis, oxidative burst among others (Rieseberg etal. 2001). However, 

the variation in length of the flagellum as a morphometric character for 

Leishmania subpopulation classification makes difficult the use of flow cytometry 

for subpopulation analysis.

Perhaps the most successful example of automated morphometric recognition 

and classification of a flagellated form comes from the field of reproductive 

biology. Sperm morphology has been associated with in vivo fertility (Rodriguez- 

Martinez 2006); manual sperm morphological classification has been found to be 

subjective and highly variable between technician and laboratories (Saacke 1982). 

To tackle this problem, a computer-assisted sperm head morphometry analysis 

(ASMA) was developed in the 1980s (Katz et al. 1986) and improved up to a point 

where it was able to detect changes in sperm morphology otherwise 

undetectable by manual assessment (Davis et al. 1993). ASMA has been used in 

sperm from different animal species such as horses (Ball and Mohammed 1995),
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boar (Hirai et al. 2001), cattle (Gravance et al. 1996) and humans (Kruger et al. 

1996) and recently in llama (Casaretto etal. 2011).

An accumulating body of work exploring Leishmania transmission by its 

phlebotomine host has recorded differences in parasite numbers as de facto 

indicative of changes inside the sand fly environment that might affect the 

parasite. Although differences in parasite load inside the phlebotomine are useful 

in such experiments, it is possible that changes in parasite subpopulations inside 

the sand fly midgut could be happening in experiments where differences in 

parasite numbers were not significant between experimental and control groups. 

Practical limitations mean that most studies measure the relative size of the 

promastigote population as an important parameter of the 'success' of the 

Leishmania in establishing within the sand fly vector. However a more accurate 

parameter of 'success' would be the rate of appearance of the mammalian 

infective metacyclic promastigotes. For example one experiment may contain a 

sand fly cohort where 100% are infected with Leishmania but only 5% contain 

metacyclics; the majority of sand flies are therefore unlikely to transmit an 

infection if they were to blood feed. The rate of development of the metacyclic 

population is therefore a very important, but under researched, aspect that 

would have important implications for understanding the epidemiology of the 

disease. The program would also be useful for in vitro analyses of Leishmania 

development and other related kinetoplastid such as Trypanosoma cruzi and 

Trypanosoma brucei in their respective vectors.

One of the major reasons why samples are not more routinely analysed by 

classification of parasite subpopulations is because it is very labour-intensive and 

slow and also requires advance microscopy skills compared to perform direct 

counts of all parasite forms present in the midgut. An accurate, fast, non

operator biased computer driven tool to analyse parasite subpopulations of 

Leishmania would provide us with an additional measurement of the 

development of Leishmania populations both in vivo to investigate sand fly- 

Leishmania interactions and also in vitro examining growth parameters on
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promastigotes. This was an interdisciplinary project with Prof Steve Barrett from 

the Department of Physics of the University of Liverpool who modified his pre

existent image analysis software (Image SXM, (Barrett 2008)) to measure and 

discriminate different Leishmania subpopulations from photographic images. This 

promastigote project formed part of the Microscopy Image Analysis Software for 

Medical Applications (MIASMA) project (http://www.liv.ac.uk/~sdb/MIASMA). 

This modified version of the Image SXM was called ParaMorph.

6.2. Results and Discussion

6.2.1. Software Development of Image SXM ParaMorph

Image SXM was originally written by S. D. Barrett (Barrett 2008) and further 

developed into ParaMorph by students P. Mulligan (V. 3.0) and H. Delemare (V. 

3.1) to identify subpopulations of parasites from photographs of microscopic slide 

preparations. Although the main differences between both versions are 

overviewed in this section, both student projects have been included as 

Appendices at the end of this chapter for further details. Broadly speaking and 

regardless of the version, ParaMorph has six main steps (Fig 6.2):

Calibration. The algorithm assumes that a folder full of images to be analysed 

contains an image of a 50 pm calibration grid. This is used to define an image 

scale (pixels/pm) that is applied to all subsequent images.

Colour and Background. The green channel of the RGB (red-green-blue) colour 

image is selected as having the greatest contrast between parasites and the 

background. Variations in the background intensity across the image field of view 

are removed to improve the effectiveness of later analysis.

Thresholding. Images are thresholded (/.e., all pixels darker than a threshold value 

are 'kept' and set to black; all pixels lighter are 'thrown away' and set to white). 

This results in an image with black objects on a white background. The optimum 

value for threshold is determined from the distribution of the pixel intensities
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throughout the image. One threshold value shows the bodies and flagella; a 

higher (darker) threshold value shows only the bodies.

