2D AND 3D PHENOTYPING MURINE MODELS OF Amelogenesis imperfecta

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy

by

Thomas Liam Coxon

July 2010

ABSTRACT

Introduction

Odontogenesis is a paradigm for biomineralisation. *Amelogenesis imperfecta* (AI) is an inherited tooth enamel defect displaying genetic and phenotypic heterogeneity. The enamel extra-cellular matrix proteins amelogenin and enamelin are coded for by human genes (*AMELX*, OMIM300391 and *ENAM*, OMIM606585) and mice genes (*Amelx* and *Enam*) that are implicated in the aetiology of AI. Mouse models containing specific gene mutations are comparable to those found in humans because they disrupt protein function during the different stages of enamel formation that are reflected in the overlapping range of AI phenotypes; *Amelx*^{Y64H} and *Enam*^{Rgsc395} mutant mice display similar phenotypes to humans with X-linked AI and autosomal dominant local hypoplastic AI respectively.

The mouse model is accessible and amenable to experimental investigation. The mandible represents a series of developmental units and the incisor tooth continuously grows giving a permanent record of all stages of enamel formation. Accurately measuring mandible morphology, incisor morphology and enamel colour and whiteness can quantify morphological development and enamel mineralisation.

Aims

To develop, test the reliability of and validate four novel measurement methods; a 2D image analysis system (IAS) to measure murine (i) mandible morphology, (ii) incisor tooth morphology, (iii) incisor enamel colour and whiteness, and (v) a 3D IAS to measure incisor morphology and enamel surface structure. To use the new methods to characterise the phenotypes of an experimental population of *Amelx* and *Enam* mutant mice that model human AI. To use the wild-type genotype groups as controls and as baselines for comparison with the respective mutant littermate genotype groups. To investigate the phenotype variation between the genotype groups and use the significantly different variables to differentiate between the affected and unaffected groups. To demonstrate the effect of the specific gene mutations on the function of the amelogenin and enamelin proteins. To explore mandible and incisor morphological development and enamel mineralisation.

i

Methods

An established 2D IAS was modified with a macro-lens for the small mouse application. A standardised algorithm was developed in-house for the enamel colour and whiteness assessment. A bespoke 3D IAS was developed by adapting a high resolution measurement device with a rotary stage to obtain 3D images in 360°. 2D and 3D analytical measurement tools and 3D modelling software were also customised.

A homogenous reliability population (n = 20) containing left and right mandibles and incisors was measured from the buccal, lingual and labial aspects using the new 2D IAS, 3D IAS and colour and whiteness methods. A heterogeneous experimental population (n = 35) containing the *Amelx*^{WT} and *Enam*^{WT} (wild-type) control genotype groups and the *Amelx*^{X/Y64H} (heterozygous), *Amelx*^{Y/Y64H} (hemizygous) and *Amelx*^{Y64H/Y64H} (homozygous) and the *Enam*^{Rgsc} heterozygous and *Enam*^{Rgsc} homozygous mutant genotype groups were similarly measured.

Measurement reliability was determined by multiple operator correlation, method agreement and descriptive statistics. Bonferonni corrected significant differences (p = 0.002) were identified by Analysis of Variance, Multiple Comparisons and Tuckey Honestly Significant Differences tests.

Results

The intra-operator and inter-operator measurement reliability of the 2D IAS mandible morphology (ICC ≥ 0.77), incisor morphology (ICC ≥ 0.75) and colour and whiteness assessment (ICC ≥ 0.13) methods were predominantly classified as excellent. The 2D and 3D methods demonstrated significant (p < 0.01) agreement (PCC ≥ 0.71) with no significant differences (p < 0.01) between measurements, except in one variable. The confidence intervals, limits of agreement and bias assessments were all highly satisfactory. A principal component analysis highlighted strong size and shape defining relationships between the morphological variables.

Significant differences ($p \le 0.002$) in morphology and colour and whiteness were evident between the unaffected *Amelx*^{WT} group and the three affected mutant groups *Amelx*^{X/Y64H}, *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H}. Mandibles and incisors were largest in the *Amelx*^{WT} group and smallest in the *Amelx*^{Y64H/Y6H} group. The *Amelx*^{X/Y64H} incisors were of intermediate size, shape and colour. The *Amelx*^{WT} incisors constituted high *yellow* and low *whiteness* and low *lightness* colour components in complete contrast to the discoloured *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} incisors; the significant differences were identified in the *incisal* and *whole* enamel surface regions that corresponded to the *mature* and *all* stages of enamel development respectively.

Significant differences ($p \le 0.002$) in morphology and colour and whiteness were evident between the unaffected $Enam^{WT}$ and the two affected mutant groups $Enam^{Rgsc}$ heterozygous and homozygous. Mandibles and incisors were largest in the $Enam^{WT}$ group and smallest in the $Enam^{Rgsc}$ heterozygous group. The $Enam^{WT}$ incisors constituted high yellow and low whiteness and low lightness colour components in complete contrast to the similarly discoloured $Enam^{Rgsc}$ heterozygous and homozygous incisors; the significant differences were identified the in the middle, incisal and whole enamel surface regions that corresponded to the secretory, mature and all stages of enamel development respectively.

Conclusions

The novel 2D IAS, colour and whiteness and 3D IAS have provided a series of macro-metric morphological and micro-metric surface parameters that were highly reliable and selective. The methods were successfully validated as practical, objective and quantitative approaches to accurate phenotyping of mice mandibles, incisors and enamel.

The experimental comparison detected significant differences between the unaffected wildtype controls and affected experimental mutants in mandible morphology, incisor morphology, and in enamel colour and whiteness. This was directly attributed to the specific gene mutations that were proposed to have caused protein truncation and loss of function, which disrupted enamel formation and led to severe enamel defects. The *Amelx* and *Enam* mouse models phenocopied AIH1 and AIH2 respectively; the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} incisor displayed thin hypoplastic enamel characteristic of AIH1; the *Amelx*^{X/Y64H} incisors displayed hypomineralised enamel characteristic of AIH1; the *Enam*^{Rgsc} *heterozygous* and *homozygous* inci**S**ors showed localised hypoplastic enamel characteristic of AIH2.

The sites of the significant enamel discolouration were different in the *Amelx* groups (*incisal*, *whole*) and the *Enam* groups (*middle*, *incisal*, *whole*), supporting the different affects of the two proteins and the respective mutations; amelogenin disrupted the *mature* stage of enamel formation and enamelin disrupted both the *secretory* and *mature* stages. Overlapping enamel phenotypes were differentiated by separate and specific surface regions that corresponded to the different developmental stages of enamel formation.

This study supported the multifunctional role of amelogenin in alveolar bone formation during mandible development. The $Amelx^{X/Y64H}$ intermediate enamel phenotype was concordant with lionisation and X-chromosomal inactivation. This study supported the critical involvement of the amelogenin and enamelin proteins in controlling enamel structural organisation and generating the full thickness of enamel during mineralisation. This study supported the intracellular protein-protein trafficking/ chaperoning secretory pathway recently proposed as an explanatory mechanism for dysplastic enamel mineralisation. The phenotype was correlated to the genotype in two pertinent mouse models of human AI.

CONTENTS

ABSTRACT	i
CONTENTS	v
ACKNOWLEDGEMENTS	vi
DEDICATION	vii
DECLARATION	viii
ABBREVIATIONS	ix
LIST OF FIGURES	x
LIST OF TABLES	xii
1. INTRODUCTION	1
2. LITERATURE REVIEW	7
3. AIMS AND NULL HYPOTHESES	81
4. MATERIALS AND METHODS	83
5. RESULTS	162
6. DISCUSSION	202
7. CONCLUSIONS	222
8. FUTURE WORK	231
9. REFERENCES	234
10. APPENDIX	270

ACKNOWLEDGEMENTS

I acknowledge The Wellcome Trust for funding my position as a full-time Research Technician & part-time PhD student in The School of Dental Sciences at The University of Liverpool, UK.

I gratefully acknowledge the consummate professionalism & personal supervision of Dr. Richard N. Smith and Professor Alan H. Brook (International Collaborating Centre in Oro-Facial Genetics & Development, School of Dental Sciences, University of Liverpool, UK) who afforded me this generous opportunity & to whom I am sincerely deeply indebted.

My thanks extend to Dr. Paul Anderson (Biophysics Centre for Oral Growth & Development, Queen Mary & Westfield College, University of London, UK), Professor Lassi J. Alvesalo (Institute of Dentistry, University of Oulu, Finland) and Professor Grant C. Townsend (School of Dentistry, University of Adelaide, Australia) for their valuable collaborative input.

This project would not have been possible without the support of my good friends & colleagues in The Research Wing of The School of Dental Sciences at The University of Liverpool, UK.

DEDICATION

To My Family... Past, Present & Future.

DECLARATION

This thesis is the result of my own work. The material contained herein has not been presented, nor is currently being presented, either wholly or in any part for any other degree or qualification.

Ethics approval was granted by the Wellcome Trust programme (reference 06/Q0104/38).

The research was carried out in the School of Dental Sciences at The University of Liverpool.

ABBREVIATIONS

2D	Two-dimensional
3D	Three-dimensional
AI	Amelogenesis imperfecta
AIH1	X-linked Amelogenesis imperfecta
AIH2	Autosomal Dominant Local Hypoplastic Amelogenesis imperfecta
AMELX	Amelogenin human X chromosome gene
Amelx	Amelogenin mouse X chromosome gene
Amelx ^{WT}	Amelogenin wild-type
Amelx ^{X/Y64H}	Heterozygous Y64H mutation
Amelx ^{Y/Y64H}	Hemizygous Y64H mutation
Amelx ^{Y64H/Y64H}	Homozygous Y64H mutation
ECM	Extra-cellular Matrix
ENAM	Enamelin human gene
Enam	Enamelin mouse gene
Enam ^{WT}	Enamelin wild-type
Enam ^{Rgsc395}	heterozygous S55I mutation
Enam Resc395	homozygous S55I mutation
IAS	Image Analysis System
ICC	Intra-class Correlation Coefficient
MD	Mean Difference
NCSP	Non-contact Surface Profilometer
OMIM	Online Mendelian Inheritance in Man
PCA	Principal Component Analysis
PCC	Pearson's Correlation Coefficient
SD	Standard Deviation
SD Diff.	Standard Deviation of the Difference

LIST OF FIGURES

Figure 1. Mandible Morphometrics	. 19
Figure 2. 3D Model Reconstruction	.24
Figure 3. 3D Structured Light Methods	.28
Figure 4. The Genetic Regulation of Odontogenesis	.48
Figure 5. Mouse Incisor Morphogenesis and Development	. 50
Figure 6. Stages of Enamel Formation	. 59
Figure 7. The 2D Image Analysis System	. 92
Figure 8. 2D Morphometric Image Calibration	. 99
Figure 9. Mandible Morphometric Variables	. 100
Figure 10. Mandible overall-length	. 101
Figure 11. Mandible ascending-height	. 102
Figure 12. Mandible basal-length	. 103
Figure 13. Mandible mandible-angle	.103
Figure 14. Mandible coronoid-condyle-length	. 103
Figure 15. Mandible diagonal-length	.104
Figure 16. Mandible mandible-perimeter	. 104
Figure 17. Mandible mandible-area	.105
Figure 18. Incisor Morphometric Variables	.106
Figure 19. Incisor 2D projected overall-length	.108
Figure 20. Incisor 2D projected labial-length	. 1 09
Figure 21. Incisor 2D angle-of-curvature	. 110
Figure 22. Incisor 2D projected width-at-midpoint	. 111
Figure 23. Incisor 2D projected perimeter	.112
Figure 24. Incisor 2D projected surface-area	113
Figure 25. Customised Tooth Holder	. 114
Figure 26. Colour and Whiteness Assessment Image	115
Figure 27. Colour and Whiteness Imaging Illumination	. 117
Figure 28. Incisor Colour and Whiteness Assessment	119
Figure 29. 3D IAS Equipment	. 121
Figure 30. Direction of CMM Platform Travel and Data Collection	. 123
Figure 31 The Scanning Setup	.124
Figure 32. Z-Distance Measurement	.124
Figure 33. Precisely Engineered Steel Mandrel	125
Figure 34. The Customised Rotary Table	. 127
Figure 35. Multiple Multi-view Micro-topographical Surface-maps	. 128
Figure 36. Calculating Coordinate Point Data Offsets	. 129
Figure 37. Combining Multi-view images by Indexing/ Registration	.132
Figure 38. 360° 3D Surface Structure Model	.133
Figure 39. 3D Surface Region Scan Parameters	.137
Figure 40. Selected 3D Surface Region Image	.138
Figure 41. 3D projected overall-length	.140
Figure 42. 3D labial-length	.140
Figure 43. 3D actual labial-length	. 141
Figure 44. 3D projected width-at-midpoint	. 142

Figure 45. 3D actual width-at-midpoint	142
Figure 46. 3D actual perimeter	143
Figure 47. 3D surface-area	144
Figure 48. 3D circumference	144
Figure 49 . 3D total volume	145
Figure 50. 3D surface-roughness	146
Figure 51. 2D projected overall-length and 3D projected overall-length	147
Figure 52. 2D projected labial-length and 3D actual labial-length	148
Figure 53. 2D projected width-at-midpoint and 3D projected width-at-midpoint	149
Figure 54. 2D projected perimeter and 3D actual perimeter	149
Figure 55. 2D projected surface-area and 3D actual surface-area	150
Figure 56. Bland-Altman Plots Measurement Distribution	157
Figure 57. Intra-operator I Bland-Altman Plot – left mandible buccal overall-length	164
Figure 58. Intra-operator II Bland-Altman Plot – left mandible buccal overall-length	165
Figure 59. Inter-operator Bland-Altman Plot – left mandible buccal overall-length	166
Figure 60. Intra-operator I Bland-Altman Plot – left 2D incisor buccal overall-length	167
Figure 61. Intra-operator II Bland-Altman Plot - left 2D incisor buccal overall-length	168
Figure 62. Inter-operator Bland-Altman Plot – left 2D incisor buccal overall-length	169
Figure 63. Intra-operator I Bland-Altman Plot – non-polarised gingival region lightness	170
Figure 64. Intra-operator III Bland-Altman Plot – non-polarised gingival region lightness	171
Figure 65. Inter-operator Bland-Altman Plot – non-polarised gingival region lightness	172
Figure 66. Intra-operator I Bland-Altman Plot – left 3D incisor buccal overall-length	173
Figure 67. Inter-operator Bland-Altman Plot – left 3D incisor buccal overall-length	174
Figure 68. Validation Scatter Plot – left incisor buccal view projected length	175
Figure 69. Validation Bland-Altman Plot - left incisor buccal projected overall length	176
Figure 70. PCA Scree Plot Mandible Morphometry – left side buccal view	179
Figure 71. PCA Scree Plot 2D Incisor Morphometry – left side buccal view	181
Figure 72, PCA Scree Plot 3D Incisor Morphometry – left side buccal view	184
Figure 73. PCA Scree Plot 3D Incisor Morphometry – left side labial view	186
Figure 74. Amelx 2D IAS and Colour and Whiteness Comparison	206
Figure 75. Amelx 3D IAS Incisor Morphology and Surface Analysis Comparison	211
Figure 76. Enam 2D IAS and Colour and Whiteness Assessment Comparisons	214
Figure 77. Enam 3D IAS Incisor Morphology and Surface Analysis Comparison	217

LIST OF TABLES

.

Table 1. Gene Mutations Causing Amelogenesis imperfecta	64
Table 2. Intra-operator I Statistics – left mandible buccal view overall-length	164
Table 3. Intra-operator II Statistics - left mandible buccal view overall-length	165
Table 4. Inter-operator Statistics – left mandible buccal view overall-length	166
Table 5. Intra-operator I Statistics – left 2D incisor buccal view overall-length	167
Table 6. Intra-operator II Statistics – left 2D incisor buccal view overall-length	168
Table 7. Inter-operator Statistics – left 2D incisor buccal view overall-length	169
Table 8. Intra-operator I Statistics – non-polarised gingival region lightness	170
Table 9. Intra-operator III Statistics – non-polarised gingival region lightness	171
Table 10. Inter-operator Statistics – non-polarised gingival region lightness	172
Table 11. Intra-operator I Statistics – left 3D incisor buccal view overall-length	173
Table 12. Inter-operator Statistics – left 3D incisor buccal view overall-length	174
Table 13. Validation Statistics – left incisor buccal view projected overall-length	175
Table 14. PCA Mandible Morphometry – left side buccal view	179
Table 15. PCA 2D Incisor Morphometry – left side buccal view	181
Table 16. PCA 3D Incisor Morphometry – left side buccal view	184
Table 17. PCA 3D Incisor Morphometry – left side labial view	1 86
Table 18. Statistics Amelx left mandible buccal view overall-length	189
Table 19. Statistics Amelx left 2D incisor buccal view overall-length	1 9 0
Table 20. Statistics Amelx left gingival region lightness	191
Table 21. Statistics Amelx left 3D incisor buccal view projected overall-length	193
Table 22. Statistics Enam left mandible buccal view overall-length	194
Table 23. Statistics Enam left 2D incisor buccal view overall-length	195
Table 24. Statistics Enam left gingival region lightness	196
Table 25. Statistics Enam left 3D incisor buccal view projected overall-length	1 98
Table 26. 3D Surface Analysis	199

1. INTRODUCTION

1.1. INTRODUCTION	. 2
1.2. EXPERIMENTAL DESIGN AND METHODS	. 3
1.2.1. Animal Models of Amelogenesis imperfecta	. 3
1.2.2. Detailed Phenotyping	. 4
1.3. RELATING PHENOTYPE TO GENOTYPE	. 5
1.4. SUMMARY	. 6

1.1. INTRODUCTION

This project aims to further the information on normal and abnormal dental enamel mineralisation using novel 2D and 3D imaging and analytical measurement tools. This project used murine models to enhance the phenotypic differentiation and further the aetiological understanding of an inherited group of dental enamel defects known as the *Amelogenesis imperfectas*.

The project was the result of work carried out at The University of Liverpool, School of Dental Sciences. It was undertaken as part of the five year Wellcome programme grant (ref. 075945/c/04/z) that involved separate but allied parallel clinical and laboratory molecular and biochemical investigations at three other institutions; The University of Leeds, The University of Manchester and The University of Sheffield, and their respective University Hospital and National Health Service Primary Care Trusts.

Ethical approval was granted according to the Wellcome Trust programme grant.

1.2. EXPERIMENTAL DESIGN AND METHODS

1.2.1. Animal Models of Amelogenesis imperfecta

Odontogenesis is a paradigm for biomineralisation. The murine tooth model affords substantial opportunities for investigating the role of the extra-cellular matrix (ECM) proteins in enamel mineralisation. *Amelogenesis imperfecta* (AI) is an inherited enamel defect displaying genetic and phenotypic heterogeneity. The predominant ECM proteins amelogenin and enamelin are encoded by human (*AMELX*, OMIM300391 and *ENAM*, OMIM606585) and mouse (*Amelx* and *Enam*) gene homologues that are implicated in the aetiology of AI. Mouse models containing specific gene mutations are comparable to those found in humans because they disrupt protein function during different stages of enamel formation that are reflected in the overlapping range of AI phenotypes; *Amelx*^{Y64H} and *Enam*^{Rgsc395} mutant mice display similar phenotypes to humans with X-linked AI (A1H1, OMIM301200) and autosomal dominant local hypoplastic AI (A1H2, OMIM104500) respectively.

Mouse heads were obtained from Professor Michael Dixon's laboratory at The University of Manchester, UK, where the breeding colony was established from RIKEN (Riken, Wako, Japan) parent stock generated by N-Ethyl-N-nitrosourea (ENU) mutagenesis and identified during large scale phenotype driven screening (<u>www.gsc.riken.go.jp/Mouse/</u>). ENU mutagenesis generates point mutations to appropriately model human genetic diseases.

The mouse models are accessible and amenable to experimental investigation. Mouse mandibles and mandibular incisors are well suited to the quantitative study of tooth morphological development and enamel mineralisation respectively. The mouse mandible is a homologous developmental unit and the continuously growing mouse incisor represents all stages of enamel formation. Incisor enamel surface structure exhibits the *pre-secretory*, *secretory* and *mature* developmental stages of enamel formation. The tooth provides a permanent record of tooth development and enamel formation (amelogenesis). This permits direct correlation between the observable phenotype and the underlying genetic lesion.

Mandible and incisor morphological measurement (morphometry) and colour and whiteness assessment are excellent methods by which to quantify the developmental plasticity and the effect of the specific gene mutations on the critical function of amelogenin and enamelin in the phenotype variation of AI. Relating the macro-metric and micro-metric phenotype to the genotype helps to understand the aetiology of AI. The quantifiable effect on enamel mineralisation will lead to new information relating to the biological function of amelogenin and enamelin proteins *in vivo* in mice and in humans.

1.2.2. Detailed Phenotyping

New murine dental phenotyping approaches permit essential method reliability and validity to be determined for four new measurement methods; a modified 2D image analysis system (2D IAS) for (i) mandible morphology, (ii) incisor morphology (iii) enamel colour and whiteness assessment, and (v) a new 3D IAS incisor morphology and surface analysis method. A homogeneous wild-type population of extracted mouse mandibles and incisors will be used in a statistically comprehensive study of method reliability. The in-house developments - e.g. the novel colour and whiteness software algorithm, the customised hardware modifications and the novel specialised analytical software - will present major research outcomes that specifically meet the requirements of the small mammalian tooth application.

The new measurement methods will quantitatively characterise the phenotypes of mandibles, incisors and enamel mineralisation of an experimental population of two mouse models of AI. The unaffected $Amelx^{WT}$ and $Enam^{WT}$ (wild-type) control mice will serve as a baseline for comparative analysis with their respective affected $Amelx^{X/Y64H}$ (heterozygous), $Amelx^{Y/Y64H}$ (hemizygous) and $Amelx^{Y64H/Y64H}$ (homozygous) and the $Enam^{Rgsc}$ heterozygous and $Enam^{Rgsc}$ homozygous phenocopy mutant mice groups. A multiple comparison analysis of variance will provide robust statistical support.

1.3. RELATING PHENOTYPE TO GENOTYPE

Standardised and comprehensive characterisation of the two animal models will permit valid phenotype to genotype correlation providing fundamental information in respect of the role of the specific ECM proteins in enamel mineralisation, while increasing the relevance of the research to end users/ patients by translation to the human condition. The 2Ds and 3D investigations will provide significant additional quantitative data to describe previously inaccessible information on animal tooth morphology, lesion pattern and enamel distribution in respect of the macro-metric and micro-metric effect on the AI phenotype.

