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ABSTRACT

Despite recent breakthroughs in targeted molecular therapy, renal cancer is still the tenth 

leading cause of cancer death in British men and the twelfth in women. Cancer is a 

disease arising from mutations in key growth regulatory genes including loss of function 

of genes that act as tumour suppressors. The p53 gene is known to be mutated in over 

50% of cancers which is not smprising given that its normal function is to be a critical 

tumour suppressor gene. Unregulated p53 is lethal in mammals and MDM2 (itself a 

transcriptional target of p53) is an essential negative regulator of p53 function. MDM2 

has also been demonstrated to have oncogenic properties independent of p53 and 

together the p53/MDM2 pathway is one of the most studied in cancer. There have been a 

number of publications that have suggested that RCCs expressing p53 may have a poor 

prognosis and in addition one paper has also shown that tumours that express both p53 

and MDM2 are associated with poor patient outcome. Initially we wanted to investigate 

p53 and MDM2 expression (using a recently created tissue microarray), in a different 

cohort of patients undergoing radical nephrectomy, to determine whether the 

p53/MDM2 high phenotype was associated with outcome. Secondly we wanted to 

discover by what means p53 and MDM2 may be up-regulated in RCC. Two possible 

mechanisms for p53 and MDM2 up-regulation were explored by a series of in vitro 

studies on a panel of RCC cell lines. One hypothesis tested (using a proteasome 

inhibitor) was whether failure of normal proteasomal degradation of p53 and MDM2 

was responsible for this phenotype. The second mechanism involved inhibiting the 

HSP90 chaperone complex (which has been shown to stabilise mutant p53) to determine 

if this led to a decrease in p53 and MDM2 steady state levels. The third part of this study 

was to develop RCC cell lines that could be made to express high levels of MDM2. With 

this tool it was hoped to try and understand by what means increased MDM2 expression 

may promote poorer prognosis. We have found that a subset of RCCs do express both 

p53 and MDM2 with co-expression of both proteins being significantly linked 

tP=0.000013). Moreover, increased co-expression of p53 and MDM2 identifies patients 

with significantly reduced disease specific survival by univariate (P=0.036) and Cox
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multiple regression analysis (P=0.027, RR=3.20), despite apparent organ confined 

disease at the time of their nephrectomy. Testing of the RCC cell line panel revealed no 

fundamental defect in proteasomal degradation of p53 and MDM2 and therefore 

proteasomal dysfunction does not appear to be causing a disruption of the p53/MDM2 

autoregulatory feedback loop. Inhibition of HSP90 did result in a decrease of both p53 

and MDM2 in a cell line specific manner (transient decrease in some cell lines 

harbouring wild type p53 and more prolonged in one mutant p53 cell line). HSP90 may 

therefore play some role in the up-regulation of p53 and MDM2 though further studies 

are required to clarify this. While it was possible to generate renal cell line clones that 

could inducibly express high levels of a mutated form of MDM2 no clone could be made 

that would express fully functional MDM2. The reason for this appears to be due to 

previously documented toxicity resulting from even small increases in MDM2 

expression, again highlighting that the ability of renal cancer cells to express high levels 

of MDM2 is not trivial and worthy of further in vitro investigation especially given the 

link between high MDM2/p53 expression and poor prognosis.

KEYWORDS: Renal, Carcinoma, p53, MDM2, HSP90, Proteasome, Prognosis
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CHAPTER 1 - INTRODUCTION

1.1 Renal cell carcinoma

Renal cell carcinoma (RCC) is the term used to describe malignant tumours arising from 

the renal parenchyma. As will be described in section (1.1.3) there are many varieties of 

this disease that can be classified histologically and cytogenetically.

Around 190,000 new cases of kidney cancer (includes RCC and transitional cell 

carcinoma of the renal pelvis) are diagnosed in the world each year, accounting for just 

fewer than 2% of all cancers1. Cancer of the kidney was the 7th commonest malignancy 

affecting the UK adult population in 2007 and it has been estimated that the lifetime risk 

of developing kidney cancer in the UK is 1 in 89 for men and 1 in 162 for women1. Data 

from the UK National Office of Statistics showed 3,848 people died from kidney cancer 

in 20082. This makes kidney cancer the 12th leading cause of UK cancer death in men 

and women1. In the European Union 63,000 people were diagnosed and 13,000 died of 

RCC m 2006 . Despite advances in diagnosis, new surgical techniques and adjuvant 

therapy, patients with metastatic RCC still have only a 10% survival rate at 5 years4.

With improving understanding of cancer molecular biology, the future of 

prognostication and systemic therapy is dependent on understanding important 

molecular cancer pathways. The goal of this thesis is to ultimately investigate what role 

the p53/MDM2 pathway may play in RCC.

1



1.1.2 Incidence and prevalence of RCC

UK cancer statistics1 show that 8,228 new cases of kidney cancer were diagnosed in 

2007 with an incidence of 13.5 / 100,000 population. There is a higher incidence in men 

(17.3 / 100,000) than women (9.9 / 100,000) and the incidence increases with age, see 

Figure 1.1.2 from the same data source.
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Figure 1.1.2 Numbers of new cases of renal cancer and age specific incident rates, 

by sex, in the UK 20071.

There is a 10-fold difference in the incidence of RCC between Eastern Europe (the 

highest rates) and some Asian and African countries (the lowest rates)5. The American
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Cancer Society estimates that 58,240 people (35,370 men and 22,870 women) will have 

been diagnosed with Kidney cancer in 20106. Some of the observed geographical 

differences may be in part due to differences in the frequency of the use of diagnostic 

imaging techniques and autopsy rates5.

The incidence of RCC in Great Britain has risen since the mid 1970s for both men and
n

women . Rates have increased in men by 79% from 7.1 per 100,000 in 1975 to 12.7 per 

100,000 in 2002. hi women rates have increased over the same period from 3.2 to 6,1 

per 100,000, a rise of 90%. Most of the increase in males has occurred in men aged over 

65. The widespread availability of new imaging methods such as ultrasound and 

computed tomography has to led to an increase in detection of incidental (pre 

symptomatic) kidney cancer5. However, there have also been increases in more 

advanced tumours, suggesting that increase in detection of pre-symptomatic tumours by 

imaging does not fully explain the increases seen for RCC overall8.

1.1.3 Pathology and histology of RCC

There are various histological and genetically distinct types of RCC. The most recent 

(2004) edition of the World Healthcare Organisation lists 10 types of malignant RCC9. 

Table 1.1.3 outlines the more common types which account for 90% of all RCC and 

gives some information on clinical characteristics.
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RCC Subtype Incidence
(%)

Clinical prognosis

Clear Cell

(ccRCC)

75 Aggressiveness according to grade, stage and sarcomatoid 
change. Better response to systemic therapy than PRCC 
and Chromophobe RCC.

Papillary

(PRCC)

10 Type 1 and 2 are recognised. Type 1 is less aggressive 
than ccRCC, type 2 more aggressive10. Aggressiveness 
according to grade, stage and sarcomatoid change.

Chromophobe 5 Least aggressive RCC type. Reported Mortality 10%

Table 1.1.3 Three most frequent RCC subtypes according to WHO classification 

2004".

The remaining types are collecting duct, multilocular cystic, medullary, Xpll 

translocation, after neuroblastoma and mucinous tubular and spindle cell (MTSC - see 

Noon et al for further information12). This latest classification no longer recognises 

sarcomatoid RCC as a separate type. All types of RCC can progress to sarcomatoid 

change11 and RCC with sarcomatoid change is highly malignant13. The different 

expression of p53 in these various subtypes is reviewed later (see Section 1.4).

1.1.3.1 Clear cell RCC

Clear cell RCC is the most common form of RCC accounting for 75% of adult 

malignant renal tumours and arising from cells of the proximal tubule4. The name “clear 

cell” derives from its typical histological appearance of round cells with abundant
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cytoplasm. Approximately 4% of these tumours are multi-centric and 0.5 - 3% are 

bilateral at presentation11.

1.1.3.2 Papillary RCC

PRCC is the second commonest form of adult RCC. This tumour is divided into two 

separate histological types. Type 1 is characterised by papillae covered by small cells 

with scanty cytoplasm arranged in a single layer and Type 2 by tumour cells of higher 

nuclear grade, eosinophilic cytoplasm and pseudostratified nuclei11. Type 1 has the 

propensity to be multicentric and there is evidence from univariate and multivariate 

analyses to show that Type 1 PRCC has a better prognosis than Type 214.

1.1.3.3. Chromophobe RCC

These tumours represent 5% of RCC and are thought to arise from the intercalated cells 

of the collecting duct. Although thought to be less aggressive than ccRCC it is 

associated with a 10% mortality rate11. Chromophobe RCC should be differentiated 

from oncocytoma which is a benign tumour again arising from the intercalated cells of 

the collecting duct.

A recent large meta-analysis of 3,564 RCC tumours showed no prognostic difference 

between the various histological types of RCC when stratified for grade, stage and 

patient performance status15. Previous studies have shown poorer prognosis with ccRCC
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compared to PRCC and chromophobe tumours16. There is evidence that chromophobe 

RCC and PRCC have extremely poor responses to interleukin-2 therapy . As mentioned 

earlier sarcomatoid is no longer considered a separate subtype of RCC, nevertheless it is 

associated with a poor prognosis. For example, De - Peruna reviewed 101 cases and 

found the 5 and 10 year survival rates for sarcomatoid tumours to be 22% and 13% 

respectively which compares with 79% and 76% for non sarcomatoid tumours

Figure 1.1.3 Microscopic appearances of RCC subtypes. A = ccRCC, B = PRCC 

Type 1, C = PRCC Type 2 and D = Chromophobe RCC. Adapted from Lopez-Beltran1'.
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1.1.3.4 Staging in RCC

RCC is currently staged according to the 7th edition (2009) TNM/UICC classification19, 

analyses performed in chapter 3 of this thesis were perfonned using the 6th edition 

(2002) TNM/UICC classification. The two major changes in the 7th edition are; stage T2 

is now split into T2a size 7 - 10cm and T2b size >10cm and spread into the adrenal 

gland (considered T3a in 6th edition) is now classified as T4.

Primary tumour (T):

TX: Primary tumour cannot be assessed (information not available)

TO: No evidence of a primary tumour.

Tla: Tumour is 4 cm in diameter or smaller and is limited to the kidney.

Tib: Tumour is larger than 4 cm but smaller than 7 cm limited to the kidney.

T2: Tumour is larger than 7 cm but is still limited to the kidney.

T3a: Tumour has spread into the adrenal gland or into peri-renal fat.

T3b: Tumour has spread into the renal vein or sub-diaphragmatic vena cava 

T3c: Tumour has reached the vena cava above the diaphragm 

T4: Tumour has spread beyond Gerota’s fascia

Regional lymph nodes (N):
NX: Regional lymph nodes cannot be assessed.

NO: No regional lymph node metastasis.

Nl: Metastasis to one regional lymph node.

N2: Metastasis to more than one regional lymph node.

Distant metastasis (M):
MX: Presence of distant metastasis cannot be assessed .

M0: No distant metastasis.

Ml: Distant metastasis present; includes metastasis to nonregional lymph nodes and/or to other 

organs.
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Using the 2002 TNM system the five year cancer specific survival has been described as 

97%, 87%, 71%, 53%, 44%, 37% and 20% in patients with pTla, pTlb, pT2, pT3a, 

pT3b, pT3c and pT4 RCC20

1.1.3.5 Tumour grade

Most urologists in Europe and USA use the Fuhrman nuclear grading system21. The 

system evaluates nuclear diameter (in microns), nuclear outline: regular or irregular and 

nucleoli (visibility): present or not and at what power (low or high power). Fuhrman's 

grade (I-IV) is the sum of the points for all 3 parameters (see Table 1.1.3.51). Prognosis 

is worse as the grade increases. There is a strong correlation between Fuhrman grade and 

5 year survival22. Tsui and colleagues 22 showed the 5 year cancer specific survival to be 

89% for grade I, 65% for grade II and 46% for grades III and IV. This appears to be 

independent of the tumour stage as the 5 year survival for stage T1 tumours was 91%, 

83%, 60% and 0% for Fuhrman grade I-IV. Tsui showed that Grade, TNM stage 

(Pathological stage - a combination of Tumour, Nodal and Metastases) and patient 

performance status were independent prognostic factors in multivariate analyses. 

Tumour stage alone (i.e only the T part of TNM staging) was not found to be an 

independent prognostic variable (see Table 1.1.3.5.2).
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Grade Nuclear size Nuclear Shape Nucleoli Other
features

1 10pm Round and 
uniform

Inconspicuous 
or absent

2 15pm Irregular Present Examine at 
x400

magnification
3 20pm Obviously

irregular
Large Examine at 

xlOO
magnification

4 20+pm Bizzare or 
multilobulated

Large Clumped 
chromatin 

spindle cells

Table 1.1.3.5.1 The Fuhrman grading system21.

Variables Category Overall Survival 
Hazard Ratio (95% 

CI) SE p Value

Tumour
stage

Tl, T2, 
T3,T4

0.133 (0.310-0.428) 0.089906 0.138

ECOG
status

0, 1-2 0.386 (0.034-0.737) 0.179206 0.031

Disease
grade

1,2,3+4 0.321 (0.134-0.508) 0.095546 0.000

Pathological
stage

I, II, HI,
IV

0.643 (0.454-0.832) 0.096642 0.000

Table 1.1.3.5.2, Multivariate analysis of prognostic variables for RCC. From Tsui et

al22.

1.1.4 Important aetiological factors in RCC

This next section reviews important aetiological factors that have been associated with 

renal cell carcinoma.
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1.1.4.1 Lifestyle factors

There is no convincing evidence that social class variables, alcohol consumption or diet 

influence the incidence of RCC23. Cigarette smoking has been repeatedly associated 

with RCC, and estimated to account for 30% of RCC in men and 10% - 20% of RCC in 

women24. Obesity has been shown to be associated with RCC25. hi this meta-analysis the 

authors reported a relative risk of RCC of 1.07 (95% Cl 1.05-1.09) per unit of increase 

in BMI (corresponding to 3 kg body weight increase for a subject of average height). 

The mechanism by which obesity causes RCC has been investigated by Gago- 

Dominguez 26 who found lipid peroxidation of proximal renal tubules to be carcinogenic 

in animal models. Other mechanisms by which obesity may contribute to cancer has 

been reviewed by Calle et al 21. The increasing rate of adult obesity may be in part 

responsible for the increased incidence of RCC. There is some epidemiological evidence 

that hypertension, independent of associated obesity or antihypertensive medication, 

leads to an increased risk of RCC23.

1.1.4.2 Inheritable RCC syndromes

The incidence of a familial predisposition to RCC is reported to be c. 4% 9. Just as there 

are a number of different histological types of RCC (see Section 1.1.3), a number of 

different hereditary conditions have also been reported. The identification of the genes 

involved in these conditions has helped us to gain an understanding of the key molecular 

events involved in RCC. To date no specific familial RCC syndrome has been associated
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with the p53/MDM2 pathway. Patients with Li Fraumeni syndrome (an inheritable 

germline mutation of p53) do not have a higher incidence of RCC28. However patients 

with Li Fraumeni and a single nucleotide polymorphism of the intronic promoter of 

MDM2 (See section 1.3.5.1), develop malignancies on average 8 years earlier than Li 

Fraumeni patients lacking this polymorphism29.

1.1.4.2.1 Von Hinnel-Lindau disease and the VHL gene

Patients with VHL disease have an inherited (germline) mutated copy of the VHL
on ,

gene . This predisposes them to bilateral multifocal ccRCC, bilateral multifocal 

phaeochromocytoma, pancreatic tumours and cysts, cerebellar and spinal 

haemangiomas, retinal angiomas and endolymphatic sac tumours of the inner ear30. VHL 

mutation is important in sporadic ccRCC where VHL has been shown to be mutated in 

57% of sporadic tumours31.

The VHL gene is a tumour suppressor gene, located on the short arm of chromosome 3. 

VHL protein comprises an a domain which binds a protein called Elongin C and recruits 

an E3 ubiquitin ligase complex. The f3 domain of VHL can bind hydroxylated HIF -la 

(hypoxia inducible transcription factor). HIF-la is hydroxylated by enzymes utilising 

oxygen as a substrate. Therefore under nonnoxic conditions, VHL can ubiquitylate HIF- 

la, leading to its degradation by proteasomes32. Under hypoxic conditions HIF-la can 

accumulate and heterodimerises with HIF-Ip, together they bind hypoxia-responsive 

elements in target genes such as VEGF (vascular endothelial growth factor), which is a
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key regulator of angiogenesis, PDGF (platelet derived growth factor), TGF-a 

(transforming growth factor) and genes encoding glucose transporters and glycolytic 

enzymes 10'32. This response acts to enable the tissue to adapt to hypoxic conditions. In 

ccRCC mutation of VHL can result in highly vascular tumours as a result of VEGF 

expression32.

B |CU 12
Elongin C

RBX1

HIF-1a

Figure 1.1.4.2.1 VHL binding HIF-la (from Semenza 2006,::). Ubi = Ubiquitin, CUL2 

= Cullin 2, RBX2 = Ring box protein 2

1.1.4.2.2 Hereditary papillary renal carcinoma (HPRRC)

Germline mutations of the mesenchymal-epithelial transition factor (Met) proto­

oncogene, located on the long arm of chromosome 7 are responsible for this condition. 

Patients develop Type 1 papillary renal cell carcinoma (PRCC) most commonly in the 

4th, 5th and 6th decades of life. Tumours tend to be bilateral and multicentric. There is an 

autosomal dominant inheritance pattern with high penetrance10 30.
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Met-Mutation 
Hereditary Papillary Renal

Hepatocyte Growth Factor Carcinoma (HPRC)

g.Met Receptor

Activating Mutation

♦

• • * *

0 ^ Proliferation -

• • Papillary Kidney
^ Cancer

•' '• 4 m 44 4 4 
4444444444444444

Potential Small Molecular Target 
Tyrosine Kinase Inhibition

Tyrosine
Kinase

Inhibition

^^^^^Met Receptor

>slne rB Activating 
ase Mutation

No Proliferation

Figure 1.1.4.2.2 Hereditary papillary renal carcinoma is associated with germline 

mutation of the proto-oncogene Met from Vira et al10. Met encodes the cell surface 

receptor for the hepatocyte growth factor (HGF). Met = mesenchymal epithelial 

transition factor).

1.1.4.2.3 Birt-Hogg-Dube syndrome

The Birt-Hogg-Dube (BHD) gene is located at 17pl 1.2 and encodes a tumour suppressor 

protein, called folliculin, important in cellular energy sensing33. 15% - 30% of patients 

with this disease develop kidney tumours. There are a variety of kidney tumours seen in 

BHD patients. The various incidence of the tumours are as follows: the chromophobe 

type (see 1.3.3.3) in 34%, hybrid oncocytic neoplasms 50%, ccRCC 9% and 

oncocytomas 7% & 2% PRCC34. Other clinical manifestations include cutaneous lesions 

and pulmonary cysts with spontaneous pneumothorax30.
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1.1.5 Presentation and Diagnosis of RCC

It has been estimated that 48% - 66% of RCCs are now incidentally detected following 

radiological imaging 35. Other symptoms include haematuria, loin pain, mass or 

symptoms of metastatic disease. 70% of RCC present as tumours 4cm or less (stage 

Tla)36 and 1 to 3% of tumours are bilateral. 25 to 30% of patients present with 

metastases. Frequent sites of metastases include the lung parenchyma (50 to 60% 

patients with metastases), bone (in 30 to 40%), liver (in 30 to 40%), and brain (5%). 

Paraneoplastic syndromes are seen in less than 5% of patients. These include 

erythrocytosis, hypercalcaemia, hepatic dysfunction (Stauffer’s syndrome), and 

amyloidosis. Their causes include tumour-produced hormone-like substances 

(erythropoietin and parathyroid hormone-related protein) and the fonnation of immune 

complexes (as in amyloidosis)4.

1.1.6 Summary of Treatment options for RCC

The gold standard treatment for all histological types of organ confined RCC (Stages 1 - 

3) is radical nephrectomy. Modern surgical practice allows tumours to be removed 

laparoscopically, robotically and via an open procedure depending on anatomical, 

tumour, patient factors and availability of robotic or laparoscopic facilities. There is a 

current vogue to try to spare nephrons and where appropriate patients may be offered a 

partial or nephron sparing nephrectomy37. Although not yet established nationwide, 

some patients are undergoing minimally invasive procedures to treat (ablate) smaller
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tumours by such techniques as cryotherapy38, radiofrequency ablation38 and high 

intensity focused ultrasound (HIFU)39.

For patients with inoperable disease, metastases and recurrent disease post nephrectomy 

- effective treatment options are limited. All histological forms of renal cell carcinoma 

are relatively chemo- and radio- resistant. Established therapeutic options include 

cytokine therapy, with agents including interferon a and interleukin 2.

The last 8 years have heralded a new era in systemic treatment of RCC. Advances in the 

understanding of the VHL pathway and the synthesis of small molecular inhibitors have 

seen new therapeutic options for patients. A recent Cochrane review40 highlights the 

improved efficacy of these drugs over the cytokine based treatments. It also points out 

the paucity of information regarding the efficacy of these drugs in non clear cell 

carcinomas.

At the time of writing this thesis, courses of these drugs can cost in the region of 

£30,000 (per patient per annum) and as a result the National Institute for Clinical 

Excellence (NICE) has restricted their use41. A phase III trial of first-line monotherapy 

for metastatic disease, compared treatment with sunitinib (an oxindol tyrosine kinase 

inhibitor) to interferon-alpha and found median survival times were 26.4 for sunitinib 

versus 20.0 months for interferon-alpha42. Although these new treatments are producing 

encouraging results there is still need for further work in particular the role of kinase 

inhibitors in the adjuvant setting is uncertain (currently being investigated in the 

ASSURE, STAR & SORCE trial43) and in patients with metastatic disease undergoing 

cytoreductive nephrectomy (currently being investigated in the CARMINA trial44).
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1.2 p53 overview

Over the last 30 years, p53 has become one of the most studied molecules in nature. The 

huge interest originated since the discovery in 1979 that p53 bound, and was inactivated 

by, oncogenic viral proteins 45'47. Later it was shown that p53 function is compromised 

in more than 50% of human cancers 48. The following section reviews p53’s important 

role in cancer, its regulation and its role in RCC.

1.2.1 The p53 gene

The TP53 (tumour protein 53) gene is situated on chromosome 17 at position 17pl3.1. 

The gene encodes a protein 53 kilodaltons in mass, hence its name, comprising 393 

amino acids49. The domain structure of the p53 protein can be seen in Figure 1.2.1 p53 

has three main domains, the N -terminal transactivation domain and site of MDM2 

binding (see Section 1.3.2), the central core DNA binding domain and the C - terminal 

oligomerisation and regulatory domain (p53’s ability to bind DNA is optimum as a 

tetramer and this has significance later when we consider p53 mutation) 49.

Transactivation 

MDM2-binding Pro-rich Sequence specific DNA binding
Regulatory

Oligomerization domain

NLS NES NLS NLS

Figure 1.2.1 The p53 protein domains (from Balint & Vousden49) NLS - nuclear 

localising signal, NES nuclear export signal, Pro - proline.
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1.2.3 Tumour suppressor functions of p53

There are two major main downstream responses to p53 activation; cell cycle arrest and 

programmed cell death. p53 also regulates genes involved in DNA repair, senescence, 

inhibition of angiogenesis and metastasis, and oxidative stress (see Figure 1.2.3)50. The 

exact response depends on the particular cellular stress and cell type, but appears to be 

primarily due to p53 transcription or repression of target genes.

Oncogene DNA Nucleotide Transcriptional 
Heatshock Hypoxia activation damage depletion inhibition

Cel cycle Apoptosis Senescence
Arrest / 

DNA repair

1
Inhibition of
angiogenesis

Figure 1.2.3 Activation and response of p53.

1.2.4 Activation of the p53 Response

A variety of cellular stresses can lead to activation of p53 e.g. genotoxicity, heat shock, 

hypoxia, hyperoxia, cytokines, growth factors, metabolic changes and activated
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oncogenes amongst others51. Some of these factors can bring about conditions which 

may lead to the development of cancer if left unchecked. The dramatic effects of p53 

activation have to be tightly regulated to prevent p53 mediated apoptosis or cell cycle 

arrest. The half life of p53 in normal cells is very short (minutes) and this is brought 

about by negative regulators such as MDM2 (see Section 1.3.3). In response to cellular 

stress the p53 molecule is stabilised and prevented from undergoing normal degradation. 

This mechanism has yet to be completely defined, but appears to involve ataxia 

telangiectasia mutated (ATM) and other damage activated kinases, phosphorylating p53 

and possibly also phosphorylating MDM252. The consequences of p53 phosphorylation 

are to reduce the affinity of p53 for MDM2 and its homologue MDM4 ’ . A simplified 

model exists by which p53 is stabilised and accumulates under conditions of cellular 

stress. This in turn leads to increased transcription of MDM2 and other p53 responsive 

genes (reviewed by Robins54). If the cell survives and the cellular stress signals decrease, 

p53 is gradually destabilised by the accumulated MDM2. A decrease in p53, leads to a 

decrease in MDM2 transcription and MDM2 levels fall. Thus p53 positively regulates 

MDM2 while MDM2 negatively regulates p53 creating an autoregulatory feedback loop 

(see Figure 1.2.4)55.
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Figure 1.2.4. The p53 / MDM2 autoregulatory loop <1

1.3 Overview of MDM2

1.3.1 MDM2 Introduction

MDM2 is a 90 kilodalton protein first identified in a transformed cell line from a BALB 

(Bagg Albino) /c strain. The Mdm2 gene was amplified on murine double minute 

chromosomes (extrachromosomal nuclear bodies). Mdm2 descibes the murine protein 

whereas MDM2 or sometimes HDM2 describes the human protein. Mdm2 was shown to 

be able to oncogenically transform cells when over expressed (reviewed in Iwakuma and 

Lorenzo 200357). Momand et al showed that MDM2 bound and inactivated p5358. Later

it was shown that MDM2 is an E3 ligase for both p53 and itself, capable of promoting
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its own and p53’s degradation, by the ubiquitin/ proteasome pathway (see section

1.3.3.1)59'61.

1.3.2 MDM2 gene and protein structure

52 53 97 97 114 114 133 134 166 166 220 221 273 272 299 298

IDM2-A

178 192 300 301 332 464 471 488 489

p53 binding NLS NES

Figure 1.3.2 MDM2 gene and protein structure, from Iwakuma et al 7. The two major 

alternative splice variants MDM2-A and MDM2-B are shown. NLS = nuclear 

localisation signal, NES = nuclear export signal & NoLS = nucleolar localisation signal, 

Zn = zinc.

The MDM2 gene is situated at 12ql4.3-ql5 and the gene consists of 12 exons. 

Transcription from the first promoter, labelled PI in Figure 1.3.2, is not p53 responsive 

and results in relatively low constitutive levels of MDM2. The P2 promoter is p53 

responsive and results in MDM2 up-regulation in response to p53. Both promoters give 

rise to a full length P90 protein and a shorter P76 isoform that lacks the p53 binding 

domain. Alternative splicing can occur generating many shorter forms57. The two major
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splice variants are shown in Figure 1.3.2. Splice variants may have a role in cancer and 

are discussed later (see Section 1.3.5.2).

The N-terminal p53 interaction domain of MDM2 binds the N-terminus transactivation 

domain of p53, reducing its ability to function as a transcription activator. The central 

acidic domain of MDM2 is necessary for interaction with p300/CBP (CREB-binding 

protein), this is important in p53 degradation62. The zinc finger domain may be 

important for binding ribosomal protein 11 and for the degradation of p5363 (see later). 

The RING (really interesting new gene) finger domain contains the E3 ligase activity 

responsible for ubiquitylation57.

1.3.3 MDM2 Function

The principal function of MDM2 is to negatively regulate p53 function. Transgenic mice 

that are Mdm2 null display early embryonic lethality and die at around day 5 or 6 of 

embryogenesis. This lethality can be rescued by concomitant deletion of the p53 gene64. 

MDM2 is clearly needed to obviate the lethal effects of p53. This has traditionally been 

thought to occur through two mechanisms. Firstly by binding to the transactivation 

domain of p53, Mdm2 and Mdm4 (see later) prevent p53 transcription. Binding at this 

site may also prevent p53 acetylation by p300 and CREB-binding-protein (CBP) 58,65. 

Recent work reviewed in Clegg et al 66 describes a re-evaluation of this situation. These 

authors have shown that Knock-in mice homozygous for an Mdm2 RING finger 

mutation (ie. they are unable to ubiquitylate p53), are not able to rescue p53 embryonic
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lethality despite the fact that this form of Mdm2 still binds to p53. This suggests that 

although MDM2 may be able to negatively regulate some of p53’s functions by binding 

to it, this is not sufficient. The second method (just alluded to) is based on the E3 ligase 

activity of MDM2 through which MDM2 is able to target p53 for degradation by the 

proteasome, thus decreasing the abundance and therefore activity of p53.

1.3.3.1 Ubiquitin-proteasome pathway

Figure 1.3.3.1 The ubiquitin - proteasome pathway, from Mani et al 67 PPI = 

pyrophosphate, AMP = adenosine monophosphate, ATP = adenosine triphosphate. Red 

circle = Ubiquitin, El - E3 represents the enzymatic cascade.

The ubiquitin system can selectively degrade a number of short lived proteins within the 

cell including p53 and MDM2. Figure 1.3.3.1 illustrates the ubiquitin cascade resulting 

in proteasomal degradation. The first stage of this process starts when an ubiquitin-
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activating enzyme binds ubiquitin in an ATP dependent step. The ubiquitin is then 

transferred to an E2 ubiquitin conjugating enzyme. Ubiquitin is then transferred to the 

target protein via an E3 ubiquitin ligase. An attached chain of at least four ubiquitin 

molecules, is needed to target the protein to the proteasome for degradation68.

Figure 1.3.3.2. The 26S proteasome structure, from Mani et al67.

The 26S proteasome is a multisubunit protein complex (see Figure 1.3.3.2). The 19S 

components assemble at each end of the 20S subunit. The 19S subunit is responsible for 

recognising proteins targeted by ubiquitinylation for degradation. Together with the 20S 

core subunit, proteins are unfolded and hydrolysed in an ATP dependent process. Both 

the 19S and the 20S subunits are needed for protein degradation67.
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The situation with regard to p53 ubiquitinylation is complex. MDM2 collaborates, as a 

homo or heterodimer, with a related protein, MDM4 (also called MDMX) to control p53 

levels69. MDM4 is not an E3 ubiquitin ligase but is ubiquitinylated and degraded by 

MDM2. Gu et al 69 showed that MDM4 stabilises MDM2 and at an appropriate ratio 

increases MDM2’s ability to degrade p53. If MDM4 is absent, MDM2 is not stable 

enough to degrade p53. Likewise if MDM2 is absent MDM4 does not distribute into the 

nucleus to be able to bind and cause p53 degradation by the proteasome. Deletion of 

either MDM2 or MDM4 leads to embryonic lethality.

1.3.4 p53 independent oncogenic properties of MDM2

The observation from histochemical studies of RCC, bladder cancer and sarcoma that 

MDM2 and p53 co-expression are associated with a poorer prognosis than either protein 

alone (see section 1.4.5) may suggest oncogenic properties of MDM2 independent of 

p53. In an animal model experiment in which p53 null mice were generated that “over­

expressed” Mdm2; mice were found to have increased tumourigenesis70. This suggests a 

p53 independent oncogenic effect of Mdm2. MDM2 has been shown to interact with a 

number of other cellular proteins independent of p53 (see Figure 1.3.4). Some of these 

such as NF-kp (nuclear factor kappa-light-chain-enhancer of activated B cells) , MTBP 

(MDM2 binding protein) and TGF-P (Transforming Growth Factor-P) may mediate the 

tumourigenic properties of MDM2 see review by Ganguli et al71.
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Figure 1.3.4 Putative oncogenic interactions of MDM2, from Ganguli et al71.

1.3.5 Abnormalities of MDM2 in human cancers

MDM2 protein over expression was first found associated with gene amplification 

leading to the appearance of double minute chromosomes (hence the name)72. However 

MDM2 is not just expressed but rather is up-regulated often described as over-expressed 

in the absence of gene amplification 3.
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1.3.5.1 Single nucleotide polymorphisms

A single nucleotide polymorphism (SNP) at nucleotide 309 (a T to G change) in the first 

intron of the MDM2 promoter, has been shown to increase the affinity of the promoter 

for the transcriptional activator Spl29. This has been shown in the same study to lead to a 

>3 fold increase in MDM2 levels in subjects homozygous for the polymorphism 

(SNP309 G/G) compared to subjects with wild type for SNP309 (T/T). A fourfold 

increase in MDM2 protein levels were seen in cancer cell lines with SNP309 (G/G) 

compared to SNP309 (T/T) cell lines. The heightened levels of MDM2 lead to a 

decrease in functional p53 levels. This leads to an increased risk of tumour development 

in subjects carrying the SNP309. It has been shown that in RCC, differences in the 

SNP309 genotype lead to different levels of MDM2 expression as detected by IHC 

(immunohistochemistry) and moreover the GG SNP309 genotype is an independent 

predictor of poor prognosis (HR = 1.87,= 0.03)74. This phenotype was seen in 62/200 

(31%) of patients with RCC versus 40/200 (20%) of nonnal age matched controls. 

Clearly further analysis of this polymorphism is warranted.
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Exon 1

SNP309i EK/AP1 Exon 2

261 524
B NVT

CGGGGGCX'CjGGGGCTCiCGGOCKTCKTrtGGCXKXKiGAGGTCCGGATGAICCK AGG
w 15T Spl Spl

SNP3W

rriGGGrirCGGGOGrTGrGGCiGCCGCTjyGGCGrGCiGAGriTCCGriATCiATCGrAGri
------ Spl

Spl Spl Spl

Figure 1.3.5.1 SNP309 in the human MDM2 gene from Bond et al2 \ A represents the 

intronic promoter of the MDM2 gene. The position of SNP309 is indicated in relation to 

the exon/intron boundaries and the transcription factor binding sites for p53 and Ets/AP- 

1. The region analysed for sequence variation (shown in B) is marked by the bar drawn 

below the diagram. B - The analysis of transcription factor binding sites in the region 

containing SNP309 is depicted. Potential Spl sites are underlined.

1.3.5.2 MDM2 splice variants

To date at least 40 different transcripts of alternatively spliced MDM2 mRNA, have 

been documented in human cancers . The incidence of splice variants in RCC is not 

known. The significance of these in malignancy is also uncertain. Fridman et al 76 have 

shown that some variants are as oncogenic as full length MDM2. The authors also make 

the point that many splice variants lack the epitopes used by common antibodies aimed 

at detecting MDM2. This could mean that the oncogenic properties of MDM2 in cancer 

have been underestimated by IHC analyses. The exact mechanisms of how splice
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variants are oncogenic are also not known. It may be that they interact and negate full 

length MDM2 (dominant negative effect) or their over-expression is oncogenic75.

1.3.5.3 MDM2 mutants

Point mutations of MDM2, affecting the central zinc finger domain, have been reported 

in some human cancers77, Lindsrom et al63 have shown that mutation of MDM2's 

central zinc finger disrupts the interaction of MDM2 with ribosomal proteins L5 and 

Lll. Zinc finger mutants are impaired in undergoing nuclear export and proteasomal 

degradation as well as in promoting p53 degradation. They retain however the function 

of suppressing p53 transcriptional activity. Unlike wild type MDM2, where p53- 

suppressive activity can be inhibited by LI 1, the MDM2 zinc finger mutant escapes Lll 

inhibition. The incidence of MDM2 mutation in RCC has not been reported.

1.4 p53 and MDM2 in RCC

1.4.1 p53 expression in RCC

To date over 30 studies have investigated the expression of p53 in RCC. These studies 

have been critically reviewed, as part of my project, and a paper published in Cancer 

Journal78 (see appendix 2). These studies have used IHC staining of paraffin embedded 

tumour samples. More recent studies have employed a modification of this approach in 

which a number of samples are arrayed onto single slides as tissue microarray (TMA) 79
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that allows for more consistent direct IHC comparisons to be made between multiple 

tumour samples. The published studies to date of p53 expression in RCC, are presented 

below in Table 1.4.1. Where the data is available, the percentage of the sample size that 

is ccRCC is indicated, as is the stage range, and number in the sample with metastases. 

The samples all contained a mixture of high and low grade tumours. The majority of 

papers used the p53 DO-7 antibody that targets the amino-terminal region of the p53 

molecule, where available the criteria for dichotomising p53 expression/staining are 

given. The percentage of RCC specimens reported as staining positive for p53, ranges 

from 0 to 60%. From the published data (excluding papers by Klatte et al80 and Kim et 

al81 - where no details of p53 positivity are quoted) 2,519 tumours were stained for p53 

and of these 618 were deemed positive for p53 by the authors. This gives a p53 positive 

staining percentage of 24.5% however this does not reflect the heterogeneity of the 

samples (see below). Such variability in percentage positive staining may be explained 

by the fact that there is no universal criterion for designating a tumour positive for p53 

expression. There are also differences between studies in antibody and processing 

techniques. Interpretation of these results is also hindered by the variation in the 

histological subtypes of RCC tumours, tumour stage and grade and the presence of 

metastases, in the sample populations.

One paper used two different p53 antibodies which resulted in a higher overall 

positive p53 expression in 60% of specimens analysed (positivity of DO-7; 51% and 

pAb240; 30%). This highlights the fact that using different antibodies can result in 

apparent differences in p53 expression As for the rarer histological subtypes of RCC,
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three studies reported the incidence of p53 expression in PRCC to be 42% (5/12)83, 70% 

(14/20) 84 and 24% (12/50)14. Ferret14 showed that p53 expression was significantly 

higher in type II PRCC compared to type I, however there was a higher proportion of 

patients with metastatic disease in this group (0 vs 32%) . For chromophobe tumours the 

reported rates are as follows; 20% (1/5)83, 27.3% (6/22)84 and 100% (2/2)85. Kanamam 

et al86 studied 11 RCC with sarcomatoid features and found no difference in the 

immunohistochemical expression of p53 in sarcomatoid compared to non-sarcomatous 

areas of the tumour. However, the small numbers employed in these series make 

interpretation of the incidence of mutations in p53 in these rarer histological 

classifications difficult.

