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ABSTRACT

Introduction

Odontogenesis is a paradigm for biomineralisation, Amelogenesis imperfecta (AI) is an 

inherited tooth enamel defect displaying genetic and phenotypic heterogeneity. The enamel 

extra-cellular matrix proteins amelogenin and enamelin are coded for by human genes 

(AMELX, OMIM300391 and ENAM, OMIM606585) and mice genes (Amelx and Enam) that 

are implicated in the aetiology of AI. Mouse models containing specific gene mutations are 

comparable to those found in humans because they disrupt protein function during the 

different stages of enamel formation that are reflected in the overlapping range of AI 

phenotypes; Amelx*6**1 and EnamRgsc395 mutant mice display similar phenotypes to humans 

with X-linked AI and autosomal dominant local hypoplastic AI respectively.

The mouse model is accessible and amenable to experimental investigation. The mandible 

represents a series of developmental units and the incisor tooth continuously grows giving a 

permanent record of all stages of enamel formation. Accurately measuring mandible 

morphology, incisor morphology and enamel colour and whiteness can quantify 

morphological development and enamel mineralisation.

Aims

To develop, test the reliability of and validate four novel measurement methods; a 2D image 

analysis system (IAS) to measure murine (i) mandible morphology, (ii) incisor tooth 

morphology, (iii) incisor enamel colour and whiteness, and (v) a 3D IAS to measure incisor 

morphology and enamel surface structure. To use the new methods to characterise the 

phenotypes of an experimental population of Amelx and Enam mutant mice that model 

human AI. To use the wild-type genotype groups as controls and as baselines for comparison 

with the respective mutant littermate genotype groups. To investigate the phenotype variation 

between the genotype groups and use the significantly different valuables to differentiate 

between the affected and unaffected groups. To demonstrate the effect of the specific gene 

mutations on the function of the amelogenin and enamelin proteins. To explore mandible and 

incisor morphological development and enamel mineralisation.
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Methods

An established 2D IAS was modified with a macro-lens for the small mouse application. A 

standardised algorithm was developed in-house for the enamel colour and whiteness 

assessment. A bespoke 3D IAS was developed by adapting a high resolution measurement 

device with a rotary stage to obtain 3D images in 360°. 2D and 3D analytical measurement 

tools and 3D modelling software were also customised.

A homogenous reliability population (n — 20) containing left and right mandibles and incisors 

was measured from the buccal, lingual and labial aspects using the new 2D IAS, 3D IAS and 

colour and whiteness methods. A heterogeneous experimental population {n = 35) containing 

the Amelx^1 and Enam^T (wild-type) control genotype groups and the ^twc/xx/Y64H 

(heterozygous), AmelxYrY6m (hemizygous) and ^we/xY64H/Y64H (homozygous) and the 

EnamKgsc heterozygous and EnamRgsc homozygous mutant genotype groups were similarly 

measured.

Measurement reliability was determined by multiple operator correlation, method agreement 

and descriptive statistics. Bonferonni corrected significant differences (p = 0.002) were 

identified by Analysis of Variance, Multiple Comparisons and Tuckey Honestly Significant 

Differences tests.



Results

The intra-operator and inter-operator measurement reliability of the 2D IAS mandible 

morphology (ICC > 0.77), incisor morphology (ICC > 0.75) and colour' and whiteness 

assessment (ICC >0.13) methods were predominantly classified as excellent. The 2D and 3D 

methods demonstrated significant (p < 0.01) agreement (PCC > 0.71) with no significant 

differences (p < 0.01) between measurements, except in one variable. The confidence 

intervals, limits of agreement and bias assessments were all highly satisfactory. A principal 

component analysis highlighted strong size and shape defining relationships between the 

morphological variables.

Significant differences (p < 0.002) in morphology and colour and whiteness were evident 

between the unaffected Amelxvl group and the three affected mutant groups Amelx™6^, 

AmelxYIYMU and ^tme/xY64H/Y64H. Mandibles and incisors were largest in the Amelx^1 group 

and smallest in the yfme/xY64H/Y6H group. The yf?we/xx/Y64H incisors were of intermediate size, 

shape and colour. The Amelx^1 incisors constituted high ye//ow and low whiteness and low 

lightness colour* components in complete contrast to the discoloured y4me/xY/Y64H and 

yfwe/xY64H/Y64H incisors; the significant differences were identified in the incisal and whole 

enamel surface regions that corresponded to the mature and all stages of enamel development 

respectively.

Significant differences (p < 0.002) in morphology and colour and whiteness were evident 

between the unaffected Enarn^1 and the two affected mutant groups EnamRgsc heterozygous 

and homozygous. Mandibles and incisors were largest in the Enam^1^ group and smallest in 

the EnanP®* heterozygous group. The Enain*11 incisors constituted high yellow and low 

whiteness and low lightness colour components in complete contrast to the similarly 

discoloured Enarn1^ heterozygous and homozygous incisors; the significant differences were 

identified the in the middle, incisal and whole enamel surface regions that corresponded to 

the secretory, mature and all stages of enamel development respectively.
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Conclusions

The novel 2D IAS, colour and whiteness and 3D IAS have provided a series of macro-metric 

morphological and micro-metric surface parameters that were highly reliable and selective. 

The methods were successfully validated as practical, objective and quantitative approaches 

to accurate phenotyping of mice mandibles, incisors and enamel.

The experimental comparison detected significant differences between the unaffected wild- 

type controls and affected experimental mutants in mandible morphology, incisor 

morphology, and in enamel colour and whiteness. This was directly attributed to the specific 

gene mutations that were proposed to have caused protein truncation and loss of function, 

which disrupted enamel formation and led to severe enamel defects. The Amelx and Enam 

mouse models phenocopied AIH1 and AIH2 respectively; the AmelxY/Y6411 and 

AmeIxY64¥UY64H incisor displayed thin hypoplastic enamel characteristic of AIH1; the 

Amelx™6411 incisors displayed hypomineralised enamel characteristic of AIH1; the EnamRgsc 

heterozygous and homozygous inciSors showed localised hypoplastic enamel characteristic of 

AIH2.

The sites of the significant enamel discolouration were different in the Amelx groups (incisal, 

whole) and the Enam groups (middle, incisal, whole), supporting the different affects of the 

two proteins and the respective mutations; amelogenin disrupted the mature stage of enamel 

formation and enamelin disrupted both the secretory and mature stages. Overlapping enamel 

phenotypes were differentiated by separate and specific surface regions that corresponded to 

the different developmental stages of enamel formation.

This study supported the multifunctional role of amelogenin in alveolar bone formation 

during mandible development. The Amelx™64^ intermediate enamel phenotype was 

concordant with lionisation and X-chromosomal inactivation. This study supported the 

critical involvement of the amelogenin and enamelin proteins in controlling enamel structural 

organisation and generating the full thickness of enamel during mineralisation. This study 

supported the intracellular protein-protein trafficking/ chaperoning secretory pathway 

recently proposed as an explanatory mechanism for dysplastic enamel mineralisation. The 

phenotype was correlated to the genotype in two pertinent mouse models of human AI.
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1. Introduction

U. INTRODUCTION

This project aims to further the information on normal and abnormal dental enamel 

mineralisation using novel 2D and 3D imaging and analytical measurement tools. This 

project used murine models to enhance the phenotypic differentiation and further the 

aetiological understanding of an inherited group of dental enamel defects known as the 

Amelogenesis imperfectas.

The project was the result of work carried out at The University of Liverpool, School of 

Dental Sciences. It was undertaken as part of the five year Wellcome programme grant (ref. 

075945/c/04/z) that involved separate but allied parallel clinical and laboratory molecular and 

biochemical investigations at three other institutions; The University of Leeds, The 

University of Manchester and The University of Sheffield, and their respective University 

Hospital and National Health Service Primary Care Trusts.

Ethical approval was granted according to the Wellcome Trust programme grant.
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1. Introduction

1.2. EXPERIMENTAL DESIGN AND METHODS

1.2.1. Animal Models of Amelogenesis imperfecta

Odontogenesis is a paradigm for biomineralisation. The murine tooth model affords 

substantial opportunities for investigating the role of the extra-cellular matrix (ECM) proteins 

in enamel mineralisation. Amelogenesis imperfecta (AI) is an inherited enamel defect 

displaying genetic and phenotypic heterogeneity. The predominant ECM proteins amelogenin 

and enamelin are encoded by human (AMELX> OMIM300391 and ENAM, OMIM606585) 

and mouse (Amelx and Enam) gene homologues that are implicated in the aetiology of AI. 

Mouse models containing specific gene mutations are comparable to those found in humans 

because they disrupt protein function during different stages of enamel formation that are 

reflected in the overlapping range of AI phenotypes; Amelx1 and EnamRgsc395 mutant mice 

display similar phenotypes to humans with X-linked AI (A1H1, OMIM301200) and 

autosomal dominant local hypoplastic AI (A1H2, OMIM104500) respectively.

Mouse heads were obtained from Professor Michael Dixon’s laboratory at The University of 

Manchester, UK, where the breeding colony was established from RIKEN (Riken, Wako, 

Japan) parent stock generated by N-Ethyl-N-nitrosourea (ENU) mutagenesis and identified 

dining large scale phenotype driven screening (www.gsc.riken.go.in/MouseA. ENU 

mutagenesis generates point mutations to appropriately model human genetic diseases.

The mouse models are accessible and amenable to experimental investigation. Mouse 

mandibles and mandibular incisors are well suited to the quantitative study of tooth 

morphological development and enamel mineralisation respectively. The mouse mandible is 

a homologous developmental unit and the continuously growing mouse incisor represents all 

stages of enamel formation. Incisor enamel surface structure exhibits the pre-secretory, 

secretory and mature developmental stages of enamel formation. The tooth provides a 

permanent record of tooth development and enamel formation (amelogenesis). This permits 

direct correlation between the observable phenotype and the underlying genetic lesion.

Mandible and incisor morphological measurement (morphometry) and colour and whiteness 

assessment are excellent methods by which to quantify the developmental plasticity and the 

effect of the specific gene mutations on the critical function of amelogenin and enamelin in

3
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1. Introduction

the phenotype variation of AI. Relating the macro-metric and micro-metric phenotype to the 

genotype helps to understand the aetiology of AL The quantifiable effect on enamel 

mineralisation will lead to new information relating to the biological function of amelogenin 

and enamelin proteins in vivo in mice and in humans.

1.2.2. Detailed Phenotyping

New murine dental phenotyping approaches permit essential method reliability and validity 

to be determined for four new measurement methods; a modified 2D image analysis system 

(2D IAS) for (i) mandible morphology, (ii) incisor morphology (iii) enamel colour and 

whiteness assessment, and (v) a new 3D IAS incisor morphology and surface analysis 

method. A homogeneous wild-type population of extracted mouse mandibles and incisors 

will be used in a statistically comprehensive study of method reliability. The in-house 

developments - e.g. the novel colour and whiteness software algorithm, the customised 

hardware modifications and the novel specialised analytical software - will present major 

research outcomes that specifically meet the requirements of the small mammalian tooth 

application.

The new measurement methods will quantitatively characterise the phenotypes of mandibles, 

incisors and enamel mineralisation of an experimental population of two mouse models of 

AI. The unaffected Amelx and Enam (wild-type) control mice will serve as a baseline for 

comparative analysis with their respective affected Amelx*™6411 (heterozygous), AmelxYfY64li 

(hemizygous) and AmelxY64WY64H (homozygous) and the EnamKssc heterozygous and 

EnamKgsc homozygous phenocopy mutant mice groups. A multiple comparison analysis of 

variance will provide robust statistical support.
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1. Introduction

1.3. RELATING PHENOTYPE TO GENOTYPE

Standardised and comprehensive characterisation of the two animal models will permit valid 

phenotype to genotype correlation providing fundamental information in respect of the role of 

the specific ECM proteins in enamel mineralisation, while increasing the relevance of the 

research to end users/ patients by translation to the human condition. The 2Ds and 3D 

investigations will provide significant additional quantitative data to describe previously 

inaccessible information on animal tooth morphology, lesion pattern and enamel distribution 

in respect of the macro-metric and micro-metric effect on the AI phenotype.

The new 3D IAS will facilitate new 3D surface analysis to provide a unique and accurate 

topographical examination of animal model lesion size and surface deficiencies and, 

furthermore, the nature and extent of structural defects present. Analysing the phenotype in 

relation to the genotype will address questions such as the causes of the variation in 

phenotype between individuals with the same single gene mutation and the variation in 

degree to which different teeth are affected in the same individual.

This will not only provide new infonnation on defective dental mineralisation in respect of 

the effects of specific mutations in the ECM protein components but will also facilitate 

extrapolation from the animal to the human situation.
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1. Introduction

1.4. SUMMARY

In addition to providing a robust platform against which to interpret the roles of specific 

ECM components during odontogenic mineralisation, this study provides micro-metric and 

macro-metric observations for the systematic characterisation of dental defects and enamel 

phenotypes of animal teeth. This will permit correlations between the phenotype and the 

underlying genetic pathogenesis. This will provide quantitative phenotype level evidence to 

support the biochemical and histological data that has recently proposed the intracellular 

protein-protein interactions and trafficking/ chaperoning secretory pathways to be a key 

mechanistic factor underpinning the aberrant enamel mineralisation observed in AI.
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2.1 INTRODUCTION

2.1,1. 2D and 3D Morphometric and Colour and Whiteness Assessment

Image analysis has long been applied in dental morphology research because morphometric 

methods are well suited to experimental studies of anatomical form, structural development 

and morphogenesis. Image analysis increases understanding because it is objective and can 

simplify phenotypes into shapes and sizes that may be explored quantitatively.

Tooth colour is significantly influenced by the combined physico-optical properties of the 

dental hard tissues and enamel surface topography. Therefore, the normal and abnormal 

mineralisation of enamel and dentine affects tooth colour, and conversely, measurement of 

colour and whiteness measurement can be used as an indicator of levels of mineralisation.

Innovation in methodology can have important applications in addressing research questions. 

The numerous 2D and 3D imaging methods provide versatile techniques for morphological 

investigation that can be quickly and conveniently stored on a personal computer. The rise of 

digital imaging, the fall of photographic film use and the increased accessibility of digital 

technologies has expanded the applications of image analysis.

The literature review will detail a wide variety of 2D and 3D approaches to recording and 

measuring human and mouse dental morphology, and colour and whiteness. In assessing 

techniques for image acquisition, quantitative analysis and comparison, the available and 

developing technologies will be discussed in the context of those that can be translated from 

the human and optimised for the mouse application. Economy, speed, practicality, 

measurement accuracy, reliability, and breadth of parameters will be used as criteria for 

evaluating the limitations and efficacy of each method, and for assessing its relative 

advantages and disadvantages in terms of potential use for the small mouse application. The 

review will focus on image analysis systems that accurately quantify developmental 

morphologies to investigate the structure-function relationships of disease aetiologies. The 

combination of 2D and 3D techniques will provide a complementary multilevel approach to 

studying the complex multifactorial aetiologies of various abnormal dental phenotypes.
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2.1.2. Tooth Development and The Mammalian Model

The accessibility of teeth makes them a convenient model for studying organogenesis. The 

similar developmental processes of human and mouse odontogenesis makes inbred strains of 

laboratory mice the mammalian model of choice for human dental disease, for a number of 

reasons. For example, mice and humans share a similar genome size, share many gene 

sequence homologies and orthologous proteins, and share many molecular regulatory 

mechanisms/ pathways during odontogenesis and skeletogenesis. The mouse incisor displays 

all of the distinct stages of initiation, morphogenesis, differentiation and mineralisation, 

including the complex processes that determine tooth number, size, shape, morphology and 

enamel surface structure. The genetic homogeneity of specially bred mice ensures a baseline 

level for experimentally introduced anomalies. Targeted gene mutation causes a single 

protein change that can be detected at the macroscopic phenotype level. This affect may then 

be attributed to the mutation under investigation, to provide insight into the processes of 

morphological development and enamel mineralisation. The mouse is the only mammalian 

model with which it is possible to employ both the phenotype to genotype (phenotype-driven) 

and genotype to phenotype (gene-driven) approaches.

Odontogenesis is a paradigm for biomineralisation. The important roles of the enamel ECM 

proteins in structural development, surface morphogenesis and mineralisation make the tooth 

a unique location to explore the phenotype-genotype relationship.

2.1.3. Mineralisation and the Predominant Extra-Cellular Matrix (ECM) Proteins

The precise ECM mediated orchestration of mammalian biomineralisation remains obscure 

but a number of important genes and proteins involved in dental mineralised tissue formation 

are recognised to provide instructional templates for crystal deposition, growth and 

morphology. The predominant enamel ECM proteins are amelogenin and enamelin. They are 

encoded by the Amelx and Enam genes respectively, which are evolutionarily conserved 

orthologues in humans and mice. Amelogenin constitutes 90% of developing enamel and 

enamelin is the largest but least abundant ECM protein (1-5%). Amelogenin and enamelin 

provided some of the earliest evidence of the ECM involvement in enamel mineralisation and 

have been extensively characterised. They are both secreted by ameloblasts in the various
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stages of enamel formation or amelogenesis. Their respective structures relate to their 

specific segregated functions in amelogenesis.

2.1.4. Phenotyping Murine Models of Amelogenesis Imperfecta

Mutations in Amelx and Enam genes are implicated in the aetiology of Amelogenesis 

imperfecta (AI), a clinically and genetically heterogeneous group of inherited dental defects. 

Three main deficiencies in the quality or quantity of enamel are broadly classified into three 

main AI phenotypes; hypoplastic, hypomineralised and hypomature. The diverse spectrum of 

phenotypes is dependent on the type and location of the specific gene mutations. Thus far, 15 

AMELX and 8 ENAM gens mutations have been identified in humans.

The Ami ex and Enam mouse models contain similar mutations to those found in humans. The 

targeted mutations are engineered to alter protein structure and disrupt function and have 

generated similar enamel phenotypes. These phenocopy mouse models substantiate the 

dynamic involvement of the ECM proteins in enamel formation. By detecting the affect of 

the specific protein changes on the macroscopic tooth morphology and microscopic enamel 

surface phenotype, in the distinct stages of amelogenesis, it may be possible to understand 

more about the specific roles of these proteins during enamel mineralisation and furthermore 

in the causality of AI.
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2.2. 2D DENTAL MEASUREMENT METHODS

2.2.1. Direct Methods

2.2.2.1. Callipers and Dividers:

The early dental surveying instruments designed for reproducing tooth shape and dental arch 

form were reported to be tedious, relatively imprecise and practically unsuitable for 

measurements on teeth (Biggerstaff, 1969). Dividers, sliding callipers, vernier callipers and dial 

callipers were among the first manual techniques used to obtain linear measurements from 

dental study models (Moorees et al, 1957; Bolton, 1962). The use of engineering dividers 

advanced with a millimetre rule (Bolton, 1958) and the desire for increased accuracy brought 

about the popular use of sliding callipers (Hixon and Oldfather, 1958; Hunter and Priest, 1960; 

Barrett et al, 1963; Moorrees and Reed, 1964). Conventional engineering callipers were also a 

readily available instrument for measuring tooth dimensions.

Comparing manual measurements using engineering dividers and sliding callipers found 

measurements on study models to be systematically 0.1mm larger than the equivalent intra-oral 

measurements (Hunter and Priest, 1960). This was likely to have been caused by errors 

introduced by the impression and/ or casting procedures. Sliding callipers and Boley gauge 

callipers demonstrated higher reproducibility and were reportedly easier to use, more accurate 

and consistent than the needle point dividers (Moorees et al, 1957; Shellhart et al, 1995). The 

introduction of digital callipers linked to a personal computer brought about a more rapid 

measurement and data acquisition (Mik and Cooke, 1998) and reduced measurement transfer 

and calculation errors (Ho and Freer, 1999). However, the measurement error associated with 

manual landmark positioning on the cast and other factors involving operator subjectivity, such 

as landmark determination and repositioning (Hunter and Priest, 1960), meant that digital 

callipers did not provide a sufficient degree of accuracy (Mik and Cooke, 1998) or appropriate 

scale for morphometric measurement of murine teeth (Hillson et al, 2005). The use of callipers 

would therefore be inappropriate in the current application.
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2.2.2. Indirect methods

2.2.2.1, Early Photographic Method:

An early 2D technique that digitised photographic negatives of study models with manually 

marked anatomical landmarks showed good method reliability (Biggerstaff, 1969). The system 

used a number of linear and surface area measurements to assess cusp variation with good 

intra-operator (MD ±0.014mm) and inter-operator (MD ±0.083mm) precision (Biggerstaff, 

1969). Although the overall method was less expensive and more versatile compared with the 

early direct techniques (Stanton et al, 1931). The method for defining anatomical landmarks 

was ambiguous and callipers were still recommended for traditional dental measurements.

This semi-automatic system represented an early move towards reduced subjectivity and 

associated error and the predominance of the indirect methods for dental measurement. 

However, restricted measurement capacity and questionable practicality made this particular 

photographic method unsuitable for the current murine application.

2.2.2.2. Savara’s Data Acquisition Method:

An indirect method that used photocopied reproductions of manually marked dental casts and 

reported no significant measurements differences (p < 0.001) was said to be reproducible, 

simple, economical and timesaving compared to the direct manual methods (Singh and Savara, 

1964). However, a similar method showed substantial differences between the actual cast 

measurements taken with callipers and photocopies of dental casts (Champagne, 1992). 

Although this technique was said to avoid the limitations of elaborate equipment, factors of 

enlargement, object to image distance and lighting methods, it presented numerous problems 

such as magnification and the inability to precisely duplicate a 3D object into a 2D planar 

image.

A photogrammetric method by the same author quantified human tooth form by way of a 

modified comparator and a decimal converter (Savara, 1965). This essentially photographic 

technique used semi-automated computer based data reduction and data analysis to avoid 

common errors associated with callipers, i.e. reading scales and transcribing the figures, but 

introduced new sources of error (Savara and Sanin, 1969). The method showed fair cast 

reorientation and mesio-distal measurement (SD Diff. ±0.09mm) but only a limited number of
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repeat measurements were carried out. The claimed benefits of this method were arguable and 

the expensive equipment and the need for skilled operators did not lead to its widespread use.

2.2.2.3. Transverse Micro-Radiography (TMR);

Transverse micro-radiography (TMR) is a 2D technique that allows the mineral content of the 

hard tissues to be quantified using X-ray absorption, which is proportional to the optical 

density of the photographic film or plate (Arends and ten Bosch, 1992). TMR is a practical 

and reliable technique but is also destructive, involving sample sectioning and polishing 

(Arends and ten Bosch, 1992). This is disadvantageous in terms of preparation time and also 

limits experimental design but TMR directly measures the mineral content of the dental hard 

tissues and quantifies mineral changes and distribution in enamel, dentine, and cementum 

(Higham et al, 2009). TMR allows very detailed examination of mineralisation, e.g in rodent 

incisors (Sato et al, 1996), but cannot investigate the macro-structure of the whole tooth.

2.2.2.4. 2D Image Analysis System:

The 2D Image Analysis System (IAS) was introduced to objectively measure tooth dimensions 

on dental casts (Brook et al, 1983). The early apparatus consisted of a black and white 

television camera, an adjustable calibrated stage and a macro-stand illuminated by four 

adjustable lamps. Operators were able to control image acquisition, storage and on-screen 

display by a mini-computer and host software. Calibrated images were derived from multiple 

views and the configuration files containing the camera settings and stage orientation data 

could be saved electronically in order to reposition models exactly during repeat measurements 

(Brook efa/., 1983).

Large numbers of recognised dental measurements (Moores et al, 1957) were taken using 

computer software with reasonable speed and intra-operator repeatability measurements 

(±0.1mm) compared to previous manual processes (Brook et al, 1983). Comparing the IAS to 

a classical dial calliper on 50 individuals with a mean reliability for occlusal (81%) and buccal 

(66%) view measurements validated this system with lower reliability than the classic manual 

measurements (96%) (Brook et al, 1986). This was because the dial callipers focused on 

individual teeth separately whereas the new technique enabled tooth measurements from the 

complete dentition and from multiple views. Calibration and alignment errors on the monitor 

were reported to be the cause of the measurement variation. However, the IAS introduced a
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versatile orientation stage and an increasingly automated computer analysis approach that 

reduced experimental error and expedited data comparison of different samples.

The new 2D IAS demonstrated numerous advantages over the direct methods and previous 

indirect methods, e.g almost double the range of measurements of previous studies (Keiser, 

1990) and a greater accuracy (±0.01mm) than digital callipers (Mitutoyo Ltd., Japan) (Brook 

et al, 1999). Novel software programmes called macros aided morphological analysis and 

provided a greater variety of measurements (Khalaf et al, 2001). The method measured all 

tooth types from various views with excellent intra-operator repeatability (ICC > 0.97) 

(Brook et al, 1999). Several considerable improvements contributed to the good to excellent 

multiple independent operator reliability (ICC 0.60 - 0.96), e.g. calibrated illumination and 

standardised model positioning, and have produced a comprehensive total imaging system 

(Brook et al, 2005a), valid imder both in-vitro and in-vivo conditions (Smith et al, 2008a).

The application of the 2D IAS has been expanded for multiple purposes that include tooth size 

comparisons (Khalaf et al, 2001, 2005a, 2009), analysis of curvature (Smith etal, 2007), tooth 

symmetry (Khalaf et al, 2005b; Di Biase et al, 2006), tooth colour (Brook et al, 2007; Lath et 

al, 2007a), stain (Lath et al, 2006; Lath et al, 2007b), plaque (Smith et al, 2001, 2004, 2006) 

and gingival inflammation assessment (Smith et al, 2008b). A series of studies on hypodontia 

(McKeown et al, 2002), supernumerary teeth (Khalaf et al, 2001, 2005a, 2009), enamel 

defects (Brook et al, 2001; Elcock et al, 2006; Smith et al, 2009a) and examination of 

Romano-Briton populations (Brook et al, 1995, 2006) has highlighted the diverse functionality 

of the 2D IAS in investigating the multifactorial influences of genetic, epigenetic and the 

environment on tooth morphology and development (Brook et al, 20002, 2005b), and disease 

aetiologies (Brook et al, 2009). Indeed, the system upholds the gold standard for measuring 

dental morphology in 2D, and in validation studies on novel 3D measurement methods (Smith 

et al, 2009b; Horrocks et al, 2009).
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2.3. MORPHOMETRICS

2.3.1. Mandible Morphometries

A variety of non-morphometric methods have furthered the understanding of the molecular 

and cellular processes that effect morphogenesis, e.g. fluorescent protein assays in cleft lip 

and palate (Parsons et al, 2008) and 3D serial histology of developing teeth (Lesot et al, 

1996, 1998) and mandibles (Ramaesh and Bard, 2003). However, although quantifying 

biochemical activity and microscopic ultra-structural growth has proven invaluable, 

particularly in studies of development and embryogenesis, these approaches would not be 

applicable for measuring tooth morphology or enamel surface structure analysis. Typically 

they have given little attention to subtle differences among the developmental mechanisms of 

conspecific organisms, despite the fact that experimental manipulations frequently produced 

a range of overlapping phenotypic manifestations (Bailey, 1985, 1986; Cooper and Albertson, 

2008). Therefore, non-morphometric investigations can overlook the important overlapping 

variation in a range of phenotypes that have ramifications for differentiation in diagnosis.

Considering multiple biometric characters or morphometric variables allows quantitative 

estimation of morphological variation and divergence among populations as a result of 

genetic relationship in a complimentary approach to non-morphometric microscopic and 

histological methods (Ansorge, 2001). Furthermore, quantitative analysis of morphological 

variation provides a baseline framework for determining if fine scale phenotypic changes 

between control and mutant populations are the result of an experimentally induced alteration 

or developmental noise. Classical targeted disruptions of specific genetic pathways have lead 

to a significantly deeper understanding of the molecular regulation of morphogenesis and 

development. However, this extensive multidisciplinary research does not quantify how 

anatomical traits are affected at the phenotype level to give a more holistic view of the 

genotype-phenotype interactions. The bioinformatic methods that mathematically model 

developmental systems (Jemvall et al, 2000) and/ or data-mine phenotypes (Plyusnin et al, 

2008) are out of the scope of this review.

On the other hand morphometric techniques quantify shape descriptions and calculate 

morphological variation when powerfully combined with statistical methods (Bookstein, 

1984), e.g. Principal Component Analysis (Harris et al, 1988; Khalaf et al, 2001) or Planar
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Procrustes Analysis (Robinson et als 2001, 2002). A great wealth of infonnation about the 

genetic basis and development of anatomical form was generated from the use of 

comparative morphology in evolutionary genetics (Wentworth-Thompson, 1942; Bookstein, 

1998; Klingenberg, 2002). Most biological forms contain specific landmarks that are 

structurally consistent loci (or points) and have evolutionary, ontogenetic, and/or functional 

significance (Lele and Richtsmeier, 1991). Homologous landmarks correspond between two 

or more characteristics of organisms cause continuity of information between groups/ 

populations in experimental studies (van Valen, 1982). Such landmarks may be useful in 

morphometric analysis when they are consistently and reliably located with a measurable 

degree of accuracy on all forms considered (Roth, 1988; Bookstein, 1997).

Skeletal features have long provided an amenable system for quantifying anatomical form; in 

particular the mouse mandible has been an excellent model for the complex morphological 

development of oro-facial structures (Gaunt, 1964; Atchley et ah, 1985; Atchley and Hall, 

1991; Bookstein, 1998). Such features can be analysed using (i) direct measurements (Gaimt, 

1964; Bailey, 1985, 1986), which characterise relative sizes of parts by linear distance 

measurements, (ii) the Cartesian coordinate locations of anatomical landmarks (geometric 

morphometries) (Moore, 1973; Klingenberg et al, 2001; 2004), or (iii) by the outline shapes 

of structures of interest (Lavelle, 1983; Moss, 1988; Cheveraud et ah, 1990; 1996). 

Investigations into the variability of size and shape in inbred mouse mandibles have used 

multivariate statistical analysis (Zelditch et al, 1989) or finite element scaling analysis 

(Moore, 1973; Moss, 1988; Cheverud et al, 1983, 1990) to quantify morphological 

divergence between well defined genotype groups.

Geometric methods combined with the multivariate generalisation of linkage analysis that 

reflect the entire diversity of spatial patterns of gene effects have been successfully used to 

analyse mandible size and shape by quantitative trait loci (Cheverud et al, 1996) and 

Procrustes landmark superimposition (Klingenberg et ah, 2001). Principal Component 

Analysis (PCA) has been shown to spread the measure of variation evenly across factors so 

that size valuation does not dominate and that new parameters avoid landmark overlap in the 

same regions with sparse sampling and missing variation in regions spamied by long 

measurements (Zelditch et ah, 1989). Other statistical methods have been also effective in 

analysing population differences and showed phenotypic variation was an effective 

exploratory strategy (Klingenberg, 2002).
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Homologous landmark features between individuals illustrate morphogenetic traits and make 

it possible to detect the magnitude of developmental and phenotypic variation between 

inbred, genetically identical strains of model organisms. For example, skeletal modules or 

units may be used for linear measurements of both aspects of the mandible (Gaunt, 1964) and 

measurements between anatomical landmark points correspond to biometric regions of 

biomechanical significance (Moore, 1973). In fact, using characteristic mandibular landmarks 

the systematic morphometric analysis of 15 previously indistinguishable strains of inbred 

mice were differentiated using morphometric measurements with 98% accuracy (Festing, 

1972). Also inaccuracies associated with poorly defined non-homologous biological 

landmarks were eliminated by datum point coordinate measurement methods that described 

the profile of the mandible in outline form, using a strip chart digitiser (Lavelle, 1973) and 

triangulation truss (Strauss et al, 1982; Zelditch et al, 1989). A number of more recent 

examples that successfully quantify form to describe the mutational effects on anatomical 

growth and formation may be found in Cooper and Albertson (2008).

2.3.2. Landmark/ Measurement Determination

By using a combination of direct linear methods (Moore, 1973; Bailey, 1985, 1986) and 

outline analysis (Lavelle, 1972, 1983; Moss, 1988) it will be possible to achieve new 

meaningful morphometric variables that will be more than the sum of the traditional 

anatomical landmark measurements (Figure 1.).
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Figure 1. Mandible Morphometries

17
Id

(A) landmark points used to determine features for investigation (Festing 1972); (B) linear measurements 
between landmarks (Moore, 1973); (C) outline description of form by equidistant data points (Lavelle, 1973); 
(D) morphogenetic features that represent functional and developmental traits (Atchely et al, 1985). Right and 
left hemi-mandibles shown.

The mandible morphology will be characterised by integrating established morphological 

landmarks with those from new measurement techniques to provide further parameters for 

anatomical and morphogenetic linear measurements within and between developmental units. 

Equally spaced data points have previously described the outline form or profile of both 

aspects of mandibles (Lavelle, 1973) and prominent morphogenetic features representing 

functional and developmental traits (Atchley et al, 1985) will be combined to define new 

measurements, e.g. perimeter and surface-area. The benefits of the 2D IAS include increased 

automation and minimal operator subjectivity (Brook et al, 2005a) that will help define 

additional measurement parameters and extended the versatility of the existing system to 

provide an exciting possibility for exploring phenotype variation in dental morphology and 

development.
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2.4. 3D DENTAL MEASUREMENT METHODS

2.4.1. Direct Methods

The direct methods employed specifically constructed instruments to measure tooth 

dimensions by direct mechanical contact, e.g. the Symmetrograph (Korkhaus, 1930) and the 

Optocom (van Der Linden, 1972). The Symmetrograph was a simple manual appliance that 

transformed the 3D contours of dental casts into a 2D profile on graph paper (Moyers, 1988; 

Ciambotti et al, 2001). The Optocom consisted of a light microscope mounted onto a 

moveable table that positioned dental casts for imaging (van Der Linden, 1972). Their 

method reliability was reasonable but only after experienced operation (Bhatia and Harrison, 

1986; Moyers, 1988).

The direct methods relied on mechanical or physical contact principles meaning that linear 

measurement errors were proportional to - and dependent on - the vertical Z coordinate data. 

Some direct 3D methods required more mechanical contact than others and the 

transformation of the 3D coordinates into a 2D medium was often approximated. This 

showed that the direct methods were full of many uncertainties, which was a considerable 

disadvantage that limited measurement accuracy and compromised morphological detail. The 

direct methods had a narrower measurement capacity and smaller range of measurements 

than both the manual calliper methods and the 2D IAS. By recording the 3D data in a 2D 

medium it was a challenge to make a complete comparison with the more contemporary 3D 

techniques. These effectively 2D methods can not be considered for the current study.

2.4.2. Indirect Methods

The indirect 3D approaches invariably used optical principals in a variety of methods.

2.4.2.1 Photogrammetry:

The early photogrammetry methods captured stereo-pairs of images that were combined to 

reconstruct the third dimension (Tham, 1956; Savara, 1965). Dental casts were positioned on 

a movable stage, in front of a horizontally mounted analogue camera. Occlusal surface 

photographs were developed and contour maps were drawn. The early ‘stereo-photometric’ 

methods recorded tooth dimensions on grid paper in terms of 3D coordinate point positions
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(Berkowitz and Pruzansky, 1968; Taveme et al, 1979), which effectively performed a 2D 

analysis in much the same way as the early direct methods (Korkhaus, 1930; van Der Linden, 

1972). The limitations of the photogrammetry methods were reflected in their low 

measurement accuracy ±0.1mm (Savara, 1969) and high measurement variation ±0.3mm 

(Berkowitz and Pruzansky, 1968).

The alignment of stereo image pairs was problematic primarily because the movable carrier 

used for sequential images made the non-standard orientation of the models in 3D difficult 

and subsequently restricted accuracy. Therefore, photogrammetry could not be applied to a 

small mammalian application and was more suited to the large engineering and surveying 

applications from where the techniques were originally adopted.

Later investigations attempted to overcome the alignment problems by projecting a reference 

grid on to the dental cast surface with a light (Pirttiniemi et al 1999). This illuminating 

method was more effective than using grid paper (Berkowitz and Pruzansky, 1968) and 

represented a precursor to Moire Contourography (Kanazawa et al, 1984; Mayhall and 

Alvesalo, 1992). The light projection apparatus was an early example of the use of the 

developing optical technologies and it indicated the start of a transition from the direct 

mechanical methods to the predominant use of the indirect optical methods.

2.4.2.2. Reflex Metrograph:

The Reflex Metrograph was based on the reflex plot system of Scott (1981) that generated 3D 

Cartesian coordinates with the aid of a microprocessor. The use of marked points on human 

dental study models improved coordinate point accuracy (X ±0.06; Y ±0.08; Z ±0.10) 

(Takada et al, 1983) and showed satisfactory intra-operator and inter-operator measurement 

reliability (Bhatia and Harrison, 1987; Richmond, 1987). For example, there were no 

significant differences (MD ± 0.50-0.20) between the linear measurements when comparing 

the following three methods, (i) Vernier Caliper, (ii) a Reflex Metrograph (Butcher and 

Stephens, 1981) and (iii) Reflex Holograms (Benatar et al, 1989). Although the Reflex 

Metrograph was reported to be quicker, simpler and more accurate than the previously 

discussed methods (Takada et al, 1983) it did not provide sufficient precision, reliability or 

flexibility (Rossouw et al, 1993) and was superseded by other indirect methods with a closer 

capacity to work at the small murine scale.
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2.4.2.3. Travelling Microscope;

The travelling microscope, a binocular microscope fitted onto a movable carriage, was first 

used to investigate murine dental characteristics by Bader (1965). It was later used to 

measure 3D linear measurements on dental study models with a high Z-coordinate resolution 

of 1.0pm and a good measurement repeatability (±2.0-3.0pm) (Bhatia and Harrison, 1986). 

Low measurement errors of marked (±0,067mm) and unmarked (±0.22mm) anatomical 

landmarks were smaller than those of the Reflex Metrograph (Takada et al, 1983) and were 

almost 10 magnitudes smaller on marked casts (Bhatia and Harrison, 1986). The high Z- 

coordinate resolution of the microscope improved accuracy over the previous direct and 

indirect optical methods discussed. The mechanised horizontal and vertical movement also 

enabled good practicality and utility, offering a more automated process with considerable 

development potential.

2*4.2.4. Measuring Microscope:

The Measuring Microscope was first used to measure bucco-lingual diameters of murine 

molars with a resolution of 10.0pm (Griinberg, 1951). It defined morphological landmarks on 

dental casts with a high precision (1.0pm) and low positioning error (SE X ±0.02mm; Y 

±0,02mm; Z ±0.03- 0.02mm) (Theilke et al, 1998). The Measuring Microscope was used for 

investigating the cusps, grooves and pits of dental cast occlusal morphology but not for full 

360° analysis. It showed potential for mechanised automation similar to that of the Travelling 

Microscope.

2.4.2.5. Moire Contourography:

Moire Contourography (Rowe and Welford, 1967) was first used in dentistry to obtain 3D 

occlusal surface data and measure individual tooth cusp morphology (Kanazawa et al, 1984; 

Mayhall and Alvesalo, 1992). A light was projected through a master and a reference grating 

and the resulting contour lines on the tooth surface were captured originally in an analogue 

photograph (Kanazawa et al, 1984) and latterly by a digital camera (Mayhall and Alvesalo, 

1992).

The equipment resolution was determined by the width (or interval) of the light contours 

(0.2mm) (Kanazawa et al, 1984). The later technique used a computer program to magnify 

the digital photographs for more precise (±0.02mm) on-screen measurement (Mayhall and 

Alvesalo, 1992). The measurement reliability was fair for the mesio-distal measurement (SD
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±0.40mm) and bucco-lingual (SD ±0.68mm) measurement but the resolution was poor and 

the image analysis was limited to molar occlusal surfaces. The data collection time of 30 

minutes for each tooth by experienced operators was prohibitively long (Mayhall and 

Kageyama 1997). A higher power light source and narrower width reference gratings would 

have reduced contour widths and increased the equipment resolution. The restricted range of 

measurements on the occlusal surface made this procedure of limited appeal when compared 

to modern indirect 3D optical methods.

2.4.2.6. Lasers in Dentistry:

The use of the indirect optical methods expanded in the dental literature as the prevalence of 

laser techniques escalated in the 1980s because of an increasingly competitive digitisation 

market that improved the commercial availability, affordability and awareness of laser 

devices (Rekow 2006). A variety of laser devices have found many specific applications in 

clinical (Keller and Hibst, 1993) and cosmetic dentistry (Mindermann et al, 1993). They are 

most frequently employed in computer aided design (CAD) and computer aided 

manufacturing (CAM) applications in technical laboratories, wherein they automate the 

fabrication of prostheses and restorative implants through coordinate measuring machines 

(CMM) and 3D printer attachments (Duret et ah, 1988).

In the current context, the principal advantage of the CAD and CAM systems is that they are 

high throughput tools with high levels of automation. However, this has compromised 

resolution and versatility by design to speed up product development and standardise 

manufacturing quality respectively. Therefore, the specific design orientated operation does 

not give a high enough resolution or enough customisation potential for these systems to be 

suitable for the current purpose. Never the less, these methods have contributed to the 

momentum and technological foundation of the advancing 3D market and there are numerous 

other laser applications in dentistry that do require further consideration.

2.4.2.7. Laser Scanners:

The abundance of laser technologies on the commercial market has led to many dental 

research publications describing the use of 3D dental study models and on-screen computer 

measurements (Apuzzo, 2006). Invariably the laser scanner based optical devices use the 

geometric principal of triangulation to collect 3D point cloud data that is used for surface 

digitisation or 3D model reconstruction (Figure 2.).
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Figure 2. 3D Model Reconstruction

A B C

(A) image acquisition by laser light projection and Charged Coupled Device (CCD) sensor (B) rudimentary 
point cloud data; (C) post-imaging computational processing to generate reconstructed triangular polygon mesh.

3D computer software renders virtual models of objects to provide a more comprehensive 

morphological quantification than was previously achievable by any of the 2D tools. 