The new 3D IAS will facilitate new 3D surface analysis to provide a unique and accurate topographical examination of animal model lesion size and surface deficiencies and, furthermore, the nature and extent of structural defects present. Analysing the phenotype in relation to the genotype will address questions such as the causes of the variation in phenotype between individuals with the same single gene mutation and the variation in degree to which different teeth are affected in the same individual.

This will not only provide new information on defective dental mineralisation in respect of the effects of specific mutations in the ECM protein components but will also facilitate extrapolation from the animal to the human situation.

1.4. SUMMARY

In addition to providing a robust platform against which to interpret the roles of specific ECM components during odontogenic mineralisation, this study provides micro-metric and macro-metric observations for the systematic characterisation of dental defects and enamel phenotypes of animal teeth. This will permit correlations between the phenotype and the underlying genetic pathogenesis. This will provide quantitative phenotype level evidence to support the biochemical and histological data that has recently proposed the intracellular protein-protein interactions and trafficking/ chaperoning secretory pathways to be a key mechanistic factor underpinning the aberrant enamel mineralisation observed in AI.

2. LITERATURE REVIEW

2.1. INTRODUCTION	9
2.1.1. 2D and 3D Morphometric and Colour and Whiteness Assessment	9
2.1.2. Tooth Development and The Mammalian Model	.10
2.1.3. Mineralisation and The Predominant ECM Proteins	10
2.1.4. Phenotyping Murine Models of Amelogenesis imperfecta	11
2.2. 2D DENTAL MEASUREMENT METHODS	12
2.2.1. Direct Methods	12
2.2.1.1. Callipers and Dividers	.12
2.2.2. Indirect Methods	13
2.2.2.1. Early Photographic Method	.13
2.2.2.2. Savara's Data Acquisition Method	.13
2,2,2,3, Transverse Micro-Radiography	. 14
2.2.2.4. 2D Image Analysis System	.14
2.3. MORPHOMETRICS	16
2.3.1. Mandible Morphometrics	. 16
2.3.2. Landmark/ Measurement Determination	. 19
2.4. 3D DENTAL MEASUREMENT METHODS	20
2.4.1. Direct Methods	. 20
2.4.2. Indirect Methods	20
2.4.2.1. Photogrammetery	20
2.4.2.2. Reflex Metrograph	21
2.4.2.3. Travelling Microscope	22
2.4.2.4. Measuring Microscope	. 22
2.4.2.5. Moiré Contourography	. 22
2.4.2.6. Lasers in Dentistry	.23
2.4.2.7. Laser Scanners	.23
2.4.2.8. Slit-Ray Laser Scanner	. 24
2.4.2.9. Laser Line Scanner	. 26
2.4.2.10. Stripe Laser Scanner	.26
2.4.2.11. Laser Range Scanner	. 27
2.4.2.12. Commercial Digitisation	. 28
2.4.2.13. Non-Contact Surface Profilometry (NCSP)	. 29
2.4.2.14. Computed Tomography	
2.4.2.15. Micro-Computed Tomography	33
2.4.2.16. Nano-Computed Tomography	.34
2.4.2.17. Magnetic Resonance Imaging	34
2.4.2.18. Scanning and Transmission Electron Microscopy	35
2.4.2.19. Confocal Microscopy	36
2.4.2.20. Combined Methods	. 36
2.5 COLOUR AND WHITENESS ASSESSMENT	20
2.5. COLOUR AND WITHERISS ASSESSIVENT	38
2.5.1. Toolin Colour and Willieness Vallation	38
2.5.2. Colour Distribution	0C
2.3.3. Colour space	. 57

2.5.4. Methods of Assessing Tooth Colour and Whiteness	. 40
2.5.4.1. Shade Guides	. 40
2.5.4.2. Spectrophotometers	. 40
2.5.4.3. Colourimeters	. 41
2.5.4.4. Digital Image Analysis	. 41
2.6. DENTAL DEVELOPMENT	. 43
2.6.1. The Murine Model System	. 43
2.6.1.1. Dental Patterns	44
2.6.1.2. Mouse Mandibles	44
2.6.1.3. Mouse Incisors	45
2.6.2. Developmental Models	. 46
2.6.2.1. Morphogenetic Fields	. 46
2.6.2.2. Clone Theory	. 46
2.6.2.3. Molecular Models	.47
2.6.2.4. Unifying of Theories	47
2.6.3. Tooth Development	. 48
*	
2.7. MINERALISATION	. 51
2.7.1. Dentine	51
2.7.2. Enamel	. 52
2.7.3. Amelogenin Proteins	. 53
2.7.3.1. Amelogenin	. 54
2.7.4. Non-Amelogenin Proteins	. 56
2.7.4.1. Ameloblastin	56
2.7.4.2. Amelotin	. 57
2.7.4.3. Enamelin	. 57
2.7.4.4. Enamelysin and Kallikrein-4 Proteases	. 57
2.8. AMELOGENESIS	. 59
2.8.1. Amelogenesis	59
2.8.1.1. Pre-secretory Stage	. 60
2.8.1.2. Secretory Stage	. 60
2.8.1.3. Maturation Stage	. 61
2.9. AMELOGENESIS IMPERFECTA	63
2.9.1. Amelogenesis imperfecta	63
2.9.2. Phenotyping Mouse Models of Amelogenesis imperfecta	67
2.9.2.1. Amelogenin (Amelx)	. 67
2.9.2.2. Ameloblastin (Ambn)	70
2.9.2.3. Enamelin (Enam)	.71
2 10 SIDO(ADY	
2.10. SUMMAKY	72
2.10.1. 2D Measurement Methods	72
2.10.2. 3D Measurement Methods	72
2.10.3. Colour and Whiteness Assessment	. 75
2.10.4. 2D and 3D Morphometric Measurement Systems	75
2.10.5. Tooth Development and The Mammalian Model	76
2.10.6. Mineralisation and The Predominant ECM Proteins	77
2.10.7. Phenotyping Murine Models of Amelogenesis imperfecta	78

2. Literature Review

2.1 INTRODUCTION

2.1.1. 2D and 3D Morphometric and Colour and Whiteness Assessment

Image analysis has long been applied in dental morphology research because morphometric methods are well suited to experimental studies of anatomical form, structural development and morphogenesis. Image analysis increases understanding because it is objective and can simplify phenotypes into shapes and sizes that may be explored quantitatively.

Tooth colour is significantly influenced by the combined physico-optical properties of the dental hard tissues and enamel surface topography. Therefore, the normal and abnormal mineralisation of enamel and dentine affects tooth colour, and conversely, measurement of colour and whiteness measurement can be used as an indicator of levels of mineralisation.

Innovation in methodology can have important applications in addressing research questions. The numerous 2D and 3D imaging methods provide versatile techniques for morphological investigation that can be quickly and conveniently stored on a personal computer. The rise of digital imaging, the fall of photographic film use and the increased accessibility of digital technologies has expanded the applications of image analysis.

The literature review will detail a wide variety of 2D and 3D approaches to recording and measuring human and mouse dental morphology, and colour and whiteness. In assessing techniques for image acquisition, quantitative analysis and comparison, the available and developing technologies will be discussed in the context of those that can be translated from the human and optimised for the mouse application. Economy, speed, practicality, measurement accuracy, reliability, and breadth of parameters will be used as criteria for evaluating the limitations and efficacy of each method, and for assessing its relative advantages and disadvantages in terms of potential use for the small mouse application. The review will focus on image analysis systems that accurately quantify developmental morphologies to investigate the structure-function relationships of disease aetiologies. The combination of 2D and 3D techniques will provide a complementary multilevel approach to studying the complex multifactorial aetiologies of various abnormal dental phenotypes.

2.1.2. Tooth Development and The Mammalian Model

The accessibility of teeth makes them a convenient model for studying organogenesis. The similar developmental processes of human and mouse odontogenesis makes inbred strains of laboratory mice the mammalian model of choice for human dental disease, for a number of reasons. For example, mice and humans share a similar genome size, share many gene sequence homologies and orthologous proteins, and share many molecular regulatory mechanisms/ pathways during odontogenesis and skeletogenesis. The mouse incisor displays all of the distinct stages of initiation, morphogenesis, differentiation and mineralisation, including the complex processes that determine tooth number, size, shape, morphology and enamel surface structure. The genetic homogeneity of specially bred mice ensures a baseline level for experimentally introduced anomalies. Targeted gene mutation causes a single protein change that can be detected at the macroscopic phenotype level. This affect may then be attributed to the mutation under investigation, to provide insight into the processes of morphological development and enamel mineralisation. The mouse is the only mammalian model with which it is possible to employ both the phenotype to genotype (phenotype-driven) and genotype to phenotype (gene-driven) approaches.

Odontogenesis is a paradigm for biomineralisation. The important roles of the enamel ECM proteins in structural development, surface morphogenesis and mineralisation make the tooth a unique location to explore the phenotype-genotype relationship.

2.1.3. Mineralisation and the Predominant Extra-Cellular Matrix (ECM) Proteins

The precise ECM mediated orchestration of mammalian biomineralisation remains obscure but a number of important genes and proteins involved in dental mineralised tissue formation are recognised to provide instructional templates for crystal deposition, growth and morphology. The predominant enamel ECM proteins are amelogenin and enamelin. They are encoded by the *Amelx* and *Enam* genes respectively, which are evolutionarily conserved orthologues in humans and mice. Amelogenin constitutes 90% of developing enamel and enamelin is the largest but least abundant ECM protein (1-5%). Amelogenin and enamelin provided some of the earliest evidence of the ECM involvement in enamel mineralisation and have been extensively characterised. They are both secreted by ameloblasts in the various stages of enamel formation or amelogenesis. Their respective structures relate to their specific segregated functions in amelogenesis.

2.1.4. Phenotyping Murine Models of Amelogenesis Imperfecta

Mutations in *Amelx* and *Enam* genes are implicated in the aetiology of *Amelogenesis imperfecta* (AI), a clinically and genetically heterogeneous group of inherited dental defects. Three main deficiencies in the quality or quantity of enamel are broadly classified into three main AI phenotypes; hypoplastic, hypomineralised and hypomature. The diverse spectrum of phenotypes is dependent on the type and location of the specific gene mutations. Thus far, 15 *AMELX* and 8 *ENAM* gene mutations have been identified in humans.

The *Amlex* and *Enam* mouse models contain similar mutations to those found in humans. The targeted mutations are engineered to alter protein structure and disrupt function and have generated similar enamel phenotypes. These phenocopy mouse models substantiate the dynamic involvement of the ECM proteins in enamel formation. By detecting the affect of the specific protein changes on the macroscopic tooth morphology and microscopic enamel surface phenotype, in the distinct stages of amelogenesis, it may be possible to understand more about the specific roles of these proteins during enamel mineralisation and furthermore in the causality of AI.

2.2. 2D DENTAL MEASUREMENT METHODS

2.2.1. Direct Methods

2.2.2.1. Callipers and Dividers:

The early dental surveying instruments designed for reproducing tooth shape and dental arch form were reported to be tedious, relatively imprecise and practically unsuitable for measurements on teeth (Biggerstaff, 1969). Dividers, sliding callipers, vernier callipers and dial callipers were among the first manual techniques used to obtain linear measurements from dental study models (Moorees *et al.*, 1957; Bolton, 1962). The use of engineering dividers advanced with a millimetre rule (Bolton, 1958) and the desire for increased accuracy brought about the popular use of sliding callipers (Hixon and Oldfather, 1958; Hunter and Priest, 1960; Barrett *et al.*, 1963; Moorrees and Reed, 1964). Conventional engineering callipers were also a readily available instrument for measuring tooth dimensions.

Comparing manual measurements using engineering dividers and sliding callipers found measurements on study models to be systematically 0.1mm larger than the equivalent intra-oral measurements (Hunter and Priest, 1960). This was likely to have been caused by errors introduced by the impression and/ or casting procedures. Sliding callipers and Boley gauge callipers demonstrated higher reproducibility and were reportedly easier to use, more accurate and consistent than the needle point dividers (Moorees *et al.*, 1957; Shellhart *et al.*, 1995). The introduction of digital callipers linked to a personal computer brought about a more rapid measurement and data acquisition (Mik and Cooke, 1998) and reduced measurement transfer and calculation errors (Ho and Freer, 1999). However, the measurement error associated with manual landmark positioning on the cast and other factors involving operator subjectivity, such as landmark determination and repositioning (Hunter and Priest, 1960), meant that digital callipers did not provide a sufficient degree of accuracy (Mik and Cooke, 1998) or appropriate scale for morphometric measurement of murine teeth (Hillson *et al.*, 2005). The use of callipers would therefore be inappropriate in the current application.

2. Literature Review

2.2.2. Indirect methods

2.2.2.1. Early Photographic Method:

An early 2D technique that digitised photographic negatives of study models with manually marked anatomical landmarks showed good method reliability (Biggerstaff, 1969). The system used a number of linear and surface area measurements to assess cusp variation with good intra-operator (MD ± 0.014 mm) and inter-operator (MD ± 0.083 mm) precision (Biggerstaff, 1969). Although the overall method was less expensive and more versatile compared with the early direct techniques (Stanton *et al.*, 1931). The method for defining anatomical landmarks was ambiguous and callipers were still recommended for traditional dental measurements.

This semi-automatic system represented an early move towards reduced subjectivity and associated error and the predominance of the indirect methods for dental measurement. However, restricted measurement capacity and questionable practicality made this particular photographic method unsuitable for the current murine application.

2.2.2.2. Savara's Data Acquisition Method:

An indirect method that used photocopied reproductions of manually marked dental casts and reported no significant measurements differences (p < 0.001) was said to be reproducible, simple, economical and timesaving compared to the direct manual methods (Singh and Savara, 1964). However, a similar method showed substantial differences between the actual cast measurements taken with callipers and photocopies of dental casts (Champagne, 1992). Although this technique was said to avoid the limitations of elaborate equipment, factors of enlargement, object to image distance and lighting methods, it presented numerous problems such as magnification and the inability to precisely duplicate a 3D object into a 2D planar image.

A photogrammetric method by the same author quantified human tooth form by way of a modified comparator and a decimal converter (Savara, 1965). This essentially photographic technique used semi-automated computer based data reduction and data analysis to avoid common errors associated with callipers, i.e. reading scales and transcribing the figures, but introduced new sources of error (Savara and Sanin, 1969). The method showed fair cast reorientation and mesio-distal measurement (SD Diff. ± 0.09 mm) but only a limited number of

13

repeat measurements were carried out. The claimed benefits of this method were arguable and the expensive equipment and the need for skilled operators did not lead to its widespread use.

2.2.2.3. Transverse Micro-Radiography (TMR):

Transverse micro-radiography (TMR) is a 2D technique that allows the mineral content of the hard tissues to be quantified using X-ray absorption, which is proportional to the optical density of the photographic film or plate (Arends and ten Bosch, 1992). TMR is a practical and reliable technique but is also destructive, involving sample sectioning and polishing (Arends and ten Bosch, 1992). This is disadvantageous in terms of preparation time and also limits experimental design but TMR directly measures the mineral content of the dental hard tissues and quantifies mineral changes and distribution in enamel, dentine, and cementum (Higham *et al.*, 2009). TMR allows very detailed examination of mineralisation, e.g in rodent incisors (Sato *et al.*, 1996), but cannot investigate the macro-structure of the whole tooth.

2.2.2.4. 2D Image Analysis System:

The 2D Image Analysis System (IAS) was introduced to objectively measure tooth dimensions on dental casts (Brook *et al.*, 1983). The early apparatus consisted of a black and white television camera, an adjustable calibrated stage and a macro-stand illuminated by four adjustable lamps. Operators were able to control image acquisition, storage and on-screen display by a mini-computer and host software. Calibrated images were derived from multiple views and the configuration files containing the camera settings and stage orientation data could be saved electronically in order to reposition models exactly during repeat measurements (Brook *et al.*, 1983).

Large numbers of recognised dental measurements (Moores *et al.*, 1957) were taken using computer software with reasonable speed and intra-operator repeatability measurements $(\pm 0.1 \text{mm})$ compared to previous manual processes (Brook *et al.*, 1983). Comparing the IAS to a classical dial calliper on 50 individuals with a mean reliability for occlusal (81%) and buccal (66%) view measurements validated this system with lower reliability than the classic manual measurements (96%) (Brook *et al.*, 1986). This was because the dial callipers focused on individual teeth separately whereas the new technique enabled tooth measurements from the complete dentition and from multiple views. Calibration and alignment errors on the monitor were reported to be the cause of the measurement variation. However, the IAS introduced a

versatile orientation stage and an increasingly automated computer analysis approach that reduced experimental error and expedited data comparison of different samples.

The new 2D IAS demonstrated numerous advantages over the direct methods and previous indirect methods, e.g almost double the range of measurements of previous studies (Keiser, 1990) and a greater accuracy (± 0.01 mm) than digital callipers (Mitutoyo Ltd., Japan) (Brook *et al.*, 1999). Novel software programmes called macros aided morphological analysis and provided a greater variety of measurements (Khalaf *et al.*, 2001). The method measured all tooth types from various views with excellent intra-operator repeatability (ICC ≥ 0.97) (Brook *et al.*, 1999). Several considerable improvements contributed to the good to excellent multiple independent operator reliability (ICC 0.60 - 0.96), e.g. calibrated illumination and standardised model positioning, and have produced a comprehensive total imaging system (Brook *et al.*, 2005a), valid under both *in-vitro* and *in-vivo* conditions (Smith *et al.*, 2008a).

The application of the 2D IAS has been expanded for multiple purposes that include tooth size comparisons (Khalaf *et al.*, 2001, 2005a, 2009), analysis of curvature (Smith *et al.*, 2007), tooth symmetry (Khalaf *et al.*, 2005b; Di Biase *et al.*, 2006), tooth colour (Brook *et al.*, 2007; Lath *et al.*, 2007a), stain (Lath *et al.*, 2006; Lath *et al.*, 2007b), plaque (Smith *et al.*, 2001, 2004, 2006) and gingival inflammation assessment (Smith *et al.*, 2008b). A series of studies on hypodontia (McKeown *et al.*, 2002), supernumerary teeth (Khalaf *et al.*, 2001, 2005a, 2009), enamel defects (Brook *et al.*, 2001; Elcock *et al.*, 2006; Smith *et al.*, 2009a) and examination of Romano-Briton populations (Brook *et al.*, 1995, 2006) has highlighted the diverse functionality of the 2D IAS in investigating the multifactorial influences of genetic, epigenetic and the environment on tooth morphology and development (Brook *et al.*, 2002, 2005b), and disease aetiologies (Brook *et al.*, 2009). Indeed, the system upholds the gold standard for measuring dental morphology in 2D, and in validation studies on novel 3D measurement methods (Smith *et al.*, 2009b; Horrocks *et al.*, 2009).

2. Literature Review

2.3. MORPHOMETRICS

2.3.1. Mandible Morphometrics

A variety of non-morphometric methods have furthered the understanding of the molecular and cellular processes that effect morphogenesis, e.g. fluorescent protein assays in cleft lip and palate (Parsons *et al.*, 2008) and 3D serial histology of developing teeth (Lesot *et al.*, 1996, 1998) and mandibles (Ramaesh and Bard, 2003). However, although quantifying biochemical activity and microscopic ultra-structural growth has proven invaluable, particularly in studies of development and embryogenesis, these approaches would not be applicable for measuring tooth morphology or enamel surface structure analysis. Typically they have given little attention to subtle differences among the developmental mechanisms of conspecific organisms, despite the fact that experimental manipulations frequently produced a range of overlapping phenotypic manifestations (Bailey, 1985, 1986; Cooper and Albertson, 2008). Therefore, non-morphometric investigations can overlook the important overlapping variation in a range of phenotypes that have ramifications for differentiation in diagnosis.

Considering multiple biometric characters or morphometric variables allows quantitative estimation of morphological variation and divergence among populations as a result of genetic relationship in a complimentary approach to non-morphometric microscopic and histological methods (Ansorge, 2001). Furthermore, quantitative analysis of morphological variation provides a baseline framework for determining if fine scale phenotypic changes between control and mutant populations are the result of an experimentally induced alteration or developmental noise. Classical targeted disruptions of specific genetic pathways have lead to a significantly deeper understanding of the molecular regulation of morphogenesis and development. However, this extensive multidisciplinary research does not quantify how anatomical traits are affected at the phenotype level to give a more holistic view of the genotype-phenotype interactions. The bioinformatic methods that mathematically model developmental systems (Jernvall *et al.*, 2000) and/ or data-mine phenotypes (Plyusnin *et al.*, 2008) are out of the scope of this review.

On the other hand morphometric techniques quantify shape descriptions and calculate morphological variation when powerfully combined with statistical methods (Bookstein, 1984), e.g. Principal Component Analysis (Harris *et al.*, 1988; Khalaf *et al.*, 2001) or Planar

Procrustes Analysis (Robinson *et al.*, 2001, 2002). A great wealth of information about the genetic basis and development of anatomical form was generated from the use of comparative morphology in evolutionary genetics (Wentworth-Thompson, 1942; Bookstein, 1998; Klingenberg, 2002). Most biological forms contain specific landmarks that are structurally consistent loci (or points) and have evolutionary, ontogenetic, and/or functional significance (Lele and Richtsmeier, 1991). Homologous landmarks correspond between two or more characteristics of organisms cause continuity of information between groups/ populations in experimental studies (van Valen, 1982). Such landmarks may be useful in morphometric analysis when they are consistently and reliably located with a measurable degree of accuracy on all forms considered (Roth, 1988; Bookstein, 1997).

Skeletal features have long provided an amenable system for quantifying anatomical form; in particular the mouse mandible has been an excellent model for the complex morphological development of oro-facial structures (Gaunt, 1964; Atchley *et al.*, 1985; Atchley and Hall, 1991; Bookstein, 1998). Such features can be analysed using (i) direct measurements (Gaunt, 1964; Bailey, 1985, 1986), which characterise relative sizes of parts by linear distance measurements, (ii) the Cartesian coordinate locations of anatomical landmarks (geometric morphometrics) (Moore, 1973; Klingenberg *et al.*, 2001; 2004), or (iii) by the outline shapes of structures of interest (Lavelle, 1983; Moss, 1988; Cheveraud *et al.*, 1990; 1996). Investigations into the variability of size and shape in inbred mouse mandibles have used multivariate statistical analysis (Zelditch *et al.*, 1983, 1990) or finite element scaling analysis (Moore, 1973; Moss, 1988; Cheverud *et al.*, 1983, 1990) to quantify morphological divergence between well defined genotype groups.