Separating Bodies and Flagella. The two images - one showing the bodies and 

flagella, the other showing only the bodies - can then be processed. Taking the 

difference of these two images gives a third image showing only the flagella. 

Flagella that are not attached to any bodies are eliminated at this point.

Measuring Bodies and Flagella. Once an image has been reduced to just black and 

white pixels (black = the objects of interest, white = everything else) then each 

black object can be measured to give its length and width. This is done for the 

image of bodies and again for the image of flagella. Objects that are not actually 

parasite bodies are rejected on the basis of their size and/or shape.

Parasite Type. Definitions of the various developmental stages of the parasites 

are used to determine which type best characterises each parasite 

body/flagellum pairing.

6.2.2. Differences between versions

Version 3.0 was firstly developed by Mulligan and it was initially tested with a 

batch of photographs and compared against manual measurements following the 

same protocol as in the present chapter. Thresholding in version 3.0 was 

calculated from observations and trial an error from the original photograph. One 

of the major weaknesses of version 3.0 was that there was a high error in 

measuring flagella length; this had a major impact on parasite detection and 

classification. The algorithms that Delemare (V 3.1) explored differed from 

version 3.0 in the details of how to determine the threshold level, which allows 

the bodies or flagella to be differentiated from the background. This is a function 

of the distribution of the pixel intensity values for the image. In Version 3.1 

different filters were added in an attempt to make the parasites stand out clearly 

from the background, without influencing the required metrics of parasite 

size/shape.
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Figure 6.2: Outline of Image SXM ParaMorph. The software has six main steps which 
start with an image folder which includes a photograph of haemocytometer grid to 
calibrate the measurements from pixels to micrometers and culminates with file 
containing parasite subpopulations relative frequencies, total numbers and position 
in the original photograph. Red asterisk indicates programming modifications from 
version 3.0 to 3.1. Black asterisk indicates steps with major difficulties on parasite 
morphology analysis.
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6.2.3. Parasite subpopulation clustering

To find out whether parasite subpopulations could be identified as discrete 

clusters, morphometric data from manual and computer-assisted measurements 

(body length, body width and flagellum length) were plotted in a three- 

dimensional XYZ scatter plot. Parasite subpopulations did not cluster in evident 

discrete units when body and flagellum measurements were plotted in an XYZ 3D 

graph, neither in manually obtained measurements nor in software-based 

analysis (Figs 6.3 to 6.5). Moreover, measurements seem to follow a normal 

distribution in XY (body length-body width-[green]), ZX (body length-flagellum 

length [magenta]) and YZ (body width-flagellum length [blue]) panes from data 

obtained after analysis of images by ParaMorph V. 3.0 (Fig. 6.4).

Data from V. 3.1 seem to follow the same pattern behaviour, with slight 

positive skewing in body length vs. body width (green, Fig. 6.5). It is not possible 

to conclude the same for manual measurements since observations were not as 

numerous as in data from ParaMorph. The apparent lack of clustering in the 

promastigote forms reveals, for the first time, that the morphological changes 

apparently follow a normal distribution and are continuous; there is no sudden 

switch in morphology from e.g. a procyclic to a nectomonad. As such the 

definition of the present classification system is based, at least in part, on a 

'perception' of differences due to human observation. The development of a 

reliable ParaMorph version using thousands of measurements would enable an 

unbiased examination of the present classification system. Perhaps the only 

exception of data clustering was the case of amastigotes which were assigned a 

flagellum length of zero. Amastigotes can be distinguished from the cloud of data 

in all scatter plots (arrows and circles, Figs 6.3-6,5).
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Figure 6.3: Three-dimensional scatter plot of all parasite subpopulations from 24 h, 48, h, 
7d and 8 d post-metacyclogenesis from manual counts. X-axis represents parasite length, 
Y-axis represents parasite width and Z-axis represents flagellum length. Projections of 
each point are plotted against the XY pane (green), ZX pane (magenta) and YZ pane 
(blue). Amastigote subpopulation is indicated by arrows and circles. N= 600 parasites.
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Figure 6.4: Three-dimensional scatter plot of all parasite subpopulations from 24 
h, 48, h, 7d and 8 d post-metacyclogenesis from photographs analysed with 
ParaMorph V. 3.0. X-axis represents parasite length, X-axis represents parasite 
length, Y-axis represents parasite width and Z-axis represents flagellum length. 
Projections of each point are plotted against the XY pane (green), ZX pane 
(magenta) and YZ pane (blue). Amastigote subpopulation is indicated by arrows 
and circles. N= 2575 parasites.
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Figure 6.5: Three-dimensional scatter plot of all parasite subpopulations from 24 h; 
48, h, 7d and 8 d post-metacyclogenesis from photographs analysed with 
ParaMorph V. 3.1. X-axis represents parasite length, Y-axis represents parasite 
width and Z-axis represents flagellum length. Projections of each point are plotted 
against the XY pane (green), ZX pane (magenta) and YZ pane (blue). Amastigote 
subpopulation is indicated by arrows and circles. N= 3048 parasites.
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There are no similar morphometric studies on flagellated protozoa to compare 