Comparing the new 3D techniques with the previously described 2D methods typically 

reported a more detailed surface representation than was previously described because of the 

high density of point cloud information, e.g. on dental casts (Halazonetis 2001; Hajeer et al, 

2004). However, the resulting 3D models were dependent on the resolution of the individual 

scanners and the image processing parameters of the associated computer software (Curless 

and Levoy, 1996; Reich, 1998).

The term laser scanning has been applied across multiple disciplines, and was often used 

synonymously to describe both identical and different techniques. The following account of 

laser scanners, used for dental applications, adopts the native terms used by the authors. 

Although tautologies may exist, a complete review of the literature would otherwise not have 

been possible. The laser devices were separated into Slit Ray Laser Scanner, Laser Line 

Scanner, Stripe Laser Scanner and Laser Range Scanner. The following account may not be 

exhaustive but it is presented here in chronological order to represent the continuity of the 

laser technologies in dental applications.

2.4.2.8. Slit Ray Laser Scanner:

The slit-ray laser device was composed of a laser projector, a revolving mirror, two video 

cameras and a computer post-processing work-station (Kuroda et al, 1996). The primary
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advantage of this system was that it used a rotary table to move the dental cast in 360° while a 

stationary laser fan collected the point cloud data. The method reconstructed complete virtual 

3D models in 40 minutes with low measurement error (< 0.05mm) (Kuroda et at, 1996). 

There were no conventional dental measurements or statistical analysis presented but the 

introduction of a full 360° image acquisition system represented a noteworthy step towards a 

complete morphological assessment of human dental casts.

A similar technique using a stereo pair of video cameras reconstructed casts with a so called 

‘textured’ illumination source (Ayoub et ah, 1997) that superimposed a conventional 2D 

digital image on to the 3D model surface. This approach was said to aid measurement 

landmark positioning and showed only small differences between the repeated manual 

measurements on dental study models (MD = 0.17 mm, SD = 0.08mm) and those obtained 

from the 3D virtual models (MD 0.06mm, SD 0.03mm) (Bell et ah, 2003).

Intra-operator measurement variation on the 3D casts (0.02-0.14mm) was suggested to be 

related to the positioning of landmark measurement points but was less than that observed 

when directly measuring the models with callipers (0.14-0.48mm) (Bell et ah, 2003). 

Therefore, the slit ray laser was of moderate accuracy and reproducibility but had errors 

associated with landmark positioning. There was no indication of economy or of the complete 

time taken for full cast image acquisition, analysis and measurement so some questions 

remained unanswered. Moreover, there were various problems associated with incomplete 

data sets or holes in the virtual 3D models.

One approach to improving 3D data collection was to use multiple images from multiple 

views (multi-view images) that were combined using advances in post-processing computer 

imaging software (Motohashi and Kuroda, 1999). Projected measurements between 

landmarks, that were equivalent to the mesio-distal calliper measurement and 2D methods, 

could now be attained in 3D and were comparable on the virtual and actual study models 

(MD ±0.02mm) (Motohashi and Kuroda, 1999).

Good resolution (0.01mm) and good precision (±0,05mm) was demonstrated (Hayashi et ah, 

2003) but did not indicate any major advances in the time period between publications. This 

suggested an upper limit to the Slit Ray Laser technique. A more rigorous reliability study for 

a morphometric investigation would be expected to have examined more variables, included
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a greater sample of models, and would have been strengthened by reproducibility of multiple 

independent operators. Nevertheless, important capabilities such as range of measurements, 

measurement precision and reliability had improved.

Importantly, two significant method improvements were represented here; (i) the 

combination of multi-view images by a rotary table system (Kuroda et at, 1996) and (ii) the 

advances in image combination software (Motohashi and Kuroda, 1999).

2.4.2.9. Laser Line Scanner:

A laser line scanner (VIVID 700, Minolta, Osaka, Japan) improved on the speed of earlier 

multi-view methods by collecting four separate images quickly (25 minutes) using a 

goniometer to reposition the dental casts (Sohmura et al, 2000). Digital callipers 

measurements taken on 10 actual casts and virtual on-screen measurements taken on 10 3D 

models showed good coordinate point accuracy (SD ±0.015mm) and a high measurement 
correlation (R2 0.9854) (Sohmura et al, 2000). The Cubesper laser line scanner (Topcon Inc., 

Tokyo, Japan) was less precise (MD >0.3mm) (Hirogaki et al., 2001). The low resolution of 

the VIVID 700 (0.4mm) provided gross morphological images that were not good enough to 

reproduce detailed occlusal surface structure, e.g. hypoplastic lesions or fissures.

The goniometer contributed to a good overall operating speed and was a simple and effective 

method of collecting multi-view data. However, its fixed tilt angle (±30°) and 90 0 interval 

positioning was restrictive and the 3D reconstructed models contained surfaces with 

incomplete data sets or holes, particularly around areas of undercut. The previously described 

rotary table (Kuroda et al, 1996) was considered to be the superior positioning tool (Sohmura 

et al, 2000). The computer algorithm used to combine the multi-view images was a 

substantial software improvement but there was no indication of how the image combination 

errors (X ±0.08mm; Y ±0.35mm) were derived.

2.4.2.10. Stripe Laser Scanner:

A stripe laser scanner (VIVID 900, Minolta, Osaka, Japan) with a moderate resolution 

(0.18mm) (Sohmura et al, 2004a) was higher than the two similar models that were 

previously described as laser line scanners VIVID 700 (Sohmura et al, 2000) and Cubesper 

(0.25mm) (Hirogaki et al, 2001). The stripe laser scanner linear measurements error (MD 

±0.3mm) was reasonable compared to the other model VIVID 700 (MD ±0.2mm) (Sohmura
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et ah, 2000) but the multi-view image combination errors of both instruments were too large 

for dental casts (Sohmura et al, 2004a) and would entirely prohibit any accurate 

investigation of a small mouse tooth subject.

2.4.2.11. Laser Range Scanner:

A laser range scanner with a moderate resolution (0.1mm) combined multi-view images 

using a fiducial marker with a small average error (±0.08mm) and standard deviation 

(±0.04mm) (Goshtasby et al, 1997). This procedure involved subjective operator input 

during the placement of markers and the mathematical calibration was reported to be difficult 

and time consuming (Goshtasby et al, 1997). The resolution of this method did not improve 

the morphological analysis beyond other comparable methods that were simply used for 

digitising models for archiving and display purposes (Apuzzo et al, 2006),

A laser range scanner method with a moderate resolution (X 0.15-1.00mm; Y 0.30mm; Z 

0,05-0.20mm) independently analysed teeth sectioned from 3D models and was able to 

export these images in various file formats (Kondo et al, 2004). However, there were no 

considerable advantages to this technique over other 3D laser techniques (Chuali et al, 2001) 

and the inadequate resolution and absence of other method assessment criteria, e.g. 

measurement details and reliability, made the technique unsuitable for the murine application.

The various laser methods described and presented so far represent a single technology. The 

methods projected a variety of laser light patterns (line, stripe, slit ray and range) onto the 

surface of dental casts and may be collectively referred to as the structured light methods 

(Figure 3.).
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Figure 3. 3D Structured Light Methods

coordiiiate system

laser projector

(A) a continuous light stripe (or fan) swept the object; (C) a light spot laser projection or single point laser. The 
object was either stationary, while the projected light scanned the object, or the object was moved as the light 
remained stationary. Both obtained 3D data using the optical principal of triangulation. Image modified from 
Halazonetis (2001).

2.4.2.12. Commercial Digitisation:

Commercial digitisation methods became increasingly versatile and included both in-vitro 

systems (OrthoCAD, Cadent, New Jersey, USA) and in-vivo systems (e-Models, GeoDigm 

Corp, Minnesota, USA) with sophisticated measurement tools well targeted to clinical dental 

practices (Hajeer et al. 2004; Joffe, 2004). Classical Vernier callipers were compared with 

three computerised methods; (i) QuickCeph 3D digital models with on-screen measurements 

(Quick Ceph Systemslnc., California, USA), (ii) OrthoCAD 3D digital models with on

screen measurements, and (iii) the Hamilton Arch Tooth System (HATS) digital callipers 

(Tomassetti et al, 2001). The QuickCeph (MD ±1.84 mm; PCC 0.432), HATS (mean 

difference = 0.99mm, PCC 0.885) and OrthoCAD (MD ±1.20 mm; PCC 0.715) methods 

compared well with the Vernier callipers that were the most repeatable (MD ±0.77mm; PCC 

0.934). The QuickCeph method was the fastest but had the lowest measurement correlation, 

followed in order of decreasing speed by the HATS, OrthoCAD and the Vernier callipers 

methods (Othman and Harradine, 2006). The compromise between measurement speed and 

precision was consistent with their respective levels of automation. The anatomical 

landmarks were difficult to distinguish with the two commercial digitisation systems 

(OrthoCAD and QuickCeph) (Tomassetti et al, 2001). This reinforces the proposition that 

the greatest source of random error is caused by difficulties identifying and defining
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anatomical landmarks (Houston, 1986). Therefore, the classical 2D hand measurements here 

proved to be more accurate, reliable and faster to operate when considering the overall setup 

time and dependence on computing facilities.

The OrthoCAD system was later evaluated against the Boley gauge by two examiners with 

good inter-operator measurement reproducibility (PCC <0.001) (Santoro et al, 2003). On the 

other hand, the measurements were smaller on the 3D model than the actual model 

suggesting systematic error that was believed to have been caused by a combination of 

alginate shrinkage during transportation to the OrthoCAD location, differences in operator 

training and abilities, and the effect of operator preferences for measuring on a computer 

screen (Santoro et aL, 2003; Quimby et al, 2004). The validity, reproducibility, efficacy and 

effectiveness of the OrthoCAD method was also tested against digital callipers by one 

examiner measuring 10 standard models, two examiners measuring 50 models and 10 

operators measuring 10 models (Quimby et al, 2004). The two measurements methods were 

equally accurate, reliable and clinically acceptable with excellent reproducibility (ICC 

>0.90), according to Dormer and Eliasziw (1987). The 3D measurement method was superior 

to the Boley Gauge method (Santoro et al, 2003) despite the ambiguous sources of error and 

variance ascribed to alginate shrinkage and operator subjectivity (Quimby et al, 2004).

A Peer Assessment Rating (PAR) index score of intra-operator measurements on plaster 

models with digital callipers (ICC 0,98) and on 3D OrthoCAD models with onscreen 

measurement (ICC = 0.96) showed excellent reliability (Zilberman et al, 2003; Mayers et al,

2005) with no clinically significant differences between the two methods (Stevens et al,

2006) . Therefore, the accuracy of these commercial 3D methods was clinically acceptable but 

was not as suitable for scientific work as digital callipers (Lin et al, 1998; Tomassetti et al, 

2001; Santoro et al, 2003; Quimby et al, 2004; Mayers et al, 2005; Othman and Harradine, 

2006).

2.4.2,13. Non-Contact Surface Profilometry:

The non-contact surface profilometer (NCSP) has been used to describe a number of single 

point methods that employed laser triangulation (Lee and Chang, 2005; Apuzzo, 2006) and 

chromatic confocal sensors (Chen et al, 2000; Higham et al, 2009). In dentistry, the 

technology has been employed to investigate dental biomaterials (Zhang et al, 2000; 

Chrzanowski et al, 2008), and enamel erosion and abrasion (Barbour et al, 2006; Ablal et
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al, 2009; Elton et ai, 2009). In both cases images were acquired from a single laser point or 

laser spot projected onto and reflected from a tooth surface using different optical principals 

and technologies (Chen et al, 2000; Apuzzo, 2006; Higham et al, 2009). The term laser was 

only correctly applied to the laser triangulation technique because the chromatic confocal 

sensor technique used polychromatic (white) light.

Single point laser methods overcame some of the shortcomings of the laser scanning 

techniques for a small mammalian teeth application because they had a shorter working 

distance (180mm) and measuring range (45mm) (Lee and Chan, 2005). Typical close range 

single point lasers, e.g. Scantech st600 (Scantech, Ringsted, Denmark) and Callidus CT900 

(Callidus, Halle, Germany), had a similar resolution (50pm) and accuracy (±0.1 mm) but both 

these criteria decreased proportionally as the working distance from the tooth surface 

increased (100-400mm and 0-900mm respectively). On the other hand, the NCSP equipment 

was available in a modular setup so operators could design their own system to suit their 

application specifications (e.g. different chromatic confocal sensors). This was a major 

advantage that would benefit the current requirements for both macro-scopic morphological 

analysis and micro-scopic surface analysis.

The micro-metric performance of the NCSP resolved a huge variety of surfaces to create 3D 

micro-topological surface maps because the chromatic confocal sensor tolerated optical 

heterogeneity, surface colour and transparency differences and irregularities. The sensor was 

not influenced by variable reflectivity or ambient illumination and was appropriate for all 

types of dental materials - transparent/ opaque, specular/ diffuse and polished/ rough - 

including the transparent or semitransparent surface layers of the enamel and dentine. Also, it 

eliminated the light scattering/ specular reflection associated with incomplete data or holes 

from laser sources (Kuroda et al, 1996; Motohashi and Kuroda, 1999; Sohmura et al, 2000), 

it avoided beam spot reflection and stray light effects to provide more accuracy than the more 

widely used position sensitive detectors of single point lasers (Chen et al, 2000; Lee and 

Chang, 2005).

The NCSP technique employs axial chromatism within the chromatic confocal optical sensor. 

When white light passes through a lens with a high degree of chromatic aberration this causes 

the different wavelengths to be focused at different positions in the Z coordinate 

measurement range, so that within a continuum of monochromatic diffraction limited planes.
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only one part of the object is focused at any one position, thus introducing a new level of sub

micron accuracy (Tiziani and Uhde, 1994), As the reflected light passes through a beam 

splitter projected onto an optical pin hole it has a double or confocal filtering effect that 

excludes all out of focus wavelengths in much the same way as classical monochromatic 

confocal microscopes that eliminate light that is thicker than the focal plane (Carlsson and 

Alund, 1987). A spectrometer then deflects the different wavelengths by different amounts 

and the sensor detects, processes and converts these different signals into a precise depth 

discriminating distance measurement with a high (>1.0|im) Z-coordinate resolution. The Z- 

coordinate data then combines with the X and Y coordinate location of the precise (25 nm) 

CMM mechanically moveable stage to achieve a highly competitive overall systematic 

resolution of 1 .Opm.

Also, the NCSP could be customised. Hardware modification can combine the X and Y 

coordinate automation of the travelling microscope (Bader, 1965; Bhatia and Harrison, 1987) 

and the high resolution of the measuring microscope (Gruenberg, 1951; Thielke et al, 1998) 

with a rotary table for multi-view image acquisition (Kuroda et al, 1996). An appropriately 

chosen chromatic optical sensor would provide a sufficiently high resolution and the versatile 

system would be sufficiently automated to suit the current application of investigating both 

the 360° macro-morphology and the enamel surface micro-structure of small murine teeth. 

Fabricating a rotary table to adapt the CMM stage to hold and move a mouse incisor (e.g. at 

defined intervals such as 360760° = 6 images) within a suitable measuring range would 

establish a central axis of rotation about which mathematical offsets or spatial adjustments 

could be made to register the multiple multi-view image files together. The growing 3D 

imaging software market may provide a suitable solution.

Therefore, a rotary stage modification would be multi-purpose, serving to; (i) facilitate tooth 

positioning within the measuring range, (ii) be the absolute reference in the local coordinate 

system, and (iii) be the central axis of rotation for combining multiple multi-view images into 

a single 3D model. The NCSP (including chromatic confocal sensor) represents a highly 

suitable method for the current study because of its high resolution, versatility, relatively 

economical adaptation cost (£25,000) and proven ability to interrogate enamel surface 

mineralisation. However, other competing methodologies needed consideration.
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2.4.2.14. Computer Tomography (CT):

Computer Tomography (CT) is a digital imaging technique that involves the geometric 

reconstruction of a large series of high resolution 2D sections, taken about a single axis of 

rotation. The multiple cross-sections, or slices, are reconstructed by various computer 

software algorithms to generate a complete 3D image. The many applications of CT have had 

a globally important impact, e.g. Magnetic Resonance Imaging (MRI), Confocal Microscopy, 

Micro-Computed Tomography (pCT), Nano-Computed Tomography (nano-CT).

As CT resolves structures like bone it has become an attractive method for recording and 

measuring 3D morphological data, particularly as dental cast die stone study models have a 

high radio-density (Pirttiniemi et al, 1999). Attempts to combine skeletal hard-tissue 

information from CT scans with other laser scanning dental information reported significant 

errors and difficulties (Nishii et al, 1998; Terai et al, 1999; Nakasima et al, 2005). 

Conventional diagnostic multi-detector CT and multi-slice helical CT scanners combine 

multi-slice images less than 1.0mm in thickness (Fuchs et al, 2000; Khambay et al, 2002), 

and a medical X-ray CT technique can complete scans of dental casts in a few seconds and 

reconstruct 3D models within 10 minutes (Sohumura et al, 2004b). This represents a useful 

reduction in scan time, e.g. when compared to the laser line scanner (25 minutes) (Sohumura 

et al, 2000), the stripe laser scanner (40 minutes) (Hirogaki et al, 2001) and the other laser 

devices (Kuroda et al, 1996; Goshtasby et al, 1997; Motohashi and Kuroda, 1999; Bell et 

al, 2003; Kondo et al, 2004).

The introduction of industrial specification CT scanners with a serial reconstruction slice 

thickness of 10pm have demonstrated the power of this method to visualise and analyse 

biological specimens that were once considered too small to image with medical diagnostic 

machines (Rowe et al, 2001). The anatomical investigation of small mammals using high 

resolution X-ray CT has dramatically improved the quality and quantity of 3D information 

available fhttp://digimorph,org/index.phtmn (Rowe et al, 2001) and has been used to 

visualise the 3D morphology of teeth, measure enamel and dentine distribution, thickness and 

volume (Gant et al, 2001).
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2.4.2.15. X~ray Micro-Tomography (XMT) and Micro-Computed Tomography (pCT):

X-ray micro-tomography (XMT) is a miniaturised version of CT or computed axial 

tomography (CAT) scanning (Elliot et ah, 1994). It amasses large amounts of information 

that can be represented as 2D or 3D images with a resolution of between 5-3Opm (Anderson 

et ah, 1996). pCT resolves cross-sectional image pixel sizes in the micron range and has a 

potential threshold of detectability of small details 1-2pm in dimension (Higham et al, 

2009). In XMT, unlike pCT, the specimen is rotated not the X-ray source and detector, so 

that a series of X-ray projections recorded at a number of angles around the specimen give a 

360° radioscopic image (Davis and Wong, 1996). The 2D data projections are obtained in a 

single plane using an X-ray intensifier and the resulting images are used to reconstruct a 3D 

model.

The early XMT attenuation images were limited to 40 pm and did not discriminate 

sufficiently between the mineralised dental tissues (Tachibana and Matsumoto, 1990) but the 

method has since been useful in the study of mineral concentrations (Anderson et al, 1996; 

Davis and Wong, 1996) and in remineralisation and demineralisation studies (Anderson et 

al, 1998; Anderson et al, 2004; Dowker et al, 2003; Fearne et al, 2004). XMT has also 

been used to illustrate enamel and dentine distribution, thickness and mineral concentrations 

in mouse incisors (Wong et al, 1995; Wong et al, 2000) and molars (Lazzari et al, 2009). 

Recent advances in pCT have used high intensity synchrotron sources to improve image 

resolution (1-30 pm), e.g. SkyScan-1072 (SkyScan, Antwerpen, Belgium) (Wazen et al, 

2009) and a pCT system (IMTEK Inc, Knoxville, TN) (Tsutsui et al, 2008).

Kim et al, (2007) evaluated the accuracy of measurements taken on (i) twelve extracted teeth 

using digital callipers (Mitutoyo Corp., Japan; accuracy ± 0.02mm) that were used as a 

reference and compared to (ii) calibrated 2D digital photographs with Image-J 1,27z software 

(National Institutes of Health, USA), (iii) noncontact 3D optical scanner Topometric 3D- 

Sensor optoTOP (resolution 2pm, accuracy 6-15pm) (Breukmami GmbH, Germany), with 

RapidForm 2002 software (INUS Technology Inc., Korea), and (v) a desktop pCT scanner 

SkyScan-1072 (detail detectability of 3pm and a resolution of 8pm) (Skyscan, Antwerpen, 

Belgium) measured using V-works software (CyberMed, Inc., Korea). All the distance 

measurements from the four methods were highly correlated (PCC, p < 0.01). The 3D optical 

seamier was in very close agreement with the calliper measurements but the measurement on
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the 2D digital photographs were significantly (p < 0.01) overestimated when compared to 

other methods (Kim et ah, 2007). Volume measurements from the pCT were significantly (p 

< 0.01) underestimated compared to the 3D optical scanner (Mean Standard Deviation of the 

difference -50.40 ± 22.78, (Kim et ah, 2007). The overestimation and underestimation was 

attributed to a number of non-standardised systematic errors described by the authors, e.g. 

differences in magnification and calibration, which highlighted the central importance of 

reliability testing and method validation of new imaging techniques. The ability to measure 

the volume of each portion of a tooth with a density by the XMT and pCT methods was an 

advantage but appropriate thresholds must be defined to distinguish between the various 

tissues and structures from the surrounding materials/ tissues (Kim et ah, 2007). The XMT 

and pCT methods were undoubtedly powerful but meaningful morphological measurement 

using this new tool still requires considerable refinement.

2.4.2.16. Nano- Computed Tomography (Nano-CT):

Nano-CT, like (iCT, uses X-rays to non-destructively image slices or cross-sections of a 3D 

object for reconstruction into a 3D virtual model. The term nano indicates that the pixel sizes 

of the cross-sections are in the nanometer range. A high-resolution (200-3OOnm) Sky Scan- 

2011 nano-CT (Skyscan, Antwerpen, Belgium) was used to examine the internal morphology 

of dentin and resolve its porous sub-structure (Parkinson and Sasov, 2008). Nano-CT has also 

been used for accurate enamel mineral density and thickness determination (Myers et al, 

2009). In this case, a TMR sectioned (100pm) murine incisor was used as a reference or 

‘standard’ for the enamel mineral density measurement and was then re-assembled using 

cyanoacrylate and scanned using nano-CT. Ten nano-CT slices (10 pm) were reconstructed 

into 100pm sections for analysis using SkyScan software (Myers et ah, 2009). The nano-CT 

and TMR data exactly matched demonstrating that nano-CT can provide a quantitative, rapid 

and non-destructive method for the determination of enamel mineral density on a continuous 

3D basis. A few commercially available systems exist at present but the technology is 

prohibitively expensive and shows only marginal benefits over pCT. Nonetheless, as 

accessibility of this powerful new technique improves it will gradually be compared more 

and more with existing techniques and is likely to be highly competitive.

2.4.2.17. Magnetic Resonance Imaging (MRI):

Magnetic Resonance Imaging (MRI) is a non-invasive method that renders tomographic 

images to demonstrate the biochemical, physiological and/ or pathological conditions of
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organs and other internal structures. It is most frequently used for medical diagnosis and has 

diversified into numerous specialised forms, e.g. diffusion MRI, functional MRI, 

interventional MRI and experimental MRI. MRI uses non-ionising radio frequency signals 

and does not expose patients to harmful radiation. It is best suited to non-calcifred tissues 

because of their low radio density, but a contrast-enhanced dental MRI technique that used 

intra-oral disclosing medium was able 3D visualise the mandible and teeth in the oral cavity 

(Olt and Jakob, 2004). It was a feasible alternative to other X-ray based imaging, such as 

conventional radiography and CT, because of its high resolution (0.6mm x 0.6mm x 0.8mm) 

and very fast scan times (2 minutes for a full cast) (Olt and Jakob, 2004).

However, CT scanners make better tools for examining bone and calcified tissues such as 

enamel and dentine. Both CT and MRI generate multiple 2D cross-sectional images of tissues 

to build 3D reconstructions but because MRI is capable of superior image contrast, by 

varying a number of scamiing parameters, it can enhance and alter tissue contrast to detect 

different features and readily discriminate soft tissues. Therefore, MRI is intended for in-vivo 

imaging and would not be a practical reality for the current small murine dental application. 

CT is more widely available, more economical, and more convenient than MRI but both 

methods are very expensive ( > £1,000,000) compared to the previously described 

techniques.

2.4.2.18. Scanning and Transmission Electron Microscopy:

Scanning Electron Microscopy (SEM) is capable of imaging fine morphological detail at tens 

of thousands of times higher resolution (l-5nmn) than light microscopes. SEM magnification 

can be controlled between 10 and 500,000 times and is capable of relating the microanatomy 

and surface morphology of a wide variety of samples. SEM typically yields images with a 

characteristic 3D appearance that would be useful for examining the tooth morphology and 

surface structure of teeth but 3D measurements cannot be made directly (although some 

dimensions may be determined by stereo-photogrammetry). Transmission Electron 

Microscopy (TEM) is a related technique that forms another chief image analysis method 

which is applied in a range of scientific, biological and medical fields. TEM and SEM are 

microscopic techniques rather than macroscopic techniques and as such are more often than 

not used for histological investigations of internal tissues in-vitro. SEM and TEM samples 

require chemical preparation before imaging, which makes them both relatively time 

consuming and expensive processes with a low throughput. The SEM and TEM techniques
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are very powerful, particularly as TEM can be combined with 3D representation using CT 

methods, but the cost of the equipment is expensive (> £100,000).

2.4.2.19. Confocal Microscopy:

The use of the confocal microscope has been instrumental in progressing both the micro- and 

macro-relief (Jemvall and Selaenne, 1999) inspection of small mammalian tooth morphology, 

e.g. a laser scanning confocal microscope (LeicaTCS NT, Leica Ltd, Sydney, Australia) was 

used to image fluorescently stained urethane casts of bat teeth (Evans et al, 2001). The 

topographical and shaded relief maps reconstruct the tooth surface topology from optical 

sections either by reflection or by fluorescence imaging. The laser point source mapped the 

surface topography of the cast at high resolution (X = ±35pm, Y = ±10pm, Z = number of 

pixels 128 x 128 or 256 x 256, or sampling interval between stacks) with rapid scan times but 

the large amount of data made substantial demands on computer processing power and 

increased image processing time. Moreover, the method imaged a cast rather than the actual 

dentition and because of optical heterogeneity (caused by loss of signal intensity and signal 

degradation) accurate models were not possible (Evans et al., 2001). The chromatic optics of 

the NCSP method does not have this problem.

The laser scanning confocal microscope was effective because of the combined single point 

laser source and confocal optics. However, the optical sectioning technique would more be 

more appropriately used to represent the internal micro-structure of tissues, cells and 

organelles (similar to SEM and TEM) and would not be suitable for the current investigation.

2.4.2.20. Combined Methods:

Much of the direct and indirect methods, except CT and MRI, have been limited to the 

erupted tooth crown. Using a combination of methods (e.g. laser scanned occlusal surface 

images and radiographic root structure images) it was possible to explore the whole tooth and 

obtain previously inaccessible information (Nishii et al, 1998). Other combined approaches 

have reconstructed images from different methods by using a generic example of a tooth and 

best fit landmark registration (Enciso et al, 2003) or the individual occlusal surface 

morphology and different algorithms (Buchaillard et al, 2007). The benefit of these 

combined approaches was that they exploited all clinical information available for a given 

tooth, which may be advantageous for patient specific dentistry, but there were no overall
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timings given for image acquisition or of individual procedures, only the computer 

processing was reported to be fast.

If pCT and 3D laser scanning data is to be accumulated and properly correlated in the future 

it might be possible to predict the internal structures of teeth from the 3D surface (Kim et at, 
2007). However, further hardware and software developments would be necessary for this to 

become a reality. Nevertheless, once the various CT methods become more widely available 

and financially accessible their part in a combined approach would be very attractive, 

especially in an increasingly collaborative multi-disciplinary clinical research field.
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2.5. COLOUR AND WHITENESS ASSESSMENT

2.5.1. Tooth Colour and Whiteness Variation

There is a wide range of tooth colour variation in the population. Enamel and dentine defects 

dramatically affect observable tooth colour and whiteness, e.g. Amelogenesis imperfecta 

exhibits discolouration varying from cream and yellow opacities to brown and black colours 

(Brook et ah, 2007). Natural variation occurs within and between regions of the same tooth, 

from tooth to tooth, and is influenced by extrinsic colourations or environmental factors 

(Brook et ah, 2007). These extrinsic factors can be minimised or excluded in congenic animal 

populations by the uniform conditions of animal husbandry.

In humans, colour changes caused by developmental defects of enamel are included in the 

subjectively assessed indices (i) the Federation Dentaire Internationale (FDI) Developmental 

Defects of Dental Enamel Index and/ or (ii) Epidemiological Index of Developmental Defects 

of Dental Enamel (FDI, 1992; Brook et ah, 2001; Elcock et ah, 2006; Smith et ah, 2009a). 

Currently no measurement methods of murine tooth colour and whiteness exist. The human 

clinical indices may not be directly translated for the assessment of murine dental anomalies 

but their qualitative terminology can be used to initially identify defects (opacities, 

hypoplasias and discoloured enamel) and record them on the Mouse Dental Anomalies 

Database Record Form.

2.5.2. Colour Distribution

In humans, incisor colour distribution is typically assessed in three anatomical thirds - 

cervical (or gingival), middle and incisal - of which the middle third is the most 

representative portion in terms of colour and whiteness (Brook et ah, 2007). In mice, incisor 

enamel is distributed asymmetrically along the labial surface, reaching further in the buccal 

direction than the lingual direction (Hay, 1961; Moinchen et ah, 1996). The normal colour 

distribution of a wild-type mouse incisor is opaque white with yellow/ orange/ brown 

pigmentation at the distal-tip being consistent with the presence of dentin and iron pigments 

as the major colour constituents (Halse, 1972). The translucent whiteness fades in a proximal 

direction through horizontal bands into more opaque white. The un-erupted part of the incisor
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(within the hemi-mandible) becomes progressively red/ brown towards the apical end where 

there is no enamel.

Enamel mineralisation in the rodent mandibular incisor has been divided into three 

histological stages of enamel formation or amelogenesis; (i) pre-secretory, (ii) secretory and 

(iii) maturation (Smith and Warshawsky, 1975, 1976). Five developmental stages were 

identified in the appearance of enamel as: (i) soft translucent, (ii) soft cracked, (iii) white 

opaque, (iv) hard translucent and (v) yellow/ brown pigmented (Robinson et ah, 1983). These 

colour changes related to the chemistry and histology of the enamel organ (Robinson et ah, 

1981a, 1981b) where, from the proximal-end to the distal-tip, Ca and P increased (Hiller et 

ah, 1975), as did enamel and dentine mineral concentrations (Wong et ah, 1995). The rat 

mandibular incisor was sampled in three stages of amelogenesis (pre-secretory, secretory and 

maturation) using external reference points on the molars as landmarks for strip dissection 

(Smith and Nanci, 1989). Also, enamel mineralisation was separated into primary and 

secondary stages corresponding to pre-secretory/ secretory and maturation stages of 

development respectively (Allan et ah, 1967 loc cit Wong et ah, 2000). Most recently, using 

a backscatter SEM method, the developing mouse mandibular incisor was imaged along the 

labial surface in three enamel surface regions; (i) apical (secretory), (ii) middle (nearly 

mature) and (iii) incisal (erupted) (Smith et ah, 2009c).

These techniques were applied to extracted murine teeth and could not be used to image the 

human condition in vivo. As colour distribution is typically assessed in three anatomical 

thirds (or regions) in human incisors, and because these regions have a relationship to the 

apparent pre-secretory, secretory and mature histological stages of enamel formation in the 

hypsledont (continuously growing) murine incisor, they may be representatively applied to 

assess the enamel surface colour and whiteness assessment in three developmental stages of 

enamel formation.

2.5.3. Colour Space

A number of standardised colour scales have been developed to objectively model colour 

(Wright, 1928; Guild, 1931), e.g. the Commission Internationale de T E'clairage (CIE) have 

mathematically defined colour space (L = Lightness, A = green/ red, B = yellow/ blue) and 

whiteness (WI = whiteness) in terms that represented the human perception of colour (CIE,
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1986). Human teeth show a significant contribution of the B yellow component (Joiner et al, 

2008). The CIE LAB and WI model expressed variation in colour and whiteness in clinically 

significant units (Jarad et al, 2005) and served as a device independent reference capable of 

making accurate colour balance corrections (Smith et al, 2008a). To date, murine teeth have 

not been described using any such measure.

2.5.4. Methods of Assessing Tooth Colour and Whiteness

The predominant methods used to assess human tooth colour and whiteness range from shade 

guides to instrumental methods such as spectrophotometers, colourimeters and digital image 

analysis systems.

2.5.4.1. Shade Guides:

Shade guides depend largely on operator judgment. They are inherently subjective (Okubo et 

al, 1998; Lath et al, 2007a), lack consistency and reliability (Khurana et al, 2007). They are 

most frequently used for prosthetic/ prosthodontic shade matching. Increasingly available 

digital spectrophotometery based shade guide devices are more consistent (Paul et al, 2002; 

Hammad et al, 2003) and accurate (Jarad et al, 2005; Lath et al, 2007b) but have similar 

disadvantages, e.g. unnatural colour shades, systematic errors and an incompatibility with the 

CIE colour space model (Joiner, 2004; Wee et al, 2006).

2.5.4.2. Spectrophotometers:

Spectrophotometers measure tooth colour reflectance or transmittance (Paul et al, 2002). 

They have been used in clinical and research settings for many years (Macantee and 

Lakowski, 1981; Goodkind and Schwabacher, 1987). Three commercially available 

instruments were evaluated by Khurana et al, (2007); (i) the Spectroshade Micro showed 

good agreement between repeats and the highest proportion (87%) of complete agreement 

when compared to (ii) Vita Easyshade (59.7%), a spot measurement spectrophotometer, and 

(iii) an X-Rite ShadeVision (50%) colorimeter. The spectrophotometers showed reliable 

results (kappa value = 0.8) and compatibility with the CIE colour space model (Khurana et 

al, 2007) but their widespread clinical and research use has been slow because of 

complexity, impracticality and expense (Joiner, 2004; Guan et al, 2005; Lath et al, 2007a, 

2007b). However, a non-contact digital matching method has shown less operator variation
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(61.1% correct) and reasonable CIE LAB correlations compared to the Vita Lrnnin shade 

matching tabs (43% correct) (Jarad et al, 2005).

The methods required contact or were designed for use on the flat surfaces of hmnan incisors. 

This would make measurements on small murine incisors difficult and impractical.

2.5.4.3. Colourimeters:

Colourimeters filter colour to approximate a standard observer’s eye and generally measure 

colour in tristimulus terms or CIE LAB values (Joiner, 2004). Comparing colourimeters and 

spectrophotometers, colourimeters were deemed to give acceptable colour measurement 

differences (van der Burgt et al, 1990; ten Bosch and Coops; 1995) but there was little 

correlation with human observations (Douglas, 1997; Watts and Addy, 2001). Also, a number 

of systematic errors were reported to limit reliability and precision (van der Burgt et al, 

1990; ten Bosch and Coops; 1995; Douglas, 1997; Wee et al, 2006).

2.4.5.4. 2D Digital Image Analysis:

In recent years computer based digital image analysis has been the most successful approach 

to measuring human tooth colour and whiteness (Brook et al, 2007). The system has 

evaluated tooth surface colour and whiteness objectively both in-vivo and in-vitro with a high 

degree of multiple operator reliability (Smith et al, 2008a) under standardised conditions of 

illumination, orientation and magnification (Brook et al, 2005a). Similar systems have also 

shown highly reliable results when modified for monitoring the effects of bleaching (Garcia- 

Goody et al, 2004), assessing gingival inflammation (Smith et al, 2008b) and quantifying 

dental plaque (Smith et al, 2001, 2004; Smith et al, 2006). During validation, the digital 

image analysis systems have shown high method correlation and compared favourably with 

colourimeters (Joiner, 2004), spectrophotometers (Guan et al, 2005; Lath et al, 2007a) and 

shade guides (Lath et al, 2007b).

The advantages of digital image analysis include minimised subjectivity, high accuracy and 

reliability. Also, the system provided a permanent database of images and was quick and 

simple to use without being restricted to experienced operators (Wee et al, 2006). Compared 

to the alternatives digital image analysis was more economical, practical and more widely 

available in dentistry (Jarad et al, 2005). Importantly, the system could be made to be 

suitable for assessing small curved murine teeth as it has been successfully standardised for
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CIE (Jarad et al., 2005) and it has demonstrated versatility and flexibility with potential for 

customised modification (Brook et al., 2005a; Guan et al, 2005; Smith et al, 2008a).
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2.6. DENTAL DEVELOPMENT

2.6.1. The Murine Model System

Mus musculus is the most widely used experimental animal for human disease (Qui, 2006). 

The mouse is the mammalian model of choice because it is amenable and easy to keep, has 

non-specific inexpensive nutritional requirements, breeds all year round (with a short life 

span and generation time) and has large stocks of progenies (Guenet and Bonhomme, 2004). 

Mice and humans have almost the same genome size and share a number of gene sequence 

homologies and evolutionary conserved orthologue genes (Waterstone et al.t 2002). The 

majority of global gene banks are derived from studies on mice and they are available on 

public databases (www.ncbi.nlm,nih. gov/genome/guide/mouse/1 making mice the most 

valuable experimental model organism. Mice overcome a number limitations of human 

subjects, and several other model organisms (Loew and Cohen, 2002), for example; (i) 

numerous inbred strains are available with different phenotypes, (ii) heterozygous genetic 

backgrounds are available, (iii) mice can be maintained imder strictly controlled 

environments to minimise environmental influences, (iv) mice can be crossed to generate 

congenic animals to isolate the genes relevant to the phenotype under study, and (v) the 

ability to test gene function by gene targeted mutagenesis approaches.

ENU mutagenesis induces 1000-fold more random point mutations than naturally occur. 

ENU is the most effective mutagen as most human genetic diseases are caused by partial loss 

of the gene function due to point mutations (Seedorf et al, 2004). Rodentia is therefore the 

only mammalian order within which it is possible to employ both the phenotype to genotype 

(phenotype-driven) and the genotype to phenotype (gene-driven) approaches that are essential 

to understanding the heterogeneity and complexity of the phenotypes of many human diseases 

(Masuyama et al} 2005).

The similar processes of human and mouse odontogenesis make the mouse the most suitable 

experimental model for human dental disease (Fleischmannova et al, 2008) and the 

amenable non-essential nature of teeth is convenient for studying organogenesis (Pipsa and 

Thesleff 2003; Tucker and Sharpe, 2004). All teeth are composed of diverse tissue types 

involved in both tooth morphogenesis (Fukumoto and Yamada, 2005) and mineralisation 

(Veis, 2005). In particular, the mouse incisor exhibits all stages of development at any one
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time making it ideal for studying the several distinct stages of enamel formation along the 

tooth axis (Smith and Warshawsky, 1976; Leblond and Warshawsky, 1979; Smith and Nanci, 

1989; Sato et al, 1996). Also, functional data from gene targeting shows tooth 

morphogenesis and skeletal morphogenesis share many key genes (Smith and Coates, 2000; 

McCollum and Sharpe, 2001a).

2.6.LI. Dental Patterns:

The mineralised hard parts of teeth are well preserved in the vertebrate fossil record so dental 

records have long been used to infer the phylogeny of species (Luckett and Hartenberger, 

1985). This data is increasingly supported by molecular methods (Frye and Hedges 1995; 

Boursot, 1996; Salazar-Ciudad et al, 2002) but the evolutionary origin of teeth debate 

remains current (Reif, 1982; Weiss et al, 1998; Smith and Coates, 2000; Holland and Chen, 

2001). A dual origin of heterodont teeth, from both external denticles and internal pharyngeal 

teeth is now thought to account for the necessary flexibility required for the evolution of 

complex heterodont dentitions (Smith 2003; Smith and Johansen, 2003). The heterodont 

tooth types located anteriorly to posteriorly are incisiform, caniniform and molariform. 

Comparing human and mice dental formulas, humans have 20 primary (deciduous) and 32 

secondary (permanent) teeth - incisors 2/2, canine 1/1, premolars 2/2, molars 3/3 - while mice 

have 16 teeth - incisor 1/1, canine 0/0, pre-molar 0/0, molars 3/3 - representing a less 

complex reduced dental pattern (Shellis and Berkovitz, 1981). The characteristic toothless 

diastema region between the incisors and molars and the absence of canine or premolar teeth 

make the mouse a simplified version for study (Addison and Appleton, 1915).

Although there are limitations, e.g. mice posses only one set of molars (monophylodont) that 

are not replaced, whereas humans have two generations of all tooth types (diphyodont) 

(Shellis and Berkovitz, 1981), both the mouse mandible and mouse incisor are proven to be 

excellent models for studying complex morphological development (Gaunt, 1964; Atchley et 

al, 1985; Atchley and Hall, 1991; Bookstein, 1998). The mouse incisor is continuously 

growing and is especially useful for studying the dynamic process of odontogenesis (Tucker 

and Sharpe, 1999; Salazar-Ciudad et al, 2003; Fleischmannova et al, 2008).

2.6.1.2. Mouse Mandibles:

The mouse hemi-mandible was chosen because it was well studied both developmentally 

(Frommer, 1964; Hall, 1991; Ramesh and Bard, 2003), evolutionarily (Crompton, 1963;
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Klingenberg, 2002) and functionally (Moore, 1973; Mao and Nah, 2004). Human and mice 

skeletal and dental morphogenesis share many key genes (McCollum and Sharpe, 2001b) and 

the genetic variability of mandible fonn has been well documented in man and mouse 

(Beamer, 1993; Bailey, 1985, 1986). The left and right hemi-maxilla and hemi-mandible 

incisor pairs each contain a single incisor and are joined at the mandibular symphysis. As 

representative units of development they can be separated into developmental modules by 

homologous landmarks useful for structural analysis (Atchley and Hall, 1991).