Geometric methods combined with the multivariate generalisation of linkage analysis that reflect the entire diversity of spatial patterns of gene effects have been successfully used to analyse mandible size and shape by quantitative trait loci (Cheverud *et al.*, 1996) and Procrustes landmark superimposition (Klingenberg *et al.*, 2001). Principal Component Analysis (PCA) has been shown to spread the measure of variation evenly across factors so that size variation does not dominate and that new parameters avoid landmark overlap in the same regions with sparse sampling and missing variation in regions spanned by long measurements (Zelditch *et al.*, 1989). Other statistical methods have been also effective in analysing population differences and showed phenotypic variation was an effective exploratory strategy (Klingenberg, 2002).

17

Homologous landmark features between individuals illustrate morphogenetic traits and make it possible to detect the magnitude of developmental and phenotypic variation between inbred, genetically identical strains of model organisms. For example, skeletal modules or units may be used for linear measurements of both aspects of the mandible (Gaunt, 1964) and measurements between anatomical landmark points correspond to biometric regions of biomechanical significance (Moore, 1973). In fact, using characteristic mandibular landmarks the systematic morphometric analysis of 15 previously indistinguishable strains of inbred mice were differentiated using morphometric measurements with 98% accuracy (Festing, 1972). Also inaccuracies associated with poorly defined non-homologous biological landmarks were eliminated by datum point coordinate measurement methods that described the profile of the mandible in outline form, using a strip chart digitiser (Lavelle, 1973) and triangulation truss (Strauss *et al.*, 1982; Zelditch *et al.*, 1989). A number of more recent examples that successfully quantify form to describe the mutational effects on anatomical growth and formation may be found in Cooper and Albertson (2008).

2.3.2. Landmark/ Measurement Determination

By using a combination of direct linear methods (Moore, 1973; Bailey, 1985, 1986) and outline analysis (Lavelle, 1972, 1983; Moss, 1988) it will be possible to achieve new meaningful morphometric variables that will be more than the sum of the traditional anatomical landmark measurements (Figure 1.).

Figure 1. Mandible Morphometrics

(A) landmark points used to determine features for investigation (Festing 1972); (B) linear measurements between landmarks (Moore, 1973); (C) outline description of form by equidistant data points (Lavelle, 1973); (D) morphogenetic features that represent functional and developmental traits (Atchely *et al.*, 1985). Right and left hemi-mandibles shown.

The mandible morphology will be characterised by integrating established morphological landmarks with those from new measurement techniques to provide further parameters for anatomical and morphogenetic linear measurements within and between developmental units. Equally spaced data points have previously described the outline form or profile of both aspects of mandibles (Lavelle, 1973) and prominent morphogenetic features representing functional and developmental traits (Atchley *et al.*, 1985) will be combined to define new measurements, e.g. *perimeter* and *surface-area*. The benefits of the 2D IAS include increased automation and minimal operator subjectivity (Brook *et al*, 2005a) that will help define additional measurement parameters and extended the versatility of the existing system to provide an exciting possibility for exploring phenotype variation in dental morphology and development.

2.4. 3D DENTAL MEASUREMENT METHODS

2.4.1. Direct Methods

The direct methods employed specifically constructed instruments to measure tooth dimensions by direct mechanical contact, e.g. the Symmetrograph (Korkhaus, 1930) and the Optocom (van Der Linden, 1972). The Symmetrograph was a simple manual appliance that transformed the 3D contours of dental casts into a 2D profile on graph paper (Moyers, 1988; Ciambotti *et al.*, 2001). The Optocom consisted of a light microscope mounted onto a moveable table that positioned dental casts for imaging (van Der Linden, 1972). Their method reliability was reasonable but only after experienced operation (Bhatia and Harrison, 1986; Moyers, 1988).

The direct methods relied on mechanical or physical contact principles meaning that linear measurement errors were proportional to - and dependent on - the vertical Z coordinate data. Some direct 3D methods required more mechanical contact than others and the transformation of the 3D coordinates into a 2D medium was often approximated. This showed that the direct methods were full of many uncertainties, which was a considerable disadvantage that limited measurement accuracy and compromised morphological detail. The direct methods had a narrower measurement capacity and smaller range of measurements than both the manual calliper methods and the 2D IAS. By recording the 3D data in a 2D medium it was a challenge to make a complete comparison with the more contemporary 3D techniques. These effectively 2D methods can not be considered for the current study.

2.4.2. Indirect Methods

The indirect 3D approaches invariably used optical principals in a variety of methods.

2.4.2.1 Photogrammetry:

The early photogrammetry methods captured stereo-pairs of images that were combined to reconstruct the third dimension (Tham, 1956; Savara, 1965). Dental casts were positioned on a movable stage, in front of a horizontally mounted analogue camera. Occlusal surface photographs were developed and contour maps were drawn. The early 'stereo-photometric' methods recorded tooth dimensions on grid paper in terms of 3D coordinate point positions

(Berkowitz and Pruzansky, 1968; Taverne *et al.*, 1979), which effectively performed a 2D analysis in much the same way as the early direct methods (Korkhaus, 1930; van Der Linden, 1972). The limitations of the photogrammetry methods were reflected in their low measurement accuracy ± 0.1 mm (Savara, 1969) and high measurement variation ± 0.3 mm (Berkowitz and Pruzansky, 1968).

The alignment of stereo image pairs was problematic primarily because the movable carrier used for sequential images made the non-standard orientation of the models in 3D difficult and subsequently restricted accuracy. Therefore, photogrammetry could not be applied to a small mammalian application and was more suited to the large engineering and surveying applications from where the techniques were originally adopted.

Later investigations attempted to overcome the alignment problems by projecting a reference grid on to the dental cast surface with a light (Pirttiniemi *et al.* 1999). This illuminating method was more effective than using grid paper (Berkowitz and Pruzansky, 1968) and represented a precursor to Moiré Contourography (Kanazawa *et al.*, 1984; Mayhall and Alvesalo, 1992). The light projection apparatus was an early example of the use of the developing optical technologies and it indicated the start of a transition from the direct mechanical methods to the predominant use of the indirect optical methods.

2.4.2.2. Reflex Metrograph:

The Reflex Metrograph was based on the reflex plot system of Scott (1981) that generated 3D Cartesian coordinates with the aid of a microprocessor. The use of marked points on human dental study models improved coordinate point accuracy (X ± 0.06 ; Y ± 0.08 ; Z ± 0.10) (Takada *et al.*, 1983) and showed satisfactory intra-operator and inter-operator measurement reliability (Bhatia and Harrison, 1987; Richmond, 1987). For example, there were no significant differences (MD ± 0.50 -0.20) between the linear measurements when comparing the following three methods, (i) Vernier Caliper, (ii) a Reflex Metrograph (Butcher and Stephens, 1981) and (iii) Reflex Holograms (Benatar *et al.*, 1989). Although the Reflex Metrograph was reported to be quicker, simpler and more accurate than the previously discussed methods (Takada *et al.*, 1983) it did not provide sufficient precision, reliability or flexibility (Rossouw *et al.*, 1993) and was superseded by other indirect methods with a closer capacity to work at the small murine scale.

2.4.2.3. Travelling Microscope:

The travelling microscope, a binocular microscope fitted onto a movable carriage, was first used to investigate murine dental characteristics by Bader (1965). It was later used to measure 3D linear measurements on dental study models with a high Z-coordinate resolution of 1.0μ m and a good measurement repeatability (±2.0-3.0µm) (Bhatia and Harrison, 1986). Low measurement errors of marked (±0.067mm) and unmarked (±0.22mm) anatomical landmarks were smaller than those of the Reflex Metrograph (Takada *et al.*, 1983) and were almost 10 magnitudes smaller on marked casts (Bhatia and Harrison, 1986). The high Z-coordinate resolution of the microscope improved accuracy over the previous direct and indirect optical methods discussed. The mechanised horizontal and vertical movement also enabled good practicality and utility, offering a more automated process with considerable development potential.

2.4.2.4. Measuring Microscope:

The Measuring Microscope was first used to measure bucco-lingual diameters of murine molars with a resolution of $10.0\mu m$ (Grünberg, 1951). It defined morphological landmarks on dental casts with a high precision $(1.0\mu m)$ and low positioning error (SE X ±0.02mm; Y ±0.02mm; Z ±0.03- 0.02mm) (Theilke *et al.*, 1998). The Measuring Microscope was used for investigating the cusps, grooves and pits of dental cast occlusal morphology but not for full 360° analysis. It showed potential for mechanised automation similar to that of the Travelling Microscope.

2.4.2.5. Moiré Contourography:

Moiré Contourography (Rowe and Welford, 1967) was first used in dentistry to obtain 3D occlusal surface data and measure individual tooth cusp morphology (Kanazawa *et al.*, 1984; Mayhall and Alvesalo, 1992). A light was projected through a master and a reference grating and the resulting contour lines on the tooth surface were captured originally in an analogue photograph (Kanazawa *et al.*, 1984) and latterly by a digital camera (Mayhall and Alvesalo, 1992).

The equipment resolution was determined by the width (or interval) of the light contours (0.2mm) (Kanazawa *et al.*, 1984). The later technique used a computer program to magnify the digital photographs for more precise ($\pm 0.02\text{mm}$) on-screen measurement (Mayhall and Alvesalo, 1992). The measurement reliability was fair for the mesio-distal measurement (SD

 ± 0.40 mm) and bucco-lingual (SD ± 0.68 mm) measurement but the resolution was poor and the image analysis was limited to molar occlusal surfaces. The data collection time of 30 minutes for each tooth by experienced operators was prohibitively long (Mayhall and Kageyama 1997). A higher power light source and narrower width reference gratings would have reduced contour widths and increased the equipment resolution. The restricted range of measurements on the occlusal surface made this procedure of limited appeal when compared to modern indirect 3D optical methods.

2.4.2.6. Lasers in Dentistry:

The use of the indirect optical methods expanded in the dental literature as the prevalence of laser techniques escalated in the 1980s because of an increasingly competitive digitisation market that improved the commercial availability, affordability and awareness of laser devices (Rekow 2006). A variety of laser devices have found many specific applications in clinical (Keller and Hibst, 1993) and cosmetic dentistry (Mindermann *et al.*, 1993). They are most frequently employed in computer aided design (CAD) and computer aided manufacturing (CAM) applications in technical laboratories, wherein they automate the fabrication of prostheses and restorative implants through coordinate measuring machines (CMM) and 3D printer attachments (Duret *et al.*, 1988).

In the current context, the principal advantage of the CAD and CAM systems is that they are high throughput tools with high levels of automation. However, this has compromised resolution and versatility by design to speed up product development and standardise manufacturing quality respectively. Therefore, the specific design orientated operation does not give a high enough resolution or enough customisation potential for these systems to be suitable for the current purpose. Never the less, these methods have contributed to the momentum and technological foundation of the advancing 3D market and there are numerous other laser applications in dentistry that do require further consideration.

2.4.2.7. Laser Scanners:

The abundance of laser technologies on the commercial market has led to many dental research publications describing the use of 3D dental study models and on-screen computer measurements (Apuzzo, 2006). Invariably the laser scanner based optical devices use the geometric principal of triangulation to collect 3D point cloud data that is used for surface digitisation or 3D model reconstruction (Figure 2.).
Figure 2. 3D Model Reconstruction

(A) image acquisition by laser light projection and Charged Coupled Device (CCD) sensor (B) rudimentary point cloud data; (C) post-imaging computational processing to generate reconstructed triangular polygon mesh.

3D computer software renders virtual models of objects to provide a more comprehensive morphological quantification than was previously achievable by any of the 2D tools. Comparing the new 3D techniques with the previously described 2D methods typically reported a more detailed surface representation than was previously described because of the high density of point cloud information, e.g. on dental casts (Halazonetis 2001; Hajeer *et al.*, 2004). However, the resulting 3D models were dependent on the resolution of the individual scanners and the image processing parameters of the associated computer software (Curless and Levoy, 1996; Reich, 1998).

The term laser scanning has been applied across multiple disciplines, and was often used synonymously to describe both identical and different techniques. The following account of laser scanners, used for dental applications, adopts the native terms used by the authors. Although tautologies may exist, a complete review of the literature would otherwise not have been possible. The laser devices were separated into Slit Ray Laser Scanner, Laser Line Scanner, Stripe Laser Scanner and Laser Range Scanner. The following account may not be exhaustive but it is presented here in chronological order to represent the continuity of the laser technologies in dental applications.

2.4.2.8. Slit Ray Laser Scanner:

The slit-ray laser device was composed of a laser projector, a revolving mirror, two video cameras and a computer post-processing work-station (Kuroda *et al.*, 1996). The primary

advantage of this system was that it used a rotary table to move the dental cast in 360° while a stationary laser fan collected the point cloud data. The method reconstructed complete virtual 3D models in 40 minutes with low measurement error (< 0.05mm) (Kuroda *et al.*, 1996). There were no conventional dental measurements or statistical analysis presented but the introduction of a full 360° image acquisition system represented a noteworthy step towards a complete morphological assessment of human dental casts.

A similar technique using a stereo pair of video cameras reconstructed casts with a so called 'textured' illumination source (Ayoub *et al.*, 1997) that superimposed a conventional 2D digital image on to the 3D model surface. This approach was said to aid measurement landmark positioning and showed only small differences between the repeated manual measurements on dental study models (MD = 0.17 mm, SD = 0.08mm) and those obtained from the 3D virtual models (MD 0.06mm, SD 0.03mm) (Bell *et al.*, 2003).

Intra-operator measurement variation on the 3D casts (0.02–0.14mm) was suggested to be related to the positioning of landmark measurement points but was less than that observed when directly measuring the models with callipers (0.14–0.48mm) (Bell *et al.*, 2003). Therefore, the slit ray laser was of moderate accuracy and reproducibility but had errors associated with landmark positioning. There was no indication of economy or of the complete time taken for full cast image acquisition, analysis and measurement so some questions remained unanswered. Moreover, there were various problems associated with incomplete data sets or holes in the virtual 3D models.

One approach to improving 3D data collection was to use multiple images from multiple views (multi-view images) that were combined using advances in post-processing computer imaging software (Motohashi and Kuroda, 1999). Projected measurements between landmarks, that were equivalent to the mesio-distal calliper measurement and 2D methods, could now be attained in 3D and were comparable on the virtual and actual study models (MD ± 0.02 mm) (Motohashi and Kuroda, 1999).

Good resolution (0.01mm) and good precision (± 0.05 mm) was demonstrated (Hayashi *et al.*, 2003) but did not indicate any major advances in the time period between publications. This suggested an upper limit to the Slit Ray Laser technique. A more rigorous reliability study for a morphometric investigation would be expected to have examined more variables, included

a greater sample of models, and would have been strengthened by reproducibility of multiple independent operators. Nevertheless, important capabilities such as range of measurements, measurement precision and reliability had improved.

Importantly, two significant method improvements were represented here; (i) the combination of multi-view images by a rotary table system (Kuroda *et al.*, 1996) and (ii) the advances in image combination software (Motohashi and Kuroda, 1999).

2.4.2.9. Laser Line Scanner:

A laser line scanner (VIVID 700, Minolta, Osaka, Japan) improved on the speed of earlier multi-view methods by collecting four separate images quickly (25 minutes) using a goniometer to reposition the dental casts (Sohmura *et al.*, 2000). Digital callipers measurements taken on 10 actual casts and virtual on-screen measurements taken on 10 3D models showed good coordinate point accuracy (SD ± 0.015 mm) and a high measurement correlation ($R^2 0.9854$) (Sohmura *et al.*, 2000). The Cubesper laser line scanner (Topcon Inc., Tokyo, Japan) was less precise (MD >0.3mm) (Hirogaki *et al.*, 2001). The low resolution of the VIVID 700 (0.4mm) provided gross morphological images that were not good enough to reproduce detailed occlusal surface structure, e.g. hypoplastic lesions or fissures.

The goniometer contributed to a good overall operating speed and was a simple and effective method of collecting multi-view data. However, its fixed tilt angle $(\pm 30^{\circ})$ and 90 ° interval positioning was restrictive and the 3D reconstructed models contained surfaces with incomplete data sets or holes, particularly around areas of undercut. The previously described rotary table (Kuroda *et al.*, 1996) was considered to be the superior positioning tool (Sohmura *et al.*, 2000). The computer algorithm used to combine the multi-view images was a substantial software improvement but there was no indication of how the image combination errors (X ±0.08mm; Y ±0.35mm) were derived.

2.4.2.10. Stripe Laser Scanner:

A stripe laser scanner (VIVID 900, Minolta, Osaka, Japan) with a moderate resolution (0.18mm) (Sohmura *et al.*, 2004a) was higher than the two similar models that were previously described as laser line scanners VIVID 700 (Sohmura *et al.*, 2000) and Cubesper (0.25mm) (Hirogaki *et al.*, 2001). The stripe laser scanner linear measurements error (MD ± 0.3 mm) was reasonable compared to the other model VIVID 700 (MD ± 0.2 mm) (Sohmura

et al., 2000) but the multi-view image combination errors of both instruments were too large for dental casts (Sohmura *et al.*, 2004a) and would entirely prohibit any accurate investigation of a small mouse tooth subject.

2.4.2.11. Laser Range Scanner:

A laser range scanner with a moderate resolution (0.1mm) combined multi-view images using a fiducial marker with a small average error $(\pm 0.08\text{mm})$ and standard deviation $(\pm 0.04\text{mm})$ (Goshtasby *et al.*, 1997). This procedure involved subjective operator input during the placement of markers and the mathematical calibration was reported to be difficult and time consuming (Goshtasby *et al.*, 1997). The resolution of this method did not improve the morphological analysis beyond other comparable methods that were simply used for digitising models for archiving and display purposes (Apuzzo *et al.*, 2006).

A laser range scanner method with a moderate resolution (X 0.15-1.00mm; Y 0.30mm; Z 0.05-0.20mm) independently analysed teeth sectioned from 3D models and was able to export these images in various file formats (Kondo *et al.*, 2004). However, there were no considerable advantages to this technique over other 3D laser techniques (Chuah *et al.*, 2001) and the inadequate resolution and absence of other method assessment criteria, e.g. measurement details and reliability, made the technique unsuitable for the murine application.

The various laser methods described and presented so far represent a single technology. The methods projected a variety of laser light patterns (line, stripe, slit ray and range) onto the surface of dental casts and may be collectively referred to as the structured light methods (Figure 3.).

Figure 3. 3D Structured Light Methods

(A) a continuous light stripe (or fan) swept the object; (C) a light spot laser projection or single point laser. The object was either stationary, while the projected light scanned the object, or the object was moved as the light remained stationary. Both obtained 3D data using the optical principal of triangulation. Image modified from Halazonetis (2001).

2.4.2.12. Commercial Digitisation:

Commercial digitisation methods became increasingly versatile and included both *in-vitro* systems (OrthoCAD, Cadent, New Jersey, USA) and *in-vivo* systems (e-Models, GeoDigm Corp, Minnesota, USA) with sophisticated measurement tools well targeted to clinical dental practices (Hajeer et al. 2004; Joffe, 2004). Classical Vernier callipers were compared with three computerised methods; (i) QuickCeph 3D digital models with on-screen measurements (Quick Ceph SystemsInc., California, USA), (ii) OrthoCAD 3D digital models with onscreen measurements, and (iii) the Hamilton Arch Tooth System (HATS) digital callipers (Tomassetti et al., 2001). The QuickCeph (MD ±1.84 mm; PCC 0.432), HATS (mean difference = 0.99mm, PCC 0.885) and OrthoCAD (MD ±1.20 mm; PCC 0.715) methods compared well with the Vernier callipers that were the most repeatable (MD ± 0.77 mm; PCC 0.934). The QuickCeph method was the fastest but had the lowest measurement correlation, followed in order of decreasing speed by the HATS, OrthoCAD and the Vernier callipers methods (Othman and Harradine, 2006). The compromise between measurement speed and precision was consistent with their respective levels of automation. The anatomical landmarks were difficult to distinguish with the two commercial digitisation systems (OrthoCAD and QuickCeph) (Tomassetti et al., 2001). This reinforces the proposition that the greatest source of random error is caused by difficulties identifying and defining

anatomical landmarks (Houston, 1986). Therefore, the classical 2D hand measurements here proved to be more accurate, reliable and faster to operate when considering the overall setup time and dependence on computing facilities.

The OrthoCAD system was later evaluated against the Boley gauge by two examiners with good inter-operator measurement reproducibility (PCC <0.001) (Santoro *et al.*, 2003). On the other hand, the measurements were smaller on the 3D model than the actual model suggesting systematic error that was believed to have been caused by a combination of alginate shrinkage during transportation to the OrthoCAD location, differences in operator training and abilities, and the effect of operator preferences for measuring on a computer screen (Santoro *et al.*, 2003; Quimby *et al.*, 2004). The validity, reproducibility, efficacy and effectiveness of the OrthoCAD method was also tested against digital callipers by one examiner measuring 10 standard models, two examiners measuring 50 models and 10 operators measuring 10 models (Quimby *et al.*, 2004). The two measurements methods were equally accurate, reliable and clinically acceptable with excellent reproducibility (ICC >0.90), according to Donner and Eliasziw (1987). The 3D measurement method was superior to the Boley Gauge method (Santoro *et al.*, 2003) despite the ambiguous sources of error and variance ascribed to alginate shrinkage and operator subjectivity (Quimby *et al.*, 2004).

A Peer Assessment Rating (PAR) index score of intra-operator measurements on plaster models with digital callipers (ICC 0.98) and on 3D OrthoCAD models with onscreen measurement (ICC = 0.96) showed excellent reliability (Zilberman *et al.*, 2003; Mayers *et al.*, 2005) with no clinically significant differences between the two methods (Stevens *et al.*, 2006). Therefore, the accuracy of these commercial 3D methods was clinically acceptable but was not as suitable for scientific work as digital callipers (Lin *et al.*, 1998; Tomassetti *et al.*, 2001; Santoro *et al.*, 2003; Quimby *et al.*, 2004; Mayers *et al.*, 2005; Othman and Harradine, 2006).