with the present work. However, in studies with mammalian sperm performed 

with boar ejaculates using computer-assisted morphological analysis, Fourier 

coefficients {i.e., how closely head shape is related to a series of mathematical 

shapes relative to a fundamental circular component) were determined from 

sperm and the three morphometric subpopulations were plotted together with 

no obvious discrete clusters (Thurston et al. 2001). However, in another study 

performed on boar sperm, plotting two major morphometric features produced 

two different clustering patterns in spermatozoa (classified as 'good freezer' or 

'bad' freezer) extracted from boars that differed in their ability to produce sperm 

able to withstand freezing-thawing (Pena et al. 2005).

6.2.4. Validation

To validate software-based parasite subpopulation classification, two different 

approaches were used with samples from each time point (24 h, 48, h, 7d and 8 d 

post-metacyclogenesis induction). Relative frequencies of parasite 

subpopulations were obtained manually from microscopic slides and compared 

against relative frequencies reported from ParaMorph. Also one photograph from 

each time point set was randomly selected and parasites in the image were 

compared against measurements and location in photograph as provided by 

ParaMorph, Relative frequencies of parasite subpopulations of manual vs. 

software were statistically different in all time points. No amastigotes were 

detected from manual observations in samples from 24 h and 48 h post- 

metacyclogenesis (PMG). However, both versions of ParaMorph report the 

presence of this form (Fig. 6.6 A and B). Samples from 7 and 8 d PMG were the 

most heterogeneous, showing all 5 forms of parasites and although ParaMorph 

relative frequencies were statistically different from Manual measurements, 

Version 3.1 shows a closer profile to manual measurements than V 3.0 (Fig 6.6 D). 

Relative frequencies from all time points pooled together show significant 

differences between the three groups (Fig. 6.7). However, it is noticeable that 

ParaMorph V 3.1 displays a subpopulation pattern with fewer procyclics, more
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leptomonad promastigotes and more metacyclic promastigotes compared to 

ParaMorph V 3.0. Also, this pattern is closer to that obtained from manual 

assessment. It is interesting to note that nectomonad promastigotes show the 

closest relative frequency between methods. It is possible that given the 

considerable longer body length of this subpopulation (Rogers et al. 2002) is 

easier for ParaMorph software to classify this parasite form.

Accuracy of ParaMorph varied between versions and was higher in version 3.1., it 

was found that relative frequencies were significantly different among the three 

methods (Figs 6.6 and 6.7). But how many parasites were correctly classified? 

When parasites were manually inspected in randomly selected photographs and 

compared to data from ParaMorph, over 40 percent of the parasites clear to the 

human eye were not found by ParaMorph 3.0, but this value this was lower in 

ParaMorph V 3.1 (Fig 6.8). Also some parasites were found in the image but 

unclassified (13 and 14%, V 3.0 and 3.1, respectively) or found but classified 

incorrectly (26 and 19 %, V 3.0 and 3.1, respectively). Finally, parasites that were 

correctly found and classified accounted for 19% in V 3.0 and 36% in V 3.1. 