2.6.1.3, Mouse Incisors:

Human and mice incisors exhibit the same basic architecture with little fundamental 

difference between their basic structure and mode of fonnation (Tomes, 1850; Shellis and 

Berkovitz, 1981; Warshawsky et al, 1981). In particular the mouse mandibular incisor gives 

a relatively high yield of enamel that is thicker than the maxillary incisors (Moinichen et ah, 

1996) and is an important established experimental model of enamel morphology, 

biochemistry and molecular biology (Robinson et al, 1981a, 1983). Its continuous growth 

and eruption has been attributed to stem cell populations in the cervical loop (Harada et al, 

1999; Wang et al, 2007) and its constant length is proposed to be maintained by a balance of 

cell proliferation at the proximal-end and abrasion/ attrition at the distal-tip (Ohshima et al, 

2005; Krinke, 2004). Mandibular incisors are curved from the proximal-end to the distal-tip 

and run the entire length of the mandible (Hay, 1961; Shellis and Berkovitz, 1981). A slight 

narrowing at the distal-tip is the result of ameloblast cells depositing enamel asymmetrically 

and bilaterally on the labial surface (Amar et al, 1986; Wang et al, 2004). Enamel reaches 

further onto the labial surface in the buccal direction than in the lingual direction (Moinchen 

et al, 1996). The lingual surface is covered with dentin and cementum, and is more flat than 

the curved buccal surface because of the adjacent position of each incisor within the hemi- 

mandible pair.

As a odontogenic model the mouse incisor can be longitudinally divided into labial crown 

and lingual root analogues (Amar et al, 1986) and is comparable to other tooth types (and 

human teeth) in terms of its directional development (Ohshima et al, 2005).
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2.6.2. Developmental Models

In the 19th century, embryology tested evolutionary theories against observations of early 

tooth development, e.g. experiments on amphibia discovered the neural crest to be the source 

of mesenchymmal cells (Platt, 1893). In the 20th century, experimental embryology extended 

to the mouse model began to describe development in more causal terms (Mitisiadis and 

Smith, 2006); numerous early texts contributed to the understanding of dental patterning of 

the teeth and jaws in mice and men (Butler, 1939, 1956; 1995a; Wentworth-Thompson, 1942; 

Dahlberg, 1945; Gaunt, 1955, 1964; Crompton, 1963; Griinberg, 1951, 1963, 1965; Wolpert, 

1969; Sofaer, 1975; Osborn, 1978; Atchely, 1985; Bailey, 1985).

2.6.2.1. Morphogenetic Fields;

The regional field theory proposed a gradient of external morphogens were responsible for 

the different sizes and shapes of mammalian teeth (Butler, 1939, 1956). It was suggested that 

the different tooth classes displayed local similarities because of the influence of graded 

positional differences within distinct morphogenetic fields. This was supported by grouping 

teeth into families according to their distinct morphology and location, and was applied to the 

human dentition (Dahlberg, 1945).

2.6.2.2. Clone Theory:

As developmental biology became increasingly based on genetics rather than physiology and 

anatomy a clone theory emerged (Osborn, 1971, 1978). The theory suggested that teeth 

developed from a single clone of pre-programmed mesenchymal cells, each capable of giving 

rise to the different tooth types. However, the intrinsic autonomous control mechanisms of 

the clone model did not explain how regional tooth shape differences were achieved or how 

the dentition developed as a whole (Townsend et al.t 2009).

Studies that investigated the inductive relationships between epithelium and mesenchyme 

cells began to generate a greater understanding of the important role of embryonic germ 

layers and molecular signaling during odontogenesis (Lumsden, 1988). Attempts were made 

to reconcile the prevailing theories by proposing a dynamic self organising theory based on 

the modular organisation and expression patterns of regulatory molecules within specific 

embryonic domains (Maas and Bei et ah, 1997; Weiss et al, 1998). Successive theories 

combined those of their predecessors to purport that initiation of dental development may
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occur according to the morphogenetic field model and that tooth germ formation may occur 

according to the clone model (Smith and Coates, 2000). The concept of a molecular 

morphogenetic field should not be limited to the expression of a single gene or its protein 

product but must consider how the various genetic and epigenetic influences modulate their 

affect on dental development (Line, 2001,2003).

2.6.2.3, Molecular Model:

Much recent progress has come from identifying potential mechanisms at the genetic level to 

invoke the roles of homeobox genes, transcription factors and the expression patterns of 

various other vital signalling molecules (Pipsa and Thesleff 2003; Tucker and Sharpe, 2004; 

Mitsiadis and Smith, 2006).

Important observations of the distinct spatial expression of homeobox genes, coding for 

regulatory transcription factors, proposed the odontogenic homeobox code thought to control 

dental patterning (Sharpe, 1995). This theory was developed using targeted gene disruption 

experiments in incisor and molar teeth and explained how the overlapping homeobox gene 

expression domains combine to determine the intermediate morphologies of human canines 

and premolars (Tucker et al, 1998; Thomas and Sharpe, 1999). Further experimental support 

came from altering the specific signalling molecules that modulated the homeobox domains 

to modify tooth number, size and shape (Tucker and Sharpe, 1998; Sharpe, 2000). Within the 

epithelium and mesenchyme positive auto-regulatory loops and mutual repression patterns 

have been shown to spatially restrict gene expression and establish presiunptive incisor and 

molar fields (Tucker and Sharpe, 2004). Bone morphogenetic protein (BMP) and fibroblast 

growth factor (FGF) families of genes and proteins reciprocally induce and inhibit the 

expression of the various homeobox genes (Tucker, 2006). These complex patterns of gene 

expression also establish the proximal-distal and oral-aboral/ rostral-caudal developmental 

axes of the body plan (Mitsiadis and Smith, 2006).

2.6.2.4. Unifying of Theories:

The field, clone and odontogenic homoebox theories are complementary not contradictory 

and propose a unifying view that can be applied to developmental anomalies (Townsend et 

al., 2009). This is reflected in the multifactorial model of tooth development (Brook, 1984) 

and extends to the multilevel, multidimensional orchestration of dental development (Brook, 

2009).
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2.6.3. Tooth Development

To date, more than 300 genes are associated with important signals, receptors and 

transcription factors that control normal and abnormal tooth development (http://bite- 

it.helsinki.fO. The majority are part of the evolutionarily conserved signalling pathways that 

mediate cell communication, tissue growth and differentiation, and thereby regulate tooth 

initiation and morphogenesis (Jemvall and Thesleff, 2000a; Salazar-Ciudad et al, 2002, 

2003). The reciprocal epithelial-mesechymal interactions occur reiteratively throughout tooth 

development (Jemvall and Thesleff, 2000a) and many mutations that cause dental defects in 

humans have also been partially recapitulated in mouse models (Thesleff, 2006; 

Fleischmannova et al, 2008; Brook, 2009) (Figure 4.).

Figure 4. The Genetic Regulation of Odontogenesis

oral ectoderm dental placode enamel knot
pitx2 left. edar edar

enamel
dentin

dental mesenchyme condensed dental dental papilla
msx1/msx2 gti2/gli3 dlx1/dtx2 mesenchyme

msxl, pax9, runx2

root

The multigene families of conserved signal pathways mediate sequential and reciprocal interactions between the 
ectoderm and mesenchyme and regulate key transcription factors associated with dental defects in humans; 
Fibroblast growth Factor (FGF), Bone Morphogenetic Proteins (BMP), Sonic Hedgehog (SHH), WNT, Tumor 
Necrosis Factor (TNF). Image modified from (Thesleff, 2006).

Five histologically distinct developmental stages are recognised during odontogenesis; (i) 

Initiation, (ii) Bud, (iii) Cap, (iv), Bell and (vi) Emption. The initiation of tooth formation is 

morphologically distinguishable as a thickening of the dental epithelium, or dental placode, at 

embryonic day (ED10-11) in mice and during embryonic weeks (7-11) in humans (Miletich 

and Sharpe, 2003). The epithelium sends signals to the dental mesenchyme inducing its 

odontogenic potential and initiating the dental lamina at prospective tooth sites. The dental 

lamina proliferates (ED 12-13) and begins to invaginate into the underlying mesenchyme that
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condenses around the forming epithelial tooth bud (EDI 1-13), At the tip of the epithelial tooth 

bud a restricted subset of cells fonn a transient signalling center called the primary enamel knot 

(Jernvall et at, 1994). The enamel knot organises differential cell growth through the transition 

from the bud to cap stage that marks the onset of tooth crown development (Vaahtokari et ah, 

1996; Jernvall and Thesleff, 2000b). The epithelium convolutes around the condensed 

mesenchyme, or dental papilla, during cap moiphogenesis (ED 13-15) as the progressive 

folding and growth eventually develops into a bell shape tooth germ (ED 15-17). Apoptosis in 

the enamel knot has an important role in regulating tooth size and shape (Kim et al, 2006a).

Spatio-temporal induction of a secondary enamel knot directs the subsequent folding and 

invagination of the inner enamel epithelium at the sites of future cusps (Jernvall and Thesleff, 

2000b; Kim et al, 2006a). At this stage repeated activation and inhibition of signalling related 

to differential growth and folding within the tooth germ determines tooth dimensions and cusp 

morphology (Jernvall and Thesleff, 2000a).

During the late bell stage, differentiation of two tooth-specific cell types occurs along the 

epithelio-mesenchymal interface of tooth germs (Miletich and Sharpe, 2003); (i) 

mesenchymal cells in contact with the inner enamel epithelium facing the basement 

membrane differentiate into odontoblasts (Linde and Goldberg, 1993); odontoblasts lining the 

pulp chamber secrete a layer of pre-dentin that serves as a scaffold for the deposition of the 

organic dentin matrix (Butler, 1995b); (ii) immediately after the initial deposition of the 

predentin layer, adjacent epithelial cells terminally differentiate into pre-ameloblasts and then 

ameloblasts (Ruch and Lesot, 2000; Lesot and Brook, 2009). Ameloblast cells secret the 

organic enamel extra-cellular matrix (ECM) that mediates the process of enamel formation 

(Deutsch, 1989).

Murine incisors are an excellent location to simultaneously observe the series of cell 

differentiation and migration events during the dynamic process of amelogenesis. 

Mineralised tissue formation begins at the cusp tips and proceeds in a cervical direction, from 

the crown to the root (Nanci, 2003). Hertwig's epithelial sheath determines the form of the 

roots and the fully differentiated tooth is ready to erupt.
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In longitudinal section, the stages of ameloblast differentiation can be seen as a gradient with 

less differentiated cells located posteriorly and the more mature cells located anteriorly on the 

labial surface (Figure 5.)-

Figure 5. Mouse Incisor Morphogenesis and Development

A
BUD CAP BELL
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LABIAL SURFACE ENAMEL

(A) after initiation, the mouse mandibular incisor bud rotates antero-posteriorly, parallel to the long axis of the 
incisor; (B) during the late bell stage, cell differentiation and ECM secretion occurs. The mesenchymal (light 
blue) cells that contact the epithelium (green) give rise to the single layer of odontoblasts that secrete dentin 
(dark blue) and to the labially orientated ameloblasts that secrete enamel (red). Image modified from Wang et 
ai, (2004).

A proximally located stem cell compartment provides progenitor populations for epithelial 

ameloblasts and mesenchymal odontoblasts (Wang et ai, 2004). The mesenchyme diverges 

into two lineages, (i) the dental papilla and (ii) the dental follicle; the papilla gives rise to the 

tooth pulp and odontoblasts, while the follicle gives rise to the cementoblasts, cementum and 

periodontal tissues (Nanci, 2003). Classical tissue recombination experiments in mice show 

odontoblasts and dentin are distributed similarly on the labial and lingual surface (Amar et 

ai, 1986). On the lingual surface odontoblasts differentiate and produce dentin but the 

epithelial cells do not differentiate into ameloblasts (Gaunt, 1956). On the labial surface the 

epithelial cells, adjacent to odontoblasts and dentin, differentiate into tall, polarised 

ameloblasts that secrete the enamel ECM (Wang et al, 2004). This accounts for the labial-
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lingual asymmetry in enamel secretion and formation (Wang et al, 2007) and for the enamel- 

free areas that are a mixture of enamel and cementum related proteins (Sakakura et al, 1989).

2.7. MINERALISATION

2.7.1 Dentine

In the multilayered process, dentine is the first hard tissue to commence mineralisation (Brook, 

2009). Dentine secreting odontoblast cell terminal differentiation is controlled by the molecular 

signals from the secondary enamel knot (Ruch and Lesot, 2000; Lesot and Brook, 2009). 

Dentine is highly permeable because it is primarily composed of inter-tubular dentine, a fibrous 

network of collagen with deposited mineral crystals, and peritubular dentine, a highly 

mineralised sheath around the dentinal tubules that radiate from the pulp (Linde and Goldberg 

1993).

During early tooth development pre-odontoblasts differentiate first into functional odontoblasts 

and start to secrete a collagen-rich pre-dentin matrix (Ruch and Lesot, 2000). The pre-dentin 

matrix consists of type I collagen (86%) and some non-collagenous proteins, including 

proteoglycans and glycoproteins (MacDougall et al, 1998; Butler et al, 2002). Mantle dentine 

formed during primary dentinogenesis at the dentino-enamel junction is rich in proteoglycans, 

more irregular and less mineralised than the following layers (Linde and Goldberg 1993). 

During secretion of the pre-dentin matrix odontoblasts become columnar and form long cell 

processes that become embedded in the dentin matrix secreted directly beneath the basal lamina 

- at which point components such as laminin play an important role (Sahnivirta et al, 1997).

Dentin mineralisation does not occur until the basement membrane material is degraded and 

removed, which allows direct interactions between pre-dentin and pre-ameloblast (Linde and 

Goldberg, 1993; Butler, 1995b). The presence of functional odontoblasts and/ or predentin- 

dentin matrix is required for reciprocal epithelial-mesenchymal interactions to regulate pre- 

ameloblast differentiation into ameloblasts (Ruch and Lesot, 2000). The subsequent secretion 

of enamel ECM is only initiated after the dentin matrix starts to mineralise (Ruch and Lesot, 

2000). Dentin starts to mineralise as the basal lamina disappears and the apical surfaces of 

ameloblasts associate with the superficial collagen fibrils of the mantle dentin. Differentiating
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ameloblasts now start to express small amounts of enamel proteins as they begin to send 

cytoplasmic projections through the gaps in the fragmenting basal lamina (Butler et al, 2002).

Dentinogenesis involves controlled reactions that dynamically convert unmineralised pre

dentin into dentin at the pre-dentin-dentin boarder as apatite crystals form (Butler et al, 2002). 

The constant thickness of pre-dentin suggests the transition is highly controlled and involves a 

gradient of events that regulate the proteolysis of ECM macromolecules (Butler et al, 2002). 

Some confusion exists over the timing of the start of secondary dentinogenesis in humans, and 

the exact details of the complex proteolytic cleavage processes are not completely known, but 

in rodent molars dentine formation occurs with no apparent transition from the former to the 

latter (Butler, 1995b). Tertiary dentinogenesis is stimulated as a reparative response to 

perturbations during tooth ontogeny.

The dentine ECM is associated with dentinal defects such as Dentinal Dysplasia (DD) 

(OMIM125400, Wiktop, 1957, 1975) and Dentinogenesis imperfecta (DI) (OMIM125490, 

Xiao et al, 2001; Zhang et al, 2001), and with gene mutations in the various collagen 

structural proteins (Butler, 1995b). DI results in exposed sensitive and softened dentine that 

lacks resilience and undergoes rapid attrition (Wiktop, 1975) manifests as severe 

discolouration of the teeth (Witkop, 1989). The non-collagenous proteins, such as dentine 

sialoprotein (DSP) and dentin phosphoprotein (DPP), mapped to a shared chromosomal 

location (4q21-q23), are derived from a single parent gene that codes for dentin 

sialophosphoprotein (DSPP) (DSPP, OMIM125485, MacDougall et al, 2002; MacDougall et 

al, 2003). The cleavage products of DSPP play a significant role in controlling crystal size 

and/ or morphology and mineralisation (Butler, 1995b). Dpp may act as a nucleator of 

hydroxapatite crystals during dentine morphogenesis, histodifferentiation and patterning 

(MacDougall et al, 1998). The proteolytic processing of DSPP is hypothesised to be 

catalyzed by BMP-1 (Zhu etal, 2010).

2.7.2. Enamel

Enamel covers the anatomical crown of teeth and is the most highly mineralised tissue in the 

human body (Tomes, 1850). It is acellular, insensitive and inert (Robinson et al, 1981a; 

Deutsch, 1989) and when mature contains less than 1% organic material (Brookes et al, 

1995; Simmer and Fincham, 1995). Inorganic enamel mineral is composed of calcium
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hydroxyapatite crystals (25nm thick and 65nm wide), that extend as much as 2.0 mm from 

the enamel-dentino junction to the tooth surface (Meckel et al., 1965; Dacusi and Kerebel, 

1978). The hydroxyapatite crystallites grow parallel to one another in bundles or rods 

(Boyde, 1967), with about 10,000 crystallites per rod (Warshawsky et al, 1987). 

Hydroxyapatite is responsible for more than 95% mineral by weight of mature enamel 

(Robinson et al, 1989; Simmer and Fincham, 1995; Fincham et al, 1999).

Enamel mineral crystals are unusually large when compared with crystals of bone, dentin, 

cementum and other mammalian hydroxyapatite (Veis, 2003a). The structure of enamel in 

murine rodents (Boyde, 1969), such as rats (Risnes 1979a; Rinses, 1979b) and mice 

(Moinichen et al, 1996; Lyngstadaas, 1998), is unique in that its shows extreme enamel 

prism decussation (Boyde, 1969), where prisms in adjacent rows are inclined in opposite 

directions across each other (Risnes, 1987; Risnes, 1999). Rodent incisor enamel has 

characteristic and distinct inner and outer enamel layers; the thickness of the outer enamel in 

the central labial region is about 22 pm in the mandibular incisor (Rinses et al, 1979b; 

Moinichen era/., 1996).

The structure of murine incisor enamel is established at the interface between secretory 

ameloblasts and forming enamel (Leblond 1979), the topography of which has a complex 

three-dimensional configuration (Warshawsky et al, 1987; Rinses et al, 2002). The crystal 

surface of murine enamel has been characterised by Atomic Force Microscopy (Kirkham et 

al, 1998) and its size and form is a reflection of the restrictions imposed during tissue 

morphogenesis (Robinson etal, 1998; Kirkham et al, 2002).

2.7.3. Amelogenin Proteins

The amelogenins are a family of evolutionarily conserved proteins (Fincham et al, 1983). 

Amelogenins provided the earliest evidence of the ECM involvement in enamel 

mineralisation (Termine et al, 1980; Fincham et al, 1983; Deutsch, 1989) and they 

constitute up to 90% of the developing enamel (Robinson et al, 1989; Fincham et al, 1994; 

Robinson et al, 1995). The predominant enamel ECM protein, amelogenin, is secreted from 

and expressed in ameloblasts throughout the various stages of enamel formation or 

amelogenesis (Hu et al, 2001). The ECM is transiently formed in the extra-cellular space 

during enamel crystal deposition, progressive protein degradation and secondary crystal
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growth (Deutsch, 1995; Robinson et al, 1998). It is the ECM that finalises the enamel 

surface morphology (Jemvall and Thesleff, 2000a; Margolis et al, 2006).

2.7.3.1. Amelogenin:

Amelogenin is a 180-amino acid hydrophobic prolein rich (25-30%) protein with a bipolar 

nature due to its hydrophilic 12-carboxy-terminal residues (Simmer et al, 1994; Simmer, 

1995; Fincham et al, 1999). It is secreted primarily (80%) as a protein isoform of 175 amino 

acids with a signal peptide (16 amino acids) that includes three distinct domains: an N- 

terminal positively charged (N-region), a central hydrophobic part (H-region), and a more 

polar C-terminal domain (C-region) (Deutsch et al, 1995). Amelogenin is the most abundant 

ECM protein, greater than 95% mineral by weight in mature enamel and it is almost 

completely removed during mineralisation (Smith, 1998).

The amelogenin monomer subunits self-assemble into spherical structures called nanospheres 

(15-20nm) that are found between the growing ribbon-like crystals (Feamhead, 1960; 

Robinson et al, 1981b; Fincham et al, 1995). Nanospheres spatially organise the initial 

crystallites, control crystal habit and create anionic channels that facilitate ion transport 

within the mineralising ECM (Fincham et al, 1995). Therefore, nanospheres are thought to 

provide the scaffold that guides crystal growth as the amelogenin proteins are deposited and 

hydrolysed in an orchestrated manner (Fincham et al, 1999; Paine et al, 2000). The highly 

conserved amelogenin N-terminal tri-tyrosyl domain may be involved in the formation of 

nanospheres (Ravindranath et al, 1999) and/or binding to other enamel or dentin proteins 

(Ravindranath et al, 2003). The N-terminal region may have a role in amelogenin self- 

assembly related to enamel defects (Paine et al, 2002). The C-terminal region may contribute 

to nanosphere stability and size homogeneity (Moradian-Oldak et al, 2000). Nanospheres 

either provide the environment for the initiation of mineral crystals in normal enamel or have 

an essential interactive relationship between nanosphere self-assembly and mineral growth 

(Robinson et al, 2003; Margolis et al, 2006). Enamel surface topology suggests that ECM 

processing may generate nuclei leading to fusion and transformation into long apatite crystals 

(Kirkham et al, 2000; Robinson et al, 2003). The C-terminus has an affinity for forming 

enamel crystallites and likely plays a critical role in amelogenin scaffold assembly during 

enamel development (Wright, 2006).
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In the mouse, the amelogenin gene (Ameh) is mapped to the X chromosome (Lau et al, 

1989; Fincham et al, 1983), whereas in humans the amelogenin gene (AMEL) is sexually 

dimorphic and maps to both the Xp22.1-p22.3 and Ypll.2 chromosomes (Lau et al, 1989; 

Salido et al, 1992). In human males, 90% of the amelogenin gene transcripts are expressed 

from the X chromosomal copy of the gene (AMELX), while only 10% is expressed from the 

Y chromosomal copy (AMELY) (Snead et al, 1989). Despite being expressed in the same 

cells, the X and Y chromosomal copies are processed differently (Nakahori et al, 1991; 

Salido etal, 1992).

Amelogenin was originally thought to be an enamel specific protein of exclusively epithelial 

origin with an isoated function in controlling the size, shape and the direction of 

hydroxyapatite crystal formation during enamel structural organisation and mineralisation 

(Robinson et al, 1981a, 1983, 1989). However, alternatively spliced RNA transcripts that 

translate into multiple isoforms and result in the heterogeneous mixture of amelogenin 

proteins that are found in developing mouse tooth extracts suggests otherwise (Simmer et al, 

1994; Simmer, 1995; Hu et al, 1997). There are thought to be up to nine exon coding regions 

of amelogenin (AMELX/ Amelx) in many species (Li et al, 1998; Baba et al, 2002; 

Papagerakis et al, 2005). So it has been difficult to assign specific functions to individual 

amelogenins because of the large number of isoforms with potentially different functions 

(Deutsch et al, 1989; Stephanopoulos et al, 2005; Gibson et al, 2005). Nonetheless, this 

mechanism produces species-specific variations in enamel structure and has resulted in the 

finely timed process of amelogenesis.

Also, amelogenin is now known to be expressed in the dentin matrix (Nebgen et al, 1999), 

odontoblasts (Papagerakis et al, 2003), in Heitwig's root sheath and periodontal ligament 

cells (Fong et al, 1998; Fong and Hammarstrom, 2000), in long bone cells, such as 

osteocytes, osteoblasts and osteoclasts, in periosteum, in chondrocytes of the articular 

cartilage and the epiphyseal growth plate (Haze et al, 2007), in glial cells, in salivary glands 

and in some hematopoietic cells (Li et al, 2006; Deutsch et al, 2006). The expression of 

amelogenin in alveolar bone regions suggests it may be active in bone formation and 

remodelling (Haze et al, 2007).

Several amelogenin isoforms display different signalling effects on ameloblast and 

odontoblast differentiation (Nebgen et al, 1999; Yeis, 2003b). Amelogenin’s signalling roles
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during early craniofacial development was supported by its early expression in mouse 

embryogenesis (ED 10.5), long before initiation of tooth formation, and its detection in the 

dental lamina (ED13.5-ED16.5) before extra-cellular enamel or dentin formation (Li et al, 

2006; Gruenbaum-Cohen et al, 2008). Amelogenin also encourages progenitor cell 

recruitment during periodontal regeneration (Hammarstrom et al, 1997) and promotes 

regeneration of other supporting tissues (e.g. periodontal ligament and cementum) (Hu et al, 

2006; Zhu et al, 2006).

The expression of amelogenin occurs in a variety of tissues of the craniofacial complex, 

including non-mineralising cells of the neural crest that give rise to non-neuronal ecto- 

mesenchymal tissues in bone, cartilage and mesenchymal regions of the teeth (and in the eye- 

lens, which is not thought to be neural crest derived) (Gruenbaum-Cohen et al, 2008). This 

means that during these developmental stages amelogenin must have additional functions to 

those described in the early ECM studies. The expression patterns in the eye-lens, brain and 

nerve fibers (Deutsch et al, 2006) suggested a possible role for amelogenin in elongating 

structures that may be of possible relevance to the model of nanosphere elongation (Paine et 

al, 2002; Du et al, 2005; Margolis et al, 2006). Therefore, amelogenin is proposed to be a 

multifunctional protein (Li et al, 2006; Gruenbaum-Cohen et al, 2008).

2.7.4. Non-Amelogenin proteins

Non-amelogenin ECM proteins are also important in enamel mineralisation. They too may 

have yet to be discovered roles in the craniofacial complex.

2.7.4,1. Ameloblastin:

Ameloblastin (formerly amelin or sheathlin) is the most abundant non-amelogenin ECM 

protein (5% of total protein). It is expressed at high levels in ameloblasts, at low levels in 

odontoblasts and pre-odontoblasts (Toyosawa et al, 2000). Human ameloblastin (AMBN) is 

located on chromosome 4q21 (Karrman et al, 1997; MacDougall et al, 1997), near other 

genes associated with the mineralised tissues (MacDougall et al, 2003), and it shares high 

sequence homology with mice (chromosome 5) (Toyosawa et al, 2000). Ameloblastin is 

alternatively spliced in humans and mice and the fate of its cleavage products are thought to 

be similar to that of other ECM proteins (Brookes et al, 2001; Iwata et al, 2007).

56



2. Literature Review

2.7.4*2. Amelotin:

Amelotin is a structural enamel protein component of the basal lamina, with only few post 

translational modifications (Iwasaki et al, 2005). The human amelotin gene {AMTN) shows 

significant sequence homology with its mouse orthologue, displaying a similar exon-intron 

structure and expression loci on chromosomes 4 and 5 respectively (Iwasaki et al, 2005). 

Thus far, amelotin is only known to be expressed in ameloblasts during the maturation-stage 

of amelogenesis and may therefore be engaged in proteolytic processing/ degradation of the 

ECM (Iwasaki et al, 2005).

2.7.4.3. Enamelin:

Enamelin is the largest (1103 amino-acids with a 39 amino-acid signal peptide) and least 

abundant (1 to 5% of total amount) enamel ECM protein (Hu et al, 2001a). The human 

enamelin gene (ENAM) is located at chromosome 4q21 (Hu et al, 2000; Dong et al, 2000) 

and the mouse enamelin gene (Enani) is located at chromosome 5 (Hu et al, 1998, 2001a). 

ENAM and Enam are evolutionarily conserved, sharing 73% gene sequence homology (Dong 

et al, 2000). Enamelin is a tooth-specific protein that is secreted solely and specifically by 

ameloblasts (Hu et al, 2008). Unlike ameloblastin and amelogenin, no alternatively spliced 

enamelin RNA has been reported (Hu et al, 1997) but nucleotide polymorphisms do affect 

the produced amino acid (Stephanopoulos et al, 2005).

Extensive proteolytic processing of enamelin gives rise to multiple cleavage products that 

accumulate in different parts of the enamel ECM (Deutsch et al, 1995). Enamelin is present 

at the dentino-enameljmiction, throughout the entire thickness of enamel during the secretory 

stage, and disappears early in the matmation stage (Hu et al, 1997, 2000, 2001a). These 

cleavage products are uniquely different to their precursors and demonstrate vital regulatory 

functions at the different stages of enamel growth and formation (Hu et al, 2007).

Therefore, enamelin is thought to control multiple steps (nucleation, growth and organisation) 

in the crystallisation of hydroxyapatite dming enamel formation (Hu et al, 2007; Hu and 

Simmer, 2007).

2.7.4.4. Enamelysin andKallikrein-4 Proteases:

Enamelysin (or matrix-metalloproteinase-20) is a calcium-dependent proteinase coded for a 

tooth specific human {MMP-20) and mice (mmp-20) genes (Bartlett et al, 1996). It is heavily
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expressed by ameloblasts adjacent to the Tomes' process throughout the secretory stage and 

into the early maturation stage where it is thought to be necessary for the process of crystal 

elongation (Bartlett et ah, 2004, 2006). Kallikrein-4, a calcium-independent serine proteinase, 

is coded for by the human (KLK-4) and mice (klk-4) genes (Simmer et al, 1998). Kallikrein-4 

is expressed later than enamelysin, starting in the transition stage and early maturation stage 

ameloblasts and continuing through to tooth eruption (Hu et ah, 2002; Simmer et al, 2009).

MMP-20 steadily cleaves enamel proteins that have accumulated in the space between crystal 

ribbons for support during the secretory stage, their concentration decreasing with depth as 

enamel crystals thicken away from the enamel surface (Lu et al, 2008). KLK-4 more 

aggressively degrades the retained ECM as enamel protein secretion terminates. Despite these 

important differences in the timing of their expression and proposed functions, MMP-20 and 

KLK-4 mutations cause a similar autosomal recessive pigmented hypomaturation Al 

phenotype in humans (Wright et al, 2006; Hu and Simmer, 2007). Therefore, the principle 

functions of MMP-20 and KLK-4 are thought to be in facilitating the orderly replacement of 

ECM with mineral, generating an enamel layer that is harder, less porous, and does not retain 

excess enamel proteins (Lu et al, 2008).

In mice, Mmp-20 and Klk-4 studies have suggested that Mmp-20 alone processes amelogenin 

during the secretory stage of amelogenesis (Simmer et al, 1998; Hu et al, 2002; Nagano et 

al, 2009). Mmp-20 also has a major role alongside Klk4 in removing enamel proteins 

(Bartlett et al, 2004, 2006), which is crucial for the proper maturation of enamel crystals 

(Fleischmannova et al., 2008; Simmer et al, 2009).
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2.8. AMELOGENESIS 

2.8.1. Amelogenesis

Ameloblasts control the critical ionic, pH and fluid concentration of the intra- / extra-cellular 

micro-environment whilst undergoing morphological changes and accommodating diverse 

physiological functions (Deutsch et al, 1995). Amelogenesis can be observed in three 

distinct stages; (i) pre-secretory, (ii) secretory and (iii) maturation (and post-maturation) 

identifiable in both the ameloblast and in the extra-cellular enamel that they produce (Rinses, 

1987; Robinson et al, 1998; Smith and Nanci, 1989) (Figure 6.).

Figure 6. Stages of Enamel Formation.
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Ameloblast changes during enamel formation: (A) epithelial cells rest on the basement membrane; (B) they 
increase in length as they differentiate into ameloblasts above the pre-dentin matrix; (C) pre-secretory 
ameloblasts send processes through the degenerating basement membrane as they initiate enamel protein secretion 
onto the surface of the mineralising dentin; (D) the start of the secretory-stage sees the dentino-enamel junction 
established as a thin layer of aprismatic enamel begins to mineralise. Ameloblasts develop a specialisation, or 
Tomes' process, in place of the absent basement membrane, and enamel proteins are secreted at a mineralisation 
front where the enamel crystals grow in length. Each enamel rod follows a retreating Tomes' process from a single 
ameloblast; (E) at the end of the secretory stage, ameloblasts lose their Tomes' process and produce a thin layer of 
aprismatic enamel; (F) at this point the enamel has achieved its final thickness. During a transition stage, 
ameloblasts restructure, reduce their secretory activity and change the types of proteins secreted; (G) e.g. KLK-4 
begins to degrade the accumulated protein matrix. During the maturation stage ameloblasts modulate between 
ruffled and smooth-ended phases. Ameloblast activity promotes the deposition of mineral on the sides of enamel 
crystals as the enamel layer hardens. Image modified from Hu et al, (2007).
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2.8.1.1. Pre-secretory Stage:

During the pre-secretory stage of amelogenesis the basement membrane (epithelial sheet) 

forms apically and differentiates, longitudinally towards the incisal tip, into tall ameloblasts 

that secrete the enamel ECM and transport calcium ions that begin mineralisation (Deutsch et 

al, 1989, 1995). Amelogenins first appear on the surface of recently deposited dentin where 

they are secreted on top of and around existing crystallites (dentin crystals initially and 

enamel crystals thereafter), and into the spaces that were previously occupied by the basal 

lamina (Robinson et al., 1989; Ruch and Lesot, 2000). This forming dentino-enamel junction 

is particularly susceptible to failure as the enamel layer tends to shear from the underlying 

dentin (Sato e/a/., 1996; Deutsch ef a/., 1995).

Secretory ameloblasts recede as patches of enamel grow larger and merge as a continuous 

and uniform layer of initial aprismatic enamel is deposited (i.e. not separated into rod and 

inter-rod) (Boyde, 1967). At the secretory ends of ameloblasts, a specialised cell extension 

called a Tomes process forms with secretory and non-secretory regions (Tomes, 1850). 

Adjacent to the matrix depositing ameloblasts, the mineralisation front (a concentration of the 

secreted enamel proteins) retreats with the Tomes process as the enamel crystals grow in 

length (Risnes, 1998). The radial movement of the ameloblasts away from the mineralisation 

front provides the architectural basis for organising enamel crystals into prisms (Meckel et 

al, 1965; Rinses et al, 2002). After secretion amelogenin quickly passes through the 

mineralisation front (Smith and Nanci, 1989) and assembles into nano-spheres (Fincham and 

Simmer, 1995) that are thought to regulate crystal spacing (Robinson et al, 1989; Deutsch et 

al, 1998). The developing ECM is predominantly formed of amelogenin (90%) which 

continues to be essential for crystal growth and structural maintenance into the mid-secretory 

stage (Paine et al, 2005).

2.8.1.2. Secretory Stage:

During the secretory stage of amelogenesis uncleaved enamelin is only observed in the 

surface enamel at the mineralisation front, near the Tomes' process of the ameloblast, where 

it is thought to be critical in maintaining crystallite elongation (Hu et al, 1997). Many 

enamelin cleavage products are found throughout the entire thickness of developing enamel 

(Deutsch et al, 1989), concentrated in the rod and inter-rod enamel, where they may bind to 

the sides of developing enamel crystals and regulate their shape (Hu et al, 2000). Enamelin is
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rapidly cleaved shortly after secretion and disappears early in the maturation stage suggesting 

it plays an early role during enamel formation (Hu et al, 2001b, 2007).

Ameloblastin maintains the differentiation state of secreting ameloblasts (Fukumoto et al, 

2004) which continue to secrete enamel proteins as the crystals elongate and grow (primarily 

in length) as the enamel layer thickens (Robinson et al, 1989). The final length of the enamel 

crystals (and the thickness of the enamel layer as a whole) is detennined by the length of time 

ameloblasts continue to deposit enamel proteins, or how long they remain in the secretory 

stage (Hu et al, 2007). Ameloblastin expression is diminished by the maturation stage.

During the secretory stage ameloblasts progressively decrease in height, increase in width 

and reduce their secretion of enamel proteins (Deutsch et al, 1995). As enamel crystals 

achieve their final length the ECM (separating individual crystallites) begins to be degraded 

and reabsorbed (Robinson et al, 1995) into the early maturational stage (Lu et al, 2008). 

Ameloblasts initiate the secretion of enamelysin that cleaves amelogenin in the secretory 

stage (Bartlett et al, 1996; Bartlett et al, 2004). Kallikrein-4 later degrades amelogenin as 

the process of ECM proteolysis continues into the maturation phase (Simmer et al, 1998; Hu 

et al, 2002). Amelotin is also secreted at this point as part of a newly forming basement 

membrane (Iwasaki et al, 2005).

2.8.1.3. Maturation Stage:

Further towards the incisal tip the epithelium enters a maturation stage wherein ameloblasts 

shorten and begin to cycle through smooth-ended and ruffle-ended phases as they lose their 

secretory characteristics (Smith and Warshawsky, 1975, 1976; Nanci, 2003). At this stage the 

rapid removal of the ECM terminates the longitudinal growth of enamel crystals, accelerates 

their latitudinal growth and thickness, and exposes the sides of the thin crystals to ion 

deposition (Hu et al, 2007). The predominant site of mineral deposition now shifts from the 

enamel surface, and as mineralisation speeds up the enamel layer hardens (or matures) as 

mineral ions are increasingly deposited either side of the crystals until adjacent crystallites 

contact (Robinson et al, 1998), By the end of this stage, normal enamel thickness is thought 

to be achieved by the suppressed expression of a variety of protein genes, e.g. Amelx and 

Enam (Lezot et al, 2000, 2002, 2008).
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In the human permanent dentition, crystallites continue to grow in width and thickness over 

about 3-6 years during which time the enamel layer becomes hard, fully mineralised and 

fully mature (Termine et al, 1980; Robinson et at, 1998). The ECM has been completely 

removed and secondary enamel crystal growth occludes the spaces previously occupied by 

water, amelogenins and other ECM proteins that were replaced by calcium and phosphorus 

mineral ions (Deutsch et al, 1995). The fully mineralised enamel layer is neither replaceable 

nor repairable because during maturation ameloblasts become cuboidal, progress towards the 

gingival margin and are lost as the tooth erupts (Nanci, 2003).
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2.9. AMELOGENESIS IMPERFECTA

2.9.1. Amelogenesis imperfecta

The Amelogenesis imperfectas (AI) are a clinically and genetically heterogeneous group of 

inherited dental defects that are exhibited in the absence of non-dental symptoms (Witkop, 

1957, 1975; Witkop and Sauk, 1976). The prevalence of AI appears to vary geographically, 

e.g. 1:8000 in Israel (Chosack et ah, 1979), 1:700 in Sweden (Backman and Holm, 1986) and 

1:14000 in the USA (Witkop and Sauk, 1989). A broadly classified spectrum of human AI 

phenotypes exists with three main types; (i) autosomal dominant (85%), (ii) autosomal 

recessive (10%) and (iii) X-linked (5%). These phenotypes are subdivided into a combination 

of at least 14 different subtypes that result in three main deficiencies in the quality or quantity 

of enamel; (i) hypoplastic, (ii) hypomineralised/calcified and (ii) hypomature (Winter and 

Brook, 1975; Witkop, 1989; Aldred et ah, 2003; Wright et al, 2006; Crawford et al3 2007).

The range of enamel dysplasias observed in patients with AI is classified according to the 

thickness, hardness and smoothness of the affected enamel (Crawford et al, 2007). These 

differences are believed to reflect the different stage of amelogenesis when the disruption 

occurs (Hu et al, 2007): e.g. a pre-secretory stage failure in mineralisation, in its most 

extreme hypomineralised/ hypocalcified form, leaves enamel of normal thickness but rough 

and soft, lacking resilience and susceptible to rapid attrition (Wiktop, 1957; Hart et al, 

2003a; Kim et al, 2008); in the secretory stage insufficient enamel protein deposition/ 

secretion and associated crystal elongation leaves the enamel layer pathologically thin or 

hypoplastic (Chosack et al, 1979; Lench and Winter, 1995; Lagerstrom-Fermer et al, 1995; 

Rajpar et al, 2001); in the maturation stage a failure to fully remove the ECM and promote 

the hardening of the enamel layer leads to crowns of normal size but pathologically soft or 

hypomature (Sauk et al, 1972; Lagerstrom-Fermer et al, 1991; Hart et al, 2000).

A number of specific mutations have been identified in the amelogenin gene (AMELX, 

OMIM300391, Hart et al, 2002a, 2002b; Kim et al, 2004) and in the enamelin gene (ENAM, 

OMIM606585 Rajpar et al, 2001; Mardh et al, 2002; Hart et al, 2003b), which are human 

and mouse orthologues involved in enamel formation. The other significant genes implicated 

in the aetiologies of enamel defects encode the ameloblastin protein (AMBN, OMIM601259, 

AI1B, OMIM104500; MacDougall et al, 1997, Toyosawa et al, 2000), the FAM83H protein
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(FAM83H, OMIM611927, AI3, OMIM130900, Kim et al, 2008) and two proteases 

kallikrein-4 (KLK-4, OMINM603767, Hart et al, 2004) and enamelysin (MMP-20, 

OMIM604629, Kim et al, 2005a, Papagerakis et al, 2008). Amelogenin, enamelin and 

ameloblastin are critical for proper enamel mineralisation and they all belong to a secretory 

calcium-binding phosphoprotein gene family (Kawasaki and Weiss, 2003).

AMELX and ENAM mutations cause structural changes that alter the functional domains and 

specificity of the proteins and result in the spectrum of different enamel appearances 

(Fincham et al, 1999), To date, the 15 known AMELX mutations correlate directly to 

different deletion, mis-sense, frame-shift and non-sense types of mutations (Aldred et al, 

2003; Stephanopoulos et al, 2005; Wright et al, 2006; Crawford et al, 2007) (Table 1.).