2.4.2.13. Non-Contact Surface Profilometry:

The non-contact surface profilometer (NCSP) has been used to describe a number of single point methods that employed laser triangulation (Lee and Chang, 2005; Apuzzo, 2006) and chromatic confocal sensors (Chen *et al.*, 2000; Higham *et al.*, 2009). In dentistry, the technology has been employed to investigate dental biomaterials (Zhang *et al.*, 2000; Chrzanowski *et al.*, 2008), and enamel erosion and abrasion (Barbour *et al.*, 2006; Ablal *et*

29

al., 2009; Elton *et al.*, 2009). In both cases images were acquired from a single laser point or laser spot projected onto and reflected from a tooth surface using different optical principals and technologies (Chen *et al.*, 2000; Apuzzo, 2006; Higham *et al.*, 2009). The term laser was only correctly applied to the laser triangulation technique because the chromatic confocal sensor technique used polychromatic (white) light.

Single point laser methods overcame some of the shortcomings of the laser scanning techniques for a small mammalian teeth application because they had a shorter working distance (180mm) and measuring range (45mm) (Lee and Chan, 2005). Typical close range single point lasers, e.g. *Scantech st600* (Scantech, Ringsted, Denmark) and *Callidus CT900* (Callidus, Halle, Germany), had a similar resolution (50μ m) and accuracy (± 0.1 mm) but both these criteria decreased proportionally as the working distance from the tooth surface increased (100-400mm and 0-900mm respectively). On the other hand, the NCSP equipment was available in a modular setup so operators could design their own system to suit their application specifications (e.g. different chromatic confocal sensors). This was a major advantage that would benefit the current requirements for both macro-scopic morphological analysis and micro-scopic surface analysis.

The micro-metric performance of the NCSP resolved a huge variety of surfaces to create 3D micro-topological surface maps because the chromatic confocal sensor tolerated optical heterogeneity, surface colour and transparency differences and irregularities. The sensor was not influenced by variable reflectivity or ambient illumination and was appropriate for all types of dental materials - transparent/ opaque, specular/ diffuse and polished/ rough - including the transparent or semitransparent surface layers of the enamel and dentine. Also, it eliminated the light scattering/ specular reflection associated with incomplete data or holes from laser sources (Kuroda *et al.*, 1996; Motohashi and Kuroda, 1999; Sohmura *et al.*, 2000), it avoided beam spot reflection and stray light effects to provide more accuracy than the more widely used position sensitive detectors of single point lasers (Chen *et al.*, 2000; Lee and Chang, 2005).

The NCSP technique employs axial chromatism within the chromatic confocal optical sensor. When white light passes through a lens with a high degree of chromatic aberration this causes the different wavelengths to be focused at different positions in the Z coordinate measurement range, so that within a continuum of monochromatic diffraction limited planes,

30

only one part of the object is focused at any one position, thus introducing a new level of submicron accuracy (Tiziani and Uhde, 1994). As the reflected light passes through a beam splitter projected onto an optical pin hole it has a double or confocal filtering effect that excludes all out of focus wavelengths in much the same way as classical monochromatic confocal microscopes that eliminate light that is thicker than the focal plane (Carlsson and Alund, 1987). A spectrometer then deflects the different wavelengths by different amounts and the sensor detects, processes and converts these different signals into a precise depth discriminating distance measurement with a high (>1.0 μ m) Z-coordinate resolution. The Zcoordinate data then combines with the X and Y coordinate location of the precise (25 nm) CMM mechanically moveable stage to achieve a highly competitive overall systematic resolution of 1.0 μ m.

Also, the NCSP could be customised. Hardware modification can combine the X and Y coordinate automation of the travelling microscope (Bader, 1965; Bhatia and Harrison, 1987) and the high resolution of the measuring microscope (Gruenberg, 1951; Thielke *et al.*, 1998) with a rotary table for multi-view image acquisition (Kuroda *et al.*, 1996). An appropriately chosen chromatic optical sensor would provide a sufficiently high resolution and the versatile system would be sufficiently automated to suit the current application of investigating both the 360° macro-morphology and the enamel surface micro-structure of small murine teeth. Fabricating a rotary table to adapt the CMM stage to hold and move a mouse incisor (e.g. at defined intervals such as $360^{\circ}/60^{\circ} = 6$ images) within a suitable measuring range would establish a central axis of rotation about which mathematical offsets or spatial adjustments could be made to register the multiple multi-view image files together. The growing 3D imaging software market may provide a suitable solution.

Therefore, a rotary stage modification would be multi-purpose, serving to; (i) facilitate tooth positioning within the measuring range, (ii) be the absolute reference in the local coordinate system, and (iii) be the central axis of rotation for combining multiple multi-view images into a single 3D model. The NCSP (including chromatic confocal sensor) represents a highly suitable method for the current study because of its high resolution, versatility, relatively economical adaptation cost (£25,000) and proven ability to interrogate enamel surface mineralisation. However, other competing methodologies needed consideration.

2.4.2.14. Computer Tomography (CT):

Computer Tomography (CT) is a digital imaging technique that involves the geometric reconstruction of a large series of high resolution 2D sections, taken about a single axis of rotation. The multiple cross-sections, or slices, are reconstructed by various computer software algorithms to generate a complete 3D image. The many applications of CT have had a globally important impact, e.g. Magnetic Resonance Imaging (MRI), Confocal Microscopy, Micro-Computed Tomography (μ CT), Nano-Computed Tomography (nano-CT).

As CT resolves structures like bone it has become an attractive method for recording and measuring 3D morphological data, particularly as dental cast die stone study models have a high radio-density (Pirttiniemi *et al.*, 1999). Attempts to combine skeletal hard-tissue information from CT scans with other laser scanning dental information reported significant errors and difficulties (Nishii *et al.*, 1998; Terai *et al.*, 1999; Nakasima *et al.*, 2005). Conventional diagnostic multi-detector CT and multi-slice helical CT scanners combine multi-slice images less than 1.0mm in thickness (Fuchs *et al.*, 2000; Khambay *et al.*, 2002), and a medical X-ray CT technique can complete scans of dental casts in a few seconds and reconstruct 3D models within 10 minutes (Sohumura *et al.*, 2004b). This represents a useful reduction in scan time, e.g. when compared to the laser line scanner (25 minutes) (Sohumura *et al.*, 2000), the stripe laser scanner (40 minutes) (Hirogaki *et al.*, 2001) and the other laser devices (Kuroda *et al.*, 1996; Goshtasby *et al.*, 1997; Motohashi and Kuroda, 1999; Bell *et al.*, 2003; Kondo *et al.*, 2004).

The introduction of industrial specification CT scanners with a serial reconstruction slice thickness of 10μ m have demonstrated the power of this method to visualise and analyse biological specimens that were once considered too small to image with medical diagnostic machines (Rowe *et al.*, 2001). The anatomical investigation of small mammals using high resolution X-ray CT has dramatically improved the quality and quantity of 3D information available (<u>http://digimorph.org/index.phtml</u>) (Rowe *et al.*, 2001) and has been used to visualise the 3D morphology of teeth, measure enamel and dentine distribution, thickness and volume (Gant *et al.*, 2001).

2.4.2.15. X-ray Micro-Tomography (XMT) and Micro-Computed Tomography (µCT):

X-ray micro-tomography (XMT) is a miniaturised version of CT or computed axial tomography (CAT) scanning (Elliot *et al.*, 1994). It amasses large amounts of information that can be represented as 2D or 3D images with a resolution of between 5-30 μ m (Anderson *et al.*, 1996). μ CT resolves cross-sectional image pixel sizes in the micron range and has a potential threshold of detectability of small details 1–2 μ m in dimension (Higham *et al.*, 2009). In XMT, unlike μ CT, the specimen is rotated not the X-ray source and detector, so that a series of X-ray projections recorded at a number of angles around the specimen give a 360° radioscopic image (Davis and Wong, 1996). The 2D data projections are obtained in a single plane using an X-ray intensifier and the resulting images are used to reconstruct a 3D model.

The early XMT attenuation images were limited to 40 μ m and did not discriminate sufficiently between the mineralised dental tissues (Tachibana and Matsumoto, 1990) but the method has since been useful in the study of mineral concentrations (Anderson *et al.*, 1996; Davis and Wong, 1996) and in remineralisation and demineralisation studies (Anderson *et al.*, 1998; Anderson *et al.*, 2004; Dowker *et al.*, 2003; Fearne *et al.*, 2004). XMT has also been used to illustrate enamel and dentine distribution, thickness and mineral concentrations in mouse incisors (Wong *et al.*, 1995; Wong *et al.*, 2000) and molars (Lazzari *et al.*, 2009). Recent advances in μ CT have used high intensity synchrotron sources to improve image resolution (1–30 μ m), e.g. SkyScan-1072 (SkyScan, Antwerpen, Belgium) (Wazen *et al.*, 2009) and a μ CT system (IMTEK Inc, Knoxville, TN) (Tsutsui *et al.*, 2008).

Kim *et al.*, (2007) evaluated the accuracy of measurements taken on (i) twelve extracted teeth using digital callipers (Mitutoyo Corp., Japan; accuracy ± 0.02 mm) that were used as a reference and compared to (ii) calibrated 2D digital photographs with Image-J 1.27z software (National Institutes of Health, USA), (iii) noncontact 3D optical scanner Topometric 3D-Sensor optoTOP (resolution 2µm, accuracy 6-15µm) (Breukmann GmbH, Germany), with RapidForm 2002 software (INUS Technology Inc., Korea), and (v) a desktop µCT scanner SkyScan-1072 (detail detectability of 3µm and a resolution of 8µm) (Skyscan, Antwerpen, Belgium) measured using V-works software (CyberMed, Inc., Korea). All the distance measurements from the four methods were highly correlated (PCC, p < 0.01). The 3D optical scanner was in very close agreement with the calliper measurements but the measurement on

the 2D digital photographs were significantly (p < 0.01) overestimated when compared to other methods (Kim *et al.*, 2007). Volume measurements from the μ CT were significantly (p < 0.01) underestimated compared to the 3D optical scanner (Mean Standard Deviation of the difference -50.40 ± 22.78, (Kim *et al.*, 2007). The overestimation and underestimation was attributed to a number of non-standardised systematic errors described by the authors, e.g. differences in magnification and calibration, which highlighted the central importance of reliability testing and method validation of new imaging techniques. The ability to measure the volume of each portion of a tooth with a density by the XMT and μ CT methods was an advantage but appropriate thresholds must be defined to distinguish between the various tissues and structures from the surrounding materials/ tissues (Kim *et al.*, 2007). The XMT and μ CT methods were undoubtedly powerful but meaningful morphological measurement using this new tool still requires considerable refinement.

2.4.2.16. Nano- Computed Tomography (Nano-CT):

Nano-CT, like µCT, uses X-rays to non-destructively image slices or cross-sections of a 3D object for reconstruction into a 3D virtual model. The term nano indicates that the pixel sizes of the cross-sections are in the nanometer range. A high-resolution (200-300nm) SkyScan-2011 nano-CT (Skyscan, Antwerpen, Belgium) was used to examine the internal morphology of dentin and resolve its porous sub-structure (Parkinson and Sasov, 2008). Nano-CT has also been used for accurate enamel mineral density and thickness determination (Myers et al., 2009). In this case, a TMR sectioned (100µm) murine incisor was used as a reference or 'standard' for the enamel mineral density measurement and was then re-assembled using cyanoacrylate and scanned using nano-CT. Ten nano-CT slices (10 µm) were reconstructed into 100µm sections for analysis using SkyScan software (Myers et al., 2009). The nano-CT and TMR data exactly matched demonstrating that nano-CT can provide a quantitative, rapid and non-destructive method for the determination of enamel mineral density on a continuous 3D basis. A few commercially available systems exist at present but the technology is prohibitively expensive and shows only marginal benefits over μ CT. Nonetheless, as accessibility of this powerful new technique improves it will gradually be compared more and more with existing techniques and is likely to be highly competitive.

2.4.2.17. Magnetic Resonance Imaging (MRI):

Magnetic Resonance Imaging (MRI) is a non-invasive method that renders tomographic images to demonstrate the biochemical, physiological and/ or pathological conditions of

organs and other internal structures. It is most frequently used for medical diagnosis and has diversified into numerous specialised forms, e.g. *diffusion* MRI, *functional* MRI, *interventional* MRI and *experimental* MRI. MRI uses non-ionising radio frequency signals and does not expose patients to harmful radiation. It is best suited to non-calcified tissues because of their low radio density, but a contrast-enhanced dental MRI technique that used intra-oral disclosing medium was able 3D visualise the mandible and teeth in the oral cavity (Olt and Jakob, 2004). It was a feasible alternative to other X-ray based imaging, such as conventional radiography and CT, because of its high resolution (0.6mm x 0.6mm x 0.8mm) and very fast scan times (2 minutes for a full cast) (Olt and Jakob, 2004).

However, CT scanners make better tools for examining bone and calcified tissues such as enamel and dentine. Both CT and MRI generate multiple 2D cross-sectional images of tissues to build 3D reconstructions but because MRI is capable of superior image contrast, by varying a number of scanning parameters, it can enhance and alter tissue contrast to detect different features and readily discriminate soft tissues. Therefore, MRI is intended for *in-vivo* imaging and would not be a practical reality for the current small murine dental application. CT is more widely available, more economical, and more convenient than MRI but both methods are very expensive (> $\pm 1,000,000$) compared to the previously described techniques.

2.4.2.18. Scanning and Transmission Electron Microscopy:

Scanning Electron Microscopy (SEM) is capable of imaging fine morphological detail at tens of thousands of times higher resolution (1-5nmn) than light microscopes. SEM magnification can be controlled between 10 and 500,000 times and is capable of relating the microanatomy and surface morphology of a wide variety of samples. SEM typically yields images with a characteristic 3D appearance that would be useful for examining the tooth morphology and surface structure of teeth but 3D measurements cannot be made directly (although some dimensions may be determined by stereo-photogrammetry). Transmission Electron Microscopy (TEM) is a related technique that forms another chief image analysis method which is applied in a range of scientific, biological and medical fields. TEM and SEM are microscopic techniques rather than macroscopic techniques and as such are more often than not used for histological investigations of internal tissues *in-vitro*. SEM and TEM samples require chemical preparation before imaging, which makes them both relatively time consuming and expensive processes with a low throughput. The SEM and TEM techniques

are very powerful, particularly as TEM can be combined with 3D representation using CT methods, but the cost of the equipment is expensive (> $\pm 100,000$).

2.4.2.19. Confocal Microscopy:

The use of the confocal microscope has been instrumental in progressing both the micro- and macro-relief (Jernvall and Selaenne, 1999) inspection of small mammalian tooth morphology, e.g. a laser scanning confocal microscope (LeicaTCS NT, Leica Ltd, Sydney, Australia) was used to image fluorescently stained urethane casts of bat teeth (Evans *et al.*, 2001). The topographical and shaded relief maps reconstruct the tooth surface topology from optical sections either by reflection or by fluorescence imaging. The laser point source mapped the surface topography of the cast at high resolution ($X = \pm 35\mu m$, $Y = \pm 10\mu m$, Z = number of pixels 128 x 128 or 256 x 256, or sampling interval between stacks) with rapid scan times but the large amount of data made substantial demands on computer processing power and increased image processing time. Moreover, the method imaged a cast rather than the actual dentition and because of optical heterogeneity (caused by loss of signal intensity and signal degradation) accurate models were not possible (Evans *et al.*, 2001). The chromatic optics of the NCSP method does not have this problem.

The laser scanning confocal microscope was effective because of the combined single point laser source and confocal optics. However, the optical sectioning technique would more be more appropriately used to represent the internal micro-structure of tissues, cells and organelles (similar to SEM and TEM) and would not be suitable for the current investigation.

2.4.2.20. Combined Methods:

Much of the direct and indirect methods, except CT and MRI, have been limited to the erupted tooth crown. Using a combination of methods (e.g. laser scanned occlusal surface images and radiographic root structure images) it was possible to explore the whole tooth and obtain previously inaccessible information (Nishii *et al.*, 1998). Other combined approaches have reconstructed images from different methods by using a generic example of a tooth and best fit landmark registration (Enciso *et al.*, 2003) or the individual occlusal surface morphology and different algorithms (Buchaillard *et al.*, 2007). The benefit of these combined approaches was that they exploited all clinical information available for a given tooth, which may be advantageous for patient specific dentistry, but there were no overall

timings given for image acquisition or of individual procedures, only the computer processing was reported to be fast.

If μ CT and 3D laser scanning data is to be accumulated and properly correlated in the future it might be possible to predict the internal structures of teeth from the 3D surface (Kim *et al.*, 2007). However, further hardware and software developments would be necessary for this to become a reality. Nevertheless, once the various CT methods become more widely available and financially accessible their part in a combined approach would be very attractive, especially in an increasingly collaborative multi-disciplinary clinical research field.

2.5. COLOUR AND WHITENESS ASSESSMENT

2.5.1. Tooth Colour and Whiteness Variation

There is a wide range of tooth colour variation in the population. Enamel and dentine defects dramatically affect observable tooth colour and whiteness, e.g. *Amelogenesis imperfecta* exhibits discolouration varying from cream and yellow opacities to brown and black colours (Brook *et al.*, 2007). Natural variation occurs within and between regions of the same tooth, from tooth to tooth, and is influenced by extrinsic colourations or environmental factors (Brook *et al.*, 2007). These extrinsic factors can be minimised or excluded in congenic animal populations by the uniform conditions of animal husbandry.

In humans, colour changes caused by developmental defects of enamel are included in the subjectively assessed indices (i) the Federation Dentaire Internationale (FDI) Developmental Defects of Dental Enamel Index and/ or (ii) Epidemiological Index of Developmental Defects of Dental Enamel (FDI, 1992; Brook *et al.*, 2001; Elcock *et al.*, 2006; Smith *et al.*, 2009a). Currently no measurement methods of murine tooth colour and whiteness exist. The human clinical indices may not be directly translated for the assessment of murine dental anomalies but their qualitative terminology can be used to initially identify defects (opacities, hypoplasias and discoloured enamel) and record them on the Mouse Dental Anomalies Database Record Form.

2.5.2. Colour Distribution

In humans, incisor colour distribution is typically assessed in three anatomical thirds - cervical (or gingival), middle and incisal - of which the middle third is the most representative portion in terms of colour and whiteness (Brook *et al.*, 2007). In mice, incisor enamel is distributed asymmetrically along the labial surface, reaching further in the buccal direction than the lingual direction (Hay, 1961; Moinchen *et al.*, 1996). The normal colour distribution of a wild-type mouse incisor is opaque white with yellow/ orange/ brown pigmentation at the distal-tip being consistent with the presence of dentin and iron pigments as the major colour constituents (Halse, 1972). The translucent whiteness fades in a proximal direction through horizontal bands into more opaque white. The un-erupted part of the incisor

(within the hemi-mandible) becomes progressively red/ brown towards the apical end where there is no enamel.

Enamel mineralisation in the rodent mandibular incisor has been divided into three histological stages of enamel formation or amelogenesis; (i) pre-secretory, (ii) secretory and (iii) maturation (Smith and Warshawsky, 1975, 1976). Five developmental stages were identified in the appearance of enamel as: (i) soft translucent, (ii) soft cracked, (iii) white opaque, (iv) hard translucent and (v) yellow/ brown pigmented (Robinson et al., 1983). These colour changes related to the chemistry and histology of the enamel organ (Robinson et al., 1981a, 1981b) where, from the proximal-end to the distal-tip, Ca and P increased (Hiller et al., 1975), as did enamel and dentine mineral concentrations (Wong et al., 1995). The rat mandibular incisor was sampled in three stages of amelogenesis (pre-secretory, secretory and maturation) using external reference points on the molars as landmarks for strip dissection (Smith and Nanci, 1989). Also, enamel mineralisation was separated into primary and secondary stages corresponding to pre-secretory/ secretory and maturation stages of development respectively (Allan et al., 1967 loc cit Wong et al., 2000). Most recently, using a backscatter SEM method, the developing mouse mandibular incisor was imaged along the labial surface in three enamel surface regions; (i) apical (secretory), (ii) middle (nearly mature) and (iii) incisal (erupted) (Smith et al., 2009c).

These techniques were applied to extracted murine teeth and could not be used to image the human condition *in vivo*. As colour distribution is typically assessed in three anatomical thirds (or regions) in human incisors, and because these regions have a relationship to the apparent *pre-secretory*, *secretory* and *mature* histological stages of enamel formation in the hypsledont (continuously growing) murine incisor, they may be representatively applied to assess the enamel surface colour and whiteness assessment in three developmental stages of enamel formation.

2.5.3. Colour Space

A number of standardised colour scales have been developed to objectively model colour (Wright, 1928; Guild, 1931), e.g. the Commission Internationale de l' E'clairage (CIE) have mathematically defined colour space (L = Lightness, A = green/red, B = yellow/blue) and whiteness (WI = whiteness) in terms that represented the human perception of colour (CIE,

1986). Human teeth show a significant contribution of the B yellow component (Joiner et al., 2008). The CIE LAB and WI model expressed variation in colour and whiteness in clinically significant units (Jarad et al., 2005) and served as a device independent reference capable of making accurate colour balance corrections (Smith et al., 2008a). To date, murine teeth have not been described using any such measure.

2.5.4. Methods of Assessing Tooth Colour and Whiteness

The predominant methods used to assess human tooth colour and whiteness range from shade guides to instrumental methods such as spectrophotometers, colourimeters and digital image analysis systems.

2.5.4.1. Shade Guides:

Shade guides depend largely on operator judgment. They are inherently subjective (Okubo *et al.*, 1998; Lath *et al.*, 2007a), lack consistency and reliability (Khurana *et al.*, 2007). They are most frequently used for prosthetic/ prosthodontic shade matching. Increasingly available digital spectrophotometery based shade guide devices are more consistent (Paul *et al.*, 2002; Hammad *et al.*, 2003) and accurate (Jarad *et al.*, 2005; Lath *et al.*, 2007b) but have similar disadvantages, e.g. unnatural colour shades, systematic errors and an incompatibility with the CIE colour space model (Joiner, 2004; Wee *et al.*, 2006).

2.5.4.2. Spectrophotometers:

Spectrophotometers measure tooth colour reflectance or transmittance (Paul *et al.*, 2002). They have been used in clinical and research settings for many years (Macantee and Lakowski, 1981; Goodkind and Schwabacher, 1987). Three commercially available instruments were evaluated by Khurana *et al.*, (2007); (i) the Spectroshade Micro showed good agreement between repeats and the highest proportion (87%) of complete agreement when compared to (ii) Vita Easyshade (59.7%), a spot measurement spectrophotometer, and (iii) an X-Rite ShadeVision (50%) colorimeter. The spectrophotometers showed reliable results (kappa value = 0.8) and compatibility with the CIE colour space model (Khurana *et al.*, 2007) but their widespread clinical and research use has been slow because of complexity, impracticality and expense (Joiner, 2004; Guan *et al.*, 2005; Lath *et al.*, 2007a, 2007b). However, a non-contact digital matching method has shown less operator variation

(61.1% correct) and reasonable CIE LAB correlations compared to the Vita Lumin shade matching tabs (43% correct) (Jarad *et al.*, 2005).