ParaMorph 3.1 was 17% more accurate that V 3.0.
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Figure 6.6: Comparison of relative frequencies of subpopulations of Leishmania 
mexicana obtained manually and from image analysis by ParaMorph software V. 
3.0 and V.3.1. Cultures were sampled at 24 h, 48 h, 7 d and 8 d (A, B, C and D, 
respectively) after induction of metacyclogenesis. Manual classification was 
performed from 50 randomly selected parasites per slide and three smears were 
performed per time point (n=150 parasites). For in silica analysis, 20 photographs 
were randomly taken per time point. Relative frequencies of subpopulations are 
represented by different colours in bars. Amastigotes=black, procyclics=dark grey, 
nectomonads=light grey, leptomonads white and metacyclics=dashed pattern. 
Relative frequencies are statistically significant between the three groups (p<0.001, 
chi-square)
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Figure 6.7: Comparison of relative frequencies of subpopulations of Leishmonia 
mexicana obtained manually and from image analysis by ParaMorph software V. 3.0 
and V. 3.1. Stacked graph represents combined results of all time points from Fig. 
6.6. Cultures were sampled at 24 h, 48h, 7 d and 8d after induction of 
metacyclogenesis. Manual classification was performed from 50 randomly selected 
parasites per slide and three smears were performed per time point. For in silica 
analysis, 20 photographs were randomly taken per time point. Relative frequencies 
of subpopulations are represented by different colours in bars. Amastigotes=black, 
procyclics=dark grey, nectomonads=light grey, leptomonads white and 
metacyclics=dashed pattern. Relative frequencies are statistically significant 
between the three groups (pcO.OOl, chi-square).
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Figure 6.8: Confirmation of parasites classification reported from image analysis by 
ParaMorph software. One photograph per time point was randomly selected (n=4). 
Photographs were inspected manually and distinguishable parasites that would have 
been selected in regular manual classification were considered and compared against 
data from the software. Parasites from all time points were pooled together (n=61 
parasites). Evaluation included the ability of the software to accurately find the 

parasite in the photograph, to accurately find and classify the parasite, and to 
accurately find and place the parasite into the correct subpopulation. Pie chart 
represents relative frequencies.
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6.2.5. Limitations of the software

The principal difficulties associated with automating the analysis of parasite 

morphology in microscope images are two-fold:

Recognition

Identification of the parasites and differentiation from the 'background clutter' 

within the image [i.e., features that could be easily mistaken for parasites). This is 

why most of the programming modifications have been performed in the 

thresholding step. In both versions of the software, the threshold value has to be 

chosen by the operator based on the native photograph and deciding which 

threshold value removes most of the background without removing parasite 

features. The software also is unable to recognise overlapping parasites and 

overlapping flagella. Also when a flagellum convolutes (overlaps itself), 

ParaMorph will measure the flagellum from the body junction until the point 

where it convolutes, reporting a lower length.

Segmentation

For an object identified as a parasite, it is necessary to identify the body and 

flagellum so that the lengths and widths of both can be measured separately. The 

challenge in this case is to ensure that the lengths and widths measured for a 

body are correlated with the length of the right flagellum [i.e., the one that is 

attached to that body). In practice, this means a bit of image processing and some 

careful bookkeeping of the data, especially in the situations where more than one 

flagellum appears to be attached to one body.

6.2.6. Advantages of the software

Although ParaMorph V 3.1 has shown an accuracy of 36%, more development is 

required for the software to arrive at a version powerful enough to be used in 

research as a tool to find differences in subpopulation profiles. However, it is 

interesting to note that despite Paramorph's V. 3.1 inaccuracy of 64 percent in 

correct classification of parasite subpopulations, it seems that the software is 

more precise than the human eye for parasite measurement. It is possible that
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human observations are underestimating parasite size; especially flagellum length 

(compare Fig 6.3 vs. 6.4 and 6.5). Both versions of the software report flagella as 

long as 25 pm, whereas none of the parasites measured manually reached 

flagella lengths greater than 17 pm. Also, manual mean flagellum length was 

significantly smaller (p<0.05) compared to those calculated by ParaMorph V 3.0 

and 3.1 (table 6.2). This is not surprising if we consider how manual 

measurements are performed under the microscope and the major limitation of 

this approach (Fig 6.9). Another major advantage of the software approach is the 

increase in efficiency as well as in number of observations per experiment. It took 

a few days to manually measure and classify the parasites from all smears in this 

experiment with a total of 600 parasites Fig (6.3). It took a few hours to take all 

the photographs and minutes to run them through both versions of the software 

with thousands of observations (Fig. 6.4 and 6.5).

A B

Fig 6.9: Major limitations of manual measurements of Leishmania with an 
eyepiece graticule. A, sinuous flagellum. The flagellum is rarely arranged over a 
straight line making accurate length measurement difficult. B, graticule resolution 
limit. The eyepiece unit has a resolution up to 1 pm. In the parasite depicted, the 
operator has to decide whether its body width should be considered as 2 or 3 pm.
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Table 6.2 Mean values of different morphometric parameters from manual method vs. software 
(ParaMorph V. 3.0 and V. 3.1). Characters in bold and asterisk represent significant differences at p<0.05 
compared to manual measurements.