Table 1. Gene Mutations Causing Ameloeenesis imperfecta
A______________________________________________________________________________________________________________

X-VriktA A metagenesis imperfecta

MALE PHENOTYPE MUTATION REFERENCE

hypoplastic (nonnal nineralisation) MIT Kane/a/., 2004
hypoplastic (normal nineralisation) W4S YLmetal., 2004
hypoplastic (normal mineralisation) W4X Sekiguki et at., 2001
smooth hypoplastic (normal nineralisation) I5_A8delinsT Lagerstrtim-Fermer and Landegren, 1995
hypo maturation (some hypo nineralisation) ISdel Lagerstrom-F ermer, 1991
hypo maturation (some hypo nineralisation) brown cobir T51I Lench and Winter, 1995
hypoplastic (some hypo mineralisation, variable) white opaque P52SX53 Aldred et al, 1992a; Lench et al., 1994
hyporraturation (some hypoplasia) white cervical brown coronal P70T Collier et al, 1997; Ravassipor et al., 2000; Hart et a!., 2002b
hypomaturation (yellow, brown) H77L Hart et al, 2002b
smooth hypoplastic H1296X187 Sekigiiti et n/„ 2001
smooth hypoplastic Y141fiX187 Greene et al, 2002
hypocalcified P158fcX187 Lench and Winter, 1995
smooth hypoplastic (some hypo nine ralisatiorv' calcification) L181&X187 Kiidelan cf n/., 2000; Hart ef a/., 2001
smooth hypoplastic E191X Lench and Winter, 1995
smooth hypoplastic (yellow) P52R Kida et al, 2007

Aninal model
Amek-mil 
Amebc-rail; Y64H

Gibson et a!., 2001; Gibson et al. ,2005; Gibson et al, 2007; 
Wrigttf et al, 2009; Barron et al, 2010

B________________________________________________________________________________________
autosomal recessive and AotAtavAAmelogenesis imperfecta

PHENOTYPE MUTATION REFERENCE

domirant localised hypoplastic (AIH2, OMIM104500) 
dominant severe horizontal grooves
domnant generalised thin hypoplastic (ALH2, OMIM 104500)
domiiant generalised thin hypoplastic (AIH3, OMIM204650)
dombant hypoplastic
dominant hypoplastic
recessive local pitted
recessive generalised thin hypoplastic

K53X
M71_Q157del
A158_Q178deI
N1976X277 
R170M
S246X
V340_M341insSQ
P4226X448

Mardh et al, 2002; Kim et a/., 2006b
Kim eta/., 2005b
Rajpar et al, 2001; Urza et al, 2005
Kida et al„ 2002; Hart et al, 2003b; Ktm et at., 2005b 
Gutierrez et al, 2007
Ozdemir et al, 2005
Ozdemir et at., 2005
Hart eta/, 2003b

Animal model p.S55I; PQ176X 
PE57G; Enam-null

Matsuya eta/, 2005; Seedorf et a/, 2007;
Hu eta/, 2008; Wright eta/, 2009

(A) AMELX X-linked Al mutations; (B) ENAM autosomal dominant and recessive Al mutations. Adapted and 
updated from Hart et al, (2002), Stephanopoulos et al, (2005) Wright et al, (2006) and Hu etal, (2007).
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All of the X-linked forms of AI (AIH1, OMIM301200) are associated with specific mutations 

in the X-chromosomal amelogenin gene (AMELX, OMIM300391, Lagerstrom-Fermer et al, 

1991, 1995; Lench and Winter, 1995), located at chromosome Xp22.3-p22.1 (Lau et al, 

1989; Salido et al, 1992; Aldred et al, 1992a). One family has been reported as having 

linkage to another X linked interval (Xq22-28) (Aldred et al, 1992b, OMIM301201) and 

there are other X-linked conditions that have significant enamel involvement, making it likely 

that there are other important genes on the X chromosome (Wright, 2006).

AIH1 affects males and females differently and their phenotypes vary markedly in severity 

and appearance (Witkop, 1967). In males, 90% of the amelogenin transcripts are expressed 

from AMELX and only 10% are expressed from the active human amelogenin gene on the Y 

chromosome AMELY (AMELY, OMIM410000) (Salido et al, 1992). Although AMELY is 

thought to contribute proteins no mutations are reported (Fincham et al, 1983; Snead et al, 

1989; Nakahori et al., 1991). Affected hemizygous males express only the mutant allele and 

so display the trait severely, whereas, heterozygous females show a mosaic pattern of 

expression due to lyonisation (Lyon, 1961) or X-chromosome inactivation (Huynh and Lee, 

2005; Heard and Disteche, 2006). This is proposed to be due to alternating clusters of 

ameloblasts (expressing either the normal or the mutant allele) secreting either the normal or 

the defective amelogenin protein (Witkop and Sauk, 1976). Affected teeth typically display 

vertical ridges and grooves as a result of enamel hypoplasia, or they have vertical striated 

bands of alternating normal and discoloured enamel (Witkop, 1967). Pleiotropic variation is 

often exhibited (Liao et al, 2008) between affected individuals in the same family, between 

dentitions in the same individual and even between different teeth in the same dentition 

(Brook, 2009), e.g. in some families hypoplasia occurs together with other abnormal 

mineralisation phenotypes (Backman, 1988).

AMELX mutations are categorised as; (i) major deletions or signal peptide coding region 

mutations that result in the total loss of amelogenin (Lagerstrom-Fermer et al, 1991 and 

1995; Kim et al, 2004), this is a human knockout (KO) equivalent that primarily leads to the 

smooth hypoplastic phenotype of reduced enamel thickness (also described as hard and well- 

mineralised); (ii) frame-shift mutations in the N-terminal coding region (Aldred et al, 1992b; 

Lench et al, 1994) that result in hypomaturation hypomineralised enamel that is soft with too 

much organic material and hypolplastic phenotypes with varying degrees of severity (even 

between same gender individuals within the same family) (Wright et al, 2003). Mis-sense
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T51I mutations in this region result in an enamel phenotype described as hypomineralisation/ 

hypomaturation (Lench and Winter, 1995), and the P70T and H77L mutations that produce 

the hypomaturation phenotype both display enamel discoloration (Collier et al, 1997; 

Ravassipour et al, 2000; Hart et al, 2002b); (iii) premature stop codons in the C-terminus 

coding region that cause protein truncation and result in a generalised thinning of enamel and 

a smooth hypoplastic phenotype (Lench and Winter, 1995; Hart et al, 2002b; Aldred et al, 

2003).

This overlapping range of enamel phenotypes is not surprising given that amelogenin (and its 

associated proteins) are all involved in the critical pathways that are related to the secretion, 

organisation, processing, and/ or mineralisation of developing enamel (Wright et al, 2003; 

Wright, 2006). For example, in hypoplastic AIH1 a deficiency in the amount of enamel, 

which is of a normal hardness but does not develop to normal thickness, makes teeth appear 

small - the surface enamel varies considerably displaying smooth, rough, pitted, or local 

forms (Witkop, 1989). The hypomature (snowcapped) type of AIH1 arises from defects in the 

maturation stage of amelogenesis, where, in males the primary teeth are opaque ground-glass 

white and the secondary teeth are mottled yellow-brown and white (Witkop, 1989) and 

enamel is moderately soft and of normal thickness, so chips and abrades more easily than 

normal (Crawford et al, 2007). In hypomature AIH1 teeth may either have only a thin layer 

of enamel of normal colour and translucency, or the enamel may be of normal thickness but 

poorly mineralised with loss of translucency and/ or a yellow-brown discolouration (Wright 

et al, 2003; Wright, 2006; Crawford et al, 2007). In hypocalcified AIH1 the loss of enamel 

is rapid because the developmental disruption results from early defective initial crystallite 

mineralisation and growth (Wright, 2006). Understanding the relationship between the 

enamel phenotype and underlying genetic lesion is made more complex by the extensive 

alternative splicing of Amelx such that a point mutation could potentially affect several 

different amelogenin proteins but have no effect on others (Gibson et al, 2005, 2009).

In addition to amelogenin, the other important ECM constituent that is implicated in the 

aetiology of Al is ENAM (OMIM606585, Dong et al, 2000; Hu et al, 2000). Multiple 

ENAM allelic mutations are associated with autosomal dominant Al (AIH2) (Rajpar et al, 

2001; Kida et al, 2002; Hart et al, 2003a; Hu and Yamakoshi, 2003) mapped to human 

chromosome 4qll-q21 and encompassing the AMBN gene (Karrman et al, 1997). Two 

clinically distinct forms of AIH2 exist, smooth hypoplastic Al and local hypoplastic Al
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(OMIM104500} Rajpar et al, 2001; Mardh et ah, 2002). The local hypoplastic phenotype 

resulting from ENAM mutations that essentially stops protein production from one allele is 

characterised by horizontal bands of hypoplastic pits that encompass the tooth. Mutations that 

result in a secreted but altered protein are associated with the more severe generalised thin 

hypoplastic type that display fine horizontal bands and pitting on the enamel surface, 

hypothesised to result from a dominant negative effect (Mardh et al, 2002; Wright, 2006). 

Therefore ENAM mutations show a haploinsufflciency dose effect so that a single mutant 

allele causes a mild form of Al and defects in both alleles prevent the whole enamel layer 

from forming in more severe forms of Al (Hart et al, 2003b; Ozdemir et al, 2005; Hu and 

Yamakoshi, 2003; Hu et al, 2008).

The subsets of Al conditions offer an unparalleled opportunity to investigate the specific 

roles of proteins in normal and abnormal enamel formation and to delineate between the 

various phenotypes (Hart et al, 2002b; Miletich and Sharpe, 2003; Stephanopoulos et al, 

2005; Paine and Snead, 2005). Mutations leading to defective processing are thought to 

impair mineral initiation, fusion, and crystal growth leading to short mineral segments in 

hypoplastic Al or abnormally large crystals in hypomature Al (Robinson et al, 2003). 

Further genetic linkage studies are expected to show additional loci for both X-linked and 

autosomal forms of Al (Aldred et al, 1992b; Karrman et al, 1996; Kim et al, 2006b; 

Wright, 2006; Hu et al, 2007).

2.9.2. Mouse Models of Amelogenesis imperfecta

Numerous murine model studies have targeted particular ECM genes in order to evaluate the 

effect of the individual protein changes during enamel development. This has gained much of 

the insight into the structural and fimctional causes behind the phenotype heterogeneity in AL

2.9.2.1. Amelogenin (Amelx):

Amelogenin deficient knock-out (KO) mutant mice, with a deletion in the signal peptide 

sequence that results in the total loss of amelogenin, combine various human phenotypes into 

one model of Al (Gibson et al, 2001, 2005). The distinctly abnormal phenotypes (chalky- 

white discoloured teeth) of the amelogenin-null (Amelx-imll) mice are remarkably similar to 

severe hypomaturation Al in humans (Sauk et al, 1972; Collier et al, 1997). Micro

radiography and SEM revealed broken incisal tips and disorganised thin hypoplastic enamel
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respectively, which suggested incorrect amelogenin assembly, delayed mineral deposition 

and thin disrupted enamel prism patterning (Gibson et al, 2001). Amelogenin was not 

required for mineral crystal initiation but was essential for correct structural organisation, 

crystal pattern formation and elongation during the secretory stage of amelogenesis (Gibson 

et ah, 2001). This proposed the critical importance of amelogenin in generating the correct 

thickness of enamel.

Mice over expressing the most abundant amelogenin isoform (Ml 80) and mice containing a 

proline - threonine (P70T) mutation in the amelogenin tri-tyrosyl domain (Gibson et ah, 

2007), have revealed a similar phenotype to the hypomaturation form of AI in humans with a 

similar mutation (Collier et ah, 1997). The P70T mutation is adjacent to a proteolytic 

cleavage site thought to be required for amelogenin degradation during normal crystal growth 

(Li et al, 2001). Under light microscopy and SEM the morphology of the molars from the 

wild-type and the Ml80 mice showed similar prismatic enamel, while the P70T mice showed 

markedly aprismatic chalky-white discoloured enamel (Gibson et ah, 2007). The resulting 

delay in the proteolysis was suggested to lead to the retention of excess protein as seen in the 

hypomature enamel of AI (Li et ah, 2001; Gibson et al, 2005). Mating the Amelx-mi\\ mice 

(Gibson et ah, 2001) and the Ml 80 mice generated M180KO offspring with partially rescued 

enamel thickness, mineral density and volume (Gibson et al, 2007), but mating the Amelx- 

null and the P70T mutants generated P70TKO offspring that displayed a heterogeneous 

enamel structure with no evidence of rescue (Li et ah, 2008). This supported the dominant

negative effect of the P70T mutation (Gibson et ah, 2007).

Also amelogenin cell binding activity may be disrupted by Amelx tri-tyrosyl domain 

mutations that lead to defective enamel, particularly as it was shown to be involved in 

nanosphere assembly (Ravindranath et al, 1999). The tri-tyrosyl domain has received a lot 

attention because of lectin-like binding activity to glycosylated enamelin proteins at the 

dentino-enamel junction, such as N-acetyl glucosamine (Ravindranath et al, 1999; Wright, 

2006) and the N-acetyl glucosamine mimicking domain of cytokeratin 14 and N-acetyl 

glucosamine residues on cytokeratin 5 (Ravindranath et al, 2003, 2004). Therefore, the 

actual mechanism that leads to AI may be related to amelogenin cell binding activity and cell 

signalling function (Gibson et al, 2007). The cooperative function of amelogenin variants, 

e.g. in nanospheres assembly, may explain the biological importance of the alternative 

splicing of Amelx RNA (Gibson et al, 2009).

68



2. Literature Review

Humans from 54 families segregating for AI (18 autosomal dominant, 26 autosomal recessive 

and 10 X-linked traits) were recently recruited for candidate gene (AMELX, ENAM, AMTN, 

AMBN, MMP-20 and KLK-4) sequencing (Wright et ah, 2009). Mutations were found in the 

AMELX, ENAM and KLK-4 genes but none were identified in the MMP-20, AMTN or AMBN 

genes. Comparing wild-type and mutant mice models of AI, Amelx-mxW and Enam-mx\\ mice 

displayed a complete loss of enamel prisms similar to that of marked hypoplasia in humans 

(Wright et al, 2009). The mandibular incisors in the Amelx-mxW and Enam-mAW mice lost the 

yellow-brown coloration typical of wild-type mice and displayed a rough aberrantly 

mineralised enamel surface. The AI associated enamel phenotypes in humans and mice 

appeared to differ depending on whether the mutation/ knockout involved the genes encoding 

ECM proteins (Amelx or Enam) or proteases {Mmp-20 and Klk-4) (Wright et ah, 2009).

A recently reported novel ENU-induced Amelx N-tenninal region mis-sense Y64H mutation 

(in the tri-tyrosl motif of amelogenin) led to enamel that was hypomineralised in the 

Amelx1 !Y6m male or severely hypoplastic in the y4we/xx/Y64H and ytwe/xY64H/Y64H female 

mutant mice (Barron et al, 2010). The engorged endoplasmic reticulum/ golgi apparatus 

suggested intracellular retention of Y64H amelogenin (Barron et al, 2010). The scarcity of 

the full-length Y64H amelogenin in the Y64H mutant ECM extracts suggested the failed 

secretion of amelogenin into the enamel ECM (Barron et al, 2010). In contrast to previous 

reports (Lei et al, 2001) there appeared to be no difference in Y64H amelogenin degradation 

rates, which eliminated the possibility of this amelogenin Y64H having an increased 

susceptibility to normal post secretory processing or enhanced sensitivity to extra-cellular 

proteolysis (Barron et al, 2010).

Intracellular protein-protein interactions, mediated via the amelogenin tri-tyrosyl motif, were 

thought to be a key factor underpinning the molecular pathogenesis of AI (Barron et al, 

2010). However, amelogenin and ameloblastin were both shown to be accumulated in the 

ameloblasts of affected mice, which suggested a combination of the Y64H mutant 

amelogenin and ameloblastin proteins was a pathological factor. This may be related to 

amelogenin-ameloblastin interactions that result in protein complexes with conformational 

anomalies that can no longer be trafficked appropriately prior to secretion (Barron et al, 

2010).
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Mice expressing a truncated ameloblastin share similar histopathological features to the 

Y64H amelogenin mutant mice (Fukumoto et al, 2004; Wazen et al, 2009), which suggested 

the Amelx mutant phenotype may be due in part to disturbances involving ameloblastin 

secretion and function (Barron et al, 2010). Considering their relative abundances of 

amelogenin (95%) and ameloblastin (5%) in the ECM it is conceivable that their synthesis 

differs commensurately. Abnormal amelogenin-ameloblastin interactions may be only one 

part of the reason for impaired Y64H amelogenin secretion, and it is likely that other protein- 

protein interactions may also be affected, such as amelogenin-cytokeratin interactions 

(Barron et al, 2010). The tri-tyrosyl motif binding to N-acetyl-D-glucosamine residues on 

cytokeratin 5 (Ravindranath et al, 1999) and the N-acetyl-D-glucosamine mimicking 

sequence in cytokeratin 14 (Ravindranath et al, 2003) suggests a possible role for cytokeratin 

14 in chaperoning amelogenin during amelogenesis (Barron et al, 2010). Therefore, it was 

also proposed that ameloblast cell binding, amelogenin chaperoning/ trafficking and secretion 

may have a causative role in the mechanism of dysplastic enamel formation in Al. 

Importantly the Amelx Y464H mutant mice provides an excellent model that phenocopy 

human X-linked Al.

2.9.2.2. Ameloblastin (Ambn):

Ameloblastin deficiency results in severe enamel hypoplasia in AIH1 in humans (Paine et al, 

2002) and transgenic mice that over express ameloblastin exhibit a similar defect (Paine et 

al, 2003). Recently generated Ambn mutants that secreted a truncated ameloblastin protein 

failed to produce an enamel layer, which demonstrated that ameloblastin was essential during 

enamel formation (Smith et al, 2009c). These findings were consistent with the idea that part 

of the pathology involves cell adhesion and/ or loss of contact to the ECM (Fukyumoto et al, 

2004). Other loss of function models (e.g. ECM glycoproteins laminin and connexion) have 

shown aborted secretory and maturation stage enamel formation suggesting that the 

disruption of many cellular processes was more likely to be the cause of the enamel defects, 

rather than the absence of a single specific protein (Smith et al, 2009c; Wazen et al, 2009). 

Ameloblastin was originally thought to be an important determinant of tissue architecture 

(Brookes et al, 2001) and has more recently been shown to maintain the differentiation state 

of secreting ameloblasts, control their secretion and have a significant role in cell adhesion 

(Fukumoto et al, 2004). It has also been shown to interact with amelogenin (Ravindranath et 

al, 2004) and share a common secretory pathway (Zalzal et al, 2008). This has lead to the 

suggestion that amelobastin and amelogenin may be functionally dependent (Wazen et al,
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2009) and may have synergistic roles during enamel formation (Hatakeyama et al, 2009; 

Smith et ah, 2009c).

2.9.2.3 Enamelin (Enam):

Mutations that disrupted the maturation stage removal of the ECM interfered with enamel 

hardening and resulted in soft/ hypomature forms of AI (Hu et al, 1997, 2000). Several point 

mutations introduced into the Enam gene by ENU mutagenesis have shown enamelin to be 

crucial for the initiation of enamel crystal formation at the pre-secretory and secretory stages 

of amelogenesis (Masuya et al, 2005; Seedorf et al, 2007). Disrupted secretion interfered 

with crystal elongation (and enamel thickness) resulting in a rough and pitted enamel surface 

in the Enam+/' heterozygous mice and complete enamel agenesis in the Enam-nvM condition 

(Hu et al, 2008). The enamel of the Enam+/~ heterozyous mice was nearly normal in the 

maxillary incisors but the mandibular incisors were discoloured and wore rapidly at the 

incisal contact points. Enam-nuW mice do not make enamel because of a complete failure at 

the secretory surface mineralisation front of the ameloblast (Hu et al, 2008). Enamelin gene 

mutations are the single most significant contributing factor to the aetiology of AI (Hu et al, 

2007).

The Ml00888 mis-sense mutation in Enam mice (Matsuya et al, 2005) has recently been 

sequenced and shown to affect the 55th amino acid of the full-length enamelin peptide, 

changing a serine residue to an isoleucine (Dr. Martin Barron, unpublished personal 

communication). Therefore, there is a discrepancy depicted in figure 3. of Matsuya et al, 

(2005) that shows the Ml00521 mutation as a serine to isoleucine change rather than the 

M1000395 mutation. The M100521 mutation actually affects the splice junction between exons 

4 and 5, and the M1000395 depicted is actually the M100514 mutation (Dr. Martin Barron, 

unpublished personal communication).

71



2. Literature Review

2.10. SUMMARY

Looking forward to the present study, the purpose of this summary is to focus on the 

aforementioned methods that are most pertinent to the explicit investigation of odontogenesis, 

tooth morphogenesis and enamel mineralisation.

2.10.1. 2D Measurement Methods

The early manual contact methods, e.g. mechanical callipers, gave a lower reliability 

compared to the recent digital imaging methods. The later digital calliper methods were 

reported to be the gold standard for tooth measurement but were also cumbersome to operate. 

They did not benefit from the highly accurate landmark determination and repositioning of 

the 2D IAS that will be used in this study. The 2D IAS was simple to operate, required less 

instruction and could be used by untrained operators. The 2D IAS benefitted from automated 

technology that maximised reliability and precision. As a quantitative tool the 2D IAS 

succeeded as the gold standard and was proven to be an optimum technique for measuring 

human tooth dimensions. However, the 2D IAS was limited to 2D planar data analysis that 

reduced important 3D tooth morphology. This restricted measurement capacity and was a 

major limiting factor of all the 2D approaches. Nonetheless, the 2D IAS was the most reliable 

and precise 2D method. It was adaptable and offered the most modification potential for the 

small murine application.

2.10.2. 3D Measurement Methods

A wide variety of contemporary 3D methods recorded and measured dental morphology. The 

direct 3D methods were incomparable to modem 3D methods because they only described 

2D planar analysis of 3D objects. The early 3D methods, e.g. the Symmetrograph and the 

Optocom, depended on mechanical contact that made them subjective and confounded by 

uncertainty. The direct methods showed high operator and systematic error compared to the 

indirect approaches. Human dental study model applications dominated the literature.

Technological advances resulted in a succession from the direct contact methods to the 

indirect non-contact 3D methods, e.g. the Reflex-Metrograph and the Travelling Microscope. 

The introduction of light projection, e.g. Moire Contourography, represented the early use of
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optical technology and the start of a transition towards the structured light methods. A range 

of 3D tools became increasingly available because of advances in computer technology, 

digital imaging devices, electro-optical components, laser and other light sources. These 

systems digitised the surface of dental casts into 3D models for measurement on a computer 

screen. The increasing economic availability of the structured light technologies made these 

techniques more accessible. Many indirect 3D methods were readily commercialised in 

dentistry and regarded as clinically acceptable alternatives to the conventional plaster model.

The optical principal of triangulation determined the 3D coordinates of the object surface as 

point cloud data that was transformed from a local to a global coordinate system when 

rendered into a 3D model by computer software. Three approaches to obtaining 360° 3D 

models predominated; (i) object rotation, (ii) sensor movement, and (iii) fixed imaging 

systems. Each had relative advantages and disadvantages, e.g. calibration and multi-view 

image combination errors. Also, the geometric data transformation was approached by 

several computer algorithms, again with advantages and disadvantages. The computer 

integration of the separate image capture, processing and storage steps was demonstrated by 

many examples, and the most progress towards a frilly automated and fast multi-view image 

combination method was exemplified by the rotary table instrument. Software and hardware 

developments improved the speed and measurement capacities of many of the most recent 3D 

methods to provide previously inaccessible data, e.g. Computer Tomography. The majority of 

the commercially available dental systems were only suitable for assessing the human 

dentition using dental study models. The laser methods did not provide sufficiently high 

accuracy or high resolution necessary for a small murine tooth application.

A compromise between resolution and versatility, and the balance between cost and speed 

was evidently a limitation to the 3D optical technology, e.g. increased accuracy and 

resolution required long processing durations. However, an expanding market provided 

increased consumer choice and newly available software became increasingly accurate and 

reliable.

The structured light techniques were limited by the use of specific calibration surfaces that 

meant that differences between the calibration and the tooth surface were proportional to the 

measurement accuracy. In many cases this was too large to accurately assess the small mouse 

incisor. Light scatter at the surface of reflective materials, e.g. mineralised tissues like
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enamel, was also a big disadvantage because it caused areas of missing data, incomplete 

images or 3D models with holes. This problem occurred because of optical heterogeneity, 

variations in albedo or weak laser light reflection. Although this was minimised when 

studying uniform materials like dental plaster or die stone, the optical properties of tooth 

enamel and dentine allowed light to penetrate the surface layer, scatter back to the sensor and 

produce an irregular source of systematic error that was difficult to quantify. Algorithms for 

closing holes in complex morphology exist but may introduce artifice. This was prohibitive 

and compromised the accurate representation of tooth morphology, even at high resolution. 

Therefore, the laser methods could not provide the precision required for imaging dental 

tissues at the small murine scale and were unsuitable for studying the macro-structure and 

micro-surface morphology of mice teeth and the mineralised tissues.

Of the structured light techniques only the NCSP chromatic sensor was suitable for imaging 

all types of materials and surfaces (transparent or opaque, specular or diffuse, glossy or mat). 

The NCSP obtained enamel surface structural information, regardless of ambient illumination 

or heterogeneous reflectivity in enamel demineralisation, remineralisation, abrasion and 

attrition studies. The chromatic confocal sensor delivered spatio-chromatic filter high sub

micron resolution Z-coordinate data through modular optics that will be tailored to suit the 

specifications of the application. The X and Y coordinate data collection was automated by a 

precise CMM movable platform that had potential for hardware modification.

Thus, an economical and practical approach to the small murine application would be to 

modify the NCSP CMM platform with a rotary stage, in a similar manner to those previously 

described for the rotary table. This would adapt the instrument to acquire multiple multi-view 

3D images within an established coordinate system and to reconstruct complete 360° 3D 

models. Although there were limitations to the multi-view image combination methods, the 

increasingly powerful array of commercial 3D modelling software available could be used to 

combine the multi-view images and create a new indexing method that would contribute to 

the future of 3D imaging technology. This modification would introduce a new method of 

360° surface metrology able to resolve enamel surface structure at a competitive resolution of 

1.0pm. A novel NCSP technique would fall between the discriminating power of the laser 

scanning, confocal microscopy, CT, XMT, pCT and nano-CT techniques to give excellent 

relative economy. Unlike the other methods, the NCSP could enable a practical solution to 

facilitate both the macro-metric and micro-metric investigation of the small murine incisor.
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2.10.3. Colour and Whiteness Assessment

With the exception of the digital techniques, the colour and whiteness methods reviewed 

were not compatible with the CIE colour space model. They were subjective with limited 

repeatability, showed operator and systematic errors, and had other inconsistencies that were 

difficult to manage and quantify. In particular, the sectrophotometers and colourimeters were 

designed for contact on flat surfaces and had many disadvantages that compounded errors 

making them unsuitable for investigating the curved morphology of the mouse incisor. On the 

other hand, the 2D IAS method was successfully standardised for CIE colour space (in 

humans) and could be appropriately modified for the murine application. It quantified enamel 

phenotypes in measures that were translated to humans.

The distinct anatomical thirds used to assess human incisors were identified in the gingival, 

middle and incisal regions of the hypsledont murine incisor that correspond to the pre- 

secretory, secretory and mature histological/ development stages of enamel formation. 

Therefore, it is hoped that by quantifying enamel surface mineralisation in terms of colour 

and whiteness at the phenotype level (both overall and separately in these specific regions) it 

will be possible to attribute the contributions of the important ECM proteins to the specific 

stages of amelogenesis.

2.10.4. 2D and 3D Morphometric Measurement Systems

The 2D and 3D systems were of variable efficiency and practicality. They offered a highly 

informative means of documenting mouse mandible and incisor phenotypes for systematic 

morphometric research. The impact of computerised methods has had economical and storage 

benefits; recording, archiving and database management made access, communication and data 

analysis more convenient.

A great variety of 2D and 3D methods have been discussed to examine human and mouse 

dental morphology. The techniques have significantly improved over the decades and the ever 

increasing capabilities of 2D digital photography and 3D modelling have facilitated expedient 

image analysis methods in dental research. Further modifications for the murine application 

will realise the potential for a sophisticated and objective phenotype to genotype investigative 

tool that can be readily applied to the mouse model.
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The extensive use of the mouse model in morphometric studies has led to a better 

understanding of the genetic basis of dental development. Investigating developmental 

anomalies will continue to be important to understand normal and abnormal enamel 

mineralisation. The application of a 2D IAS will provide a robust and reliable means to assess 

the involvement of the ECM proteins in the skeletogenesis of hemi-mandibles and in 

odontogenesis of mandibular incisors. Accurately quantifying the morphometric variation of 

the observable phenotypes by the modified methods (detailed in the following sections) will 

enhance our knowledge of the processes by which underlying gene mutations have their 

affect.

The customised 2D IAS and novel 3D IAS will define previously inaccessible measurement 

parameters making more information available for phenotype comparisons. This new range 

of measurements will extend the versatility of the systems and provide further possibilities 

for exploring phenotype variation. A more complete quantification of dental morphology 

could be demonstrated by other new variables, e.g. surface-area and volume, and will give a 

new handle on comparative analysis of biological variation and development, e.g. the 

conventional projected straight line measurements between two landmarks (as in the 2D IAS) 

could be extended to include actual on-surface dimensional measurements. The actual 

measurement will follow the 3D curvature of the tooth structure to take account of the enamel 

surface contours for a more meaningful quantitative evaluation of tooth morphology. The 3D 

method will assess the macro-metric gross structure and micro-metric surface topography of 

enamel to provide a more sophisticated 3D tool that will interrogate tooth morphogenesis and 

enamel mineralisation.

2.10.5. Tooth Development and The Mammalian Model

In contrast to human teeth murine incisors are an excellent location to observe the dynamic 

process of enamel formation and tooth morphogenesis because they form and erupt 

continuously throughout life and offer access to all stages of enamel development in a single 

tooth. Thus far, they have been instrumental in understanding the roles of specific genes and 

proteins during amelogenesis. Early dental development models were useful in describing the 

patterns of variation observed within the dentition. However, more recent molecular studies 

have identified the underlying molecular mechanisms (in terms of differential gene 

expression) and have delineated the strict regulatory pathways that orchestrate the diverse
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cellular and extra-cellular processes of oro-facial development conserved in humans and in 

mice. The three developmental models (Field, Clone and Molecular) may be incorporated 

into a unified explanatory model for craniofacial development that is complementary.

As the process of odontogenesis progresses the tooth changes into a complete organ 

consisting of different mineralised and un-mineralised tissues that each contribute to the form 

and function of the tooth. The reciprocal reiterative and conserved nature of signalling 

pathways suggests the affect of a single gene mutation can influence the complex interaction 

of various tissues and cannot be considered in isolation. The need for detailed phenotyping/ 

morphometric analysis, not just of the teeth known to be directly affected but also the 

associated structures, e.g. the mandible, would benefit horn being documented and may 

provide a deeper insight into/ understanding of the pleiotropic affects of specific mutations on 

abnormal development. The current investigation may substantiate a morphometric link 

between the known disruptions to ECM proteins responsible for enamel defects and skeletal 

development in the mandible.

2.10.6. Mineralisation and The Predominant ECM Proteins

The importance of the ECM proteins in the mineralisation of enamel defects, e.g. AI, has 

been well established and increasingly characterised. Numerous clinically defined phenotypes 

have been described and have indentified various gene mutations in specific homologous 

domains of the predominant ECM proteins amelogenin and enamelin. It is thought that only 

25% of mutations (and associated defects) have been described and the various mechanisms 

that cause abnormal enamel formation require further elucidation. The interactions of the 

diverse families of amelogenin and non-amelogenin proteins that orchestrate the formation of 

the enamel ECM have shown spatially and temporally restricted expression during 

amelogenesis. The functional significance of this distribution is not fully understood, e.g. 

there is evidence for multiple roles of amelogenin isoforms with different functions, both 

before the initiation of tooth fonnation and in bone formation. This has superseded the once 

held view of amelogenin functioning specifically as a protein that regulates size, shape and 

directional growth of organic mineral crystals. Amelogenin is now thought to be a 

multifunctional protein.
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2.10.7. Phenotyping Murine Models of Amelogenesis imperfecta

Depending on the type and loci of the different Amelx and Enam gene mutations, post- 

translational modification and alternative splicing, a diverse set of protein degradation products 

are seen. Their cellular distribution patterns are reflected in the mineralisation process thought 

to be responsible for the range of AI phenotypes, from smooth hypoplastic to hypomineralised/ 

hypomaturation forms. This highly overlapping spectrum of enamel phenotypes is not 

surprising given that amelogenin and enamelin have been shown to be involved in the critical 

pathways related to the secretion and organisation of developing enamel. Different mutant mice 

groups have already been used to explore the abnormal function of proteins and the causes of 

the considerable phenotypic variation within and between individuals with AI. Importantly, this 

overlapping range of phenotypes provides a permanent record of odontogenesis and is an 

excellent case in which to employ a phenotype-genotype driven approach. Also, to better 

understand the aetiological roles of amelogenin and enamelin in determining the macro-metric 

and micro-metric tooth morphology and enamel mineralisation phenotypes indicative of AI.

Contrasting the human and mouse enamel pathologies has shown similarities and differences 

for several reasons that can be related to the complete loss of protein function in the mouse 

model compared to the more subtly altered protein function in humans. Therefore, although 

the experimental model may not fully recapitulate the functional range of AI associated 

human gene mutations, because of the more diverse genetic background of the human 

population (not to mention epigenetic interactions), this method of targeted gene exploration 

has proven to be the most readily available resource and amenable means of characterising 

protein function. This ability to manipulate murine models has provided a wealth of 

information thus far, e.g. the amelogenin mouse effectively combines the various AI 

phenotypes into a single model, and by continuing to characterise the variability and diversity 

exhibited by AI, through revealing the observable phenotype-genotype relationship, it will be 

possible to further the understanding of disease pathologies.

There were no known reports in the literature of any detailed 2D or 3D macro-structural 

investigations of the mouse model for dental anomalies. Also there were no known 

occurrences of 2D colour and whiteness assessment in the mouse model and/ or 3D 

quantitative assessment of the phenotype variation of mouse incisors. Therefore, a vacancy 

exists for a holistic investigation into murine dental phenotyping that could benefit from the
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significant impetus for objective and automated biological measurement. The aim of the 

current study is to provide a complementary macro-metric and micro-metric means of 

identifying dysmorphologies and quantitatively characterising homologous mandible and 

incisor craniofacial features that represent a complex developmental module and a site of 

continuous enamel fonnation respectively.

The Amelx (OMIM300391) and Enam (OMIM606585) mutants represent excellent models 

for investigating the roles of the specific amelogenin and enamelin ECM proteins 

respectively. Accurate examination of phenocopy mouse models - via four Amelx genotypes 
(Amelx*11, Amelx^16^, Amelx1 and Ame/xY64H//Y64H) and three Enam genotypes 

(Enam*11, Enarr^^95 homozygous and Enain1^95 heterozygous') - gives the opportunity to 

differentiate between the phenotypes of the wild-type controls and of their specific mutant 

littermates. Using newly developed 2D and 3D morphometric methods and colour and 

whiteness assessment it will be possible to distinguish between the wild-type and pheno- 

deviant mice and to elucidate any affect of the specific gene mutations. The colour and 

whiteness assessment will illustrate the lack of demarcation between overlapping phenotypes 

and provide a quantitative means for delineating the different lesions and aberrations in 

enamel mineralisation. In fact, dissecting out the specific affects of these genetic mutations 

using regional colour and whiteness assessment may identify and isolate disruptions in a 

developmental stage specific maimer and offer an unparalleled contribution to phenotype- 

genotype correlations.

Clearer phenotyping of AI phenocopy mice will explicate a deeper understanding of the 

multifactorial growth and development of the oro-facial features and of the aetiology of 

enamel mineralisation defects.
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3.1. AIMS

i. To develop four novel measurement methods; (i) a 2D image analysis system (IAS) to 
measure murine mandible morphology, (ii) incisor morphology and (iii) incisor enamel 
colour and whiteness, and (iv) a 3D IAS to measure incisor morphology and enamel surface 
structure.

ii. To define a novel repertoire of morphometric variables for each new method.

iii. To determine the reliability and validate the new measurement methods and morphometric 
variables in a homogenous mouse population.

iv. To use the new measurement methods to characterise the phenotype of mouse mandibles, 
incisors and enamel mineralisation in a heterogeneous experimental population.

v. To use two separate experimental mutant populations with specific gene mutations in the 
amelogenin (Amelx, OMIM 300391) and enamelin (Enam, OMIM606585) proteins as 
models of X-linked Amelogenesis imperfecta (AIH1, OMIM301200) and autosomal 
dominant local hy^opl^Xio. Amelogenesis imperfecta (AIH2, OMIM104500) respectively.

vi. To use the wild-type genotype groups as a control and as a baseline for comparison with 
their respective mutant littermate genotype groups.

vii. To demonstrate phenotype variation between the genotype groups in terms of significantly 
different morphometric variables.

viii. To investigate the effect of the amelogenin and enamelin proteins on mandibular 
development, tooth morphology and enamel mineralisation.

ix. To differentiate between overlapping phenotypes.

81



3. Aims and Null Hypotheses

3.2. NULL HYPOTHESES

i. The 2D IAS will not be reliable.

ii. The colour and whiteness assessment will not be reliable.

iii. The 3D IAS will not be reliable.

iv. The 3D IAS will not be valid.

v. The mandible and incisor morphometry, and colour and whiteness assessment will not 
quantify phenotype.

vi. The mandible and incisor morphology will not represent enamel quantity, growth and 
development.

vii. The colour and whiteness assessment and 3D surface analysis will not represent enamel 
quality and mineralisation.

viii. The control and mutant groups will not show evidence of statistically significant phenotype 
variation.

ix. There will be no significant differences in the mandible dimensions between wild-type and 
mutant populations.

x. There will be no significant differences in the incisor dimensions between wild-type and 
mutant populations.

xi. There will be no significant differences in the enamel phenotype between wild-type and 
mutant populations.

xii. The Amelx mutants will not display hypoplastic/ hypomineralised enamel indicative of X- 
linked AI (AIH1,OMIM301200).

xiii. The Enam mutants will not display local hypoplastic enamel indicative of autosomal 

dominant AI (AIH2, OMIM104500).
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4.1. INTRODUCTION

The study sample mice were supplied by The Medical School at The University of Liverpool 

and by The Dental School at The University of Manchester as part of the collaborative 

Wellcome Trust programme. The study used one reliability population (n = 20) and one 

experimental population (n = 35), which itself contained two separate populations; (i) Amelx 

and (ii) Emm containing respective wild-type control groups and multiple mutant genotype 

groups. The experimental group contained recently sequenced gene mutations (Matsuya et 

ai, 2005; Barron et al, 2010). Each of the seven groups contained five individuals. Both the 

left and right side hemi-mandibles and mandibular incisors were imaged from buccal, lingual 

and labial aspects (views).

A number of novel hardware and software developments are included here as part of the 

method development - this involved significant personal input, internal departmental 

development and inter-disciplinary collaborations. An established 2D IAS was modified with 

a macro-lens for imaging the mouse dentition. A bespoke colour and whiteness algorithm was 

developed internally by customising industry standard imaging software for a new approach 

to the mouse application. The new techniques utilised existing measurement parameters and 

determined novel morphometric variables for phenotype assessment.

The 3D IAS was an entirely new concept that drew from the technological advances and 

innovations documented in the recent literature. A novel rotary stage was designed and 

developed as a modification to a non-contact surface profilometer (NCSP) measurement 

device that was made available through institutional collaboration. The rotary stage was a 

removable adaptation fabricated by industrial partners. The NCSP device was adapted to 

obtain multiple 3D images from multiple angles in 360°. This new system introduced a novel 

method of multiple-image combination by image indexing, which employed powerful 3D 

computer aided design software to construct the 3D models. Further collaborative 

development of bespoke 3D analytical software innovatively expanded the 3D measurement 

repertoire of the system.

The 3D IAS represents an original approach to 3D imaging of small mouse teeth that would 

not have been possible without the multi-disciplinary specialities of an extensive 

collaborative network.

86



4. Materials and Methods

4.2. STUDY SAMPLE

Ethical approval was granted according to the Wellcome Trust programme ethics reference 

number 06/Q0104/38. Laboratory mice were euthanized using Home Office approved 

methods according to Chapter 14 of The Animal {Scientific Procedures) Act 1986 

f www.archive.official-documents.co.uk/document/hoc/321/321 -xa.htmT

4.2.1. Criteria for Inclusion

Mouse oral cavities were examined with a dissection microscope (Bresser, Meade 

Instruments Corp, California, USA) according to protocols outlined in the ‘Phenotyping of 

mouse oral cavity - primary first line and primary extended’ standard operating procedure 

obtained from the European Mouse Phenotyping Resource of Standardised Screens website 

fwww.empress.har.mrc.ac.ukl (Green et al, 2005). Any mice identified with uncharacteristic 

anatomical malformations were not included in the study sample. Mice were recorded on a 

Mouse Dental Anomalies Record Form ('www.eumoi~phia.org') (Brown et al, 2008). Any 

hemi-mandibles or mandibular incisors (specimens) damaged during extraction were not 

included in the study sample.

4.2.2. Reliability Population

The reliability population was a genetically homogenous inbred multi-purpose strain of 

Charles River CD-I™ (Charles River Inc., MA, USA) wild-type mice {n = 20) obtained from 

the Medical School Animal House at The University of Liverpool, UK.

A mixed sex population of 20 mice (10 females and 10 males) was euthanized by CO2 

asphyxiation at 3 months (90 days) of age. The mice were decapitated using a laboratory 

animal guillotine and frozen by Animal House staff according to local protocols. The mice 

were thawed in a fridge 24 hours before collection. The mice were sexually and skeletally 

mature. No gross phenotypic variation or sexual dimorphism was evident.
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4.2.3. Experimental Population

Two experimental populations (i) Amelx and (ii) Enam were obtained from RIKEN GSC 

(Wako, Tokyo, Japan) by Prof. Mike Dixon’s Laboratory, School of Dentistry, The 

University of Manchester, UK. Breeding colonies were established and maintained on a 

DBA/2J genetic background by Ms. Charlotte Hunt and Dr. Martin Barron, School of 

Dentistry, The University of Manchester, UK.