There does appear to be an increased expression of p53 in studies including high stage 

and patients with metastatic disease. The study by Zigeuner and colleagues analysed 

p53 staining in primary and in metastatic samples. These authors found a higher 

incidence of p53 positive staining in metastatic compared to primary samples (51.8% 

versus 22%). This together with the finding that many tumours have distinct areas of p53 

staining rather than a widespread field change, suggest p53 expression is a later event in 

the evolution of RCC. If this is the case one might well expect p53 expression to be 

associated with a poorer prognosis.
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1,4.2 p53 and prognosis in RCC

The prognostic implications of IHC expression and mutation of p53 have been evaluated 

and the results are summarised in table 1.4.1. Of the 28 studies that evaluated p53 

expression as a clinical outcome predictor, 18 studies found it predicted poor outcome 

and 10 did not. The ten papers that did not, had a smaller study size (mean of 62 patients 

per study compared with 119 in the positive studies). The four largest studies to date, all 

using TMAs, showed p53 to be a prognostic predictor. Kim et al81 evaluated 318 

ccRCC-only patients with local and metastatic disease (49% i.e. 155/318 had metastatic 

disease). These authors found that p53 was an independent predictor of decreased 

disease specific survival on univariate (pO.OOl) and on multivariate Cox regression 

analysis (p=0.014) with the presence of metastasis as a covariate 81. Klatte 80 in a similar 

study of 170 ccRCC patients again found p53 was retained in multivariate Cox 

regression analysis for predicting disease free survival. In the study by Klatte80 the 

percentage of tumour staining for p53 was evaluated obviating simplification 

necessitated by describing a tumour as positive or negative for p53 staining. Zigeuner84 

and colleagues showed that p53 was a predictor of disease progression (metastasis free 

survival) on multivariate Cox regression analysis in their study of 130 ccRCC patients. 

Patients were followed for a median of 26 months and 9 of 16 patients with p53 positive 

staining tumours progressed versus 20/114 negative tumours (p=0.0005). hi another 

substantial study Shvarts et al87 evaluated p53 staining as a predictor of 5 year 

recurrence in 193 patients operated on for localized disease. They again showed a p53
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positive cut-off of 20% expression detected by IHC to be a predictor of recurrence (HR 

3.28, P=0.0108) on both univariate and multivariate Cox regression analysis

Study Specimens 
(% ccRCC)

Technique Antibody Positive
criteria

(%)

Number
positive

(%)

p53
prognostic

Comments

Klattel00 170(100)
All stages M=0 TMA 7 Any 7 YES Decreased disease free survival

Peret14
50 (0) All PRCC
25 Type 1
25 Type II, M=8

IHC DO-7 >20

24 (48) 
Type I = 12 

Type 2 =
36

YES Decreased overall survival in Type
II PRCC

Phuoc 88 119(100)
All stages, M=23 IHC DO-7 >10 64(54) YES Decreased disease specific 

survival in all cases

Kankuri89 117/(86)
All stages, M=29 IHC DO-7 >10 15(12.8) YES Decreased overall survival in 

patients with metastases

Kramer90 117(89)
All stages, M=21 IHC 7 >5 16(13.6) NO

Langer91
95 (75)
Stage pTI only, 
M=0

TMA DO-7 7 23(24) Not
evaluated

Cho92 92/(100)
All stages, M=7 IHC ? >10 11(12) YES Decreased cancer specific survival

Shvarts87 193(85)
All stages, M=0 TMA DO-7 Any

>20
111(57.5)

14(7.3) YES 20% cutoff predicted recurrence

Uzunlar93
57(77.1)
All stages & 
grades, M=?1

IHC ? >1 20(35) YES Decreased Disease specific 
survival

Zigeuner 64 184 (70.7)
56 mets (94.8) TMA DO-7 >1 42(22.8)

29(51.8) YES Decreased metastasis free 
survival in CCRCC only

Kim01
318
All stages M =
155

TMA DO-7 >15 ?1 YES Decreased disease specific 
survival

Uchida94 112/(78)
All stages, M=?’ IHC DO-7 >1 15(13.4) YES Decreased overall survival

Olumi82 43/(100)
All stages, M=14 IHC DO-7 & 

PAB240 >10 either
22(51)
13(30)
26(60)

NO Combined antibody positivity was 
60%

Ljungberg63 99 /(74)
All stages, M=?1 IHC DO-7 >5 17(19) YES Decreased survival in non

CCRCC

Girgin95 50 (62)
All stages, M=0

IHC DO-1 >20 16(20) YES Decreased disease specific death

Haitel98 97 (100)
All stages, M=15

IHC DO-1 >5 35(36) YES Decreased disease specific 
survival

Rioux-
Leclerq97 66 (?1)

All stages, M=10
IHC DO-7 >20 11(17) YES Decreased disease specific 

survival

Sejima98 53 (?')
All stages, M=25

IHC RSP53 ? 1(2) NO

Vasavada" 39 (71)
T1 & T2 only,
M=0

IHC DO-7 >1 0 NO

Sinik100 39 (100)
All stages, M=?1

IHC DO-7 >10 7(17.9) NO

Papadoul101 OO/t?1)
T1 &T2, M=14

IHC DO-1
Any

positive
nuclei

30(33) NO

Zhang102 70 (?’)
All stages, M=?1

IHC Ab-6 >10 16(23) Not
evaluated

Gelb103
52 (100)
T1 & T2 only,
M=0

IHC DO-7 >5 2(2) NO

Shina104 72 (71)
All stages, M=6

IHC DO-7 >10 29(40.3) YES Decreased overall survival

32



Moch'05 50(100)
T3 only, M=1

IHC DO-7 NO 8(16) YES Decreased overall survival

Hofmokel106 31 (?1)
T1-T3, M=0

IHC DO-7 >1% 5(16) NO

Chemeris85 82 (40), M=?1 IHC DO-1 ? 43(52) Not
evaluated

Lipponen107 123 (?'), M=29 IHC CM1 Any
positive

41(33) YES Increased recurrence free survival

Kamel108 56 (?’)
All stages, M=13 IHC CM1 >1 6(11) NO

Bot109 100 (74)
T1 to T3, M=0 IHC DO-7 >50 32(32) NO

Uhlman110 175 f?1) All 
stages, M=45

IHC ? >1 49(28) YES Decreased disease specific 
survival

Table 1.4.1 p53 expression and prognosis in renal cell carcinoma. M = Metastases, 

? = Not given

When considering such studies of biomarkers of disease outcome the possibility of 

publication bias leading to fewer papers being published that demonstrate no disease 

outcome correlation should be considered. Nevertheless, the trend appears to be that 

more recent studies with higher numbers of cases find that p53 protein levels are

o t on
prognostically significant in renal cell carcinoma.Both Kim et al and Klatte et al 

devised prognostic nomograms which included p53. Neither of these two nomograms 

have been validated by other groups and at present p53 is not routinely evaluated in 

RCC by pathologists. Another important factor that must be taken into consideration is 

that an immunohistochemical study simply tries to detect the expression of a protein and 

compares it to normal tissue (or to different types/grades of tumours). It does not tell us 

whether the protein is functional or mutated.
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1.4.3 p53 mutation in RCC

To date, at least fifteen papers have evaluated whether p53 is mutated in RCC (see table 

1.4.3). Most studies have used a technique called Single-Strand Conformation 

Polymorphism or SSCP as a first step in screening for mutations. This principle, devised 

by Orita et al m, is based on the observation that DNA single strand mobility in a 

polyacrylamide gel under non-denaturing conditions, is markedly altered by single 

nucleotide sequence changes because of the alternative confonnations adopted by single 

stranded DNAs with altered sequences.

Having detected altered migration of conformational polymorphisms the PCR 

(polymerase chain reaction) products are usually then directly sequenced to determine 

the identity of the alteration, hi the majority of these 15 studies, analysis was restricted 

to the central or core domain of the gene (exons 4-8 or 5-8), as this is the most common 

site of p53 mutation112. Approximately 15% of p53 mutations occur outside exons 5-8 in 

exons 4, 9 & 10113 and so it is likely that there will be some under-reporting of p53 

mutations in these studies. The frequency of p53 mutations reported is between 0 and 

44% (excluding the study by Oda13, which evaluated sarcomatoid tumours). For 

comparison, in other tumours the incidence of p53 mutations has typically been reported 

as; 60 - 65% for lung & colon, 40 - 45% for stomach, oesophageal and bladder cancer, 

25 - 30% for breast, liver, prostate and lymphomas and 10 - 15% for leukaemia’s data 

from the I.A.R.C p53 database 112.
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Study reference Sample type Technique p53 Mutation 
frequency (^o)1

Gad et al114
46 chromophobe
19 ccRCC
9 papillary

Dir. Seq.
Exons 2-11

11 (23.9)
1 (5.3)

1 (11.1)

Kawasaki et al115 5 SSCP and Dir. Seq.
Exons 4-8 1(20)

Zhang et al102
16
(ail p53 positive by
IHC)1

SSCP only
Exons 5-8

7 (44 )1

Contractor et al116 30 ccRCC
20 chromophobe

SSCP and Dir. Seq. or sub 
clone seq.
Exons 5-8

1(3)
6(30)

Dahtva et al117 40 SSCP and Dir. Seq.
Exons 5-9 14 (35)

Dijkhuizen et al118 14 papillary SSCP only
Exons 2-11

0

Oda et al13 14 sarcomatoid Sub clone seq.
Exons 1-8 11 (79)

Chemeris et al85
29
(all p53 positive by
IHC)1

SSCP and Dir. Seq.
Exons 4-8

01

Kuczyk et al119 33 SSCP and Dir. Seq.
Exons 5-8 2(6)

Uchida et al120 36 SSCP and Dir. Seq.
Exons 5-8

2 (5.6)

Kikuchi et al121 118 SSCP and sub clone seq. 
Exons 4-9 2(1.7)

Imai et al122 53 SSCP and Dir. Seq.
Exons 4-8

5(9)

Reiter et al123 33 RCC cell lines SSCP and sub clone seq. 
Exons 5-9

12 (36)

Suzuki et al124 23 SSCP and Dir. Seq.
Exons 5-8 1 (4.3)

Torigoe et al125 21 SSCP
Exons 2-11

2 (10)

Table 1.4.3 p53 mutation in RCC. Dir = direct, seq — sequencing, 1 Where IHC 

positivity has been used to pre-select samples for genetic analysis, p53 mutation 

frequency only refers to the percentage of mutations found in the samples thus analysed
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nr
One intriguing observation derives from the study by Chemeris et al who found that 

0/29 RCC samples, all positive for p53 by IHC, had a p53 point mutation 85. However, 

in another study by Zhang and colleagues it was found that 44% of tumours with p53 

staining (n^lb) had a p53 point mutation 102. It is possible that contamination of 

samples with normal tissue might lead to reduced detection of p53 mutations by SSCP 

and thus variations in the extent of this might explain the differences between these two 

studies. This conclusion is indirectly supported by the observation that 33% of RCC- 

derived tumour cell lines were found to harbour p53 mutations 123. However this 

assertion should be tempered by the possibility that selection of cells to adapt to growth 

in vitro may have resulted in an increased p53 mutational frequency. Moreover, this data 

from ccRCC cell lines contrasts with a study by Dijkhuizen et al 118 that identified no 

p53 mutations in 29 PRCC-derived tumour cell lines and thus it seems possible that 

different mechanisms other than direct p53 mutation may inactivate p53 more frequently 

in PRCC than in RCC and that these also might result in higher expression ’ . One 

other finding of particular note is the high p53 mutation rate reported in sarcomatoid 

tumours118. Sarcomatoid change is a histological finding associated with renal carcinoma

i -5

with a poor prognosis and also a high (79%) p53 mutation rate (n=14) 

Notwithstanding these differences between individual studies and RCC sub-types, it 

seems clear that in contrast to both other cancers and p53 protein detection in RCC, p53 

mutational analysis has yet to demonstrate prognostic utility. Until much larger studies 

are perfonned, the question of whether the lack of significance of p53 mutation as a 

biomarker in RCC is due to differences in p53 inactivation between RCC and other
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cancers, or is simply due to a lack of power in the studies to date is a critical question 

that requires resolution.

1.4,5 MDM2 expression and prognosis in RCC

Four studies have evaluated MDM2 and its prognostic value in RCC. Imai et al 122 

screened 53 RCC tumour samples for MDM2 gene amplifications, using dot-blot and 

southern blot analysis, and found none. In another study, IHC was used and MDM2 

expression was detected in 2% (2/112) of tumour samples 94. In another study by Moch 

et al105, 50 consecutive tumours of stage T3 and T4, were screened by IHC, the 

expression of MDM2 was identified in 30% of cases, but it was found to be of no 

prognostic significance in terms of overall survival. However, Moch et al’s105 study also 

found that 7 of the 8 patients that expressed p53 also expressed MDM2 (p=0.0006), 

raising the possibility that MDM2 expression may be linked to up-regulation or 

activation of p53. Another study which analyzed this question was performed by Haitel 

et al 96. In this IHC study of 97 ccRCC of all stages, MDM2 expression was detected in 

19% of tumours and this was significantly more frequent in high grade tumours 

(/7=0.01490). In addition, it was also shown that MDM2 staining was strongly 

associated with tumour progression (/?=0.00113). p53 expression was detected in 36% of 

the samples, and was correlated with decreased progression free survival (£>=0.00291). 

When different p53 and MDM2 phenotypes were compared (figure 1.4.5), it was found 

that tumours expressing both MDM2 and p53 have the shortest progression free survival 

time (£>=0.00179). Perhaps most interesting from a mechanistic perspective and in
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accordance with the study by Moch and colleagues, these authors found a highly 

significant correlation between MDM2 detection and p53 positivity (p<0.00004). Three 

of these studies analysed relatively small numbers of patients and they have employed 

different cut-off values for MDM2 expression. Nevertheless, the association of p53 and 

MDM2 detected by Moch et al105 and Haitel et al96 suggests that tumour progression in 

RCC may present a tissue specific pattern not seen in other (often) better documented 

cancers. For example, this link between p53 and MDM2 has not been observed in soft 

tissue sarcomas, ’ nor in bladder cancer , even though patients expressing mutant 

p53 and increased MDM2 in these tumours had a poorer prognosis similar to the 

situation reported in RCC.

As will be explained later, to get cells to stably express MDM2 in culture is very 

difficult. Could the adaptive changes needed to express high p53 and MDM2 lead to 

possible targets for clinical drugs in poor prognosis renal cell carcinoma?
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Figure 1.4.5 Kaplan-Meier disease free survival curves for patients with different 

p53 and MDM2 expressions in RCC%. Group A = MDM2 - / p53 Group B = 

MDM2 - / p53 + & MDM2 + / p53 Group C = MDM2 + / p53 +

1.4.6 In vitro studies of p53 and MDM2 in RCC

Several groups including our own have used in vitro analyses to investigate the 

functional relationship between p53 and MDM2 in RCC cells. My MD project 

predecessor in the laboratory (Hazel Warburton - HW) has shown that p53 is regulated 

by MDM2 in a panel of RCC cell lines, several of which retain relatively high levels of 

both wild type p53 and MDM2 . As mentioned already, p53 mutations have been 

detected in around 30% of RCC-derived cell lines 123. This, together with other studies
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showing that p53 expression is an independent prognostic indicator; suggest that p53 

function, or rather its loss or aberration contribute to tumour evolution in the kidney. It 

has been suggested, however, that an alternative novel dominant mechanism leads to 

inactivation of p53 in RCC 129. Again HW and others have provided evidence that 

appears not to support this conclusion128,13°. Nevertheless, there remain good reasons to 

continue to investigate this possibility and two arguments for this are immediately 

apparent. Firstly there is evidence from several studies that p53 is not as frequently 

mutated in patient samples from RCC as it is in many other cancers. Secondly, the 

strong association between p53 and MDM2 expression may suggest a functional link 

between these, with one obvious possibility being that MDM2 expression may be driven 

by wild-type p53. One further point that merits particular attention is the recent 

discovery in vitro of a novel and potentially significant and complex interplay between 

MDM2 and several angiogenic factors in RCC130. MDM2 has also recently been shown 

to play a role in metastasis131 and given its association with poor outcome in RCC, either 

or both of these phenotypic connections (metastasis and/or angiogenesis) may have 

important consequences.
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1.5 Renal cell cancer cell lines

A panel of 14 RCC cell lines has been assembled by my predecessor HW. This panel 

fonns the basis of a number of experiments designed to examine the mechanisms of 

MDM2 and p53 steady state levels of expression in RCC. The following section and 

Figure (1.5) summarises important information about each of the cell lines. Further work 

undertaken by HW has shown that the increased expression of MDM2 is not due to 

increased transcription or gene amplification.

Cell Line Histological subtype of RCC P53 Status VHL status
111 ? mt 173 T-G1^ ?
115 ccCRC? mt 280 R-Tm ?
117 ? wt 3p LOH
121 “Granular”* RCC mt 275 G-Am 9
122 ccRCC mt 294 G-A123 9
154 Lymph Node RCC metastasis mt 248 G - A123 ?
A498 Unclassified RCC wt null
ACHN Pleural RCC metastasis wt wt
786-0 ? Mt 278 C-G wt
769-P ccRCC? wt ?
Caki-1 ccRCC? Metastasis to skin wt ?
Caki-2 ccRCC wt ?
A704 ccRCC ? null
SW156 ccRCC wt ?

Table 1.5 The RCC cell lines and p53 mutational status. The infonnation about the 

origin of the cell line, p53 status, p53 mutation and VHL This information comes from 

Anglard et al and Reiter et al that established the cell lines. *The term “granular” 

is no longer used to describe RCC. It has previously been used to describe chromophobe 

RCC, PRCC & ccRCC134. Mt = mutant p53, wt = wild type p53, ?= not known
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MDM2

p53 status mt mt wt mt mt mt wt wt wt wt mt ? wt mt wt'

Figure 1.5 Western blot analysis of MDM2 and p53 expression in the RCC cell lines 

(produced by HW). mt = mutant p53 wt = wild type p53

1.6 Generating stable “high” MDM2 expressing 117 clones

As previously stated high co-expression of MDM2 and p53 detected by IHC, has been 

shown to be associated with poor prognosis in renal cell carcinoma. Previous work in 

our group by HW tried to generate high MDM2 expressing clones from the RCC line 

117 (low wild type p53 and low MDM2), see Figure 1.6.1. To generate the clones, 117 

cells were transfected with an MDM2 expression marker that also contained a gene for 

antibiotic resistance. Culturing the cells in media containing the appropriate selection 

antibiotic increased the chances of colonies forming that stably expressed higher levels 

of MDM2. Clones were then screened using western blot analysis to look to see if high 

MDM2 expression occurred. No MDM2 expressing clones could be generated after 

multiple attempts.
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A.
HZ’*- Vector 117 ♦ MDM2

MDM2 positive clones 0/23 0/8

Figure 1.6.1 A representative colony formation assay of the RCC 117 cell line 

following transfection with either pcmv-Neo-Bam (empty vector) labelled 117 + 

Vector or pcmv-Neo-Bam-MDM2 labelled 117 + MDM2. No MDM2 expressing 

clones were created.

Clearly some other adaptive change must take place in RCC cells to allow toleration of 

high MDM2 levels. Or put another way, some other event is needed that leads RCC to 

express high MDM2 levels. In the next stage of experimentation (see Figure 1.6.2) HW 

investigated if the presence of non-functional/mutated p53, rendered the cells permissive 

for stable expression of high MDM2. Again 117 cell lines were transfected with a 

dominant negative p53 mutant (R175H) construct. On screening clones were found that 

expressed higher levels of MDM2. Surprisingly on screening of the clones that had only 

been transfected with the empty vector control (i.e. no MDM2 has been transfected into
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these cells, just the vector containing antibiotic resistance) some were also found to 

express MDM2. As a result of this cloning experiment (without a MDM2 expression 

construct), 117 cells were identified that could express high MDM2 levels,

HW next selected a clone from the previous R175H experiment with very low MDM2 

expression levels, similar to normal 117 cells. This clone was designated ANp53 (please 

note that the “A” is not meant to signify that p53 is truncated, the “AN” was used as an 

abbreviation for "dominant negative”. A clone from the empty vector control with p53 

and MDM2 expression levels similar to normal 117 cells was selected. This clone was 

designated pCEP3. These two clones (ANp53 and pCEP3) were now transfected with 

MDM2 and subjected to antibiotic selection, in a repeat of the first experiment (as in 

Figure 1.6.1). This time, on screening, some clones were generated that stably expressed 

MDM2 from both ANp53 and pCEP3 clones (see Figure 1.6.3).

As a result of these cloning experiments, the 117 RCC cell line that normally expresses 

low p53 and low MDM2 and cannot be manipulated to stably express high MDM2 

levels, has been altered (maybe spontaneously) into progeny clones that can be made to 

stably express high MDM2 levels.
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First round transfection 117* vector 117/vector clones 117/ANp53 clones 
Second round transfection. ♦ vector ♦ vector

MDM2 
ft -actin

MDM2 •‘ve clones: 0/23 6/27 5/30

Figure 1.6.2 Spontaneous development of MDM2 expressing clones. Clones 

expressing increased endogenous MDM2 (no MDM2 expression construct transfected) 

can arise spontaneously in 117 RCC cells previously cloned after transfection with either 

an empty vector (pCEP4) or with a p53 dominant negative mutant R175H expressed 

from pCEP4. Numbers relate to all clones analysed, colony formation and western blots 

are from a representative sample.
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First round transfection. ll7*-pMDM2 117/vector clones 117/ANp53 clones 
Second round transfection. + pMDM2 + pMDM2

Figure 1.6.3 Transfected cells can stably express high levels of MDIM2. Clones 

expressing MDM2 from an expression vector (pcmv-Neo-Bam-MDM2) can be 

generated in 117 RCC cells previously cloned after transfection with either an empty 

vector (pCEP4) or with a p53 dominant negative mutant R175H expressed from pCEP4. 

Numbers relate to all clones analysed, colony formation and western blots are from a 

representative sample. Analysis of clones transfected with an empty vector (pCEP4) in 

the first round and with an MDM2 expression construct in the second round shows that 

clones expressing MDM2 also express p53 (note that no p53 has been transfected into 

these cells)

As a result of these experiments three cell lines are able to be used as a model (see figure 

1.6.4) to try and understand the adaption of RCC cells to allow high MDM2 and p53
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expression and also possibly the consequences of this phenotype. The cell lines are the 

117 RCC cell line that cannot be manipulated to generate high MDM2 expressing 

progeny and ANp53 and pCEP3 both of which can be manipulated to generate high 

MDM2 expressing progeny.

117 transfected with MDM2, pCEP4 & 
R175H dominant negative p53 "ANp53"

A clone was selected that best matched 117 
expression of p53 and MDM2 on western blot

These three cell lines are to be used 
for experimentation in chapter 4

Attemptto generate stable clones by 
transfecting MDM2

Figure 1.6.4 Overview of the cloning experiments performed by HW
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1.7 Heat Shock Protein 90 (HSP9(n and p53 / MDM2 in RCC

In order to explain the high levels of p53 and MDM2 expression in RCC cell lines the 

heat shock protein 90 (HSP90) complex will be investigated. As will be described later 

in this section there is evidence to suggest that the HSP90 complex may interact with 

p53 and MDM2 in certain conditions. This interaction of HSP90 with p53 and MDM2 

may explain the higher levels of p53 and MDM2 seen in RCC.

1.7.1 Heat Shock Protein 90 IHSP90I overview

HSP90 is a molecular chaperone. There are at least five major chaperone families 

grouped and classified by their molecular weights. These include HSP27, HSP60, 

HSP70, HSP90 and HSP110135. HSP90 can bind unstable forms of other proteins (client 

proteins) allowing correct folding, oligomeric assembly, intracellular transport or 

disposal/degradation of the client protein136. During heat shock and other cellular 

stresses, HSP90 functions to refold damaged proteins and prevent aggregation of mis- 

folded proteins. There is also evidence that HSP90 is involved in the maintenance of the 

cytoarchitecture and also in antigen presentation135. HSP90 has amongst its client 

proteins a number of proteins important in oncogenesis e.g HER2, RAF - 1 and HIF-la 

137 see Figure 1.7.1.
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Figure 1.7.1 HSP90 client proteins implicated in cancer, from Sharp 200613K

It has also been shown that mutant p53 complexes with HSP90139 and is stabilised by 

it140. Therefore it is possible that HSP90, may have a role in the high expression of p53 

seen in RCC.

1.7.2 Structure, function and regulation of the HSP90 chaperone complex

HSP90 has two isoforms, HSP90-a and HSP90-P. HSP90-P is less inducible than

HSP90-a and is also termed HSC90, the C standing for constitutively expressed115.
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Figure 1.7.2 Schematic of HSP90 domain structures from Young141. N = N terminal 

domain, M = middle domain and C = carboxyl terminal domain.

The N terminal domain of HSP90 (labelled N in Figure 1.7.2) is the binding site for both 

ATP and for client proteins. The charged region has also been shown to be important for 

client protein binding. The carboxyl terminal domain contains a dimerisation motif and 

HSP90 must homodimerise in order to function. There is also evidence that the 

Carboxy- terminus houses a second ATP binding domain137. At the very end of the C- 

Terminus is the MEEVD pentapide. This is responsible for interaction with the 

tetratricopeptide repeats (TPRs) of co - chaperones1,7 (see Figure 1.7.3).

1.7.3 The HSP90 chaperone complex in action

A model for the normal function of HSP90 is illustrated below in Figure 1.7.3. A client 

protein first binds to an HSP70 molecule co-chaperoned with Hip (HSP70 interacting 

protein) aided by HSP40 (also called dnaJ protein) 142. These molecules are then bound 

to the HSP90 dimer by Hop (HSP70/90 organising protein - previously
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Client

Figure 1.7.3 Schematic of HSP90 Chaperone function adapted from Isaacs 2003143.

called HSP60). Hop acts as an inhibitor of the HSP90 ATPase, by preventing access to 

the nucleotide binding site of HSP90. It is thought this allows the client protein to be 

transferred to the nucleotide free state of HSP90141. Binding of the substrate allows 

replacement of ADP with ATP altering the conformation of the HSP90 dimer, releasing 

Hop/HSP70/40 and recruiting other co-chaperones such as p23, immunophilins or 

p50143. This new state allows the client protein to interact with ligands (for example 

steroid hormones) or other cellular stimuli (such as cystosolic kinases)143. If the client 

protein fails to interact it may be degraded, as upon ATP hydrolysis the HSP90 reverts 

back to the previous ADP bound conformation. While associated with the ADP bound
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confirmation of HSP90, the client protein is no longer folded correctly and under the 

influence of co-chaperones such as CHIP (carboxyl terminus of HSP70-interacting 

protein) may be ubiquitinylated and targeted for proteasome destruction (see Figure 

1.7.3).

Not all substrates are degraded, for example HSF1 (heat shock factor 1) is normally 

bound to and sequestered by HSP90. At times of cellular stress mis-folded proteins 

compete with HSF1 for HSP90 binding, leading to the liberation of HSF1. The inactive 

monomeric form of HSF1 that is bound to by HSP90 can then oligomerise into the 

active trimer whereupon it can bind the heat shock responsive elements in the promoter 

regions of the heat shock genes leading to transcription of heat shock proteins135, 144. 

Inhibitors of HSP90 (see Figure 1.7.4) also lead to liberation of HSF1 and transcription 

of Heat shock proteins.

1.7.4 Drug inhibition of HSP90

HSP90 has been identified for possible cancer therapy as it has been shown to chaperone 

a number of proteins important for oncogenesis. Interestingly HSP90 in cancer cells 

seems to be 100 times more susceptible to inhibition than in normal cells. This is 

thought to be because HSP90 exists in a high affinity conformation in cancer cells 

enabling it to chaperone oncogenic proteins more readily145. For a full review of HSP90 

inhibitors see Sharp 2006138. For the purposes of this introduction, the bensoquinone 

ansamycin antibiotics will be further discussed. Geldanamycin (GA) was the first
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member of this group to be discovered. It has been shown to bind to the amino - 

terminal ATP binding domain with greater affinity than ATP or ADP. The binding of 

GA results in arrest of the HSP90 cycle in the conformation that promotes client protein 

degradation (see Figure 1.7.4.1)146.

Figure 1.7.4 Inhibition of the HSP90 chaperone by geldanamicin, from Isaacs143. GA 

= geldanamicin

GA has been shown in clinical trials to be hepatotoxic. This has led to the development 

of two less toxic derivatives with better bioavailaility - 17 - AAG and 17 - DMAG. 

Another inhibitor of interest is the coumarin antibiotic novobiocin. This drug is unique 

as it seems to target the ATP binding site in the Carboxyl - terminus resulting in 

disruption of the binding of HSP90 with both p23 and HSP70141.
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1.7.5 HSP90 interactions with t)53

In 1995 Blagoskloimy et al147 reported that GA destabilised mutant p53 in breast, 

prostate and leukaemic cell lines. Further work by this group revealed that it was HSP90 

inhibition by GA that was responsible for mutated p53 destabilisation148 and that the 

destabilisation was mediated by the proteasome149. Whitesell et al 150 found that mutant 

and not wild type 53 is chaperoned by HSP90. Marcu et al151 in a different study showed 

that mutant p53 is also destabilised following HSP90 inhibition with novobiocin, which 

has a different mode of HSP90 inhibition (see section 1.7.4). Marcu et al151 also 

concluded that MDM2 was unlikely to mediate the degradation of mutant p53 upon GA 

treatment, as MDM2 levels did not increase. This fails to exclude the possibility that 

MDM2 is also chaperoned and degraded following HSP90 inhibition. Nagata et al140 

again showed that HSP90 prevented mutant p53 and not wild type p53 degradation via 

the ubiquitin-proteasome system. Nagata et al140 postulated that the reason mutant and 

not wild type p53 is chaperoned is because the mutant confonnation, and not wild type 

p53, reveals hydrophobic residues selectively recognised by HSP90 as incompletely or 

misfolded. It is worth noting that these experiments, just described used transfected 

mutant and wild type p53. The observed effects may be a consequence of higher 

amounts of p53 and MDM2 present as a result of translection.

These papers provide clear evidence that mutant p53 is stably bound to HSP90. After 

HSP90 inhibition with GA or novobiocin, mutant p53 is ubiquitylated and degraded by 

the proteasome. These results have been derived from in vitro systems or transfected cell
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lines. It is not known if the effects are tumour and or cell line specific. The question still 

remains what role HSP90 has with wild type p53 in RCC.

Using nuclear magnetic resonance spectroscopy combined with cross-correlated 

relaxation enhanced polarization transfer (CREPNET-TROSY), Rudiger et al152 

evaluated the conditions at which p53 binded to HSP90. Rudiger found that HSP90 

binding was not restricted to certain mutational confonnations but solely on their 

stability and liability to unfold. The truncated unmutated core domain of p53 was found 

to denature and bind at temperatures higher than that for four other mutant 

confonnations. This may mean in vivo that HSP90 is binding mutated p53 because a 

higher proportion of this protein is unfolded at physiological temperatures. Evidence for 

in vivo interactions between HSP90 and wild type p53 come from Muller et al153 and 

Walerych et al154 who used a transfonned human fibroblast cell line containing 

functionally active p53 as an experimental model. Treatment of this cell line with GA 

and radicol reduced the degree of upregulation of p53 seen after DNA damage was 

induced with camptothecin. Wang & Wang155 in a similar set of experiments 

demonstrated less p53 stabilisation after HSP90 inhibition when the cells were heat 

shocked.

1.7.6 HSP90 and MDM2

As mentioned earlier in this introduction it has been observed that some cell lines with 

mutated p53 sometimes have high levels of MDM2. Given that mutated p53 does not
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promote MDM2 transcription other mechanisms must be responsible for these high 

MDM2 levels. The HSP90 molecule may in some instances be responsible for 

maintaining high levels of MDM2. Peng et al156 showed MDM2 co-precipitated with 

HSP90, but only in the presence of mutated p53. In this study destabilisation of MDM2 

after HSP90 inhibition was blocked by proteasome inhibition.

1.8 Project aims

Our working hypothesis is that RCC specimens that express high levels of p53 and 

MDM2, on histochemical staining, have a worse prognosis. The mechanisms responsible 

for this phenotype are currently unknown but HSP90 may be in part responsible.

1.8.1 Investigate if there is a correlation between p53 and MDM2 expression in RCC. I 

will also investigate what if any, is the prognostic significance of p53 and MDM2 

expressing phenotypes in RCC.

1.8.2 Develop a model for investigating the mechanisms and consequences of high 

expression of MDM2 in 117 cell lines. I intend to follow on from my predecessors (HW) 

work on the 117 cell line. I will investigate the effects of high MDM2 expression in the 

parental 117 cell line and its generated clones that can stably express high MDM2 levels. 

To achieve this I will first need to find a reproducible method of making these cells 

express MDM2 in high levels.
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1.8.3 Investigate the effects of proteasome inhibition on the levels of p53 and MDM2 

expression in RCC cell lines.

Previous work in the Boyd laboratory has suggested that high levels of MDM2 

expression are not due to MDM2 gene amplification or increased transcription. 

Therefore, some other mechanism must exist to explain high expression. One 

mechanism of up-regulation may involve loss of ubiquitinylation and degradation of 

MDM2 by the proteasome. I aim to inhibit the proteasome in the RCC cell lines to see if 

MDM2 is still stabilised.

1.8.4 Investigate the effects of HSP90 inhibition in the RCC cell lines

The activities of the HSP90 chaperone complex may offer a mechanism (chaperoning 

may prevent their degradation) to explain the co-upregulation MDM2 and p53 in RCC 

cell lines. I will inhibit the function of HSP90 using a HSP90 inhibitor and look for 

changes in MDM2 and p53 protein expression.

57



CHAPTER 2 - METHODS

2.1 Reagents, buffers and solutions

All prepared in water with a resistance >15

2.1.1 SLIP (Stuart Linn immuno-precipitation) buffer

Made up fresh each time.

50mM HEPES (pH 7.5)

10% (v/v) glycerol 

0.1% (v/v) Triton X-100 

150mM NaCl

2.1.2 Pepstatin (Roche Applied Science) 

Stored as lOOOx stock at -80°C 

Img/ml in 100% methanol

2.1.3 Leupeptin (Roche Applied Science) 

Stored as lOOOx stock at -80°C 

0.5mg/ml in H2O

2.1.4 Aprotinin (Roche Applied Science) 

Stored as lOOOx stock at -80°C 

2mg/ml in PBS
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2.1.5 Soybean trypsin inhibitor (Roche Applied Science) 

Stored as lOOOx stock at -80°C

lOOpg/ml in H2O

2.1.6 Phenyl methane sulfonyl fluoride (Sigma)

Made Fresh

lOOx stock

0.0174g/ml in 100% ethanol 17M

2.1.7 4x Sample buffer

0.25M Tris (pH 6.8)

8% (v/v) SDS 

40% (v/v) glycerol 

4mg/ml bromophenol blue 

1% (v/v) p - mercaptoethanol

2.1.8 SDS Polyacrylamide stacking gel

40% acrylamide mix 

1M Tris (pH 6.8)

10% (v/v) SDS

10% APS (v/v) (Made freshly)

1% (v/v) TEMED
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2.1.9 SDS Polyacrylamide separating gel (10ml)

10% 12%

H20 4.8ml 4.3ml

40%(v/v) Acrylamide mix 2.5ml 3 ml

1.5M Tris (pH 8.8) 2.5ml 2.5 ml

SDS 0.1ml 0.1ml

APS 0.1ml 0.1ml

TEMED 0.08ml 0.008ml

Table 2.1.9 SDS Polyacrylamide separating Gel (10ml)

2.1.10 Tris-glycine electrophoresis buffer

25mM Tris base 

250mM glycine 

0.1% (v/v) SDS

2.1.11 Electrophoresis transfer buffer

25mM Tris 

192mM glycine 

20% (v/v) methanol
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2.1.12 Ponceau S (Sigma) 10X stock

2% (v/v) Ponceau S (3-hydroxy-4-[2-sulpho-phenylazo)phenylazo]-2!,7-napthalene

disulphonic acid

30% (v/v) trichloroacetic acid

30% (v/v) sulphosalicylic acid

2.1.13 PBS / Tween

0.065 M Na2HP04 

0.015 MNaH2P04.2H20 

0.075 M NaCl 

0.1% (v/v)Tween 20

2.1.14 p-gal fixing buffer

0.5% (v/v) glutaraldehyde in PBS

2.1.15 p-gal substrate buffer 

Diluted in PBS

3mM potassium ferrocyanide 

3mM potassium ferricyanide 

ImM magnesium chloride 

0.5mg/ml X-gal
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2.1.16 Sodium Phosphate buffer 1M (pH 7.4) 100ml

77.4ml Na2HP04 

22.6ml NaH2P04

2.1.17 B-galactosidase reporter lysis buffer

Made up in H20

200mM sodium phosphate buffer 

2mM MgCl2

lOOmM p-mercaptoethanol 

1.33mg/ml o-nitrophenyl-p-D-galactopyranoside

2.1.18 MACS™ separation buffer

Made up in H20 

Img of PBS 

0.5% (w/v) BSA 

2mM EDTA

2.1.19 lx TAE

0.04M Tris-acetate 

0.001M EDTA (pH 8.0)
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2.2 Tissue culturing and experimental treatment of cells

2.2.1 Cell lines

The following cell lines were used for experimentation:

HI299 (non small cell lung carcinoma) from the Division of Surgery and Oncology, 

Liverpool University

U20S (osteosarcoma) from the Division of Surgery and Oncology, Liveipool University 

The following RCC lines were obtained from the American Type Culture Collection, 

Manassas, VA 20110 - 2209 (ATCC):

A498, 786-0, 769-P, ACHN, A704, SW156, Caki - 1, Caki - 2.

The following RCC lines were kindly provided by Prof W. Marston Linehan MD, NIH. 

UOK 111, 115, 117, 121, 122, 154.

2.2.2 Cell culture requirements

Cell culture was perfonned using a sterile technique in a class II laminar flow cabinet. 

Cells were cultured as a monolayer at 37°C with 5% CO2 in tissue culture flasks. Cells 

were passaged when they reached a confluence of 80 - 100% depending upon the cell 

line. The media requirements for 500ml are detailed in Table 2.2.2. All reagents were 

obtained from Sigma-Aldrich.

63



Cell Lines Media Additives

(Final Concentrations)

H1299&U20S RPMI1640 10% FBS

786-0,769-P RPMI1640 10% FBS

ImM Sodium Pyruvate

0.5% D-Glucose

1% HEPES

A498 ACHN A704 Eagle’s minimum 10% FBS (Sigma)

SW156 essential medium 2mM L-glutamine

UOK ImM Sodium pyruvate

111,115,117,121,122,154 1% non essential amino

*117pCEP4& 117 acids

ANp53 *250pg/ml of

hygromycin B

CakM Caki-2 McCoy’s 5a Medium 10% FBS

2mM L-glutamine

Table 2.2.2 Culture media for experimental cell lines.