Body length Mean (pm) Body width Mean (pm) Flagellum length Mean (pm)

Manual V3.0 V 3.1 Manual V3.0 V3.1 Manual V3.0 V 3.1

Amastigote 4.43 3.88* 4.08* 1.99 2.92* 3.06*
Procyclic 9.23 9.06 8.88 1.94 2.41 1.98 7.84 5.86* 5.41*

Nectomonad 13.00 12.56 12.38 2.13 2.28 2.00 11.24 8.39 7.18
Leptomonad 8.81 8.56 8.59 1.84 2.47 1.99 10.05 12.34* 12.23*
Metacyclic 7.10 5.31* 5.05* 1.21 1.37* 1.36* 10.10 10.87 9.04

6.2.7. Further development

During the first attempts to perform morphometries with sperm the cells were 

contoured manually from images projected in a monitor from a microscope using 

xlOO oil immersion bright field lenses. Once morphometric data were obtained; 

sperm head/width radio from infertile and fertile human males were found to 

show significant differences (Katz et al. 1986). In another study, human sperm 

from healthy donors was stained and 283 sperm were selected as prototypic 

examples of the 10 morphology classes using the teams' pre-existent 

classification system. Different measurements from spermatozoa were obtained 

from the stereotypes and used to classify a sperm into either a 'normal' or 

'abnormal' category with 95% accuracy and a correct classification of 86% into 

one of the 10 shape classes (Moruzzi etal. 1988).

Perhaps a similar approach should be performed in the future development of 

ParaMorph; use images of selected parasite subpopulations of Leishmania 

mexicana to get a more reliable morphometric profile of each form, instead of 

using mixed populations. It is possible to culture a pure population of axenic 

amastigotes (Bates et al. 1992). Metacyclic promastigotes can be separated out 

from a mixed culture using the biochemical characteristics of the different 

promastigote forms. One approach would be to separate based on changes in the 

lipophosphopglycan (LPG) profile of flagella using D-galactose-binding lectins 

(Sacks et al. 1985) perhaps by attachment on sepharose beads. This would 

provide an enriched sample of promastigotes based on their lectin binding profile. 

Metacyclics can also be recovered from a mixed culture by density gradient
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centrifugation (Spath and Beverley 2001). Other parasite forms might be more 

difficult to isolate in culture, but leptomonad procyclics are present in large 

numbers in PSG plugs of infected flies followed by metacyclics (Rogers et al. 

2002), so it is possible to isolate at least those two parasite forms, prepare slides 

and capture images from them. Computer-assisted measurements from these 

pre-selected subpopulations might be more precise than human ones and 

perhaps, challenge the existing parameters of morphometric data of Leishmanio 

mexicana.
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CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH

The purpose of this study was to characterise and analyze the gene expression of 

different antioxidant enzymes throughout blood digestion in the midgut of the 

phlebotomine sand fly Lutzomyia longipalpis and to examine the role of ROS and 

antioxidant enzymes in immunity against the kinetoplastid protozoan Leishmania 

mexicana and the Gram-negative enteric bacteria Serratia marcescens. The 

following paragraphs present some key conclusions and suggestions for further 

research:

Antioxidant genes were differentially expressed throughout blood digestion

Different sequences for putative antioxidant enzymes were found in a whole 

body cDNA library of Lu. longipalpis. However only putative antioxidants, also 

present in midgut-specific libraries, were selected for this research; namely 

catalase, superoxide dismutase and peroxiredoxin. Oxidation resistance protein 1 

was also considered since evidence in other nematocerans suggested a possible 

role of this enzyme in antioxidant regulation. Overall, the expression profile of 

the majority of antioxidants exhibited an increment that peaked at 48 hours and 

a subsequent reduction up to 96 hours after bloodfeeding. This pattern matched 

that of hydrolytic digestive enzymes during blood digestion reported in previous 

studies. This boost of antioxidant gene expression has been found in other 

haematophagous insects and the data add to the cumulative evidence 

underpinning the role of antioxidant enzymes in protecting the midgut from toxic 

blood-derived reactive oxygen species. Although informative, quantification of 

gene expression by reverse-transcription of mRNA provides a pre-translational 

picture that could be improved. The next step forward would be to include the 

use of protein-profiling. There are no Lu. longipalpis antibodies commercially 

available but antibodies from close-related species {i.e. Anopheles or Drosophila)
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might cross-react with Lu. longipalpis proteins to analyse changes in protein 

levels during blood digestion through Western-blotting.