The methods required contact or were designed for use on the flat surfaces of human incisors. This would make measurements on small murine incisors difficult and impractical.

2.5.4.3. Colourimeters:

Colourimeters filter colour to approximate a standard observer's eye and generally measure colour in tristimulus terms or CIE LAB values (Joiner, 2004). Comparing colourimeters and spectrophotometers, colourimeters were deemed to give acceptable colour measurement differences (van der Burgt *et al.*, 1990; ten Bosch and Coops; 1995) but there was little correlation with human observations (Douglas, 1997; Watts and Addy, 2001). Also, a number of systematic errors were reported to limit reliability and precision (van der Burgt *et al.*, 1990; ten Bosch and Coops; 1995; Douglas, 1997; Wee *et al.*, 2006).

2.4.5.4. 2D Digital Image Analysis:

In recent years computer based digital image analysis has been the most successful approach to measuring human tooth colour and whiteness (Brook *et al.*, 2007). The system has evaluated tooth surface colour and whiteness objectively both *in-vivo* and *in-vitro* with a high degree of multiple operator reliability (Smith *et al.*, 2008a) under standardised conditions of illumination, orientation and magnification (Brook *et al.*, 2005a). Similar systems have also shown highly reliable results when modified for monitoring the effects of bleaching (Garcia-Goody *et al.*, 2004), assessing gingival inflammation (Smith *et al.*, 2008b) and quantifying dental plaque (Smith *et al.*, 2001, 2004; Smith *et al.*, 2006). During validation, the digital image analysis systems have shown high method correlation and compared favourably with colourimeters (Joiner, 2004), spectrophotometers (Guan *et al.*, 2005; Lath *et al.*, 2007a) and shade guides (Lath *et al.*, 2007b).

The advantages of digital image analysis include minimised subjectivity, high accuracy and reliability. Also, the system provided a permanent database of images and was quick and simple to use without being restricted to experienced operators (Wee *et al.*, 2006). Compared to the alternatives digital image analysis was more economical, practical and more widely available in dentistry (Jarad *et al.*, 2005). Importantly, the system could be made to be suitable for assessing small curved murine teeth as it has been successfully standardised for

CIE (Jarad et al., 2005) and it has demonstrated versatility and flexibility with potential for customised modification (Brook et al., 2005a; Guan et al., 2005; Smith et al., 2008a).

2, Literature Review

2.6. DENTAL DEVELOPMENT

2.6.1. The Murine Model System

Mus musculus is the most widely used experimental animal for human disease (Qui, 2006). The mouse is the mammalian model of choice because it is amenable and easy to keep, has non-specific inexpensive nutritional requirements, breeds all year round (with a short life span and generation time) and has large stocks of progenies (Guénet and Bonhomme, 2004). Mice and humans have almost the same genome size and share a number of gene sequence homologies and evolutionary conserved orthologue genes (Waterstone *et al.*, 2002). The majority of global gene banks are derived from studies on mice and they are available on public databases (www.ncbi.nlm.nih.gov/genome/guide/mouse/) making mice the most valuable experimental model organism. Mice overcome a number limitations of human subjects, and several other model organisms (Loew and Cohen, 2002), for example; (i) numerous inbred strains are available with different phenotypes, (ii) heterozygous genetic backgrounds are available, (iii) mice can be maintained under strictly controlled environments to minimise environmental influences, (iv) mice can be crossed to generate congenic animals to isolate the genes relevant to the phenotype under study, and (v) the ability to test gene function by gene targeted mutagenesis approaches.

ENU mutagenesis induces 1000-fold more random point mutations than naturally occur. ENU is the most effective mutagen as most human genetic diseases are caused by partial loss of the gene function due to point mutations (Seedorf *et al.*, 2004). Rodentia is therefore the only mammalian order within which it is possible to employ both the phenotype to genotype (phenotype-driven) and the genotype to phenotype (gene-driven) approaches that are essential to understanding the heterogeneity and complexity of the phenotypes of many human diseases (Masuyama *et al.*, 2005).

The similar processes of human and mouse odontogenesis make the mouse the most suitable experimental model for human dental disease (Fleischmannova *et al.*, 2008) and the amenable non-essential nature of teeth is convenient for studying organogenesis (Pipsa and Thesleff, 2003; Tucker and Sharpe, 2004). All teeth are composed of diverse tissue types involved in both tooth morphogenesis (Fukumoto and Yamada, 2005) and mineralisation (Veis, 2005). In particular, the mouse incisor exhibits all stages of development at any one

43

time making it ideal for studying the several distinct stages of enamel formation along the tooth axis (Smith and Warshawsky, 1976; Leblond and Warshawsky, 1979; Smith and Nanci, 1989; Sato *et al.*, 1996). Also, functional data from gene targeting shows tooth morphogenesis and skeletal morphogenesis share many key genes (Smith and Coates, 2000; McCollum and Sharpe, 2001a).

2.6.1.1. Dental Patterns:

The mineralised hard parts of teeth are well preserved in the vertebrate fossil record so dental records have long been used to infer the phylogeny of species (Luckett and Hartenberger, 1985). This data is increasingly supported by molecular methods (Frye and Hedges 1995; Boursot, 1996; Salazar-Ciudad *et al.*, 2002) but the evolutionary origin of teeth debate remains current (Reif, 1982; Weiss *et al.*, 1998; Smith and Coates, 2000; Holland and Chen, 2001). A dual origin of heterodont teeth, from both external denticles and internal pharyngeal teeth is now thought to account for the necessary flexibility required for the evolution of complex heterodont dentitions (Smith 2003; Smith and Johansen, 2003). The heterodont tooth types located anteriorly to posteriorly are incisiform, caniniform and molariform. Comparing human and mice dental formulas, humans have 20 primary (deciduous) and 32 secondary (permanent) teeth - incisors 2/2, canine 1/1, premolars 2/2, molars 3/3 - while mice have 16 teeth - incisor 1/1, canine 0/0, pre-molar 0/0, molars 3/3 - representing a less complex reduced dental pattern (Shellis and Berkovitz, 1981). The characteristic toothless diastema region between the incisors and molars and the absence of canine or premolar teeth make the mouse a simplified version for study (Addison and Appleton, 1915).

Although there are limitations, e.g. mice posses only one set of molars (monophylodont) that are not replaced, whereas humans have two generations of all tooth types (diphyodont) (Shellis and Berkovitz, 1981), both the mouse mandible and mouse incisor are proven to be excellent models for studying complex morphological development (Gaunt, 1964; Atchley *et al.*, 1985; Atchley and Hall, 1991; Bookstein, 1998). The mouse incisor is continuously growing and is especially useful for studying the dynamic process of odontogenesis (Tucker and Sharpe, 1999; Salazar-Ciudad *et al.*, 2003; Fleischmannova *et al.*, 2008).

2.6.1.2. Mouse Mandibles:

The mouse hemi-mandible was chosen because it was well studied both developmentally (Frommer, 1964; Hall, 1991; Ramesh and Bard, 2003), evolutionarily (Crompton, 1963;

Klingenberg, 2002) and functionally (Moore, 1973; Mao and Nah, 2004). Human and mice skeletal and dental morphogenesis share many key genes (McCollum and Sharpe, 2001b) and the genetic variability of mandible form has been well documented in man and mouse (Beamer, 1993; Bailey, 1985, 1986). The left and right hemi-maxilla and hemi-mandible incisor pairs each contain a single incisor and are joined at the mandibular symphysis. As representative units of development they can be separated into developmental modules by homologous landmarks useful for structural analysis (Atchley and Hall, 1991).

2.6.1.3. Mouse Incisors:

Human and mice incisors exhibit the same basic architecture with little fundamental difference between their basic structure and mode of formation (Tomes, 1850; Shellis and Berkovitz, 1981; Warshawsky et al., 1981). In particular the mouse mandibular incisor gives a relatively high yield of enamel that is thicker than the maxillary incisors (Moinichen et al., 1996) and is an important established experimental model of enamel morphology, biochemistry and molecular biology (Robinson et al., 1981a, 1983). Its continuous growth and eruption has been attributed to stem cell populations in the cervical loop (Harada et al., 1999; Wang et al., 2007) and its constant length is proposed to be maintained by a balance of cell proliferation at the proximal-end and abrasion/ attrition at the distal-tip (Ohshima et al., 2005; Krinke, 2004). Mandibular incisors are curved from the proximal-end to the distal-tip and run the entire length of the mandible (Hay, 1961; Shellis and Berkovitz, 1981). A slight narrowing at the distal-tip is the result of ameloblast cells depositing enamel asymmetrically and bilaterally on the labial surface (Amar et al., 1986; Wang et al., 2004). Enamel reaches further onto the labial surface in the buccal direction than in the lingual direction (Moinchen et al., 1996). The lingual surface is covered with dentin and cementum, and is more flat than the curved buccal surface because of the adjacent position of each incisor within the hemimandible pair.

As a odontogenic model the mouse incisor can be longitudinally divided into labial crown and lingual root analogues (Amar *et al.*, 1986) and is comparable to other tooth types (and human teeth) in terms of its directional development (Ohshima *et al.*, 2005).

2.6.2. Developmental Models

In the 19th century, embryology tested evolutionary theories against observations of early tooth development, e.g. experiments on amphibia discovered the neural crest to be the source of mesenchymmal cells (Platt, 1893). In the 20th century, experimental embryology extended to the mouse model began to describe development in more causal terms (Mitisiadis and Smith, 2006); numerous early texts contributed to the understanding of dental patterning of the teeth and jaws in mice and men (Butler, 1939, 1956; 1995a; Wentworth-Thompson, 1942; Dahlberg, 1945; Gaunt, 1955, 1964; Crompton, 1963; Grünberg, 1951, 1963, 1965; Wolpert, 1969; Sofaer, 1975; Osborn, 1978; Atchely, 1985; Bailey, 1985).

2.6.2.1. Morphogenetic Fields:

The regional field theory proposed a gradient of external morphogens were responsible for the different sizes and shapes of mammalian teeth (Butler, 1939, 1956). It was suggested that the different tooth classes displayed local similarities because of the influence of graded positional differences within distinct morphogenetic fields. This was supported by grouping teeth into families according to their distinct morphology and location, and was applied to the human dentition (Dahlberg, 1945).

2.6.2.2. Clone Theory:

As developmental biology became increasingly based on genetics rather than physiology and anatomy a clone theory emerged (Osborn, 1971, 1978). The theory suggested that teeth developed from a single clone of pre-programmed mesenchymal cells, each capable of giving rise to the different tooth types. However, the intrinsic autonomous control mechanisms of the clone model did not explain how regional tooth shape differences were achieved or how the dentition developed as a whole (Townsend *et al.*, 2009).

Studies that investigated the inductive relationships between epithelium and mesenchyme cells began to generate a greater understanding of the important role of embryonic germ layers and molecular signaling during odontogenesis (Lumsden, 1988). Attempts were made to reconcile the prevailing theories by proposing a dynamic self organising theory based on the modular organisation and expression patterns of regulatory molecules within specific embryonic domains (Maas and Bei *et al.*, 1997; Weiss *et al.*, 1998). Successive theories combined those of their predecessors to purport that initiation of dental development may

occur according to the morphogenetic field model and that tooth germ formation may occur according to the clone model (Smith and Coates, 2000). The concept of a molecular morphogenetic field should not be limited to the expression of a single gene or its protein product but must consider how the various genetic and epigenetic influences modulate their affect on dental development (Line, 2001, 2003).

2.6.2.3. Molecular Model:

Much recent progress has come from identifying potential mechanisms at the genetic level to invoke the roles of homeobox genes, transcription factors and the expression patterns of various other vital signalling molecules (Pipsa and Thesleff, 2003; Tucker and Sharpe, 2004; Mitsiadis and Smith, 2006).

Important observations of the distinct spatial expression of homeobox genes, coding for regulatory transcription factors, proposed the odontogenic homeobox code thought to control dental patterning (Sharpe, 1995). This theory was developed using targeted gene disruption experiments in incisor and molar teeth and explained how the overlapping homeobox gene expression domains combine to determine the intermediate morphologies of human canines and premolars (Tucker *et al.*, 1998; Thomas and Sharpe, 1999). Further experimental support came from altering the specific signalling molecules that modulated the homeobox domains to modify tooth number, size and shape (Tucker and Sharpe, 1998; Sharpe, 2000). Within the epithelium and mesenchyme positive auto-regulatory loops and mutual repression patterns have been shown to spatially restrict gene expression and establish presumptive incisor and molar fields (Tucker and Sharpe, 2004). Bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families of genes and proteins reciprocally induce and inhibit the expression of the various homeobox genes (Tucker, 2006). These complex patterns of gene expression also establish the proximal–distal and oral–aboral/ rostral–caudal developmental axes of the body plan (Mitsiadis and Smith, 2006).

2.6.2.4. Unifying of Theories:

The field, clone and odontogenic homoebox theories are complementary not contradictory and propose a unifying view that can be applied to developmental anomalies (Townsend *et al.*, 2009). This is reflected in the multifactorial model of tooth development (Brook, 1984) and extends to the multilevel, multidimensional orchestration of dental development (Brook, 2009).

2.6.3. Tooth Development

To date, more than 300 genes are associated with important signals, receptors and transcription factors that control normal and abnormal tooth development (<u>http://bite-it.helsinki.fi</u>). The majority are part of the evolutionarily conserved signalling pathways that mediate cell communication, tissue growth and differentiation, and thereby regulate tooth initiation and morphogenesis (Jernvall and Thesleff, 2000a; Salazar-Ciudad *et al.*, 2002, 2003). The reciprocal epithelial-mesechymal interactions occur reiteratively throughout tooth development (Jernvall and Thesleff, 2000a) and many mutations that cause dental defects in humans have also been partially recapitulated in mouse models (Thesleff, 2006; Fleischmannova *et al.*, 2008; Brook, 2009) (Figure 4.).

Figure 4. The Genetic Regulation of Odontogenesis

The multigene families of conserved signal pathways mediate sequential and reciprocal interactions between the ectoderm and mesenchyme and regulate key transcription factors associated with dental defects in humans; Fibroblast growth Factor (FGF), Bone Morphogenetic Proteins (BMP), Sonic Hedgehog (SHH), WNT, Tumor Necrosis Factor (TNF). Image modified from (Thesleff, 2006).

Five histologically distinct developmental stages are recognised during odontogenesis; (i) Initiation, (ii) Bud, (iii) Cap, (iv), Bell and (vi) Eruption. The initiation of tooth formation is morphologically distinguishable as a thickening of the dental epithelium, or dental placode, at embryonic day (ED10-11) in mice and during embryonic weeks (7-11) in humans (Miletich and Sharpe, 2003). The epithelium sends signals to the dental mesenchyme inducing its odontogenic potential and initiating the dental lamina at prospective tooth sites. The dental lamina proliferates (ED12-13) and begins to invaginate into the underlying mesenchyme that

2. Literature Review

condenses around the forming epithelial tooth bud (ED11-13). At the tip of the epithelial tooth bud a restricted subset of cells form a transient signalling center called the primary enamel knot (Jernvall *et al.*, 1994). The enamel knot organises differential cell growth through the transition from the bud to cap stage that marks the onset of tooth crown development (Vaahtokari *et al.*, 1996; Jernvall and Thesleff, 2000b). The epithelium convolutes around the condensed mesenchyme, or dental papilla, during cap morphogenesis (ED13-15) as the progressive folding and growth eventually develops into a bell shape tooth germ (ED15-17). Apoptosis in the enamel knot has an important role in regulating tooth size and shape (Kim *et al.*, 2006a).

Spatio-temporal induction of a secondary enamel knot directs the subsequent folding and invagination of the inner enamel epithelium at the sites of future cusps (Jernvall and Thesleff, 2000b; Kim *et al.*, 2006a). At this stage repeated activation and inhibition of signalling related to differential growth and folding within the tooth germ determines tooth dimensions and cusp morphology (Jernvall and Thesleff, 2000a).

During the late bell stage, differentiation of two tooth-specific cell types occurs along the epithelio-mesenchymal interface of tooth germs (Miletich and Sharpe, 2003); (i) mesenchymal cells in contact with the inner enamel epithelium facing the basement membrane differentiate into odontoblasts (Linde and Goldberg, 1993); odontoblasts lining the pulp chamber secrete a layer of pre-dentin that serves as a scaffold for the deposition of the organic dentin matrix (Butler, 1995b); (ii) immediately after the initial deposition of the predentin layer, adjacent epithelial cells terminally differentiate into pre-ameloblasts and then ameloblasts (Ruch and Lesot, 2000; Lesot and Brook, 2009). Ameloblast cells secret the organic enamel extra-cellular matrix (ECM) that mediates the process of enamel formation (Deutsch, 1989).

Murine incisors are an excellent location to simultaneously observe the series of cell differentiation and migration events during the dynamic process of amelogenesis. Mineralised tissue formation begins at the cusp tips and proceeds in a cervical direction, from the crown to the root (Nanci, 2003). Hertwig's epithelial sheath determines the form of the roots and the fully differentiated tooth is ready to erupt.

In longitudinal section, the stages of ameloblast differentiation can be seen as a gradient with less differentiated cells located posteriorly and the more mature cells located anteriorly on the labial surface (Figure 5.).

(A) after initiation, the mouse mandibular incisor bud rotates antero-posteriorly, parallel to the long axis of the incisor; (B) during the late bell stage, cell differentiation and ECM secretion occurs. The mesenchymal (light blue) cells that contact the epithelium (green) give rise to the single layer of odontoblasts that secrete dentin (dark blue) and to the labially orientated ameloblasts that secrete enamel (red). Image modified from Wang *et al.*, (2004).

A proximally located stem cell compartment provides progenitor populations for epithelial ameloblasts and mesenchymal odontoblasts (Wang *et al.*, 2004). The mesenchyme diverges into two lineages, (i) the dental papilla and (ii) the dental follicle; the papilla gives rise to the tooth pulp and odontoblasts, while the follicle gives rise to the cementoblasts, cementum and periodontal tissues (Nanci, 2003). Classical tissue recombination experiments in mice show odontoblasts and dentin are distributed similarly on the labial and lingual surface (Amar *et al.*, 1986). On the lingual surface odontoblasts differentiate and produce dentin but the epithelial cells do not differentiate into ameloblasts (Gaunt, 1956). On the labial surface the epithelial cells, adjacent to odontoblasts and dentin, differentiate into tall, polarised ameloblasts that secrete the enamel ECM (Wang *et al.*, 2004). This accounts for the labial-

LABIAL SURFACE ENAMEL

lingual asymmetry in enamel secretion and formation (Wang *et al.*, 2007) and for the enamelfree areas that are a mixture of enamel and cementum related proteins (Sakakura *et al.*, 1989).

2.7. MINERALISATION

2.7.1 Dentine

In the multilayered process, dentine is the first hard tissue to commence mineralisation (Brook, 2009). Dentine secreting odontoblast cell terminal differentiation is controlled by the molecular signals from the secondary enamel knot (Ruch and Lesot, 2000; Lesot and Brook, 2009). Dentine is highly permeable because it is primarily composed of inter-tubular dentine, a fibrous network of collagen with deposited mineral crystals, and peritubular dentine, a highly mineralised sheath around the dentinal tubules that radiate from the pulp (Linde and Goldberg 1993).

During early tooth development pre-odontoblasts differentiate first into functional odontoblasts and start to secrete a collagen-rich pre-dentin matrix (Ruch and Lesot, 2000). The pre-dentin matrix consists of type I collagen (86%) and some non-collagenous proteins, including proteoglycans and glycoproteins (MacDougall *et al.*, 1998; Butler *et al.*, 2002). Mantle dentine formed during primary dentinogenesis at the dentino-enamel junction is rich in proteoglycans, more irregular and less mineralised than the following layers (Linde and Goldberg 1993). During secretion of the pre-dentin matrix odontoblasts become columnar and form long cell processes that become embedded in the dentin matrix secreted directly beneath the basal lamina – at which point components such as laminin play an important role (Salmivirta *et al.*, 1997).

Dentin mineralisation does not occur until the basement membrane material is degraded and removed, which allows direct interactions between pre-dentin and pre-ameloblast (Linde and Goldberg, 1993; Butler, 1995b). The presence of functional odontoblasts and/ or predentindentin matrix is required for reciprocal epithelial-mesenchymal interactions to regulate preameloblast differentiation into ameloblasts (Ruch and Lesot, 2000). The subsequent secretion of enamel ECM is only initiated after the dentin matrix starts to mineralise (Ruch and Lesot, 2000). Dentin starts to mineralise as the basal lamina disappears and the apical surfaces of ameloblasts associate with the superficial collagen fibrils of the mantle dentin. Differentiating ameloblasts now start to express small amounts of enamel proteins as they begin to send cytoplasmic projections through the gaps in the fragmenting basal lamina (Butler *et al.*, 2002).

Dentinogenesis involves controlled reactions that dynamically convert unmineralised predentin into dentin at the pre-dentin-dentin boarder as apatite crystals form (Butler *et al.*, 2002). The constant thickness of pre-dentin suggests the transition is highly controlled and involves a gradient of events that regulate the proteolysis of ECM macromolecules (Butler *et al.*, 2002). Some confusion exists over the timing of the start of secondary dentinogenesis in humans, and the exact details of the complex proteolytic cleavage processes are not completely known, but in rodent molars dentine formation occurs with no apparent transition from the former to the latter (Butler, 1995b). Tertiary dentinogenesis is stimulated as a reparative response to perturbations during tooth ontogeny.

The dentine ECM is associated with dentinal defects such as *Dentinal Dysplasia* (DD) (OMIM125400, Wiktop, 1957, 1975) and *Dentinogenesis imperfecta* (DI) (OMIM125490, Xiao *et al.*, 2001; Zhang *et al.*, 2001), and with gene mutations in the various collagen structural proteins (Butler, 1995b). DI results in exposed sensitive and softened dentine that lacks resilience and undergoes rapid attrition (Wiktop, 1975) manifests as severe discolouration of the teeth (Witkop, 1989). The non-collagenous proteins, such as dentine sialoprotein (DSP) and dentin phosphoprotein (DPP), mapped to a shared chromosomal location (4q21-q23), are derived from a single parent gene that codes for dentin sialophosphoprotein (DSPP) (*DSPP*, OMIM125485, MacDougall *et al.*, 2002; MacDougall *et al.*, 2003). The cleavage products of DSPP play a significant role in controlling crystal size and/ or morphology and mineralisation (Butler, 1995b). Dpp may act as a nucleator of hydroxapatite crystals during dentine morphogenesis, histodifferentiation and patterning (MacDougall *et al.*, 1998). The proteolytic processing of DSPP is hypothesised to be catalyzed by BMP-1 (Zhu *et al.*, 2010).