2.2.3 Cell harvesting

All cell lines were harvested in the following manner. Volumes used depended on the 

culture vessel, please see Table 2.2.3. Media was removed and the cells were briefly 

washed with trypsin (Sigma-Aldrich) which was then removed. Cells were then covered 

in trypsin and left in the incubator for approximately two minutes until they were no 

longer adherent. This was confirmed by light microscopy. The trypsin was then
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neutralised with an equal volume of culture media containing FBS (complete media). 

The cell suspension was then repeatedly aspirated with a pipette to produce a single cell 

suspension. To serially passage the cell line, the cell suspension was then reseeded into 

the culture vessel with the appropriate volume of media. For routine passage of cells a 

split ratio of 1:4 was used.

Vessel (surface area cm2) Trypsin (ml) Media (ml)

Flask (175) 6 25

10 cm Dish (56) 3 10

6 well plate (9.5) 1 2

Table 2.2.3 Cell harvesting media and trypsin requirements

2.2.4 Cryogenic storage of viable cells

Routinely a 90% confluent 175cm2 flask was used. The cells were harvested as 

described in section 2.2.3. The cell suspension was centrifuged at 300rcf for 5 minutes. 

The media was removed and the cell pellet resuspended in 1ml of freeze media (FBS 

with 10% DMSO (dimethyl sulfoxide). The cell suspension was then transferred to a 

1ml polypropylene cryo-vial and placed in a controlled rate freezing apparatus at -80°C 

for 24 hours, before storing in liquid nitrogen. Recovery of cells from the liquid nitrogen 

involved rapid defrosting of the cells at 37°C before transferring into a pre-warmed flask 

containing the appropriate volume of complete media.
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2.3 Protein analysis

2.3.1 Cellular lysate preparation

Cell pellets were harvested as described above and stored at -80°C for at least 2 hours. 

Routinely lOpl of the protease inhibitors aprotinin (2.1.3), leupeptin (2.1.4), pepstatin 

(2.1.2), Soybean trypsin inhibitor (2.1.5) and lOOpl of PMSF (2.1.6) was added to 10ml 

of SLIP buffer (2.1.1). SLIP buffer was added to each pellet and repeatedly pipetted 

until the pellet was just translucent (20pl - 55 pi for pellets obtained from a confluent 

10cm dish). Samples were left on ice for 10 minutes before being centrifuged at 

16000rcf for lOminutes at 4°c. The resulting supernatant was aspirated to a clean tube 

for further analysis.

2.3.2 Protein concentration detennination (Bradford assay)

A set of standard protein concentrations was made as follows, using the same SLIP used 

for protein lysis. 20mg of BSA (Sigma - Aldrich) was dissolved in 1ml of SLIP 

containing protease inhibitors. This was used to generate concentrations of 20, 10, 5, 2.5, 

0.625, 0.3125 mg/ml (A micro Bradford calibration is calculated in the same way but 

two further dilutions are used. The concentrations range from 20 down to 0.07 mg/ml). 

Bradford protein assay reagent (Biorad, Hemel Hampstead UK) was diluted 1:5 with 

water. 1ml of the diluted Bradford reagent was added to appropriately labelled tubes. 2pl 

of each standard was added to the 1ml Bradford reagent in each labelled tube. After a
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minimum of 30 seconds each tube was then vortexed for 8 seconds. The optical density 

for each sample, at 595nm, was recorded using a spectrophotometer. This enabled a 

standard curve of protein concentrations to be produced and stored by the 

spectrophotometer. Using the stored calibration curve, protein concentrations for each 

sample, were calculated. Samples for western blotting were then adjusted to the desired 

concentration (typically 50pg/20pl) using sample buffer (2.1.7). Samples were stored at 

-80°C until needed.

2.3.3 Western blotting

This technique allows proteins to be separated by their apparent mass by gel 

electrophoresis. Separated proteins can then be detected by immunoblotting i57. Protean 

III (Biorad, Kernel Hampstead UK) equipment was used for the running of gels. 75mm 

glass plates were cleaned with ethanol and air dried. The majority of experiments used a 

10% SDS polyacrylamide separating gel (2.1.9) but for lower molecular weight proteins 

such as cyclin - Dl, a 12% gel was used (see table 2.1.9). The gel was poured to within 

1.5cm of the top, overlaid with water and left for 20 minutes to set. The water was 

removed and the stacking gel (2.1.8) was poured onto the separating gel. A 10 well 

comb was inserted into the stacking gel and left for 20 minutes to set. The comb was 

removed and the plates containing the gel were transferred to an electrophoresis 

chamber. The chamber was filled with Tris-Glycine electrophoresis buffer (2.1.10) to 

ensure the tops of the wells were covered. Protein samples were boiled for 5 minutes to 

denature proteins and then centrifuged at 16000rcf for 1 minute. 20pl of sample was
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loaded alongside 20|al of broad range pre-stained molecular weight marker (New 

England Biolabs, Hitchin UK). The samples were then electrophoresed at 200V for 1 

hour. A piece of Hybond nitrocellulose membrane (Amersham Biosciences) was cut to 

the size of the gel (7cm x 9cm). The membrane, 3mm Whatman chromatography paper 

(VWR) and transfer sponges were pre-soaked in transfer buffer (2.1.11). The stacking 

gel was removed and the separating gel was “sandwiched” as indicated in Figure 2.3.3, 

submerged in transfer buffer. This “sandwich” was placed between two sponges and 

returned to the chamber along with an ice block. The chamber was filled with transfer 

buffer and transferred for 1 hour at 100V. The membrane was then removed and stained 

in Ponceau S (2.1.12) for 1 minute. The membrane was then washed in water to remove 

excess stain. The membrane was then cut into strips, to contain the area of the desired 

protein, as indicated by the marker ladder. The membrane was then washed in PBS / 

Tween (2.1.13). The membrane was incubated in 5% blotting grade non-fat dry milk 

powder (Biorad) in PBS / Tween for 16 hours.

+

Sponge
Whatman Paper

Membrane

Gel

Figure 2.3.3 Diagram of the transfer “sandwich”
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The membrane strips were then agitated for 1 hour in the presence of the appropriate 

primary antibody (see Table 2.3.4) diluted in the appropriate milk solution. The 

membrane strips were then washed in PBS / Tween for three 10 minute cycles. The 

strips were then agitated for 1 hour in the presence of the secondary antibody diluted in 

the milk solution (see Table 2.3.4).

The membrane strips were then covered with Enhanced Chemo-Luminescence (ECL) 

reagent plus (Western Lightening Chemiluminescence Plus Reagent Perkin Elmer) 

consisting of equal volumes of enhanced luminol reagent, and oxidizing reagent 

(~0.125ml of chemiluminescence reagent per cm2 of membrane), for 1 minute. 

Membranes were then blotted and placed between two sheets of acetate, cut to fit into a 

Kodak light safe developing cassette. In a dark room, a sheet of medical x ray film 

(Fugi, Bedford UK) was exposed to the membrane ships, inside the cassette. The length 

of time of exposure varied depending on the protein being evaluated. The film was 

developed for 2 minutes in Kodak developer fluid and then transferred to Kodak fixer 

fluid for a further 2 minutes. The film was then washed in water and left to air dry. 

Luminescence was occasionally detected using a Kodak IS4000MM image station. A 

number of exposures over different time intervals were obtained to show the protein 

bands of interest within the linear range of the film and as far as possible with the lowest 

background signal.
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2.3.4 Antibodies used for western blotting

Antibody Source Manufacturer
Antibody

Concentration
(pg/ml)

p53 - DO-1
Mouse

Monoclonal
Oncogene/Merck

m
1

o

MDM2 - IF2
Mouse

Monoclonal
Oncogene/Merck 3

Actin - C2
Mouse

Monoclonal
Insight 0.1-3

P-galactosidase 
(Clone 200- 193)

Mouse
Monoclonal

Oncogene/Merck 3

HSP70
Mouse

Monoclonal
Stressgen 0.01

HSP90a SPS-771 Rabbit Polyclonal Stressgen 0.1

CyclinDl - A12
Mouse

Monoclonal
Santa Cruz 3

GFP -B2
Mouse

Monoclonal
Santa Cruz 0.4

Table 2.3.4.1 Primary antibodies

Antibody Source Manufacturer Concentration

(jig/ml)

Anti-mouse IgG

HRP linked

sheep Amersham 0.4

Anti-mouse IgG

HRP Linked

sheep Jackson

o
1

oo

Table 2.3.4.2 Secondary antibodies used
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2,4 DNA plasmid production and quantification

2.4.1 Transformation

0.5 fig of plasmid DNA was added to One Shot® E. coli competent cells (Invitrogen) then 

placed on ice for 30 minutes. Heat shock was performed by placing the tube in a 42°C 

water bath for 30 seconds and transferring into ice for 2 minutes. 250pi of SOC 

(Invitrogen) was added to the tubes. The tube is then secured at 45° in a bacterial 

incubator @ 37°C shaking at 225rpm for 1 hour. Over a Bunsen flame to ensure sterility, 

5 pi of cells were added to an apex microcentrifuge tube containing 45 pi of SOC. Using 

a turntable Luria-Bertani (LB) agar plates were inoculated with 5 pi of bacteria. Plates 

were left inverted at 37°C in a bacterial incubator overnight. Plasmids contained either 

an ampicillin or kanamycin resistance gene. Throughout this study the concentration of 

ampicillin (Sigma-Aldrich) used was lOOpg/ml, and kanamycin (Merck) was used at 

50pg/ml. For small scale purification of plasmid DNA, colonies were picked and 

inoculated separately into 5ml of LB media or for large scale purification of plasmid 

DNA 500ml of LB media supplemented with appropriate antibiotic was used. The 

inoculated culture was then incubated with shaking at 225 rpm at 37°C overnight.

2.4.2 Small scale purification of plasmid DNA

A single transformed colony was picked from a LB agar plate and added to 5ml of LB 

medium containing the appropriate antibiotic. Following overnight incubation in an 

orbital shaker incubator at 37°C at 225 rpm, plasmid DNA was purified using QIAprep 

Spin Miniprep Kit (Qiagen) according to the manufacturer’s protocol. Briefly, bacteria
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were harvested by centrifugation at 3000rcf at room temperature for 10 minutes. Pelleted 

bacteria were thoroughly resuspended in 250pl of resuspension buffer (PI) (50mM 

Tris-Cl, pH 8.0; lOmM EDTA; lOOpg/ml RNase A), the suspension was transferred to a 

fresh micro centrifuge tube, then 250j.il lysis buffer (P2) (200mM NaOH, 1% SDS) was 

added to the suspension and the tube was inverted 4~6 times. Afterwards, 350pl of 

buffer N3 was added and mixed immediately and thoroughly by inverting the tube 4-6 

times. The suspension was cleared by centrifugation for 10 minutes at ~17000rcf. The 

supernatant was applied to a QIAprep spin column, which then centrifuged for 30-60 

seconds. The flow-through was discarded and the column was washed by adding 0.75 ml 

buffer PE and centrifuging for 30-60 seconds. After discarding the flow-through, the 

column was centrifuged for an additional 1 minute to remove residual wash buffer as it 

contains ethanol which may interfere with subsequent enzymatic reactions. DNA was 

eluted by adding 50pl of water to the centre of each QIAprep spin column, and 

centrifuging for 1 minute. Note that glycerol stocks of cultures were prepared by adding 

glycerol to 500pl of the growing culture to a final concentration of 25% (v/v) glycerol. 

These stocks were stored at -80°C until required.

2.4.3 Large scale purification of plasmid DNA

500ml of LB medium containing suitable antibiotic was inoculated with a single 

bacterial colony or 20pl of glycerol stock and incubated at 37°C overnight with vigorous 

shaking at 225 rpm. Plasmid DNA was purified using an EndoFree Plasmid Mega Kit 

(Qiagen) according to the manufacturer’s instructions. Briefly, bacterial cells were 

harvested by centrifugation at 6000rcf for 15 minutes at 4°C. Pelleted bacteria were
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thoroughly resuspended in 50ml of resuspension buffer (PI) and were then resuspended 

completely by vortexing or pipetting up and down until no visible cell clumps could be 

seen. 50ml lysis buffer (P2) was then added to the suspension and the tube was inverted 

4-6 times to mix and left to stand for 5 minutes at room temperature. Afterwards, 50ml 

of pre-chilled neutralization buffer (P3) (3.0 M potassium acetate, pH 5.5) was added to 

the suspension and mixed immediately and thoroughly by inverting the tube 4-6 times.

The lysate was then poured into a QIAfilter Mega Cartridge and incubated at room 

temperature for 10 minutes. After all the liquid was passed through the filter under 

vacuum, 50ml of buffer FWB2 (1M potassium acetate; pH 5.0) was added to the 

precipitate remaining on the QIAfilter cartridge and the liquid was again passed through 

the filter under vacuum. 12.5ml of buffer ER was added to the filtered lysate, and mixed 

by inverting the bottle approximately 10 times, and then incubated on ice for 30 minutes. 

Afterwards, the filtered lysate was applied onto a equilibrated QIAGEN-tip and allowed 

to flow through the resin by gravity. The QIAGEN-tip was then washed with a total of 

200ml wash buffer QC (1M NaCl; 50mM MOPS, pH 7.0; 15% isopropanol), then 35ml 

of buffer QN (1.6M NaCl; 50mM MOPS, pH 7.0; 15% isopropanol) was applied to elute 

the DNA. To precipitate DNA, 24.5ml of room-temperature isopropanol was added to 

the eluted DNA and the mixture was centrifuged immediately at 15000rcf for 30 minutes 

at 4°C. The supernatant was carefully decanted and the DNA pellet was washed with 

7ml of 70% ethanol and then centrifuged at 15000rcf for 10 minutes. Then supernatant 

was carefully decanted without disturbing the pellet, and the pellet was air-dried for 

approximately 10-20 minutes. The DNA was then re-dissolved in a suitable volume of 

O.lx endotoxin-free TE buffer (lOmM Tris-Cl, pH 8.0; ImM EDTA).
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2.4.4 DNA quantification

DNA was quantified spectrophotometrically by measurement of absorbance at 260nm 

using an Eppendorf BioPhotometer (Eppendorf). The Optical density 260nm/280nm 

ratio was used as an indication of the DNA purity, where a ratio of 1.8 + 0.1 was 

considered acceptable for DNA. Typically DNA samples were diluted 100-fold with 

O.lx endotoxin-free TE buffer and pipetted into UVette® Eppendorf® disposable cuvettes 

for measurement.

2.4.5 Agarose gel electrophoresis

DNA fragments were separated by size using agarose gel electrophoresis, this technique 

was also used for DNA purification. Agarose gel was prepared by dissolving 0.7% - 1% 

(w/v) agarose - or GTG agarose for DNA purification purpose - in lx TAE (2.1.19). 

Ethidium bromide was added to the molten agarose to a final concentration of 0.5jig/ml. 

The gel was poured into an appropriately sized casting tray containing a comb to form 

wells and once solidified, the gel was placed into the gel tank and covered with lx TAE. 

Samples containing 10% by volume of gel loading buffer (orange G dye in 10% 

glycerol) were then loaded into wells, and the DNA run in comparison with Ikb DNA 

ladder (Invitrogen). Electrophoresis was performed at a voltage range of 20 - 90 volts 

depending upon the size of the gel and the size of DNA fragment being examined.
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2,4.6 Restriction enzyme digestion

Restriction endonuclease digestion of DNA was carried out according to the 

manufacturers’ recommendations. Typically 10 units of the appropriate restriction 

enzyme were used to digest Ipg of the DNA of interest. The enzyme and DNA were 

mixed in an aqueous solution containing lx of suitable restriction enzyme buffer and 

BSA when indicated.

2.4.7 DNA extraction from GTG-agarose gel

DNA fragments of interest were extracted from GTG-agarose gels, and purified using a 

GENECLEAN® Turbo Kit (Q.Biogene) according to the manufacturer’s protocol.

Briefly, DNA fragments produced in restriction endonuclease reactions were run on a 

GTG agarose gel (Seakem) until the DNA fragment of interest was clearly separated 

from the others; this band was then excised from the gel and transferred to a 1.5 ml apex 

micro centrifuge tube. The gel slice was melted at 55°C in 100 pi of Gene clean® turbo 

salt solution for every lOOpg of gel. A maximum of 600pi of the solution was then 

transferred to a Gene clean® turbo cartridge assembled in a cap less 2ml catch tube. This 

was then spun in a microcentrifuge for approximately 5 sec. If there was more than 

600pl of solution this was repeated until all of the solution had passed through the 

cartridge. The cartridge was then washed twice using 500pl Gene clean® turbo wash 

which contains ethanol. Following the second wash the Gene clean® turbo cartridge was 

spun into an empty tube for 2min to remove the last of the wash solution as the ethanol it 

contains can inhibit subsequent reactions. The DNA was eluted by adding 30pl of Gene
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clean® turbo elution solution directly onto the cartridge and allowed to soak for 5 min at 

room temperature. The cartridge was then spun for 1 min to transfer the eluted DNA to 

the tube. Note that all the above centrifugation was performed at 16000rcf.

2.4.8 DNA ligation

Based on agarose gel electrophoresis of representative samples of vector and/or insert, 

the concentration of each of the DNA fragments was estimated by comparing the 

fluorescence intensity of the band of interest to the 1.6kb band of the Ikb ladder 

(Invitrogen), which contains 1/10 of the marker DNA mass. The vector: insert ratio to be 

used in ligation reactions was estimated by the following equation:

ng of vector x kb of insert x molar ratio insert = ng insert 
kb size vector vector

Ligation reactions were set up as shown below (Table 2.4.8) and incubated at 14°C for a 

minimum of 18 hours. A ligation reaction was set up without the insert to serve as a 

control for vector self ligation, and as a control for residual undigested vectors a ligation

reaction was set up without the insert or the T4 DNA ligase.

Constituent

Vector 

Insert DNA 

lOx T4 ligase buffer 

+1 OmM ATP*

+100mM Hexamine cobalt chloride* 

T4 DNA ligase (limit)

Total volume

Amount

30-40ng

Make up to volume 10 pi

Ipl
0.5pl

0.15pl

Ipl

lOpl

Table 2.4.8 DNA ligation reaction
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2.5 Plasmid DNA transfection experiments

2.5.1 List of expression plasmids used

pp-galactosidase (pP-gal) - Boyd Lab

pCEP4 - Boyd Lab

pCEPp53 - Boyd Lab

pp53-TA-Luc - Boyd Lab

pCMVNeoBamMDM2 - Donated by B. Vogelstein

pCMVNeoBam - Donated by B. Vogelstein

RING finger mutant Cys464Ala:pCMVneobam3 - Donated by B. Vogelstein

pNlpbactin-rtTA2S-M2-IRES-EGFP - Donated by B. Welman

pTre-Tight - Clontech

pTre-Tight-Luc - Clontech

MACSELECTKk - Mitenyi

Fom* different commercial methods of transient transfection were employed in this 

thesis.
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2.5.2 GeneJuice™ (Novagen)

(For experiments in a 10cm dish)

The plasmid DNA was vortexed for 8 seconds. 500pi of serum free media was aliquoted 

into a 2ml Apex microcentrifuge tube. The volume of GeneJuice™ required depends on 

the chosen GeneJuice™ to plasmid ratio. This is normally 3:1 but different ratios were 

evaluated (see results section). For example for lOpg of plasmid DNA 30pl of 

GeneJuice™ would be used for a 3:1 ratio. The desired volume of GeneJuice™ was then 

transferred to the serum free media and vortexed for 10 seconds. This mixture was then 

left to stand for 5 minutes prior to transfer to the tube containing the DNA plasmids. The 

tube was then inverted and tapped repeatedly to achieve gentle mixing and was then left 

for 15 minutes at room temperature. The mixture was then added drop wise, in a circular 

pattern, onto a pre-seeded 10cm dish. The dish was then left for 24 hours in the tissue 

culture incubator.

2.5.3 FuGENE HD™ (Roche)

(For experiments perfonned in a 10cm dish)

The FuGENE HD™ containing vial was first vortexed for 1 second. The desired volume 

of plasmid DNA was transferred to a 2ml Apex microcentrifiige tube. To this tube a 

predetermined volume of serum free media was added (500pl for a 10cm dish). 

FuGENE HD™ was then added to this tube. Care was taken to ensure that no FuGENE 

HD™ contacted the sides of the tube. The tube was then inverted and tapped to mix
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gently as described above. The mixture was then left for 15 minutes and then was added 

to the dish containing the cells, as described above. Again cells were incubated for 24 

hours.

2.5.4 Lipofectamine 2000™ (Invitrogen)

For experiments in one well of a six well plate.

The desired amount of plasmid DNA was added to a 2ml Apex microcentrifuge tube. To 

this 250pl of serum free media was added. The tube was inverted and tapped as above. 

The vial containing the Lipofectamine 2000™ was gently mixed. The desired volume 

(again depending on the Lipofectamine: DNA ratio), was added to 250pl of serum free 

media in a second 2cm Apex microcentrifuge tube. The mixture was incubated at room 

temperature for 5 minutes and then the contents of the two tubes were mixed together by 

inverting and gentle tapping. This mixture was left for a further 20 minutes after which 

the contents were then added drop-wise to the pre-seeded well. The cells were incubated 

for 24 hours.

2.5.5 Polvmag™ (OZbiosciencesf

For experiments in one well of a six well plate.

The desired amount of plasmid DNA was added to a 2ml Apex micro centrifuge tube. To 

this 500pl of serum free media was added. The desired volume of polymag™ was added 

to a new 2ml Apex microcentrifuge tube. The contents of one tube were then added to
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the other tube. The mixture was repeatedly pipetted to mix. The mixture was then left at 

room temperature for 25 minutes. The media covering a pre-seeded well of a six well 

plate was removed then DNA/polymag mixture was then added to the well. The six well 

plate was then placed on a magnetic mat (Ozbiosciences) for 20 minutes. 2ml of the 

cells’ culture media was added to the well and the cells were then incubated for 24 

hours.

2.5.6 Magnetic cell separation (Mitenvi Biotech)

These experiments were performed in 10cm dishes, using 117 cells and clones of cells 

derived from 117 cells in a tissue culture hood. Prior to transfection 10 cm dishes were 

seeded 24 hours before transfection. Great care was taken to prevent clumping of the 

cells in the dishes since this affects transfection efficiency and makes magnetic cell 

separation impossible. To prevent clumping the cell suspensions were vigorously 

pipetted and the dishes were thoroughly agitated in a figure of eight motion that 

optimised the even spreading of cells. Cells to be separated were co-transfected with 

lOpg of the plasmids of interest in this case pCMV-Neo-Bam-MDM2 +/- pp-Gal and the 

MacSelectKk , using FuGene HD™ (see section 2.4.2). Control dishes were co­

transfected with 10 pg of the plasmids of interest and empty vector pCMV-Neo-Bam. 24 

hours post transfection, the dishes were harvested and the cell suspension centrifuged for 

5 minutes at 1300rcf. The supernatant was removed and discarded. The pellets were 

resuspended in 80pi of degassed MACS buffer (2.2.18), and repeatedly pipetted to 

obtain a single cell suspension. The cell suspension was then transferred to a 1ml Apex
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microcentrifuge vial. 20|il of MACS microbeads (Mitenyi) were added to the cell 

suspension. The cell suspension was then incubated for 15 minutes at 4°C on a Nutator 

to agitate cells. The cells were then washed with 1ml of MACS™ buffer and re­

centrifuged for 1 minute at 1300rcf. The supernatant was discarded. The cells were 

resuspended again in 1ml of MACS™ buffer. The centrifugation was repeated. The 

supernatant was discarded and the cells resuspended in 500pl of MACS buffer. The 

MACS™ MultiStand, MS Column and MACS™ separator unit were assembled in the 

tissue culture hood, as shown in Figure 2.5.7.

MS Column

MiniMACS
separator
unit

MACS
MultiStand

Figure 2.5.7 The assembled MACS MultiStand and components

500pl of MACS buffer was transferred into the MS column, the effluent was caught and 

discarded. An empty 2ml Apex microcentrifuge tube was placed under the column. This 

tube was labelled “negative” fraction. The column was washed with 500pl of MACS™ 

buffer, this was repeated until a total of 1500pl of buffer has passed over the column.
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The MS column was removed from the MiniMACS™ separator unit and positioned over 

a 2ml Apex microcentrifuge vial, labelled “positive” fraction. 2000|al of MACS buffer 

was placed into the column. The supplied plunger was used to force out the buffer and 

cells. The fractions were recentrifuged and the supernatant discarded. When performing 

a p-gal assay, the cells were resuspended in 1ml of media and seeded into a 10 cm dish. 

The cells were left until they become adherent.

2.6 Specific methodologies

2.6.1 Proteasome inhibition using MG115

These experiments were carried out in 10cm dishes, on cells at a confluency of 70 -80%. 

One dish was designated the control and the cells had their media removed and replaced 

with 5ml of fresh media containing 5 pi of DMSO. The second dish was designated 

treatment and cells had their media replaced with 5ml of fresh media containing MG115 

(Biomol, Exeter UK) at a concentration of Ijig/ml. Dishes were incubated for 3 hours at 

37°C. Cells were then harvested as described in section 2.2.3.

2.6.2 Inhibition of Heat Shock Protein 90 using geldanamvcin

These experiments were carried out in 10cm dishes, on cells at a confluency of 70 -80%. 

For each time point, one dish was treated as follows. The cells were covered with 5ml of 

media containing the concentration of GA (Biomol, Exeter UK) being tested. GA was

82



diluted in DMSO. Concentrations used were routinely 2jj,M5 8jjM or 20(.iM. The control 

cells were covered in 5ml of fresh media containing an equal volume of DMSO to the 

volume of GA used. Dishes were incubated for various time points at 37°C. Cells were 

then harvested as described in section 2.2.3.

2.6.3 Inhibition of de novo protein synthesis using cvcloheximide

These experiments were carried out in 10cm dishes, on cells at a confluency of 70 -80%. 

For each time point, one dish was treated as follows. The cells were covered with 5ml of 

media containing cycloheximide (Biomol) at a concentration of 50jj.g/ml. Dishes were 

incubated for various times at 37°C and then harvested as described in section 2.1.3. One 

dish was not treated and used as a time 0 hrs control.

2.6.4 In situ |3-galactosidase assay

Cells were transfected with the p(3-Gal plasmid and incubated for 24 hours at 37°C. The 

media was removed and the cells were then washed twice with PBS (Sigma). Next the 

cells were covered with (3-gal fixing buffer (2.1.14) (see Table 2.6.4 for volumes) and 

left at room temperature for 15 minutes. The buffer was removed and the cells then 

washed twice with PBS. The cells were then covered with (3-gal substrate buffer (2.2.15) 

(see Table 2.6.4 for volumes) and incubated at 37°C for 8-24 hours. The substrate was 

then removed and the plates washed gently with water. The plates were left to dry and
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visualised using light microscopy. The percentage of blue (transfected) cells was 

estimated. A photo record was taken using a digital camera.

Culture Vessel Volume of fixing buffer

(ml)

Volume of substrate buffer

(ml)

10cm dish 3 4

6 well plate 1 1

Table 2.6.4 Volumes of buffers used for in situ p-gal assay.

2.6.5 B-galactosidase enzyme assay (Promegal

Cells transfected with the P-gal plasmid and incubated for 24 hours at 37°C. The cells 

were then harvested and protein was extracted from the cells as previously described in 

section 2.3.1. To determine the amount of protein a Bradford assay was performed as 

described in section 2.3.2. The amount of cellular lysate containing lOOpg of protein 

was determined. lOOpg of protein was added to a test tube and 50jil of the SLIP buffer 

(2.2.1) used for lysis was added. 150pl of P-gal reporter lysis buffer (2.2.17) was added 

to the lysate/SLIP mixture. This mixture was then incubated at 37°C in a water bath for 3 

hours. The chemical reaction was arrested by the addition of 500f.il of 1M sodium 

carbonate. The mixture was then vortexed and the absorbance measured at 420nm using 

a spectrophotometer was determined.
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2.7 Generation of inducible MDM2 expressing clones

2.7.1 Antibiotic response assay

In order to find the lowest concentration of antibiotic that caused total cell lethality 

following 5 days of incubation in media containing the antibiotic, the following 

technique was employed. Cells to be tested were seeded into 6cm dishes at a 

concentration low enough to give a confluency of around 10 - 20% after 24 hours 

incubation. Media was removed and replaced with media containing various 

concentrations of antibiotic. Two dishes were not treated with antibiotic and acted as 

controls. The cells had their media replenished (containing the appropriate concentration 

of antibiotic) every two days. The appearance of the cells and their confluency within 

the dish was recorded daily.

2.7.2 1st round cloning - Generation of 117 and 117-derived clones stably expressing

rtTA2S-M2-IRES-EGFP

For each of three cell lines (117, pCEP3 & ANp53) the following was carried out. Two 

50% confluent 10cm were transfected with 10pi rtTA2S-M2-IRES-EGFP plasmid using 

FuGene HD™ in a 2:1 reagent to DNA ratio as described in section (2.5.3). The second 

dish was used as an untransfected control. The cells were incubated for 24 hours at 37°C. 

The 10cm dishes were then trypsinised as previously described. The 6ml of suspended 

cells were then reseeded into 10 x 10cm dishes with two dishes for the following 

fractions of the resuspended cells 30%, 10%, 3%, 1% and 0.3%. This was repeated for
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the untransfected cells. In addition to the normal culture media 800p,g/ml of G418 was 

added. Fresh media with G418 was replenished every 2 days and the cells observed for 

signs of cell death. When no viable cells were visible in the control dishes, colonies 

were harvested from the transfected dishes.

2.7.3 Harvesting Colonies

10cm dishes containing isolated colonies of cells were taken and had their media 

carefully aspirated. 3ml of sterile wanned PBS was pipetted onto the dish. Isolated 

colonies were used that did not have multiple layers of cells giving them a “crowded” or 

“clumped” appearance. Using a microscope within the tissue culture hood to aid 

visualisation a 20pl pipette was used to place a “drop” of warmed 37°c trypsin onto the 

colony to be picked. Once the colony began to lose adherence with the dish surface 

(“lift”) it was pipetted. The cells were then transferred to a single well of a 96well plate 

containing 80pl of warmed 37°C trypsin. This was then repeatedly pipetted to create a 

single cell suspension. A 200pl pipette was then used to transfer this mixture into a well 

of a 24 well plate containing 0.9ml of media containing the appropriate antibiotic. This 

was repeated until a minimum of 60 colonies were selected. This process took place over 

a two week period as colonies expanded at different rates.
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2.7.4 Colony expansion

Throughout this process individual colonies grew at different rates, when a colony 

reached a confluency of 80 - 90% it was promoted to a larger dish. Until confluency was 

reached media was replenished every 2 days. For each step of promotion cells were 

washed with sterile warmed 37°C PBS. The cells were trypsinised and then an equal 

volume of treated media was added to the mixture. This was repeatedly pipetted to 

decrease cell clumping. The cells were then added to the larger receptacle containing 

media with appropriate concentration of antibiotic. The requirements for each step are 

displayed in the below table.

24 to 12

well

12 to 6

well

6 well to 10cm

dish

10cm dish to

T175 flask

PBS wash

Oil)

100 250 500 3000

Trypsin (pi) 100 250 500 3000

Treated

media (pi)

800 2500 9000 19000

Table 2.7.4 Requirements for colony expansion

Once a colony was established in a T175 flask, flasks were split to generate frozen 

stocks of the clones and to allow further testing.
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2.7.5 Luciferase reporter assay

The Dual-Luciferase® reporter assay system (Promega Corporation; USA) was used. 

The activity of firefly luciferase under rtTA control (pTre-Tight-Luc) was utilised to 

measure the clonal response to doxycline induced transcription of pTre-Tight-Luc. 

These experiments were carried out in 6 well plates seeded with cells. Briefly, Media 

was removed and each well washed with PBS twice. Each well was covered with 500pl 

of lx Passive lysis buffer (PLB, Promega). Plates were placed on a rocker (Compact 

Rocker CR300, FINE PCR) at speed 9 for 15 minutes. The cell lysates were collected 

into pre-chilled 1.5ml micro centrifuge tubes; afterwards, the lysates were cleared by 

centrifugation for 1 minute at 16,000rcf at 4°C. The supernatants were kept on ice until 

needed. To measure the reporter activity, the supernatant and Luciferase Assay Reagent 

II (LAR II) and the Luciferase Assay Reagent II (LARII) and Stop & Glo® Reagent (all 

three solutions provided by Promega) were thawed at 37°C in a water bath and then left 

to reach room temperature and just before use all components were vigorously vortexed. 

20 pi of the supernatant was transferred into the luminometer tube containing lOOpl LAR 

II, after mixing by pipetting the tube was placed in a GloMax 20/20 Luminometer, 

which been programmed to perfonn a 2 second pre-measurement delay, followed by a 

10 second measurement period. The protein concentration of the supernatant was 

calculated using a micro Bradford calculation (see section 2.3.2). The luminometer 

readings were normalised to the protein concentration for each sample.

88



CHAPTER 3 - IMMUNOHTSTOCHEMICAL ANALYSIS OF

P53 AND MDM2 EXPRESSION IN RENAL CELL

CARCINOMA SAMPLES

3.1 Introduction

Little can be said for certain about the role of MDM2 in RCC as only four papers have 

reported this previously, whereas there have been over 30 papers examining p53 in 

RCC. What is known is that p53 and MDM2 co-expression in tumour samples is highly 

significantly associated96,105. The main aim of this chapter is to further examine p53 and 

MDM2 expression in RCC and to test the significance of p53 / MDM2 expression as a 

putative determinant of outcome in RCC. hi order to do this we constructed a tissue 

microarray of 90 RCC tumours to facilitate analysis.

3.2 Specific methodology

The Tissue Microarray (TMA) experiments were carried out in collaboration with the 

University of Liverpool’s Cancer Tissue Bank Research Centre (LTB) and the 

Department of Pathology. Between 1992 and 2007 the LTB prospectively collected 94 

nephrectomy specimens from patients undergoing radical nephrectomy for RCC with 

consent as described below.
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3.2.1 Design and construction

94 formalin-fixed paraffin-embedded primary tumour specimens were collected by the 

LTB. These patients had consented for the storage and use of their tissue for research 

between 1993 and 2007 and study-specific ethical approval was obtained from the 

Liverpool Adult Research Ethics Committee. Data on the stage and grade of the tumours 

were collected prospectively by the LTB. All H&E-stained slides from the formalin 

fixed paraffin embedded (FFPE) material were evaluated by a pathologist for the 

presence of tissue regions optimally representative of the RCC. An appropriate slide was 

selected and representative regions of tumour were identified from each case. This was 

also performed for a slide containing adjacent non involved (non-tumour) renal tissue 

from each case. From each corresponding FFPE tumour block, at least duplicate cores 

(0.6mm in diameter) were taken from the marked area and mounted into a recipient 

paraffin block using a manual arrayer (Beecher Instruments Inc). Duplicate tumour cores 

were not placed next to each other in the recipient paraffin block to eliminate both 

scoring and staining biases. A single core of non-involved renal tissue was also mounted 

into the recipient block. Cores of normal colon, liver and testis were also included for 

orientation and as controls during immunohistochemistry (IHC). Serial 5pm sections 

were cut from the tissue microarray (TMA) and collected onto X-tra™ adhesive slides 

(Surgipath).
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3.2.3 Preparation and staining of slides

The preparation and staining of slides was carried out by Mr Andrew Dodson 

(Department of Pathology, Royal Liverpool University Hospital). Sections 5pm thick 

were deparaffmised and pretreated in a microwave oven (25 min, 850 W) in citrate 

buffer [0.01 M (pH 6)]. For detection of MDM2 protein, a mouse monoclonal antibody 

against MDM2 (SMP-14, cat # sc-965; Santa Cruz, California, US; dilution 1:50, stock 

antibody concentration = 4 micrograms/ml) was used with an overnight incubation at 

4°C. p53 protein was detected using monoclonal antibody DO - 7 cat # M7001 (DAKO 

Coip, Glostrup, Denmark; dilution, 1:2000, stock antibody concentration = 0.195 

micrograms/ml) with 60 min of incubation at room temperature. The labelled- 

polymer/HRP detection method was used for visualization of the signal (DAKO, cat # 

K5007). The nuclei were finally counterstained lightly with haematoxylin, sections were 

dehydrated through alcohol and xylene and mounted in resinous mountant.

3.2.4 Scoring of slides

Slides of stained specimens were reviewed by two consultant histopathologists (blinded 

to clinical outcome) and a scoring system was determined as follows. The intensity of 

staining was graded 1 (weakly stained) to 3 (highly stained). The percentage of cells 

showing positive staining was graded as follows 1=0 -2%, 2 = 3 -10%, 3 = 11 -50% 

and 4 >50%. The TMA sections were then independently scored and results analysed. In 

the event of any discrepancy these specimens were jointly reviewed by the
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histopathologists and a score agreed upon. For each tumour there are two samples on the 

TMA to be scored. For p53 and MDM2 staining tumours there were a number of 

specimens which stained more profoundly (intensity score 3 and percentage score 4) - 

for the purposes of statistical evaluation this criteria was deemed as the positive criteria 

for MDM2 and p53.

3.2.5 Determination of clinical outcome

Data on the stage and grade of the tumours were collected by the LTB. Periodically the 

LTB update their database with patient status, only death and cause of death was 

recorded. Evidence of disease progression was not recorded.