Antioxidant genes were well conserved throughout different insect species

Most of Lu. longipalpis predicted antioxidant genes sequences displayed a high 

degree of conservation at active and catalytic sites compared with different 

insect species. One exception was the Oxidation Resistance Protein 1 —which 

only showed conservation for the TLDc domain with Glossina and Drosophila.

The group that shared most amino acid sequence similarities with Lu. longipalpis 

was Nematocera. This is an order which includes Aedes aegypti and Anopheles 

gambiae. These mosquito species, just like phlebotomine sand flies, are sugar 

feeders that will take blood only a few times throughout their lifetime and are 

also vectors of infectious diseases. There are several studies published on vector- 

microbe interactions for mosquitoes, especially Anopheles, which lay the ground 

work to understand the dynamics of parasite-vector interactions in the context of 

insect immunity. The fact that sand flies share many features at genomic and 

ecological levels with their anopheline counterparts suggests the exploitation of 

anopheline data as an experimental compass. Some of the most relevant findings 

in Anopheles-Plasmodium relationships should be experimentally examined in the 

sand fly-Leishmania model.

Gene profiling was different in RT-PCR and microarrays

One of the major reasons antioxidants were selected for this study was that the 

sequences were found to be differentially expressed in a Leishmania-mfected vs. 

non-infected whole body Lu. longipalpis microarray (Dillon, unpublished). The 

method of choice for midgut-specific gene expression profiling/microarray 

validation was semiquantitative RT-PCR. Genes from both profiles were 

differentially expressed but expression patterns were not similar between 

techniques. This was expected as the microarray was developed from whole 

bodies whereas the RT-PCR was midgut-specific and antioxidants are expressed in 

other tissues. RT-PCR profiling evaluates gene expression semi-quantitatively
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after image analysis of band intensity. In experienced hands this technique yields 

very useful results, useful in providing evidence towards differential expression. 

But it is also true that technology for gene profiling has evolved over the past few 

years since this research started. Perhaps the best candidate for future gene 

profiling would be real-time RT-PCR (qRT-PCR). Although more expensive, this 

procedure not only allows a quantitative analysis of expression, it also provides 

more robust results since multiple housekeeping genes can be included in the 

experiments. Although not following the same patterns, antioxidant enzymes 

exhibited changes in expression after bloodfeeding in both microarray and RT- 

PCR analysis. Interestingly, differences in expression in RT-PCR were more 

dramatic compared to those derived from the microarray. These results are 

encouraging since even though no putative genes exhibited large differences in 

up or down regulation from microarray data of Leishmania-mfected vs. non- 

infected sand flies, perhaps moderate ones will prove larger when profiled by 

qRT-PCR or if explored using a proteomic approach.

Sand fly fecundity and longevity was affected by redox balance

Data from gene profiling analysis suggest that catalase can be quite relevant 

throughout blood digestion and Leishmania-\r\teract\ons and hence a good 

candidate for gene knockdown in the context of Leishmanio-sand fly interactions. 

RNAi-mediated silencing of catalase led to an interesting change in phenotype 

with sand flies that exhibited less eggs compared to negative controls but similar 

to those from older flies. The finding that antioxidant supplementation conferred 

an increase in eggs whilst there was an accumulation of catalase in the 

developing egg (as reported in Anopheles by others) highlighted the importance 

of oxidative stress in fecundity. Catalase silencing also led to a significant 

reduction in longevity, a change in phenotype previously observed in genetically 

antioxidant-depleted Drosophila melanogaster which (among other findings) 

fuelled the oxidative stress theory of ageing during the 1990s. Oral 

supplementation of flies with vitamin C as a ROS sequestrator was used to 

explore redox balance and longevity. Contrary to what was initially expected, 

dietary addition of an exogenous antioxidant had the opposite effect on longevity.
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A higher phenoioxidase activity in the vitamin C-supplemented group of flies 

suggested that such an increase in mortality could be associated with bacterial 

infections. These findings encouraged the exploration of the role of ROS in 

regulating resident microbial populations in the sand fly gut.

Antioxidant genes were differentially expressed in Leishmania and Serratia 

colonised guts

L mexicana-co\or\\sed sand flies exhibited an overall reduction in relative 

expression of antioxidant enzymes during blood digestion while 5. marcescens- 

infected guts displayed an opposite trend. The genes that showed the highest 

difference in expression upon Leishmania and Serratia challenge were catalase 

and superoxide dismutase. Higher expression of antioxidant enzymes during 

bacterial infections was associated with an observed increase in oxidative stress 

in the midgut. Preliminary experiments suggest that Serratia is able to produce 

ROS in vitro, specifically hydrogen peroxide (Sant'Anna, Diaz-Albiter, Dillon 

unpublished). Future experiments towards understanding Serratia 

entomopathogenicity should address whether ROS released by this bacterium are 

a virulence factor and also how does the sand fly host react to it.