The populations were congenic Dilute Brown Agouti strain mice. The separate M100800 

{Amelx) and Ml00395 {Enam) populations had mutations in their amelogenin gene and 

enamelin gene respectively. The mutant mice were generated during large-scale ENU 

mutagenesis (www.brc.riken.ip/lab/gsc/mouse/T The mutations were human orthologues of 

the AMELX gene (OMIM300391) and EA^Mgene (OMIM606585).

The Ml00800 mutation in the Amelx mice affected the 64th amino acid of the full-length 

amelogenin peptide, changing a Tyrosine residue to a Histidine residue and resulting in a mis- 

sense mutation Y64H (Mouse Genome Informatics Accession ID: 3807977). The only 

difference found between the wild-type {n - 160) littermates and affected male {n = 72) and 

female {n = 54) mice analysed was a T to C transition at nucleotide 249 of the Amelx coding 

sequence (Barron et al, 2010). This mutation lies within the conserved tri-tyrosyl motif 

(PYPSYGYEPMGGW) of amelogenin positioned towards the C-terminus of the tyrosine-rich 

peptide (TRAP) domain (Barron etal, 2010).

The Ml00395 mutation in the Enam mice affected the 55th amino acid of the full-length 

enamelin peptide, changing a Serine residue to an Isoleucine residue and resulting in a mis- 

sense mutation p.S55I (Mouse Genome Informatics Accession ID: 3055582). There was a 

discrepancy as to which amino acid was affected in Figure 3. of the Masuya et al, (2005) 

paper. The Ml00521 mutation actually affected the splice junction between exons 4 and 5 (Dr. 

Martin Barron, unpublished personal communication). The Ml000395 depicted was actually 

the M100514 mutation (Dr. Martin Barron, unpublished personal communication).

The two separate experimental populations (i) Amelx and (ii) Enam each contained one wild- 

type control group and multiple mutant genotype groups. The different genotype groups were 

defined by the inheritance patterns of the individuals within the group.
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Each group contained five individual mice.

The Amelx population consisted of four genotype groups;

(i) wild-type Amelxwr males (n = 4) and female (n =1)

(ii) heterozygous Amelx^6^ females {n = 5)

(iii) hemizygous AmelxYfYMU males (n = 5)

(iv) homozygous ^4me/A:Y64H/Y64H females {n — 5)

The Enam population consisted of three genotype groups;

(i) wild-type EnamWT itwXqs {n = 2) and females (n = 3)

(ii) heterozygous EnamR8Sc395 males {n = 2) and EnamR8Sc395 females (n = 3)

(iii) homozygous Enam1*830395 melts (n = 2) and females (n = 3)

There were therefore 20 Amelx mice and 15 Enam mice. The wild-type mice were unaffected 

littermate controls. The wild-types were used as a baseline for data comparison.

4.2.4. Animal Husbandry (Prof. Dixon’s Laboratory)

All experimental animals were maintained under strict uniform conditions (12 hour light/dark 

cycle, 22 ± 1 °C ambient room temperature at 60% relative humidity). Mice were fed on a 

pellet diet (ID#801722 CRM P, Special Diets Service, Essex, UK) that was crushed to a 

powder. Food and water was available ad libitum.

New-bom mice were left with their mothers for 21 days and weaned thereafter. Adult female 

and male mice were separated and housed in same sex cages containing a maximum of 5 mice 

per cage. Mice were inspected daily and their bedding changed as necessary. All mice were 

euthanized by ceivical dislocation at 3 months (90 days) when the mice were sexually and 

skeletally mature. Mice were age and weight matched, within and between the genotype 

groups. No gross phenotypic variation or sexual dimorphism was evident.

4.2.5. Storage and Preparation

All mice were studied as part of an experimental continuum taking place at different 

institutions (and locations). Due consideration for the various investigations dictated that the
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mice were not treated with or exposed to any interferential methods or chemicals, e.g. boiling 

(Bader, 1965), ethanol fixation (Moinichen et al, 1996), enzymatic digestion (Luther, 1949; 

Gruneburg, 1951) or skeletonisation by insects (Atchley et al, 1985) were all prohibited.

The most suitable and effective method of preservation during transport was determined by 

piloting the effects on six specimens, two under each of the following conditions: (i) freeze 

drying with CO2 dry-ice; (ii) air drying at room temperature; (iii) preservation in 10% neutral 

buffered formalin.

The freeze dried specimens were very dehydrated. The surrounding tissues were brittle and 

flaky/ powdered, and fixed hard to the hemi-mandible. The air dried specimens were also 

dehydrated but less than when freeze dried. The surrounding tissues were also fixed to the 

hemi-mandible but less so than when freeze dried. For both the freeze dried and air dried 

specimens the surrounding tissues were difficult to remove while preparing for imaging.

The 10% neutral buffered Formalin was most suitable transport method because the 

surrounding tissues were hydrated and removed without difficulty. There were no discernible 

adverse affects on the gross morphology, colour or phenotype of any specimens.

All specimens used for imaging were stored in 1.5ml3 eppendorfs (Eppendorf AG, Hamburg, 

Germany) in a freezer at -80.0°C after micro-dissection and imaging.

4.2.6. Micro-dissection/ Extraction

Mouse heads arrived in 10% neutral buffered formalin in 50ml3 centrifuge tubes. Specimens 

were repeatedly washed with Phosphate Buffer Solution and distilled water to remove the 

Formalin. This was carried out under a Fume Cupboard (Holliday Fielding Hocking Ltd, 

Leeds, UK) according to local protocols because of the carcinogenicity of Formalin.

The hemi-mandible and incisor specimens were extracted in sequence using a pair of tweezers 

(Swann-Morton, Sheffield UK) and a size 11 surgical blade scalpel (Swann-Morton, Sheffield, 

UK), in a petri-dish (Barloworld Scientific, Stone, UK) under a dissection microscope (Bresser, 

Meade Instruments Corp, California, USA) at XI.5 magnification.
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Gross dissection of hemi-mandibles removed the skin, attached muscle, ligament and 

surrounding tissues. Hemi-mandibles were divided at the mandibular symphysis by scalpel 

incision. Each hemi-mandible was excised separately. Fine dissection prevented damage to the 

fragile coronoid and other anatomical features that were relatively weak amongst the strong 

surrounding tissues.

Mandibular incisors were extracted after the hemi-mandibles had been imaged. The supporting 

bone was progressively removed from around the incisor, from the distal-tip towards the 

proximal-end. The structural integrity of the incisor was strong at the hard mineralised distal-tip 

and weak at the soft and vascularised proximal-end. Care was taken to avoid damage or 

removal of any surface enamel.

All unwanted animal tissues were autoclaved and incinerated according to local protocols. The 

mouse heads were returned to and stored in the original 50ml2 centrifuge bottles in 10% neutral 

buffered formalin. Specimens used for imaging were stored at -80.0°C.
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4.3. 2D IMAGE ANALYSIS SYSTEM

The 2D Image Analysis System (IAS) used for digital imaging and measurement (Brook et 

al, 2005a, 2005b) was modified with a macro-lens for murine specimen imaging (Figure 7.).

Figure 7. The 2D Image Analysis System

(A) camera and macro-lens; (B) lights; (C) desktop PC; (D) photographic stand; (E) customised tooth holder.

The system was composed of a desktop PC, digital camera, photographic stand and lights. It 

was operated under standardised conditions of magnification, orientation and illumination.

4.3.1. Personal Computer

The desktop Personal Computer (PC) was a Dell Optiplex620 (Dell Inc, Texas, USA) - 

Intel® Pentium® 4, 3.40GHz Computer Processing Unit - with 2MB (mega bytes) of RAM 

(random access memory) and a 250.0GB (giga byte) hard-drive running on the Microsoft 

Windows XP Professional 2002 SP2 platform (Microsoft Corp, New Mexico, USA). The 19 

inch monitor was 32-Bit true-colour with a 1280 X 1024 pixel resolution.
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To maximise the efficiency of large file transfer the camera and PC were connected by high 

speed IEEE 1394 Fire Wire (Belkin International Inc., California, USA). Image files were 

saved directly to the PC.

4.3.2. Digital Camera

The digital camera was a 13.5 mega pixel Kodak DCS Pro Single Lens Reflex/c (Eastman 

Kodak Company, Geneva, Switzerland). The camera utilised single lens reflex technology 

with a system of semi-automatic and moving mirrors so that exactly what was seen through 

the viewfinder, in the field of view (FOV), was captured in the 2D image. The viewfinder 

incorporated an eyepiece dioptre that was adjusted to suit each operator’s individual eyesight.

The camera contained a photosensitive charge-coupled device (CCD) sensor that converted 

analogue images into electric signals to produce high resolution (13.5 mega pixel) digital 

photographs. A 2D image file size was 39.0MB; 13MB per Red, Green and Blue colour 

channels (RGB). Images were 32-Bit high quality true colour images displayed in an array of 

4500 X 3000 pixels.

The camera operating system was the Kodak Professional DCS Firmware version 5.4.1 

software. The camera contained a SanDisk (SanDisk Corp, California, USA) Ultra® II 

Compact Flash 2.0GB memory card.

The camera was operated in manual focus and exposure modes. This was the most versatile 

means of imaging.

4.3.3. Macro-Lens

The camera was fitted with a Macro Photo Lens MP-E65mm F2.8 1-5X (Sigma Corp, 

Kanagawa, Japan). The macro-lens facilitated small object imaging by maximising the 

proximity of the specimen in the FOV. The macro-lens was fitted with an ultra violet (UV) 

polarising filter during colour and whiteness imaging.
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The macro-lens magnification was fixed at X2 and X3 during the morphometric and colour 

and whiteness imaging respectively. This allowed the FOV to be fully utilised.

4.3.4. Photographic Stand

The camera was mounted vertically onto a photographic copy stand (Kaiser, Odenwald, 

Germany), aligned perpendicular to the plane of the specimen. This stand was robust and 

provided stability for long exposures. It had a scale for precise specimen alignment and 

realignment for consistency, standardisation and reliability.

4.3.4.1. Vertical Height:

The vertical height was determined by the vertical graduated scale between 0.0-50.0cm, It 

was manually adjusted by a hand cranked rotary arm. This method varied the distance 

between the camera and the specimens. It was used to focus the camera at a fixed 

magnification.

4.3.5. Camera Settings

4.3.5.1. Aperture size:

The macro-lens aperture was minimum/2.8 and maximum fl6. An aperture off 16 was used 

for morphometric imaging and colour and whiteness assessment to maximise the 

photographic depth of field (DOF). This gave a greatest distance from the plane of focus in 

which the image remained sharp, both in front and behind the specimen.

4.3.5.2. Sh utter Speed:

The shutter speed was between maximum 1 and minimum 1/1000 seconds. The aperture size 

and shutter speed were balanced to give an optimum overall exposure that provided the 

greatest amount of light and DOF. A fast shutter speed QA second) was used for 

morphometric imaging. A slow shutter speed (3.2 seconds) was used for colour and 

whiteness assessment as less light and a larger DOF were determining factors. The settings 

minimised the possible effect of camera shake.

4.3.5.3. International Organisation for Standardisation (ISO) Sensitivity:
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The ISO sensitivity of a digital camera relates to the original photographic film-speed rating - 

a measure of light sensitivity of photographic film. The digital equivalent equates to the CCD 

sensor sensitivity and accounts for sensor noise and lighting conditions. On the ISO scale, 

between minimum 0 and maximum 1200, daylight =100 ISO. An ISO of 160 was used 

throughout as the stability of the photographic stand allowed an optimum balance of image 

quality.

4.3.5.4. Magnification:

Magnification was fixed at X2 and X3 during the morphometric and colour and whiteness 

imaging respectively.

4.3.6. Imaging Background

Specimens were positioned on a black mat velvet background that lay flat on the 

photographic stand base during imaging sessions. Therefore, specimens were readily 

distinguished from the background. This benefitted objective morphometric measurement, 

particularly perimeter and surface-area variables. It also reduced light reflection and was 

kept free of dust by using a compressed air canister (Dust Off, Falcon Safety products, New 

Jersey, USA). During colour’ and whiteness assessment, the incisor perimeter was easily 

objectively selected against the black background.

4.3.7. Illumination

Illumination was provided by two horizontal fluorescent lights containing D60 daylight bulbs 

(Osram, Munich, Germany). They were colour 12 with a reproduction index of 90-100. The 

conditions were designed to replicate average middle of the day ambient sunlight (Guan et 

al, 2005; Smith et al, 2008a). The light intensity was set to level 4, between minimum 0 and 

maximum 8.

The photographic stand provided further means to control the lighting. The diagonal height 

position of each light was determined by their distance from the specimen, on a scale of 1-17 

inches (minimum = 1, maximum = 17). The lights were set to 6 inches. This was important 

because UV radiation emits heat. Illumination was monitored for heat effects.
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Also, each light could be adjusted in multiple directions providing additional ways of 

controlling light intensity and direction. The diagonal angle of each light was set to ±45° to 

the vertical.

The lights were fitted with removable polarising sheets to give non-polarised and polarised 

illumination during the colour and whiteness imaging. All other settings were the same for 

morphometric and colour and whiteness imaging.

4.3.8. Calibration

A 10.0mm scale (Minitool Inc, California, USA), with 0.1mm divisions, was included in all 

morphometric images for calibration. Each separate image was individually calibrated using a 

linear scale.

Each colour and whiteness image was individually calibrated against a British Ceramic 

Research Association white tile that was captured at the start of each imaging session.

4.3.9. Image Capture

All 2D images were acquired using host software Kodak Professional DCS Camera Manager 

Version 4.2 (Eastman Kodak Company, Geneva, Switzerland). This permitted the operators 

to control the camera settings and various imaging parameters through the PC. The images 

were captured by clicking ‘Take Image’ in the host software, rather than directly through the 

photographic equipment. This minimised physical interference with the assembly, i.e. from 

camera shake, and also minimised error and maximised exposure possibilities, i.e, slow 

shutter speed. The camera settings were adjusted in the ‘Camera Properties’ tab. The camera 

time and date settings were ‘synchronised to the computer’.

All images were previewed and examined using Kodak Photo Desk Version 4.3 software 

(Eastman Kodak Company, Geneva, Switzerland). The images were checked and could be 

discarded and repeated if necessary, e.g. if the exposure and/ or focus were unacceptable.

During imaging the hemi-mandible and incisor specimens were removed from storage in 
1.5ml2 eppendorfs where they were kept on dry ice in an insulated polystyrene box. Once a
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specimen was in position on the background, only the camera vertical height was adjusted for 

focusing. Image capture took 30 seconds per incisor. Maintaining uniform conditions of 

temperature and hydration minimised any possibility of fluctuations that could affect size and 

or colour. Effort was made throughout to minimise experimental error.

4.3.10. File Format and Saving

The 2D image files were automatically saved to the PC in ‘raw’ .DCR file format. These files 

contained unprocessed/ uncompressed data from the CCD sensor. The .DCR files were 

converted into the more common versatile Tagged Image File Format (TIFF) using the Photo 

Desk software. The DCR and TIFF file formats were typically 12.0MB and 39.0MB in size 

respectively. Filenames were determined and root directories selected in the ‘Capture 

Session’ tab.

No image compression or colour adjustment was required during the imaging process. This 

prevented data loss and did not compromise quality or quantity of information/ detail.
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4.4. 2D MORPHOMETRIC MEASUREMENT

The 2D morphometric measurements were obtained using Image Pro Plus (IPP) software 

version 5.1 (Media Cyberenetics Inc, Maryland, USA). In the 2D IAS the linear 

measurements represented projected flat surface distances between two points, rather than the 

actual 3D measurements that followed the 3D contour of the tooth surface in the 3D IAS.

To open a 2D image (.TIFF file) the ‘File’ dropdown menu and ‘Open’ commands were used 

to select a file from the Microsoft Windows Explorer (Microsoft Corp, New Mexico, USA) 

directory. Open files were viewed by selecting the ‘3000 X 4500 resolution’ option in the 

‘File Load Option’ dialogue box.

4.4.1.2D Measurement Procedure

Hemi-mandibles and incisors were carefully orientated during 2D imaging by positioning the 

measurement markers on the different anatomical landmark features. A ‘local zoom’ function 

(200%) enhanced the precise positioning of the measurement markers, the function of the 

measurement tools and the calibration procedure. The local zoom function contributed to 

minimising operator measurement errors, and increased operator reliability and consistency.

Using the IPP dropdown menu, the ‘Measure’, ‘Calibration’ and ‘Spatial Calibration Wizard’ 

options were selected to calibrate each image separately. In the ‘create spatial calibration’ 

dialogue box ‘active’ images were calibrated in mm units using the ‘spatial reference’ (Figure 

8.).
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Figure 8. 2D Morphometric Image Calibration

(A) 2D image .TIFF file; (B) 10.0mm linear scale; (C) scaling reference line (green line); (D) local zoom 
(200%). A calibration report for each image indicated an average calibration was 0.004105 |im/pixel.

The individual calibration of each image allowed for any magnification or focus variation 

between the images. The precision of the calibration procedure was improved and the 

potential error minimised when aligning the scaling reference line and linear scale with the 

‘local zoom’ tool.

The following steps were used to obtain the 2D measurements. In the IPP dropdown menu, 

the ‘Measure’ and ‘Measurements...’ options were selected. The measurement markers were 

placed using the ‘click and drag’ features, in the ‘Measurement’ dialogue box. The cursor 

was used to position the markers on the specific anatomical landmarks. When the cursor 

moved over an existing marker it changed colour which aided repeatable landmark 

positioning for the different measurement variables.

4.4.2. 2D Mandible Measurements

The following eight measurements were obtained from 2D images taken from the buccal and 

lingual view (total =16 variables), for both the left and right side hemi-mandibles; overall

length (mm); ascending-height (mm); basal-length (mm); mandible-angle (°); coronoid- 

condyle-length (mm); diagonal-length (mm); mandible-area (mm ); mandible-perimeter 

(mm) (Figure 9.).
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Figure 9. Mandible Morphometric Variables
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(A) buccal view or lateral aspect; (B) lingual view or medial aspect. Morphometric variables included; (1) 
overall-length (mm); (2) ascending-height (mm); (3) basal-length (mm); (4) mandible-angle (°); (5) coronoid- 
condyle-length (mm); (6) diagonal-length (mm); (7) mandible-area (mm2) and (8) mandible-perimeter (mm). 
Scale = 10.0mm. Left hemi-mandible shown.
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To determine the projected overall-length, ascending-height, basal-length, mandible-angle, 

coronoid-condyle-length and diagonal-length linear measurement variables, the ‘Measure' 

and ‘Measurements...’ options were selected from the dropdown menu. In the 

‘Measurements’ dialogue box the Tine’, ‘angle measurement’ and ‘trace’ click and drag 

features were used.

To determine the mandible-perimeter and projected surface-area measurements, the 

‘Measure’ and ‘Count Size...’ options were selected from the dropdown menu. In the ‘Count/ 

Size’ dialogue box, the ‘Measure’, ‘Select Measurements’, ‘Area’ and ‘Perimeter’ options 

were selected. In the ‘Edit’ dropdown box, the ‘Draw Merge objects’ measurement tool was 

then used to automatically trace the observable mandible perimeter by double clicking on 

tooth surface on the black background in the active image. In the ‘View’ dropdown menu, the 

‘Measurement Data’ Option was selected and the data displayed and recorded.

The 2D mandible morphometric measurements were obtained from both the buccal and 

lingual surfaces of both the left and right side hemi-mandibles. The morphometric 

measurement separated the mandibles into different developmental modules (or units) that 

taken together represented overall growth and morphometry.

4.4.2.I. overall-length: The overall-length determined the overall longitudinal length of the 

mandible from the angular process landmark to the inter-dental spine landmark, from the 

proximal-end to the distal-tip (Figure 10.).

Figure 10. Mandible overall-lenzth

(A) buccal and (B) lingual views. Scale = 10.0mm.
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4.4.2.2. ascending-height: The ascending-height determined the overall latitudinal length of 

the mandible from the angular process landmark to the coronoid landmark (Figure 11.).

Figure 11. Mandible ascendins-hei2ht

(A) buccal and (B) lingual views. Scale = 10.0mm.

4.4.2.S. basal-length: The basal-length determined the length from the mandible angular 

process landmark to the mandible border landmark (Figure 12.).

Figure 12. Mandible basal-lensth

(A) buccal and (B) lingual views. Scale = 10.0mm.
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4.2.4.4. mandible-angle: The mandible-angle determined the angle between the angular 

process landmark and the mandible border landmark. This represented the curvature between 

the ascending-height and basal-length (Figure 13.).

Figure 13. Mandible mandible-an2le

(A) buccal and (B) lingual views. Scale = 10.0mm.

4.4.2.5. coronoid-condyle-length: The coronoid-condyle-length determined the length 

between the coronoid process and condyle process (at the apex of articular surface). It 

estimated the temporo-mandibular joint growth and morphometry (Figure 14.).

Figure 14. Mandible coronoid-condvle-leneth

(A) buccal and (B) lingual views. Scale = 10.0mm.
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4.4.2.6. diagonal-length: The diagonal-length determined the overall diagonal length of the 

mandible form the condyle process landmark to the mandible boarder landmark (Figure 15.).

Figure 15. Mandible diasonal-lensth

(A) buccal; (B) lingual views. Scale = 10.0mm.

4.4.2.7. mandible-perimeter: The mandible-perimeter determined the observable mandible 

perimeter. It estimated overall growth and morphometry (Figure 16.).

Figure 16. Mandible mandible-perimeter

(A) buccal and (B) lingual views. Scale = 10.0mm.
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4.4.2.8. mandible-area: The mandible-area determined the observable mandible area. It 

estimated overall growth and morphometry (Figure 17.).

Figure 17, Mandible mandible-area

(A) buccal; (B) lingual views. Scale = 10.0mm.

The buccal and lingual surfaces of the hemi-mandibles were anatomically different. These 

differences in the observable perimeter were traced around the molars and alveolar processes 

at the dental ridge and reflected in the mandible-perimeter and mandible-area measurement 

values.

4.4.3. 2D Incisor Measurements

The following six measurements were obtained from 2D images taken from the buccal and 

lingual view (total = 11 variables), for both the left and right side incisor; projected overall

length (mm); projected labial-length (mm); angle-of-curvature (°); projected width-at- 

midpoint (mm); projected perimeter (mm2); projected surface-area (mm2). The projected 

labial-length was only obtained from the buccal surface view (Figure 18.).
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(A) buccal view; (B) lingual view. Morphometric variables included; (1) overall-length (mm); (2) angle-of- 
curvature (°); (3) width-at-midpoint (mm); (4) incisor-perimeter (mm) and (5) incisor-area (mm2). An 
additional variable (6) labial-length (mm) was obtained from the proximal-end to distal-tip landmarks in the 
buccal image. Scale = 10.0mm. Left incisor shown.
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An important landmark was positioned at the beginning of the distinct change in surface 

texture and colour at the proximal-end. This distinctive feature marked the beginning of the 

pre-secretory stage of enamel formation. It that was readily located in the 2D morphometric 

images (Figure 18.), in the colour and whiteness images (Figures 27. and 28.) and in the 3D 

morphometric images (Figure 41.).

To determine the projected overall-length, projected labial-length, angle-of-curvature, and 

projected width-at-midpoint linear measurement variables, the ‘Measure’ and 

‘Measurements...’ options were selected from the IPP dropdown menu. In the 

‘Measurements’ dialogue box the create click and drag features ‘add perpendicular distance 

measurements from a line’, Tine’, ‘angle measurement’ and ‘trace’ tools were used.

To determine the projected incisor-perimeter and projected incisor-area measurements, the 

‘Measure’ and ‘Count Size...’ options were selected from the IPP dropdown menu. In the 

‘Count/ Size’ dialogue box, the ‘Measure’, ‘Select Measurements’, and ‘Area’ and 

‘Perimeter’ options were selected. In the ‘Edit’ dropdown box, the ‘Draw Merge objects’ 

measurement tool was used to automatically trace the observable tooth perimeter by double 

clicking on tooth surface perimeter on the black background in the active image. In the 

‘View’ dropdown menu, the ‘Measurement Data’ Option was selected and the data displayed 

and recorded.

The measurement tool automatically traced the mandible-perimeter and projected incisor- 

perimeter variables on the black background. The mandible molar teeth (dental ridge), 

mandibular symphysis (mandible boarder to inter-dental spine), and the incisor proximal-end 

landmark features required manual operator input but the automated measurement tools 

minimised operator subjectivity.
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4.4.3.1. projected overall-length: The 2D projected overall-length was used to determine the 

overall longitudinal length of an incisor, from the proximal-end to the distal-tip (Figure 19.).

Figure 19. Incisor 2D projected overall-length

2D projected overall-length of a left incisor. Buccal view. Scale = 10.00mm.
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4.4.3.2. projected labial-length: The 2D projected labial-length determined the overall 

longitudinal incisor length - along the labial surface - from the proximal-end to the distal-tip 

landmarks. It accounted for incisor curvature along the labial surface. It estimated the quantity 

of longitudinal enamel growth/ deposition. The 2D images were taken from the buccal view 

only, as the values were identical from the labial view (Figure 20.).

Figure 20. Incisor 2D projected labial-lensth

2D projected labial-length of a left incisor. Buccal view. Scale = 10.0mm.
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4.4.3.3. angle-of-curvature: The angle-of-curvature was used to determine the angle between 

the distal-tip and proximal-end landmarks. It was used to estimate the curved morphology of 

the incisor. It was taken from the buccal and lingual views (Figure 21.).

Figure 21. Incisor 2D angle-of-curvature

2D angle-of curvature of a let incisor. Buccal view. Scale = 10.0mm.
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4.4.3.4. projected width-at-midpoint: The 2D projected width-at-midpoint was used to 

determine the incisor antero-posterior diameter. It was used as an estimate of lateral growth 

and tooth bulk at the tooth curve tangent and was taken from the buccal and lingual views 

(Figure 22.).

Figure 22. Incisor 2D projected width-at-midvoint

2D projected width-at-midpoint of a left incisor. Buccal view. Scale = 10.0mm.
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4.4.3.5. incisor perimeter: The 2D projected perimeter was used to determine the complete 

incisor perimeter. It was used as an estimate of the overall quantity of enamel growth/ 

deposition and was taken from the buccal and lingual views (Figure 23.).

Figure 23. Incisor 2D projected perimeter

2D projected perimeter of a left incisor. Buccal view. Scale = 10.0mm.
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4.4.3.6. incisor surface-area: The 2D projected surface-area determined the flat surface area 

of tooth enamel. The measurement estimated of the quantity of enamel growth/ deposition 

and was taken from the buccal and lingual views (Figure 24.).

Figure 24. Incisor 2D projected surface-area

2D projected surface-area of a left incisor. Buccal view. Scale = 10.0mm.
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4.5. COLOUR AND WHITENESS IMAGING

The colour and whiteness imaging used the same equipment as the 2D IAS with minor 

camera setting alterations. Incisors were positioned differently using a custom specimen 

holder (Figure 25.).

Figure 25. Customised Tooth Holder

(A) camera lens; (B) incisor clamp and black modelling clay; (C) black matt background; (D) base; (E) 

adjustable stand.

The versatile holder could be rotated in three planes. Incisors were elevated at 6.0mm from 

the photographic base. Graduated scales enabled precise positioning and repositioning for 

consistency, standardisation and reliability. The adjustable clamp secured different incisors 

with the aid of black modelling clay (Flair PLC, Surrey, UK).
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4.5.1. Image Capture

The same 2D IAS macro-lens was fitted with a UV polarising filter. The horizontal lights on 

the photographic stand were also fitted with removable polarising sheets for the non-polarised 

and polarised imaging.

4.5.2. Camera Settings

The following settings were the same for non-polarised and polarised illumination;

Aperture =/l6; Shutter Speed = 3.2 seconds; ISO = 160; Magnification = X3.

4.5.3. Orientation Settings

The enamel colour and whiteness was objectively assessed on the labial surface from the 

labial view using the 2D IAS because enamel only develops on the labial surface of mouse 

incisors (Hay, 1961). Incisors were imaged from a slight buccal orientation to maximise the 

directly observable enamel surface to investigate mineralisation (Figure 26.).

Figure 26. Colour and Whiteness Assessment Image

The labial surface enamel from the labial view, in a slight buccal orientation. The black background was 
discemable. The modelling clay was not seen in polarised images.
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Incisors were securely fixed in a horizontal orientation to best utilise the camera FOV. The 

labial surface was perpendicular to the focal plane in the camera FOV. The mid-point of the 

incisor was used or focusing. This optimised the focal plane within the DOF.

4.5.4. Non-Polarised and Polarised Images

Non-polarised light describes the normal angle of light wave travel from source relative to a 

surface. On the other hand, polarised light describes transverse light waves that travel 

perpendicular to the normal angle. Incisor enamel has a high albedo and has highly reflective 

properties and optical heterogeneity. Therefore, a Hoya Circular Polarising filter (55mm 

diameter) (Tokina Co. Ltd., Tokyo, Japan) was used to eliminate polarised light.

The polarising filter was screwed onto the macro-lens. Polarising film sheets were fitted to 

the copy stand horizontal lights. During imaging a piece of polarisation film (held in front of 

the macro-lens) was used to ensure polarisation - through the viewfinder the incisors 

appeared bright when non-polarised or, after turning the filter 90°, appeared dark when 

polarised. Both non-polarised and polarised images were taken to determine the influence of 

UV light reflections during colour and whiteness assessment (Figure 27.).
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Figure 27. Colour and Whiteness Imaging Illumination

(A) polarised and (B) non-polarised images. No reflection was present in the polarised image.

The colour and whiteness images were sensitive to surface interference from non-polarised 

light reflection that distorted and introduced artifice. Polarised images contained no light 

reflection. Although the polarised images lacked the normal translucent appearance, this did 

not reduce detail and increased contrast, increased colour saturation and did not affect 

exposure.
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4.6. COLOUR AND WHITENESS ASSESSMENT

The 2D colour and whiteness assessment obtained standardised measurements with a bespoke 

colour calibrated algorithm using in-house customised Adobe Photoshop CS2 Version 9 

software (Adobe Systems Inc, California, USA) and Microsoft Excel spreadsheet (Microsoft 

Corporation, Redmond, Washington, USA).

Adobe Photoshop was customised by installing ‘A Set New White Tile.jsx’ and’ Add 

Sample.)sx’ preset JavaScript files in the PC Program Files root directory of Microsoft 

Windows Explorer. Two keyboard shortcuts or Hot Keys were created by selecting the ‘Edit’, 

‘Keyboard Shortcuts...’ options from the dropdown menu. The Application Menu 

Commands ‘File’, ‘Scripts’ ‘A Set New White Tile.jsx’ and ‘File’, ‘Scripts’ ‘Add Sample’ 

were mapped to the ‘Ctrl +.’ and ‘Ctrl +,’ hot keys respectively.

4.6.1. Calibration

A spectrophotometrically colour standardised British Ceramic Research Association white 

tile (#0520, Ceram Ltd, Staffordshire, UK) was imaged at the start of each imaging session to 

ensure colour balanced corrected images, under polarised and non-polarised illumination.

In the Adobe Photoshop dropdown menu, the ‘Rectangular Marquee Tool’ was used to select 

a central area of the white tile. Using the Ctrl+. hot key a spreadsheet file was automatically 

generated that contained the Red Green Blue (RGB) colour data from the selected area. Using 

the algorithm the RGB values were automatically calculated into calibrated Commission 

Internationale de I'eclairage (CIE) lightness (L); green/ red (A); yellow/ blue (B) and 

whiteness (WI) colour space outputs. (Negative A values indicated green while positive 

values indicated red; negative B values indicated blue and positive values indicated yellow; L 

= 0 values yield black and L = 100 values yielded white.) The resulting colour space values 

were calibrated against the standardised white tile values and accounted for the ambient 

illumination of a specific imaging session.

To open a colour and whiteness (.TIFF) file the ‘File’ dropdown menu and ‘Open...’ options 

were used to select a file from the Microsoft Windows Explorer directory. The individual 

incisor images were opened in a batch corresponding to the white tile image taken at the start
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of that imaging session. A ‘Zoom’ tool (25.0%) was used to magnify images to fill the PC 

monitor screen. The automatic ‘Magnetic Lasso Tool’ feature was used to objectively trace 

the enamel surface perimeter. The zoom function minimised operator measurement errors and 

maximized operator consistency.

4.6.2. Assessment Procedure

Enamel was assessed in four distinct anatomical surface regions; (i) whole, and proceeding 

from the proximal-end to the distal-tip, (ii) gingival, (iii) middle, and (iv) incisal, that 

corresponded to the pre-secretory, secretory and mature histological stages of enamel 

formation. The following measurements, CIE L = lightness; green! red', yellow! blue and 

whiteness were obtained in the whole, gingival, middle and incisal regions (total = 16 

variables), for both the left and right hand side incisors, in each of the non-polarised and 

polarised colour and whiteness images (Figure 28.).

Figure 28. Incisor Colour And Whiteness Assessment

(A) Whole enamel surface region selection; (B) gingival (red), middle (green) and incisal (blue) anatomical 
regions. The automated software separated the anatomical regions equidistantly. The algorithm calculated CIE 
lightness; green/ red\ yellow/ blue and whiteness colour space values for each of the four regions. Right incisor.

In the Photoshop dropdown menu, the ‘Magnetic Lasso Tool’ option feature was used to 

automatically trace the observable incisor perimeter and objectively encompass the labial 

enamel surface. (The following settings were refined to precisely trace the perimeter variable; 

feather = 0 pixels, width = 10 pixels, edge contrast = 50% and frequency = 57.) Using the 

Ctrl+, hot key the whole region was either assessed independently or separated into the three 

colour coordinated regions equidistantly. This minimised human subjective input and error.
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Each incisor image was opened in a sequence within the batch and the algorithm used the 

RGB colour data outputs from each region to automatically calculate CIE LAB and WI 

colour space values. These calibrated colour space values were automatically exported into a 

colour coded spreadsheet. All data was collated into a single spreadsheet 

software and algorithm were objective, practical and minimised human 

expedited data collection efficiently with limited data handling.

for analysis. The 

input. They also
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4.7. 3D IMAGE ANALYSIS SYSTEM

The 3D Image Analysis System (IAS) included image acquisition, file transformation and 3D 

model reconstruction steps. The 3D morphometric measurement was the last step in the 

series. The equipment incorporated custom hardware and software modifications of a Non- 

Contact Surface Profilometer measurement device (NCSP) to deliver a versatile high 

systematic resolution (l.Opm) 3D IAS (Figure 29.).

Figure 29. 3D IAS Equipment

(A) z-distance measurement sensor (including optoelectric control unit on the left); (B) coordinate measuring 
machine platform and rotary stage; (C) ProScan CPU stack; (D) desktop PC.

The NCSP (Scantron ProScan 2000, ScanTron Industrial Products Ltd., Taunton, UK) 

collectively referred to a Coordinate Measuring Machine (CMM) mechanical platform, that 

was movable in the X and Y coordinate directions, and a Z-distance measurement sensor that 

was movable in the vertical Z coordinate direction. The CMM was connected to a central 

Computer Processor Unit (CPU) stack in a local area network that was controlled by Scantron 

ProScan 2000 V2.1.17 software (Scantron Industrial Products Ltd., Taunton, UK). The 

Microsoft Windows XP Professional 2002 SP2 (Microsoft Corp, New Mexico, USA)
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operating system was on a Dell Optiplex620 desktop PC (Dell Inc, Texas, USA) with Intel® 

Pentium® 4 CPU, 3.40GHz, 5GB RAM and a 250GB hard-drive. The monitor was 19 inch, 

32-Bit true-colour 1280 X 1024 pixel resolution, supported by a ATI Radeon Sapphire HD 

3650 512MB graphics card (Advanced Micro Devices, Inc., CA, USA).

4.7.1. Non-Contact Surface Profilometer (NCSP)

The Z-distance measurement sensor was precisely movable in the Z coordinate direction for 

single point dynamic focusing, independent of the CMM. The Z-distance measurement 

sensor contained a modular optical pen (STIL S.A., Provence, France) which combined a 

magnifier (range 200mm-210mm focal length) and a chromatic lens (range 100pm-24mm 

depth of field). The optical pen was connected by a fibre-optic cable (Coming Inc, NY, USA) 

to a CHR 150-L optoelectric control unit (STIL S.A., Provence, France) containing a high 

resolution (75.0nm) chromatic confocal sensor.

Also, within the control unit there was a digital signal processing board, a spectrometer and a 

50W tungsten halogen lamp that generated polychromatic (white) light. It was essential that 

the most appropriate sensor was chosen for the murine application because of the 

heterogeneous albedo of enamel. The S3/16 model optical sensor accepted all kinds of 

materials. The measurement range (3.5mm) was the interval between the lower and upper 

measuring limits of the sensor and the maximum deviation on a surface that the sensor could 

measure. The working distance (16.4mm) was the distance between the sensor and the middle 

of the measuring range. This allowed enough space to account for the 360° rotation of the 

incisors.

The small ‘Spot Size’ (8.0|im) was pertinent to the lateral features being measured, e.g. 

fissures required a sensor that could adequately resolve fine enamel surface structures. The 

spectral sensor had a high Z coordinate (axial) resolution of 75.0nm. The linearity or actual 

error was 0.035 pm± (0.1% of range), with a sensor accuracy of 0.4pm (STIL S.A., Provence, 

France). This was ample to measure the smallest surface feature.

The resolution of the Proscan2000, an axial resolution of 5.0nm measured at a rate of up to 

1,000 points per second, equated to the smallest quantity measurable fwww.scantron- 

net.co.uk/proscan2000T The overall systematic resolution took into account the precise
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movement of the CMM platform (0.1 pm) and the actual ‘Step Size’ (1.0-25.0pm) 

parameters. The NCSP systematic resolution was 1.0pm.

4.7.1.1. CMM Movable Platform:

By mechanically moving the specimen in the X and Y coordinate directions, using the CMM 

platform, and simultaneously measuring the Z coordinate of each point, by the stationary 

chromatic spectral sensor, it was possible to obtain high resolution micro-topographic 

images. The CMM travel was predominately in the Y coordinate direction (Figure 30.).

Figure 30. Direction of CMM Platform Travel and Data Collection

X coordinate
Stait position (home)

Y coordinate

scan direction (data collection)
--------------------------------------------------->
scan direction (no-data collection)
<r

The mechanical movement of the CMM in X and Y coordinate directions from the start position ‘home’ 
coordinate point of origin. The lines represent the travel of the CMM beneath the stationary Z-coordinate 
measurement sensor. Data collection lines scanned in Y (black line) until complete and the CMM platform 
retraced in X (red line) to the beginning point of the next line. This procedure was repeated one line at a time.

The Y direction travel along the longitudinal axis of the specimens maximised data collection 

and minimised ‘no-data’ collection making the most efficient use of scan times (e.g. 15 

minutes for the 5.0x10.0mm area). The distance between the black lines equalled the ‘Step 

Size X (mm)'. ‘Step Size X’ multiplied by ‘Number Of Steps X’ equalled ‘Part Size X’.
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Similrly ‘Part Size Y’ equalled ‘Step Size Y’ multiplied by ‘Number Of Steps Y’ (Figure

31.).

Figure 31. The Scanning Setup
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Figure . The ‘Scanning Setup’ dialogue box in the Proscan2000 software.

The individual scan ‘Individual Part Details’ coordinate inputs were determined iteratively by 

preparatory scans. The ‘Start Position’ coordinates were required later for X and Y offset 

mathematical calculations. The Z-distance measurement sensor moved in the vertical Z-axis 

to obtain Z coordinate data by dynamic focusing (Figure 32.).

Figure 32. Z-Distance Measurement

Live Data

Height (um) Intensity (X)

1718.680 0

The ‘Live Data’ screen in Proscan2000 displayed the Z coordinate distance measurement (or height). The 
middle (1.75mm) of the sensor measuring range (3.5mm) was used to optimise 3D data collection.

Changes in Z-distance (‘Height’), displayed in the ‘Live Data’ screen, between the specimen 

surface and a known reference point on the rotary stage precisely engineered steel mandrel (c 

= 6.0mm), were recorded for each specimen. The change in Z-distance (along with the X and
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Y coordinates) determined the specimen’s position in the local coordinate system. X, Y and Z 

coordinate data point offset calculations spatially adjusted the 3D image files for each 

individual specimen in a novel process of image indexing that was used to reconstruct the 3D 

models.

4.7.1.2. Novel Customised Modifications:

The CMM platform was modified with a novel and customised rotary stage. The rotary stage 

consisted of a precisely engineered steel mandrel with known dimensions (Figure 33.).

Figure 33. Precisely Engineered Steel Mandrel
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polychromatic 
light source

spectrometer

J reference/ object surface

(A) photograph of mandrel (plan view); (B) schematic of mandrel including known dimensions used for 
calculating the Z coordinate offset; (C) diagram of the mandrel (reference/ object surface) in the NCSP system. 
The central axis of rotation or datum line (at x = 0) was located within the sensor measuring range. The 
precisely engineered steel mandrel served as the absolute reference surface within the local coordinate system.
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The bespoke rotary stage was mounted on the CMM platform from above using four screws. 

The adaptation was completely removable (Figure 34.).

(A) CMM movable platform; (B) customised rotary stage (stepper motor and micro-precision rotation stage); 
(C) rotary stage in position on the CMM platform. The incisors were secured by a milled clamp at the end of the 
mandrel, tightened firmly using four 2.0mm diameter screws.
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A precision position stepper motor controller (C663 Mercury ™ Step, Physik Instrumente 

GmbH & Co. KG, Karlsruhe, Germany) and a micro-precision rotation stage (M-006.2S, 

Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany) were operated from the PC by 

Rotary software (Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany). The incisors 

were thereby rotated 360° at predetermined 45° intervals (e.g. 45°, 90°, 135°, 180°, 225°, 270°, 

315°, 360°). The 3D data was collected in the intervals between each rotation. The number of 

intervals related to the number of multi-view micro-topographical surface-maps or 3D images 

required to reconstruct a complete 360° model (Figure 35.).

Figure 35. Multiple Multi-view Micro-Topographical Surface-maps
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Eight individual micro-topographical surface-maps. At each interval between rotations a micro-topographical 
surface-map or 3D image file was generated, previewed and saved, e.g. a 360° revolution with 45° intervals 
produced 8 individual multi-view files (360/45 = 8).