3.2.6 Statistical analysis

All data was entered into a database using Microsoft Office Excel 2007. Statistical 

analysis was perfonned using SPSS version 16. The association between p53 and 

MDM2 expression with patient and tumour factors was analysed using a two sided 

Fisher’s exact test. Disease-specific and overall survival curves of the nephrectomy 

patients were estimated according to the Kaplan-Meier method. Statistical analyses of 

the differences between curves were performed using the log-rank test. Variables that 

significantly influenced survival (P < 0.05) in the univariate analyses were entered into 

a multivariate Cox regression model, hi all of the analyses, the significance level was set 

at 0.05.
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3.3 Results

3.3.1 Immimohistochemical deterniination of p53 ext3ression in RCC

90 Tumours (180 separate samples) were available for scoring as detailed in section 

3.2.4. A proportion of tumours (14) showed high intensity staining (graded as 3) of at 

least 50% of the specimen, in at least one of the two samples analysed. This pattern 

seemed distinct from the remainder of the samples and was therefore used to define p53 

positivity. 3 separate tumours showed high intensity (grade 3) staining that only 

involved <2% of the specimen and these were assigned to the p53 low group for the 

purposes of the present analyses. Our p53 positivity rate was 14/90 (15.6%). From Table

1.4.1 the calculated mean positivity rate from published studies was 24.5%. The slightly 

lower positivity rate seen in these results may reflect our higher p53 cut-off criteria of 

50% to assign the sample as “positive”. As stated a sub-set of p53 positive tumours 

seemed to be distinctive due to the degree of positive staining. As discussed in section

1.4.1 differences in percentage of positive tumours may reflect differences in IHC 

processing and heterogeneity in the samples. For example none of our patients had 

metastatic disease at the time of their nephrectomy. Higher p53 positive rates in RCC 

have been reported with metastases or indeed where metastases themselves have been 

stained (please refer to section 1.4.1 and in particular the paper by Zigeuner et al ).
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Fig 3.3.1 Photographs of selected RCC TMA samples stained for p53 using 

monoclonal antibody DO - 7; dilution 1:2000, antibody concentration = 0.195 

micrograms/ml). The labelled-polymer/HRP detection method was used for visualization 

of the signal. The nuclei were counterstained with haematoxylin. A & C x40 & x60 

original magnification respectively of a p53 negative staining tumour. B & D x40 & x60 

original magnification respectively of a p53 positive staining tumour.
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3.3,2 Immunohistochemical determination of MDM2 expression in RCC

90 Tumours (180 duplicate samples) were available for scoring as detailed in section 

3.2.4. A proportion of tumours (24) showed high intensity staining (graded as 3) of at 

least 50% of the specimen, in at least one of the two samples stained. This pattern again 

appeared to distinguish a sub-set of the samples and therefore was used to define MDM2 

positivity. 5 separate tumours showed high intensity (grade 3) staining but this only 

involved <10% of the specimen. Our MDM2 positivity was 24/90 (26.7%). IHC 

expression of MDM2 has been evaluated in three previous papers (see section 1.4.5) 

with positive percentages of 2%94, 30%105 & 19%96. All three studies used the same 

monoclonal antibody - IF2 that recognises an epitope in the amino-terminal portion of 

the human MDM2 protein. In this study, the MDM2 antibody used was SMP - 14 which 

recognizes residues 154-167 of MDM2. These three studies and ours all had similar 

mixtures of stage and grade so the differences in expression can only be explained in 

terms of antibody differences, IHC processing (assay sensitivity) or intra-observer 

variations in interpretation.
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Figure 3.3.2 Photographs of selected RCC TMA samples stained for MDM2 using, a 

mouse monoclonal antibody against MDM2 SMP-14; dilution 1:50 , antibody 

concentration = 4 micrograms/ml. The labelled-polymer/HRP detection method was 

used for visualization of the signal. The nuclei were counterstained with haematoxylin. 

A & C x40 & x60 original magnification respectively of a MDM2 negative staining 

tumour. B & D x40 & x60 original magnification respectively of a MDM2 positive 

staining tumour
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3,3.3 Patient and tumour characteristics

90 Tumour samples were analysed. The proportion of positive samples for p53 and 

MDM2 is indicated in Table 3.3.3.1. 11 tumours were dual positive for p53 and MDM2. 

All but three tumours were ccRCC. All of the patients underwent an attempted curative 

surgical procedure and not surprisingly all the tumours were Stage 3 or less with no 

patient having metastatic disease at the time of operation. This cohort is therefore from a 

potentially good prognostic group.

As stated earlier 11 patients (12.2%) were dual positive for p53 and MDM2. The 

association between p53 positive and MDM2 positive tumours (dual positivity) is highly 

significant p < 0.0005 using a two sided Fisher’s exact test (see Table 3.3.3.3). This 

association of p53 and MDM2 is in keeping with the only published results examining 

this association - Haitel et al96 and Moch et al105 who found the association to be highly 

significant withp = 0.0006 andp < 0.00004 respectively.
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Number of patients in each category by IHC phenotype 
(percentage)

All p53 + p53 - MDM2 + MDM2-
p53 + 

MDM2 +
Number of Tumours 90 14(15.6) 76 (84.4) 24 (26.7) 66 (73.3) 11 (12.2)

Male 60 (66.7) 8 52 12 48 6
Female 30 (33.3) 6 24 12 18 5

Mean Age 
(24 - 82)

60.6 55.2 61.5 58.2 61.4 59.8

Died all causes 32 5 27 10 22 5
Died ofRCC 19 5 14 7 12 5

Histological subtype

Clear cell 87 (96.7) 14(100) 73 (96.1) 24(100) 63 (95.5) 11 (100)
Papillary 2 (2.2) 0 2 (2.6) 0 2(3) 0

Chromophobe 1(1.1) 0 1(1.3) 0 1 (1.5) 0

Fuhrman Grade

1 20 (22.2) 3 17 7 13 2
2 37(41.1) 3 34 10 27 3
3 29 (32.2) 7 22 6 23 5
4 4 (4.4) 1 3 1 3 1

Tumour Stage

1 44 (48.4) 8 36 15 29 6
la 6 0 6 1 5 0
lb 38 8 30 14 24 6
2 25 (29.6) 5 20 6 19 4
3 21 (22) 1 20 3 18 1

3a 17 1 16 3 14 1

3b 4 0 4 0 4 0

3c 0 0 0 0 0 0

4 0 0 0 0 0 0

Table 3.3.3.1 Patient and tumour characteristics of the TMA cohort
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MDM2

Negative Positive Total

p53

Negative 63 13 76

Positive 3 11 14

Total 66 24 90

Table 3.3.3.2 Distribution of p53 and MDM2 staining in the TMA

Chi - square testing revealed no significant difference in the association between p53, 

MDM2 and dual positivity with gender, grade (low vs high) or stage (1 & 2 vs 3) (see 

Table 3.3.3.3). The decision to compare between high and low grades and stage was felt 

to be clinically justifiable as poor prognosis has been shown to be correlated with 

increasing grade and stage (see LI.3.4 & 5), Haitel and colleagues96 found a statistically 

significant higher incidence of MDM2 in high grade as compared with low grade 

tumours and no significant difference when MDM2 staining was compared between 

high and low stage tumours. The study by Haitel et al had 18 Grade 4 patients, in this 

study there were only 4. Moch105 also found no correlation with MDM2 positivity and 

stage or grade.
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p53 + MDM2 + p53 + MDM2 +
P = P = P =

Gender
Male v Female

0.545 0.054 0.502

Grade
1 &2v3 &4

0.129 0.462 0.202

Stage
1 & 2 vs 3

0.174 0.170 0.447

Table 3.3.3.3 Association of patient and tumour characteristics with p53/MDM2 

phenotypes

3.3.4 Survival analysis of p53 and MDM2 expression phenotypes

Kaplan - Meier survival analysis was performed to analyse differences in survival 

(overall and disease specific) for various p53 and MDM2 expressing phenotypes. The 

log rank test was used to test for differences between groups with p values less than 0.05 

being considered significant. Disease specific survival (DSS) may be argued as a better 

outcome measure than overall survival (OS). This is because OS cannot distinguish 

between patients that have died because of the disease itself or from an unrelated cause 

(e.g. being hit by a bus). On the other hand, statistically speaking, an unrelated cause of 

death clinically may be due to an unknown effect of the disease or its treatment on other 

organs (e.g. systemic treatment for RCC may affect the ability to avoid car accidents). 

The results are summarised in Table 3,3.4. Only dual positivity (tumours positive for 

p53 and MDM2) was significantly associated with DSS. The plot of this Kaplan Meier 

curve is displayed in Figure 3.3.4. On their own p53 and MDM2 were not prognostic i.e.
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no association was detected with decreased survival (disease specific or overall 

survival). There are two limitations in the present analyses which must be taken into 

consideration; firstly some patients have been lost to follow up and are “censored” by 

the Kaplan Meier method. Censored patients are considered to have the same prospect of 

survival as those continued to be followed up thus leading to potential bias. Secondly not 

all patients have been followed up for an equal amount of time. Some tumours were 

resected in the late 1990,s and therefore these patients have had 10 years plus of follow 

up. A minority of patients have only had three years of follow up. Two patients died of 

metastatic RCC at around the ten year mark highlighting this point. Late presentation of 

metastases following nephrectomy is a well recognised phenomenon158. Another 

consideration is that papers which show that p53 expression is associated with poor 

prognosis tend to have some patients with metastases in their cohort. It may be that as 

this study’s cohort contains no patients with metastases or T4 stage disease, the link 

between p53 expression and prognosis is not seen

Disease Specific Survival

P =

Overall Survival

P =

p53 + 0.088 0.599

MDM2 + 0.537 0.822

p53 + MDM2+ 0.027 0.323

Table 3.3.4 Kaplan-Meier survival analysis for p53 / MDM2 phenotypes
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Figure 3.3.4 Kaplan-Meier disease specific survival curve for patients with both 

p53 and MDM2 positive staining tumors (dual positive) versus other p53 and 

MDM2 phenotypes (not dual positive) p = 0.027 log rank test.
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3.3 >5 Survival analysis of patient and tumour characteristics

Further Kaplan-Meier analyses were performed to test if survival (both disease specific 

and overall survival) was affected by various patient or tumour factors (e.g. tumour 

stage). The results of the log rank tests for the various characteristics analysed are 

displayed in Table 3.3.5. It is reassuring, given the limitations of the follow-up outlined 

earlier, to see that higher stage is shown to be associated with both decreased disease 

specific and overall survival. The Kaplan-Meier curve of stage versus specific survival is 

seen in Figure 3.3.5.The stage of the tumour is the most widely used clinical guide to 

prognosis and is found to be retained in all the published prognostic nomograms (see 

Rouviere et al158, where this is reviewed). None of the other tumour or patient factors 

were found to be significantly associated with adverse survival. Just as higher stage 

showed an association with prognosis, it would have been anticipated that the same 

would have been found for higher Furhman grades (see section 1.1.3.5). It is possible 

that with a larger cohort size, as seen in the 643 nephrectomy specimens analysed by 

Tsui et al22, this association would have been demonstrated.

Disease Specific Survival Overall Survival

p value p value

Stage 3 vs 1 & 2 0.024 0.030

Fuhnnan 3 & 4 vs 1 & 2 0.061 0.266

Gender Male v Female 0.288 0.406

Table 3.3.5 Survival analysis of patient and tumour characteristics
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Figure 3.3.5 Kaplan Meier disease RCC specific survival curve for patients with 

Stage 3 versus Stages 1 & 2 (p = 0.024 log rank test)

3.3.6 Univariate and multiple cox proportional hazards regression analysis

Cox proportional hazards regression allows analysis of variables (covariates) to predict 

time to an event (in this case death). Multivariate analysis takes in to account how 

important a covariate is at predicting the tested event. For example if some patients are 

known to have metastatic disease at the time of their nephrectomy it would be expected 

that they would have a much poorer survival. It would be very hard for other covariates 

e.g. age / gender to add to the prognostication in the presence of such a strong outcome
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predictor. Multivariate analysis statistically examines whether each covariate 

individually contributes to the prediction of the tested event. Table 3.3.6.1 shows the 

results of Cox regression analysis of the following tumour and patient characteristics. 

Only p values less than 0.05 were considered significant. For significant univariate 

factors the relative risks are also shown in table 3.3.6.1.

All Patients N = 90 Death Events = 20

Univariate Analysis Relative risk (95% C.I) p value

p53 N/A 0.088

MDM2 N/A 0.537

p53 + & MDM2 + 2.989 (1.075 - 8.310) 0.036

Stage 3 2.757(1.103-6.889) 0.030

Fuhrman grade 3 & 4 N/A 0.161

Gender N/A 0.288

Table 3.3.6.1 Cox regression analysis of the tumour and patient characteristics

As predicted by the Kaplan-Meier analyses only dual positivity and stage 3 tumours 

were found to be univariate predictors of disease specific mortality. Both of these factors 

were then modelled using multivariate analysis and the results of this are displayed in 

Table 3.3.6.2.
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Multiple Analysis All Patients N = 90 Death Events = 20

Relative Risk (95% C.I) p value

p53 + MDM2 + 3.203 (1.143 - 8.980) 0.027

Stage 3 2.897(1.155-7.270) 0.023

Table 3.3.6.2 Multivariate cox regression analysis of dual positive and stage 3 
tumours

Both of these factors were retained in the model The relative risk demonstrates that 

patients with dual positive tumours are on average 3.2 times more likely to die of their 

disease than other p53/MDM2 phenotypes. As expected patients with stage 3 disease 

are on average 2.9 times more likely to die than lower stage patients. Only Haitel et al96 

have included this dual positive phenotype in multivariate cox regression analysis. They 

also found it to be retained as an independent prognostic factor even when metastases 

were included in the model with a hazard ratio of 2.34 (C.I not given)

3.3.7 Assesment of p53 positive tumour samples for wild type or mutated p53

A Boyd laboratory co worker (Dr R Polanski) has analysed selected tumour samples 

from the TMA and performed a FAS AY assay to assess the p53 status (wild type or 

mutant). A description of the methodology can be read in Noon et al159 (see appendix 

A2.3.2). This analysis has revealed that 9 of the 11 tumour samples that were positive by 

IHC for p53 and MDM2 contained wild type p53.
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Specimen
p53

IHC

Positive

MDM2

IHC

Positive

p53 status by

FASAY/DNA sequence

analysis

Died

of

RCC

Died

1 YES YES Wild-type1 NO NO
2 YES YES Wild-type1 NO NO
3 YES YES Wild-type1 NO NO
4 YES YES Wild-type1 NO NO
5 YES YES Mutant/G245C‘ YES YES
6 YES YES Wild-type1 NO NO
7 YES YES Wild-type1 YES YES
8 YES YES Wild-type1 YES YES
9 YES YES MiUant/QlSeE1 NO NO
10 YES YES Wild-type1 YES YES
11 YES YES Wild-type1 YES YES
12 NO YES ND NO NO
13 NO YES ND NO NO
14 NO YES ND YES YES
15 NO YES ND YES YES
16 NO YES ND NO NO
17 NO YES Wild-type1 NO NO
18 NO YES ND NO NO
19 NO YES ND NO YES
20 NO YES ND NO YES
21 NO i YES Wild-type1 NO YES
22 NO YES ND NO NO
23 NO YES Wild-type1 NO NO
24 NO ;YES ND NO NO
25 YES NO Wild-type1 NO NO
26 YES NO Wild-type1 NO NO
27 YES ;NO Wild-type1 NO NO
28 NO :no Wild-type1 NO NO

Table 3.3.7 Analysis of p53 status in selected tumour samples using FASAY / p53 

genotyping. IHC, immunohistochemistry, FASAY, functional assay of separated alleles 

in yeast, ND = not done.1 Sequence confirmed for at least three clones or by direct 

sequencing of PCR products. Sequences were compared to the Homo sapiens
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chromosome 17 contig NT_010718.15, positions 7189581-7169068 bp, using 

Sequencher v 4.9 software (Gene Codes Corporation).

This finding is contrary to the popular theory that tumours express p53 as a result of p53 

mutation. The underlying mechanism as to why tumours express high level (unmutated) 

p53 and MDM2 is unknown but intriguing and raises the same questions posed by RCC 

cell lines that also express high p53 and MDM2 - what mechanism exists to prevent p53 

from being degraded by MDM2 which appears to be expressed in high amounts. 

Secondly if MDM2 is being expressed is this p53 driven? If p53 is transcriptionally 

active then why are its normal anti-oncogenic functions being bypassed?

3.4 Discussion

There has been a substantial body of published work demonstrating that p53 is 

associated with poor prognosis in RCC, However, the present study has not been able to 

confinn this. This difference may be due to a number of factors, not least of which is 

that many studies including the present one, are relatively small with n<500. Other 

factors that differ between the present study and those in the literature include the 

inclusion in the latter of patients with metastases in their study cohort, the incomplete 

follow-up for some patients in the present study as well as differences in 

interpretation/dichotomisation of p53 positivity/negativity. However the finding that 

tumours dual positive for p53 and MDM2 are associated with poor prognosis is in 

agreement with the only other study that has looked at both of these markers in RCC 

(Haitel et al96). Also in our study there is a highly significant association between p53
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and MDM2 positivity again confirming previous studies by Haitel et al96 and Moch et 

al105. The finding that in the majority of cases (9/11 see Table 3.3.7) p53 is wild type 

and not mutated (as in a number of RCC cell lines see 1.7.1) is novel and further 

supports our hypothesis that understanding the mechanism of this phenotype may allow 

for therapeutic intervention if wild type p53 function can be restored. The underlying 

mechanism of this dual expression is investigated further in this thesis. If dual 

p53/MDM2 positivity is a true marker of poor prognosis then it can only be speculated 

as to what the mechanisms leading to this association between the phenotype and 

outcome are. It is possible that the expression of this phenotype is coincidental and a 

mere marker of extreme de-differentiation from normal tissue, but given these proteins 

are known to be important in the prevention of and causing oncogenesis, this seems 

unlikely.
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CHAPTER 4 - INVESTIGATING THE EFFECTS OF HIGH

MDM2 EXPRESSION IN RCC CELL LINES

4.1. Introduction

As shown in the previous chapter there is evidence that RCCs that express MDM2 and 

p53 are associated with decreased disease specific survival compared with RCCs that do 

not have this phenotype. As described in section (1.3,4) MDM2 is thought to possess 

oncogenic properties in its own right (independent of p53) but it is not known whether 

MDM2 expression is directly responsible for the poor prognosis seen in patients with 

tumours that express p53 and MDM2. To try and answer this question a laboratory co­

worker (HW) attempted, through cloning experiments, to manipulate a RCC cell line 

with low p53 and MDM2 (UOK-117 herein referred to as 117) to express high p53 and 

MDM2 (the putative poor prognosis phenotype in RCC tumours). These experiments are 

detailed in section (1.6). It was found to be impossible to obtain stable MDM2 

expressing clones from simply transfecting MDM2 into cells and performing clonal 

selection. MDM2 clones could be generated after the cell line had undergone some 

unknown permissive change during other clonal experiments (please refer to section 1.6. 

where this is explained in more detail). Two 117-derived clones were established from 

which MDM2 expressing clones could be generated through further cloning (pCEP4 

Clone 3 and ANp53 clone 3). These two clones are herein referred to as pCEP3 and 

ANp53and are thought to have acquired unknown molecular changes that make them 

pennissive for high MDM2 expression.
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The experiments detailed in this chapter were designed to investigate the effects of high 

MDM2 expression in the 117 parental cell line and the two derived clones that are 

permissive to high MDM2 expression pCEP3 and ANp53. It was hoped to make these 

cells express high levels of MDM2 and use a DNA microarray to evaluate changes in 

gene expression. By comparing the differences in gene expression between the three 

different cell lines and their normal MDM2 expression controls (i.e. without high 

MDM2 expression), groups of genes may be identified for further evaluation that would 

enable identification of pathways responsible for the more aggressive phenotype which 

we hypothesise is elicited by MDM2 expression.

There were two strategies selected as possible means for achieving high MDM2 

expression in these 117 cell lines -one was to employ a commercially available transient 

transfection technique. Another method was to try and generate inducible (expression of 

gene interest after cells are treated e.g. with an antibiotic) MDM2 expressing clones 

using the Tet-On® Advanced inducible gene expression system (ClonTech™). In the 

Tet-On® Advanced system the gene of interest (GOI) expression (MDM2 in this case) is 

induced upon the addition of doxycycline (DOX) to the culture medium. There were 

pros and cons to both strategies. With transient transfection the major concern was to 

ensure a sufficient percentage (transfection efficiency) of cells were reliably transfected 

with MDM2 to enable the detection of alterations in gene expression when MDM2 was 

expressed. This is particularly important for detection of decreases in gene expression. 

Another potential problem was the detection of altered gene expression secondary to the 

effects (toxicity) of the transient transfection process. The major drawback of the
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inducible gene system was the amount of time taken to perfonn this protocol compared 

to transient transfection. Although, if successful, a suitable MDM2 inducible clonal cell 

line, expressing MDM2, should allow detection of altered gene expression as a 

consequence of MDM2 expression. There were concerns that the further cloning needed 

to generate inducible MDM2 expression clones, may lead to unknown genetic 

alterations which would prejudice the results of gene analysis. There was also a risk of a 

small amount of the GOI (MDM2) still being expressed in the absence of the inducing 

agent (DOX). Small levels of additional MDM2 expression may be sufficient to lead to 

changes in the expression of other genes, obviously again affecting interpretation of the 

gene expression profiling. In the first instance transient transfection was employed to 

obtain high MDM2 expression, as discussed earlier.

4.2 Results of Transient Transfection

4.2.1 Transient Transfection of 117 and derived clones

The 117 cell line was transiently transfected with four commercially available 

transfection reagents - Gene Juice™ (Novagen), FuGENE HD™ (Roche), 

Lipofectamine™ 2000 (Invitrogen) and Magnetofection™ (Polymag) to investigate 

which product resulted in the highest transfection efficiency. Assessment of transfection 

efficiency was made using an in situ p-galactosidase (p-gal) assay. Details of these 

experiments can be found in Appendix (1). It was found that FuGENE HD™ at a
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reagent volume (^1) to transfected DNA weight (ng) ratio of 2:1 resulted in the highest 

transfection efficiency of 40 - 45% (see Figure 4.2.1).

FuGENE HD Volume : DNA Weight Ratio

Figure 4.2.1. Estimation of the optimum FuGENE HD™ volume to plasmid DNA 

weight ratio for transfection of the 117 cell line using an in-situ p-gal assay. 117 

cells were transfected with 5pg of P-gal plasmid and 5pg of pCEP4 plasmid using 

FuGene HD™ transfection reagent, at transfection reagent volume to DNA plasmid 

weight ratios as indicated. Cells were incubated for 24 hours before performing the in 

situ p-gal assay. Cells were covered with substrate buffer for 24 hours before a 

representative photograph was taken at 50x and 400x magnification as indicated.

4.2.2 Magnetic labelling and separation using the MACSelect™ system (Miltenyi
Biotech).

The results in section 4.2.1 demonstrated that the transient transfection methods tested 

could only achieve 40 - 50% transfection efficiency. Although this transfection 

efficiency may be sufficient to detect large fold changes in gene expression by 

expression profiling, there is a concern that smaller fold increases may not be detected.
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To try and increase the transfection efficiency a magnetic transfection enrichment 

technique (MACSelect™) was investigated. The MACSelect™ system requires cells to 

be co-transfected with the plasmid of interest and a plasmid (MACSelect K ) 

responsible for the expression of a cell surface molecule (antigen) that can bind a 

specific antibody coupled to a magnetic particle. The transfected cells are then mixed 

with magnetic particles and passed through a magnetic column. This causes separation 

of the cell suspension into a magnetic and non magnetic fraction. The magnetic fraction 

is then eluted from the column and as a result of this enrichment process should contain 

a higher percentage of cells expressing the plasmid of interest. This is because cells 

successfully transfected with the MACSelect Kk plasmid are more likely to have been 

co-transfected with the plasmid of interest.

The MACSelect™ system was evaluated using the 117 cell line and FuGENE HD™ 

transfection reagent which had previously given the highest transfection efficiency. Cells 

were transfected with pCMVNeoBamMDM2 and the MACSelect Kk plasmid. A control 

group of cells were transfected with pCMVNeoBamMDM2 and pCMVNeoBam. The 

enrichment of MDM2 was assessed using western blot analysis. The results are shown in 

figure 4.2.2. As can be seen in figure 4.2.2, in the positive column fraction (cells 

retained on the magnetic column) there was a considerably higher expression of MDM2, 

compared to the negative fraction and the MDM2 transfected control. The results show 

that the MACSelect™ system can be used to enrich the transfected cell population but 

the resultant transfection efficiency still needs to be determined to ensure it is superior to 

existing methods tested.
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Figure 4.2.2.1 Western blot analysis of 117 cells transfected and selected using the 

MACSelect™ system. The 117 cell line was transfected with 10|ig of MDM2 

expression plasmid pCMVNeoBamMDM2 and 10 pg of the MACSelect K plasmid. As 

a control 117 cells were also transfected with lOpg of pCMVNeoBamMDM2 and lOpg 

of pCMVNeoBam instead of the MACSelect Kk. 24 hours after transfection cells were 

passed through the MAC Separation column. There was no sample of cells retained on 

the column (+ column fraction in figure) for 117 cells not transfected with the 

MACSelect K plasmid. Three samples were analysed by western blotting, for MDM2 

levels. Actin was probed for as a loading control.

To see if this method would provide greater transfection efficiency than previous 

methods tested, selected cells had to be reseeded after the column separation and a P-gal 

assay performed. This process required cells to be out of their normal culture 

environment for approximately 30 minutes which could potentially “stress” the cells and
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risk altering the p53/MDM2 levels. For each 117 line (117, pCEP3 and ANp53), cells 

were transfected as in 4.2.2 except that pP-gal replaced the pCMVNeoBamMDM2. The 

cells transfected with the MACSelect kK plasmid were harvested and the cell suspension 

transferred to the magnetic column. Cells that passed through the column (“non­

magnetic”) were collected and designated as the negative fraction. The column was 

washed with elution buffer to collect cells held in the magnetic field of the column; these 

were designated as the positive fraction (these are cells transfected with MACSelect kK 

plasmid). The control cells (not transfected with the MACSelect kK plasmid were treated 

in the same manner, however very few cells were recovered in the positive fraction as 

expected. The cells were then resuspended in media and seeded into 10cm dishes. 12 

hours later, a P-gal assay was performed. Figure 4.2.2.2 shows the three cell lines and 

representative photographs for each condition. Marked cell death was observed and the 

viable cells available to be assessed only demonstrated a transfection efficiency of 10 - 

20%. This result suggests that there is a significant reduction in cell viability as a result 

of this process which appears to particularly affect the transfected cells and therefore we 

did not pursue this approach further. It was therefore decided to try the second approach, 

namely to generate MDM2 inducible clones.
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Figure 4.2.2.2 Transfection efficiency for 117 cell lines following MACSelect™ 

enrichment. Cells were transfected as in 4.2.1 with 10(ig of p-galactosidase plasmid 

instead of pCMVNeoBamMDM2. Transfected cells were harvested and transferred to 

the magnetic column. Cells transfected with MACSELECT kK plasmid were separated 

by the column into a negative fraction for cells passing through the column and a 

positive fraction for those cells attracted to the magnetic field of the column. The control 

cells were not transfected with MACSELECT kK . The cells were then resuspended in 

media and seeded into 10cm dishes. 12 hours later, a (3-gal assay was performed. Cells 

were left covered with substrate buffer for 24 hours before photographs were taken at 

400x magnification.
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4.3 Generating inducible expressing clones

4.3.1 Overview of the Tet-Qn Advanced system inducible cloning system

rtTA'Afraactd
I---------------1

Tet-On Advanced System 

rtTA-Advaacid
biads TRE-Tight aad activates traascriptioa 
ia tba pnsuicw of Dox

REMOVE
DOX

jtioa Traascfi^tioi 

Ctt >1 itwart ^—

Figure 4.3.1.1 The Tet-On Advanced system schematic - adapted from the Tet-On 

Advanced user manual (ClonTech™, Mountain View, CA, USA). DOX = Doxycycline, 

TRE = Tetracycline response element.

In this system, induction of gene expression is controlled by a “mutant” reverse Tet 

repressor160. In E.Coli the Tet repressor protein (TetR) negatively regulates the genes of 

the tetracycline-resistance operon. TetR blocks transcription of these genes by binding to 

the tet operator sequences (tetO) in the absence of tetracycline. The mutant reverse Tet 

repressor (rTetRs) bind to tetO in the presence of DOX. The second component of this
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system is the Tetracycline -response element (TRE) containing seven direct repeats of a 

42bp sequence containing tetO, located just upstream of a minimal CMV promoter 

(PminCMv)- The 1'TetR DNA binding domain has been fused to minimal herpes simplex 

vims (HSV) VP 16 protein. Therefore rtTA-A activates transcription of the GOI upon 

addition of DOX. The GOI is controlled by the TRE-Tight control system. Welman et 

al160 have developed a modification of the pTet-on plasmid in order to try and combat 

problems associated with epigenetic silencing of the cassette containing the 

transcriptional transactivator gene. This newly developed pNlpJ3actin-rtTA2S-M2- 

IRES-EGFP plasmid, combines the strong and less ‘silencing-prone’ chicken |3-actin 

promoter with the advantages of an IRES (internal ribosome entry site)-based selection 

principle and an EGFP (red shifted variant of wild type green fluorescent protein (GFP) 

optimized for better fluorescence and expression in mammalian cells) for selecting 

clones. These authors have shown that using this vector leads to a higher number of 

positive clones and increased inducibility160.

The generation of Tet-On inducible clones is a multiple step procedure illustrated in 

figure (4.3.2). Firstly the concentration of selection antibiotic (lowest concentration 

required to kill all cells not transfected with antibiotic resistance gene) G418 has to be 

determined (antibiotic sensitivity assay). The cell lines are then transfected with the 

Nlppactin-rtTA2S~M2-IRES"EGFP plasmid. G418 resistant colonies are then selected 

and cultured. The selected colonies are then screened by transiently transfecting them 

with pTRE-Tight-Luciferase and selecting clones with maximum expression of 

luciferase on addition of DOX and minimal expression in its absence. Following this, the
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optimum concentration of hygromycin for selection) was determined. Selected clones 

then underwent transfection with pTRE-Tight plasmid containing the GOI. Hygromycin

resistant clones were screened for GOI expression in response to DOX.

Target cells

1 Transfect larger cell* with 
pTel-On Advanced. Select 
for (labfy transfected cells

6418
selectton

Nec
p Tel On 

. Advanced

Tet-On
Advanced

2. Ptc* 230 cofofMet’tfooes:
expand and screen for inducitHlity. 
Carry forward best clone.

3. Transfect Tet-On Advanced target 
cell line withTRE-based vector and 
• linear marker. Select for stably 
transfected cells

4 Pick clones; expand, and ecreen 
or sort cells for GOI expression 
induced by Oox.

I
Tet-On Advanced 
cell line

Mygroirrycm 
or purontycin 
selection

▼

GOI

Hyg'.'Pur

GOI OFF GOI ON

Target cell line containing a 
Tet-On Advanced Inducible 
Expression System

Figure 4.3.1.2 Schematic for the generation of DOX inducible MDM2 expressing 

clones. GOI = Gene of interest, Hyg = Hygromycin. Adapted from the Tet-On

Advanced user manual (ClonTech™, Mountain View, CA, USA)
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4.3.2 Determination of G418 concentration for 1st round clonal selection - G418

antibiotic sensitivity assay

G418 is an aminoglycoside antibiotic that selects for mammalian cells expressing 

neomycin phosphotransferase, from the neo gene (contained within the pNlp|3actin- 

rtTA2S-M2-IRES-EGFP vector). A dose of 800 pg/ml was found to cause cell death in 

all three cell lines after 5 days and therefore we selected this dose for selection of 

transfected cells (see table A 1.1.7 in Appendix 1).

4.3.3 Generation and selection of rtTA2S-M2 expressing clones

Each cell line was transfected with Nlppactin-rtTA2S-M2-IRES-EGFP and underwent 

antibiotic selection, as described in section 2.7.2. After 7 days none of the control 

transfected cells (no neo gene transfected) were viable and after 11 days for 117 cells 

and 13 days for 117-derived clones, colonies were of sufficient size to be expanded. 

Before proceeding to colony expansion, one 117 colony was harvested and the cell 

suspension subjected to ultra-violet light to evaluate whether the cells fluoresced as a 

consequence of EGFP expression. EGFP expression would signify that the cells had 

been successfully transfected as planned. As can be seen in figure 4.3.2.2 a high 

percentage of cells were found to express EGFP.
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Figure 4.3.3.1 Photograph under ultraviolet light of UOK 117 cells transfected with 

NlpPactin-rtTA2S-M2-IRES-EGFP. Cells that have been transfected fluoresce green.

Clones were then tested to ensure they contained a functional DOX responsive element 

(rtTA see section 4.3.1). Testing was performed by transiently transfecting candidate 

clones with pTRE-Tight-Luciferase and then incubating them in media containing DOX. 

Clones containing a functional rtTA would express luciferase (when exposed to DOX), 

the activity of which was assayed using a luminometer (section 2.7.5). The “ideal clone” 

would have at least a 20-fold induction of luciferase and the lowest background 

expression of luciferase in the absence of DOX treatment. Clones of cells that met these 

criteria were subjected to western blot analysis to compare their expression of p53 and 

MDM2 to that of the original 117, ANp53 & pCEP3 parental cell lines. The results of 

these experiments are shown in figures 4.3.3.1 to 4.3.3.3 below. There is a degree of 

variability in the quality of the blot panels arising as a consequence of different clones
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being tested at different times as they grew at different rates. As a result protein 

extraction was undertaken using different stocks of SLIP buffer and protein was 

electrophoresed on SDS gels made at different times. The presence of a p53 doublet can 

be seen in figures 4.3.3.2 and 4.3.3.3, this is thought to arise due to ap53 polymorphism 

at codon72 giving distinct alleles encoding both pro line and arginine161. From these 

results the following clones were selected for second round cloning 117 - clone 9, 117 

ANp53 - clone 2 and 117 pCEP4 - clone 9 (indicated in figures 4.3.3.1 to 4.3.3.3 with a 

black arrow). An interesting observation was that a number of DOX-inducible clones 

were found not to express EGFP probed for using an anti GFP antibody in the western 

blots. This suggests that in these cell lines only the neo and rtTA gene sequences have 

been incorporated into the cell lines’ DNA and are transcriptionally active. Selection of 

clones only on the basis of EGFP expression would have led to identification of cells 

that may have lacked the key feature of DOX inducibility and even if the pTre-Tight- 

MDM2 was then cloned into these cells, MDM2 would not be induced.
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117 rtTA2S-M2 Clone Testing

8

7

6

5

4

3

2

1

0

■ Fold Induction

■ Background Expression

_

i

rrrprrmMMi
\ insir

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 ?4 25 26 27 28
-1 J------------

Arbitrary Units 
(Log 10)

Clone

MDM2

SSI • —* p53

GFP

. - . - Actin

117 1 3 5 7 8 9 10 12 14 15 16 17 18

'-------- *-i---------- J
117 and clones

Figure 4.3.3.2 Analysis of 117 rtTA2S-M2 clones for DOX dependent induction of 

expression of luciferase. Top, graph showing the logarithmic fold induction upon DOX 

treatment (calculated by dividing the induced relative light units by the background 

relative light units) for each clone. Also shown is the background expression expressed 

logarithmically. The yellow line indicates 20-fold induction. Bottom, western blot 

analysis of selected 117 rtTA2S-M2 clones and the parental 117 cell line proteins probed 

for as indicated in figure.
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ANp53 rtTA2S-M2 Clone Testing

Arbitrary Units (LogtO) Clone

MDM2

p53

GFP

— • Actin

ANp53 1 2 3t 4 6 7 8 16 18 21 26 25 30 31 33 35

Figure 4.3.3.3 Testing of 117 ANp53 rtTA2S-M2 clones for DOX-dependent 

induction of expression of luciferase. Top panel Graph showing the logarithmic fold 

induction upon DOX treatment (calculated by dividing the induced relative light units by 

the background relative light units) for each clone. Also shown is the background 

expression expressed logarithmically. The yellow line indicates 20-fold induction. 

Bottom panel western blot analysis of selected 117 ANp53 rtTA2S-M2 clones and the 

parental 117 ANp53 cell line. Proteins probed for as indicated in figure.
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pCEP3 rtTA2S-M2 Clone Testing
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Figure 4.3.3.4 Analysis of 117 pCEP 4 clone 3 rtTA2S-M2 clones for DOX 

dependent induction of expression of luciferase. Top panel Graph showing the 

logarithmic fold induction upon DOX treatment (calculated by dividing the induced 

relative light units by the background relative light units) for each clone. Also shown is 

the background expression expressed logarithmically. The yellow line indicates 20-fold 

induction. Bottom panel western blot analysis of selected 117 pCEP 3 rtTA2S-M2 

clones and the parental 117 pCEP3 (pCEP in figure) cell line. Proteins probed for as 

indicated in figure.
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4.3.4 Generation of pTRE-Tight-MDM2 plasmid

The pTRE-Tight vector was obtained from ClonTech™. Human MDM2 cDNA was 

obtained from pCMVNeoBamMDM2 and cloned as follows. pCMVNeoBamMDM2 

was digested with BamHl restriction enzyme and the MDM2 fragment was then sub­

cloned, digested and phosphatased. Two clones were selected for further restriction 

enzyme digest to determine whether the ligation reaction produced the anticipated 

recombinant DNA. As can be seen from figure 4.2.4 below, both clones display the 

correct pattern anticipated for pTre-Tight-MDM2.

Hind BAM
Uncut Xbai III HI

Hind BAM
Uncut Xba I III HI

Hind BAM
Uncut Xba I III HI

1 I l 1 1 1 1 I lilt

4000 bp 
3000 bp
2000 bp 
1600 bp1
1000 bp 

500 bp
M

Clone 4

l J l J

pTre Tight Clone 11

Figure 4.3.4 Agarose gel electrophoresis of a test restriction enzyme digest of 

candidate pTRE-Tight-MDM2 clones 4 & 11. 1.5 pg of plasmid DNA was digested 

with the indicated restriction enzymes. MDM2 cloned in the correct orientation into the 

MCS of the pTRE-Tight plasmid would give a plasmid 4469 bp in length. Restriction 

enzyme digests of this plasmid using Xbai would give fragments of 18, 1387 and 3064

127



(incorrect 18, 462 and 3989); for Hindlll: 750, 884 and 2835 (incorrect 751, 884 and 

2834) and for BainHI: 1869 & 2600 (incorrect 1869 & 2600). Both clone 4 and clone 11 

plasmids match this indicating successful cloning of pTre-Tight-MDM2.