The downregulation of catalase by L mexicana was particularly striking and worth 

exploring through alternative avenues. Is Leishmania increasing the oxidative 

stress inside the midgut by reducing catalase expression? It is very unlikely. The 

present study suggested that ROS were not significantly higher in Leishmania- 

colonised midguts and that catalase depletion was detrimental to the protozoan. 

Future experiments should focus on whether reduction in catalase is a) a result of 

negative feedback from a Leishmania-derlved ROS sequestration or b) a 

consequence of reduction in blood-derived ROS release via a decrease in 

proteolytic activity by Leishmania. In the first hypothesis it should be considered 

that Leishmania is able to detoxify hydrogen peroxide in vitro (as shown here and 

by others) and this can perhaps be achieved via peroxiredoxin activation. One 

could envision a case in which Leishmania employs its own set of antioxidant 

enzymes to detoxify blood-derived ROS during digestion and avoid detrimental
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oxidative stress. Lower ROS levels might result in a reduction in sand fly- 

expressed antioxidant enzymes that would be redundant. Experimental 

approaches to answer this could include infections with L mexicana mutants 

unable to express functional peroxiredoxins. This hypothetical protection of the 

midgut by the protozoan could potentially challenge the current status of 

Leishmonia as a sand fly 'parasite' and make it more of a commensal.

The second hypothesis is based on the fact that Leishmania reduces the 

expression of proteolytic enzymes during blood digestion through an unknown 

mechanism. A reduction in digestive enzymes activity might reduce the release of 

blood-derived ROS. Future experiments should also explore the mechanism 

through which Leishmania modifies proteolysis in the gut, perhaps by looking at 

differences in expression of genes regulating digestion upstream.

Pathogenic bacteria and not Leishmania increased midgut ROS

Infection of sand flies with Serratia resulted in significantly higher concentration 

of hydrogen peroxide at 48 h post-bloodfeeding, as well as of oxidized 

compounds of dihydroethidium (DHE) from 24 to 72 h post-bloodfeeding. DHE 

can be oxidised by compounds other than the ROS superoxide therefore it should 

be addressed in further experiments whether fluorescence in Serratia-mfected 

midguts was due to the presence of superoxide. However, similar assays 

performed in Aedes aegypti have incriminated superoxide as the major oxidative 

agent (Oliveira et al. 2011). One of the major disadvantages of using biochemical 

assays to understand ROS and midgut immunity is that assays are not specific 

enough to discriminate whether the increment in ROS is caused by an active 

release by the host as a defence mechanism against the pathogen or produced as 

consequence of cell-death (as in apoptosis). Drosophila is able to fight enteric 

pathogens by regulating ROS and this is orchestrated in the gut epithelium by two 

main actors: the dual oxidase Duox and an Immune regulated Catalse (IRC). 

Unfortunately it was not possible to find any Duox or IRC homologues in any of 

the cDNA libraries available during this study. However, a preliminary genome 

assembly obtained with our Jacobina strain of Lu. longipalpis has been published
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online by the Baylor College of Medicine. Recent BLAST search of Drosophila Duox 

homologues has retrieved promising candidate sequences (Dillon pers. comm.). 

The future steps to find out if Lu. longipalpis is able to mount a ROS-mediated 

immune response regulated by a similar mechanism as Drosophila include 

performing RNAi-mediated silencing of Duox in sand flies followed by a challenge 

with ROS-sensitive bacteria. Duox expression of Leishmania-co\or\\se6 sand flies 

could also provide new data to confirm that Leishmania does not elicit a ROS 

mediated immune response as suggested by this study.

Pathogenic and resident bacteria are affected by the redox balance in the gut

Abrogation of endogenous antioxidants such as catalase had a negative effect on 

sand fly survival. However, dietary administration of antioxidants such as vitamin 

C had the same effect. This was intriguing at the time but made sense from the 

point of view of ROS-mediated gut microbe regulation in other dipterans such as 

Drosophila, Anopheles and Aedes. In the present work it was shown that 

mortality and phenoloxidase activity was higher in antioxidant-supplemented 

sand flies. To discount the fact that mortality was due to a possible toxicity of 

vitamin C and to incriminate bacterial infection as the cause of mortality, the 

experiment was repeated with a different antioxidant and flies were infected 

with Serratia marcescens. Infected sand flies fed on uric acid-supplemented sugar 

meal displayed the same mortality trend exhibited in previous experiments with 

vitamin C. However, contrary to our initial hypothesis, Serratia CFU numbers 

turned out to be significantly lower in antioxidant supplemented sand flies. 