The equipment was largely automated in the X, Y and Z coordinate directions so the inputs, 

controlling the intervals and degrees of rotation, provided a complementary and versatile 

means of data collection. (Complete scan time for one incisor model was 15 minutes x 8 files 

= 2 hours.) The multi-view micro-topographical surface maps or 3D images were previewed 

and saved in native/ proprietary ProScan (.pm) files. The files went through a series of file 

type transformations towards a complete 3D surface structural model.
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4.7.2. File Format and Saving

In the .pm file type the incisor surface was defined in terms of 3D Cartesian (X,Y and Z) 

coordinate data points. The 3D spatial location of each point within a local geometric 

coordinate system was established between the CMM and the Z-distance measurement 

sensor. In order to correct the relative position of each coordinate data point, the multiple .pm 

files were imported into Microsoft Excel spreadsheets to be offset by a specific mathematical 

calculation (Figure 36.).

Figure 36. Calculating Coordinate Data Point Offsets
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B (front view)

spectral sensor (S3/16)

measuring range 
(mm)

mandrel

Circumference
(11111)

working
distance

(mm)

radius
(mm)

3.0

Calculating the geometric mathematical offsets; (A) plan view, the X and Y coordinates were, determined in the 
‘Scanning Setup’; (B) front view, the Z coordinate was the recorded Z distance (or height) between the 
specimen clamp to a known point on the 6.0mm circumference step of the mandrel. The offsets were noted for 
X, Y and Z for all images and were subtracted from the corresponding coordinate data point values in the .pm 
image files after being imported into a spreadsheet.

The .pm files were imported into a spreadsheet in a ‘comma delimited text file formaf (.csv 

file). The offset values were obtained from the ‘Start Position’ coordinates for the X and Y 

coordinates, and from the Z-distance between the specimen (at 0° position) and the 6.0mm 

circumference of the mandrel. The three different values were subtracted from the three 

different X, Y and Z coordinate data point columns in the spreadsheet. The offset adjusted 

files were saved in .csv format.
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The .csv files were converted to a text file format (.txt file) by changing the file extension in 

Microsoft Windows Explorer. The .txt file was compatible for import in point cloud data 

format into SolidWorks Premium2008 software (DassaultSolidWorks, Massachusetts, USA). 

Each file was spatially corrected according to the novel 3D image registration process of 

indexing.

Thus, the steel mandrel not only fixed the incisors firmly in position within the measuring 

range, and established a central axis of rotation (used as a datum line), but it also provided a 

reference for calculating Z offsets and combining the multiple 3D images.
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4.7.3. Final 360° 3D File

To produce a 360° 3D model the multiple multi-view images were assembled together in the 

local coordinate system using the mandrel as an absolute reference surface. The central axis 

of rotation of the mandrel served as a datum line (at X = 0) about which each separate image 

in the series was opened in sequence and spatially adjusted in SolidWorks by the 

corresponding degrees of rotation (e.g. 45°, 90°, 135°, 180°...) predetermined by the intervals 

of the rotary stage (Figure 37.).

Figure 37. Combining Multi-view images by Indexing/ Registration

A o*

270*
(-so*)

(A) schematic of the mandrel from a front view. The degrees of rotation correspond to the predetermined 
intervals of the rotary stage. The centre of the circle was the central axis of rotation where the incisor was 
clamped. Screen-shot image series of file type transformations from; (B) coordinate point cloud data; (C) 
polygon mesh file conversion; (D) multiple spatially corrected/ adjusted 3D images before 3D modelling.
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4.7.4. 3D Modelling (.stl File Production)

After each individual point cloud data .txt file was indexed around the datum line the separate 

files for each incisor were saved as an .xyz file type. The mathematically offset and spatially 

corrected .xyz files were then converted back into .txt files by changing the file extension in 

Microsoft Windows Explorer. The coordinate data from each separate .txt file was copied and 

pasted into a single .txt file using Microsoft Notepad (Microsoft Corp, New Mexico, USA). 

This file was opened in the Solidworks software and converted into a single triangulated 

polygon mesh using the ‘Scan to 3D’ add-on and ‘Mesh Prep Wizard’ features (Figure 38.).

Figure 38. 360° 3D Surface Structure Model

Screen shot images from the 360° 3D surface structure model of a mouse right mandibular incisor. The 3D 
model files could be exported in various file formats to be compatible with analytic software packages. The 3D 
model shows the mandrel clamp at the proximal-end.
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The 3D models were edited/ trimmed at the proximal-end landmark feature to remove the 

mandrel clamp and were saved in .stl format. The distinct surface texture change that 

distinguished the start of the pre-secretory stage of enamel formation was used as a landmark 

feature - it was the same landmark as the 2D IAS morphometric and colour and whiteness 

assessment images. The feature was located distally from the mandrel clamp. The remaining 

hole was closed flat using the Solidworks ‘Mesh Prep Wizard’.

No image compression occurred during file type transformations. This prevented any data 

loss and did not compromise quality or quantity of information, or surface detail.
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4.8. 3D MORPHOMETRIC MEASUREMENT

All 3D morphometric measurements were obtained using Cloud 3D surface viewer software 

(Dr. Robin Richards, University College London, UK), except the surface-roughness 

measurement that was obtained using ProScan 2000 software (ScanTron Industrial Products 

Ltd., Taunton, UK). In the 3D IAS both projected and actual lineal* measurements were 

possible. The projected measure represented the flat surface distances between two points, as 

seen in the 2D IAS, but the additional actual 3D measurement followed the 3D contour of the 

tooth surface for greater analytical power.

4.8.1. Operating Instructions

To open a 3D model (.STL) the Tile’ dropdown menu and ‘OpenSTL5 commands were used 

to select a file from the Microsoft Windows Explorer directory. Opened files were viewed by 

the ‘Fit to window’ command in the ‘Options’ dropdown menu.

For each measurement, the precise X, Y and Z coordinate position and orientation of incisors 

were recorded in the respective ‘Offsets (mm)’ and ‘Angles (degrees)’ commands in the 

‘View - all objects affected’ dialogue box. Incisors were consistently repositioned and re

orientated in the exact location for repeat measurements. Therefore, repeat measurement 

markers were reliably replaced.

Incisors were rotated in all directions by selecting ‘Rotate’ in the ‘Mode’ dropdown menu. 

The incisor 3D models were rotated in fixed X, Y and Z coordinate dimensions/ planes by 

holding down either the right or both buttons on the mouse and rotating clockwise/ 

anticlockwise around a fixed central axis.

A ‘Zoom’ function was operated by holding both the left and right mouse buttons together, 

moving the mouse forwards to zoom in, and moving the mouse backwards to zoom out. The 

onscreen zoom was monitored in mm in the ‘Size - field of view’ dialogue box display. This 

maintained the different magnifications for the different measurements and ensured 

consistent measurement marker placement.
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There was no additional calibration procedure because the .STL files contained internal 

calibration data (in mm) established within the 3D IAS.

4.8.2. 3D Measurement Procedure

Incisors were orientated in 3D in a position appropriate to attain each measurement. 

Measurement markers were placed on the anatomical landmark features of the incisor image 

surface and did not move.

The following steps were used to obtain the 3D measurements. In the Cloud dropdown menu, 

the ‘Mode’, ‘PlaceMarkers’ options were selected. The cursor displayed (‘MARK’) and 

measurement markers were placed on the landmark features of the incisor surface. 

Measurement lines between markers were displayed by selecting ‘Set Ref Point’ and ‘Set 

Line Point’ in the ‘Measurements (mm)’ dialogue box. The line was used as a guide for 

further marker placement. The cross of each marker point was used to ensure all marker 

points were equidistant. The last marker was superimposed over the final marker (usually 

marker B) to obtain the projected and actual measurements.

In the ‘Meas’ dropdown menu of the ‘Measurements (mm)’ dialogue box, the ‘Length of 

polyline’ option was selected and a ‘Measure line segments’ dialogue box appeared. To 

obtain the projected measurement, the wanted makers (e.g. A and B) were selected and 

moved to the ‘these markers will be used’ box using the ‘move to wanted list’ button. 

Alternatively, to obtain the projected measurement the wanted makers (e.g. A, C D...) were 

selected and moved to the ‘these markers will be used’ box using the ‘move to wanted list’ 

button. The actual and projected measurement data was recorded and saved in a spreadsheet.
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The 3D surface-roughness measurement was obtained differently using the ProScan2000 

software. The rotary stage was not required and the NCSP was used as originally designed. 

The incisors were placed directly onto the CMM moveable platform and immobilised in 

modelling clay. The high resolution selected region examples scan parameters were different 

from those used for the 3D model reconstructions (Figure 39.).

Figure 39. 3D Surface Region Scan Parameters

Scan parameters used for the high resolution selected surface regions; Step Size = 1.0pm; Part size = 
200x500pm). The surface-roughness measurements were automatic data outputs that were saved in a 
spreadsheet after imaging.

The high resolution scans were obtained using the ‘Step Size’, ‘Number of Steps’ and ‘Part 

Size’ displayed in the ‘Scanning Setup’ window. The selected region example images were 

saved as individual .pm files. They were not multi-view images and did not require 

combination or reconstruction as in the 3D modelling. Therefore, no offset calculation or 

indexing was required.
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One example scan was obtained for each of the seven genotype groups, in each of three 

representative regions of enamel surface (i) gingival, (ii) middle and (iii) incisal (Figure 40.).

Figure 40. Selected 3D Surface Region

(A) gingival; (B) middle; (C) incisal enamel surface regions corresponded to the anatomical thirds. Left = 
proximal-end, right = distal-tip. Rectangles represent the high resolution (1.0pm) selected area examples 
(200x500pm) and contain individual 100pm scales.

The three selected area example scans were obtained along the longitudinal labial axis of the 

incisors between the proximal-end and the distal-tip. The dimensions (200x500pm) were 

dictated by the surface under inspection, which according to the recommendations of the 

International Organisation for Standardisation (ISO 4288-1996) were sufficient to give a true 

representation of the texture of the enamel surface. The proximal-end was taken to be 0.0mm 

and the Y coordinate start positions for each image/ region were measured at approximately 

+3.0mm, +6.0mm and +9.0mm respectively.

The corresponding X coordinate start positions for each image/ region were determined by 

subtracting 100pm from the X coordinate at the centre of the labial surface. This ensured that 

the 200x500pm selected region obtained surface data from a central surface for each region. 

The high resolution examples were obtained from approximately the same regional locations 

as individual incisor dimensions varied. Each region was equidistant to minimise subjectivity.
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4.8,3. 3D Incisor Measurement

The following eleven measurements were obtained from 3D models from the buccal, lingual 

and labial views (xl6 variables), for both the left and right side incisors (x32 variables); 

projected overall-length (mm); projected labial-length (mm); actual labial-length (mm); 

projected width-at-midpoint (mm); actual width-at-midpoint (mm), circumference (mm); 

actual perimeter (mm); actual surface-area (mm2); total surface-area (mm2); total volume 

(mm3) and surface-roughness (pm).

All 3D measurements were taken on the buccal and lingual surfaces, except the following; (i) 

labial-lengths (ii) circumference, (iii) total surface-area, (iv) total volume and (v) surface- 

roughness, The 3D projected and actual labial-lengths were taken in from the labial surface. 

The 3D circumference, total surface-area and total volume were obtained once for each left 

and right incisor. Surface-roughness was only obtained on the labial surface because of the 

asymmetrical distribution of enamel.

The distinct surface texture change that distinguished the start of the gingival region/ pre- 

secretory stage of enamel was used as a landmark feature - this was the same landmark as the 

2D IAS morphometric and colour and whiteness assessment images.
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4.8.3.1. projected overall-length: The 3D projected overall-length was used to determine the 

overall longitudinal length of an incisor, from the proximal-end to the distal-tip (Figure 41.).

Figure 41. 3D projected overall-lensth

Buccal view of a left incisor. Scale = 10.00mm.

4.8.3.2. labial-length: The 3D labial-length determined the overall longitudinal incisor length 

along the labial surface, from the proximal-end to the distal-tip landmarks. It accounted for 

incisor curvature along the labial surface. It estimated the quantity of longitudinal enamel 

growth/ deposition (Figure 42.).

Figure 42. 3D actual labial-len2th

Labial view of a left incisor, slight buccal orientation. Actual surface measurement (green line/ marker crosses). 
Scale = 10.0mm.
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4.8.3.3. actual labial-length: The 3D actual labial-length was used to determine the overall 

longitudinal length of an incisor along the labial surface. The measurement accounted for 

incisor curvature and topography along the labial surface. It was used to estimate the quantity 

of longitudinal enamel growth/ deposition. It was taken from the labial view (Figure 43.).

Figure 43. 3D actual labial-len2th

(A) Labial view; (B-D) various labial orientations exhibiting the difference between the actual (red line) and projected 
(green line/ markers crosses) measurements. Left incisor shown.
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4.8.3.4. projected width-at-midpoint: The 2D projected width-at-midpoint and 3D projected 

width-at-midpoint were used to determine the incisor antero-posterior diameter. They were 

used as an estimate of lateral growth and tooth bulk at the tooth curve tangent. Both were 

taken from the buccal and lingual views (Figure 44.).

Figure 44. 3D projected width-at-midpoint

Buccal view of a left incisor. Scale = 10.0mm.

4.8.3.5. actual width-at-midpoint: The 3D actual width-at-midpoint was used to determine 

the incisor antero-posterior diameter. The measurement estimated lateral growth and tooth 

bulk at the tooth curve tangent and it accounted for incisor curvature and surface topography. 

It was taken from the buccal and lingual views (Figure 45.).

Figure 45. 3D actual width-at-midpoint

(A) projected measurement; (B) actual surface measurement; (C-D) difference between the projected (red line) 
and actual measurements (green line/ markers crosses) from two views. Buccal surface of a left incisor.
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The width-at-midpoint was taken on both buccal and lingual surfaces to investigate the 

difference between their respective projected and actual measurements, and to identify 

asymmetry. The width-at-midpoint measurement of the buccal and lingual surfaces quantified 

enamel growth/ deposition as enamel forms on the labial surface only.

4.8.3.6. incisor perimeter: The 3D actual perimeter was used to determine the complete 

incisor perimeter, accounting for incisor surface topography. It was used as an estimate of the 

overall quantity of enamel growth/ deposition. It was taken from the buccal and lingual views 

(Figure 46.).

Figure 46. 3D actual perimeter

Buccal view of a left incisor. Scale = 10.0mm.
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4.8.3.7. total and marked surface-area: The 3D surface-area determined both the total and 

the marked surface area of enamel and accounted for the incisor surface topography. The 

measurements were used to estimate the quantity of enamel growth/ deposition. The marked 

surface-area measurement was taken from the buccal and lingual view (Figure 47.).

Figure 47. 3D surface-area

(A) 3D total (yellow) surface-area', (B) 3D marked (orange) surface-area. Buccal view of a left incisor.
Scale = 10.0mm.

4.8.3.8. circumference: The circumference was used to determine the antero-posterior 

circumference. The measurement was used as an estimate of lateral growth and tooth bulk at 

the tooth curve tangent. It was taken from multiple views in 360° (Figure 48.).

Figure 48. 3D circumference

(A) buccal surface; (B) lingual surface; (C-D) buccal and lingual views displaying the actual ‘on surface’ 
measurements. Left incisor shown.
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4.8.3.9. total volume: The 3D volume was used to determine the volume of the incisor. It was 

used as an estimate of tooth bulk and the quantity of enamel growth/ deposition. It accounted 

for the incisor’s complete surface topography (Figure 49.).

Figure 49. 3D total volume

Buccal view of a left incisor.
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4.8.3.10. surface-roughness: The surface-roughness measurement was used to determine the 

enamel surface roughness in each of the three representative regions of the labial surface (i) 

gingival, (ii) middle and (iii) incisal (Figure 50.).

Figure 50. 3D surface-roushness

(A) gingival! pre-secretory, (B) middle/ secretory, (C) incisal/ mature regions. The top of the image represents 
the proximal-end and the bottom of image represents the distal-tip. The 200X500pm images were obtained at 
1.0pm resolution on the labial surface. The recommended ISO cut-off filter was calculated; sampling length 
(0.25mm), evaluation length (1.25 mm), step-size (1.0pm) and number of steps (1250);[(cut-off 0.25mm / 2) / 
step-size 0.001mm) = 125].

In the ‘General’ tab, ‘Proscan2000 Configuration’ and ‘Analysis Functions Required’ menu, 

the Roughness Average (Ra) surface characteristic function was selected. The measurement 

of form can be separated into roughness and waviness components (Thomas, 1982; 

Whitehouse, 1994). The ‘Surface Filter’ function was applied to remove the waviness 

component and leave the surface roughness information. By clicking ‘Profile Analysis’ the 

surface-roughness measurement data was exported into a Microsoft Excel spreadsheet (.csv) 

file containing separate mean X and Y coordinate Ra values.
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4.9. 2D AND 3D MORPHOMETRIC MEASUREMENT

4.9.1. 2D and 3D Incisor Measurement

The following four measurements (except the projected and actual labial-length) were 

obtained from 3D models from the buccal and lingual view of the 2D images (total = 6 

variables), for both the left and right side incisors: projected overall-length (mm); projected 

labial-length’, actual labial-length, projected width-at-midpoint (mm).

All 2D measurements were taken both from the buccal and lingual view of the 2D images 

except the projected labial-length that was only taken from the buccal view as the values 

were the same. The angle-of-curvature was not obtained in 3D as it was limited in the 2D X 

and Y coordinate dimensions.

4.9.1.1. projected overall-length: The 2D projected and 3D projected overall-length were 

used to determine the overall longitudinal length of an incisor, from the proximal-end to the 

distal-tip (Figure 51.).

Figure 51. 2D projected overall-lensth and 3D projected overall-lensth

(A) 2D projected; (B) 3D projected. Left incisor, buccal view. Scale = 10.00mm.

The distinct surface texture and colour change that distinguished the start of the pre-secretory 

stage of enamel formation was used as a landmark feature - this was the same landmark as 

the colour and whiteness assessment images.
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4.9.1.2. labial-length: The 2D projected labial-length and 3D actual labial-length determined 

the overall longitudinal incisor length along the labial surface, from the proximal-end to the 

distal-tip landmarks. It accounted for incisor curvature along the labial surface. It estimated 

the quantity of longitudinal enamel growth/ deposition. The 2D measurement was taken from 

the buccal view, and the 3D measurement was taken from the labial view (Figure 52.).

Figure 52. 2D projected labial-len2th and 3D actual labial-length

(A) 2D projected (yellow line); (B) 3D actual (buccal view); (C) 3D actual (labial view) Left incisor.
Scale = 10.0mm.

4.9.1.3. actual labial-length: The 3D actual labial-length was used to determine the overall 

longitudinal length of an incisor along the labial surface. The measurement accounted for 

incisor curvature and topography along the labial surface. It was used to estimate the quantity 

of longitudinal enamel growth/ deposition. It was taken from the labial view (Figure 52.).
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4.9.L4. projected width-at-midpoint: The 2D projected width-at-midpoint and 3D projected 

width-at-midpoint were used to determine the incisor antero-posterior diameter, between the 

lingual and labial surfaces. They were used as an estimate of lateral growth and tooth bulk at 

the tooth curve tangent. Both were taken from the buccal and lingual views (Figure 53.).

Figure 53. 2D projected width-at-midpoint and 3D projected width-at-midpoint

(A) 2D projected (B) 3D projected . Left incisor, buccal view. Scale = 10.0mm.

4.9.1.5. incisor perimeter: The 2D projected perimeter was used to determine the complete 

incisor perimeter. The 3D actual perimeter accounted for the incisor surface topography. It 

was used as an estimate of the overall quantity of enamel growth/ deposition. It was taken 

from the buccal and lingual views (Figure 54.).

Figure 54. 2D projected perimeter and 3D actual perimeter

(A) 2D projected ; (B) 3D actual. Left incisor, buccal view. Scale = 10.0mm.
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4.9.1.6. incisor surface-area: The 2D projected surface-area determined the flat surface area 

of tooth enamel. The 3D actual surface-area determined the marked surface area of enamel 

and accounted for the incisor surface topography. The measurements estimated of the 

quantity of enamel growth/ deposition. Both were taken from the buccal and lingual views 

(Figure 55.).

Figure 55. 2D projected surface-area and 3D actual surface-area

(A) 2D projected; (B) 3D actual marked. Left, incisor, buccal view. Scale = 10.0mm.
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4.10. SUMMARY

An established 2D IAS was modified with a macro-lens for the small mouse application. An 

original standardised algorithm was developed in-house for the enamel colour and whiteness 

assessment. A bespoke 3D IAS was developed by adapting a high resolution measurement 

device with a rotary stage to obtain 3D images in 360°. Analytical measurement tools and 3D 

modelling software were customised for this application.

Two study samples were obtained for (i) multiple-operator method reliability and validation, 

and (ii) experimental comparative analysis. The reliability sample was a homogenous 

population of general laboratory mice {n = 20). The experimental sample was heterogenous 

population of congenic mice consisting of two separate populations each containing a control 

genotype groups and mutant genotype groups (n = 35) with recently described gene sequence 

mutations. The left and right side hemi-mandibles and mandibular incisors were imaged.

Hardware and software developments were undertaken and demonstrated novel input through 

inter-disciplinary collaboration. The new 2D IAS, new colour and whiteness and new 3D IAS 

were used to image the two study samples. These four approaches extended the measurement 

capacity for comparative investigation, using established parameters and new variables for 

objective and quantitative macro-metric and micro-metric murine dental phenotyping.
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4. Materials and Methods

4.11. METHOD RELIABILTY AND VALIDATION

4.11.1. Introduction

Reliability measured the consistency of the instruments and methods, providing a measure of 

the total system error. This was determined by the statistical analysis of repeat measurements 

with the same equipment, on the same object and under the same conditions. Both intra

operator and inter-operator reliability was necessary for complete method assessment and 

validation (Smith and Harris, 2009). Also, to determine the validity of the new measurement 

methods it was essential to examine the measurement agreement with those of established 

methods recognised as benchmarks or as a definitive ‘gold standard’. Both operator reliability 

and method agreement must be demonstrated as a reliable method may still be inaccurate.

The accuracy of each method was tested to identify measurement errors, defined as the 

difference between a measured and a true value. Measurement inaccuracies may be caused by 

(i) random (experimental) errors, which may vary from observation to observation, or (ii) 

systematic errors/ biases. All measurement methods contain experimental error.

Experimental error is inversely related to the degree of the reliability of the measurement 

method (Hunter and Priest, 1960). The greatest source of experimental error (that affects 

precision and reliability) may be landmark identification or positioning (Bhatia and Harrison, 

1987). On the other hand, systematic errors are predictable, typically constant or proportional 

to the true value (Houston, 1983). They may be caused by imperfect instrument calibration, 

imperfect methods of observation or external interference in the measurement process 

(Keiser, 1990). Experimental errors may be identified by significant bias and eliminated.

There are number of terms associated with error and measurement reliability.
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4. Materials and Methods

4.11.1.1. Accuracy/ Validity:

Accuracy is the closeness of a measurement to the true value. It was necessary to consider the 

validity of the measurement methods. The validity was assessed statistically for acceptability.

4.11.1.2. Precision:

The precision (or reliability) of a measurement method is the degree to which repeated 

measurements give the same value under unchanged conditions. Highly precise instruments 

have small variability (standard deviation) in the fluctuations of their measurements.

4.11.1.3. Reliability:

Reliability is the consistency of the measurement methods and measurements over a given 

number of repeat measurements on the same object under identical conditions, ideally by 

more than one operator. Reliability measures were developed by Bland and Altman (1986, 

1999). Methods are deemed reliable (within a range) if they yield consistent results for the 

same measure, or are unreliable if repeat measurements give different results. Reliability also 

varies according to the skills of the operator and may improve through training.
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4. Materials and Methods

4.11.2. Reliability Study

To make consistent observations an investigator must be familiar with a measurement 

technique. Each measurement method was piloted and standard operating procedures/ 

measurement protocols were written and revised iteratively. The protocols were used to provide 

adequate multiple operator training.

Before measuring the study sample the 2D IAS, the colour and whiteness and the 3D IAS 

measurement methods were all appraised during a reliability study that tested their 

experimental and systematic errors. The reliability studies established both the closeness of 

agreement between independent measurements obtained with the same method on an 

identical object, under the same conditions, by one identical operator (intra-operator 

repeatability) and by two different operators (inter-operator reproducibility).

Images were obtained with the same equipment, in the same laboratory, on separate 

occasions with a minimum interval of 1 week. Measurements were carried out after a 

minimum interval of 24 hours. The three independent operators were (I) Mr. Thomas Liam 

Coxon (TLC), (II) Mr. James Henry Hibbard (JHH) and (III) Dr. Aliya Stretton (AS). 

Operator I trained operators II and III in all methods. The first repeat measurements from 

each intra-operator repeatability study were used for the inter-operator reproducibility.

The exact number of images and measurements used in the comprehensive reliability and 

validation studies are detailed herein.
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4. Materials and Methods

4.11.2.1. 2D IAS Mandible Morphometry.

2D images of the left and right hemi-mandibles (x2) were obtained from the buccal and 

lingual views (x4 images), from each individual in the reliability sample (x80 images). Each 

image was repeated by operators I and II (total xl60 images). Eight variable measurements 

(x8) were obtained from each image.

4.11.2.2. 2D IAS Incisor Morphometry

2D images of the left and right incisors (x2) were obtained from the buccal and lingual views 

(x4 images), from each individual in the reliability sample (x80 images). Each image was 

repeated by operators I and II (total x 160 images). Five measurements were obtained from 

each image (+1 additional measurement from every buccal image) by operators I and II.

4.11.2.3. 2D IAS and Colour and Whiteness Assessment

2D images of the left incisors were obtained from the labial view under polarised and non

polarised lighting conditions (x2 images), from each individual in the reliability sample (x40 

images). Each image was repeated by operators I and III (total x80 images). Thirty two 

measurements were obtained from each image by operators I and III.

4.11.2.4. 3D IAS Incisor Morphometry:

3D images/ 3D model files of the left and right incisors (x2) were obtained from each 

individual in the reliability sample (x40 images). Each model was repeated by operators I and 

II (total x80 images). Sixteen measurements were obtained from each model by operators I 

and II.

Repeat images/ 3D model files were obtained by operator I only. Independent (multiple 

operator) intra-operator repeatability tested for experimental error and systematic error while 

and inter-operator reproducibility tested experimental error. Inter-operator repeats were not 

required for the 3D actual surface-area^ marked surface-area, total volume and surface- 

roughness measurements because the values were identical computer outputs from the same 

3D model files.
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4. Materials and Methods

4.11.3. Statistics

The following descriptive statistics were used to quantitatively summarise the data.

4.11.3.1. Standard Deviation:

The standard deviation (SD) measured the measurement variability. It may be thought of as 

the average difference from the mean of the sample.

4.11.3.2. Standard Deviation of the Difference:

The Standard Deviation of the Difference (SD Diff.) was used to assess measurement 

variability for the repeat measures.

4.11.3.3. Mean Difference:

The Mean Difference (MD).

4.11.3.4. Standard Error:

The standard error of the sample mean (SE) indicated the variability around the estimate of 

the mean measurement. It was used to calculate the 95% confidence intervals (1.96xSE) 

either side of the mean.

4.11.3.5. Intra-class Correlation Coefficient:

The Intra-class Correlation Coefficient (ICC) was used to assess the degree of correlation 

between quantitative measurement methods and measurements made by independent 

operators measuring the same quantity for intra-operator repeatability and inter-operator 

reproducibility (Fleiss and Shrout, 1977; Fleiss, 1986a, 1986b). In paired measurements the 

ICC was a more natural measure of association than the Pearson's Correlation Coefficient 

because it accounted for the biological variation of the samples.

Donner and Eliasziw (1986) classified the ICC values as;

Slight (0.000-0.200), Fair (0.210-0.400), Moderate (0.410-0.600), Substantial (0.610-0.800) 

and excellent (0.810-1.000) correlations.
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4. Materials and Methods

4.11,3.6. Bland-Altman Plot:

Bland-Altman plots were created to observe operator and method agreement 

diagrammatically (Bland and Altman, 1986, 1999). They visualise the measurement valuation 

between the two operators and the two methods by plotting the average of two measurements 

(horizontal X axis) against the difference between each measurement (vertical Y axis). This 

illustrates the size of the measurement variation and its distribution about zero. Therefore, it 

is possible to demonstrate not only the overall degree of agreement but also the presence of 

any biases.

The plots reveal any possible unwanted relationships between tire differences and the 

averages (Figure 56.).

Figure 56. Bland-Altman Plots Measurement Distribution
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(A) a proportional error; (B) a case where the variation of at least one method depended strongly on the 
magnitude of the measurements; (C) expected systematic error. The average of the two measurements is 
displayed on the horizontal X axis against the difference between each measurement on the vertical Y axis.

A horizontal line is drawn at the MD. Dashed lines drawn at the MD ± 1.96 X SD Diff are 

equal to the limits of agreement (or the coefficient of repeatability).

4.11.3.7. Coefficient of Repeatability/ Limits of Agreement:

The coefficient of repeatability (CR) was used as a precision measure to determine the 

agreement strength or repeatability of a measurement. It was calculated as ± SD of Diff 

(about MD = zero) X 1.96. The CR was given for the intra-operator repeatability and was 

equal to the limits of agreement (LOA) given for the inter-operator reproducibility. Both were 

displayed within the Bland-Altman plots.
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4. Materials and Methods

4.11.3.8. Confidence Intervals:

Confidence intervals (Cl) are typically stated at the 95% confidence level. They specify a range 

within which 95% of the population would be expected to lie (Bland and Altman, 1986). If the 

range is too wide it could suggest that either a larger population or a more discriminatory 

variable is required.

4.11.3.9. Significant Measurement Bias:

A bias estimate was calculated for each variable. A MD less than the SE X 1.96 implied no 

significant bias.
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4. Materials and Methods

4.11.4. Validation Study

The new colour and whiteness method was not comparable with any existing murine 

techniques, as described in the literature review. However, the validity was fully tested (see 

Appendix 4. List of Original Publications). The novel 3D IAS was validated here against the 

existing 2D IAS.

The following statistics were used to quantitatively summarise the validation study data.

4,11,4.1. Pearson’s Correlation Coefficient:

Pearson’s Product-Moment Correlation Coefficient (PCC) was used to measure the strength 

of agreement between the two methods, at the p = 0.01 (1%) significance level (two-tailed). It 

is the most commonly applied statistic for method agreement studies because it quantifies the 

differences between measurements made by independent operators on the same variables 

(Bland and Altman, 1986,1999). Scatter plots were used to identify outliers.

The interpretation of the PCC depends on the context and purposes of the method comparison 

and several guidelines are offered (Rodgers and Nicewander, 1988). The PCC ranges in 

values from -1 (a perfect negative relationship) to +1 (a perfect positive relationship), where a 

value of 0 indicates no linear relationship. Regarding the size of the measurement correlation, 

a positive correlation, for example, may be Small (0.1 - 0.3), Medium (0.3 - 0.5) or Large 

(0.5-1.0).

4.11.4.2. Scatter Plot:

Scatter plots illustrated the degree of correlation between the measurements from the two 

different methods and showed up any outliers.

4.11.4.3. t-test:

A student’s t-tQst (two-tailed) is the most commonly used hypothesis test. In the validation 

study a Repeated Measures Mest was used to reject the null hypothesis; e.g. that there were 

significant differences (p > 0.01) between the two measurement methods.
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4. Materials and Methods

4.11.5. Principal Component Analysis

The PC A was used as an exploratory analysis to discover patterns of relationships between 

variables. Total Variance Explained tables were given to show how much variance each 

component (or the combination of multiple variables) accounted for as a percentage of the 

total variance of shape.

Principal components that accounted for less than one Eigenvalue were extracted. The Scree 

plot illustrated at what point (Eigenvalue > one) additional components no longer had a 

discemable effect on the amount of variance of shape.
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4. Materials and Methods

4.11.6. Experimental Study

The following statistics were used to quantitatively summarise the experimental study data.

4.11.6.1. Analysis of Variance (ANOVA):

A one-way Analysis of Variance (ANOVA) measured phenotype variation between the 

different groups. Multiple pair-wise comparisons simultaneously compared all possible pairs 

of means to identify which group means were significantly different from one another. A 

Bonferroni calculation corrected the p = 0.05 (5%) significance level for the increased 

probability of making type-1 errors (false positives) that occur normally when making 

numerous multiple comparisons. The significance level (a) was divided by the number of 

valuables tested (a/n), e.g. 0.05/ (22 or 32) = 0.002 (2-tailed). The Bonferroni significance 

level (p = 0.002) was a robust adjustment, particularly with respect to the independence of the 

variables. Therefore, where applicable, any significant differences (p < 0.05) observed before 

the Bonferroni correction were also detailed.

ANOVA was reliable when assuming (i) variables were normally distributed, (ii) samples 

were independent and (iii) variances were all equal. The F-distribution statistic was presented 

as a convention.

4.11.6.2. Multiple Comparisons:

Tukey's Honestly Significant Difference (HSD) test was used in conjunction with the 

ANOVA. It was essentially a multiple Mest that also corrected for the increased probability 

of false positives by requiring a stronger level of evidence for significance to be achieved in 

each pair-wise test. The p = 0.05 (5%) significance level was used (2-tailed).

The one-way ANOVA and Tukey's HSD tests compensated for the large number of 

inferences being made and were more suitable than doing multiple Mests.
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5. Results

5.1. METHOD RELIABILITY AND VALIDATION

5.1.1. Introduction

Fliess Intra-class Correlation Coefficient determined intra-operator repeatability and inter

operator reproducibility. Bland-Altman plots displayed a graphical representation of 

measurement method agreement, distribution about the mean, bias and limits of agreement. 

Pearson’s Correlation Coefficient, Scatter Plots and Repeated Measures Mests demonstrated 

the 2D IAS and 3D IAS method agreement towards validation.

Descriptive statistics summarised the reliability, validation and experimental data; Mean 

Difference, Standard Deviation, Standard Deviation of the difference. Standard Error and 

Coefficient of Repeatability (or Limits of Agreement).

Principal Component Analysis and Scree Plots revealed a number of underlying variable 

associations defining the shape of the mandible and incisor.

Bonferroni corrected one-way ANOVA multiple comparisons (p = 0.002) and Tukey's HSD 

tests (p = 0.05) identified phenotype variation.

Reliability and validation measurements were carried out by three independent operators.
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5. Results

5.1.2. Reliability - 2D Mandible Measurement

This section details one example variable from each of the intra-operator repeatability and the 

inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1. 

Tables 1-6).

5.1.2.1. Intra-Operator Repeatability Operator I (TLC):

Table 2. Intra-operator I Statistics - left mandible buccal view overall-lewth

Mean Difference (mm) 0.025
Standard Deviation of Difference (mm) 0.243
Standard Error (mm) 0.054
Bias (Mean Diff. < SE X 1.96) 0.106
Coefficient of Repeatability ± 0.476
Intra-class Correlation Coefficient 0.919

Figure 57. Intra-operator I Bland-Altman Plot - left mandible buccal view overall-lensth
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Intra-operator repeatability (ICC 0.791-0.988) was classified as substantial to excellent 

(Donner and Eliasziw, 1987); right buccal diagonal-length (ICC >0.791) showed the lowest 

repeatability and left buccal overall-length (ICC < 0.988) showed the highest repeatability 

(Appendix 1. Tables 1. and 2.).
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5. Results

5.1.2.2. Intra-Operator Repeatability Operator II (JHH):

Table 3. Intra-operator II Statistics - left mandible buccal view overall-length

Mean Difference (mm) 0.016
Standard Deviation of Difference (mm) 0.072
Standard Error (mm) 0.016
Bias 0.031
Coefficient of Repeatability ± 0.141
Intra Class Correlation Coefficient 0.993

Figure 58. Intra-operator II Bland-Altman Plot - left mandible buccal view overall-lensth
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Intra-operator repeatability (ICC 0.810-0.997) was classified as excellent (Dormer and 

Eliasziw, 1987); right lingual ascending-height (ICC > 0.810) showed the lowest 

repeatability and right buccal mandible-angle (ICC < 0.997) showed the highest repeatability 

(Appendix 1. Tables 3. and 4.).
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5. Results

5.1.2.3. Inter-Operator Reproducibility Operators I and II (TLC and JHH):

Table 4. Inter-operator Statistics - left mandible buccal view overall-lensth

Mean Difference (mm) -0.069
Standard Deviation of Difference (mm) 0.113
Standard Error (mm) 0.025
Bias 0.049
Limits of Agreement ± 0.221
Intra Class Correlation Coefficient 0.980

Figure 59. Inter-operator Bland-Altman Plot - left mandible buccal view overall-lensth
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Inter-operator reproducibility (ICC 0.820-0.979) was classified as excellent (Dormer and 

Eliasziw, 1987); left mandible lingual diagonal-length (ICC > 0.820) showed the lowest 

reproducibility and left lingual mandible-area (ICC < 0.993) showed the highest 

reproducibility (Appendix 1. Tables 5. and 6.).
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5. Results

5.1.3. Reliability - 2D Incisor Measurement

This section gives the statistics of one example variable from each of the intra-operator 

repeatability and the inter-operator reproducibility datasets for brevity. The full data is 

recorded in Appendix 1. Tables 7-9.

5.1.3.1. Intra-Operator Repeatability Operator I (TLC):

Table 5. Intra-operator I Statistics - left 2D incisor buccal view overall-lensth

Mean Difference (mm) 0.087
Standard Deviation of Difference (mm) 0.387
Standard Error (mm) 0.087
Bias 0.171
Coefficient of Repeatability ± 0.759
Intra Class Correlation Coefficient 0.908

Figure 60. Intra-operator I Bland-Altman Plot - left 2D incisor buccal view overall-lensth
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Intra-operator repeatability (ICC 0.826-1.000) was classified as excellent (Dormer and 

Eliasziw, 1987); right buccal angle-of-curvature (ICC > 0.826) showed the lowest 

repeatability and all width-at-midpoint (ICC 1.000) measurements showed equally high 

repeatability (Appendix 1. Table 7.).
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5. Results

5.1.3.2. Intra-Operator Repeatability Operator II (JHH):

Table 6. Intra-operator II Statistics - left 2D incisor buccal view overall-lenzth

Mean Difference (mm) -0.011
Standard Deviation of Difference (mm) 0.168
Standard Error (mm) 0.038
Coefficient of Repeatability ± 0.329
Bias 0.074
Intra-class Correlation Coefficient 0.987

Figure 61. Intra-operator II Bland-Altman Plot - left 2D incisor buccal view overall-len2th
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Intra-operator repeatability (ICC 0.925-1.000) was classified as excellent (Donner and 

Eliasziw, 1987); right lingual overall-length (ICC > 0.955) showed the lowest repeatability 

and all width-at-midpoint (ICC 1.000) measurements showed equally high repeatability 

(Appendix 1. Table 8.).
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5. Results

5.1.3.3. Inter-Operator Reproducibility Operators I and II (TLC and JHH):

Table 7. Inter-operator Statistics - left 2D incisor buccal view overall-len2th

Mean Difference (mm) 0.270
Standard Deviation of Difference (mm) 0.467
Standard Error (mm) 0.104
Bias 0.203
Limits of Agreement ± 0.915
Intra Class Correlation Coefficient 0.852

Figure 62. Inter-operator Bland-Altman Plot - 2D left incisor buccal view overall-length
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Inter-operator reproducibility (ICC 0.768-1.000) was classified as substantial to excellent 

(Dormer and Eliasziw, 1987); right buccal angle-of-curvature (ICC > 0.768) showed the 

lowest reproducibility and all width-at-midpoint (ICC 1.000) showed equally high 

reproducibility (Appendix 1. Table 9.).
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5. Results

5.1.4. Reliability - Colour and Whiteness Assessment

This section details one example variable from each of the intra-operator repeatability and 

inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1 

Tables 10-15.

5.1.4.1. Intra-Operator Repeatability Operator I (TLC):

Table 8. Intra-operator I Statistics - non-polarised einzival region lishtness

Mean Difference -0.081
Standard Deviation of Difference 2.083
Standard Error 0.466
Bias 0.953
Coefficient of Repeatability ± 4.083
Intra Class Correlation Coefficient 0.812

Figure 63. Intra-operator I Bland-Altman Plot - non-polarised ninsival region lishtness
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Intra-operator repeatability (ICC 0.731-0.999) was classified as substantial to excellent 

(Dormer and Eliasziw, 1987); non-polarised gingival region yellow/ blue showed the lowest 

repeatability (ICC > 0.731) and polarised incisal and whole region red/ green colour 

components showed the highest repeatability (ICC < 0.999) (Appendix 1. Tables 10. and 11.).
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5. Results

5.1.4.2. Intra-Operator Repeatability Operator III (AS):

Table 9. Intra-operator III Statistics - non-polarised sinzival region lightness

Mean Difference 1.417
Standard Deviation of Difference 4.756
Standard Error 1.063
Bias 2.083
Coefficient of Repeatability ± 9.322
Intra Class Correlation Coefficient 0.563

Figure 64. Intra-operator HI Bland-Altman Plot - non-polarised zinzival region lightness
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Intra-operator repeatability (ICC 0.400-0.973) was classified as fair to excellent (Donner and 

Eliasziw, 1987); non-polarised gingival region yellow/ blue showed the lowest repeatability 

(ICC > 0.400) and polarised whole region yellow/ blue colour components showed the highest 

repeatability (ICC < 0.973) (Appendix 1. Tables 12. and 13.).
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5. Results

5.1.4.3. Inter-Operator Reproducibility Operators I and III (TLC and AS):

Table 10. Inter-operator Statistics - non-polarised sinsival region lightness

Mean Difference (mm) 3.331
Standard Deviation of Difference (mm) 4.676
Standard Error (mm) 1.046
Bias 2.050
Limits of Agreement ± 9.165
Intra Class Correlation Coefficient 0.219

Figure 65. Inter-operator Bland-Altman Plot - non-polarised sinzival region lightness
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In the main, inter-operator reproducibility (ICC 0.126 - 0.939) was classified as slight to 

excellent (Dormer and Eliasziw, 1987); non-polarised gingival region yellow/ blue showed 

the lowest reproducibility (ICC > 0.126) and polarised middle region red/ green colour 

components showed the highest reproducibility (ICC < 0.939) (Appendix 1. Tables 14. and 

15.).
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5.1.5. Reliability - 3D Incisor Measurement

This section details one example variable from each of the intra-operator repeatability and 

inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1 

Tables 16-20.