4.3.5 Testing the newly generated nTre-Tight-MDM2 plasmid’s function

Before proceeding to perfonn the second stage of the cloning procedure, it was 

important to check that the newly generated pTre-Tight-MDM2 plasmid expressed 

functional MDM2 in the presence of rtTA2S-M2 and DOX. A p53 luciferase reporter 

assay was used to determine if the MDM2 was functional (it is expected that there would 

be lower p53 levels in response to increased MDM2 levels leading to a reduction in 

luciferase reporter activity). The 117 rTTA2S-M2 stably expressing clone 9 (see 4.3.3.1) 

was selected for this experiment. Cells were exposed to DOX for 24 hours and the p53 — 

luciferase reporter assay was used to determine the activity of the induced MDM2. As 

can be seen in figure 4.3.5.2 for both concentrations of transfected pTre-Tight-MDM2, 

the addition of DOX resulted in a significant reduction of p53 reporter signal (3pg/pl p = 

0.0076 & lOpg/pl p = 0.0287 using a paired t-test). This is because MDM2 causes 

proteasomal degradation of p53 therefore reducing the amount of p53 available for 

transcription. The reduction in p53 signal is not as great compared to 

pCMVNeoBamMDM2; this may be explained by the fact that the cells in the latter are 

exposed to MDM2 for longer as no induction is required. The western blot (figure 

4.3.5.2) shows that DOX treatment results in increased MDM2 signal and a reduction in 

p53 signal.
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Figure 4.3.5.1 p53 luciferase reporter assay of pTre-Tight-MDM2 induction with 

DOX in 117 rtTA2S-M2 stably expressing clone 9 cells. 117 rtTA2S-M2 stably 

expressing clone 9 cells were transiently transfected with a p53 expression plasmid 

(pCEPp53), a p53 luciferase reporter construct (pp53-TA-Luc) and (3-Gal as a 

transfection control. There were four test conditions as follows: transfection of pTre- 

Tight-MDM2 3jig/|il (labelled pTightMDM2 3pg in figure), transfection of 

pCMVNeoBamMDM2 1.2pg/|Lil (labelled MDM2 NB in figure), transfection of pTre- 

Tight-MDM2 lOpg/pl (labelled pTightMDM2 lOpg in figure) and a control (No MDM2 

transfected, labelled p53 and reporter only in figure). Cells were incubated for 24 hours 

and then for each condition half were incubated with fresh media containing DOX at a 

concentration of 1 pg/ml and the other half incubated with fresh media only. 24 hours 

later a luciferase reporter assay was carried. The normalised relative light units for each 

condition are displayed. Western blot analysis of this experiment is displayed in Figure 

4.3.5.2.
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Test of plight MDM2 inducible function in 117 rt TA
clone 9

MDM2

1 p-Gal

Jl JL J L
Actin

Clones plight MDM2 MDM2NB 
3pg 1.2pg

plight MDM2 pCEP p53 0.3pg & pp53 
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Figure 4.3.S.2 Western Blot of experiment 4.3.5.1 - 117 rtTA2S-M2 stably expressing 

clone 9 cells were transiently transfected with a p53 expression plasmid (pCEPp53), a 

p53 luciferase reporter construct (pp53-TA-Luc), P-Gal plus either pTre-Tight-MDM2 

or pCMVNeoBamMDM2 (MDM2 NB in figure) as indicated below lanes on figure. 

Lane 1 contains an untransfected 117 rtTA2S-M2 clone 9. For each of the four 

conditions cells were incubated at 37°Cwith media containing DOX (+ in figure) or 

normal media (- in figure). Proteins probed for as indicated in the figure.
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4.3.6 Second round cloning

Having identified clones that demonstrate inducibility in response to Dox, the second 

round of cloning required the rtTA stable clones be co-transfected with the pTre-Tight- 

MDM2 plasmid (See figure 4.2.x) together with a linear antibiotic selection marker to 

allow for selection of stably expressing clones. The 117 derived clones used at the 

beginning of this series of experiments pCEP4 clone 3 and ANp53 clone 3 have both 

previously been generated through selection using hygromycin. Therefore hygromycin 

could not be used again for clonal selection in the two cell lines. ClonTech™, the 

suppliers of this system, supplied a puromycin linear marker however due to production 

problems there was a worldwide shortage and it was not possible to obtain this. 

Therefore the experimental plan was revised. The main goal was always to study the 

consequences of MDM2 expression in a RCC cell line, therefore the experiment 

proceeded but only with the 117 cell line which was still hygromycin sensitive. The 117 

rtTA clone 9 would also be stably transfected with a pTre-Tight construct containing a 

RING-fmger mutant of MDM2 (pTre-Tight-RING). In the same way that the 

consequences of MDM2 expression were going to be compared between the 117 cell 

line and the now discarded pCEP3 and ANp53, the RING-fmger mutant of MDM2 

(MDM2RFM) would now be used for comparison as well. This experiment would also 

potentially help distinguish between genes being expressed as a consequence of the E3 

ligase activity (RING finger dependent) of MDM2 and those altered through MDM2 

protein-protein interactions.
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The pTre-Tight-RING was generated and tested in the Boyd laboratory by a co-worker 

Dr M Maguire, using the same technique and strategy detailed earlier. The MDM2- 

RING-finger-mutant was extracted from the human RING finger mutant Cys464Ala 

p CM VNeoBam3 plasmid.

117 rtTA clone 9 cells were transiently transfected with pTre-Tight-MDM2 and pTre- 

Tight-RING along with the linear hygromycin selection marker. Control dishes without 

the linear hygromycin selection marker were similarly transfected. The cells were 

cultured in media containing both G418 and Hygromycin to provide selection. After 6 

days none of the control transfected dishes contained viable cells. Colonies on the 

experimental or test dishes were however ready to be picked after 12 days for both sets 

of clones. A minimum of 40 colonies were picked for each cell line.

As these cells were expanded it was noted that a number of pTight-MDM2 colonies 

grew poorly and a number eventually died despite attempts at promoting growth by cell 

passage. Of the 40 colonies that were selected for expansion from 96 wells to 24 well 

plates only 11 were eventually able to be tested for functionality.

4.3.7 Screening for inducible pTre-Tight-MDM2 expressing clones

The following experiment was carried out to test whether the selected clones expressed 

MDM2 after treatment with DOX. Clones were incubated at 37°C in media containing 

Ipg/ml of DOX for 24 hours, untreated controls were also cultured. The cells then 

underwent protein extraction and western blot analysis. Clones showing increased
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MDM2 signal with DOX treatment underwent further evaluation. From Fig 4.3.7 it can 

be seen that no clones demonstrated increased expression of MDM2 after exposure to 

DOX. Clones 2, 16 and 21 were selected to undergo more detailed testing as they 

showed a slight increase in MDM2 signal after treatment with DOX. Clone 15 appears 

to show an increase in MDM2 signal after treatment with DOX however this is due to 

more protein being loaded (as indicated by the Actin having a high signal compared to 

the control lane) in the DOX treatment “+” lane compared to the non treatment lane.

MDM2

Actin

Dox (1ug/ml)
+ - + - + - + + - +

Clone 2 10 12 13 14 15 16 17 18 20 21

Figure 4.3.7 Western blot showing MDM2 expression in response to DOX 

treatment in clones generated following transfection with rtTA2S-M2 and pTre- 

Tight-MDM2. Experiment performed with assistance by MM. Numbered candidate 

clones were incubated in their normal culture media (lane labelled -) or in normal culture 

media containing doxycycline 1 pg/ml (lanes labelled +). Cells were then harvested and 

underwent protein extraction which was probed for as indicated in figure.
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4.3.8 Testing of potential inducible pTre-Tight-MDM2 expressing clones

The candidate inducible MDM2 clones selected from 4.3.7 (clones 2, 16 & 21) then 

underwent further testing. To test whether inducible and functional human MDM2 was 

being induced upon DOX treatment, the clones were transiently transfected with p53 

(pCEPp53) and a p53 luciferase reporter (pp53-TA-Luc). A range of increasing DOX 

concentrations was used to increase the chances of detecting induction of MDM2. It was 

expected that following induction of MDM2 expression there would be a decrease in 

p53 function. As can be seen from figure 4.3.8.1 panel A, there is no evidence of a 

reduction in p53 signal after DOX treatment. In the western blot analysis of this 

experiment (panels B & C in same figure) there was no change in MDM2 signal or p53 

signal after DOX treatment, again signifying that functional MDM2 expression has not 

been induced. To ensure that the DOX response element of the system was still working 

after the second round of cloning, the three clonal cell lines were transfected with the 

pTre-tight-MDM2 plasmid (used for the second round of cloning) and 

pCMVNeoBamMDM2 (see panel D) along with p53 and a p53 luciferase reporter. As 

can be seen, treatment with DOX resulted in a decrease in p53 reporter activity proving 

that the clones retain their rtTA function. A control for the p53 reporter assay is 

demonstrated in Panel E in figure 4.3.8.1. Here the three cell lines were transfected with 

p53, the p53 luciferase reporter and either pCMVNeoBamMDM2 (expresses functional 

MDM2 - pCMVNBMDM2 in figure)) or pCMVNeoBam (pCMVNB in figure) plasmid. 

After 24 hours, all cell lines transfected with pCMVNeoBamMDM2 demonstrate a
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reduction in p53 reporter signal compared to the control (pCMVNeoBam) indicating that 

the p53 reporter signal changes in the presence of functional MDM2.

To ensure that the cells were not transiently or slowly expressing MDM2 after DOX 

treatment, the experiments were repeated using a shorter and longer time courses for 

clone 2 and clone 16 (see figure 4.3.8.2 & 4.3.8.3). These tests show that both clones 2 

and 16 retain DOX responsive expression of rtTA but no evidence of MDM2 induction 

in response to DOX treatment. This suggests that for some unknown reason the plasmid 

that should produce MDM2 expression is either unresponsive or is not present or 

disrupted and thus there is no DOX induced MDM2 expression. We can only speculate 

as to why this situation may have arisen. One possibility is that there is still an increase 

in expression of MDM2 as a result of transfection with pTre-Tight-MDM2 which is not 

tolerated by the cells. Whatever the exact reason, there was no evidence of MDM2 

inducibility in any of the tested clones.
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Figure 4.3.8.1 Screening of clones 2 and 21 for DOX inducible expression of 

MDM2. Experiment performed with assistance from MM. A, clones 2 and 21 and 117
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itTA clone 9 were transiently transfected with p53 and the p53 luciferase reporter. After 

treatment with differing concentrations of DOX for 24 hours p53 reporter activity was 

estimated using the luciferase reporter assay. B&C, western blot analysis of the same 

experiment probed for the indicated proteins LE = long exposure, SE = short exposure. 

D, transient transfection of the same cell lines with pTre-Tight~MDM2, p53 and the p53 

luciferase reporter. After treatment with the indicated concentration of DOX for 24 

hours, p53 reporter activity was estimated using the luciferase reporter assay E, transient 

transfection of the same cell lines with pcmvNEOBAMMDM2, p53 and the p53 

luciferase reporter. After 24 hours, p53 reporter activity was estimated using the 

luciferase reporter assay.
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Fig 4.3.S.2 Further Screening of clone 2 for DOX inducible expression of MDM2.

Experiment performed with assistance from MM.Top left clone 2 was transiently 

transfected with a p53 luciferase reporter. After treatment with differing concentrations 

of DOX for 12, 24 and 36 hours p53 reporter activity was estimated using the luciferase 

reporter assay. Bottom western blot analysis of the same experiment, probed for the 

indicated proteins (LE = long exposure, SE = short exposure). Top right p53 reporter 

assay of clone 2 after transient transfection with p53, p53 reporter plasmid and either
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pTre-Tight-MDM2 (plus or minus DOX Ipg/ml) or pcmvNeoBam (pCMVNB in figure) 

or pcmvNeoBamMDM2 (pCMVNBMDM2 in figure).
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Figure 4.3.S.3 Screening of clone 16 for DOX inducible expression of MDM2.

Experiment performed with assistance from MM.Top left clone 16 was transiently 

transfected with the p53 luciferase reporter. After treatment with differing 

concentrations of DOX for 2, 24 and 36 hours, p53 reporter activity was estimated using 

the luciferase reporter assay. Bottom western blot analysis of the same experiment 

probed for the indicated proteins. Top right p53 reporter assay of clone 16 after
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transient transfection with p53, p53 reporter plasmid and either pTre-Tight-MDM2 

(plus or minus DOX Ipg/ml) or pcmvNeoBam (pCMVNB in figure) or 

pcmvNeoBamMDM2 (pCMVNBMDM2 in figure).

4.3.9 Screening of inducible oTre-Tight-RING expressing clones

The following experiment was carried out to test whether the selected clones expressed 

MDM2RFM after treatment with DOX. Clones were incubated at 37°C in media 

containing 1 pg/ml of DOX for 24 hours, untreated controls were also cultured. The cells 

then underwent protein extraction and western blot analysis. Clones showing increased 

MDM2 signal with DOX treatment underwent further evaluation. From Fig 4.3.9, clones 

1, 2, 4, 16 and 25 were selected to undergo more detailed testing as they showed some 

induction of MDM2. Clone 25 could not be recovered from frozen stocks and was not 

available to undergo further testing.

Four clones 1, 2, 4 and 16 underwent further analysis to detennine if they were indeed 

stable DOX-inducible MDM2RFM expressing clones. Clones were transiently 

transfected with p53 and a p53 luciferase reporter. The clones were then treated with 

increasing concentrations of DOX containing media for 24 hours. Controls included 

transfection with the pTre-Tight-RING plasmid and pCMVNeoBamMDM2.
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Figure 4.3.9.1 Western blot showing the results of screening for inducible pTre- 

Tight-RING expressing clones. Experiment performed with assistance by MM. 

Candidate pTre-Tight-RING clonal cell lines were incubated at 37°C with normal media 

or media containing l pg/ml of DOX for 24 hours. Proteins were probed as indicated in 

figure. LE = long exposure, SE = short exposure.
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To try and detect if a clone does inducibly express MDM2RFM in response to DOX one 

would expect to see an increase in MDM2 levels when probed for on western blotting. It 

may also be possible to detect changes in p53 transcriptional activity as a result of 

increasing expression of MDM2RFM, however this latter effect would be due to MDM2 

inhibiting p53 transcription, as MDM2RFM is unable to ubiquitinylate and therefore 

bring about p53 degradation59.

Figures 4.3.9.2 shows the results of testing candidate clone 1. Panel A of this figure 

shows a p53 luciferase reporter assay of clone 1 cells exposed to different concentrations 

of DOX. There is evidence of a very small decrease in p53 reporter signal upon DOX 

treatment (bars 2, 3 & 4) as compared to the control (Opg DOX - bar 1). However the 

last two bars of the chart show the change in p53 signal when the clone is transfected 

with and in the last bar, also exposed to DOX. As can be seen there is a much more 

dramatic decrease in p53 signal when DOX is added causing inducible expression of 

MDM2RFM from transfected pTre-Tight-RING. This suggests that the clone 1 cells at 

least retain their DOX inducibility but does not provide conclusive evidence that the 

clone is inducible These last two bars of the graph were calculated using a different 

batch of luciferase reagents (performed at a different time), for this reason bars 5 and 6 

can only be compared to each other and not the bars 1—4. Panel C shows the control 

experiment for the p53 luciferase reporter assay - a reduction in p53 signal is observed 

in clone 1 cells transfected with an MDM2 expression plasmid (pCMVNeoBamMDM2)
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compared to those transfected with the empty vector control (pCMVNeoBam) 

demonstrating that the p53 reporter assay is able to detect changes in p53 signal as a 

result of MDM2 expression. Panel B shows the western blot of p53 reporter assay 

experiment shown in panel A. There is no obvious increase in MDM2 signal in lanes 2, 

3 and 4 compared to lane 1 (no DOX treatment) however there is a marked increase in 

MDM2 signal in the lane 6 (transfected pTre-Tight-RING and DOX treatment) 

compared to lane 5 transfected pTre-Tight-RING (note also there is no appreciable 

change in the p53 signal as expected). These results, especially the lack of appreciable 

increase in MDM2 levels on western blotting, suggest that clone 1 is not suitable for use 

as an inducible clone. Testing of clone 16 in exactly the same way (Figure 4.3.9.3) 

revealed the same pattern as that described for clone 1 and therefore clone 16 was also 

discarded for further experimentation.
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Response of 117 pTightRING Clone 1 to Doxycycline treatment over 24 hours
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Figure 4.3.9.2 Screening of candidate clone 1 for DOX inducible MDIVI2 RING 

mutant expression. Experiment performed with assistance from MM. Panel A, clone 1 

was transiently transfected with pCEPp53 and pp53TALuc (luciferase reporter). After 

treatment with differing doses of DOX for 24 hours p53 reporter activity was estimated 

using a luciferase reporter assay. The pTre-Tight-RING plasmid was also transiently 

transfected as a control for DOX inducibility. Panel B, western blot analysis of same
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experiment proteins probed for as indicated in figure (LE = long exposure, SE = short 

exposure). Panel C, luciferase reporter assay control. Transient transfection of clone 2 

with pp53TALuc, pCEPp53 and either pCMVNeoBam or pCMVNeoBamMDM2.
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B
*

Dox(pg/ml) 0 0.3 1 3 ^0^1^

Transfected 10pg pTre-Tight-RING

1

I)

3

25000

MDM2LE

MDM2ME 20000

MDM2SE C• 15000

p53
fc.
Cl

Actin
10000

5000

pTre-Tight-RING pTre-Tight-RING 
-DOX + Ipg DOX

Control for Luciferase Assay

pCMVNeoBam pCMVNeoBamMDM2 

Transfection

Figure 4.3.9.3 Screening of candidate clone 16 for DOX inducible MDM2 RING 

mutant expression. Experiment performed with assistance from MM. Panel A, clone 

16 was transiently transfected with pCEPp53 and pp53TALuc (luciferase reporter). 

After treatment with differing doses of DOX for 24 hours p53 reporter activity was 

estimated using a luciferase reporter assay. The pTre-Tight-RING plasmid was also
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transiently transfected as a control for DOX inducibility. Panel B, western blot analysis 

of same experiment proteins probed for as indicated in figure (LE = long exposure, ME 

= medium exposure , SE = short exposure). Panel C, luciferase reporter assay control - 

transient transfection of the clone 1 with pp53TALuc, pCEPp53 and either 

pCMVNeoBam or pCMVNeoBamMDM2.

Figure 4.3.9.4 shows the same experimental tests this time performed on candidate clone 

2. This time, as can be seen in the western blot (panel B), there is a marked increase in 

MDM2 signal in lanes 2-4 (Dox treatment) compared to lane 1 (control i.e. no DOX). 

The level of MDM2 signal in the DOX treatment lanes is almost the same as that seen in 

lane 6 (cells have been transfected with pTre-Tight-Ring and treated with DOX). This 

finding demonstrates that clone 2 is a DOX inducible MDM2RFM expressing clone. As 

expected the marked increase in MDM2RFM levels has not altered the p53 levels on the 

western blot for reasons mentioned earlier. In the p53 luciferase reporter assay (panel

A) , allowing for increased protein loading into lanes 3 & 4 (evidenced by uneven Actin 

signal), there is a slight reduction in p53 reporter signal in all DOX treated lanes. 

However as this pattern was also seen in clone 2 (Figure 4.3.9.2 panel A) where there 

was no evidence of increased MDM2RFM levels on western blot (Figure 4.3.9.2 panel

B) it must be concluded that the p53 luciferase reporter assay is not capable of detecting 

changes in MDM2RFM levels. Testing of clone 4 in the same manner as just described 

(figure 4.3.9.5), shows the same pattern of results as clone 2 suggesting it is also an 

inducible MDM2RFM expressing clone.
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Response of 117 plightRING Clone 2 to Doxycycline treatment over 24 hours
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Figure 4.3.9.4 Screening of candidate clone 2 for DOX inducible MDM2 RING 

mutant expression. Experiment performed with assistance from MM. Panel A, clone 1 

was transiently transfected with pCEPp53 and pp53TALuc (luciferase reporter). After 

treatment with differing doses of DOX for 24 hours p53 reporter activity was estimated 

using a luciferase reporter assay. The pTre-Tight-RING plasmid was also transiently 

transfected as a control for DOX inducibility. Panel B, western blot analysis of same 

experiment proteins probed for as indicated in figure (LE = long exposure, ME = 

medium exposure , SE = short exposure). Panel C, luciferase reporter assay control. 

Transient transfection of the clone 2 with pp53TALuc, pCEPp53 and either 

pCMVNeoBam or pCMVNeoBamMDM2.
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Response of 117 plightRING Clone 4 to Doxycycline treatment over 24 hours
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Figure 4.3.9.S Screening of candidate clone 4 for DOX inducible MDIM2 RING 

mutant expression. Experiment perfomed with assistance from MM. Panel A, clone 4 

was transiently transfected with pCEPp53 and pp53TALuc (luciferase reporter). After 

treatment with differing doses of DOX for 24 hours p53 reporter activity was estimated 

using a luciferase reporter assay. The pTre-Tight-RING plasmid was also transiently 

transfected as a control for DOX inducibility. Panel B, western blot analysis of same 

experiment proteins probed for as indicated in figure (LE = long exposure, ME = 

medium exposure , SE = short exposure). Panel C, luciferase reporter assay control - 

transient transfection of the clone 4 with pp53TALuc, pCEPp53 and either 

pCMVNeoBam or pCMVNeoBamMDM2.
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4.4 Discussion

The main aim of this chapter was to produce a model for examining the effects of high 

MDM2 expression in RCC cell line UOK 117, using gene expression profiling. In 

simplistic terms the model must be able to contrast a low MDM2 expression state (seen 

in UOK 117) with a high MDM2 expression state (achieved through transient 

transfection or inducible expressing 117 clones). The first series of experiments detailed 

in this chapter were designed to evaluate and select a commercially available transient 

transfection system that could reliably achieve high transfection efficiency, in the 117 

and 117 derived clones (pCEP3 & ANp53), for the planned microarray gene expression 

profiling experiment. Optimised conditions for Lipofectamine™ 2000 and FuGENE 

HD™ achieved the highest transfection efficiency of around 40 - 45%. This transfection 

efficiency was far below that desired and therefore a new approach was taken - to try 

and produce inducibly expressing MDM2 clones using the Tet-On® Advanced inducible 

gene expression system (ClonTech™).

In order to produce MDM2 inducible expressing clones, the Tet-On® Advanced 

inducible gene expression system requires two rounds of cloning. The first round aims to 

produce clones that stably express rtTA. The second round of cloning allows the gene of 

interest (MDM2 or MDM2RFM) to be expressed in response to rtTA and DOX; it is 

probable that a relatively small amount of GOI is expressed in the absence of DOX. The 

three cell lines (117, ANp53 & pCEP3) all underwent the first round of cloning 

producing a number of new rtTA clones that could be evaluated. A new rtTA clone from
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each of the parental cell lines was selected that demonstrated a high level of DOX 

inducible expression, minimum expression (of the test plasmid pTre-Tight-Luc) in the 

absence of DOX (“background expression”) and levels of p53 & MDM2 expression on 

western blotting as similar as possible to the parental cell lines.

The second round cloning of these three clones could not be performed as planned due 

to the unavailability of the puromycin antibiotic selection marker. The 117 rtTA clone 

could still undergo second round cloning with an alternative and available antibiotic 

selection marker (hygromycin). Using the 117 rtTA clone 9, second round cloning took 

place with the aim of producing two inducible expressing clones (MDM2 and 

MDM2RFM), to allow the consequences of high MDM2 expression to be contrasted 

with that of the MDM2RFM (which cannot act as a E3 ligase) by gene expression 

profiling. The second round cloning initially resulted initially in a similar number of 

candidate clones to be tested as seen after cloning round 1. It was observed that the 

second round clones seemed to grow less well with fewer colonies being able to survive 

colony expansion. Testing of the pTightMDM2 clones failed to show any that 

demonstrated inducible MDM2 expression whereas two pTightRING clones were found 

that inducibly expressed MDM2RFM.

It can only be speculated as to why the second round of cloning produced so few desired 

clones compared to the first round of cloning. It is possible that small amounts of 

background expression of MDM2 may be causing cell death. Colonies surviving may 

have silenced MDM2 expression or were only successfully transfected with the
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hygromycin selection marker alone and not the MDM2 sequence. Some support is leant 

to the first hypothesis by the fact that two mutant MDM2 clones were generated, where 

it is possible the effects of MDM2RFM are less deleterious for the cells. It would have 

been very interesting to see if more clones were generated from the pCEP3 and ANp53 

117 clones, which previously have produced high MDM2 expressing clones as a result 

of cloning experiments. To hilly test whether the pTre-Tight results in lethal MDM2 

background expression a larger scale repeat of the experiment would be needed which 

would include the 117 derived clones from which stable MDM2 expressing clones can 

be made (ANp53 & pCEP3).
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CHAPTER 5 INVESTIGATING THE ROLE OF

PROTEASOMAL DEGRADATION AND HEAT SHOCK

PROTEIN 90 IN THE “HIGH” STEADY STATE LEVELS

OF P53 AND MDM2 SEEN IN RCC CELL LINES

5.1 Introduction

It has been shown that some RCC cells in culture express relatively high levels of p53 

and MDM2 with intact p53 function128 (see also section 1.6.5). As described earlier in 

chapter 1, and demonstrated in chapter 3, there is evidence that this phenotype (i.e. high 

expression of p53 & MDM2 determined by tumour immunohistochemistry) is associated 

with poor prognosis in patients with RCC96.

The mechanism responsible for high levels of p53 and MDM2 protein levels seen in 

some of the RCC cell lines is still to be discovered. In very simple terms the levels of 

p53 and MDM2 within the cell depend upon the rates of protein expression and 

degradation. p53 and MDM2 undergo proteasomal degradation as a result of 

ubiquitylation (see section 1.3.3), by inhibiting the function of the proteasome with an 

inhibitor, one would expect to see an increase in p53 and MDM2 protein levels. 

Comparison between the different RCC cell lines in their degree of p53 and MDM2 

stabilisation upon proteasome inhibition may reveal differences brought about by a 

variation in the susceptibility of p53 and MDM2 to proteasomal degradation (although
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there are of course other reasons that may explain any observed differences), for 

example if within a given cell line a proportion of p53 and MDM2 is shielded from 

undergoing proteasomal degradation, one would expect less p53 and MDM2 

stabilisation (upon proteasome inhibition) compared to a cell line where all of the 

available p53 and MDM2 undergo proteasomal degradation. Such cell lines in which a 

proportion of p53 and MDM2 is resistant to proteasomal degradation could also be 

expected to have increased levels of these proteins compared to cell lines with “normal” 

p53 and MDM2 proteasomal degradation. One process that allows cells to stabilise a 

protein, by preventing proteasomal degradation, is through interaction with the HSP90 

chaperone complex (see section 1.7). As detailed in section 1.7.5 there is evidence that 

p53 may be a client protein of the HSP90 chaperone complex155. This raises the 

possibility that some of the RCC cell lines may exhibit high p53 and MDM2 protein 

levels due to a reduction in proteasomal degradation through the action of the HSP90 

chaperone complex. This hypothesis can be tested by inhibiting the function of the 

HSP90 to see if this does result in any reduction in p53 and MDM2 steady state levels.

5.2 Results

5.2,1 Effects of proteasome inhibition on p53/MDM2 steady state levels in RCC cell

lines.

To examine the effects of proteasome inhibition on p53 and MDM2 protein levels in 

RCC cell lines, the following experiment was carried out. The panel of RCC cell lines
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(see section 1.7.1), the osteosarcoma cell line U20S, and the p53 null - non small cell 

lung carcinoma cell line HI299 were treated for three horns with either a DMSO control 

or the proteasome inhibitor MG 115. Cellular lysate was then subjected to western blot 

analysis and the proteins p53 and MDM2 were detected. Actin was used as a loading 

control. Cyclin Dl, a member of the cyclin family of CDK (Cyclin dependent kinase) 

regulators, known to be degraded by the proteasome162, was used as an internal control 

of proteasome inhibition. In all figures, comparison can only be made between the 

DMSO control and the adjacent treatment lane. For comparisons of relative levels of 

MDM2 or p53 in each cell line please refer to figure 1.7.1 in the introduction. Results of 

the western blots are shown in figure 5.2.1. A summary of the effects on p53 and MDM2 

stabilisation are shown in table 5.2.1
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Figure 5.2.1. Western blots showing IY1DIVI2 and p53 protein levels in RCC cell lines 

before and after inhibition of the 26S proteasome using MG115. Cells were cultured 

for 3 hours in their normal media containing either lOpmol/L of MG115 (lanes labelled 

“+”) or an equal volume of DMSO (lanes labelled Proteins were probed for as 

indicated on the figure.
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Cell
line

Panel P53
status

p53
Stabilised

MDM2
Stabilised

Cyclin D1 
stabilised

Relative j
expression*

111 A MT NO NO YES High p53 
moderate MDM2

115 A MT NO YES YES High p53 
Moderate MDM2

117 A WT YES NO YES Low p53
Low MDM2

121 D MT YES YES YES High p53 
Moderate MDM2

154 A MT NO NO YES High p53
Low MDM2

A704 B MT YES YES YES Low p53
Moderate MDM2

A498 B WT YES YES YES Moderate p53
High MDM2

ACHN B WT YES YES YES High p53 
Moderate MDM2

Cakil C WT YES YES YES Moderate p53
High MDM2

Caki2 D WT YES YES YES Moderate p53
High MDM2

786-0 C MT NO NO NO High p53
High MDM2

769-P C ? YES YES YES Low p53
Moderate MDM2

SW156 D WT YES YES YES Moderate p53 
Moderate MDM2

U20S D WT YES YES YES Moderate p53 
Moderate MDM2

1299 C p53
null

N/A YES YES P53 null
Moderate MDM2

Table 5.2.1 Analysis of changes in p53 and MDM2 protein levels (stabilisation) 

after inhibition of the proteasome. WT = wild type p53, MT - mutant p53. ^Relative 

expression refers to the levels of p53 or MDM2 protein expression by western blot 

figure 1.7.1.
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As can be seen from table 5.2.1, treatment of RCC cell lines with MG115 resulted in the 

anticipated increase in cyclin D1 expression in all cell lines except 786-0. The 786-0 

cell line showed no increase in p53 or MDM2 expression either. Since none of these 

three proteins (p53, MDM2 & Cyclin Dl) were stabilised in 786-0 this might either 

represent increased resistance to MG115 or reduced proteasomal degradation in this cell 

line. To further investigate this, the experiment should be repeated using increasing 

concentrations of MG115 and/or an alternative proteasome inhibitor in the first instance. 

The A498 cell line showed stabilisation of p53 and MDM2 (implying MG115 was 

inhibiting the proteasome) but no appreciable stabilisation of cyclin Dl. The reasons for 

this effect are not clear but cyclin Dl has been reported to be mutated in human cancers 

resulting in post translational stabilisation163.It is possible that a cell line specific effect 

is responsible for the failure of MG115 to stabilise cyclin Dl.

With the exception of HI 299 (p53 null), 111, 115, 117 and 154 the remaining cell lines 

tested demonstrated stabilisation of p53 and MDM2 suggesting the ubiquitylation / 

proteasome degradation pathway is actively degrading p53 and MDM2 in these cell 

lines. The 111, 115 and 154 cell lines showed stabilisation of cyclin Dl but no 

appreciable stabilisation of p53, the reasons for this can only be speculated upon but 

may be due to a consequence of p53 mutation, for example a mutation resulting in an 

inability to up-regulate MDM2 thus causing an imbalance in the autoregulatory loop. 

This would prevent p53 from undergoing proteasomal degradation after ubiquitylation 

brought about by the action of MDM2. Cell line 154, has a p53 mutation (248 R - Q), 

111 (173 V - Q) and 115 (280 R - T) a search of the IARC database of p53 mutations
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does not show published evidence of these mutations preventing MDM2 interaction or 

ubiquitylation. The R248Q mutation does result in complete loss of p53 function in 

yeast p53 reporter gene assays132 this finding may explain the cell lines very low MDM2 

levels (MDM2 is not being transcribed by the mutant p53) and no stabilisation upon 

proteasome inhibition as MDM2 is not present in sufficient quantities to lead to 

ubiquitylation and degradation by the proteasome. No specific consequences of the 

V173G p53 mutation, present in the 111 cell line, have been reported. However 111 has 

a higher steady state level of MDM2 on WB (figure 1.5) compared to 154 which 

suggests MDM2 may still be upregulated by p53. The 115 mutation (R280T) is a 

missense core domain mutation which has shown complete loss of wt p53 function and 

dominant p53 inhibition in a yeast assay132. Unlike 154 and 111 cell line 115 shows a 

very impressive stabilisation of MDM2 upon inhibition of the proteasome. It is hard to 

explain the differences in MDM2 stabilisation upon proteasome inhibition between 115 

and 111. Both cell lines have similar steady state levels of p53 and MDM2, neither show 

p53 stabilisation upon proteasome inhibition however 115 shows marked stabilisation of 

MDM2. If the R280T p53 mutation present in 115 is transcriptionally inactive and also 

dominant negative, the MDM2 present in the cell must be constitutively expressed. It is 

possible that in 115 and not 111, MDM2 undergoes a higher rate of proteasomal 

degradation making its stabilisation more obvious after proteasome inhibition. The exact 

mechanism underlying the observed differences in MDM2 stabilisation in 111 and 115 

will require further investigation.
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The cell line 117 (wild type p53) showed stabilisation of p53 but not of MDM2. 

Interestingly along with 117, both 111 and 154 also failed to demonstrate stabilisation of 

MDM2 upon proteasome inhibition. The 117 and 154 cell lines both have a very low 

steady state level of MDM2 as demonstrated in figure 1.7.1. The lack of stabilisation of 

MDM2 in these cell lines may be explained by a hypothesis described in Clegg et al66. In 

this paper it is proposed that MDM2 does not autoubiquitylate unless it is present in high 

concentrations, such as those seen following transient transfection. The low levels of 

MDM2 expression in 117 and 154 may allow an unknown protein (such as HSP90 as 

hypothesised earlier) to prevent ubiquitylation that can be overcome when MDM2 is 

present at higher levels. The second mechanism proposed by these authors is that 

MDM2 trans-ubiquitylates another molecule of MDM2 rather than one molecule 

causing self or cis-autoubiquitylation. Within cells with very low levels of MDM2 the 

molecules may rarely interact to bring about ubiquitylation. Although lower rates of 

MDM2 degradation by the proteasome may be due to low relative concentrations of 

MDM2 in these cell lines, one may expect lower p53 degradation as well given MDM2 

ubiquitylates p53. In the 117 cell line there is less expressed MDM2 relative to the other 

RCC cell lines (see figure 1.5.1) and yet there is still an impressive stabilisation of p53 

but not of MDM2 on proteasomal inhibition. Low MDM2 concentrations may explain 

what is occurring with MDM2 however unless p53 is being ubiquitinylated by another 

protein (which is unlikely from the work by Itahama et al164 where it was shown that 

fully functional MDM2 was needed to rescue p53 embryonal lethality) - further studies 

are needed to explain the observations in the 117 cell upon proteasome inhibition.
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Whitesell et al149 showed that wild type, but not mutant, p53 cell lines showed 

stabilisation of p53 in response to proteasome inhibition however only 4 non-RCC cell 

lines were studied. These authors pre-treated the cell lines with the transcription 

inhibitor cycloheximide - demonstrating that increased p53 signal seen, was not due to 

an increase in p53 transcription as a result of cellular stress / stabilisation of other 

proteins in response to proteasomal inhibition. Furthermore these studies demonstrated 

that p53 was stabilised in the mutant p53 cell lines when these cells were treated with 

the HSP90 inhibitor GA and a proteasome inhibitor MG115. These authors’ last 

observation supports the hypothesis that p53 can be “shielded” from degradation by the 

proteasome by interaction with other proteins in this case HSP90. Our finding that two 

mutant p53 cell lines show stabilisation of p53 upon proteasome inhibition in the 

absence of GA, suggest that the majority of p53 must be free to undergo degradation by 

the proteasome in these lines and that Whitsell et al’s observations do not extend to all 

p53 mutant RCC cells.

5.2.2 Inhibition of de novo protein synthesis in 121 and ACHN cell lines using

cycloheximide

As discussed earlier high MDM2 expression in RCC seems to be due to post 

translational stabilisation, as opposed to enhanced protein synthesis. In order to test this 

hypothesis, the following experiment was undertaken. RCC cell lines ACHN and 121 

were selected as they both have similar expression of MDM2 and p53 (see figure 1.7.1), 

and demonstrate p53 and MDM2 stabilisation after inhibition of proteasomal
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degradation. They differ in regards to their p53 status; 121 harbours mutant p53 and 

ACHN has functional wild type p53. Both cells were treated with 50pg/ml of 

cycloheximide, for time points spanning 0 to 8 hours. Figure 5.2.2 shows a western blot 

analysis of expression of p53 and MDM2 at the indicated time points. The half life of 

p53 in non-cancerous (normal) cells is typically approximately 15 to 30 minutes; the half 

life of MDM2 is similarly short at around 20 minutes78, hi the ACHN and 121 cell lines, 

p53 is shown to be stable with a half-life (assessed semi-quantitatively) in excess of 8 

hours. MDM2 is shown to have a half-life (assessed semi-quantitatively) of 

approximately 30 minutes in 121 and 1 hour in ACHN. Given that both of these cell 

lines have p53 and MDM2 that are degraded by the proteasome the question remains as 

to why these cells lines have such an extended p53 and MDM2 half life. Could it be that 

the HSP90 chaperone or another unknown mechanism is preventing a large amount of 

cellular p53 and MDM2 from coming into contact with the ubiquitylation / proteasome 

pathway? The increase in p53 levels following proteasomal degradation may represent 

stabilisation of the p53 not in complex with HSP90 for example.
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Figure 5.2.2 Western blot of p53 and MDM2 expression following cycloheximide 

treatment in ACHN and 121 RCC cell lines. p53 status is represented as wild type 

(wt) or mutant (mt) in the figure. Cells were incubated for the indicated time points in 

5ml of normal media treated with 50pg/ml of cycloheximide. Cells were then harvested 

at the indicated time points and western blot analysis performed with proteins probed for 

as indicated in the figure.

5.2.3 Detecting HSP90 inhibition by geldanamvcin using HSP70 as a control

Throughout this chapter we have postulated that some mechanism, possibly the HSP90 

chaperone complex for example, may exist to promote post translational stabilisation of 

p53 and MDM2. As described in the introduction (see section 1.8.4) the HSP90 

chaperone can be inhibited with the ansamycin antibiotic geldanamycin (GA). The 

following experiments were designed to evaluate if p53 and MDM2 steady state levels
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were altered after inhibition of the HSP90 complex with GA. Before the effects of GA 

could be evaluated in the RCC cell lines a suitable control of HSP90 inhibition was 

needed. As discussed in the introduction, inhibition of the HSP90 chaperone complex by 

GA results in release of HSF1 and subsequent transcription of Heat shock proteins, 

including HSP70. HSP70 was selected as a control with increased levels expected if 

HSP90 has been inhibited. The required concentration of GA needed to bring about this 

increased transcription of HSP70 in the RCC cell lines was unknown, as was the 

optimum amount of time taken to leave the cells exposed to GA. The expression of 

HSP70 in the RCC cell lines and therefore the optimum concentration of primary 

antibody for western blotting were also unknown. The 121 cell line was chosen to be 

initially investigated as it has high (mutant) p53 and MDM2 expression and undergoes 

proteasomal degradation. It was felt that once the control was optimised this would be a 

good cell line to use to evaluate the effects of GA on p53 and MDM2. Figure 5.2.3 

shows the effects of incubating 121 cells for 2 and 8 hours in the presence of 2pmol/L or 

Spmol/L concentrations of GA. A 2 hour DMSO treatment was used as a control. The 

Stressgen™ anti HSP70 antibody was used at 1, 0.1 and O.Olpg/ml concentrations. The 

results shown are using 0.01 ug/ml, as other concentrations resulted in gel bum out at 

very low exposures. Actin was detected as a loading control. Both concentrations of GA 

caused an increase in HSP70 levels.
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Figure 5.2.3 Western blot of the 121 RCC cell line treated with the HSP90 inhibitor 

geldanamycin. Cells were treated for the indicated time points with media containing 

geldanamycin (GA) at a concentration of 2pmol/L or 8pmol/L. The control (C in figure) 

comprised 121 cells treated for 2 hours with the equivalent volume of DMSO as the 

volume of geldanamycin used to give a concentration of 2pmol/L. Proteins were probed 

for as indicated in the figure.