Furthermore, resident microbiota growth behaved in the exact opposite way. This 

was further confirmed in CFU counts from insects not infected with Serratia.

It is still intriguing that Serratia numbers were lower in the group with the highest 

mortality, it was speculated that this was be due to sampling bias since survivors 

collected 48 after inoculation might have been more resistant to infection. 

Serratia is a very efficient insect pathogen which is not only able to detoxify ROS 

via catalase expression, but also to secrete hydrogen peroxide (Sant'Anna,
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unpublished). Future experiments exploring ROS-mediated microbe regulation in 

the gut are already being performed with less pathogenic bacteria and sampling 

should avoid bias of survivors. A good candidate might be Asoio. Species of this 

Gram-negative acetic acid bacteria were discovered in wild Lu. longipolpis (Dillon, 

unpublished), and preliminary experimental infections in sand flies have shown 

lower sand fly mortality associated with the presence of this potential symbiont. 

DHE-staining of the midgut (a strong indicative or ROS activity) suggest that the 

sand fly response to Asaia is similar to that of the Leishmania; no significant 

difference in superoxide production as detected by staining for DHE (Sant'Anna, 

Diaz-Albiter, Al Salem ,Dillon unpublished). A further intriguing twist in this story 

is that Asaia produces significantly higher amounts of its own ROS; perhaps ten 

times higher than other bacteria such as Serratia. Furthermore, Asaia was shown 

to prevent colonisation of the sand fly gut by Leishmania (Sant'Anna, Diaz-Albiter, 

Genta, Dillon, unpublished) The recent demonstration that the anti-plasmodiai 

effect of a commensal bacterium in the anopheline insect gut may be due to 

bacterial generation of ROS (Cirimotich et al. 2011) further emphasises the 

complexity of the ROS mediated interactions and their importance in gut immune 

homeostasis in insect vectors of medically important parasites.

Morphometric analysis of Leishmania mexicana subpopulations could be 

achieved by software-based image analysis

All Leishmania infections performed in the present study were quantified by 

direct counts of microorganisms in haemocytometers. Significant differences in 

total number of Leishmania are of course relevant in experiments that aim to 

lower vectorial capacity of sand flies. But what if an experimental condition 

changes parasite subpopulation profiles that are likely to be missed by total 

counts? Throughout the duration of this work, a collaborative work with 

colleagues from the Department of Physics, University of Liverpool, resulted in 

the development of ParaMorph, a computer program designed to differentiate 

and count Leishmania subpopulations from photographs of microscopic slides by 

analysis of morphometric data. ParaMorph was tested against observations from
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a human operator. The latest version (V. 3.1) was able to correctly categorize 36 

percent of parasite forms, which was an improvement of 17 % over previous 

ParaMorph V. 3.0. Comparison of manual vs. ParaMorph data also suggested that 

the current morphometric data available for L mexicana might be 

underestimated, especially flagellum length. The ultimate aim of developing a 

working version of ParaMorph is now in sight but awaits a further version trained 

with separated parasite subpopulations (metacyclics, leptomonads) to obtain 

morphometric data directly from separated L. mexicana subpopulation 

preparations.

Placing Leishmania in a microbial ecology context

Any study of the interactions of Leishmania with its vector should be placed into 

the context of the microbial ecology of the sand fly and its response to the myriad 

forms of microbes encountered during its life; firstly as a larva in composted 

animal droppings through to the encounters as an adult with mammals and 

plants. This study of antioxidant genes and ROS production in Lu. iongipalpis has 

opened a new area of study of the interactions between sand flies, Leishmania 

and other microorganisms. Studies on transmission and vectorial capacity have 

become multidimensional only in the last few years in other species such as 

Anopheles and Aedes. As we uncover more aspects of the response and counter — 

response of insects and their microbes and medically important parasites we 

become acutely aware that there are still important pieces of the puzzle 

remaining to be discovered. Research which includes the study of gut microbes 

will provide us with context and more coherent, efficient approaches for 

developing transmission blocking strategies and vector control. This has already 

started in Anopheles and Aedes. Leishmaniases are neglected diseases; it is about 

time we stop neglecting sand fly research as well.
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