5.1.5.1. Intra-Operator Repeatability Operator I (TLC):

Table 11. Intra-operator I Statistics - left 3D incisor buccal view projected overall-length

Mean Difference (mm) -0.028
Standard Deviation of Difference (mm) 0.282
Standard Error (mm) 0.063
Bias 0.124
Coefficient of Repeatability ± 0.553
Intra-class Correlation Coefficient 0.922

Figure 66. Intra-operator I Bland-Altman Plot - left 3D incisor buccal view projected overall-
lensth
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Intra-operator repeatability (ICC 0.750-1.000) was classified as substantial to excellent 

(Dormer and Eliasziw, 1987); right lingual actual width-at-midpoint (ICC > 0.750) showed 

the lowest repeatability and all projected width-at-midpoint measurements showed equally 

high repeatability (ICC < 1.000) (Appendix 1. Tables 16. and 17.).
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5.1.5.2. Inter-Operator Reproducibility Operators I and II (TLC and JHH):

Table 12. Inter-operator Statistics - left 3D incisor buccal view projected overall-length

Mean Difference (mm) -0.068
Standard Deviation of Difference (mm) 0.104
Standard Error (mm) 0.023
Bias 0.045
Limits of Agreement ± 0.203
Intra Class Correlation Coefficient 0.986

Figure 67. Inter-operator Bland-Altman Plot - left 3D incisor buccal view projected overall-
len£th
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The inter-operator reproducibility (ICC 0.818-1.000) was classified as excellent (Dormer and 

Eliasziw, 1987); right buccal actual width-at-midpoint (ICC > 0.818) showed the lowest 

repeatability and left buccal and lingual projected width-at-midpoint, and circumference and 

right buccal projected width-at-midpoint and lingual projected and actual width-at-midpoint 

(ICC < 1.000) showed equally high repeatability (Appendix 1. Tables 18. and 19.).
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5.1.6. Validation - 2D and 3D Incisor Measurement

This section details of one example variable from the intra-operator repeatability and the 

inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1 

Tables 20.

5.1.6.1. 3D Method Validation Operator I (TLC):

Table 13. Validation Statistics - left incisor buccal view projected overall-lensth

Mean Difference (mm) 0.154
Standard Deviation of Difference (mm) 0.371
Standard Error (mm) 0.083
Bias 0.163
Limits of Agreement ± 0.727
Mest 0.079*
Pearson’s Correlation Coefficient 0.866**

*No significant difference at the 0.01 (1%) level (2-tailed). **Pearson’s Correlation Coefficient was significant 
at the 0.01 (1%) level (2-tailed).

Figure 68. Validation Scatter Plot - left incisor buccal view projected overall-lensth
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Figure 69. Validation Bland-Altman Plot - left incisor buccal view projected overall-length

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

-0.8
7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

Average of repeat measurements (mm)

+1.96SD

□a D

1.96 SD

The 2D and 3D method agreement showed a significant (p < 0.01) large positive correlation 

(PCC 0.710 - 0.999) (Appendix 1. Table 20.). The repeated measures Mest showed there 

were no significant differences (p >0.01) between the 2D IAS and 3D IAS measurements, 

except in the projected width-at-midpoint variable. The left lingual projected width-at- 

midpoint (PCC > 0.710) showed the smallest positive correlation and the right labial 

projected labial-length (PCC > 0.999) showed the largest positive correlation.
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5.1.7. Summary

There was predominately substantial to excellent reliability for all three independent 

operators for all three measurement methods.

There were negligible differences in reliability between the left and right side mandibles and 

incisors, and between the buccal, lingual and labial views.

Bland-Altman plots indicated negligible systematic error, proportional error and bias.

The 2D IAS gold standard successfully validated the new 3D IAS and the two methods could 

be used interchangeably.

5.1.8, Impact on Null-Hypotheses

In relation to the hypotheses of this investigation, the null hypotheses were rejected in all 

cases in the reliability and validation studies indicating that all the methods were reliable, 

practical and objective and had good sensitivity for detecting differences between groups.

The methods identified macro-metric and micro-metric differences in a homogeneous 

congenic murine population. The methods were well suited to the small mammalian 

application.
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5.2. PRINCIPAL COMPONENT ANALYSIS (PCA)

5.2.1. Introduction

Principal Components Analysis (PCA) established which variable relationships were 

responsible for describing shape. These formed the principal components derived from the 

factor analysis process. The values showed inter-relationships for each variable and were 

used to understand what each identified component signified. Following convention, 

components were only considered that scored over one Eigenvalue, as illustrated in the Scree 

plots.
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5.2.2. PCA of 2D Mandible Measurement

This section gives the PCA statistics of the left side buccal view as an example for brevity as 

the data was similar for both the left and right sides, and for buccal and lingual views (Table 

14. and Figure 70.). The full data is recorded in Appendix 2. Table 1.

Table 14. PCA Mandible Morphometry - left side buccal view

A B

COMPONENT

Total Variance Explained
Initial Eigenvalues

_ ^ , % of CumulativeTotal
Vanance %

MEASUREMENT VARIABLE

Conponent Matrix 
Component

1 2

1 4.368* 54.599 54.599 mandible-area (mm2) 0.902 -0.251
2 2.097* 26.216 80.815 basal-length (mm) 0.882 0.372
3 0.990 12.375 93.190 mandible-perimeter (mm) 0.874 -0.349
4 0.337 4.216 97.406 ascending-height (mm) 0.850 0.219
5 0.126 1.577 98.983 overall-length (mm) 0.821 0.348
6 0.048 0.605 99.588 diagonal-length (mm) 0.766 -0.113
7 0.026 0.323 99.911 mandible-angle (°) 0.055 -0.963
8 0.007 0.089 100.000 coronoid-coronoid-length (mm) -0.159 -0.815

(A) Total variance of shape explained; (B) Extracted components matrix. "'Eigenvalue > 1.

Figure 70. PCA Scree Plot Mandible Morphometry - left side buccal view
Scree Plot

Component Number

(C) Scree Plot.

Two components were identified; (i) component one (54.6%) and (ii) component two 

(26.2%) that accounted for 80.8% of the total variance in mandible shape (Appendix 2. Table 

1). Component one highlighted a directly proportional size correlation between most 

variables. The mandible-area, basal-length and mandible perimeter showed the largest 

positive inter-relationships. The coronoid-condyle-length showed a negative relationship
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which suggested a decrease in coronoid-condyle-length was related to an increase in 

mandible size. This later relationship was only small and may indicate that the size of this 

variable was static.

Component two highlighted an inversely proportional correlation between coronoid-condyle- 

length and mandible-angle and diagonal-length, which suggested a decrease in coronoid- 

condyle-length was related to an increase in mandible-angle. A larger mandible-angle gave a 

smaller mandible. This relationship was logical when studying the curved morphology of the 

incisor in the morphometric images (Figure 9.).
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5.2.3. PCA of 2D Incisor Measurements

This section gives the PCA statistics of the left side buccal view as an example for brevity as 

the data was similar for both the left and right sides, and for buccal and lingual views (Table 

15. and Figure 71.). The full data is recorded in Appendix 2. Table 2.

Table 15. PCA 2D Incisor Morphometry - left side buccal view

A B

COMPONENT

Total Variance Explained
Initial Eigenvalues

„ . % of CumulativeTotal
Vanance %

MEASUREMENT VARIABLE

Component Matrix 
Component

1 2

1 3.758* 75.165 75.165 projected perimeter (mm) 0.989 -0.102
2 1.067* 21.335 96.500 projected overall-length (mm) 0.979 -0.069
3 0.140 2.791 99.292 projected surface-area (mm2) 0.970 0.192
4 0.030 0.592 99.883 angle-of-curvature (°) -0.883 0.358
5 0.006 0.117 100.000 projected width-at-midpoint (mm) 0.316 0.941

(A) Total variance of shape explained; (B) Extracted components matrix. *Eigenvalue > 1. 

Figure 71. PCA Scree Plot 2D Incisor Morphometry - left side buccal view
Scr«* Plot

Component Number

(C) Scree Plot.

Two components were identified; (i) component one (75.2%) and (ii) component two 

(21.3%) that accounted for 96.5% of the total variance in incisor shape (Appendix 2. Table 

2). Component one highlighted a directly proportional size correlation between the majority 

of variables. The projected perimeter, projected overall-length and projected surface-area 

showed the largest positive inter-relationships. The angle-of-curvature showed a strong 

negative relationship which suggested a decrease in angle-of-curvature was related to an 

increase in incisor size. Component two highlighted a directly proportional relationship
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between the angle-of-curvature and the projected width-at-midpoint variables. Therefore 

wider teeth were straighter. A large angle-of-curvature gave a small incisor because of the 

curved morphology of the incisor (Figure 18.).
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5.2.4. PCA of Colour and Whiteness Assessment

PC A was not performed on the colour and whiteness assessment because of the different 

algorithmic relationships between the individual RGB values and the individual colour space 

outputs LAB and W. The PCA results would distort any relationship between the variables 

and elucidate no meaningful component correlations.
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5.2.5. PC A of 3D Incisor Measurement

The PCA statistics of the left side buccal view was given as an example for brevity as the 

variance was similar for both the left and right sides, and for buccal and lingual views (Table 

16. and Figure 72.). The 3D labial view was detailed separately (Table 17. and Figure 73.). 

The full data is recorded in Appendix 2. Tables 3. and 4.

5.2,5.1. Buccal and Lingual Views:

Table 16. PCA 3D Incisor Morphometry left side buccal view

A B

COMPONENT

Total Variance Ejqjlained
Initial Eigenvalues

„ . % of Cumulative
Total .Variance %

MEASUREMENT VARIABLE

Component Matrix 
Component

1 2

1 2.435* 48.693 48.693 marked surface-area (mm2) 0.909 0.266
2 2.159* 43.175 91.868 projected overall-length (mm) 0.864 -0.352
3 0.231 4.611 96.479 actual perimeter (mm) 0.862 -0.430
4 0.124 2.483 98.962 projected width-at-midpoint (mm) 0.152 0.952
5 0.052 1.038 100.000 actual width-at-midpoint (mm) 0.309 0.934

(A) Total variance explained; (B) Extracted components matrix. * Eigenvalue > 1. 

Figure 72. PCA Scree Plot 3D Incisor Morphometry left side buccal view
SciMPtot

(C) Scree Plot.

Two components were identified; (i) component one (48.7%) and (ii) component two 

(43.2%) that accounted for 91.9% of the total variance in incisor shape (Appendix 2. Tables 

3. and 4.). Component one highlighted a directly proportional size correlation between most 

variables. The marked surface-area^ projected overall-length and actual perimeter showed
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the largest positive inter-relationships. The projected and actual width-at-midpoint showed a 

lesser correlation, which may suggest they changed little compared to the other variables.

Component two highlighted a directly proportional link with projected width-at-midpoint and 

actual width-at-midpoint. Secondly, component two highlighted an inversely proportional 

correlation between overall-length and actual perimeter with projected and actual width-at- 

midpoint. The negative relationship suggested a reduced width-at-midpoint with increased 

incisor size in general.
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5.2.5.2. Labial view:

Table 17. PCA 3D Incisor Morphometry left side labial view

A B

COMPONENT

Total Variance Explained
Initial Eigenvalues 

_ , % of Cumulative
T°tal .Vanance %

MEASUREMENT VARIABLE

Component Matrix 
Component

1 2

1 2.946* 58.922 58.922 \.o\a\ surface-area (mm2) 0.926 -0.030
2 1.277* 25.538 84.460 projected labial-length (mm) 0.918 -0.231
3 0.474 9.475 93.935 actual labial-length (mm) 0.904 -0.312
4 0.187 3.733 97.668 total vo/wme (mm3) 0.628 0.561
5 0.117 2.332 100.000 circumference (mm) 0.188 0.901

(A) Total variance explained; (B) Extracted components matrix. *Eigenvalue > 1 

Figure 73. PCA Scree Plot 3D Incisor Morphometry left side labial view
Smm Rot

(C) Scree Plot.

Two components were identified; (i) component one (58.9%) and (ii) component two 

(25.5%) that accounted for 84.5% of the total variance in incisor shape (Appendix 2. Tables 

3. and 4.). Component one highlighted a directly proportional size correlation between all 

variables. The total surface-area, projected labial-length and actual labial-length showed the 

strongest positive inter-relationships.

Firstly, component two highlighted a directly proportional relationship between total volume 

and circumference. Secondly, component two highlighted an inversely proportional 

relationship between total surface-area, projected labial-length and actual labial-length with 

circumference (and to a lesser extent with total volume). This relationship linked with the 

second component of the buccal view, showing that longer teeth are slimmer. Therefore, their 

circumference and volume remained largely unchanged or reduced.
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5.2.6. Summary

The PCA predominantly revealed two main components for each method that described 

shape, e.g. 2D mandible measurement component one highlighted a directly proportional size 

correlation between variables.

The PCA identified a number of underlying morphological trends and associations that may 

not have otherwise been evident.
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5.3. EXPERIMENTAL COMPARISON

5.3.1. Introduction

The following descriptive statistics summarised the experimental comparison data; Mean, 

Standard Deviation, Mean Difference, Standard Error and 95% Confidence Intervals.

A one-way ANOVA indicated the Bonferroni corrected significant differences (p < 0.002) in 

the experimental comparison. Post Hoc Multiple Comparison Tukey’s HSD tests identified 

between which experimental groups the significant differences (p < 0.05) occurred.

The Bonferroni correction was considered to be a harsh adjustment and should ideally only be 

applied to independent variables. The variables within this study arguably had varying degrees 

of independence. For this reason any significant differences (p < 0.05) observed before the 

Bonferroni correction were also detailed.

Experimental measurements were carried out by operator I (TEC).
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5.3.2. Amelx Experimental Comparison

This section details one example variable from each of the multiple Amelx experimental 

group comparisons for brevity. The full data is recorded in Appendix 3. Tables 1-22.

5.3.2.I. Amelx 2D Mandible Measurement:

Table 18. Statistics Amelx left mandible buccal view overall-lensth

HEMI-MANDIBLE 1 ANOVA MULUFLE COMPARIS ON

VIEW/ASPECT MEASUREMENT
VARIABLE

; I j95% Cl of Mean i j j
GROUP * Mean SD SE ; iower j”upper "j nun’ j marf j F Sig.

! i 1 bound \ bound ? | ■

; j j 95% Cl
GROUPS i MD j SE j Jo'iS'cr j upper Sis*

! i 1 bound I bound
|

LEFT BUCCAL
!

overall-length (mm)

WT : 11.782 jO.132la0S9i 11.618 F 11.947 111.611 j 11.922!
HET : 11.656 : 0.252j0.H2! 11.344) 11.968 ill.288jll.954!

---------------------- 4------- -------r —j--------- f--------- -------- 12.495 0.097
HEMI ; 11.439 0.649:0.290j 10.633 j 12.245 j 10.338! 11.924;

HOMO H1.057 ^0.554]0.248! 10.370 [ 11.745 }ia219tll.735!

WT-HET j 0.126 j j -0.687 j 0.940 0.970
WT-HEMI j 0.343 j j -0.470 i 1.157 0.631
WT-HOMO j 0,725 j _ -0089 j 1.539 0.090 
HET-HEMI [ 0.217 |° j -0596 [ 1,031 0869

|
i 1

HET-HOMO 1 0.599 . j -0,215 ; 1.412 0,193
HEMI-HOMO! 0.382 1 j -0.432 j 1.195 0,551

Bonferroni corrected significant differences (p < 0.002) in the mandible-angle variable 

identified morphological variation between one and more of the four Amelx groups 

(Appendix 3. Tables 1-4.). The post hoc multiple comparisons indicated that the significant 
differences (p < 0.05) occurred between the Amelx®1 and ^ff?e/xY64H/Y64H groups, between the 

yfme/xx/Y64H and ^me/xY64H/Y64H groups, and between the Amelx11®6*11 and ^twe/xY64H/Y64H 

groups. For example, in accordance with the PCA, the mandible-angle showed the Amelx®1 

mandibles (66.219°) were the smallest, followed in descending order of size by the 
Amelx1®®6^ (67.261°), AmelxY!Y6m (67.838°) and ^we/xY64H/Y64H (71.885°) mandibles. The 

mandible-angle represented the overall bulk of the mandible as a combined measure of the 

ascending-height and basal-length variables.

Uncorrected significant differences (p < 0.05) occurred in eight of the thirty two (25%) 

mandible variables; between the Amelx®1 and Amelx16AlVY6m groups (x 7 variables), between 

the Amelx^®6^1 and yfwe/xY64H/Y64H groups (x 5 valuables) and between the Amelx11®6111 and 

^4me/xY64H/Y64H groups (x 2 variables).
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5.3.2,2. Amelx 2D Incisor Measurement:

Table 19. Statistics Amelx left 2D incisor buccal view overall-lensth

MANDIBULAR INOSORS

MEASUREMENT
VARIABLE

95% Cl of Mean 95% Cl
VIEW/ASPECT ! (jujup j Mean | su st | lower j upper

1 bound | bound
nin1 ma?/ F Sig. CROUPS MD SE lower

bound
upper
bound

Sig.

WT-HET j 0.217 -0.721 1.154 0,910
WT ! 10.560 ! 0.758 , 0.339 1 9.619 1 11.501 9.808 11.699 WT-HEMI 0.369 -0r569 1.306 0.680

LEFT ! BUCCAL! overall-ltngth (mm)
MET i 10.343 i 0.474 1 0.212 j 9.755 j 10.931 9.521 10.701

9.165 0.001*
WT-HOMO 1,565

0.328
0.627 2.502 0.001**

HEMI ] 10.191 i 0.475 i 0.212 i 9,602 1 10.781
9.428 10.615 HET-HEMI 0.152 -0.786 1.089 0.966

! HOMOj 8.995 1 0.223 0.100 ] 8.719 j 9.271 8.738 9.247 HET-HOMO 1.348 0.411 2.285 0.004**
HEMI-HOMO 1.196 0.259 2.134 0,010**

MULTIPLE COMPARISON

*Bonferroni corrected Significant Difference (p < 0.002), 
^Significant Difference (p < 0.05).

Bonferroni corrected significant differences (p < 0.002) in all the incisor variables - except 

overall-length (p > 0,008), width-at-midpoint (p > 0.051) and labial-length (p > 0.243) that 

did indicate considerable differences - identified morphological variation between one and 

more of the fom Amelx groups (Appendix 3. Tables 5-8.). The post hoc multiple comparisons 

indicated that the significant differences (p < 0.05) occurred between the Amelx**1 and 
Amelx*™^ groups (x 3 variables), between the Amelx**1 and Amelx*MY{IY6m groups (x 15 

variables), between the Amelx™and ^/we/xY64H/Y64H groups (x 15 variables), and between 

the Amelx*and ^/«eZxY64H/Y64H groups (x 14 variables). For example, the overall-length 

showed the Amelx**1 incisors (10.566mm) were the largest, followed in descending order of 

size by the Amelx™Mn (10.343mm), Amelx*(10.191mm) and Amelx*6AWY6m (8.995mm) 

incisors. There were no significant differences between the Amelx**1 and yfwe/xx/Y64H groups 

or between the Amelx™6*11 and Amelx*groups.

Uncorrected significant differences (p < 0.05) occurred in eighteen of the twenty two (82%) 
incisor variables between the Amelx**1 and Amelx*116*11 groups (x 3 variables), between the 

Amelx**1 and Amelx*6*™6*11 groups (x 18 variables), between the Amelx™6*11 and 

vl^/xY64H/Y64H groups (x 18 variables), and between the Amelx***6™ and Amelx*6*™6™ 

groups (x 15 variables).
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S.3.2.3. Amelx Colour and Whiteness Assessment:

Table 20. Statistics Amelx left sinsival region lishtness

i SIDE I

MANDIBULAR INCISORS

REGION/
STAGE

COLOUR
COMPONENT

! ANOVA
I i ; '95% Cl of Mean!

GROUP | Mean j SD | SE | lower j upper I inui*

i ; 1 iboundjbound [
Sig.

GINGIVAL'
SECRETORY lightness

WT

HET
HEMI

HOMO

48.519 I 2.385 | 1,066 [45.558; 51.480 [45.235 j 51.083

37.664 [ 4.760 j 2.129 j 31.754 t 43.574 j 34.154 j 44.923
38.998 j 2.996 I 1.340 [ 35.278 j 42.718 [35.079 j 43.418

39.829 j 2.134 ! 0.954 ! 37.179! 42.479 ! 37.616 i 42.754

MULTIPLE COMPARISON
! 95% Cl

GROUPS MD
| SE

j
lower ; upper 
bound ; bound

SiS-

WT-HET i 10.855 l 5.001 . 16.709 0.000**
WT-HEMI ■ 9.522 3.668 [ 15.376 0.001**

WT-HOMO ; 8.690
? 2.046
:

2.836 j 14.545 0.003**
HET-HEMI -1.333 -7.187 ■ 4.521 0.913

HET-HOMO -2.165 -8.019 j 3.690 0.719

HEMI-HOMOj -0.831 ! -6,686 | 5,023 0,977

* Bonferroni corrected Significant Difference (p < 0.002).
** Significant Difference (p < 0.05).

Bonfen'oni coiTected significant differences (p < 0.002) in nineteen of the thirty two (59%) 

variables identified colour and whiteness variation between one and more of the four Amelx 

groups (Appendix 3. Tables 9-16.). The post hoc multiple comparisons indicated that the 

significant differences (p < 0.05) occurred in the lightness colour component, in all four 

enamel surface regions, and in the yellow/ blue and whiteness colour components in the 
middle, incisal and whole regions; between the Amelx^1 and Amelx^6^ groups (x 10 

components), between the Amelx®1 and Amelx*™61** groups (x 15 components), between the 

Amelx®1 and Amelx*6***™6***1 groups (x 12 components), between the Amelx?™6*1* and 

Amelx*™6*11 groups (x 12 components), between the Amelx?1'*6*11 and Amelx*6*11™6*1* groups 

(x 16 components), and between the Amelx*™6*1* and Amelx*6***™6*1* groups (x 6 

components).

Uncorrected significant differences (p < 0.05) occurred in twenty seven of the thirty two 

(84%) incisor variables between the Amelx®1 and Amelx?™6**1 groups (x 13 components), 

between the Amelx®1 and Amelx*™6*** groups (x 17 components), between the Amelx®1 and 

Amelx*6***™6*1* groups (x 12 components), between the Amelx*™6*** and Amelx*™6*** groups 

(x 15 components), between the Amelx1*™6*** and Amelx16***™6**1 groups (x 17 components), 

and between the Amelx*™6*1* and Amelx*6***16**1 groups (x 6 components).

The enamel surface constituted: gingival region lightness (33.144 - 49.034), green (-5.114 - 

1.086), yellow (1.970 - 8.998) and whiteness (39.292 - 88.966); middle region lightness 

(36.862 - 51.694), green (-4.036 - -0.782), (0.074 - 6.482) blue (-0.514) and whiteness
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(58.068 - 97.603); incisal region lightness (32.826 - 54.707), green (-7.198 - -0.316), blue (- 

1.552 - -0.660) yellow (8.386 - 12.344) and whiteness (18.800 - 107.451); whole region 

lightness (36.334 - 51.694), green (-5.322 - -1.084), yellow (0.354 - 1.63>2) and whiteness 

(49.926 - 97.930). Lightness and whiteness values were higher than yellow/ blue values in all 

regions. The green values were similar throughout.

The significant differences observed between the Amelx^ group and the three mutant groups 

occurred specifically in the lightness, yellow/ blue and whiteness colour components in the 

incisal and whole enamel surface regions.
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5.3.2.4, Amelx 3D Incisor Measurement:

Table 21. Statistics Amelx left 3D incisor buccal view projected overall-lensth

MANDIBULAR INCISORS
ANOVA MULTIPLE COMPARISON

j VIEW/ASPECT
MEASUREMENT 95% Cl of Mean \ 95% Cl

VARIABLE GROUP Mean i SO SB lower 1 upper | min' nia.'i F Sig. GROUPS j MD SB . lower I upper Sig.
bound bound . ‘ •bound!bound

| 1 WT-HET j 0.819 ^ -0.263 j 1.901 0.175
; | WT 10.041 I 0.684 j 0.306 9.191 10.891 : 9.294 10.804 WT-HEMI ! 0.935 . -0.147 ! 2.017 0.103

| LEFT | BUCCAL projected overall-length (mm)
HET 9.222 ; 0.603 j 0.270 8.472 9.971 ! 8.627 9.917 ;

4.879 0.014
WT-HOMO ! 1.423 ,0.378-0-34!^-5D5 0,008

: [ MfcJYli 9.106 0.402 0.180 8.607 9.604 8.552 9.482 HET-HEMI j 0.116 ; -0.966 1.198 0.990
HOMO 8.618 j 0.661 ! 0.295 7.798 9.438 : 7.447 9.042 HET-HOMO j 0.604 -0.478 ! 1.686 0.408

!i HEMI-HOMO ! 0.488 -0.594 i 1.570 0.582

Bonferroni corrected significant differences (p < 0.002) in the surface-area and volume 

variables identified morphological variation between one and more of the four Amelx groups 

(Appendix 3. Tables 17-22.). The post hoc multiple comparisons indicated that the significant 

differences (p < 0.05) occurred between the Amelx**1 and Amelx™6*11 groups (x 4 variables), 

between the Amelx**1 and Amelx*6m groups (x 4 variables), and between the Amelx**1 and 

yfwe/xY64H/Y64H groups (x 4 variables). For example, the Amelx**1 incisors surface-area 

(14.375mm2) and volume (5.373mm3) were the largest, and the Amelx*6*™6*11 incisors 

surface-area (11.344mm2) and volume (4.320mm3) were the smallest; the Amelx™6*11 and 

AmelxYIY6*n incisors were of intermediate size. There were no significant differences between 

the AmelX™6*1* and Amelx***6*11 groups, between the Amelx1™6*11 and Amelx*6*™6*1* groups, 

or between the Amelx***6*1* and Amelx*6*™6*11 groups.

Uncorrected significant differences (p < 0.05) occurred in twenty two of the thirty (73%) 

incisor variables between the Amelx**1 and Amelx™6*1* groups (x 10 variables), between the 

Amelx**1 and Amelx*1*6*1* groups (x 15 variables), and between the Amelx**1 and 

Amelx*6*™6*1*groups (x 21 variables).
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5.3.3. Enam Experimental Comparison

This section details one example variable from each of the multiple Enam experimental group 

comparisons for brevity. The full data is recorded in Appendix 3. Tables 23-39.

5.3.3.1. Enam 2D Mandible Measurement:

Table 22. Statistics Enam left mandible buccal view overall-lensth

HEMI-MANDIBLES

1 measurementVIEW ASPECT ! VARUBl£

| ! | |95'/.CTofMeari
---------- p

marf | F Sig. CROUPS
j ! 95% Cl

CROUP [Meant SD
i !

SE j lower 
;bound

upper j mm' 
bound!

MD I SE J lower
1 1 bound

upper Sig. 
bound

LEFT BUCCAL lovera/Meng/A (mm)

WT jl2.I38! 0.465 0.208! 11.561 12.714' 11.716 12,85

12.4571 0.167 0.848
WT-HOMO 0.0891 j -0.616 0.794 0.940

HOMO 112.049! 0.438 0.196! 11.505 j 12.5921 11.470 WT-HET 0.152 1 0.264|-0.553 0.857 0.836
HET 111.986 0.341 0.153! 11.562| 12.409! 11.687! 12.5601 HOMO-HET 0.063 I [ -0.642 0.768 0,969

There were no statistically significant differences (p < 0.002) in mandible variables between 

any of the three Enam groups (Appendix 3. Tables 23-26.). No follow up post hoc multiple 

comparisons were implemented. However, the Enam^1 group appeared to have the largest 

mandibles, followed in descending order of size by the EnamRgsc395 heterozygous and the 

EnamKg*ci95 homozygous mandibles, e.g. overall-length Enam*™ (12.138 mm), EnamRgsc295 

homozygous (12.049 mm) and Enan^^95 heterozygous (11.986 mm).
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S.3.3.2. Enam 2D Incisor Measurement:

Table 23. Statistics Enam left 2D incisor buccal view overall-lensth

: MANDIBULAR INCISORS ANOVA MULTIPLE COMPARISON

| VIEW/ASPECT ! MEASUREMENT
VARIABLE GROUP

! 195% CI of Mean:
Mean ! SD j SE j lower j upper ! min' max' I F Sig.

I i 95% CI
GROUPS ! MD ! SE j lower t upper Sig.

! ! : ; i bound 1 bound ! I ibound[bound
| ; | WT 9.705 ; 0.406 ; 0.182’ 9.201 i 10.210 | 9.186 10.244 | WT-HOMO 0.225 ; : -0.391 i 0.841 0.607
i LEFT i BUCCAL ! overall-length (mm) HOMO 9.481 i0.315l0.141i 9.089 1 9.872 j 9.136 9.926 [ 0.516 0.609 WT-HET | 0.054 j 0.231 j -0.562 • 0.670 0.971
1 j | HET 9.652 i 0.368 i 0.165! 9.195 i 10.109 j 9.086 10.032 ; HOMO-HET i -0,171 i i -0.787 i 0,445 0.745

There were no significant differences (p < 0.002) in incisor variables between any of the three 

Enam groups (Appendix 3. Tables 27-28.), No follow up post hoc multiple comparisons were 

implemented. However, there were uncorrected significant differences (p < 0.05) identified in 

the angle-of-curvature variable between the Enarn^1 and Enan^mm heterozygous groups (x 

3 variables). In accordance with the PCA, the angle-of-curvature showed that the Enam®1 

(128.688°) incisors were the largest, followed in descending order of size by the Enam^^395 

homozygous (128.715) and the EnarrP'^395 heterozygous (130.808°) incisors.
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S.3.3.3, Enam Colour and Whiteness Assessment:

Table 24. Statistics Enam left einzival region lightness

MANDIBULAR INCISORS
ANOVA MULTIPLE COMPARISON |

; RKJON/ COLOUR
! blUfc ‘ STAGE COMPONENT

; ! 95% a of Mean j ! ; 95% a
CROUP ’ Mean \ SD i SE t lower | upper 

! I bound 1 bound
irin' maY j F Sig.

1
CROUPS i MD SE

I !
lower j upper Sig. 
bound 1 bound

GB'iOVAL/
WT j 59.602 i 7.387 f 3,304 j 50.429 | 68.775 46.520 63.810 i- - - - - - ~4 WT-HOMO | 26.596 j 13.473 ( 39.719 0.000**

' 1 SECRETORY hghmess HOMO} 33.006 | 9.865 U.412 j 20.757 j 45.255 

HET ! 38.281 ! 5.439 | 2.432 1 31.528 j 45.035
20.391
34.818

43.139] 16.390 O.OOO* 
47.8341

WT-HET ! 21.320 j 4.919 
HOMO-HET | -5.275 j

8.197 j 34.444 0.000** 
-18.399 I 7.848 0,548

* Bonferroni corrected Significant Difference (p < 0.002).
** Significant Difference (p < 0.05),

Bonferroni corrected significant differences (p < 0.002) in nine of the thirty two (28%) 

variables identified colour and whiteness variation between one and more of the three Enam 

groups (Appendix 3. Tables 29-36.). The post hoc multiple comparisons indicated that the 

significant differences (p < 0.05) occurred in the lightness, yellow/blue and whiteness colour 

components, predominately in the incisal and whole regions; between the Enam*11 and 

EnamKgsc295 homozygous (x 9 components) and the Enam*11 and Enarr^g^95 heterozygous (x 

9 components) groups. There were no significant differences identified between the 
EnamKgsc39S homozygous and EnamKgic39s heterozygous groups.

Uncorrected significant differences (p < 0.05) occurred in thirteen of the thirty two (41%) 

colour and whiteness variables between the Enam*11 and Enarr^gsc395 homozygous (x 12 

components) and between the Enam*11 and EnamRgso395 heterozygous groups (x 13 

components), most notably in the additional middle enamel surface region.

The enamel surface constituted: gingival region lightness (33,006 - 59.602), green (-3.202 - - 

0.380), yellow (4.336 - 7.064) and whiteness (50.204-70.158); middle region lightness 

(42.079 - 47.467), green (-3.058 - -1.858), yellow (0.392 - 6.638) and whiteness (55.944 - 

63.408); incisal region lightness (42.773 - 48.884), green (-4.326 - -2.114), yellow /blue (- 

3.020 - 14.120) and whiteness (8.948 - 114.262); whole region lightness (41.097 - 44.432), 

green (-3.176 - -1.580), yellow (1.594 - 8.150) and whiteness (46.550 - 88.236). Lightness 

and whiteness values were higher than, yellow/ blue values in all regions.

196



5. Results

The significant differences that were observed between the Enam^ group and the two 

mutant groups occurred specifically in the lightness, yellow/ blue and whiteness colour 

components in the middle, incisal and whole enamel surface regions.
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5.3.3.4. Enam 3D Incisor Measurement

Table 25. Statistics Emm left 3D incisor buccal view projected overall-length

MANDIBULAR INCISORS

VIEW/ ASPECT MEASUREMENT
^ : VARIABLE

ANOVA MULTIPLE COMPARISON |
: 193% Cl of Mean: i

CROUPS
! j 95% a

CROUP Mean : SD ! SE | lower t upper ! marf ] F Sig,
’ i i bound 1 bound j i

MD ! SE ! lower 
t :bound

upper Sig. 
bound

LEFT BUCCAL | projected owra//-/cng^ (rmO
WT i 9.777 i 0.675 ! 0.302 1 8.940 | 10.615 j 9.118 i 10.847 1 WT-HET

WT-HOMO
0.703 | ! -0.280 1.686 0.178

HOMO I 9.074 | 0.620 1 0.277 1 8.304 j 9.843 i 8.070 \ 9.490 | 5.525 0.023 1.187! 0.368 j 0.204 2.170 0.019
HET ; 8.590 i 0.423 1 0.189! * 065 \ 9.115 j 8.099 i 9,261 | HET-HOMO 0.484 j | -0.499 j 1.467 0.415

Bonferroni corrected significant differences (p < 0.002) in the overall-length variable 

identified morphological variation between one and more of the three Enam groups 

(Appendix 3. Tables 37-39.). The post hoc multiple comparisons indicated that the significant 
differences (p < 0.05) occurred between the Enam**1 and £«a/wR8Sc395 heterozygous groups 

and between the EnamRg^95 homozygous and EnamKgsc395 heterozygous groups. For example, 

the projected overall-length showed the Enam**1 (9.777mm) incisors were largest, followed 

in descending order of size by the EnamRBSc395 homozygous (9.074mm), and the Enan^zsc395 

heterozygous (8.590mm) incisors.

Uncorrected significant differences (p < 0.05) occurred in twelve of the fifteen (80%) incisor 
variables between the Enam**1 and EnanFgsc39S heterozygous groups (xl2 variables), between 

the Enam**1 and £«a/wRgsc395 homozygous groups (xl variable) and between the EnamRgsc395 

heterozygous and EnamR&c39S homozygous groups (xl variable).
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5.3.4. Amelx and Enam 3D Surface Analysis

The surface-roughness measured one individual incisor from each genotype group, so no 

group averages were obtained (Table 26. and Appendix 3. Table 40.).

Table 26. 3D Surface Analysis

MANDIBULAR INCISORS __ ! _______________ __ ^ jGROUP (?i = 1)

1 : REGION/STAGE
i VARIABLE 1

Amelx
WILD-TYPE HETEROZYGOUS! HEMIZYGOUSl HOMOZYGOUS WILD-TYPE1

Enam ;
HETEROZYGOUS HOMOZYGOUS:

1 \s!!l&!r9KPJ£:?ecretory
| suiface-rougliness ()ira) ^middle/secretory ___
I < incisal/ mature

2,000 1 1,900 I 1.500 1 2,000
3.200 _ 2.100 j _ 1.900....  |.... 2,300 ____
5.400 2.300......... ! 2.100.....  !......... MOO ~

2.800___
___3.600___

5.100

2.400 j 1.900 :
2.800 _J 2.300 i
3,500 ! 4.200 :

Each value was a single measurement. No statistical analysis performed.

WT* WTAmelx and Enam had similar and higher surface-roughness values compared to their 

respective mutant groups. In all groups the surface-roughness value increased from the 

gingival, middle through to the incisal enamel surface regions.
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5.3.5. Summary

The 2D IAS mandible morphometry identified significant differences between the Amelx*^ 

and ^we/j£:Y64H/Y64H groups, but not between any of the Enam groups; the AmelxffI mandibles 

were the largest followed in descending order of size by the Amelx*™64*1, Ameix*™™ and 

^ we/xY64H/Y64H mandibles.

The 2D IAS incisor morphometry identified significant differences between the AmelxffT and 

AmelxY/Y6iH groups, between the Amelx^1 and AmelxY64WY6411 groups, between the 

Amelx*™6411 and AmelxY64U/Y64H groups, and between the AmelxY/Y64H and AmelxY64WY64U 

groups; the Amelx^1 incisors were the largest followed in descending order of size by the 

Amelx*^64™, AmelxY/Y64H and AmelxY64WY64li incisors. The 2D IAS incisor morphometry 

identified significant differences between the Enam^7 and EnamRg5c395 heterozygous groups; 

the Encmi**7 incisors were the largest followed in descending order of size by the EncmPgSQ395 

homozygous and the EnanPgsc395 heterozygous incisors.

The colour and whiteness assessment indicated significant differences between the Amelx^7 

group and all three of the Amelx mutant groups, and between the Enam*17 and EnamRgsc395 

heterozygous groups and between the Enam*17 and EnanPg%cm homozygous groups. The 

Amelx and Enam groups constituted low lightness, high yellow/ blue and low whiteness 

colour components, whereas the mutants groups constituted high lightness, low yellow/ blue 

and high whiteness colour components. The site of these significant differences varied 

between the Amelx groups and the Enam groups; in the Amelx incisors the differences were 

identified in the incisal and whole regions, while in the Enam incisors the differences were 

identified in the middle, incisal and whole regions.

The 3D IAS incisor morphometry identified significant differences between the Amelx*17 and 

Amelx?1*6447, between the Amelx117 and AmelxYIY64H and between the Amelx117 and 

AmelxY64}7fY64H groups; the Amelx117 incisors were the largest, the Amelx*64WY64}7 incisors 

were the smallest and the Amelx^64^7 incisors were of an intermediate size. Also, the 3D IAS 

incisor morphometry identified significant differences between the Enarri117 and EnamRgsc39S 

heterozygous groups, between the Enam117 and EnamRgs<i395 homozygous groups and between 

the Enan^gic39S heterozygous and Enan^^395 homozygous', the Enam117 incisors were the
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largest and the EnamR&sc395 heterozygous incisors were the smallest. The 3D IAS identified 

significant differences between the Amelx®1 controls and all three mutant groups only.

The incisor enamel surface-roughness values were higher in the Amelx^1 and in the Enarn^1 

controls compared to their respective mutant groups. The surface-roughness values increased 

through the gingival, middle and incisal enamel surface regions.

5.3.6. Impact on Null-Hypotheses

In the Amelx experimental group comparisons, the null hypotheses were rejected because all 

the methods identified significant differences between the control and the mutant groups.

In the Enam experimental group comparisons, the null hypotheses were rejected because all 

the methods identified significant differences between the control and the mutant groups, 

except in the 2D IAS mandible morphology.
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6. Discussion

6.1. METHOD DEVELOPMENT, RELIABILITY AND VALIDATION

6.1.1 Introduction

The development of the materials and methods involved considerable personal and 

departmental input, and hardware and software customisation to suit the experimental 

phenotype to genotype comparison. All methods provided practical, objective and 

quantitative analysis of mouse mandibles and incisors with low levels of experimental and 

systematic error (Donner and Eliasziw, 1987), high levels of operator consistency (Fleiss, 

1986a, 1986b) and high levels of method agreement (Bland and Altman, 1986, 1999).

6.1.2. Morphological Measurement

The 2D morphometric methods were more reliable than the previous direct manual 

measurement methods (Moorees et at, 1957; Hillson et al, 2005) and equalled the 

substantial to excellent reliability of the gold standard in 2D clinical image analysis (Brook et 

al, 2005; Brook et ah, 2007; Smith et al., 2009b). The novel murine application benefitted 

from a macro-lens modification and highly standardised orientation, magnification and 

illumination conditions. Intra-operator repeatability was higher than inter-operator 

reproducibility, as would be expected (Harris and Smith, 2009).

The original concept of the 3D IAS was to exploit the recent advances in 3D technologies 

(Hajeer et al, 2004) and to provide a small mammalian tooth imaging tool that could be 

applied to the molecular model of choice for human dental disease (Qui, 2006; 

Fleishmannova et al, 2008). The NCSP device was modified with a novel rotary stage 

designed to be largely automated but versatile, e.g. the stage was removable so the system 

could be switched between human and murine tooth analysis. The equipment was 

successfully adapted to obtain multiple 3D images from multiple angles in 360° with less 

measurement error than other clinically acceptable 3D systems e.g. Santoro et al, (2003), 

Quimby et al, (2004) and Stevens et al, (2006). The novel method of image indexing was 

introduced to reconstruct the 3D models and the powerful analytical software realised the full 

potential of the new system with actual on surface measurement variables that accounted for 

the 3D topographical contours of the tooth surface.
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The resolution of the new 3D macro-metric structure and 3D micro-metric surface analysis 

system on the mineralised dental tissues compared well with the laser scanning method of 

Halazonetis et al, (2001), and required less specimen preparation than confocal microscopy 

(Evans et al, 2001). The high systematic resolution (1.0 pm) provided enhanced 

discriminatory powers over other techniques e.g. Apuzzo et al, (2006) and gave excellent 

economy compared to X-ray pCT (Rowe et al, 2001; Kim et al, 2007).