2.7.2. Enamel

Enamel covers the anatomical crown of teeth and is the most highly mineralised tissue in the human body (Tomes, 1850). It is acellular, insensitive and inert (Robinson *et al.*, 1981a; Deutsch, 1989) and when mature contains less than 1% organic material (Brookes *et al.*, 1995; Simmer and Fincham, 1995). Inorganic enamel mineral is composed of calcium

hydroxyapatite crystals (25nm thick and 65nm wide), that extend as much as 2.0 mm from the enamel-dentino junction to the tooth surface (Meckel *et al.*, 1965; Dacusi and Kerebel, 1978). The hydroxyapatite crystallites grow parallel to one another in bundles or rods (Boyde, 1967), with about 10,000 crystallites per rod (Warshawsky *et al.*, 1987). Hydroxyapatite is responsible for more than 95% mineral by weight of mature enamel (Robinson *et al.*, 1989; Simmer and Fincham, 1995; Fincham *et al.*, 1999).

Enamel mineral crystals are unusually large when compared with crystals of bone, dentin, cementum and other mammalian hydroxyapatite (Veis, 2003a). The structure of enamel in murine rodents (Boyde, 1969), such as rats (Risnes 1979a; Rinses, 1979b) and mice (Moinichen *et al.*, 1996; Lyngstadaas, 1998), is unique in that its shows extreme enamel prism decussation (Boyde, 1969), where prisms in adjacent rows are inclined in opposite directions across each other (Risnes, 1987; Risnes, 1999). Rodent incisor enamel has characteristic and distinct inner and outer enamel layers; the thickness of the outer enamel in the central labial region is about 22 μ m in the mandibular incisor (Rinses *et al.*, 1979b; Moinichen *et al.*, 1996).

The structure of murine incisor enamel is established at the interface between secretory ameloblasts and forming enamel (Leblond 1979), the topography of which has a complex three-dimensional configuration (Warshawsky *et al.*, 1987; Rinses *et al.*, 2002). The crystal surface of murine enamel has been characterised by Atomic Force Microscopy (Kirkham *et al.*, 1998) and its size and form is a reflection of the restrictions imposed during tissue morphogenesis (Robinson *et al.*, 1998; Kirkham *et al.*, 2002).

2.7.3. Amelogenin Proteins

The amelogenins are a family of evolutionarily conserved proteins (Fincham *et al.*, 1983). Amelogenins provided the earliest evidence of the ECM involvement in enamel mineralisation (Termine *et al.*, 1980; Fincham *et al.*, 1983; Deutsch, 1989) and they constitute up to 90% of the developing enamel (Robinson *et al.*, 1989; Fincham *et al.*, 1994; Robinson *et al.*, 1995). The predominant enamel ECM protein, amelogenin, is secreted from and expressed in ameloblasts throughout the various stages of enamel formation or amelogenesis (Hu *et al.*, 2001). The ECM is transiently formed in the extra-cellular space during enamel crystal deposition, progressive protein degradation and secondary crystal

growth (Deutsch, 1995; Robinson et al., 1998). It is the ECM that finalises the enamel surface morphology (Jernvall and Thesleff, 2000a; Margolis et al., 2006).

2.7.3.1. Amelogenin:

Amelogenin is a 180-amino acid hydrophobic prolein rich (25-30%) protein with a bipolar nature due to its hydrophilic 12-carboxy-terminal residues (Simmer *et al.*, 1994; Simmer, 1995; Fincham *et al.*, 1999). It is secreted primarily (80%) as a protein isoform of 175 amino acids with a signal peptide (16 amino acids) that includes three distinct domains: an N-terminal positively charged (N-region), a central hydrophobic part (H-region), and a more polar C-terminal domain (C-region) (Deutsch *et al.*, 1995). Amelogenin is the most abundant ECM protein, greater than 95% mineral by weight in mature enamel and it is almost completely removed during mineralisation (Smith, 1998).

The amelogenin monomer subunits self-assemble into spherical structures called nanospheres (15-20nm) that are found between the growing ribbon-like crystals (Fearnhead, 1960; Robinson et al., 1981b; Fincham et al., 1995). Nanospheres spatially organise the initial crystallites, control crystal habit and create anionic channels that facilitate ion transport within the mineralising ECM (Fincham et al., 1995). Therefore, nanospheres are thought to provide the scaffold that guides crystal growth as the amelogenin proteins are deposited and hydrolysed in an orchestrated manner (Fincham et al., 1999; Paine et al., 2000). The highly conserved amelogenin N-terminal tri-tyrosyl domain may be involved in the formation of nanospheres (Ravindranath et al, 1999) and/or binding to other enamel or dentin proteins (Ravindranath et al., 2003). The N-terminal region may have a role in amelogenin selfassembly related to enamel defects (Paine et al., 2002). The C-terminal region may contribute to nanosphere stability and size homogeneity (Moradian-Oldak et al., 2000). Nanospheres either provide the environment for the initiation of mineral crystals in normal enamel or have an essential interactive relationship between nanosphere self-assembly and mineral growth (Robinson et al., 2003; Margolis et al., 2006). Enamel surface topology suggests that ECM processing may generate nuclei leading to fusion and transformation into long apatite crystals (Kirkham et al., 2000; Robinson et al., 2003). The C-terminus has an affinity for forming enamel crystallites and likely plays a critical role in amelogenin scaffold assembly during enamel development (Wright, 2006).

In the mouse, the amelogenin gene (*Amelx*) is mapped to the X chromosome (Lau *et al.*, 1989; Fincham *et al.*, 1983), whereas in humans the amelogenin gene (*AMEL*) is sexually dimorphic and maps to both the Xp22.1-p22.3 and Yp11.2 chromosomes (Lau *et al.*, 1989; Salido *et al.*, 1992). In human males, 90% of the amelogenin gene transcripts are expressed from the X chromosomal copy of the gene (*AMELX*), while only 10% is expressed from the Y chromosomal copy (*AMELY*) (Snead *et al.*, 1989). Despite being expressed in the same cells, the X and Y chromosomal copies are processed differently (Nakahori *et al.*, 1991; Salido *et al.*, 1992).

Amelogenin was originally thought to be an enamel specific protein of exclusively epithelial origin with an isoated function in controlling the size, shape and the direction of hydroxyapatite crystal formation during enamel structural organisation and mineralisation (Robinson *et al.*, 1981a, 1983, 1989). However, alternatively spliced RNA transcripts that translate into multiple isoforms and result in the heterogeneous mixture of amelogenin proteins that are found in developing mouse tooth extracts suggests otherwise (Simmer *et al.*, 1994; Simmer, 1995; Hu *et al.*, 1997). There are thought to be up to nine exon coding regions of amelogenin (*AMELX/ Amelx*) in many species (Li *et al.*, 1998; Baba *et al.*, 2002; Papagerakis *et al.*, 2005). So it has been difficult to assign specific functions to individual amelogenins because of the large number of isoforms with potentially different functions (Deutsch *et al.*, 1989; Stephanopoulos *et al.*, 2005; Gibson *et al.*, 2005). Nonetheless, this mechanism produces species-specific variations in enamel structure and has resulted in the finely tuned process of amelogenesis.

Also, amelogenin is now known to be expressed in the dentin matrix (Nebgen *et al.*, 1999), odontoblasts (Papagerakis *et al.*, 2003), in Hertwig's root sheath and periodontal ligament cells (Fong *et al.*, 1998; Fong and Hammarstrom, 2000), in long bone cells, such as osteocytes, osteoblasts and osteoclasts, in periosteum, in chondrocytes of the articular cartilage and the epiphyseal growth plate (Haze *et al.*, 2007), in glial cells, in salivary glands and in some hematopoietic cells (Li *et al.*, 2006; Deutsch *et al.*, 2006). The expression of amelogenin in alveolar bone regions suggests it may be active in bone formation and remodelling (Haze *et al.*, 2007).

Several amelogenin isoforms display different signalling effects on ameloblast and odontoblast differentiation (Nebgen *et al.*, 1999; Veis, 2003b). Amelogenin's signalling roles

during early craniofacial development was supported by its early expression in mouse embryogenesis (ED10.5), long before initiation of tooth formation, and its detection in the dental lamina (ED13.5-ED16.5) before extra-cellular enamel or dentin formation (Li *et al.*, 2006; Gruenbaum-Cohen *et al.*, 2008). Amelogenin also encourages progenitor cell recruitment during periodontal regeneration (Hammarstrom *et al.*, 1997) and promotes regeneration of other supporting tissues (e.g. periodontal ligament and cementum) (Hu *et al.*, 2006; Zhu *et al.*, 2006).

The expression of amelogenin occurs in a variety of tissues of the craniofacial complex, including non-mineralising cells of the neural crest that give rise to non-neuronal ectomesenchymal tissues in bone, cartilage and mesenchymal regions of the teeth (and in the eyelens, which is not thought to be neural crest derived) (Gruenbaum-Cohen *et al.*, 2008). This means that during these developmental stages amelogenin must have additional functions to those described in the early ECM studies. The expression patterns in the eye-lens, brain and nerve fibers (Deutsch *et al.*, 2006) suggested a possible role for amelogenin in elongating structures that may be of possible relevance to the model of nanosphere elongation (Paine *et al.*, 2002; Du *et al.*, 2005; Margolis *et al.*, 2006). Therefore, amelogenin is proposed to be a multifunctional protein (Li *et al.*, 2006; Gruenbaum-Cohen *et al.*, 2008).

2.7.4. Non-Amelogenin proteins

Non-amelogenin ECM proteins are also important in enamel mineralisation. They too may have yet to be discovered roles in the craniofacial complex.

2.7.4.1. Ameloblastin:

Ameloblastin (formerly amelin or sheathlin) is the most abundant non-amelogenin ECM protein (5% of total protein). It is expressed at high levels in ameloblasts, at low levels in odontoblasts and pre-odontoblasts (Toyosawa *et al.*, 2000). Human ameloblastin (*AMBN*) is located on chromosome 4q21 (Karrman *et al.*, 1997; MacDougall *et al.*, 1997), near other genes associated with the mineralised tissues (MacDougall *et al.*, 2003), and it shares high sequence homology with mice (chromosome 5) (Toyosawa *et al.*, 2000). Ameloblastin is alternatively spliced in humans and mice and the fate of its cleavage products are thought to be similar to that of other ECM proteins (Brookes *et al.*, 2001; Iwata *et al.*, 2007).

2.7.4.2. Amelotin:

Amelotin is a structural enamel protein component of the basal lamina, with only few post translational modifications (Iwasaki *et al.*, 2005). The human amelotin gene (*AMTN*) shows significant sequence homology with its mouse orthologue, displaying a similar exon-intron structure and expression loci on chromosomes 4 and 5 respectively (Iwasaki *et al.*, 2005). Thus far, amelotin is only known to be expressed in ameloblasts during the maturation-stage of amelogenesis and may therefore be engaged in proteolytic processing/ degradation of the ECM (Iwasaki *et al.*, 2005).

2.7.4.3. Enamelin:

Enamelin is the largest (1103 amino-acids with a 39 amino-acid signal peptide) and least abundant (1 to 5% of total amount) enamel ECM protein (Hu *et al.*, 2001a). The human enamelin gene (*ENAM*) is located at chromosome 4q21 (Hu *et al.*, 2000; Dong *et al.*, 2000) and the mouse enamelin gene (*Enam*) is located at chromosome 5 (Hu *et al.*, 1998, 2001a). *ENAM* and *Enam* are evolutionarily conserved, sharing 73% gene sequence homology (Dong *et al.*, 2000). Enamelin is a tooth-specific protein that is secreted solely and specifically by ameloblasts (Hu *et al.*, 2008). Unlike ameloblastin and amelogenin, no alternatively spliced enamelin RNA has been reported (Hu *et al.*, 1997) but nucleotide polymorphisms do affect the produced amino acid (Stephanopoulos *et al.*, 2005).

Extensive proteolytic processing of enamelin gives rise to multiple cleavage products that accumulate in different parts of the enamel ECM (Deutsch *et al.*, 1995). Enamelin is present at the dentino-enamel junction, throughout the entire thickness of enamel during the secretory stage, and disappears early in the maturation stage (Hu *et al.*, 1997, 2000, 2001a). These cleavage products are uniquely different to their precursors and demonstrate vital regulatory functions at the different stages of enamel growth and formation (Hu *et al.*, 2007).

Therefore, enamelin is thought to control multiple steps (nucleation, growth and organisation) in the crystallisation of hydroxyapatite during enamel formation (Hu *et al.*, 2007; Hu and Simmer, 2007).

2.7.4.4. Enamelysin and Kallikrein-4 Proteases:

Enamelysin (or matrix-metalloproteinase-20) is a calcium-dependent proteinase coded for a tooth specific human (MMP-20) and mice (mmp-20) genes (Bartlett *et al.*, 1996). It is heavily

expressed by ameloblasts adjacent to the Tomes' process throughout the secretory stage and into the early maturation stage where it is thought to be necessary for the process of crystal elongation (Bartlett *et al.*, 2004, 2006). Kallikrein-4, a calcium-independent serine proteinase, is coded for by the human (*KLK-4*) and mice (*klk-4*) genes (Simmer *et al.*, 1998). Kallikrein-4 is expressed later than enamelysin, starting in the transition stage and early maturation stage ameloblasts and continuing through to tooth eruption (Hu *et al.*, 2002; Simmer *et al.*, 2009).

MMP-20 steadily cleaves enamel proteins that have accumulated in the space between crystal ribbons for support during the secretory stage, their concentration decreasing with depth as enamel crystals thicken away from the enamel surface (Lu *et al.*, 2008). *KLK-4* more aggressively degrades the retained ECM as enamel protein secretion terminates. Despite these important differences in the timing of their expression and proposed functions, *MMP-20* and *KLK-4* mutations cause a similar autosomal recessive pigmented hypomaturation AI phenotype in humans (Wright *et al.*, 2006; Hu and Simmer, 2007). Therefore, the principle functions of *MMP-20* and *KLK-4* are thought to be in facilitating the orderly replacement of ECM with mineral, generating an enamel layer that is harder, less porous, and does not retain excess enamel proteins (Lu *et al.*, 2008).

In mice, *Mmp-20* and *Klk-4* studies have suggested that *Mmp-20* alone processes amelogenin during the secretory stage of amelogenesis (Simmer *et al.*, 1998; Hu *et al.*, 2002; Nagano *et al.*, 2009). *Mmp-20* also has a major role alongside *Klk4* in removing enamel proteins (Bartlett *et al.*, 2004, 2006), which is crucial for the proper maturation of enamel crystals (Fleischmannova et al., 2008; Simmer *et al.*, 2009).

2.8. AMELOGENESIS

2.8.1. Amelogenesis

Ameloblasts control the critical ionic, pH and fluid concentration of the intra- / extra-cellular micro-environment whilst undergoing morphological changes and accommodating diverse physiological functions (Deutsch *et al.*, 1995). Amelogenesis can be observed in three distinct stages; (i) *pre-secretory*, (ii) *secretory* and (iii) *maturation* (and post-maturation) identifiable in both the ameloblast and in the extra-cellular enamel that they produce (Rinses, 1987; Robinson *et al.*, 1998; Smith and Nanci, 1989) (Figure 6.).

Ameloblast changes during enamel formation: (A) epithelial cells rest on the basement membrane; (B) they increase in length as they differentiate into ameloblasts above the pre-dentin matrix; (C) **pre-secretory** ameloblasts send processes through the degenerating basement membrane as they initiate enamel protein secretion onto the surface of the mineralising dentin; (D) the start of the **secretory-stage** sees the dentino-enamel junction established as a thin layer of aprismatic enamel begins to mineralise. Ameloblasts develop a specialisation, or Tomes' process, in place of the absent basement membrane, and enamel proteins are secreted at a mineralisation front where the enamel crystals grow in length. Each enamel rod follows a retreating Tomes' process from a single ameloblast; (E) at the end of the secretory stage, ameloblasts lose their Tomes' process and produce a thin layer of aprismatic enamel; (F) at this point the enamel has achieved its final thickness. During a transition stage, ameloblasts restructure, reduce their secretory activity and change the types of proteins secreted; (G) e.g. *KLK-4* begins to degrade the accumulated protein matrix. During the **maturation stage** ameloblasts modulate between ruffled and smooth-ended phases. Ameloblast activity promotes the deposition of mineral on the sides of enamel crystals as the enamel layer hardens. Image modified from Hu *et al*, (2007).
2. Literature Review

2.8.1.1. Pre-secretory Stage:

During the *pre-secretory* stage of amelogenesis the basement membrane (epithelial sheet) forms apically and differentiates, longitudinally towards the incisal tip, into tall ameloblasts that secrete the enamel ECM and transport calcium ions that begin mineralisation (Deutsch *et al.*, 1989, 1995). Amelogenins first appear on the surface of recently deposited dentin where they are secreted on top of and around existing crystallites (dentin crystals initially and enamel crystals thereafter), and into the spaces that were previously occupied by the basal lamina (Robinson *et al.*, 1989; Ruch and Lesot, 2000). This forming dentino-enamel junction is particularly susceptible to failure as the enamel layer tends to shear from the underlying dentin (Sato *et al.*, 1996; Deutsch *et al.*, 1995).

Secretory ameloblasts recede as patches of enamel grow larger and merge as a continuous and uniform layer of initial aprismatic enamel is deposited (i.e. not separated into rod and inter-rod) (Boyde, 1967). At the secretory ends of ameloblasts, a specialised cell extension called a Tomes process forms with secretory and non-secretory regions (Tomes, 1850). Adjacent to the matrix depositing ameloblasts, the mineralisation front (a concentration of the secreted enamel proteins) retreats with the Tomes process as the enamel crystals grow in length (Risnes, 1998). The radial movement of the ameloblasts away from the mineralisation front provides the architectural basis for organising enamel crystals into prisms (Meckel *et al.*, 1965; Rinses *et al.*, 2002). After secretion amelogenin quickly passes through the mineralisation front (Smith and Nanci, 1989) and assembles into nano-spheres (Fincham and Simmer, 1995) that are thought to regulate crystal spacing (Robinson *et al.*, 1989; Deutsch *et al.*, 1998). The developing ECM is predominantly formed of amelogenin (90%) which continues to be essential for crystal growth and structural maintenance into the mid-secretory stage (Paine *et al.*, 2005).

2.8.1.2. Secretory Stage:

During the secretory stage of amelogenesis uncleaved enamelin is only observed in the surface enamel at the mineralisation front, near the Tomes' process of the ameloblast, where it is thought to be critical in maintaining crystallite elongation (Hu *et al.*, 1997). Many enamelin cleavage products are found throughout the entire thickness of developing enamel (Deutsch *et al.*, 1989), concentrated in the rod and inter-rod enamel, where they may bind to the sides of developing enamel crystals and regulate their shape (Hu *et al.*, 2000). Enamelin is

rapidly cleaved shortly after secretion and disappears early in the maturation stage suggesting it plays an early role during enamel formation (Hu *et al.*, 2001b, 2007).

Ameloblastin maintains the differentiation state of secreting ameloblasts (Fukumoto *et al.*, 2004) which continue to secrete enamel proteins as the crystals elongate and grow (primarily in length) as the enamel layer thickens (Robinson *et al.*, 1989). The final length of the enamel crystals (and the thickness of the enamel layer as a whole) is determined by the length of time ameloblasts continue to deposit enamel proteins, or how long they remain in the secretory stage (Hu *et al.*, 2007). Ameloblastin expression is diminished by the maturation stage.

During the secretory stage ameloblasts progressively decrease in height, increase in width and reduce their secretion of enamel proteins (Deutsch *et al.*, 1995). As enamel crystals achieve their final length the ECM (separating individual crystallites) begins to be degraded and reabsorbed (Robinson *et al.*, 1995) into the early maturational stage (Lu *et al.*, 2008). Ameloblasts initiate the secretion of enamelysin that cleaves amelogenin in the secretory stage (Bartlett *et al.*, 1996; Bartlett *et al.*, 2004). Kallikrein-4 later degrades amelogenin as the process of ECM proteolysis continues into the maturation phase (Simmer *et al.*, 1998; Hu *et al.*, 2002). Amelotin is also secreted at this point as part of a newly forming basement membrane (Iwasaki *et al.*, 2005).

2.8.1.3. Maturation Stage:

Further towards the incisal tip the epithelium enters a maturation stage wherein ameloblasts shorten and begin to cycle through smooth-ended and ruffle-ended phases as they lose their secretory characteristics (Smith and Warshawsky, 1975, 1976; Nanci, 2003). At this stage the rapid removal of the ECM terminates the longitudinal growth of enamel crystals, accelerates their latitudinal growth and thickness, and exposes the sides of the thin crystals to ion deposition (Hu *et al.*, 2007). The predominant site of mineral deposition now shifts from the enamel surface, and as mineralisation speeds up the enamel layer hardens (or matures) as mineral ions are increasingly deposited either side of the crystals until adjacent crystallites contact (Robinson *et al.*, 1998). By the end of this stage, normal enamel thickness is thought to be achieved by the suppressed expression of a variety of protein genes, e.g. *Amelx* and *Enam* (Lezot *et al.*, 2000, 2002, 2008).

In the human permanent dentition, crystallites continue to grow in width and thickness over about 3–6 years during which time the enamel layer becomes hard, fully mineralised and fully mature (Termine *et al.*, 1980; Robinson *et al.*, 1998). The ECM has been completely removed and secondary enamel crystal growth occludes the spaces previously occupied by water, amelogenins and other ECM proteins that were replaced by calcium and phosphorus mineral ions (Deutsch *et al.*, 1995). The fully mineralised enamel layer is neither replaceable nor repairable because during maturation ameloblasts become cuboidal, progress towards the gingival margin and are lost as the tooth erupts (Nanci, 2003).