5.2.4 The effect of inhibition of HSP90 on expression of p53 and MDM2 in RCC cell

lines

To investigate whether the steady state levels of p53 or MDM2 were altered after HSP90 

inhibition with GA, a selection of RCC cell lines with high p53 and MDM2 protein 

expression profiles were treated with GA at a concentration of 8pmol/L for 2 and 8 

hours. Western blotting was used to detect changes in protein levels (see Figure 5.2.4.1). 

In figure 5.2.4.1, cell lines A498, ACHN, CAKi-1 and CAKi-2 harbour wild type p53 

whereas 121 harbours a mutant p53. These five cell lines all show evidence of a
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reduction in the steady state level of MDM2 at 2 hours which has recovered at 8 hours. 

This is a new finding as previously GA has only been shown to reduce the steady state 

levels of MDM2, in the presence of mutant p53156. The 121 mutant p53 line in panel E 

shows a small reduction in the steady state level of p53 at 2 hours and further at 8 hours. 

This is in contrast to the other 4 cell lines where any change in p53 steady state levels 

are only seen at 2 hours. The RCC cell lines tested here have high steady state levels of 

MDM2 (relative to other cell RCC cell lines see Figure 1.5) approaching those seen after 

transfection of MDM2 (see figure 4.3.5.2). This relative high abundance of MDM2 may 

be a factor for the reduction in p53 steady state levels seen when HSP90 is inhibited 

with GA, as Burch et al165 reported MDM2/HSP90 complexes can unfold p53 and 

degrade it in the presence of GA, with transfected MDM2. Caki-1 cell line 

demonstrated a decrease in MDM2 but an increase in p53 steady state levels at 2 hours 

and no change in either protein after 8 hours. The effect seen in this experiment seem to 

be an anomaly as repeat testing (Figure 5.2.5) shows Caki-1 to fit with the earlier model 

proposed. In summary this experiment shows cell line specific effects of GA on p53 and 

MDM2 levels.
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Figure 5.2.4.1 - Western blot of p53 and MDM2 levels in 5 RCC cell lines treated 

with geldanamycin. Each RCC cell line was treated for 2 or 8 hours with Spmol/L of 

geldanamycin (GA). The control (C in panels) was the cells treated with an equal 

volume of DMSO to that used for to give 8|imol/L of geldanamycin, again for 8 hours. 

HSP70 was used as a control for HSP90 inhibition. Proteins were probed for as indicated 

in the figure.
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To further evaluate the effects of HSP90 inhibition with GA treatment, cell lines were 

treated with GA at a concentration of 8jmiol/L for various time points ranging from 0 to 

8 hours. A498 was treated with GA at a concentration of 20]amol/L to see if a higher 

dose would have more of an effect. Figure 5.2.4.2 shows cell lines 121, ACHN, A498 

and Caki-1 treated with GA over a time course. From this experiment it can be seen that 

the mutant p53 line, 121, shows a reduction in p53 steady state levels starting at 1 hour 

and maximising at 6 horns. In the other three (wild type) cell lines, p53 levels are 

reduced maximally at 2 hours and are returned to base line levels at 6 hours, hi all cell 

lines the decreases in MDM2 levels mirror the changes in p53. There does appear to be a 

clear difference between the 121 and the three “wild type p53” cell lines. 121 shows a 

continual reduction in p53 and MDM2 steady state levels over the time course 1 hour to 

6 hour time points, whereas the three wild type lines do not show further reductions in 

protein levels after the initial decrease seen at 2 hours. Although only one mutant p53 

cell line had been evaluated, these results led us to ask the following questions - was the 

p53 and MDM2 reductions in steady state levels due to degradation by the proteasome? 

Secondly is the reduction in steady state levels maintained if protein synthesis is 

inhibited with the translation inhibitor cycloheximide? Could the transient down 

regulation be due to loss of GA efficacy over time? These points are addressed in the 

next section.
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Figure S.2.4.2 Western blot showing p53 and MDM2 protein expression in RCC 

cells treated with geldanamycin. Three RCC cell lines were treated for 2 or 8 hours 

with geldanamycin (GA) at a concentration of 2|imol/L, A498 (bottom panel) was 

treated with geldanamycin (GA) at a concentration of 20(imol/L. Each cell line had two 

controls, firstly no treatment (lane labelled X in figures) and secondly (lane labelled C in 

figures) the cell line treated with an equal volume of DMSO to that used for the 

treatment dose of GA, for 8 hours. Proteins were probed for as indicated in the figure.
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5.2.5 MDM2 and p53 levels after treatment with Geldanamvcin and MG115 in UQK

121

If the decrease in p53 and MDM2 protein levels seen after HSP90 inhibition with GA is 

due to degradation by the proteasome then it would be expected that this effect would be 

reduced by proteasome inhibition using MG115. To test this hypothesis 121 cells were 

treated with GA at a concentration of 2pmol/L, MG115 at a concentration of lOpmol/L 

or both. The cells were harvested after 2, 4, 6 and 8 hours of treatment and underwent 

protein extraction and western blotting to assess the levels of p53 and MDM2 (see figure 

5,2.5). For each time point the levels of p53 in the double treated (GA and MG115) are 

intermediate to those in the GA (lowest) and MG115 (highest) and approaching the 

untreated levels (Time 0 in figure 5.2.5). The same trend was also observed for MDM2 

and in exactly the same way as experiment 5.2.4.2, the maximum reduction of MDM2 

steady state levels was seen at 2 and 4 hours with GA treatment. It would have been 

expected that if p53 and MDM2 are chaperoned by HSP90 and the decrease in their 

steady state levels upon HSP90 inhibition is due to proteasomal degradation, then 

treatment with both GA and MG115 would lead to the same levels of protein 

stabilisation as treatment with MG115 alone. The fact that dual treatment (MG115 & 

GA) led to an intermediate level (i.e. between the lowest - GA alone and highest MG115 

alone) is intriguing. One possible explanation is that some of the chaperoned p53 or 

MDM2 is being degraded by a non proteasomal mechanism, for example caplain166.

169



MDM2

p53

Act in

GA + + + + + + +
MG 115 + + + + + + + +

Time (hrs) 0222444 66 6888

Fig 5.2.5 Western blot showing p53 and MDIVI2 protein levels in 121 RCC cells 

treated with geldanamycin and the proteasome inhibitor MG115. The cells were 

treated (indicated by an X in figure) with geldanamycin (GA) at a concentration of 

2pmol/L or MG115 at a concentration of 10pmol/L5 or for 2, 4, 6 & 8 hours. Proteins 

were probed for as indicated in the figure.
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5.2.6 Analysis of potential in vitro interactions between MDM2 and HSP90 by affinity

chromatography

It has been observed that steady state levels of p53 and MDM2 decrease after HSP90 

inhibition with GA. This suggests that these molecules are chaperoned by HSP90 

however it is possible that the effects seen on p53 and MDM2 levels may be indirect, 

possibly due to the action of another HSP90 client protein being liberated from its 

interaction with the chaperone for example. Therefore it was decided to investigate 

whether HSP90 does form a complex with MDM2. A laboratory co-worker (MM) had 

previously constructed and tested a His6-tagged recombinant human MDM2 (His6- 

rMDM2) column to investigate possible MDM2 binding partners167. In this experiment 

the His6-rMDM2 column was first washed with 20 column volumes of SLIP buffer and 

blocked with 1 mg/ml bovine serum albumin (BSA) in 12 ml of SLIP buffer for 16 h 

before application of 15 mg of filtered human embryonal kidney (HEK) 293 cell cleared 

lysate also for 16 h. The column was washed with 50 column volumes of SLIP buffer 

and exposed to a 0 to Imol/L imidazole gradient, and the eluate was collected in 3-mL 

fractions. Proteins associated with MDM2 would be eluted in the same fraction as the 

histidine tagged recombinant MDM2. This is because as the imidazole gradient 

increases, imidazole (histidine analogue) competes with the histidine tagged MDM2 for 

column binding causing displacement of the latter from the column. A second (BSA 

control) column (using BSA as both binding and blocking agent) was treated in the same 

way. The various eluates from this experiment were probed for HSP90 and HSP70 using 

the primary antibodies anti HSP90a 1:250 and anti HSP70 Ipg/ml.
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HSP90 was detected strongest in eluate fractions 5 & 6 along with MDM2 and known 

MDM2 interacting proteins MDMX and p53. In the same way - western blotting of the 

eluates from the BSA control column reveals HSP90 in fractions 2 & 3 again the same 

as for MDM2, MDMX and p53. In contrast HSP70 (not part of the HSP90 chaperone 

complex) is detected in most of the eluate fractions from the MDM2 column suggesting 

is does not co-purify. This experiment suggests that from this cell line MDM2 and 

HSP90 can form an in vitro complex and may interact directly. To test if there is an in 

vivo association co-immunoprecipitation experiments would need to be conducted.
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MDM2 Column BSA Column

MDM2

• p53

MDMX

Hsp90a

Hsp70

Fig 5.2.6 Western blot of MDM2 and BSA affinity chromatography column 

fractions to evaluate if MDM2 co-purifies with HSP90 in Human Embryonal 

Kidney cell line 293. Left hand side of figure represents immunoblotting of lysates from 

the His6-tagged recombinant human MDM2 column and the right side immunoblotting 

of lysates from the BSA control column. Each column was washed with 50 column 

volumes of SLIP buffer and exposed to a 0 to 1 mol/L imidazole gradient, and the eluate 

was collected in 3-mL fractions. Lysates from each fraction (labeled 1 to 8) underwent 

immunoblotting to detect the proteins indicated in the figure. Lys = lysate, L = long 

exposure, M = medium exposure and S = short exposure.
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5.3 Discussion

In order to try and explain the high levels of p53 and MDM2 expressed in our RCC cell 

line panel the role of proteasomal degradation and the heat shock 90 chaperone complex 

have been investigated. As has been shown, inhibition of the proteasome leads to 

stabilisation of p53 and MDM2 in the majority of cell lines tested and thus it seems that 

reduced degradation is an unlikely explanation for increased expressed levels of p53 and 

MDM2. All p53 wild type cell lines showed p53 stabilisation. It can be seen from 

experiment 5.2.1 it can be seen that 121 and A704 cell lines harbour mutant p53 that is 

degraded by the proteasome and therefore the mechanism of their high p53 levels remain 

unknown but in the case of 121 there is evidence that the HSP90 chaperone may act to 

stabilise p53 and MDM2 (see below).

The HSP90 chaperone complex was known to “chaperone” / stabilise mutant p53 and 

transfected i.e. over-expressed MDM2156. It has been demonstrated that in some RCC 

cell lines p53 and MDM2 protein levels decrease following HSP90 inhibition and 

undergo proteasomal degradation. In one mutant p53 line (121) the decrease in p53 

steady state levels is more pronounced lasting up to 8 hours. If high levels of p53 or 

MDM2 or both are responsible (directly or indirectly) for the oncogenic properties of the 

cell, HSP90 inhibition may be useful therapeutically, particularly in cancers with a 

dominant negative mutant p53.

174



This series of experiments has shown the degree of variation that exists between cancer 

cell lines in culture even when they are propagated from clinically “similar” tumours. 

Potential therapeutic options may have to be tailored to individual patient tumours rather 

than based traditionally on histological typing and stage.
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CHAPTER 6 - DISCUSSION

6.1 Summary of findings

The original hypothesis for this study was that p53 and MDM2 up-regulation in RCC 

predicates poor prognosis. Since this idea is based upon only one clinical study and 

some in vitro data we therefore set out to investigate this question in a local cohort of 

patients and if confirmed, to perform in vitro studies to investigate this at the cell and 

molecular level. The list below summarises the findings:

1) hi the first instance this study has confirmed that p53 and MDM2 are up-regulated in 

a subset of RCCs. Interestingly, there is a highly significant correlation between RCC 

tumours that express p53 and MDM2

2) It has been demonstrated that patients with tumours that express both p53 and MDM2 

have a poorer prognosis compared to those tumours that do not express both p53 and 

MDM2.

3) The mechanisms underlying the observed up-regulation of p53 and MDM2 in RCC 

were investigated. The up-regulation of p53 and MDM2 is not due to a complete failure 

of proteasome-mediated degradation, since inhibition of proteasomal function in RCC 

cell lines in culture leads to an appropriate increase in p53 and MDM2 levels in the 

majority of cases. Similarly inhibition of the HSP90 chaperone complex with GA, leads 

to a transient reduction in steady state levels of wild type and mutant p53 and MDM2, in
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certain RCC cell lines. The HSP90 chaperone complex may therefore have a role in the 

up-regulation of p53 and MDM2 in RCC

4) In an attempt to understand the role MDM2 up-regulation may play in the poor 

prognosis seen in RCC that express it in high levels, the UOK-117 RCC was 

manipulated in a series of experiments in order to generate clones that express high 

levels of MDM2, It was not possible to generate these clones. Further work is needed to 

understand the physiological reasons why these cells are will not tolerate high MDM2 

levels.

6.2 General discussion

In order for further progress to be made into treating renal cell carcinoma, it is desirable 

to understand the molecular mechanisms predisposing to poor prognosis and why some 

patients with tumours of small size and therefore lower stage, still develop metastases 

despite apparent complete surgical excision? It seems likely that such tumours must 

have acquired metastatic capability at a very early stage in their development, before 

surgical treatment. Clearly this is not the case for all RCC tumours, so one must 

conclude that either the time at which tumours develop metastatic potential is variable 

(dependent on when specific mutations in key regulatory pathways occur) or, and this 

seems less likely, there are other unknown patient factors (for example host/tumour 

immune system interaction) which exist to suppress metastases until the tumour is 

mutated in further ways to promote metastases. Some patients may lack this putative 

“patient factor” and could be more susceptible to metastases from lower stage tumours.
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As detailed in section (1.1.4.2.1) the VHL molecule and its associated pathways are 

known to play an important role in RCC. Despite the use of new molecular therapies 

inhibiting VHL downstream targets e.g. kinases, patients with metastatic RCC are still 

not cured. This fact supports the need for further research into other oncological 

molecular pathways in RCC for additional potential therapeutic possibilities. Our study 

was designed to evaluate what role the p53/MDM2 pathway played in RCC. The 

p53/MDM2 pathway was chosen as it has oncological importance in other malignancies 

(see section 1.2), observations that p53 expression in RCC may be prognostically useful 

(see section 1.4.1) and the paper by Haitel et al96 which had evaluated RCC tumours 

expressing both p53 and MDM2 and found this to confer a poorer prognosis. p53 

positive staining occurred in 15.6% of the RCC specimens evaluated in our cohort 

(Haitel et al96 reported 36%) , which is slightly lower than the majority of published 

large series looking at p53 staining in RCC (see section & Table ). However, our 

cohort of patients all had low stage disease (T1 - T3) since only specimens taken when 

surgery with curative intent was performed were included. Thus, no samples were 

analysed from tumours in which metastases were present at the time of nephrectomy. 

Based purely on those studies summarised in section (3), it could be hypothesised that 

p53 positivity is higher in tumours from patients with metastatic disease.

The MDM2 positive staining tumours represented 26.7% of the samples analysed 

(18.6% of samples were MDM2 positive in the Haitel paper96). There was a highly 

statistically significant correlation between RCC specimens that expressed p53 and
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MDM2. This correlation was also reported by Haitel96 and Moch105 suggesting a subset 

of RCCs can be defined by this IHC description.

The RCC specimens that expressed both p53 and MDM2 came from patients with a 

statistically significant poorer disease specific survival than those that did not express 

both these proteins. In fact in our analysis patients with tumours that were p53 and 

MDM2 positive were 3 times more likely to die compared to the rest of the cohort. 

Haitel et al96 also showed patients with tumours that were “dual p53 and MDM2 

positive”, were associated with poorer prognosis on multivariate analyses. In another 

IHC study of only 50 patients, Moch et al105 did not find p53 and MDM2 positive 

staining RCC tumours to be associated with poorer patient prognosis.

The major drawback of studies (including that described in this thesis) evaluating p53 

immunohistochemical expression arises from uncertainty in interpreting what is meant 

by negative or normal p53 staining. For example tumours expressing low or normal p53 

levels cannot be differentiated from tumours that may have deleted p53 or be possibly 

inhibiting normal p53 expression by a hitherto unknown mechanism. Tumours with 

deleted or inhibited p53 function could also result in poorer patient prognosis168 but will 

not be differentiated from “normal” p53 expressing RCC. As with most 

immunohistochemical analysis of protein expression only the finding of high, low or 

absent expression can be clinically correlated. It is impossible to infer the protein’s 

function or structure unless specific antibodies are used that target mutated p53 or 

downstream targets of functional p53 for example.
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Having confirmed that p53 and MDM2 expression occurs in a subset of RCC tumours, it 

was important to try and understand the consequence of up-regulation of these proteins 

in RCC. Previous attempts (From HW and the Boyd laboratory) to “manipulate “ 

(through cloning) RCC cell lines with low steady state levels of p53 and MDM2 

expression (e.g. UOK 117) into clones that stably express high p53 and MDM2 were not 

successful. The reasons for this failure may be because RCC cells require some 

pennissive mutational event to occur (during disease progression) in order to acquire co­

up-regulated p53 and MDM2, this event is not trivial and is absent when cells are forced 

to express p53 and MDM2 through cloning. Nevertheless, we found to our surprise that 

even though the UOK- 117 RCC cell line displays low levels of p53 and MDM2 and 

could not be made to stably express high levels of MDM2, when these cells were re- 

cloned , we obtained stable cell clones that spontaneously acquired up-regulated p53 and 

MDM2 (no MDM2 was transfected - please refer to section 4.xx). In order to try and 

discover what changes had taken place to allow this up-regulation of p53 and MDM2, 

seen in these two types of clones - the changes in gene expression between “parental” 

UOK - 117 and in the newly generated 117 clones that were “permissive” to the 

generation of high MDM2 stably expressing clones were to be investigated. 

Comparisons in gene expression between the three cell lines may reveal candidate genes 

responsible for allowing stable high MDM2 expression. If each of the three cell lines 

was manipulated to first express high levels of MDM2 and then undergo gene 

expression analysis - consequences of high MDM2 expression could also be evaluated 

by analysing changes in gene expression. It was hoped, as a result of this investigation 

that genes may be identified that, upon further research, could explain either the
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consequences of high MDM2 expression or the mechanisms allowing RCC cell lines to 

acquire the poor prognostic features of high p53 and MDM2 up-regulation. For this 

experiment, a reproducible method of manipulating the experimental 117 cell lines to 

express high MDM2 had to be discovered. The cells only had to express high MDM2 

levels transiently for the gene expression analysis experiment. Stable expression of 

MDM2 in these cells has not been possible therefore transient transfection was 

employed. RCC cell lines are notoriously hard to transfect to the same efficiency as 

other cancer cell lines. Unfortunately despite trying different commercially available 

methods of transient transfection, a reliable means of achieving high level transfection 

efficiency, could not be found. A new strategy for obtaining transient high MDM2 

expression was therefore required. Clones could not be made that would stably express 

high MDM2 levels - however it may be possible to generate clones that will inducibly 

express high MDM2 levels. The commercially available Tet-on inducible expression 

system from ClonTech™ was employed with the substitution of a modified rtTA 

plasmid which encodes a mutated form of the reverse transcriptional transactivator that 

is more sensitive to doxyxcycline, more stable and displays a lower background 

expression of the gene of interest (kindly supplied by, P Welman of the Paterson 

Institute, Manchester (see section 4.3.1 for explanation). To generate clones using this 

system which would inducibly express MDM2, two rounds of cell cloning are required. 

The first stage involves generating clones expressing the doxycycline responsive 

element “modified rtTA”. This process was successfully carried out for each of the three 

experimental cell lines (determined functionally using a transient assay to show that 

doxycycline treatment did indeed lead to rtTA activation of a pTight reporter construct).
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The second round of cloning involved generating clones that had incorporated the pTre- 

Tight-MDM2 plasmid. The pTre-Tight-MDM2 plasmid does not contain an antibiotic 

resistance sequence. Instead a linear antibiotic resistance marker is co-transfected with 

pTre-Tight“MDM2 to allow clonal selection to take place when cells are cultured in an 

antibiotic treated medium. The derived 117 clones were already resistant to Hygromycin 

and G418 - therefore the only other available linear antibiotic marker produced from the 

manufacturer (Clontech™) that could be used on the cell lines of interest was 

puromycin. Unfortunately no puromycin selection marker could be obtained from 

ClonTech™ due to a manufacturing problem. Due to time constraints rather than waiting 

for the marker to become available or attempting to clone a puromycin resistance 

sequence into the pTre-Tight-MDM2 plasmid the experiment was modified. The 

parental UOK-117 cell line could still undergo the second round cloning to become 

MDM2 inducible because unlike the other two 117 derived clones, it was not resistant to 

Hygromycin (from previous cloning) and a linear Hygromycin selection marker was 

available from ClonTech™, Therefore comparison between gene expression profiling in 

the UOK-117 cell line upon induction of MDM2 would be undertaken, if an inducible 

MDM2 expressing 117 clone could be made. A pTre-Tight-RING (inducible 

MDM2RFM) plasmid had been cloned previously. The opportunity was taken to attempt 

to generate 117 clones that would also inducibly express MDM2RFM. It was hoped 

that by comparing gene expression before and after induction of high MDM2 levels in 

the 117 cell line - a subset of genes would be identified, some of which would be a 

consequence of MDM2 expression. When 117 cells were made to express high levels of 

MDM2RFM another set of genes would be identified. By comparing this set of genes
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with those upon unmutated MDM2 expression it may be easier to identify those genes 

expressed as a consequence of MDM2 and perhaps identify genes that require the 

ubiquitin ligase function of MDM2 (absent in the ring finger mutant).

Stably expressing inducible ring finger mutant MDM2 clones were successfully 

generated, the “normal” MDM2 inducible counteiparts were not. Why this is occurred is 

not clear but there are two possible explanations; firstly there were simply not enough 

candidate colonies selected for testing. It is possible that if a greater number of colonies 

were selected a MDM2 inducible clone may have been identified. The second 

explanation may be that even under “pTight” control, enough additional MDM2 is still 

constitutively expressed and this results in cell death (from an unproven mechanism 

(likely to depend upon the ubiquitin ligase activity of MDM2) and prevents stable 

colonies from being generated. This is in keeping with HW’s original finding that 117 

cells could not be made to stably express MDM2. Were it possible to have used the 

MDM2 tolerant 117 derived clones, some positive clones may have been generated. This 

intriguingly leads back to one of the original questions as to why some RCC can tolerate 

and express such high MDM2 levels.

Our hypothesis is that p53 and MDM2 expression is associated with poor prognosis in 

RCC and therefore how this event occurs was also investigated. Experiments were 

carried out in RCC cell lines to tiy and explain how some RCC cell lines in culture 

demonstrate high steady state levels of p53 and MDM2 expression (see section 1.5), the 

hope being the same mechanism applies to RCC cell lines in culture to that occurring in
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RCC tumours. Previous work in the Boyd laboratory has shown that high steady state 

levels of p53 and MDM2 are not explained by p53 mutation or by amplification of the 

MDM2 gene which has been identified as a cause of high MDM2 expression in other 

types of tumours72. One possible explanation for the observed high levels of p53 and 

MDM2 seen in some RCC cell lines is that in these cell lines both proteins are not 

undergoing “normaP’ degradation by the proteasome. RCC cell lines were treated with a 

proteasome inhibitor if p53 and MDM2 were not undergoing proteasomal degradation, it 

would be expected that their steady state levels would be unchanged. As demonstrated 

in chapter 5 (section 5.2.1) the majority of cell lines exhibited an increase in expressed 

levels of p53 and MDM2 after proteasome inhibition, indicating that p53 and MDM2 are 

degraded by the proteasome. Therefore another explanation for high levels of p53 and 

MDM2 steady state levels was needed.

It was hypothesised that the HSP90 chaperone complex was responsible for the high 

steady state levels of p53 and MDM2. HSP90 has been shown to have a mutated p53 as 

a client protein (please refer to section 1.7.3) for an overview of HSP90 function. Could 

HSP90 interaction with p53 and MDM2 result prevent degradation of these proteins and 

lead to higher steady state levels? To test this hypothesis the HSP90 chaperone was 

inhibited in a series of experiments and changes in p53 and MDM2 steady state levels 

were observed. Inhibition of HSP90 by geldanamycin resulted in cell-line dependent 

effects on p53 and MDM2 steady state levels. A number of cell lines showed a transient 

reduction in p53 and MDM2 steady state levels and this effect was seen in both wild 

type and mutated p53 lines. From these experiments it is not possible to say whether the
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changes seen in p53 steady state levels are due directly to the effects of “chaperoning” 

by HSP90 or indirectly from other (unknown) HSP90 client protein interactions with 

p53/MDM2 after inhibition of HSP90 Further experimentation is needed to establish the 

exact mechanisms of the effect seen on p53 and MDM2 when HSP90 is inhibited. 

Despite our ignorance of the exact mechanisms responsible to the reductions in p53 and 

MDM2 levels upon HSP90 inhibition, it may still be of clinical interest if it can be 

shown that restoring normal p53 levels in RCC cells is therapeutic. HSP90 is known to 

chaperone other proteins important in oncogenesis, therefore inhibiting its action in RCC 

may have other beneficial anti-cancer effects and HSP90 should be forther researched. 

One observation from this thesis and from that of my predecessor (HW) is the 

heterogeneity of RCC cell lines in culture. Cell lines not only look very different when 

viewed under the microscope but show marked variations in expression of proteins 

(MDM2 and p53) and respond in different ways to HSP90 and 26S proteasome 

inhibition although the cell lines were established from the same histological types of 

RCC (ccRCC in most cases). When one considers that clinically RCC tumours are 

grouped on histological type (e.g. ccRCC, chromophobe etc) alone, it is obvious that this 

may be an oversimplification as it does not infonn us as to what is happening at the 

molecular level. This may have important clinical implications as we do not know all the 

molecular changes that are important in responding to currently available systemic 

treatments. As a result of this we may be exposing patients to the side effects of systemic 

therapy when they are unlikely to achieve a survival benefit, because they do not have 

the necessary molecular “signature” for them to respond. In the UK healthcare system, 

where access to these drugs is limited, it is desirable for economic reasons to target
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appropriate patients. There might be real benefits for using targeted therapies even if the 

target population is small, providing we can identify it with some confidence. What is 

needed, as is often the case in medicine, is for a prospective clinical trial to “molecularly 

characterise” tumours and follow these patients up to investigate if certain molecular 

traits do predict altered outcome and response to systemic treatment. It is hoped that any 

such trial would include p53 and MDM2.

6.3 Clinical implications

6.3.1 Inhibiting HSP90

HSP90 is known to have a number of client proteins, thought to be important in 

promoting malignancy (see section 1.7.1). The findings presented in this thesis, that 

HSP90 inhibition can lead to a decrease in p53 and MDM2 levels, may have potential 

for clinical benefit. Ronnen et al169 found no clinical effect in treating 20 RCC patients 

using 17-A AG (an analogue of GA); this is the only published study evaluating HSP90 

in RCC, but these authors did not examine the p53/MDM2 status of the patients. Our 

findings would suggest that the effects of HSP90 inhibition might be specific to certain 

tumours. Grouping patients by the molecular characterisation of their tumours (e.g. 

identifying tumours that expressing high levels of p53/MDM2 or HSP90), may allow 

better identification of therapeutic drug benefit in clinical trials.
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6.3.2 MDM2 and p53 in RCC prognostication

At least 10% of patients undergoing nephrectomy for apparently localised RCC will 

unfortunately develop metastases during their follow up170. The results of the data 

presented in this thesis suggest that patients with tumours staining positive for p53 and 

MDM2 may be at higher risk of death from metastatic RCC. Immunostaining 

nephrectomy specimens for these markers may help target high risk tumour patients 

suitable for adjuvant treatment.

6.4 Conclusions

The results of this study demonstrate that:-

1) Nephrectomy specimens with positive immunohistochemical staining for both 

p53 and MDM2 - identify a sub group of patients with poor prognosis. This is 

independent of other clinical factors such as tumour stage. There is an extremely 

high association of tumours staining for both p53 and MDM2.

2) RCC cell lines in culture differ in response to treatment with substances that 

inhibit the 26S proteasome and the HSP90 chaperone. Some RCC cell lines 

appear to have wild type p53 that is chaperoned by HSP90, this is a new 

observation and may be of clinical implication.

In addition, we have also attempted to investigate the consequences of MDM2 

expression in RCC cells and to this end have generated cells that could potentially be 

used to generate inducible MDM2 expressing cells. However an initial attempt at
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this latter was unsuccessful and thus further work will be required to detennine 

whether this can be accomplished.

6.5 Future research

A larger, prospective and appropriately powered study to evaluate whether 

immunohistochemical staining for p53 and MDM2 does predict poor prognosis post 

nephrectomy would be valuable. This study would need to be designed with a clear 

definition for what constitutes p53 and MDM2 positivity with validated intraobserver 

reliability. If p53 and MDM2 are confirmed to provide prognostic infonnation for 

patients, then this “marker” should be evaluated alongside existing RCC prognostic 

nomograms to detennine if this description adds further prognostic information. It is 

important to demonstrate that the poor prognosis seen in patients with tumours that 

express p53 and MDM2 is a direct effect of these proteins. It is possible that high p53 

and MDM2 expression in RCC is a consequence of some other molecular pathway 

change that is responsible for poor prognosis. This is obviously important if a molecular 

therapy is to be developed for patients with tumours expressing p53 and MDM2.

If an inducible MDM2 expressing UOK-117 cell line clone can be generated and also in 

the MDM2 tolerant clones, then a gene expression profiling experiment could be 

perfonned (as originally intended at the beginning of this study) that may detect changes 

in gene expression when MDM2 is expressed. Specific genes or pathways may be 

identified that can explain how tolerance to MDM2 can arise. Experiments could be
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performed to see if the acquisition of high MDM2 expression conferred a tumour 

advantage such as invasion or motility. The acquired high MDM2 UOK - 117 clones 

would be suitable for such an experiment with low MDM2 expressing parental cell line 

acting as a control.

HSP90 should be further researched in the setting of RCC. It would be desirable to 

confirm if p53 and MDM2 are HSp90 client proteins. Existing or novel drugs targeting 

HSP90 may be able to restore normal levels of p53 and MDM2 which may be of 

therapeutic potential.
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APPENDIX -1 - ADDITIONAL DATA

Detailed in this appendix are a number of additional experiments the results of which 

have been summarised but not displayed in results chapter 4.

Al.l Results

A 1.1.1 Optimisation of in situ [3 -gal assay for the 117 cell line

To detennine the efficiency of transfection of a variety of measurements or assays are 

available. A basic and reproducible method is the in-situ p-galactosidase (p-gal) assay. 

In this method a recombinant DNA plasmid containing the gene for bacterial p-gal, is 

transfected into the cells. Expression of p-gal can be detected histochemically through 

hydrolysis of X-Gal (5-bromo-4-chloro-3-indoyl-P-D-galactopyranoside)5 which yields a 

blue precipitate. A comparison was made between the stained cells and unstained cells, 

and transfection efficiency was calculated as a percentage of stained /total cells. The 

amount of p-gal plasmid transfected and the affect on transfection efficiency was 

evaluated in the HI299 cell line using an in situ p-gal assay. HI299 cells were used as 

these can be readily transfected. GeneJuice™ (a liposomal transfection reagent) was 

used as the transfection reagent again due to prior experience within our laboratory. The 

experiment was designed to calculate the optimum weight of ppgal DNA plasmid to be 

used for the in situ p-gal assay. Four conditions were tested; 2.5|j,g of pPgal, 2.5pg of 

pPgal and 7.5 pg of the empty backbone plasmid pCEP4, 5pg of pPgal and 5pg of ppgal
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and 5ng of pCEP4. Cells were left to incubate for 24 hours at 37°Cand photographed at 

various powers of magnification, as indicated in Figure A 1.1.1. The highest transfection 

efficiency was seen with 5pg of p|3gal and 5 jig pCEP4 estimated at 50%.

Figure Al.1.1 In situ P-gal assay of H1299 cells transfected with various amounts of 

plasmid DNA, using GeneJuice™ transfection reagent. Condition A = p(3-Gal 

(2.5pg), B = p(3-Gal (2.5pg) & pCEP4 (7.5 pg), C = pP-Gal (5pg), D = pP-Gal (5pg) & 

pCEP4 (5(ig). Cells were treated for 24 hours before performing the in situ (3-gal assay. 

Photographs were taken at x50 magnification (top row of Figure) and x200 

magnification (bottom row of Figure).
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A 1.1.2 Transfection efficiency of the 117 cells and 117 derived clones using

GeneJuice™

Using the optimized (3-gal assay, the transfection efficiency in the 117 cell lines (117, 

pCEP3 and ANp53) was assessed, using GeneJuice™ (Novagen). The Cell lines were 

transfected with pp-Gal (5ug) and pCEP4 (5ug) using GeneJuice™ transfection reagent. 

Figure A 1.1.2 shows the results of the assay at a low and high power magnification. The 

117 parent cell line had a superior transfection efficiency compared to the two derived 

clones. This may be in part due to the fact that the clones were the results of previous 

transfections, (see section 1.6). This may render the cells more resistant to further 

transfection. This hypothesis was not further tested. All cell lines had transfection 

efficiency less than 10%.
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Figure Al.1.2 In situ P~gal assays of 117 cell line and derived clones transfected 

with pp-Gal (5|ug) and pCEP4 (5pg) using GeneJuice™ transfection reagent. Cells 

were left for 24 hours before performing the in situ (3-gal assay. A photograph was taken 

at the indicated magnifications.
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Al.1.3 Comparison of transfection efficiency in 117 cells using Geneiuice™ and

FuGENE HP™ transfection reagents

A new non-liposomal transfection reagent, FuGENE HD™ (Roche), had recently 

become commercially available. Using the previously described amount of DNA 

plasmids, transfection efficiency using Genejuice™ was compared to FuGENE HD™ in 

the 117 cell line only. Comparison was made using transfection reagent volume (jal) to 

DNA weight (pg) ratios of 3:1 and 6:1 to investigate if differing ratios also altered the 

transfection efficiency. Transfection efficiency was estimated using, in situ p-gal assay, 

western blotting and p-gal enzyme assay. The P-gal enzyme assay used a non-biological 

substrate for the enzyme, Ortho-nitrophenyl-B-galactoside (ONPG), In the presence of B- 

gal, ONPG was converted to galactose and Ortho-nitrophenyl (ONP). ONP is colourless 

at neutral or acid pH, but in an alkaline solution it is bright yellow. The amount of colour 

change was measured in a spectrophotometer, results were referenced to a non- 

transfected 117 control. It was hoped that the p-gal enzyme assay would be more 

quantitative than the in situ p-gal assay. The results are displayed in Figure Al.1.3.

These three experiments clearly show that FuGENE HD™ at a transfection reagent 

volume (pi) to DNA weight (pg) ratio of 3:1, is the optimum transfection condition. The 

transfection efficiency was approximately 30 - 40% with FuGENE HD™. This was also 

reflected in the western blot and the enzyme assay. FuGENE HD™ was so dramatically 

superior to GeneJuice™ that further optimisation focused on FuGENE HD™. Although 

quantitative the p-gal enzyme assay did not add sufficiently to the in situ P-gal assay to
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be used for further experimental assessment of transfection efficiency.

Transfactian Conditions

p- Gal 
Actin

GJ GJ FG FG C 
3:1 6:1 3:1 6:1

c

Figure Al.1.3. Comparing transfection of 117 cell line with GeneJuice™ (GJ) and 

FuGENE HD™ (FG) in differing transfection reagent volume (pi) to DNA weight 

(pg) ratios. 117 cells were transfected with p(3-gal (5pg) and pCEP4 (5pg), at 

transfection reagent volume (pi) to DNA weight (pg) ratios indicated in the Figure. 117 

Control (C) cells were transfected with pCEP4 (lOpg). Cells were incubated for 24 

hours at 37°C before performing the in situ (3-gal assay. Photographs was taken at 50x 

magnification (Panel A). B Western blot, proteins probed for as indicated in figure. C (3- 

gal enzyme assay GJ = Genejuice™. FG = FuGENE FID™.

212



A 1.1.4 Optimisation of FuGENE HD™ volume to DNA weight ratio for transfection in

the 117 cell line.

In order to find the optimum transfection volume (pi) to DNA weight (pg) ratio, for 

FuGENE HD™ in 117 cells, in situ (3-gal assays were performed. A range of FuGENE 

HD™ reagent volume (pi) to DNA weight (pg) ratios were used (2:1 3:1 5:2 & 3:2), this 

time below the 3:1 ratio used earlier to investigate if lower ratios resulted in higher 

transfection efficiency. Figure A 1.1.4, shows the optimum volume (pi) to DNA weight 

(pg) ratio to be 2:1, with a transfection efficiency estimated to be around 40 - 45%.

X50

X200

3:2 2:1 5:2 3:1
FuGENE HD™ Volume ([i\): DNA Weight [\i\) Ratio

Figure Al.1.4. Optimisation of FuGENE HD volume to DNA weight ratio for 

transfection of 117. 117 cells were transfected with p(3-gal (5pg) and pCEP4 (5pg) 

using FuGENE HD™ transfection reagent, at transfection reagent volume (pi) to DNA 

weight (pg) ratio indicated in the Figure. Cells were incubated for 24 hours at 37°C 

before performing the in situ (3-gal assay. A photograph was taken at 50x and 400x 

magnification.
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A 1.1.5 Transfection efficiency of 117 cell line using Lipofectamine 2000™

Another commercially available transfection reagent, Lipofectamine 2000™ 

(Invitrogen), was evaluated. The 117 cell line was transfected with p-gal (as described 

previously) with four different ratios of reagent volume (pi) to DNA weight (pg). In situ 

p-gal assays were performed; the results after 24 hours can be seen in Figure A 1.1.5. 