The 2D IAS was proven to be a highly reliable method suitable for validating the 3D IAS 

(Rodgers and Nicewander, 1988). In the 2D and 3D IAS the multiple independent intra

operator repeatability tested total system error (including experimental error and systematic 

error), which was often overlooked in the literature (Harris and Smith, 2009). The 2D IAS 

and 3D IAS were complementary and showed significant method agreement and 

measurement correlations. The 3D IAS incisor morphometry was validated with excellent 

reliability and could be used interchangeably with the 2D IAS. However, the limitation of a 

small sample population (n = 1) for the surface-roughness assessment was recognised and 

will form part of the Future Work.

6.1.3. Principal Component Analysis

The Principal Component Analysis defined mandible and incisor morphology and revealed a 

number of interesting size relationships with biomechanical implications, e.g. the mandible- 

angle variable and the incisor angle-of-curvature variable were inversely proportional to 

mandible and incisor size respectively. The variables with the highest reliability scores (e.g. 

the incisor width-at-midpoinf) also accounted for the majority of the morphological variation, 

which will strengthen the experimental interpretation.

6.1.4. Colour and Whiteness Assessment

The colour and whiteness assessment contained a highly novel software algorithm designed 

and developed in-house to calculate international standard CIE LAB and WI colour space 

values (Joiner, 2004; Wee et al, 2006). The bespoke method was a great improvement 

compared to the conventional methods used in human studies, e.g. shade guides (Paul et al, 

2002), spectrophotometers (Guan et al, 2005) and colourimeters (Khurana et al, 2007). The 

predominantly excellent reliability exceeded that of any existing methods apparent in the
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literature (Joiner et ah, 2008) and compared well with the translated human application that 

was validated during clinical trials (Smith et ah, 2008a). The method was especially sensitive 

and selective as it quantified tooth colour and whiteness in three separate surface regions that 

corresponded to three stages of enamel developmental, reaching beyond the limitations of the 

more subjective descriptions (Smith and Warshawsky, 1975, 1976; Robinson et al, 1983).

6.1.5. Summary

All four measurement methods showed predominantly excellent reliability. The modified 2D 

IAS, the novel colour and whiteness assessment and the novel 3D IAS greatly extended the 

measurement capacity for the comparative experimental investigation. A combination of 

established parameters and new morphometric variables delivered a more comprehensive 

repertoire for objective and quantitative macro-metric and micro-metric dental phenotyping. 

These unique biometric methods enabled innovative novel ways of empirically exploring 

anatomical growth, biological development and organic mineralisation in the mouse model.
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6.2. EXPERIMENTAL COMPARISONS

6.2.1 Introduction

The 2D IAS mandible and incisor morphology, incisor enamel colour and whiteness 

assessment and 3D IAS incisor morphometry and surface assessment will be discussed in 

terms of the separate Amelx and Enam experimental comparisons.

6.2.2. Amelx Experimental Comparison

The Amelx group displayed normal mandible and incisor morphology (Gaunt, 1964; 

Atchley et al, 1985; Bailey, 1985) with typical enamel deposition, thickness and colour 

distribution (Hay, 1961; Moinchen et al, 1996). The AmelxYMWyMH and ^we/xY/Y64H groups 

were most affected, displaying slightly dysmorphic mandibles and severely pathological 

incisor enamel (Gibson et al, 2001, 2007, Wright et al, 2009). The Amelx™group 

incisors were mildly affected (Figure 74.).

Figure 74. Amelx Phenotype Comparison - 2D IAS Mandible Measurement. Incisor
Measurement and Colour and Whiteness Assessment

(A) Amelx™-, (B) Ameb*™*- (C) Amelx™™- (D) Amelx™™™. Scale = 10.0mm.
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In humans, the P—mutation in the conserved tri-tyrosyl motif of amelogenin N-terminus 

underlies a unique but consistent AI phenotype (Collier et ah, 1997; Hart et al, 2000; 

Ravassipour et al, 2000; Wright et al, 2003). The murine Amelx Y64H mutation within the 

same tri-tyrosyl motif was recently shown to result in hypomineralised enamel in the 

Amelx*™6411 group and result in severely hypoplastic enamel in the AmelxYfY641'1 and 

AmelxY64U/Y64}1 groups (Barron et al, 2010). The significant differences observed here 

between the Amelx™1 and Amelx*™6411 groups, between the Amelx™1 and AmelxY™64H groups 

and between the Amelx™1 and AmelxY6411™6411 groups, suggested that the amelogenin protein 

was involved in mandible and incisor morphological development, as well as enamel 

mineralisation.

Amelogenin has been shown to be expressed in various developing tissues (Hu et al, 2006), 

including the dental supporting tissues (Deutsch et al, 2006). The significant differences 

observed here (e.g. mandible-angle) between the Amelx®1 and Amelx16411™6411 groups, and 

between the Amelx*™6411 and Amelx16411™6411 groups, suggested that the amelogenin protein 

was involved in mandible morphological development. These results were consistent with the 

involvement of the amelogenin protein in alveolar bone formation and remodelling (Haze et 

al, 2007), and supported amelogenin’s multifunctional role in the craniofacial-complex 

(Gmenbaum-Cohen et al, 2008).

Amelogenin functions during enamel structural organisation (Robinson et al, 1981a, 1983). 

Full length amelogenin localised to early prism cores was present in secretory stage enamel 

ECM deposits (Deutsch, 1989; Robinson et al, 1989). The Amelx®1 mice expressed a 

functional Amelx gene (Hu et al, 2001b), which led to the secretion of a full length 

amelogenin (Gibson et al, 2005) and was essential for generating full thickness correctly 

mineralised enamel (Gibson et al, 2001, 2007, 2009). The Amelx1™6411 and Amelx16411™6411 

groups expressed only the Amelx Y64H mutation containing allele (Masuya et al, 2005), 

which led to the absence of full length amelogenin in the secretory stage enamel ECM 

extracts and was shown to be the primary causality of aberrant enamel mineralisation (Barron 

et al, 2010). The significant differences in incisor morphology observed here (e.g. incisor- 

perimeter) between the Amelx®1 and Amelx*™6411 groups, between the Amelx®1 and 

Amelx1™6411 and between the Amelx®1 and Amelx16411™6411 groups, supported the involvement 

of the amelogenin protein in incisor morphological development.
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Biochemical and histological analysis showed the ameloblast cells of the affected 
ylme/xY/Y64H and Amelx*6*™6*** mice contain engorged cellular organelles with large 

accumulations of the truncated Y64H amelogenin (Barron et al.f 2010). This considerable 

intracellular protein retention suggested that the Y64H mutation caused the impaired 

secretion of a truncated Y64H amelogenin protein and that the subsequent loss of amelogenin 

function disrupted enamel mineralisation (Barron et al, 2010). The failure to successfully 

traffic and secrete amelogenin down the usual pathways into the enamel ECM was proposed 

to be a key mechanistic factor underpinning the aberrant incisor morphology and enamel 

mineralisation of AIH1.

Amelogenin interacts directly with the ameloblastin protein through its tri-tyrosyl motif 

(Ravindranath et al, 1999, 2003; Wright et al, 2003). The two proteins are proposed to share 

a common secretory pathway (Zalzal et al, 2008) and they potentially function by way of 

synergistic interactions (Hatakeyama et al, 2009). The enamel hypoplasia of the affected 
AmelxYIY6m and ^we/^Y64H/Y64H mutant mice had a similar pathology to the ameloblastin 

mutant mice that expressed a truncated ameloblastin variant (Fukumoto et al, 2004; Smith et 

al, 2009c; Wazen et al, 2009). Therefore, enamel defects involving ameloblastin secretion 

and function may rely on similar protein-protein interactions that were compromised in the 

presence of the Y64H mutant amelogenin, e.g. Y64H amelogenin-ameloblastin interactions 

that regulate correct nanosphere self-assembly (Fincham et al, 1995; Paine et al, 2002) may 

have resulted in the structurally abnormal protein complexes that were not appropriately 

trafficked prior to secretion (Barron et al, 2010).

Furthermore, abnormal amelogenin-ameloblastin interactions may be only a part of the 

pathology of impaired Y64H amelogenin secretion as it has also been proposed that 

cytokeratin protein-protein interactions at the dentino-enamel junction (Ravindranath et al, 

1999; Wright, 2006) may also be important in amelogenin protein chaperoning, trafficking 

and secretory processes (Ravindranath et al, 2003, 2004) that may have been affected in the 

presence of the Y64H amelogenin variant (Barron et al, 2010). This has led to the suggestion 

that the actual mechanism responsible for Al may be related to amelogenin cell binding 

activity and cell signalling functions, but also the cell proliferation functions of ameloblastin 

(Gibson et al, 2007, 2009).
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The significant differences in incisor morphometry observed here (e.g. overall-length) 
between the AmelxYtY64K and AmelxYMWY6m groups and between the Amelx^64^ and 

AfnelxY6iH/Y64H groups was not readily explained by the expression of the single Amelx 

mutation containing allele in the ^4we/xY/Y64H and ^4we/xY64H/Y64H groups, which would have 

been expected to have produced more similar incisor morphology in the ^4we/xY/Y64H and 

^7we/xY64H/Y64H groups than was observed in the AmelxNi: and Amelx!aY64li that showed no 

significant differences. However, the similar incisor morphology in the Amelx®1 and 

yfw?<?/xx/Y64H groups and the significant differences between the Amelx*™6411 and the 

Amelx1641™6414 groups indicated that the Amelx*116411 incisors were of an intermediate size. 

The significant colour and whiteness differences observed between the Amelx?™6411 and 

Amelx?116414 groups and between the Amelx*116444 and Amelx?6444*16444 groups (e.g. incisal 

region lightness colour component) provided further evidence that the Amelx*116444 group had 

an intermediate enamel phenotype.

The Amelx™6444 females displayed mildly affected enamel hypomineralisation because of a 

mosaic pattern of expression of both the normal functional Amelx gene and the Y64H 

mutation containing Amelx allele reflecting the lyonisation hypotheses (Lyon, 1961) of X- 

chromosomal inactivation (Huynh and Lee, 2005). Clusters of ameloblasts alternately 

expressed either the normal gene or the mutant allele and secreted either the functional or 

defective amelogenin protein (Witkop, 1967; Gibson et al, 2001). Therefore, it was proposed 

that both the full length amelogenin and the partial secretion of the truncated Y64H 

amelogenin may have contributed to the more normal and more affected intermediate 

morphology and enamel mineralisation observed in the Amelx*116444 incisors. The 2D and 3D 

incisor morphology and colour and whiteness assessment presented here strongly supported 

the Amelx?116444 group intermediate phenotype.

WTThe significant colour and whiteness differences that were observed between the Amelx 

and Amelx™6444 groups, between the Amelx®4 and Amelx1116444 and between the Amelx®4 and 

Amelx16444116444 groups, occurred specifically in the lightness, yellow/ blue and whiteness 

colour components in the incisal and whole enamel surface regions. The incisal region 

represented the secretory stage and the whole region represented all three developmental 

stages of enamel formation (Smith and Warshawsky, 1975, 1976; Smith and Nanci, 1989). 

The Amelx incisors were smooth with typically distributed enamel composed of low 

lightness, high yellow/ blue and low whiteness colour components that were consistent with
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normal intact enamel containing iron pigment (Halse, 1972). In contrast, the AmelxYfY64n and 

AmelxY64H/Y64H incisor enamel was rough where present and was composed of high lightness, 

low yellow/ blue and high whiteness colour components, which had the most severely 

affected and similar enamel phenotypes, e.g. the high lightness values in the incisal region.

This discolouration was consistent with the presence of aberrantly mineralised enamel and 

the absence of correctly mineralised enamel, comparable to that observed in humans with 

similar gene mutations (Witkop and Sauk, 1976; Collier et ah, 1997; Ravassipour et ah, 

2000; Hart et ah, 2000; Wright et ah, 2003). The presence of normal intact enamel in the 

Amelx**1 incisors, of hypomineralised enamel in the Amely^64^ incisors, and hypoplastic 

enamel in the ^me/xY/Y64H and ^we/xY64H/Y64H mutant incisors provided further evidence of 

the important role of amelogenin in enamel mineralisation.

The significant incisor morphological differences in the 3D surface-area and volume 

variables supported the 2D incisor morphometry that also showed the Amelx^1 group had the 

largest incisors and the AmelxY(AYifY64H group had smallest incisors (Figure 75.).
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Figure 75. Amelx Phenotype Comparison - 3D IAS Incisor Morphology and surface-
roughness Analysis

(A) Amelxv'T; (B) Amelx*™6411-, (C) Amelx'1 *64}i’, (D) Amelx'‘64H^64H; (1) incisal-, (2) middle-, (3) gingival enamel 
surface regions. Rectangles = 200x500^m. No scale.

The 3D IAS presents the first report of a 3D micro-metric surface analysis of murine enamel
WTusing NCSP technology and the ISO Ra standard measurement (Figure 75.). In the Amelx 

group the incisor enamel surface-roughness increases through the gingival, middle and 

incisal surface regions that represent the progressive developmental stages of enamel 

mineralisation. This contrasts with the diminishing surface roughness that would be expected
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from a loss of organic matrix and the increasingly smooth crystal surface morphology as 

revealed by Atomic Force Microscopy (Kirkham et a!., 1998). Nevertheless, the increasing 

surface-roughness observed in all the affected Amelx™^, AmelxY1Y6m and AmelxY64u/Y6m 

incisors is consistent with the presence of pathological enamel. As mutations that lead to 

defective ECM processing are thought to impair enamel mineral initiation, fusion, and crystal 

growth leading to short mineral segments in hypoplastic AI or abnormally large crystals in 

hypomature AI (Robinson et al, 2003).

The areas of missing enamel in the ^we/jcY/Y64H and yf/we/xY64H/Y64H groups make it difficult to 

carry out meaningful enamel thickness measurements on severely affected incisors. However, 

TMR images demonstrate significantly reduced enamel mineral content in the ArnebP**^ 

group incisors (Barron et al.t 2010) and are supported by the nano-CT images of unerupted 

incisors in the ^/we/jcY/Y64H and ^we/xY64H/Y64H groups (Myers et al, 2009).

The 3D IAS incisor morphology presented here identifies significant differences between the 

Amelxwl group and between each of the individual mutant groups. In contrast to the 2D IAS, 

the 3D IAS identifies significant differences between the Amelx™1 and Amelx™641* groups, 

while showing no significant differences between the AmelxY/Y64H and AmelxY64H/Y64H groups. 

This suggests that the novel 3D IAS is particularly sensitive in detecting differences in incisor 

morphology and is more representative of the actual phenotype. The 3D IAS more accurately 

differentiated between the different phenotypes of the different genotype groups than the 2D 

IAS equivalent. The 3D IAS was well suited to the mouse incisor application.

The 2D IAS incisor morphology and colour and whiteness assessment findings and the 3D 

IAS incisor morphology and surface analysis findings were complementary and supported 

one another respectively. The new 3D IAS provided further morphological and topographical 

information that improved sensitivity in detecting the subtle morphological differences 

between the more affected and more unaffected Amelx mice incisors, e.g. the new actual 

surface-area and volume variables that measure the 360° of tooth bulk and enamel deposition.

The phenotype comparison presented here quantitatively supported the effect of amelogenin 

on enamel mineralisation in a mouse model of AIH1.
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6.2.3. Amelx Summary

The significant differences observed between the wild-type and the mutant groups identified 

abnormal mandible morphology, incisor morphology and colour and whiteness in the mutant 

groups. This may be directly attributed to the loss of amelogenin protein function caused by 

the Y64H mutation.

The significant differences between the normal Amelx^ control mandibles and the abnormal 

AmelxYMlVY6m mutant mandibles supported a role for amelogenin in mandible development. 

The significant phenotype deviation in the mandible and incisor morphology and in the 

incisor colour and whiteness between the normal Amelx**1' controls and the severely abnormal 

Amelx mutants was evidence both of the important role of amelogenin in development and of 

the pathological effects of mutations in the gene. Thus, the abnormal morphology exhibited 

in the Amelx mutant mandibles and incisors was directly attributed to the Y64H mutation. 

The aberrant mineralisation and apparent absence of enamel in the Amelx mutant incisors, 

particularly in the incisal region, was not the result of post-eruptive breakdown but was 

primarily a developmental defect related to the Amelx gene Y64H mutation that led to the 

disruption of the amelogenin protein function, leading to the enamel defects. The results 

demonstrate that amelogenin affects mandible and incisor morphology - reflecting enamel 

quantity, growth and development - and also that amelogenin affected enamel colour and 

whiteness - reflecting enamel quality and mineralisation.

The significant deviations between the enamel phenotypes of control and mutant animal 

groups presented here, along with recently published parallel findings (Barron et al, 2010), 

infer that the failed secretion and the loss of function of the Y64H amelogenin protein may be 

the causative mechanism underpinning the dysplastic enamel mineralisation observed. These 

studies demonstrate that the mutation of the amelogenin gene was the outstanding factor in 

the pathogenesis of AIH1.
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6.2.4. Enant Experimental Comparison

The Enarn^1 group displayed normal mandible morphology (Gaunt, 1964; Atchley et al., 

1985; Bailey, 1985) and incisors with typical enamel deposition, thickness and colour 

distribution (Hay, 1961; Moinchen et al., 1996). The EnamRgsc395 heterozygous and 

homozygous groups both displayed severely affected pathological incisor enamel (Masuya et 

al, 2005; Seedorf et al, 2007; Hu et al, 2008; Smith et al, 2009c; Wright et al, 2009) 

(Figure 76.).

Figure 76. Enam Phenotype Comparison - 2D IAS Mandible Measurement
Incisor Measurement and Colour and Whiteness Assessment

(A) Enam"1', (B) Enam****95 heterozygous', (C) Enam***395 homozygous. Scale = 10.0mm.

In humans, A/mutations cause autosomal dominant Al (Rajpar et al, 2001; Kida et al, 

2001; Mardh et al, 2002; Hart et al, 2003a, 2003b; Kim et al, 2005b) and show 

haploinsufficiency (Hu and Yamakoshi, 2003; Ozdemir et al, 2005). In mouse models of Al, 

the Enam gene mutations in similar sequences reflected this dose effect in the hypoplastic 
enamel of the EnamRgsc395 heterozygous and homozygous mice (Matsuya et al, 2005) and in 

the enamel agenesis of the Enam-mx\\ mice (Seedorf et al, 2007; Hu et al, 2008; Smith et al, 

2009c; Wright et al, 2009). The significant differences in incisor morphology and colour and 

whiteness between the Enam*1 and £Aia/wRgsc395 homozygous and between the Enam*11 and
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EnamRgsc395 heterozygous suggested that the enamelin protein was involved in incisor 

morphological development, as well as enamel mineralisation.

There were no statistically significant differences between the three Enam group mandibles. 

This suggested that the enamelin protein had no effect on mandible morphology in contrast to 

Amelx. However, the significant differences in incisor morphology observed here suggested 

that the EnamWJ incisors were the largest, followed in descending order of size by the 

EnamRgscm homozygous and heterozygous groups, e.g. in the angle-of-curvature variable.

The Enam^1 mice expressed the fimctional Enam gene (Hu et at, 2001b). This led to the 

secretion of the full length enamelin protein essential for generating full thickness and 
correctly mineralised enamel (Hay, 1961; Moinchen et al, 1996). The EnamRsscm 

homozygous and heterozygous groups, that expressed the Enam S55I mutation containing 

allele, displayed thin aberrantly mineralised enamel that lacked the full length enamelin and 

its functionally important processing products (Masuya et al, 2005). Failed secretion and loss 

of function of a similar truncated enamelin variant was unable to mediate proper enamel 

mineralisation (Seedorf et al, 2007). The significant differences in incisor morphology 

observed here between the Enam^1 and EnamRgsc395 heterozygous groups (e.g. angle-of- 

curvature) and between the Enam^i: and EnamR&sc395 homozygous groups (e.g marked 

surface-area), are compatible with the enamelin protein involvement in incisor 

morphological development.

The significant colour and whiteness differences that were observed between EnamWT and 

EnamRgscm homozygous groups and between the EnamRgscm heterozygous groups occurred 

specifically in the lightness, yellow/ blue and whiteness colour components in the middle, 

incisal and whole enamel surface regions. The middle and incisal regions represented the 

secretory and mature stages, and the whole region represented all three developmental stages 

of enamel formation (Smith and Warshawsky, 1975, 1976; Smith and Nanci, 1989). The 

EnamN1: incisor enamel was smooth, normally distributed and demonstrated low lightness, 

high yellow and low whiteness colour components, consistent with the normal enamel colour 

containing iron pigment (Halse, 1972). In marked contrast, the Enan^gsa395 homozygous and 

heterozygous incisor enamel was rough and where present demonstrated high lightness, low 

yellow and high whiteness colour components. This discolouration was consistent with the 

presence of aberrantly mineralised enamel and/ or the absence of correctly mineralised
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enamel (Masuya et al, 2005). Similar enamel discolouration and severely pathological 

enamel mineralisation was the result of a similar loss of enamelin protein function in a 

number of other Enam mutant mouse models of AI (Seedorf et al, 2007; Hu et al, 2008; 

Smith et al, 2009c; Wright et al, 2009). This enamel defect was indicative of localised 

enamel hypoplasia similar to that observed in humans with similar mutations (Rajpar et al, 

2001; Kida et al, 2002; Mardh et al, 2002; Hart et al, 2003a, 2003b; Kim et al, 2005b).

The significant phenotype deviation in incisor morphology and enamel colour and whiteness, 

between the Enam^7 control incisors and the enamel in the EnamRBSc395 homozygous and 

heterozygous mutant incisors, was suggested to be directly attributable to the Enam S55I 

mutation that disrupted the secretion of the truncated enamelin S55I protein and caused the 

subsequent loss of function. The absence of any significant colour and whiteness differences 
between the Enam*^395 homozygous and heterozygous groups suggested they had similar 

pathological enamel phenotypes (Figure 77.).
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Figure 77. Enam Phenotype Comparison - 3D IAS Incisor Morphology and surface-
rouzhness Analysis

(A) Enam*1-, (B) £«amRssc395 homozygous', (C) EnamKssc395 heterozygous-, (1) incisal, (2) middle-, (3) gingival 
enamel surface regions. Rectangles = 200x500nm. No scale.

The 3D IAS provided the first report of a 3D micro-metric surface analysis of murine enamel 

using NCSP technology and the ISO Ra standard measurement (Figure 77.). In the Enam 

group the incisor enamel surface-roughness increased through the gingival, middle and 

incisal surface regions that represented the progressive developmental stages of enamel 

mineralisation. This contrasted with the diminishing surface roughness that would be 

expected from a loss of organic matrix and the increasingly smooth crystal surface 

morphology as revealed by Atomic Force Microscopy (Kirkham et al, 1998). Nevertheless, 

the increasing surface-roughness observed in the two affected EnamR8Sc395 heterozygous and 

homozygous incisors is consistent with the presence of pathological enamel, as mutations that 

lead to defective ECM processing are thought to impair enamel mineral initiation, fusion, and 

crystal growth leading to short mineral segments in hypoplastic AI (Robinson et al, 2003).
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The 2D IAS incisor morphology and colour and whiteness assessment findings and the 3D 

IAS incisor morphology and surface analysis findings were complementary and supported 

one another respectively. The new 3D IAS provided further morphological and topographical 

information that improved sensitivity in detecting the subtle morphological differences 

between the more affected and less affected Enam mice incisors, e.g. the new actual surface- 

area and volume variables that measure the 360° of tooth bulk and enamel deposition.

The phenotype comparison presented here quantitatively supported the effect of enamelin on 

enamel mineralisation in a mouse model of AIH2 that phenocopied AI patients presenting 

with similar mutations.
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6.2.5. Enam Summary

The significant phenotype variation in incisor morphology and incisor colour and whiteness 

between the normal EnamNi: control group and the severely abnormal Enam mutant groups 

was indicative of the pathological enamel defect. Enamelin variants and functionally 

important enamelin processing products were either absent or truncated significantly in Enam 

mutant mice suggesting that the non-functional enamelin S55I was unable to mediate proper 

enamel mineralisation because of impaired secretion. Failed enamelin secretion was also 

observed in a number of other Enam models that displayed similar severely aberrant enamel 

mineralisation.

The aberrant incisor morphology and enamel mineralisation, and apparent areas of absent 

enamel in the Enam mutant incisors, particularly in the middle and incisal regions, was not 

the result of post-eruptive breakdown but was primarily a developmental defect directly 

attributed to the Enam gene S55I mutation and subsequent disruption to the enamelin protein 

function. The results demonstrated that enamelin affected incisor morphology - reflecting 

enamel quantity, growth and development - and also that enamelin affected enamel colour 

and whiteness - reflecting enamel quality and mineralisation.

The phenotype comparison presented here quantitatively supports the affect of enamelin on 

enamel mineralisation in a mouse model of AIH2 that phenocopies AI patients presenting 

with similar mutations. The significant deviations between the enamel phenotypes of control 

and mutant animal groups suggests that the failed secretion and the loss of function of the 

enamelin S55I protein was the underpinning mechanism evident in the dysplastic enamel 

mineralisation observed. The Enatn*11 control group displayed normal intact enamel 

compared to the Enan^g^95 homozygous and heterozygous mutant groups that displayed 

hypoplastic enamel or completely absent enamel indicative of AIH2. The supports the 

suggestion that enamelin mutations are the outstanding factor in the pathogenesis of AIH2.
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6,2,6. Amelx and Enam Summary

The Amelx**1 and Enam**1 controls demonstrated normal enamel and the mutant groups were 

affected.

Significant differences in mandible morphology were observed between the Amelx groups but 

not between the Enam groups. This infers that amelogenin affected mandible development 

but that enamelin did not.

The significant differences in incisor morphology were observed between the Amelx groups 

and also between the Enam groups. This infers that both amelogenin and enamelin affected 

incisor enamel quantity, growth and development.

There were more significant differences between the Amelx groups than between the Enam 

groups. This suggested amelogenin had a greater affect on incisor development than 

enamelin.

The significant differences in enamel discolouration and the differences in enamel surface 

roughness observed between the Amelx groups and between the Enam mutant groups suggest 

that the amelogenin and enamelin proteins affect incisor enamel quality and mineralisation.

The 2D IAS and 3D IAS incisor morphology results were similar and supported one another. 

The colour and whiteness assessment and 3D IAS surface analysis results were similar and 

supported one another. There was no statistical support for the surface-roughness findings, 

which will be addressed in the Future Work.

The sites of the significant enamel discolouration were different between the Amelx groups 

and the Enam groups: in the Amelx incisors the differences were found only in incisal and 

whole regions, while in the Enam incisors the differences occurred in the middle, incisal and 

whole regions. The middle and incisal regions represented the secretory and mature stages of 

enamel formation, while the whole region represented all three developmental stages of 

enamel formation. Thus, the significant differences suggested that enamelin mutation affected 

the secretory stage of enamel formation and that amelogenin mutation did not. This implies 

that enamelin had an earlier, more localised effect on the secretory stage of amelogenesis
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than amelogenin and supported the regulatory functions of the different ECM proteins during 

the different stages of enamel growth and formation.

The colour and whiteness assessment differentiated between hypomineralised y4me/xx/Y64H, 

hypoplastic ^we/xY/Y64H and ^we/xY64H/Y64H and local hypoplastic EnamRgsc395 homozygous 

and heterozygous enamel phenotypes. According to the different gene mutation and 

subsequent protein disruption, the enamel defects were observed in a surface region specific 

manner that correlated to the distinct developmental stages of enamel formation.

Translating the phenotype observations made here in mice to the human counterpart must be 

undertaken with caution, with respect to the alternative splicing of amelogenin and the 

various cleavage products of enamelin that contribute to variable protein function, and also 

the considerable epigenetic effects within the broader genetic background of the human 

population.
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7. Conclusions

7.1. METHOD RELIABILITY AND VALIDATION

Four novel measurement methods were successfully applied for murine dental phenotyping; 

2D IAS (i) mandible morphology, (ii) incisor morphology (iii) enamel colour and whiteness 

assessment and (iv) 3D IAS incisor morphology and surface analysis.

The reliability of the 2D IAS mandible and incisor morphology was substantial to excellent. 

The reliability of the colom* and whiteness assessment was predominately excellent. The 

reliability of the 3D IAS incisor morphology was substantial to excellent.

The 2D IAS and the 3D IAS incisor morphology gave significant method agreement and the 

3D IAS was validated by large measurement correlations. Potential experimental and 

systematic error testing gave highly satisfactory results.

The 2D IAS and 3D IAS could be used with equal validity for incisor morphology.
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7.1.1. Summary

In relation to the Aims of this investigation, the 2D IAS and 3D IAS were highly reliable 

measurement methods that were validated to provide additional morphological information.

These innovations were complementary and provided practical and objective approaches to 

the quantitative macro-metric and micro-metric characterisation of murine mandible 

morphology, incisor morphology and enamel mineralisation.
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7.2. EXPERIMENTAL COMPARISON

7.2.1. Introduction

In relation to the aims and hypotheses of this investigation, there was significant phenotype 

variation between the wild-type control mice and the experimental mutant mice. The 

significant differences in the mandible and incisor morphology and in the colour and 

whiteness variables demonstrated the effect of the amelogenin protein and the enamelin 

protein on normal and abnormal enamel mineralisation. In complimentary studies (Barron et 

al, 2010) the gene mutations were proposed to have truncated their respective protein 

products that led to the loss of function and the obseived pathological enamel phenotypes.

The Amelx^1 and Enam^1 mice did not contain gene mutations and were unaffected so 

served as a baseline for the explicit phenotype to genotype correlation of the two models of 

AI: the and rime/:cY64H/Y64H mutant mice displayed severely hypoplastic enamel

characteristic of AIH1; the Amelx^6^ mutant mice displayed hypomineralised enamel 

characteristic of AIH1; the EnamRBSc395 homozygous and Enam^^95 heterozygous mutant 

mice displayed hypoplastic enamel characteristic of AIH2.

The enamel colour and whiteness phenotypes presented here were representative of enamel 

mineralisation and were differentiated by specific surface region and developmental stage 

comparisons.
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7.2.2, Amelx

The significant morphological differences between the groups of Amelx mice suggested an 

active role for amelogenin in mandible bone formation and in generating the full thickness of 

enamel during mandibular incisor development; the unaffected Amelx*™ mice had the largest 

mandibles and incisors while the affected Amelxm6m, AmelxYfY64U and AmelxY64H/Y64li 

mutant mice displayed smaller mandibles and incisors. The observed phenotypes supported 

the multifunctional role of the amelogenin protein in the development of the craniofacial- 

complex.

The significant colour and whiteness differences between the groups of Amelx mice 

suggested an essential role for amelogenin in incisor enamel mineralisation; the unaffected 

Amelx*™ mice incisors displayed normal smooth enamel in contrast with the affected 

Amelx*™*1 and ^me/xY64H/Y64H mutant mice incisors that displayed discoloured and rough 

pathological enamel. The more mildly affected Amel^™64*1 mutant mice displayed 

intermediate incisor morphology and incisor enamel phenotype, which reinforced the 

phenotype to genotype correlation. The phenotype variation in the incisal surface region 

corresponded to a delayed function of amelogenin in the specific mature developmental stage 

of enamel formation. The 3D surface analysis corroborated the presence of abnormal enamel 

in the Amelx mutant mice.

Similar to the known mutational affects of AMELX in humans, the vlwe/xY64H/Y64H and 

Amelx*™64*1 mouse incisor enamel was hypoplastic and the Amelx*™64*1 mouse incisor 

enamel was hypomineralised and indicative of AIH1.
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7.2.3. Enam

The absence of significant difference between the groups of Enam mice mandibles suggested 

the enamelin protein had no role in mandible development. The significant morphological 

differences between the groups of Enam mice incisors suggested a role for the enamelin 

protein in incisor development; the unaffected Enam®1 mice had the largest incisors and the 

affected Enam^g5^95 homozygous and Enan^zwm heterozygous mutant mice incisors were 

smaller. The phenotype variation in 2D incisor morphology supported the essential function 

of the enamelin protein in generating full thickness enamel.

The significant colour and whiteness differences between the Enam mice incisors supported 

the role of enamelin in enamel mineralisation; the Enam'®1 mice incisors displayed normal 

smooth enamel in contrast with the affected Enair^^95 homozygous and EnamKg^95 

heterozygous mice incisors that displayed discoloured and rough pathological enamel. The 

similar aberrant enamel phenotypes in the Enan^g*cl95 homozygous and E«amRgsc395 

heterozygous mice incisors reinforced the phenotype to genotype correlation. The phenotype 

variation in the middle and incisal surface regions corresponded to the earlier more localised 

effect of enamelin in the secretoiy and subsequent maturational developmental stages of 

enamel formation. The 3D surface analysis corroborated the presence of pathological enamel 

in the Enam mutant mice.

Similar to the known mutational affects of ENAM in humans, the Enamllgsc395 homozygous 

and Enan^g^395 heterozygous enamel was hypoplastic and indicative of AIH2.
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7.2.4. Amelx and Enam Summary

The study showed that the Amelx and Enam gene mutations in mice, in similar domains to the 

AMELX and ENAM gene mutations in humans, produced comparable enamel defects that 

served as exploratory models for studying the aetiology of AI; the Amelx mutants displayed 

hypoplastic/ hypomineralised enamel indicative of X-linked AI (AIH1,OMIM301200) and 

Enam mutants displayed local hypoplastic enamel indicative of autosomal dominant AI 

(AIH2, OMIM104500).

The experimental comparison presented evidence of significant phenotype variation between 

the controls and the experimental mutants in two relevant mouse models that reflected human 

AI. The measurement methods correlated the phenotype to the genotype and supported the 

role of the amelogenin and enamelin proteins in incisor morphological development and 

enamel mineralisation.

The study successfully linked phenotype with underlying genetic lesion and supported 

protein-protein secretory interactions proposed to be a pathological mechanism underpinning 

abnormal enamel formation.
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7.3. IMPACT ON AIMS

i. Four new measurement methods were successfully developed; (i) a 2D image analysis 
system (IAS) to measure murine mandible morphology, (ii) incisor morphology and (iii) 
incisor enamel colour and whiteness, and (iv) a 3D IAS to measure incisor morphology and 
enamel surface structure.

ii. The novel repertoires of variables were highly reliable and valid.

iii. The 2D IAS and 3D IAS approaches demonstrated complementary practical solutions that 
facilitated both the macro-metric and micro-metric investigation of the reliability 
population, with additive 3D IAS information.

iv. The mandible morphology and incisor morphology represented enamel quantity, growth 
and development. The colour and whiteness and 3D surface assessment represented enamel 
quality and mineralisation.

v. The new measurement methods were used to characterise the two populations of mice with 
specific gene mutations in the enamel ECM proteins amelogenin (Amelx, OMIM300391) 
and enamelin (Enam, OMIM606585). The Amelx and Enam populations were suitable 
mouse models of XAivksd Amelogenesis imperfecta (AIH1, OMIM301200) and autosomal 
dominant local hypoplastic Amelogenesis imperfecta (AIH2, OMIM104500) respectively.

vi. The wild-type control groups were successfully compared with the experimental mutant 
groups.

vii. Significant phenotype differences were indentified in the mandible dimensions and incisor 
dimensions, and in the colour and whiteness assessment.

viii. This quantitatively supported the involvement of amelogenin and enamelin in mandible and 
incisor morphology and enamel mineralisation. The multifunctional role of amelogenin in 
the development of the craniofacial complex was supported.

ix. The enamel colour and whiteness assessment successfully differentiated between 
overlapping phenotypes according to the Amelx and Enam gene mutations in a surface 
region specific manner that correlated to the distinct developmental stages of enamel 
formation.
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7.4. IMPACT ON NULL HYPOTHESES

xiv. The 2D IAS will not be reliable - reject

xv. The colour and whiteness assessment will not be reliable - reject

xvi. The 3D IAS will not be reliable - reject

xvii. The 3D IAS will not be valid - reject

xviii. The mandible and incisor morphometry, and colour and whiteness assessment will not 
quantify phenotype - reject

xix. The mandible and incisor morphology will not represent enamel quantity, growth and 
development - reject

xx. The colour and whiteness and 3D surface assessment will not represent enamel quality and 
mineralisation - reject

xxi. The control and mutant groups will not show evidence of statistically significant phenotypic 
variation - reject

xxii. There will be no significant differences in the mandible dimensions between wild-type and 
mutant populations - reject

xxiii. There will be no significant differences in the incisor dimensions between wild-type and 
mutant populations - reject

xxiv. There will be no significant differences in the enamel phenotype between wild-type and 
mutant populations - reject

xxv. The Amelx mutants will not display hypoplastic/ hypomineralised enamel indicative of X- 
linked AI (AIH1,OMIM301200) - reject

xxvi. The Enam mutants will not display local hypoplastic enamel indicative of autosomal 
dominant AI (AIH2, OMIM104500) - reject
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8. Future Work

8.1. Reliability and Validation

Further 3D incisor morphometry intra-operator repeatability data would corroborate the 

exceptionally high reproducibility presented. Also, incisor intra-operator and inter-operator 

reliability data would validate the 3D IAS for surface-roughness measurement.

8.2. Method Development

The study demonstrates the successful modification of existing methods for new applications 

and presents original methods. This establishes a strong precedent for expanding the new 

methods to future applications, e.g. an alternative NCSP chromatic sensor may include 3D 

mandible morphology.

8.3. Experimental Comparison

The mandibular molars and maxillary incisors and molars of the experimental populations 

remain preserved for future use. The existing image archive and data records may be used in 

future studies.

Increasing the small sample population (n — 1) for the surface-roughness assessment would 

provide the necessary statistical support to strength the experimental comparison.

The current investigation provides collaborative potential for a broader series of similar 

investigations using other mouse models of AI, e.g. the recently described ECM protein 

amelobastin mice (Seedorf et al, 2007) and enamelin-null mice (Hu et al, 2008) and/ or the 

ECM proteases kallikrien Klk-4 (Simmer et al, 2009) and enamelysin Mmp-20 (Wright et al, 

2009).

Indeed this was positively discussed with Dr. Jan Hu from The University of Michigan at 

Ann Arbor Dental School, USA at the American Association of Dental Research and 

Canadian Association of Dental Research conference in Washington DC USA in April 2010.
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8. Future Work

There is considerable potential for applying the novel measurement methods beyond the 

mouse model and to other small mammalian dental applications, e.g. rodents and bats (Evans 

et al, 2001).

At the time of writing, example incisors from each experimental group are with Dr. Paul 

Anderson at Queen Mary, University of London awaiting X-ray Micro-Tomography 

(Anderson et al, 1996). It is hoped this will provide valuable quantitative enamel mineral 

density data and additional 3D structural information.
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10.4. APPENDIX 4. LIST OF ORIGINAL PUBLICATIONS

As a direct result of this project I was a contributing author on two peer reviewed journal 
articles; (i) the first paper was a multiple operator clinical trial that employed and validated 
the novel colour and whiteness assessment translated for the human application (in industrial 
partnership with Unilever PLC, Port Sunlight, UK.); (ii) the second paper employed the 
customised 3D analytical software translated for the human dental study model application 
(in collaboration with colleagues at the University College London).

i. SMITH, R.N., COLLINS, L.Z., NAEENI, M., JOINER, A., PHILPOTTS, C.J., 
HOPKINSON, L, JONES, C., LATH, D.L., COXON, T.L., HIBBARD, J. & 
BROOK, A.H. (2008) 'The in vitro and in vivo validation of a mobile non-contact 
camera-based digital imaging system for tooth colour measurement', Journal of 
Dentistry, vol. 36, no. Supplement 1, pp. 15-20.

ii. SMITH, R.N., ZAITOUN, H., COXON, T.L., KARMO, M., KAUR, G., 
TOWNSEND, G., HARRIS, E.F. & BROOK, A.H. (2009) 'Defining new dental 
phenotypes using 3-D image analysis to enhance discrimination and insights into 
biological processes'. Archives of Oral Biology, vol. 54, pp. SI 18-S125.
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3D morphometric and surface phenotyping mouse models of AI (138531) 
International Association of Dental Research (I ADR) & Pan European Federation 
(PEF) Joint Scientific meeting in Barcelona, Spain. 
http://iadr.confex.com/iadr/201 Obarce/webprogram/Paperl 38531 .html

2. 03.03.10-06.03.10
COXON, T.L, BROOK, A.H, & SMITH. R.N.
Quantifying phenotyping variation in mice with Amelx and Enam mutations (1405) 
Joint American & Canadian Association of Dental Research in Washington DC, USA. 
http://iadr.confex.com/iadr/201 Odc/webprogram/Paperl 29170.html

3. 30.10.09
COXON, T.L, BROOK, A.H, & SMITH. R.N.
Phenotype-Genotype correlations in two mouse models of Amelogenesis imperfecta 
Postgraduate Researchers in Science & Medicine (PRISM) Conference 2009 
The University of Manchester, Manchester, UK.

4. 01.09.09-04.09.09
COXON, T.L, BROOK, A.H, & SMITH. R.N.
Phenotyping mouse models of Amelogenesis imperfecta.
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10. 12.10.07
SMITH, R.N., KARMO, M., COXON, T.L., PETERS, H., & BROOK, A.H. 
Phenotyping of a murine model for dental anomalies.
5th Annual Research & Development Open Day, Royal Liverpool University Hospital 
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Royal Liverpool University Hospital.
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A new methodology for 2D imaging of murine dentition. (0190)
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ZAITOUN, H., COXON, T.L., KARMO, M., BROOK, A.H., & SMITH R.N. 
Validation and applications of a 3D Laser Scanner for odontometry. (0174)
British Society for Dental Research (BSDR) & Nordisk Odontogisk Forening Joint 
Scientific Meeting - University of Durham.

338