2. Literature Review

2.9. AMELOGENESIS IMPERFECTA

2.9.1. Amelogenesis imperfecta

The *Amelogenesis imperfectas* (AI) are a clinically and genetically heterogeneous group of inherited dental defects that are exhibited in the absence of non-dental symptoms (Witkop, 1957, 1975; Witkop and Sauk, 1976). The prevalence of AI appears to vary geographically, e.g. 1:8000 in Israel (Chosack *et al.*, 1979), 1:700 in Sweden (Backman and Holm, 1986) and 1:14000 in the USA (Witkop and Sauk, 1989). A broadly classified spectrum of human AI phenotypes exists with three main types; (i) autosomal dominant (85%), (ii) autosomal recessive (10%) and (iii) X-linked (5%). These phenotypes are subdivided into a combination of at least 14 different subtypes that result in three main deficiencies in the quality or quantity of enamel; (i) hypoplastic, (ii) hypomineralised/calcified and (ii) hypomature (Winter and Brook, 1975; Witkop, 1989; Aldred *et al.*, 2003; Wright *et al.*, 2006; Crawford *et al.*, 2007).

The range of enamel dysplasias observed in patients with AI is classified according to the thickness, hardness and smoothness of the affected enamel (Crawford *et al.*, 2007). These differences are believed to reflect the different stage of amelogenesis when the disruption occurs (Hu *et al.*, 2007): e.g. a *pre-secretory* stage failure in mineralisation, in its most extreme hypomineralised/ hypocalcified form, leaves enamel of normal thickness but rough and soft, lacking resilience and susceptible to rapid attrition (Wiktop, 1957; Hart *et al.*, 2003a; Kim *et al.*, 2008); in the *secretory* stage insufficient enamel protein deposition/ secretion and associated crystal elongation leaves the enamel layer pathologically thin or hypoplastic (Chosack *et al.*, 1979; Lench and Winter, 1995; Lagerstrom-Fermer *et al.*, 1995; Rajpar *et al.*, 2001); in the *maturation* stage a failure to fully remove the ECM and promote the hardening of the enamel layer leads to crowns of normal size but pathologically soft or hypomature (Sauk *et al.*, 1972; Lagerstrom-Fermer *et al.*, 1991; Hart *et al.*, 2000).

A number of specific mutations have been identified in the amelogenin gene (*AMELX*, OMIM300391, Hart *et al.*, 2002a, 2002b; Kim *et al.*, 2004) and in the enamelin gene (*ENAM*, OMIM606585 Rajpar *et al.*, 2001; Mardh *et al.*, 2002; Hart *et al.*, 2003b), which are human and mouse orthologues involved in enamel formation. The other significant genes implicated in the aetiologies of enamel defects encode the ameloblastin protein (*AMBN*, OMIM601259, AI1B, OMIM104500; MacDougall *et al.*, 1997, Toyosawa *et al.*, 2000), the *FAM83H* protein

(FAM83H, OMIM611927, AI3, OMIM130900, Kim et al., 2008) and two proteases kallikrein-4 (KLK-4, OMINM603767, Hart et al., 2004) and enamelysin (MMP-20, OMIM604629, Kim et al., 2005a, Papagerakis et al., 2008). Amelogenin, enamelin and ameloblastin are critical for proper enamel mineralisation and they all belong to a secretory calcium-binding phosphoprotein gene family (Kawasaki and Weiss, 2003).

AMELX and ENAM mutations cause structural changes that alter the functional domains and specificity of the proteins and result in the spectrum of different enamel appearances (Fincham *et al.*, 1999). To date, the 15 known AMELX mutations correlate directly to different deletion, mis-sense, frame-shift and non-sense types of mutations (Aldred *et al.*, 2003; Stephanopoulos *et al.*, 2005; Wright *et al.*, 2006; Crawford *et al.*, 2007) (Table 1.).

<u>A</u>				
X-linked Amelogenesis imperfecta				
MALE PHENOTYPE	MUTATION	REFERENCE		
hypoplastic (normal mineralisation)	MIT	Kim et al., 2004		
hypoplastic (normal mineralisation)	W4S	Kim et al., 2004		
hypoplastic (normal mineralisation)	W4X	Sekiguki et al., 2001		
smooth hypoplastic (normal mineralisation)	I5_A8delinsT	Lagerström Fermer and Landegren, 1995		
hypomaturation (some hypomineralisation)	18del	Lagerström-Fermer, 1991		
hypomaturation (some hypomineralisation) brown colour	T51I	Lench and Winter, 1995		
hypoplastic (some hypomineralisation, variable) white opaque	P52fsX53	Aldred et al., 1992a; Lench et al., 1994		
hypomaturation (some hypoplasia) white cervical brown coronal	P70T	Collier et al., 1997; Ravassipor et al., 2000; Hart et al., 2002b		
hypomaturation (yellow, brown)	H77L	Hart et al., 2002b		
smooth hypoplastic	H1296X187	Sekiguki et al., 2001		
smooth hypoplastic	Y1416X187	Greene et al., 2002		
hypocalcified	P158fsX187	Lench and Winter, 1995		
smooth hypoplastic (some hypomineralisation/ calcification)	L181£X187	Kindelan et al., 2000; Hart et al., 2001		
smooth hypoplastic	E191X	Lench and Winter, 1995		
smooth hypoplastic (yellow)	P52R	Kida et al., 2007		
Animal model	Amelx-null	Gibson et al., 2001; Gibson et al., 2005; Gibson et al., 2007;		
	Amelx-mil: Y64H	Wright et al., 2009; Barron et al., 2010		

Table 1. Gene Mutations Causing Amelogenesis imperfecta

в

autosomal recessive and dominant Amelogenesis imperfecta					
PHENOTYPE	MUTATION	REFERENCE			
dominant localised hypoplastic (AIH2, OMIM104500)	K53X	Mardh et al., 2002; Kim et al., 2006b			
dominant severe horizontal grooves	M71_Q157del	Kim et al., 2005b			
dominant generalised thin hypoplastic (AIH2, OMIM104500)	A158_Q178del	Rajpar et al., 2001; Urza et al., 2005			
dominant generalised thin hypoplastic (AIH3, OMIM204650)	N197 5X2 77	Kida et al., 2002; Hart et al., 2003b; Kim et al., 2005b			
dominant hypoplastic	R170M	Gutierrez et al., 2007			
dominant hypoplastic	S246X	Ozdemir et al., 2005			
recessive local pitted	V340_M341insSQ	Ozdemir et al., 2005			
recessive generalised thin hypoplastic	P422fsX448	Hart et al., 2003b			
Animal model	p.S55I; PQ176X	Matsuya et al., 2005; Seedorf et al., 2007;			
	PE57G; Enam-null	Hu et al., 2008; Wright et al., 2009			

(A) AMELX X-linked AI mutations; (B) ENAM autosomal dominant and recessive AI mutations. Adapted and updated from Hart et al., (2002), Stephanopoulos et al., (2005) Wright et al., (2006) and Hu et al., (2007).

2. Literature Review

All of the X-linked forms of AI (AIH1, OMIM301200) are associated with specific mutations in the X-chromosomal amelogenin gene (*AMELX*, OMIM300391, Lagerstrom-Fermer *et al.*, 1991, 1995; Lench and Winter, 1995), located at chromosome Xp22.3-p22.1 (Lau *et al.*, 1989; Salido *et al.*, 1992; Aldred *et al.*, 1992a). One family has been reported as having linkage to another X linked interval (Xq22-28) (Aldred *et al.*, 1992b, OMIM301201) and there are other X-linked conditions that have significant enamel involvement, making it likely that there are other important genes on the X chromosome (Wright, 2006).

AIH1 affects males and females differently and their phenotypes vary markedly in severity and appearance (Witkop, 1967). In males, 90% of the amelogenin transcripts are expressed from AMELX and only 10% are expressed from the active human amelogenin gene on the Y chromosome AMELY (AMELY, OMIM410000) (Salido et al., 1992). Although AMELY is thought to contribute proteins no mutations are reported (Fincham et al., 1983; Snead et al., 1989; Nakahori et al., 1991). Affected hemizygous males express only the mutant allele and so display the trait severely, whereas, heterozygous females show a mosaic pattern of expression due to lyonisation (Lyon, 1961) or X-chromosome inactivation (Huynh and Lee, 2005; Heard and Disteche, 2006). This is proposed to be due to alternating clusters of ameloblasts (expressing either the normal or the mutant allele) secreting either the normal or the defective amelogenin protein (Witkop and Sauk, 1976). Affected teeth typically display vertical ridges and grooves as a result of enamel hypoplasia, or they have vertical striated bands of alternating normal and discoloured enamel (Witkop, 1967). Pleiotropic variation is often exhibited (Liao et al., 2008) between affected individuals in the same family, between dentitions in the same individual and even between different teeth in the same dentition (Brook, 2009), e.g. in some families hypoplasia occurs together with other abnormal mineralisation phenotypes (Backman, 1988).

AMELX mutations are categorised as; (i) major deletions or signal peptide coding region mutations that result in the total loss of amelogenin (Lagerstrom-Fermer *et al.*, 1991 and 1995; Kim *et al.*, 2004), this is a human knockout (KO) equivalent that primarily leads to the smooth hypoplastic phenotype of reduced enamel thickness (also described as hard and well-mineralised); (ii) frame-shift mutations in the N-terminal coding region (Aldred *et al.*, 1992b; Lench *et al.*, 1994) that result in hypomaturation hypomineralised enamel that is soft with too much organic material and hypolplastic phenotypes with varying degrees of severity (even between same gender individuals within the same family) (Wright *et al.*, 2003). Mis-sense

T51I mutations in this region result in an enamel phenotype described as hypomineralisation/ hypomaturation (Lench and Winter, 1995), and the P70T and H77L mutations that produce the hypomaturation phenotype both display enamel discoloration (Collier *et al.*, 1997; Ravassipour *et al.*, 2000; Hart *et al.*, 2002b); (iii) premature stop codons in the C-terminus coding region that cause protein truncation and result in a generalised thinning of enamel and a smooth hypoplastic phenotype (Lench and Winter, 1995; Hart *et al.*, 2002b; Aldred *et al.*, 2003).

This overlapping range of enamel phenotypes is not surprising given that amelogenin (and its associated proteins) are all involved in the critical pathways that are related to the secretion, organisation, processing, and/ or mineralisation of developing enamel (Wright et al., 2003; Wright, 2006). For example, in hypoplastic AIH1 a deficiency in the amount of enamel, which is of a normal hardness but does not develop to normal thickness, makes teeth appear small - the surface enamel varies considerably displaying smooth, rough, pitted, or local forms (Witkop, 1989). The hypomature (snowcapped) type of AIH1 arises from defects in the maturation stage of amelogenesis, where, in males the primary teeth are opaque ground-glass white and the secondary teeth are mottled yellow-brown and white (Witkop, 1989) and enamel is moderately soft and of normal thickness, so chips and abrades more easily than normal (Crawford et al., 2007). In hypomature AIH1 teeth may either have only a thin layer of enamel of normal colour and translucency, or the enamel may be of normal thickness but poorly mineralised with loss of translucency and/ or a yellow-brown discolouration (Wright et al., 2003; Wright, 2006; Crawford et al., 2007). In hypocalcified AIH1 the loss of enamel is rapid because the developmental disruption results from early defective initial crystallite mineralisation and growth (Wright, 2006). Understanding the relationship between the enamel phenotype and underlying genetic lesion is made more complex by the extensive alternative splicing of Amelx such that a point mutation could potentially affect several different amelogenin proteins but have no effect on others (Gibson et al., 2005, 2009).

In addition to amelogenin, the other important ECM constituent that is implicated in the aetiology of AI is *ENAM* (OMIM606585, Dong *et al.*, 2000; Hu *et al.*, 2000). Multiple *ENAM* allelic mutations are associated with autosomal dominant AI (AIH2) (Rajpar *et al.*, 2001; Kida *et al.*, 2002; Hart *et al.*, 2003a; Hu and Yamakoshi, 2003) mapped to human chromosome 4q11-q21 and encompassing the *AMBN* gene (Karrman *et al.*, 1997). Two clinically distinct forms of AIH2 exist, smooth hypoplastic AI and local hypoplastic AI

2. Literature Review

(OMIM104500, Rajpar *et al.*, 2001; Mardh *et al.*, 2002). The local hypoplastic phenotype resulting from *ENAM* mutations that essentially stops protein production from one allele is characterised by horizontal bands of hypoplastic pits that encompass the tooth. Mutations that result in a secreted but altered protein are associated with the more severe generalised thin hypoplastic type that display fine horizontal bands and pitting on the enamel surface, hypothesised to result from a dominant negative effect (Mardh *et al.*, 2002; Wright, 2006). Therefore *ENAM* mutations show a haploinsufficiency dose effect so that a single mutant allele causes a mild form of AI and defects in both alleles prevent the whole enamel layer from forming in more severe forms of AI (Hart *et al.*, 2003b; Ozdemir *et al.*, 2005; Hu and Yamakoshi, 2003; Hu *et al.*, 2008).

The subsets of AI conditions offer an unparalleled opportunity to investigate the specific roles of proteins in normal and abnormal enamel formation and to delineate between the various phenotypes (Hart *et al.*, 2002b; Miletich and Sharpe, 2003; Stephanopoulos *et al.*, 2005; Paine and Snead, 2005). Mutations leading to defective processing are thought to impair mineral initiation, fusion, and crystal growth leading to short mineral segments in hypoplastic AI or abnormally large crystals in hypomature AI (Robinson *et al.*, 2003). Further genetic linkage studies are expected to show additional loci for both X-linked and autosomal forms of AI (Aldred *et al.*, 1992b; Karrman *et al.*, 1996; Kim *et al.*, 2006b; Wright, 2006; Hu *et al.*, 2007).

2.9.2. Mouse Models of Amelogenesis imperfecta

Numerous murine model studies have targeted particular ECM genes in order to evaluate the effect of the individual protein changes during enamel development. This has gained much of the insight into the structural and functional causes behind the phenotype heterogeneity in AI.

2.9.2.1. Amelogenin (Amelx):

Amelogenin deficient knock-out (KO) mutant mice, with a deletion in the signal peptide sequence that results in the total loss of amelogenin, combine various human phenotypes into one model of AI (Gibson *et al.*, 2001, 2005). The distinctly abnormal phenotypes (chalky-white discoloured teeth) of the amelogenin-null (*Amelx*-null) mice are remarkably similar to severe hypomaturation AI in humans (Sauk *et al.*, 1972; Collier *et al.*, 1997). Microradiography and SEM revealed broken incisal tips and disorganised thin hypoplastic enamel

respectively, which suggested incorrect amelogenin assembly, delayed mineral deposition and thin disrupted enamel prism patterning (Gibson *et al.*, 2001). Amelogenin was not required for mineral crystal initiation but was essential for correct structural organisation, crystal pattern formation and elongation during the *secretory* stage of amelogenesis (Gibson *et al.*, 2001). This proposed the critical importance of amelogenin in generating the correct thickness of enamel.

Mice over expressing the most abundant amelogenin isoform (M180) and mice containing a proline - threonine (P70T) mutation in the amelogenin tri-tyrosyl domain (Gibson *et al.*, 2007), have revealed a similar phenotype to the hypomaturation form of AI in humans with a similar mutation (Collier *et al.*, 1997). The P70T mutation is adjacent to a proteolytic cleavage site thought to be required for amelogenin degradation during normal crystal growth (Li *et al.*, 2001). Under light microscopy and SEM the morphology of the molars from the wild-type and the M180 mice showed similar prismatic enamel, while the P70T mice showed markedly aprismatic chalky-white discoloured enamel (Gibson *et al.*, 2007). The resulting delay in the proteolysis was suggested to lead to the retention of excess protein as seen in the hypomature enamel of AI (Li *et al.*, 2001; Gibson *et al.*, 2005). Mating the *Amelx*-null mice (Gibson *et al.*, 2001) and the M180 mice generated M180KO offspring with partially rescued enamel thickness, mineral density and volume (Gibson *et al.*, 2007), but mating the *Amelx*-null and the P70T mutants generated P70TKO offspring that displayed a heterogeneous enamel structure with no evidence of rescue (Li *et al.*, 2008). This supported the dominant-negative effect of the P70T mutation (Gibson *et al.*, 2007).

Also amelogenin cell binding activity may be disrupted by *Amelx* tri-tyrosyl domain mutations that lead to defective enamel, particularly as it was shown to be involved in nanosphere assembly (Ravindranath *et al*, 1999). The tri-tyrosyl domain has received a lot attention because of lectin-like binding activity to glycosylated enamelin proteins at the dentino-enamel junction, such as N-acetyl glucosamine (Ravindranath *et al*, 1999; Wright, 2006) and the N-acetyl glucosamine mimicking domain of cytokeratin 14 and N-acetyl glucosamine residues on cytokeratin 5 (Ravindranath *et al.*, 2003, 2004). Therefore, the actual mechanism that leads to AI may be related to amelogenin cell binding activity and cell signalling function (Gibson *et al.*, 2007). The cooperative function of amelogenin variants, e.g. in nanospheres assembly, may explain the biological importance of the alternative splicing of *Amelx* RNA (Gibson *et al.*, 2009).

Humans from 54 families segregating for AI (18 autosomal dominant, 26 autosomal recessive and 10 X-linked traits) were recently recruited for candidate gene (*AMELX, ENAM, AMTN, AMBN, MMP-20* and *KLK-4*) sequencing (Wright *et al.*, 2009). Mutations were found in the *AMELX, ENAM* and *KLK-4* genes but none were identified in the *MMP-20, AMTN* or *AMBN* genes. Comparing wild-type and mutant mice models of AI, *Amelx*-null and *Enam*-null mice displayed a complete loss of enamel prisms similar to that of marked hypoplasia in humans (Wright *et al.*, 2009). The mandibular incisors in the *Amelx*-null and *Enam*-null mice lost the yellow-brown coloration typical of wild-type mice and displayed a rough aberrantly mineralised enamel surface. The AI associated enamel phenotypes in humans and mice appeared to differ depending on whether the mutation/ knockout involved the genes encoding ECM proteins (*Amelx* or *Enam*) or proteases (*Mmp-20* and *Klk-4*) (Wright *et al.*, 2009).

A recently reported novel ENU-induced *Amelx* N-terminal region mis-sense Y64H mutation (in the tri-tyrosl motif of amelogenin) led to enamel that was hypomineralised in the *Amelx*^{Y/Y64H} male or severely hypoplastic in the *Amelx*^{X/Y64H} and *Amelx*^{Y64H/Y64H} female mutant mice (Barron *et al.*, 2010). The engorged endoplasmic reticulum/ golgi apparatus suggested intracellular retention of Y64H amelogenin (Barron *et al.*, 2010). The scarcity of the full-length Y64H amelogenin in the Y64H mutant ECM extracts suggested the failed secretion of amelogenin into the enamel ECM (Barron *et al.*, 2010). In contrast to previous reports (Lei *et al.*, 2001) there appeared to be no difference in Y64H amelogenin degradation rates, which eliminated the possibility of this amelogenin Y64H having an increased susceptibility to normal post secretory processing or enhanced sensitivity to extra-cellular proteolysis (Barron *et al.*, 2010).

Intracellular protein-protein interactions, mediated via the amelogenin tri-tyrosyl motif, were thought to be a key factor underpinning the molecular pathogenesis of AI (Barron *et al.*, 2010). However, amelogenin and ameloblastin were both shown to be accumulated in the ameloblasts of affected mice, which suggested a combination of the Y64H mutant amelogenin and ameloblastin proteins was a pathological factor. This may be related to amelogenin-ameloblastin interactions that result in protein complexes with conformational anomalies that can no longer be trafficked appropriately prior to secretion (Barron *et al.*, 2010).

69

Mice expressing a truncated ameloblastin share similar histopathological features to the Y64H amelogenin mutant mice (Fukumoto et al., 2004; Wazen et al., 2009), which suggested the Amelx mutant phenotype may be due in part to disturbances involving ameloblastin secretion and function (Barron et al., 2010). Considering their relative abundances of amelogenin (95%) and ameloblastin (5%) in the ECM it is conceivable that their synthesis differs commensurately. Abnormal amelogenin-ameloblastin interactions may be only one part of the reason for impaired Y64H amelogenin secretion, and it is likely that other proteinprotein interactions may also be affected, such as amelogenin-cytokeratin interactions (Barron et al., 2010). The tri-tyrosyl motif binding to N-acetyl-D-glucosamine residues on cytokeratin 5 (Ravindranath et al., 1999) and the N-acetyl-D-glucosamine mimicking sequence in cytokeratin 14 (Ravindranath et al., 2003) suggests a possible role for cytokeratin 14 in chaperoning amelogenin during amelogenesis (Barron et al., 2010). Therefore, it was also proposed that ameloblast cell binding, amelogenin chaperoning/ trafficking and secretion may have a causative role in the mechanism of dysplastic enamel formation in AI. Importantly the Amelx Y464H mutant mice provides an excellent model that phenocopy human X-linked AI.

2.9.2.2. Ameloblastin (Ambn):

Ameloblastin deficiency results in severe enamel hypoplasia in AIH1 in humans (Paine et al., 2002) and transgenic mice that over express ameloblastin exhibit a similar defect (Paine et al., 2003). Recently generated Ambn mutants that secreted a truncated ameloblastin protein failed to produce an enamel layer, which demonstrated that ameloblastin was essential during enamel formation (Smith et al, 2009c). These findings were consistent with the idea that part of the pathology involves cell adhesion and/ or loss of contact to the ECM (Fukyumoto et al., 2004). Other loss of function models (e.g. ECM glycoproteins laminin and connexion) have shown aborted secretory and maturation stage enamel formation suggesting that the disruption of many cellular processes was more likely to be the cause of the enamel defects, rather than the absence of a single specific protein (Smith et al., 2009c; Wazen et al., 2009). Ameloblastin was originally thought to be an important determinant of tissue architecture (Brookes et al., 2001) and has more recently been shown to maintain the differentiation state of secreting ameloblasts, control their secretion and have a significant role in cell adhesion (Fukumoto et al., 2004). It has also been shown to interact with amelogenin (Ravindranath et al., 2004) and share a common secretory pathway (Zalzal et al., 2008). This has lead to the suggestion that amelobastin and amelogenin may be functionally dependent (Wazen et al.,

2009) and may have synergistic roles during enamel formation (Hatakeyama *et al.*, 2009; Smith *et al.*, 2009c).