The optimum reagent volume (pi) to DNA weight (pg) ratio seen was 5:1. The 

transfection efficiency was estimated at 40%, similar to FuGene HD™. A comparison 

between FuGENE HD™ and Lipofectamine 2000™ was not carried out as both were 

considered to be unsuitable methods for high transfection efficiency also transfection 

with Lipofectamine 2000™ did seem to result in some cell death. This had not been 

observed with FuGENE HD™ transfection.

1:2 1:1 2:1

3:1 4:1 5:1
Figure Al.1.5 In situ p-gal assays of four different Lipofectamine 2000 volume (pi) 

to DNA weight (pg) ratios. 117 cells were transfected with pP-Gal (5pg) and pCEP4
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(5 fig) using the Lipofectamine transfection reagent, at transfection reagent volume (pi) 

to DNA weight (fig) ratios indicated in the Figure. Cells were incubated for 24 hours at 

37°C before perfonning the in situ (3-gal assay. A representative photograph was taken at 

50x magnifications. The highest transfection efficiency is seen in cells transfected using 

Lipofectamine 2000™ at a reagent volume (pi) to DNA weight (pg) ratio of 5:1.

Al.1.6 Transfection efficiency of 117 cells using Magnetofection™ - Polymag

Another transient transfection system was evaluated. This method associated DNA with 

magnetic nanoparticles coated with cationic molecules. The resulting molecular 

complexes were then transported into cells supported by an appropriate magnetic field. 

The magnetofection™ system, exploited magnetic forces exerted upon gene plasmid 

towards, possibly even into, the target cells, hi theory, the complete applied plasmid 

dose gets concentrated onto the cells within a few minutes. This experiment was 

conducted in six well plates, pp-Gal (2pg) was transfected. Six different ratios of reagent 

volume (pi) to DNA weight (pg) ratio were assessed (1:0.5, 1:1, 1:2, 1:3, 1:4, & 1:5) 

using an in situ p-gal assay. Of the six conditions evaluated, only the 1:1 ratio (Figure 

A2.2.6), showed any evidence of transfection. This method was therefore discounted.
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Figure Al.1.6 In situ P-gal assay of 117 transfected with pp-Gal (2pg) using a 

Poly mag™ reagent volume (pi) to DNA weight (pi) ratio of 1:1. Photograph taken at 

x50 magnification
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A 1,1,7 Determination of G418 concentration for 1st round clonal selection of 117 and

derivived clones - G418 response assay

G418 is an aminoglycoside antibiotic that selects for mammalian cells expressing 

neomycin phosphotransferase, from the neo gene (contained within the pNlppactin- 

rtTA2S-M2-IRES-EGFP vector). As can be seen from table Al.1.7, 800 pg/ml causes 

cell death in all three cell lines after 5 days. This dose of G418 would be used for clonal 

selection.

Cell Line 117 pCep 3 ANp53
Day 0 3 4 5 6 0 3 4 5 6 0 3 4 5 6

Dosage (jiig/ml) 15 75 75 75 75 20 75 75 75 75 20 75 75 75 75
0 15 75 75 75 75 20 75 75 75 75 20 75 75 75 75

50 15 75 75 75 75 20 75 75 75 75 20 75 75 75 75
100 15 75 75 75 75 20 75 75 75 75 20 75 75 75 75
200 15 45 45 45 30 20 45 45 45 30 20 45 45 45 30
400 15 45 45 30 D 20 45 45 30 D 20 45 45 30 D
800 15 45 30 D D 20 45 30 D D 20 45 30 D D

Table Al.1.7 G418 response assay. Numbers refer to an estimation of the percentage of 

the area of the tissue culture dish occupied with viable cells. D = no viable cells visible.
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APPENDIX 2 - PRESENTATIONS AND PUBLICATIONS

A2.1 Summary of presentations and publications

A2.1.1 British Association of Urological Surgeons Annual Meeting June 2008

MDM2 and p53 coexpression is associated with poor prognosis in renal cell carcinoma

in patients undergoing radical nephrectomy. Podium presentation

Noon AP, Warburton HE, Shawki H, Campbell F, Parsons K & Boyd MT

Abstract published in British Journal of Urology International, June 2008, Vol 101,

Supplement 5, page 2.

A2.1.2 National Cancer Research Institute Conference October 2007

Investigating the consequences of high MDM2 expression in renal cell carcinoma using

an inducible gene expression system. Poster presentation

i
Aidan Paul Noon, H Warburton, K Parsons, M T Boyd

A2,1.3 Review Paper

p53 and MDM2 in renal cell carcinoma: biomarkers for disease progression and future 

therapeutic targets? Noon AP, Vlatkovic N, Polanski R, Maguire M, Shawki H, Parsons 

K, Boyd MT. Cancer. 2010 Feb 15;116(4):780-90.

A2.1.4 Published Paper

Combined p53 & MDM2 biomarker analysis demonstrates a unique pattern of 

expression associated with poor prognosis in renal cell carcinoma patients undergoing

218



radical nephrectomy Noon AP, Polanski R, El-Fert AY, et al. BJU Int 2011 (article in 

press accepted April 2011).

A2.2 Abstracts and Posters

A2.2.1 British Association of Urological Surgeons Annual Meeting June 2008

MDM2 and p53 coexpression is associated with poor prognosis in renal cell 
carcinoma patients undergoing radical nephrectomy.
Noon AP, Warburton HE, Shawki H, Campbell F, Parsons K & Boyd MT

Introduction:

Compromise of the p53 tumour suppressor pathway has been shown to be an important 
event in the progression of a number of human cancers. Studies have shown that renal 
cell carcinomas (RCC) with high expression of p53 have a poorer prognosis. RCC’s that 
over express p53 retain its normal wild type function. We wanted to investigate the role 
of the p53 counter-regulatory protein and oncogene MDM2 in patients with RCC.

Materials and Methods:

A recently created tissue micro array of 91 RCC nephrectomy samples was used to detect 
the presence of p53 and MDM2 expression by immunohistochemical analysis. A scoring 
system was devised and two consultant histopathologists independently scored the 
tumour samples for p53 and MDM2 staining.

Results:

Analysis of 91 patient samples revealed that p53 was expressed in 14 (15.4%) and 
MDM2 was expressed in 24 (26.4%). 11 tumours (12%) expressed both MDM2 and p53 
and this association was highly significant p<0.0005. Five year analysis of patients with 
tumours that coexpressed p53 and MDM2 showed a significant decreased disease 
specific survival (p<0.05).

Conclusion:

Our results show an intriguing phenotype whereby two normally counter-regulatory 
proteins are both over expressed in poor prognosis RCC.
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A2.2.2 National Cancer Research Institute Conference 2007

Investigating the consequences of high MDM2 expression in renal cell carcinoma 
using an inducible gene expression system

AP Noon1, H Warburton , K Parsons , M T Boyd 

1 . . .Division of Surgery and Oncology, University of Liverpool, Liverpool, UK;
2
Department of Urology, Royal Liverpool and Broadgreen University Hospital, 

Liverpool, UK

High level co-expression of MDM2 and p53 occur in renal cell carcinomas (RCC) with 
the poorest prognosis. To study the consequences of MDM2 expression in renal cells we 
attempted to generate stable MDM2 expressing RCC cells. RCC cell lines frequently 
display high levels of MDM2 but our studies suggested that specific cellular events are 
required to permit increased MDM2 expression. Since a strong link (P<0.0004) between 
p53 expression and MDM2 up-regulation has been observed in RCC, we hypothesised 
that introducing a dominant negative mutant of p53 (R175H) might render cells 
susceptible to MDM2 expression. Stable clones that expressed MDM2 were indeed 
generated, but we also observed that some clones in which only empty vector had been 
transfected also spontaneously acquired increased p53 and/or MDM2. These 
observations suggest that events other than alterations in p53 function can permit 
increased MDM2 expression. We have created sub-clones of the parental cell line that 
are tolerant to MDM2 expression and we propose to use these to define events that 
contribute to tolerance to MDM2 expression in renal cells. We have generated cells in 
which we can inducibly express MDM2, that are then analysed by perfonning gene 
expression profiling using DNA microarrays. Our goal is to identify clusters of genes 
whose expression is altered upon MDM2 expression and which differ in pennissive and 
non-pennissive cells. Identifying such genes may provide important infonnation 
regarding events that contribute to MDM2 oncogenicity and through this to tumour 
progression in RCC.
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A2.2.2 National Cancer Research Institute Conference 2007

Investigating the consequences of high MDM2 
expression in renal cell carcinoma using an inducible 
gene expression system
APNoon'. H VVartxirtoo K Parsons-’ & MT Boyd 
Ovsen of Sugcry and Oncology University of Liverpool Liverpool. UK 

-Deparcnent o' Urology Royal Liverpool and Broaogreen University 
Hospital. Liverpool UK

Hypothesis
H(pi level oo*xpre$sen of to tumour st^pressor p63 and its negative
regUator MDM2 has been Soutd m renal oet caronoma (RCC) paaents 
«rth poor pmgnoss In otr recently constructeo RCC tssue mcroarray 
iTMA) we also Vxnd a strong assooacon (pO.OOOS) of p53 and 
MOMS high co-expresson We set out to try and understand the 
mechansms leading to tos phenotype and its consequences by 
oonstructng a RCC poor prognosis progression model

Method
We first obtamec a panel of RCC cell Ines and deserbeo their p63 
and M0M2 status :Fg 2) We deeded to take the 117 od line (Low wt 
p63 and low MDM2 levels), and foroe t to over express MOM2 totough 
clonal selecton Ths wril mrmc toe progression from good to poor 
programs RCC

***t**fft // // ft*

--- ------- 1

Fig 2l UDM2 and pS3 expression in a panel of RCC cell lines. 
Mtofem blot wwTyss of U RCC etti ines and U20S osfeosarcoma 
cetf lr>e (ftgfi iCM2) and toe p53 Hut HSCLC oet kne HI259

Results
Fig 1 Colony formation assays and western blots of generated
t17 clones.

THE UNIVERSITY
oj Liverpool

We were not able to generate any MDM2 postve 117 clones after 
fransfecten veto pCMV-MDMI-Neo-Barr ;Fg 3 Top). We hypothesised that 
p53 mtacon may render toese oeCs permissible to DOM2 expresscn 
Indeed after vansfeebon wito toe domnant negative p53 mutant R175H 
clones were generated toat expressed MDM2 (Rg 3 Mddfo) To otr 
surprse MDM2 expressng dones were also generated from toe empty 
vector (pCEPfr) control Ths suggests mechanisms other than p53 
mutation may be important for M0M2 expressen Clones from toe -SNp53 
and empty vector pCBM can now be s&bly aansfocted with MDM2 (Rg 3

rtTA2MVt2

Fig 1.Eapression of MDM2 
and pS3 in RCC from our 
TMA.
Left JLOAC Rrghr p53 M0M2

Fig 4. The Tet-On 
advanced gene
expression system. In 
the presence cf 
doxycydne toe rtlA2s- 
M2 croten txnds toe 
TREmod sequence in 
pTght This causes 
expression of toe gene 
cf mewest. n or case 
MGM2

We ned wanted to generate ndudbie MOM2 dones of MOM? permsswe 
cell knes (pCEP« and aNp63 clones) and toe non pemvssrve (117). Ths 
wood alow us to study toe dUenances that M0M2 expression has n toese 
cells

lj>-

\_Y_J

«UM«pa«i «ou:i* >rw<ircnc

Fig 5 Inducible expression of M0M2 inhibits p53 in RCC cefts. 117 
RCC oefts subfy expressing rtTA2*-M2 wet* Tansiendy trarsfected wto 
pCEP p53 and ppU-TA-Lucderase reporter oonstrud alone and eito either 
pCMV-MDM2-Neo-Bam i MDM2 NB) or pTi|/« MOM? Aher 24 hows media 
contamng Ipgihf of doxycydne was added, a control dish had its media 
replaced. The left panel shows toe luerferase assay of toe oefciar lysates 
The right panel shows toe western blot of the same lysates p- 
Gufactostoase was used as a cor*d of transfection

Indueton of pTght MOM? wto ooxycydre results n decreased p63 activity 
and destatolisaton as expected

Conclusion
The let on hduoble gene expression system writ aftow us to stody the 
effects of MDM2 expresson n toe 117 RCC cel ine. that can not tolerato 
hgh MOM? expresson We mend to perform gene expression analyvs 
using a DMA mcroanay to look for toe consequences cf MOM? 
expression n non permssve 117 and MDM2 permissive 117 clones 
(pCSM and ^Np63) We hope tvs wfl enable a better understancfrng (ft 
the effects of MOM2 in poor prognoss RCC
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A2.3 Published review paper

Review Article

p53 and MDM2 in Renal Cell Carcinoma
Biomarkers for Disease Progression and Future Therapeutic Targets?

Aidan P Noon. MB ChB\ Nikobna viatkoviC. PtO1; Radostaw Polanski. BSc'. Maria Maouire. PtO'.
Howida Shawki. FRCPath". Keith Parsons. FRCSA: and Mark T. Boyd. PhD1

Renal cel carcinoma (RCO s the most common type of kidney cancer and (blows an unpredictable dsease course 
To improve prognostication, a better unoerstandog of critical genes associated with disease progression is read red 
The objective of this review was to focus attention on 2 such genes. p55 and murine double mnute 2 (MDM2). and 
to provide a comprehensive summary and critical analysis of the literature regarding these genes in RCC information 
was compiled by searching the PubMed database for articles that were published or e-published up to April V 2009. 
Search terms included renal cancer, renal cel carcinoma. pSJ. and MDM2 Full articles and any supplementary data 
were examined, and. when appropriate, references were checked for additional matenaL A* studies that descnbed 
assessment of pSJ5 and/or M0M2 in renal cancer were included The authors concluded that increased pSS ex press on. 
but not p53 mutation, is associated with reduced overall survival/more rapid disease progression n RCC There also 
was evidence that MDM2 up-regular on is associated with decreased disease-specific survival. Two features of RCC 
stood out as unusual and w* re pure further investigation First, increased p53 expression s tightly Inked with 
increased MDM2 expression: and. second, patients who have tumors that display increased pSS and MDM2 expression 
may have the poorest overall survival Because there was no evidence to support the conclusion that pS3 mutation s 
associated with poorer survival it seemed clear that increased p&3 expression n RCC occurs ^dependent of muta­
tion. Further investigation of the mechanisms leading to ncreased p53A4DM2 expression in RCC may lead to 
improved prognostication and to the xSentfcation of novel therapeutic interventions- Oncer 2010:00:000-000 
© XfO American Cancer Society

KEYWORDS: renal cancer, renal cel carcinoma p51 mu me double minute 2.

The latest available figures from the National Cianccr Institute's Survdllanae. F.pidcmiology. and End Results Program 

predict that there will be 49.096 new ases of kidney cancer (renal cancer and cancer of the renal pdvis) and 11.033 deaths 
trom the disease in the United Sates in 2009.1 In the Uni Bed Kingdom, the latest figures for 2007 indicate that 7380 indi­

viduals were diagnosed with the disease and that 3752 died from it' Advances in our undersrandi ng of the molecular biol­
ogy of renal cell carcinoma (RCC!) have helped classify this heterogeneous disease and led to the development of several 
new "von Hippcl-I indau (VHL) pathway -targeted molecular drug treatments.’ Nevertheless, patients with metastatic 
disease still have an extremely short life expectancy.' Certainly other molecular pathways must onntribute to the poor 

prognosis observed for those who have advanced RCC. The oh (arrive of the current review was to rum the molecular focus 

hade to 1 of the most important genes in cancer biology. p53. and in counterpart, murine double minute 2 (MDM2).and 

to describe and crirkaliy review what is known of their role in RCC.
For the purposes of this review, the 3 most common histologic subtypes of RCC (as set out in the 2004 World 

Health Organization dassificotion: sec 1 ope?-Beltran er al*) arc discussed. Clear cell RCC ((X!RCQ is the commonest 
histologic aihtype and is believed to account for 75% of all RCC!*. Papillary RCC (PRCQ is the second most common 
and accounts for 10% of RCC: PR(X! is subclass!(red into type I and type II. Oiromophobe RCC is the third most com­
mon subtype and accounts for 5% of RCXa. Sarcomatoid RCC! is a high-grade histologic variation that con ante from all 
types of RCC. although it is not a separate entity*.

CaimpMiiSH muttur. T. ioytt Ml. pMsan <* Surgery and CkMDlegy. ictiaot ef Cmcw S*udm Urwcsty <rf Lmwooc Mti Hoot. UCO ButAng Dauby
SVCM. Liverpool. 1*9 JGA Unted Kngdorr. fax pH) 44 Ml 106 VS* rwtioyd»i».ac J>

‘Onnaen of Surgery aid Oncology. School cf Cancer Sludus unwesty of L/viginot. uveuool, Unwd XngdD-r; fomaniline ct ^analogy. noy» Lmewool Ure- 
verety Ha® WL LMegioot Unibd iCngdont ‘Oxwomeie of Urelagy. Iteyd Liverpool iMiwncy HosmW Uvepoot LHiwd Pngdom 

Mb aoetagae to cobeguei whovr anvSe* we have not cted rhrau^i tact of pace

OOt laiaOiencrjeMl, IboUeed: jarxiary * 2009 Bevbed: June IV 2009 accepted am IV 2009 Aibeihed enlace ei MMey eee*c«nce

Cancer Month 00.2010 1
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Figure 1. Pathways leading to and cansectuenees at a53 acti­
vation are shown.

The* p53 and MDM2Pathway 
In 50% of human c.incer.c, p53 is mucuecJ. anti it hat 
become 1 of the runs studied molecules in science.5 The 
p53 pmtdn acaimiilatcs at times of cdlular or j^enotoxic 
stress, when it fiincrions primarily as a transcription factor 
to promote cell tyde arrest and DNA ntpatr, to initiate and 
maintain a senescent phenotype, otto promote apqiroris if 
die normal cellular conditions arc nor restored (fig. 1), 
This latter function helps prevent conditions arising within 
diced I that can lead to the establishment of mutarinnswith 
the consequent increased riskof malignant disease. The im- 
pmtana- of the mmar suppressor function of p53 also is 
highlighted by the high frequency of nmiors that occur in 
individuals with a monoallclicgermlinc mtitition of p53. 
as observed in parieimwich I i-lTaumcni syndrome/'

The poccmially Icdial aatvitits ofp53 are rq;ulatcd 
by the proco-oncogcnc Mdm2 (murine double minute 2} 
orMDM2 in humans. Transgenic mice that arc Mdm2 
null display e;itly cmhiyonic Icrh.iliw and die at around 
Day 5 or 6 of c mbryogenesis. This lethality can he re.'cucd 
by concomitant deletion of the p53 gene,7 thus demon­
strating that loss of Mdm2 Is lethal because of the Icdial 
effects of unregulated p53. Then, as levels of p53 rise, 
transcription ofMDM2 Ls induced: thus p53and MDM2 
exist in an auto regulatory feedback loop.8 Binding of 
Mdm2 to p53 and can block p53 transcriptional aaivitj' 
by preventing it from interacting with the transcriptional 
machinery.^ MDM2 also causes p53 drgr.vl.itinn by Ctr- 
geti ng it for destruction by the 26S proreasnme. The latter 
effect is caused by die ability of MDM2 to act as an E3 
uhiquicin ligase with specifidty for p53 (amongother tar- 
gcts).ul MDM2 also can target itself for ubiquitylarlon 
and, daiLs, can regulate its own stability, although haw

these compering activities (ubiquitylarion with concomi­
tant degradation of p53 and/or MDM2) arc regulated 
remains undear.11 Thus, increased levels of MDM2 ran 
lead to a reduction in p53 levels as a result of this uhiqui- 
tin ligase aaiviy, which, in mrn, results in decreased p53- 
dependent MDM2 transcription, restoring the normal 
cdlular status quo.

With respect to cancer, MDM2 over expression has 
been associated with increased metastasis and advanced 
disease in several cancers, induding hreastcarcinnma.17 It 
is noteworthy that the oncogenic effects of MDM2 are 
not caused simply by the inhibition of p53 funcrion, 
because dtey often are detectable in tumors that harbor 
p33 mutations,'3 as indicated by futdicr evidence pro­
vided from in vivoscndics.14 Mow MDW2 elicits p53-in- 
dependent oncogenic dfects is unclear, altliough Yang et 
al1: demomtr.ated that MDM2 c< press inn led to a 
decrease in E-cadhcrin levels and a subsequent increase in 
cdl motility in breast carcinoma. Those authors also tiem- 
onstrated diac high expression of MDM2with lowE-cad- 
herin expression was more frequent in metastatic tumor 
samples.

The balance he tween MDM2 and p53 is modulated 
in several ways, depend! ng on the nature of cellular .stress. 
For example, in response to ioniring radiation, p53 U 
pltosphorylated by dae acaxia telangiectasia mutated 
(ATM) kinase, which inhibits MDM2 binding1’: 
whereas, after exposure to ultraviolet radiation, p53 is 
modified by the related ATM and Rad3-related (AT if) ki­
nase.'*’ The complex interplay between p53 and MDM2 
presumably has evolved to ensure that cdls are aide to 
respond rapidly and appropriately to a wide range ofgen- 
otoxic stresses. One consequence of this sophistication in 
the regulation of p53 Is that it can lead to unreliable con­
clusions when attempting to determine p53 stams from 
simple assays^ such as immtmohixtochemicd (IHC) 
analyses.lfi'17

In addition to the variable outcomes induced by pS3 
in response to different types or amounts of strc.sr/dam- 
age, there is also a high degree of spatial (ie, tissue) vari­
ability in reqion.se to gcnotoxic stress, for example, within 
an organism (for review, see Sice ct al1K). Studies of trans­
genic mice exposed ro ionizing radiation have revealed 
broadly 3 classes of p53 response1In the first da.® of tis­
sues. p53 is ttp-regulatcd and elicits a dramatic opoproric 
response, as typified by tissues like the small intesdne, 
spleen, and thymus. In the second dass of tissues, whtdt 
includes die kidney, p53 is up-regulated, butlitde or no 
apoptoric response isdctcaed. Inthe durdd.issoftissues,
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there is littlertr nr> app.trctit induction of p53. 'Iherc are 
aKi clear difference.; within tissues. Even when p53 U 
aaivatai, cellular r&tpotiscs are determined by bnth 
rissuc-apedik and cetl-inrrinMC f.uTora, which may vary 
accordint; tothestauteofthe individual cel!.ls'2<i

Therefore, in rhe kidney, ir appears that there al- 
rcnly may he fitemrs at work that compromise die ability 
of p53 to acrivare an apoptotic response to geno toxic 
.streia.19*'1 This suggests tharp53 tumor oppression may 
be less effective in the kidney than in some other tissues, 
and the raison for this remains a major, unanswered ques­
tion. Moreover, die identification of such a tissue-specific 
mechanism might provide an opportunity for therapeutic 
Tcattivation" of p53 in these ceils. Nevertheless, snidies 
in vitro have questioned this interpretation, demonstrat­
ing that p53 is normally functional in renal cancer cdls 
and is regulated by MDM2 in a manner that is typical of 
celts from other tissues, findings that require further 
i nvesriga ti on. “

The majority of studies of p53 and MDM2 in dirti­
ed material from renal cancers have been based on IMC of 
diese proteins. This approach is technically simple but is 
not quantitative and relieson the observation that mutant 
p53 often Is present at higher les'ds in cdls than dtewild- 
type protein.14''17 The srandardcxplanaunn for this genn- 
typa'phcnorjpe correlation Is that mutant p53 lacks the 
capacity' to up-rcgulate MDM2; thus, an imbalance in 
p53/MDM2 homeostasis develops and leads to excess 
p53. In a study of the toe of IMC to interrogate p53 sra­
nts, Nenurilct al14* observed that combining highly sensi­
tive IMC for p53 (with the abiliy to detect low Icvds of 
wild-ype expression and, thus, distinguish this from an 
absence ofexpresdon) with HIC for downstream markers 
(MDM2 and p2UCDKNiAj) increased the reliability'of 
predicting p53 status. In that study, high levels of p53 
almost always were indicative of p53 mutation when 
MDM2 expression was low, thus according with die 
standard model for mutant p53 up-regulation. This is nor 
the cue in renal cancer, asderailed below.

p53 and MDM2 in Renal Ceil Carcinoma 
Relatively little is known with certainty about the status 
and role of p53 or MDM2 in RCC, in striking contrast to 
some other, albeit more common cancers. To dare, at least 
31 studies Have investigated the expression ofp53 in RCC 
(Table 1).

All of these studies used IMC staining of formalin- 
fixed, paraffin-embedded nimor samples. When they 
were available, tire percentages of samples from
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CCRCC, the range of disease stages, and die number of 
mcrastiric samples are indicated. tMl samples contained 
a mixture of high-grade and low-grade tumors. .Several 
different antibodies were used, aldiough the majority of 
studies used die p53 DC3-7 monoclonal atttihndy. 
When available, the criterion for dichotomizing p53 
suinitig has been indicated. According to published 
data (excluding articles by Klarre a aP* anti Kim 
ct a!,*’1 in which no derails of p53 status were provided). 
2519 tumors were stained for p53, and 618 tumors 
were deemed positive for pi)3 for p53-posirive fraptcncy 
of 24.5%; however the heterogeneity of the samples 
musr he ctken into consideration (see hdovv). Varialtility 
between studies may be attributed in part to die lack of a 
consensus on p53 dichoromizarion (see Munro ct al17) 
compntindid by differences in antibody choice and also 
by processing techniques. One study"'5 reported die use of 
2 different p53 antibodies, which led to a higher overall 
p53 detection level/expression rate of 60% (1X3-7, 5 !®b 
positive; p53 antibody 240, 30% positive). This high­
lights the finding that using different anriho dies can result 
in apparent differences in p53 expression. Interpretation 
of these results also is hindered by variations m the num­
bers of different histologic subtypes of RCC tumors, tu­
mor stages, and grades and the variable presence of 
mcrasttsesin the sample populations.

Analysts of p53 expression in primaryand metastatic 
samples has demonstrated an increased frequency of stain- 
ingof 51,8% in metastatic samples versus22% in primary 
samples.35 This suggests that p53 expression may he a rel­
atively late cvcnr in the cvohtrion of RCC and may he 
assodaced with met.utattc capabilities. If this is correct, 
then it seems reason able to expect that p53cxprcssion will 
lie associated with aponrer prognosis regardlessof a func­
tional or causal remncctinn. In the rarer histologic sub­
types of RCC. considerably more heterogeneity is 
apparent; and, inevitably, the smaller number of simples 
analysed makes interpretation more diffieulr,

p53 and MDM2 Expression and Prognostic 
implications in Renal Cat! Carcinoma 
The prognostic implications of p53 expression were eval­
uated. and the results arc summarized in Table I. Of the 
27 studies that evaluated p53 expression as a clinical out­
come predictor, !8 studies indicated that ir predicted a 
pnoroutcome.and lOstudiesdid nor. The 10 articles that 
did nor had a smaller study size (mean, 62 patients per 
Study compared with 119 parienrs per study in the posi­
tive articles). The 4 largest sntdies to date, all of which
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asal tu mor micro.'irr.iys. indic.ircvl that p53 is a prognostic 
predictor. Kim eral evaluated 31S patients with CCRCC 
who had Ioc,t1 and merascariedi.easc (49: ie. 153 of 318 
patients had metastatic disease). Those authors observed 
thac p53 was an independent predictor of decreased dis­
ease-specific survival on univariate (/,<.001) and on mul­
tivariate Cox regression analysis (/’ = .014) in which dtc 
presence of mcf asLisis was included as a a>variate,?i Klatte 
ct al,3’ in a similar study of 170 patients with CCRCQ 
aim reported thacp53 was retained in a multivariate Cox 
regression analysis for pralicting disease-free survival. In 
die study by Klatte et al, die percentage of tumors that 
smined for p53 was evaluated, obviating the need to 
describe mmors as ddicr positive or negative for p53 
staining, Zigeuncr and colleagues”1 demonstrated that 
p53 was a prcdiaorofdisaise progression (mccistatis-free 
survival) on multivariate Cox rq;rcssinn analysis in dieir 
study of 130 patients with CCRCC. Those patients were 
followed for a median of 26 months, and 9 of 16 patients 
widt p53-pnsirive tumors progressed versts 20 of 114 
patients with p53-ncgntivc mmors (/, ™ .0005). In 
anodicr substantial snidy, Slivarts et al51 evaluated p53 
saining asa prediaorof 5-year recurrence in 193 patients 
wild underwent surgery for localized dismse. Those 
authors also repotted that a p53-pt>sirive cutoff of 20% 
expression detected hy 1MC was a predictor of recurrence 
(hazard ratio, 3-2S; P — .0108) on univariate and multi­
variate Cox regression analysis. Vidicn considering such 
smdics of bin markers of disease outcome, the possibility 
of publication bias leading to the publication of fewer 
articles that demonstrate no disease outcome correlation 
should not he neglected. Nevertheless, die trend appears 
to he that more recent studies with higher numbers of 
patients indicate that p53 protei n levels are prognosrically 
significant in RCC.

pSS Mutational Analysts in Renal Cell 
Carcinoma
When examining the significance of p53 involvement in 
cancer in general and in RCC in particular, it Ls dear that 
IHC detection of p53 alone cannot reliably inform us 
whether the protein is functional or mutated.16'*5 How­
ever, p53 mumtional slants often has been inferred in 
sudi studies, because high-levd expression of p53 is med 
as a surrogate indicator of mutation. This interpretation 
certainly Ls not correct for renal cancer cdls in culture, in 
which relatively high levds of p53 protein frequently arc 
detected in then hi nice of p53 mutation.22 In addition, in 
some 10% to 20% of cases that harbor p53 mutations.
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tumors may harbor nonsense (truncating) mutations, 
which can laid to less stable mutant proteins that are 
unlikely robe detected by IHC hut that would he inferred 
to possess wild-type p53 according to typical IIIC analy­
ses (not all truncated forms of p53 are unsrabie, although 
their expression still may he suppressed hy nonsense- 
mediated tleciy56). In any event, diese proteins wilt he 
expressed at low levels, and sudi cases would he grouped 
togetlier with samples that have low-level wild-type p53 
expression. Because recent studies in other cancers, sudi 
as squamous cell cancer of the head and neck,3'' have indi­
cated that delcrinn of p53 deiints a group of patients with 
the worst outcome, such a grouping togetherof wild-n,’pe 
with deletions/nontense mutations will oh.vure the signif­
icance of p53 in prognostication. To date, at least 14 
artides have been published in which thep53 mutational 
ratewas evaluated inRCfi (Table 2).

In most of these studies, single-strand conformation 
polymorphism (foSCP) was used as an initial screen to 
detect mutations. The majority of studies analyzed the 
central core domain of die gene (coins 4-8 or 5-8), 
because this is the mosr common site of p53 niucation,21 
Approximately 15% of p53 mutations orcur outside 
exons 5 through 8, in exons 4, 9, and 10'"; therefore, it is 
likely thac there wi 11 be some underreporringof p53 muta­
tions in these studies. The frequency of p53 mutations 
reported Ls between 0% and 44% (excluding the study by 
Oda erat,63 in which xircom atoid tumors were evaluated). 
For comparison, in other tumors; the reported incidence 
of p53 mutations typically has been between 60% and 
65% for lung and colon cancers; between 40% and 45% 
for stomach, esophageal, and bladder cancers; between 
25% and 3098 for breast, liver, and prostate cancers and 
lymphomas; and between 1096 and 15% for leukemias 
(itirdier information available an hrrp:/AwAV-p53.iarc.fr/ 
accessed June 15, 2009).71 One Intriguing observation 
derives from the study hy Chcmerls and colleagues, who 
observed thatOof29 RCC samples, all pnsirivefor p53hy 
IHC, had a p53 point mnation.^ However, in another 
study, Ziiangandcollc.'B’,ue5obscrvcdthat44% of tumors 
withp53 staining (n= 16) had ap53 point mutation.'*'* It 
Is posable that the contamination ofsamplcs with normal 
tissue might laid to reduced detection of p53 mutations 
byfiSCP; thus, variations in theextent of dtis may explain 
thedifterences between these 2 smdies. This conclusion is 
supported sndirctrly hy the observation that 3396 of 
RCX'-dcrivoi mmorcdl lines harbored p53 mutations,<>H 
1 lowever, this assertion sitould be tempera! by the possi­
bility that the selection of cells to adapt m growth in vitro
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may have resulted in an incrcasetl frequency of p53 mu ra­
don, It is noteworthy that data from C'CRCC cell lines 
romrast with data from die study hy Dijkhuhen et a I'’' in 
which no p53 mutations were identtfial in 29 FRCC- 
derived tumor cdl lines; thus, it seems possible thatdifter- 
enr mechanisnvs ndier than direct p53 mutation may inac­
tivate p53 more frequently in PRCC than in RCC and 
that these also may result in higher expression.One 
other finding of note Ls the high p53 mutation rare 
reported tn sarcomatoid tumors/'1 Sarcomatoid change is 

a histologic finding associated with a poor prognosis in re­
nal carcinoma in which a high p53 mutation rate (79%; 
n = I4)*’-’ was detected. Notwithstanding tlicsc differen­
ces between individual studies and RCC subtypes, it 
secmsclear that, in contrast to both other cancers and p53 
protein dctecdon in RCXi, p53 mutational analysis has yet 
to demonstrateprognosric utility.

MDM2 Expression and Prognosis in 
Renal Cell Carcinoma
i’nur studies have evaluated sMDM2 and its prognostic 
value in RCC. Imai ct al^ screened 53 RCC ninirtr sam­
ples for MDM2 amplifimtinns and ideutifial none. In 
another study, IMC was med, and MDM2 expression 
was detected in 2 of 112 tumor samples (2%),5i When 
50 consecutive T3 and T4 tumors were screened by 
IIIC, MDM2 expression was identified in 30%, but it 
reportedly had no prognostic significance in terms of

overall sutvivalC8 I fowever, it was observed that 7 of S 

patients who expressed p53 also expressed MDM2, rak­
ing the possibility that MDM2 expression may be linked 
to the tip-regulation or activation of p53. This idea, that 
p53 and MDM2 expression may he linked in RCC, was 
supported by statistical analysis in that study {P = 
.0006). Another study that analyzed this question from 
Haltel and colleagues^ examined 97 CCRCCs of all 
stages. MDM2 expression was detected in 19% of 
tumors and was significantly more frequent in high- 
grade tumors (/* — ,0149). In addition, MDM2 staining 
was strongly assodated with tumor progression {P ~ 
.00513), and p53 expression was detected in 30% of the 
samples and was correlated with decreased progresnon- 
ftee stimval (P ~ .00291). When different p53 and 
MDM2 phenonr’pes were compared (Fig. 2), it was 
observed that patients who had tumors with both 
MDM2 expression amt p53 expression had the shortest 
progression-free survival (/* ~ .00179). Perhaps most 
interesting from a mcchanktic perspective-and in accord­
ance with the sntdy by Moch and colleagues, the authors 
observed a highly significant correlation between 
MDM2 expresion and p53 expression (P < .00004), 
These studies of MDM2 in RCC examined relatively 
small numbers of patients using different cutoff values 
for MDM2 expression. Nevertheless, die assodarion of 
p53 anti MDM2 detected hy Moch et al and Haltel ct al 
suggests that tumor progression in RCC may present a

6 Cancer Manio oo. 2o;o

227



pSi and HDM2 In Renal Call Carclnoma/Hoon et al

Flsiute 2. Kaptid-Meisf diiaait-tiL-ii suivival cuivgs are iharivn 
l« pati'ints with mufiiva dtoulsia minuta 2 {mtlnsj-najrau^a/ 
p53^i«ialiv6 tuswais (OroJp A) vaiius palianli with mdi'i2- 
rtaaatiwAi53-pos.it ivaor ni di 12*p o s, i t iv a/p 5 3 - ri a a a 11 \*a tumors 
(Group B) varsos patients wilts mdPS-pQ'.iUve/pSS-posilive 
t'amori (Group C*. P - .00179). Reproduced with permission 
from Haltet A Wiener HG. Basthae U. Marberster M. Susasil M. 
mdm2 Expression as a prognostic indicator in dear cell renal 
cell carcinoma; compar iscn's wl th p53 ove/eatressian and clinl- 
copatlroiogical paranisters. Qin Cancer Res. 2000; eiiKO- 
iBCA1-'

tissue-sped lie pattern that has nor been observed in 
many other cmccrs. For csamplc, diis link has not been 
observed in soft tissue sarcomas75 or in bladder cancer,15 
aldioueji. in die latter, patients who had tumors that 
etpre-sed mutant p53 and increised MDM2 had a 
poorer prognosis similar to that reported for parimis 
widi RCC.

Regarding MDM2 in RCC, an additional notewor­
thy point Is the recently described single nucleotide poly­
morphism at codon 30.9 (SNP309 thyaninc/guanine IT/ 
G]). 'Flits polyanorphism lies in the intronic promoter 
region of die MDM2 gene and reportedly alters binding 
of the dpi transcription factor, widi the C/G variant dis­
playing increased binding and increased transcription of 
MDM2. kalso has been reported diat, in RCC, differen­
ces in the SNP309 genotype lead to different levels of 
iMDi\52 expression, as detected by il iCi,7" and that the 
G/G SNP309 genotype is an independent predictor of 
poor prognosis. Clearly, furdter analysts of diis polymor­
phism Ls warranted.

fn Vitro Studies ofpSS and MDM2 Function 
in Renal Cell Carcinoma
Several groups, indmiing ottr own, liave ttsed itt vitro 
analysesto imestigatcdac ttmeriana! rdation between p53 
and MDM2 in RtiC cdts. We previously investigated a 
panel of RCC cdl lines and concluded that p53 is regu­

lated by MDM2, several of whidt renin relatively high 
levels of both wild-type p53 and MDM2.23 p53 muta­
tions have been detected in approximately 30% of RCC- 
derivedcdl lines, asdisenssed previously/’'’1 This, rogether 
witliothcrsnidicsdcmomrranng dm p53 expression is an 
independent prognostic indicator, suggesrsthatp53 func­
tion (or, rather, its loss or aberration) contributes to 
tumor evolution in die kidnty. It has been suggested, 
however, that an alrernarive, novd, dominant mechanism 
leads to the inacrivadon of p53 in RCC. Aldaough our 
own studies and those of others have provided evidence 
that does not appear ro support thisconclusionr*"0 good 
reasons remain ro tsantinue investigating dte po.^ihility. 
Two arguments tor dusare immediately apparent. First, 
there is evidence from s tv era! studies that p53 It not 
mutated as frequently in RCC as iris in many other can­
cers. freaind, the strong association between p53 expres­
sion anti MDM2 expression may suggest a functional link 
between them, with 1 obvious possibility thar MDM2 
expression may hedriven by wild-type p53. !c is intriguing 
to note that in vitro studies have connected MDM2 widi 
2 critical phenotypes: theabiliry to promote both motility 
and invasiveness5” and the regulation of angiogenic fac- 
rors, such as hypoxia-indudhlc factor 1 {MlF-1}.' ^ Ei­
ther or both of these phenotypic connections (MDM2 
expression svidi metastasis and/or angiogenesis) may Itavc 
i m po rant consequences.

Manipulating thepSS and MDM2 Pathway 
Given the link between p53 and MDM2 expression widi 
poor outcome, a lay question becomes wliedter this is an 
assodation ora causal relation. In the event of die former, 
screening for p53 and/or MDM2 becomes justiftnl for 
prognonic purposes and, itt the future, might be used to 
stratify therapy according to an individual patients risk. 
In the event of the latter, therapies dint target die p53/ 
MDM2 axis al so become desirable. The hrsc characterized 
drug that targets this pathway at the present time is nut- 
lin-3/'' which acts by competing with pS3 for binding to 
the hydrophobic deft in MDM2 and, thus, up-rcgulntes 
wild-type p53. Other conceptually similar compounds 
that prevent MDM2-p53 interactions have heat 
described recently due up-regul.ate wild-qqte p53.75' ,‘\lter- 
nativcly, drugs like the HLI9S family of compounds, 
which Inhibit die E3 ligaseactivity of MDM2, may play a 
role in RCC, because high levels of MDM2 arc linked to 
tumor progression. However, the associated co-up-rcgilla­
tion of MDM2 with p53 raises questions regarding the 
activity of MDM2 in tlte.se cells77 svith implicattous for

Cancer Month oo, 2010 7

228



Review Article

die utility of MDM2 enzynutic inhibitors. Therefore, it 
will he iiupnrr.im to determine whether the role of 
MDM2 in disease progression in RGC depends on itsen- 
ty'madc activity as an E3 ligase or whether this relates m 
some other fimetion of M DM2, An altcrnadve strategy 
Would he to foals on the wild-type p53 present in these 
cells, which, clearly, is not folly active; otherwise, the cells 
would undergo a dassic -antiproliferative response. More­
over, we have demonstrated dtar the introduction ofwild- 
type p53 into Rt’C cells does elicit a response, at least 
with respect ro a limited set of outputs.- Thus, a poten­
tially potesu therapeudeoption would be to reactivate die 
already high levels of p53 in these cells. 11CC is noniri- 
ously insensitwe to traditional chemothcr.ipaitic and 
radiothcrapeutic regimens that normally might activate 
p53,,a possibly indicating thar signaling to p33 is defec­
tive in these cdls. However, p53 coexists with high levels 
of MDM2, suggesting that there is a breakdown in die 
interaction of diese proteins. For funtre identification of 
effective therapy, it would he advantageous to identify the 
actual mechanism that prevents p53 activity in these cdls. 
Notwidiscanding this, several compounds aimed at p53 
have demotutrated eftectivcness in vitro in activating p53 
in renal cancer cells. Examples include RITA (reactivation 
of p53 and induction of tumor cdl apoptosis) -and deriva­
tives of 9-aminoaeridinc (including fpLinacrinc).' J It has 
hren reported time RITA induces preilominamly growth 
arrest rather titan an apoprotic response in A498 RCXi 
tells in vitro and that 9-aminoacridine and its derivatives, 
including quitucrinc, indireedy inhibit MDM2 in RCC 
adls in virro.^'^1 It remains unclear whether these com­
pounds specifically target the padiwayts) that regulates 
p53/MDM2 co-up-rquilarioii in RCC ceils, and, to date, 
none of these tampounds or their derivatives have been 
evaluated in clinical trials for RCC'.

hi condusion, for many years, the role of the p53 
pathway in renal cinecr has been the subject of seemingly 
conflicting results. However, recent studies appear to he 
generating a consensus, which suggests a clear link 
between p53 expression and disease progression, particu­
larly in CCRCC, Ir is norewordiy that this p53 positivity 
and link with prognosis is not corroborated by smdics of 
p53 mutationt indeed, there nredata suggesting that muta­
tion ofp53 may not be linked to outcome or progression 
in renal cancer and, thus, that the defect in p53 leading to 
its up-regulation lies elsewhere in the pathway. To our 
knowledge, tally 2 studies of p53 in RCC! have examined 
bodt p53 protein expression and p53 gene mutations, 
and those results were conflicting. Given the disparity

3

between the rcstdrs from smdics of p53 mutation and the 
more frequent observations of p53 up-reguiation, it 
appears likely rime p53 up-regidation is not caused by 
mutuion in most cases of RCC. If this finding is correct, 
then it has important implications for understanding the 
nature of the defects t n this pathway in RCC. For example, 
the up-regulation of wild-type p53 is linked to the up-reg­
ulation of MDM2, and it appears probable that this is 
because of p53 transcriptional activation of MDM2. 
Aldtnugh it has been studied less than p53, MDM2 
expressinn appears to he linkedsvithdheaseprogresaon. It 
remains unclear why rhis should he so when, dearly, it 
ocairs in the context of high levels of p53 (ie, MDM2 is 
nor performing its normal function todegrade p53).

The expression of p53 identifies a population of 
patients wi th RCC wiio arc more likely to perform poorly- 
Howtver, pathologists do nor routinely monitor p53 in 
patients with RCC despite an increasing body of evidence 
suggesting that positive p53 status can predict recurrence 
and decreased survival. The ability to predict which 
patients will follow a poor disease course clearly would 
benefit clinidans, heemse more rigorous follow-up maybe 
indicated. Because small tumors (<4 cm; Tla) can pres­
ent with mccurascs, more prognostic information dearly 
Ls required.*11 Tlic Itmttatiom of current follow-up prac­
tice and die potential for molecular markers to improve 
this situation are reviewed excellently by Rouvicre et al.*1’ 
Moreover, 2 studies that induded p53 status in their pre­
dictive nomograms demonstrated that it contributed to 
henrer prediction of survival.'''1”' Aldiough the tumor 
microenvironnKiir and other host factors wall have an 
impact on outcome, intrinsic tumor mutations predomi­
nantly determine tumor growth, invasion, and metastasis. 
Following the existing paradigm (which led to the discov­
ery of the role of VTIL murations; die consequences of 
these for HiF-let and I IIF-2'X expression and for onco­
genic mediators, such as vascular endothelial growth fac­
tor; and reernr developments in therapaidc targeting of 
such tumor determinants) should lead m die identifica­
tion of these personalized indicators. I.ossof p53 fonction 
is a kty event in circinngenesis; and the evidence suggests 
that p53and MDM2 not only may provide 2 components 
of such improved prognostication but, at die same time, 
also may provide for novel, potentially tissue-spedfic ther­
apeutic targets) to improve treatment.
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Abstract:

Objectives:

The role of p53 in RCC has been much debated. To resolve issues 
surrounding p53 function, expression and mutation we have 
performed the first study to simultaneously determine p53/MDM2 
expression, TP53 mutational status (in p53-positive patients) and 
outcomes in RCC.

Patients and Methods:

90 specimens from patients with RCC, treated by radical 
nephrectomy, were analysed by immunohistochemistry for p53 and 
MDM2 on a tissue microarray and p53 was functionally and 
genetically analysed in p53 positive samples. Outcomes analysis
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was by Kaplan-Meier method and univariate analysis was used to 
identify variables for subsequent multivariate analysis of 
correlations between clinical parameters and biomarker expression.

Results:

Up-regulation of p53 in RCC is strongly linked with MDM2 up- 
regulation (P=0.000013). Increased co-expression of p53 and
MDM2 identifies patients with significantly reduced DSS by 
univariate (P=0.036) and Cox multiple regression analysis 
(P=0.027, RR=3.20). Functional (FASAY) and genetic analysis of 
tumours with increased p53 expression demonstrates that the 
majority (86%) retain wild-type p53.

Conclusions:

Co-expression of p53/MDM2 identifies a sub-set of patients with 
poor prognosis despite all having organ confined disease. Up- 
regulated p53 is typically wild-type and thus provides a mechanistic 
explanation for the association between p53 and MDM2 expression. 
Our results suggest that the p53 pathway is altered in a 
tissue/disease-specific manner and that up-regulated wild-type p53 
likely promotes the observed MDM2 co-expression. Therapeutic 
strategies targeting this pathway should be investigated to 
determine whether the tumour suppressive function of p53 can be 
rescued in RCC.

SCHOLARONE*'
Manuscripts

234



Running title: p53 and MDM2 association in renal cancer

Combined p53 & MDM2 biomarker analysis demonstrates a unique pattern of 

expression associated with poor prognosis in renal cell carcinoma patients 

undergoing radical nephrectomy

Aidan P. Noon^ Ashraf Y. El-Fertt, Radostaw Polanski1^ Helen Kalirai#, Howida 

Shawki\ Fiona CampbelF, Andy Dodson+, Keith Parsons%, Nikolina Vlatkovic1 and 

Mark T. Boyd+

From the tp53/MDM2 Research Group, and the #Division of Pathology, Department of 

Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GA, UK, and 

from the+Departments of Pathology, and %Urology, Royal Liverpool University Hospital, 

Liverpool, L7 8XP, UK

Correspondence to M. Boyd:

Division of Surgery and Oncology, Department of Molecular and Clinical Cancer 

Medicine, University of Liverpool, 5th FI. UCD Building, Daulby St, Liverpool L69 3GA

Tel 0151 706 4185,

Fax 0151 706 5826

mbovd@liv.ac.uk

235

mailto:mbovd@liv.ac.uk


Word count: 3,713 (not incl. figures, tables, references and abstract)

236



Abstract (240 words)

Objectives:

The role of p53 in RCC has been much debated. To resolve issues surrounding p53 

function, expression and mutation we have performed the first study to simultaneously 

determine p53/MDM2 expression, TP53 mutational status (in p53-positive patients) and 

outcomes in RCC.

Patients and Methods:

90 specimens from patients with RCC, treated by radical nephrectomy, were analysed 

by immunohistochemistry for p53 and MDM2 on a tissue microarray and p53 was 

functionally and genetically analysed in p53 positive samples. Outcomes analysis was 

by Kaplan-Meier method and univariate analysis was used to identify variables for 

subsequent multivariate analysis of correlations between clinical parameters and 

biomarker expression.

Results:

Up-regulation of p53 in RCC is strongly linked with MDM2 up-regulation (P=0.000013). 

increased co-expression of p53 and MDM2 identifies patients with significantly reduced 

DSS by univariate (P=0.036) and Cox multiple regression analysis (P=0.027, RR=3.20). 

Functional (FASAY) and genetic analysis of tumours with increased p53 expression 

demonstrates that the majority (86%) retain wild-type p53.

Conclusions:

Co-expression of p53/MDM2 identifies a sub-set of patients with poor prognosis despite 

all having organ confined disease. Up-regulated p53 is typically wild-type and thus
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provides a mechanistic explanation for the association between p53 and MDM2 

expression. Our results suggest that the p53 pathway is altered in a tissue/disease- 

specific manner and that up-regulated wild-type p53 likely promotes the observed 

MDM2 co-expression. Therapeutic strategies targeting this pathway should be 

investigated to determine whether the tumour suppressive function of p53 can be 

rescued in RCC.

Keywords: p53, MDM2, renal cell carcinoma, clear cell renal cell carcinoma, 

prognosis, survival,
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Introduction

The incidence of cancer of the kidney is increasing rapidly in the developed world, for 

example in the USA, the age-adjusted incidence has risen from 8 to approximately 

14/100,000 in 30 years [1], It has been estimated that in the USA in 2010, 58,240 

people will have been diagnosed with kidney cancers and that 13,040 people will have 

died from the disease [2]. The present study focuses primarily on the most common 

histological sub-type of kidney cancer; clear cell renal cell carcinoma (RCC; 2004, WHO 

classification system) [3] which typically accounts for 75% of all kidney cancers [4].

Despite advances in our understanding of the molecular biology of renal cell carcinoma 

which have led to the development of a number of new targeted molecular drug 

treatments (targeting consequences of VHL mutations (increased VEGF), or mTOR 

dependence), patients with metastatic disease still have an extremely short life 

expectancy [5]. Identifying other pathways, that determine for example tumour 

metastatic potential, is a high priority not only for prognostication, but also for defining 

novel therapeutic targets.

The role of the p53 pathway in RCC remains unclear and in part this stems from the 

literature on p53 and the p53 pathway in RCC which appears to be ambiguous. 

However, in a recent review of his literature, we found that that information on the 

status of the p53/MDM2 pathway may nevertheless provide significant prognostic 

information, though this requires careful interpretation due to peculiarities of this 

pathway in kidney [6], The present study is therefore aimed at an examination of p53 

expression as a biomarker and combining this information with data on MDM2, one of
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the essential negative regulators of p53. Our objective being to determine whether the 

combined use of these potential biomarkers can provide further insights into the 

functional status of the p53 pathway in clinical samples, as has previously been 

proposed for other solid tumours [7]. Since the reason for analysing the combination of 

p53 and MDM2 in other cancers has been to provide a surrogate indication of p53 

mutational status, in cancers where p53 mutations are rare, such as RCC, this kind of 

analysis would be expected to be either uninformative, or informative only in rare cases 

where p53 is mutatated. However, in settings where p53 mutations are rare, as occurs 

in RCC for example, patterns of expression of p53 and MDM2 would be expected either 

to be uninformative, or at least to only to be so in rare cases since the reason for 

analysing MDM2 and p53 in other cancers has been to provide a surrogate indication of 

the likelihood of p53 mutations to be inferred [7]. From this it follows that in cancers with 

rare p53 mutations, if p53/MDM2 expression patterns were found to be associated with 

disease progression/outcomes then this would require new biological explanations for 

the defects in this pathway since the association is not due to mutations in p53. That 

the kidney behaves in an atypical way wrt p53 function is not without precedent and 

there is evidence biologically of unique characteristics regarding p53 and p53-function 

in the kidney [6, 8, 9], as well as evidence of other distinct mechanisms involved in 

renal carcinogenesis such as loss of VHL function. Thus, unlike many other cancers 

where p53 and/or MDM2 expression or genetic analysis is well understood, the role of 

these in RCC remains enigmatic [6].

Accordingly, we set out to investigate the expression of p53 and MDM2 in a cohort of 

90 RCC patients treated by radical nephrectomy at the Royal Liverpool University
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Hospital and to determine TP53 mutational status both functionally using the yeast 

functional assay (FASAY) [10] and by genotyping for all p53 positive/expressing 

samples to determine whether these potential biomarkers correlate with patient 

outcomes.

Patients and methods

Patient samples and Tissue Micro-Array (TMA) construction

Between 1992 and 2007 the Liverpool Tissue Bank (LTB) collected specimens from 97 

patients undergoing radical nephrectomy for RCC and for this study data was obtained 

from 90 cases of pathologically confirmed renal carcinoma (haematoxylin and eosin 

(H&E) stained slides and formalin fixed paraffin embedded (FFPE) blocks) which were 

retrieved from the archives of the LTB. These patients had consented for the storage 

and use of their tissue for research between 1993 and 2007 and study-specific ethical 

approval was obtained from the Liverpool Adult Research Ethics Committee. Data on 

the stage and grade of the tumours were collected prospectively by the LTB. The cases 

analysed were of the following sub-types: clear cell type (n=87), papillary cell type (n=2) 

and chromophobe cell type (n=1). All H&E-stained slides from the FFPE material were 

evaluated by a Pathologist for the presence of tissue regions optimally representative of 

the renal cell carcinoma. An appropriate slide was selected and representative regions 

of tumour were circled from each case. This was also performed for a slide containing 

adjacent non involved renal tissue from each case. From each corresponding FFPE 

tumour block, at least duplicate cores (0.6mm in diameter) were taken from the marked 

area and mounted into a recipient paraffin block using the Manual Arrayer (Beecher 

Instruments Inc). Duplicate tumour cores were not placed next to each other in the

241



recipient paraffin block to eliminate both scoring and staining biases. A single core of 

non-involved renal tissue was also mounted into the recipient block. Cores of normal 

colon, liver and testis were also included for orientation and as controls during 

immunohistochemistry (IHC). Serial 5pm sections were cut from the tissue microarray 

(TMA) and collected onto X-tra™ adhesive slides (Surgipath).

Antibodies

Murine monoclonal antibodies for MDM2 (clone SMP14, used at 1/100) and for p53 

(clone DO-7) used at 1/200 for IHC were obtained from Santa Cruz Biotechnology and 

DAKO respectively. For immunofluorescence, rabbit polyclonal anti-p53 antiserum 

(CM1, Leica Microsystems) and mouse Mab anti-MDM2 (sc-965, Santa Cruz 

Biotechnology) were used.

Immunohistochemistry

Samples prepared as described above were de-waxed, re-hydrated and endogenous 

peroxidase was blocked with H2O2 in methanol prior to high temp antigen retrieval 

(pressure cooker with 10mM EDTA pH7.0), and all were stained on a Dako Autostainer 

using labelled polymer detection ADVANCE™ (Dako). Sections were counterstained 

with Mayer’s haematoxylin. Slides of stained specimens were reviewed by two 

consultant histopathologists (blinded to clinical outcome) and a scoring system was 

determined empirically as follows. The intensity of staining was graded 0 (no staining) 

through 1 (weakly stained) and 2 (moderately stained) to 3 (highly stained). The 

percentage of cells showing positive staining was graded as follows 1=0- 2%, 2 = 3-
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10%, 3=11- 50% and 4 > 50%. The TMA sections were then independently scored 

and results analysed. In the event of any discrepancy these specimens were reviewed 

by the histopathologists together and a score agreed upon. For each tumour there were 

two cores on the TMA thus 180 cores were scored. For assessment and statistical 

analyses of p53 and MDM2 staining there were a number of specimens which were 

found to clearly stain more profoundly than the remainder (intensity score 3 and 

percentage score 4) and thus these parameters were used to dichotomize p53 and/or 

MDM2 staining into positive and negative groups.

Dual Fluorescence Staining

For dual staining and detection by immunofluorescence, serially sectioned 4pm paraffin 

sections were de-waxed in xylene and re-hydrated in graded ethanol to distilled water. 

Heat mediated antigen retrieval was performed in a pressure cooker filled with 10mM 

EDTA (pH 7.0) in which sections were treated at full pressure for 3 minutes. Following 

this, manual staining was undertaken in a flat-bed incubation tray. Primary antibodies 

were applied as required to serial sections. Negative controls were performed using 

antibody diluent in place of antibody. Primary antibodies diluted in commercial diluent 

solution (Dako) were applied for 60 minutes following which sections were washed in 

TBS and incubated for 60 minutes with a mixture of two fluorescently labeled secondary 

antibodies: FITC labeled horse anti-mouse IgG (Vector Laboratories), and TRITC 

labeled swine anti-rabbit Ig’s (Dako). Sections were washed in TBS and mounted in 

aqueous mounting medium containing DAPI (Vector Laboratories).

FASAY and genotyping
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FASAY was performed essentially as described [10]. pRDI-22 was a kind gift of Richard 

Iggo. For genetic analysis of FASAY products PCR was performed on at least three 

independent red (i.e. mutant) clones. For some samples PCR amplified p53 exons 1 to 

10 (plus the coding part of exon 11) including the exon - intron junctions of the TP53 

gene were subject to direct DNA sequence analysis. PCR primers are summarised in 

supplementary data Table 1. DNA sequencing reactions were performed using 

DYEnamic ET Dye Terminators (GE Healthcare) and capillary electrophoresis 

(Megabace 1000- GE Healthcare). Sequence variants were scored if present in both 

the sense and anti-sense strand of all three triplicates.

Statistical analysis

All data was entered into a database using Microsoft Office Excel 2007. Statistical 

analysis was performed using SPSS version 16. The association between p53 and 

MDM2 expression with patient and tumour factors was analysed using a two-sided 

Fisher’s exact test. Disease-free and overall survival curves of the nephrectomy 

patients were estimated according to the Kaplan-Meier method. Statistical analyses of 

the differences between curves were performed using the log-rank test. Variables that 

significantly influenced survival (P < 0.05) in the univariate analysis were entered into a 

multivariate Cox regression model. In all of the analyses, the significance level was set 

at 0.05.

Results
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Only two studies have previously examined p53 and MDM2 expression in RCC and 

neither of these determined the genetic status of the expressed TP53 [12, 13]. We 

therefore examined p53 and MDM2 expression and the status of TP53 in the p53 

positive/expressing samples from a cohort of 90 renal cell carcinomas. Figure 1 shows 

examples of typical staining observed for p53 and MDM2 and also Figure 1C shows 

that in an individual p53/MDM2 co-expressing sample, the same cells express both p53 

and MDM2 protein at relatively high levels. A proportion of the tumours (14/90) 

displayed high intensity staining for p53 (scored as grade =3) of at least 50% of the 

specimen. Since this staining pattern was distinct from the remainder of the samples it 

was therefore used to dichotomise the samples into p53 positive and negative groups. 

As for p53, the same criteria when applied to MDM2 also identified a clearly distinct 

sub-set of the RCC specimens (24/90) and therefore this was used to dichotomise 

samples as MDM2 positive and negative.. Table 1 summarises the clinical parameters 

of the cohort used for this study and the results of immunohistochemical analyses for 

p53 and MDM2. As has been observed previously [12, 13], and as illustrated in Table 

2.i there is a very strong association in renal cell carcinomas between p53 and MDM2 

expression (P=0.000013).

To investigate the expressed p53 further, we performed a yeast functional assay 

(FASAY) for p53 and genetic analysis of the TP53 gene in samples displaying p53 

expression to determine whether p53 was wild type or mutant. The results of these 

analyses are shown in Table 3 which demonstrates that 12/14 (86%) of p53 expressing 

RCCs retained wild-type TP53. We next investigated whether p53 or MDM2 expression 

was linked with disease specific survival (DSS) and generated Kaplan-Meier plots 

which indicate that increased co-expression of p53 with MDM2 is associated (P=0.027)
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with reduced DSS during the full follow-up period (median follow up 4.99 years, range 

0.79 - 13.27 years) for this cohort of patients as shown in Figure 2. Note that only the 

combination of dual positivity is significant; plots dichotomizing for p53 or MDM2 

individually were not significantly associated with DSS (not shown). In addition, as 

Table 2.ii shows, co-expression of p53 and MDM2 is significantly linked with reduced 

DSS in early disease.

On univariate analysis only tumour stage (pT1-2 vs pT3, 2002 TNM classification) and 

the combination of p53 positive co-expressing MDM2 were significant predictors of 

outcome as Table 2.iii illustrates. Finally, Table 2.iv shows the results of Cox multiple 

regression analysis which demonstrates that the combination of p53 and concomitant 

MDM2 expression was significantly linked in both univariate (P=0.036) and multivariate 

(P=0,027) analyses. It is noteworthy that the relative risk of death from disease was 

comparable for concomitant p53/MDM2 positivity (RR 3.203 95% Cl 1.143 - 8.98) to 

that observed when comparing pT1-2 tumours with pT3 (RR 2.897 95% Cl 1.155 - 

7.27). In addition, whilst pT1-2 and pT3 were significant indicators of outcome in 

univariate analyses, Fuhrman grade was not and therefore grade was not included as a 

parameter in multiple regression analyses. This may partly be due to the fact that this 

cohort is predominantly of low stage disease, all N=0 and M=0 at diagnosis/pre- 

operatively and with predominantly T1/2 disease (stage T1 (n=44), stage T2 (n=25)) 

and with only 4 cases of Fuhrman grade 4 (see Table 1). Note that none of the patients 

from whom samples were collected had evidence of metastatic disease at the time of 

nephrectomy and thus neither metastasis nor nodal involvement were analysed as 

parameters in this cohort.
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Discussion

The p53 pathway, with its associated regulators is one of the most studied of all 

biological pathways that have been examined in human cancers. However, there are 

tissue-specific issues in the kidney which appear to complicate our understanding of the 

several analyses performed to date of p53 in RCC (and to a lesser extent of MDM2) [6], 

In addition, since p53 mutations are rare in RCC [6] and as we show here, p53 is rarely 

mutated in the p53 expressing RCC samples, it has been necessary to devise an 

empirical approach to scoring p53 and MDM2 for RCCs.

Nevertheless, from the analysis presented here we draw three potentially important 

conclusions which have significant implications for our understanding of underlying 

molecular events in RCC: firstly, p53 and MDM2 co-expression is very strongly linked in 

RCC (P=0.000013). Secondly, that this co-expression defines a sub-set of patients with 

significantly reduced DSS (P=0.027, RR=3.20 95% Cl 1.143 - 8.98) and this is 

particularly apparent for early (stage 1) disease as Table 2.ii shows. Thirdly, our 

analysis indicates that when p53 is expressed in RCC it is typically wild-type (12/14 

cases) which immediately suggests a mechanism to explain the co-expression 

observed in RCC in which wild-type p53 promotes up-regulation of MDM2. This accords 

with our previous in vitro studies suggesting that wild-type p53 is at least partially 

functional in RCC cells [14, 15] and has implications for potential therapeutic targeting 

of the p53/MDM2 pathway in RCC (discussed below).
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Our cohort was selected based on records from a larger archive of recorded RCCs 

stored at the Liverpool Tissue Bank and is biased towards the most common sub-type 

of RCC; clear cell RCC (ccRCC). There are a number of possible reasons for this bias. 

Firstly in such a small number of samples there may arise a sampling bias due to the 

nature of samples archived and the quality of these. In addition, samples were selected 

for inclusion on the TMA based upon histological condition and pathological criteria as 

determined by two histopathologists and this has also contributed to the observed bias 

in the TMA towards ccRCC. Whilst several of our observations are significant, there is 

clearly a need for a follow-up study which includes more samples and particularly of a 

cohort that has more samples from later disease stages, including node positive and 

metastatic cancers, to evaluate whether analysis of p53 and MDM2 expression is 

informative for other RCC cohorts. It would be interesting in future studies to examine 

whether patients with RCC staining positive for p53 and MDM2 show a different 

response to kinase inhibitors targeting consequences of VHL mutations. Five studies of 

larger cohorts (n>170) appear to have resolved the long-standing lack of clarity 

regarding p53 expression in RCC with all of them finding that up-regulation of p53 is 

associated with more advanced or aggressive disease (the studies determined 

variously: decreased disease-specific survival/disease recurrence/decreased 

metastasis-fee survival/ decreased disease free survival) [16-20]. Flowever, to date, 

MDM2 expression and the mutational status of the expressed p53 have not been 

analysed in a large cohort study.
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Regarding p53/MDM2 co-expression: The low frequency of p53 mutation in RCCs 

suggests that the strong association between p53 positivity and MDM2 positivity 

reported here and elsewhere in renal cancers [12, 13], is likely a consequence of p53- 

mediated up-regulation of MDM2 and this conclusion is supported by our functional and 

genetic analysis of p53 which demonstrates that the majority of cases with p53 up- 

regulation retain wild-type p53 (86%, 12/14 cases). In normal cells p53 is maintained at 

very low levels through the action of MDM2, an essential negative regulator of p53 [21]. 

MDM2 negatively regulates p53 in several ways by binding to it [22] and by acting as an 

E3 ubiquitin ligase promoting nuclear export and degradation of p53 [23]. MDM2 is also 

a transcriptional target of p53 and thus an auto-regulatory feedback loop exists between 

p53 and MDM2 [15]. The notion that MDM2 is transcriptionally up-regulated by p53 in 

this sub-set of RCCs accords with our earlier studies in which we showed that wild-type 

p53 can up-regulate MDM2 in RCC cells [14], and with data from others [24, 25]. In 

addition, we have recently shown that p53 and MDM2 can become spontaneously up- 

regulated in RCC cells in vitro and the up-regulation of MDM2 is a direct consequence 

of p53 up-regulation [26]. We have also found that p53 retains some specific 

transcriptional activity in RCC cells and it appears that this enables the selective 

activation of a sub-set of p53 target genes, for example we have found that p21 

(CDKN1A) and MDM2 are up-regulated by p53 in RCC cells in vitro whereas Bax is 

less so. Taking the literature for p53 in RCC as a whole and including the data 

presented here, we propose a model (see Figure 3) for the p53 pathway in RCC cells in 

which p53 up-regulation results from a partial break in the p53/MDM2 loop where p53 

retains the ability to up-regulate some targets including MDM2, but that up-regulated 

MDM2 appears to be unable to fully complete the loop and promote degradation of p53 

effectively enough to return it to normal levels.
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Why the up-regulated MDM2 fails to promote effective degradation of p53 in this setting 

and in so doing, return expression of both p53 and MDM2 to their normal low levels, 

remains unclear. Regardless, since the observed strong association between p53 and 

MDM2 co-expression in RCC has not been observed in most other cancers, this 

indicates that there must exist kidney-specific (perhaps unique) aspects to the 

function/regulation of the p53/MDM2 axis, and hence to renal carcinogenesis which 

future investigations must take into account.

Regarding the association between co-expression and outcome: up-regulation of 

mutant p53 has frequently been linked with poorer outcome measures in many solid 

tumours which is not surprising since p53 is a tumour suppressor implicated in a wide 

range of cancers [27]. Mutations in the p53 gene (TP53) occur in approximately 50% of 

all human cancers and are the most commonly observed genetic lesion detected to 

date [28].

However, in RCC p53 mutation is rare so the problem becomes how can up-regulation 

of normal (wild-type) p53 promote cancer? By itself, this seems incongruous, so it 

appears more likely that since up-regulation of wild-type p53 leads to increased 

expression (and reduced expression in some cases) of a sub-set of p53 target genes, 

then it seems probable that the target genes themselves must be responsible for 

promoting disease progression with the MDM2 proto-oncogene being a front runner for 

consideration in the first instance.

250



Although best understood for its critical role as a negative regulator of p53 [21], MDM2 

can also promote cancer through as yet unidentified p53-independent mechanisms [29], 

that may be associated with invasion and/or metastasis [30, 31]. Two studies of MDM2 

and p53 in renal cancer have been performed previously and in both a correlation was 

observed between p53 and MDM2 expression [12, 13], There is good evidence that 

relatively minor changes in the balance between p53 and MDM2 may have pathological 

consequences. For example, a roughly two-fold increase in MDM2 levels associated 

with the G/G haplotype at SNP309 can result in an increased risk of cancer 

development [32], In addition our own recent studies have shown that MDM2 can 

promote increased motility and invasion in RCC cells [26] and this might provide an 

explanation for the observed association between MDM2 expression and reduced DSS.

Our findings add further support for kidney-specific events in carcinogenesis since the 

combination of linked co-expression of p53 and MDM2 in more aggressive cases has 

not been observed in other cancers. With respect to p53 in kidney, there is additional 

evidence supporting this conclusion, since p53 is up-regulated in response to DNA 

damage in this tissue, as in many others, but unusually up-regulation of p53 does not 

result in apoptosis [8]. Notwithstanding these tissue-specific issues, there is also good 

evidence that loss of p53 function can contribute to renal carcinogenesis. For example, 

loss of p53 function through mutation accelerates renal carcinogenesis in a murine 

model of cancer [9].
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A key question that arises is the interaction of the p53/MDM2 pathway with other critical 

pathways in the kidney such as VHL/HIF [33]. Mutations in VHL are the most frequent 

genetic event reported in renal cancer with a reported incidence in sporadic clear cell 

RCC of around 70% [34]. Although VHL mutations also occur in sporadic 

haemangioblastomas, it is clear that loss of VHL function is an event that is of most 

significance in the kidney and clearly further investigations of the p53 pathway should 

incorporate analyses of VHL and the pathways regulated by it.

in conclusion, one of the most exciting prospects to arise from these studies is the 

potential that exists for therapeutic targeting of the up-regulated wild-type p53 and/or 

MDM2 in a sub-set of patients with reduced DSS. This opportunity appears likely to be 

particularly applicable to RCC as a consequence of the unusual association we have 

detected between co-expression and outcome. Thus these studies may lead, not only 

to the identification of biomarker-defined sub-sets of patients displaying altered survival, 

but also to the development of personalised therapeutic strategies, including the use of 

MDM2 inhibitors currently being developed (such as Nutlin-3 and the Ml- series of 

compounds [35, 36]) for selected patients with RCC.
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Figure legends

Figure 1. p53 and MDM2 expression in RCC cells from samples on the TMA. A.

and B. Typical examples of negative and positive immunohistochemical samples of A. 

MDM2 and B. p53 are shown on the upper and lower panels respectively. C. Dual 

immunofluorescence detection of p53 (red) and MDM2 (green) demonstrating that 

individual RCC tumour cells express both proteins.

Figure 2. p53 and MDM2 up-regulation is linked with reduced disease specific 

survival. A and B. Kaplan-Meier plots for A. stage pT1-2 versus stage pT3. and B. for 

disease specific survival for patients dichotomized according to p53/MDM2 dual positive 

cancers versus p53 and/or MDM2 negative cancers (i.e. p53/MDM2 (+/+ vs +/-, -/+ or - 

/-)). Statistical analysis by log-rank test.

Figure 3. A model of p53/IVIDM2 homeostasis in different settings and for RCC 

based upon the literature and on the present study. In normal cells p53 and MDM2 

co-exist at relatively low levels and this is regulated by MDM2 produced constitutively 

(from the p53-independent R1 promoter) promoting degradation of p53. Following 

stress, MDM2 no longer interacts with p53 leading to a rapid increase in p53 levels and 

subsequently p53 target genes are induced. MDM2 is also up-regulated from the p53 

responsive P2 promoter and thus p53/MDM2 homeostasis is regulated by an auto- 

regulatory feedback loop. If the stress signal is removed, in surviving cells, the up- 

regulated MDM2 binds to p53 returning the cell to the normal steady state of low levels
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of p53 and MDM2. In most cancer cells that harbour mutant p53 (p53*), p53 exists in 

excess due an imbalance in p53/MDM2 homeostasis which arises because of failure of 

mutant p53 to induce MDM2 expression. In normal kidney p53 is up-regulated in 

response to stress e.g. DNA damage but this fails to elicit an apoptotic response due to 

unknown mechanisms. There is clearly a block to MDM2-nnediated degradation of p53 

in RCC, but the nature of this remains to be elucidated. Text in bold indicates increased 

protein abundance.

259



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BJU International Page 28 of 32

Noonetal Figure 1

232x309mm (300 x 300 DPI)

260



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

D
is

ea
se

 S
pe

ci
fic

 S
ur

vi
va

l / 
D

is
ea

se
 S

pe
ci

fic
 S

ur
vi

va
l /

Fr
ac

tio
n 

Su
rv

iv
in

g 
Fr

ac
tio

n 
Su

rv
iv

in
g

BJU International

-ve p53 and/or MDM2 (n=79) 
+ve p53 & MDM2 (n=11)

(P=0.027)

>0 100 150
Follow Up Time / Months

Stage [pT1-2] (n=69) 
Stage [pT3](n=21)

(P=0.022)

0 50 100 150 200
Follow Up Time / Months

Noonetal Figure 2

164x266mm (300 x 300 DPI)

261



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BJU International Page 30 of 32

Typical cancer cell
Normal cell p53 mutant (p53*) Kidney cell

+ cellular stressunstressed + oncogenic stress

MDM2T

Bax etc.

HMDM2 apoptosis

RCC cell
+ oncogenic stress

♦ cellular stress

MDM2T Bax etc

apoptosis

Bax etcBax etc motility

apoptosisapoptosis/DNArepairetc

Noonetal Figures

218x278mm (300 x 300 DPI)

262



Page 31 of 32 BJU International

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1. Patient cohort summary and IHC data summary

Number of patients in each category by IHC phenotype 
(percentage)1

All p53 + p53 - MDM2 + MDM2- p53 +/ MDM2 +

No. of Tumours 90 14(15.6) 76 (84.4) 24 (26.7) 66 (73.3) 11 (12.2)

Male 60 (66.7) 8 52 12 48 6

Female 30 (33.3) 6 24 12 18 5

Mean Age (24 - 82) 60.6 55.2 61.5 58.2 61.4 59.8

Histological subtype

Clear cell 87 (96.7) 14(100) 73 (96.1) 24 (100) 63 (95.5) 11 (100)

Papillary 2 (2.2) 0 2 (2.6) 0 2(3) 0

Chromophobe 1 (1.1) 0 1(1.3) 0 1 (1.5) 0

Fuhrman Grade

1 20 (22.2) 3 17 7 13 2

2 37 (41.1) 3 34 10 27 3

3 29 (32.2) 7 22 6 23 5

4 4 (4.4) 1 3 1 3 1

Tumour Stage2

1 44 (48.4) 8 36 15 29 6

1a 6 0 6 1 5 0

1b 38 8 30 14 24 6

2 25 (29.6) 5 20 6 19 4

3 21 (22) 1 20 3 18 1

3a 17 1 16 3 14 1

3b 4 0 4 0 4 0

3c 0 0 0 0 0 0

4 0(0) 0 0 0 0 0

1 No patients had evidence of metastatic disease at the time of nephrectomy
Noon et al Table 1
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Table 3. Analysis of selected tumour samples

Specimen p53 Positive by MDM2 Positive by p53 status by FASAY/DNA Died of Died
ID IHC IHC seq. analysis RCC

1 YES YES Wild-type1 NO NO

2 YES YES Wild-type1 NO NO

3 YES YES Wild-type1 NO NO

4 YES YES Wild-type1 NO NO

5 YES YES Mutant/G245C1 YES YES

6 YES YES Wild-type1 NO NO

7 YES YES Wltd-type1 YES YES

8 YES YES Wild-type1 YES YES

9 YES YES Mutant/Q136E1 NO NO

10 YES YES Wild-type1 YES YES

11 YES YES Wild-type1 YES YES

12 NO YES ND NO NO

13 NO YES ND NO NO

14 NO YES ND YES YES

15 NO YES ND YES YES

16 NO YES ND NO NO

17 NO YES Wild-type1 NO NO

18 NO YES ND NO NO

19 NO YES ND NO YES

20 NO YES ND NO YES

21 NO YES Wild-type1 NO YES

22 NO YES ND NO NO

23 NO YES Wild-type1 NO NO

24 NO YES ND NO NO

25 YES NO Wild-type1 NO NO

26 YES NO Wild-type1 NO NO

27 YES NO Wild-type1 NO NO

28 NO NO Wild-type1 NO NO

IHC, immunohistochemistry, FASAY, functional assay of separated alleles in yeast, 
ND= not done.

1 Sequence confirmed for at least three clones or by direct sequencing of PGR products. 
Sequences were compared to the Homo sapiens chromosome 17 contig 
NT_010718.15, positions 7189581-7169068 bp, using Sequencher v 4.9 software 
(Gene Codes Corporation).

Noon et al Table 3
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