2.9.2.3 Enamelin (Enam):

Mutations that disrupted the *maturation* stage removal of the ECM interfered with enamel hardening and resulted in soft/ hypomature forms of AI (Hu *et al.*, 1997, 2000). Several point mutations introduced into the *Enam* gene by ENU mutagenesis have shown enamelin to be crucial for the initiation of enamel crystal formation at the *pre-secretory* and *secretory* stages of amelogenesis (Masuya *et al.*, 2005; Seedorf *et al.*, 2007). Disrupted secretion interfered with crystal elongation (and enamel thickness) resulting in a rough and pitted enamel surface in the *Enam*^{+/-} heterozygous mice and complete enamel agenesis in the *Enam*-null condition (Hu *et al.*, 2008). The enamel of the *Enam*^{+/-} heterozyous mice was nearly normal in the maxillary incisors but the mandibular incisors were discoloured and wore rapidly at the incisal contact points. *Enam*-null mice do not make enamel because of a complete failure at the secretory surface mineralisation front of the ameloblast (Hu *et al.*, 2008). Enamelin gene mutations are the single most significant contributing factor to the aetiology of AI (Hu *et al.*, 2007).

The M100888 mis-sense mutation in *Enam* mice (Matsuya *et al.*, 2005) has recently been sequenced and shown to affect the 55th amino acid of the full-length enamelin peptide, changing a serine residue to an isoleucine (Dr. Martin Barron, unpublished personal communication). Therefore, there is a discrepancy depicted in figure 3. of Matsuya *et al.*, (2005) that shows the M100521 mutation as a serine to isoleucine change rather than the M1000395 mutation. The M100521 mutation actually affects the splice junction between exons 4 and 5, and the M1000395 depicted is actually the M100514 mutation (Dr. Martin Barron, unpublished personal communication).

2.10. SUMMARY

Looking forward to the present study, the purpose of this summary is to focus on the aforementioned methods that are most pertinent to the explicit investigation of odontogenesis, tooth morphogenesis and enamel mineralisation.

2.10.1. 2D Measurement Methods

The early manual contact methods, e.g. mechanical callipers, gave a lower reliability compared to the recent digital imaging methods. The later digital calliper methods were reported to be the gold standard for tooth measurement but were also cumbersome to operate. They did not benefit from the highly accurate landmark determination and repositioning of the 2D IAS that will be used in this study. The 2D IAS was simple to operate, required less instruction and could be used by untrained operators. The 2D IAS benefitted from automated technology that maximised reliability and precision. As a quantitative tool the 2D IAS succeeded as the gold standard and was proven to be an optimum technique for measuring human tooth dimensions. However, the 2D IAS was limited to 2D planar data analysis that reduced important 3D tooth morphology. This restricted measurement capacity and was a major limiting factor of all the 2D approaches. Nonetheless, the 2D IAS was the most reliable and precise 2D method. It was adaptable and offered the most modification potential for the small murine application.

2.10.2. 3D Measurement Methods

A wide variety of contemporary 3D methods recorded and measured dental morphology. The direct 3D methods were incomparable to modern 3D methods because they only described 2D planar analysis of 3D objects. The early 3D methods, e.g. the Symmetrograph and the Optocom, depended on mechanical contact that made them subjective and confounded by uncertainty. The direct methods showed high operator and systematic error compared to the indirect approaches. Human dental study model applications dominated the literature.

Technological advances resulted in a succession from the direct contact methods to the indirect non-contact 3D methods, e.g. the Reflex-Metrograph and the Travelling Microscope. The introduction of light projection, e.g. Moiré Contourography, represented the early use of

72

optical technology and the start of a transition towards the structured light methods. A range of 3D tools became increasingly available because of advances in computer technology, digital imaging devices, electro-optical components, laser and other light sources. These systems digitised the surface of dental casts into 3D models for measurement on a computer screen. The increasing economic availability of the structured light technologies made these techniques more accessible. Many indirect 3D methods were readily commercialised in dentistry and regarded as clinically acceptable alternatives to the conventional plaster model.

The optical principal of triangulation determined the 3D coordinates of the object surface as point cloud data that was transformed from a local to a global coordinate system when rendered into a 3D model by computer software. Three approaches to obtaining 360° 3D models predominated; (i) object rotation, (ii) sensor movement, and (iii) fixed imaging systems. Each had relative advantages and disadvantages, e.g. calibration and multi-view image combination errors. Also, the geometric data transformation was approached by several computer algorithms, again with advantages and disadvantages. The computer integration of the separate image capture, processing and storage steps was demonstrated by many examples, and the most progress towards a fully automated and fast multi-view image combination method was exemplified by the rotary table instrument. Software and hardware developments improved the speed and measurement capacities of many of the most recent 3D methods to provide previously inaccessible data, e.g. Computer Tomography. The majority of the commercially available dental systems were only suitable for assessing the human dentition using dental study models. The laser methods did not provide sufficiently high accuracy or high resolution necessary for a small murine tooth application.

A compromise between resolution and versatility, and the balance between cost and speed was evidently a limitation to the 3D optical technology, e.g. increased accuracy and resolution required long processing durations. However, an expanding market provided increased consumer choice and newly available software became increasingly accurate and reliable.

The structured light techniques were limited by the use of specific calibration surfaces that meant that differences between the calibration and the tooth surface were proportional to the measurement accuracy. In many cases this was too large to accurately assess the small mouse incisor. Light scatter at the surface of reflective materials, e.g. mineralised tissues like enamel, was also a big disadvantage because it caused areas of missing data, incomplete images or 3D models with holes. This problem occurred because of optical heterogeneity, variations in albedo or weak laser light reflection. Although this was minimised when studying uniform materials like dental plaster or die stone, the optical properties of tooth enamel and dentine allowed light to penetrate the surface layer, scatter back to the sensor and produce an irregular source of systematic error that was difficult to quantify. Algorithms for closing holes in complex morphology exist but may introduce artifice. This was prohibitive and compromised the accurate representation of tooth morphology, even at high resolution. Therefore, the laser methods could not provide the precision required for imaging dental tissues at the small murine scale and were unsuitable for studying the macro-structure and micro-surface morphology of mice teeth and the mineralised tissues.

Of the structured light techniques only the NCSP chromatic sensor was suitable for imaging all types of materials and surfaces (transparent or opaque, specular or diffuse, glossy or mat). The NCSP obtained enamel surface structural information, regardless of ambient illumination or heterogeneous reflectivity in enamel demineralisation, remineralisation, abrasion and attrition studies. The chromatic confocal sensor delivered spatio-chromatic filter high submicron resolution Z-coordinate data through modular optics that will be tailored to suit the specifications of the application. The X and Y coordinate data collection was automated by a precise CMM movable platform that had potential for hardware modification.

Thus, an economical and practical approach to the small murine application would be to modify the NCSP CMM platform with a rotary stage, in a similar manner to those previously described for the rotary table. This would adapt the instrument to acquire multiple multi-view 3D images within an established coordinate system and to reconstruct complete 360° 3D models. Although there were limitations to the multi-view image combination methods, the increasingly powerful array of commercial 3D modelling software available could be used to combine the multi-view images and create a new indexing method that would contribute to the future of 3D imaging technology. This modification would introduce a new method of 360° surface metrology able to resolve enamel surface structure at a competitive resolution of 1.0μ m. A novel NCSP technique would fall between the discriminating power of the laser scanning, confocal microscopy, CT, XMT, μ CT and nano-CT techniques to give excellent relative economy. Unlike the other methods, the NCSP could enable a practical solution to facilitate both the macro-metric and micro-metric investigation of the small murine incisor.

2. Literature Review

2.10.3. Colour and Whiteness Assessment

With the exception of the digital techniques, the colour and whiteness methods reviewed were not compatible with the CIE colour space model. They were subjective with limited repeatability, showed operator and systematic errors, and had other inconsistencies that were difficult to manage and quantify. In particular, the sectrophotometers and colourimeters were designed for contact on flat surfaces and had many disadvantages that compounded errors making them unsuitable for investigating the curved morphology of the mouse incisor. On the other hand, the 2D IAS method was successfully standardised for CIE colour space (in humans) and could be appropriately modified for the murine application. It quantified enamel phenotypes in measures that were translated to humans.

The distinct anatomical thirds used to assess human incisors were identified in the *gingival*, *middle* and *incisal* regions of the hypsledont murine incisor that correspond to the *pre-secretory*, *secretory* and *mature* histological/ development stages of enamel formation. Therefore, it is hoped that by quantifying enamel surface mineralisation in terms of colour and whiteness at the phenotype level (both overall and separately in these specific regions) it will be possible to attribute the contributions of the important ECM proteins to the specific stages of amelogenesis.

2.10.4. 2D and 3D Morphometric Measurement Systems

The 2D and 3D systems were of variable efficiency and practicality. They offered a highly informative means of documenting mouse mandible and incisor phenotypes for systematic morphometric research. The impact of computerised methods has had economical and storage benefits; recording, archiving and database management made access, communication and data analysis more convenient.

A great variety of 2D and 3D methods have been discussed to examine human and mouse dental morphology. The techniques have significantly improved over the decades and the ever increasing capabilities of 2D digital photography and 3D modelling have facilitated expedient image analysis methods in dental research. Further modifications for the murine application will realise the potential for a sophisticated and objective phenotype to genotype investigative tool that can be readily applied to the mouse model.

The extensive use of the mouse model in morphometric studies has led to a better understanding of the genetic basis of dental development. Investigating developmental anomalies will continue to be important to understand normal and abnormal enamel mineralisation. The application of a 2D IAS will provide a robust and reliable means to assess the involvement of the ECM proteins in the skeletogenesis of hemi-mandibles and in odontogenesis of mandibular incisors. Accurately quantifying the morphometric variation of the observable phenotypes by the modified methods (detailed in the following sections) will enhance our knowledge of the processes by which underlying gene mutations have their affect.

The customised 2D IAS and novel 3D IAS will define previously inaccessible measurement parameters making more information available for phenotype comparisons. This new range of measurements will extend the versatility of the systems and provide further possibilities for exploring phenotype variation. A more complete quantification of dental morphology could be demonstrated by other new variables, e.g. *surface-area* and *volume*, and will give a new handle on comparative analysis of biological variation and development, e.g. the conventional projected straight line measurements between two landmarks (as in the 2D IAS) could be extended to include actual on-surface dimensional measurements. The actual measurement will follow the 3D curvature of the tooth structure to take account of the enamel surface contours for a more meaningful quantitative evaluation of tooth morphology. The 3D method will assess the macro-metric gross structure and micro-metric surface topography of enamel to provide a more sophisticated 3D tool that will interrogate tooth morphogenesis and enamel mineralisation.

2.10.5. Tooth Development and The Mammalian Model

In contrast to human teeth murine incisors are an excellent location to observe the dynamic process of enamel formation and tooth morphogenesis because they form and erupt continuously throughout life and offer access to all stages of enamel development in a single tooth. Thus far, they have been instrumental in understanding the roles of specific genes and proteins during amelogenesis. Early dental development models were useful in describing the patterns of variation observed within the dentition. However, more recent molecular studies have identified the underlying molecular mechanisms (in terms of differential gene expression) and have delineated the strict regulatory pathways that orchestrate the diverse

cellular and extra-cellular processes of oro-facial development conserved in humans and in mice. The three developmental models (Field, Clone and Molecular) may be incorporated into a unified explanatory model for craniofacial development that is complementary.

As the process of odontogenesis progresses the tooth changes into a complete organ consisting of different mineralised and un-mineralised tissues that each contribute to the form and function of the tooth. The reciprocal reiterative and conserved nature of signalling pathways suggests the affect of a single gene mutation can influence the complex interaction of various tissues and cannot be considered in isolation. The need for detailed phenotyping/ morphometric analysis, not just of the teeth known to be directly affected but also the associated structures, e.g. the mandible, would benefit from being documented and may provide a deeper insight into/ understanding of the pleiotropic affects of specific mutations on abnormal development. The current investigation may substantiate a morphometric link between the known disruptions to ECM proteins responsible for enamel defects and skeletal development in the mandible.

2.10.6. Mineralisation and The Predominant ECM Proteins

The importance of the ECM proteins in the mineralisation of enamel defects, e.g. AI, has been well established and increasingly characterised. Numerous clinically defined phenotypes have been described and have indentified various gene mutations in specific homologous domains of the predominant ECM proteins amelogenin and enamelin. It is thought that only 25% of mutations (and associated defects) have been described and the various mechanisms that cause abnormal enamel formation require further elucidation. The interactions of the diverse families of amelogenin and non-amelogenin proteins that orchestrate the formation of the enamel ECM have shown spatially and temporally restricted expression during amelogenesis. The functional significance of this distribution is not fully understood, e.g. there is evidence for multiple roles of amelogenin isoforms with different functions, both before the initiation of tooth formation and in bone formation. This has superseded the once held view of amelogenin functioning specifically as a protein that regulates size, shape and directional growth of organic mineral crystals. Amelogenin is now thought to be a multifunctional protein.

2.10.7. Phenotyping Murine Models of Amelogenesis imperfecta

Depending on the type and loci of the different *Amelx* and *Enam* gene mutations, posttranslational modification and alternative splicing, a diverse set of protein degradation products are seen. Their cellular distribution patterns are reflected in the mineralisation process thought to be responsible for the range of AI phenotypes, from smooth hypoplastic to hypomineralised/ hypomaturation forms. This highly overlapping spectrum of enamel phenotypes is not surprising given that amelogenin and enamelin have been shown to be involved in the critical pathways related to the secretion and organisation of developing enamel. Different mutant mice groups have already been used to explore the abnormal function of proteins and the causes of the considerable phenotypic variation within and between individuals with AI. Importantly, this overlapping range of phenotypes provides a permanent record of odontogenesis and is an excellent case in which to employ a phenotype-genotype driven approach. Also, to better understand the aetiological roles of amelogenin and enamelin in determining the macro-metric and micro-metric tooth morphology and enamel mineralisation phenotypes indicative of AI.

Contrasting the human and mouse enamel pathologies has shown similarities and differences for several reasons that can be related to the complete loss of protein function in the mouse model compared to the more subtly altered protein function in humans. Therefore, although the experimental model may not fully recapitulate the functional range of AI associated human gene mutations, because of the more diverse genetic background of the human population (not to mention epigenetic interactions), this method of targeted gene exploration has proven to be the most readily available resource and amenable means of characterising protein function. This ability to manipulate murine models has provided a wealth of information thus far, e.g. the amelogenin mouse effectively combines the various AI phenotypes into a single model, and by continuing to characterise the variability and diversity exhibited by AI, through revealing the observable phenotype-genotype relationship, it will be possible to further the understanding of disease pathologies.

There were no known reports in the literature of any detailed 2D or 3D macro-structural investigations of the mouse model for dental anomalies. Also there were no known occurrences of 2D colour and whiteness assessment in the mouse model and/ or 3D quantitative assessment of the phenotype variation of mouse incisors. Therefore, a vacancy exists for a holistic investigation into murine dental phenotyping that could benefit from the

78

significant impetus for objective and automated biological measurement. The aim of the current study is to provide a complementary macro-metric and micro-metric means of identifying dysmorphologies and quantitatively characterising homologous mandible and incisor craniofacial features that represent a complex developmental module and a site of continuous enamel formation respectively.

The *Amelx* (OMIM300391) and *Enam* (OMIM606585) mutants represent excellent models for investigating the roles of the specific amelogenin and enamelin ECM proteins respectively. Accurate examination of phenocopy mouse models - via four *Amelx* genotypes (*Amelx*^{WT}, *Amelx*^{X/Y64H}, *Amelx*^{V/Y64H} and *Amelx*^{Y64H/Y64H}) and three *Enam* genotypes (*Enam*^{WT}, *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous*) - gives the opportunity to differentiate between the phenotypes of the wild-type controls and of their specific mutant littermates. Using newly developed 2D and 3D morphometric methods and colour and whiteness assessment it will be possible to distinguish between the wild-type and phenodeviant mice and to elucidate any affect of the specific gene mutations. The colour and whiteness assessment will illustrate the lack of demarcation between overlapping phenotypes and provide a quantitative means for delineating the different lesions and aberrations in enamel mineralisation. In fact, dissecting out the specific affects of these genetic mutations using regional colour and whiteness assessment may identify and isolate disruptions in a developmental stage specific manner and offer an unparalleled contribution to phenotype-genotype correlations.

Clearer phenotyping of AI phenocopy mice will explicate a deeper understanding of the multifactorial growth and development of the oro-facial features and of the aetiology of enamel mineralisation defects.

3. AIMS AND NULL HYPOTHESES

3.1. A	IMS	81
3.2. N	ULL HYPOTHESES	82

3.1. AIMS

- i. To develop four novel measurement methods; (i) a 2D image analysis system (IAS) to measure murine mandible morphology, (ii) incisor morphology and (iii) incisor enamel colour and whiteness, and (iv) a 3D IAS to measure incisor morphology and enamel surface structure.
- ii. To define a novel repertoire of morphometric variables for each new method.
- iii. To determine the reliability and validate the new measurement methods and morphometric variables in a homogenous mouse population.
- iv. To use the new measurement methods to characterise the phenotype of mouse mandibles, incisors and enamel mineralisation in a heterogeneous experimental population.
- v. To use two separate experimental mutant populations with specific gene mutations in the amelogenin (*Amelx*, OMIM 300391) and enamelin (*Enam*, OMIM606585) proteins as models of X-linked *Amelogenesis imperfecta* (AIH1, OMIM301200) and autosomal dominant local hypoplastic *Amelogenesis imperfecta* (AIH2, OMIM104500) respectively.
- vi. To use the wild-type genotype groups as a control and as a baseline for comparison with their respective mutant littermate genotype groups.
- vii. To demonstrate phenotype variation between the genotype groups in terms of significantly different morphometric variables.
- viii. To investigate the effect of the amelogenin and enamelin proteins on mandibular development, tooth morphology and enamel mineralisation.
- ix. To differentiate between overlapping phenotypes.

3.2. NULL HYPOTHESES

- i. The 2D IAS will not be reliable.
- ii. The colour and whiteness assessment will not be reliable.
- iii. The 3D IAS will not be reliable.
- iv. The 3D IAS will not be valid.
- v. The mandible and incisor morphometry, and colour and whiteness assessment will not quantify phenotype.
- vi. The mandible and incisor morphology will not represent enamel quantity, growth and development.
- vii. The colour and whiteness assessment and 3D surface analysis will not represent enamel quality and mineralisation.
- viii. The control and mutant groups will not show evidence of statistically significant phenotype variation.
 - ix. There will be no significant differences in the mandible dimensions between wild-type and mutant populations.
 - **x.** There will be no significant differences in the incisor dimensions between wild-type and mutant populations.
 - xi. There will be no significant differences in the enamel phenotype between wild-type and mutant populations.
- **xii.** The *Amelx* mutants will not display hypoplastic/ hypomineralised enamel indicative of X-linked AI (AIH1,OMIM301200).
- xiii. The *Enam* mutants will not display local hypoplastic enamel indicative of autosomal dominant AI (AIH2, OMIM104500).

4. MATERIALS AND METHODS

4.1. INTRODUCTION	86
4.2. STUDY SAMPLE	87
4.2.1. Criteria for Inclusion	87
4.2.2. Reliability Population	87
4.2.3. Experimental Population	88
4.2.4. Animal Husbandry	. 89
4.2.5. Storage and Preparation	89
4.2.6. Micro-dissection/Extraction	90
4.3. 2D IMAGE ANALYSIS SYSTEM	92
4.3.1. Personal Computer	92
4.3.2. Digital Camera	93
4.3.3. Macro-Lens	93
4.3.4. Photographic Stand	.94
4.3.4.1. Vertical Height	94
4.3.5. Camera Settings	.94
4.3.5.1. Aperture Size	.94
4.3.5.2. Shutter Speed	.94
4.3.5.3. ISO	. 94
4.3.5.4. Magnification	.95
4.3.6. Imaging Background	95
4.3.7. Illumination	95
4.3.8. Calibration	96
4.3.9. Image Capture	96
4.3.10. File Format and Saving	.97
4.4. 2D MORPHOMETRIC MEASUREMENT	98
4.4.1. 2D Measurement Procedure	98
4.4.2. 2D Mandible Measurements	.99
4.4.2.1. overall-length	101
24.4.2.2. ascending-height	. 102
4.4.2.3. basal-length	.102
4.4.2.4. mandible-angle	103
4.4.2.5. coronoid-coronoid-length	. 103
4.4.2.6. diagonal-length	. 104
4.4.2.7. mandible perimeter	. 104
4.4.2.8. mandible surface-area	.105
4.4.3. 2D Incisors Measurements	105
4.4.3.1. projected overall-length	. 108
4.4.3.2. projected labial-length	. 109
4.4.3.3. angle-of-curvature	110
4.4.3.4. projected width-at-midpoint	. 111
4.4.3.5. incisor perimeter	. 112
4.4.3.6. incisor surface-area	.113

4.5. COLOUR AND WHITENESS IMAGING	114
4.5.1. Image Capture	115
4.5.2. Camera Settings	115
4.5.3. Orientation Settings	. 115
4.5.4. Non-Polarised and Polarised Images	. 116
6	
4.6. COLOUR AND WHITENESS ASSESSMENT	118
4.6.1. Calibration	. 118
4.6.2. Assessment Procedure	. 119
4.7. 3D IMAGE ANALYSIS SYSTEM	121
4.7.1. Non-Contact Surface Profilometer	. 122
4.7.1.1. CMM Movable Platform	. 123
4.7.2.2. Novel Customised Modification	.125
4.7.2. File Format And Saving	.129
4.7.3. Final 360° 3D File	132
4.7.4. 3D Modelling	.133
4.8. 3D MORPHOMETRIC MEASUREMENT	135
4.8.1. Operating Instructions	135
4.8.2. 3D Measurement Procedure	136
4.8.3. 3D Incisor Measurement	139
4.8.3.1. projected overall-length	. 140
4.8.3.2. labial-length	. 140
4.8.3.3. actual labial-length	141
4.8.3.4. projected width-at-midpoint	. 142
4.8.3.5. actual width-at-midpoint	142
4.8.3.6. incisor perimeter	. 143
4.8.3.7. total and marked surface-area	144
4.8.3.8. circumference	. 144
4.8.3.9. total volume	. 145
4.8.3.10. surface-roughness	. 146
4.9. 2D AND 3D MORPHOMETRIC MEASUREMENT	147
4.9.1. 2D and 3D Incisors Measurement	. 147
4.9.1.1. projected overall-length	. 147
4.9.1.2. labial-length	148
4.9.1.3. actual labial-length	148
4.9.1.4. projected width-at-midpoint	. 149
4.9.1.5. incisor perimeter	149
4.9.1.6. incisor surface-area	150
4.10. SUMMARY	151
4.11. METHOD RELIABILITY AND VALIDATION	152
4.11.1. Introduction	.152
4.11.1.1. Accuracy/ validity	153
4.11.1.2. Precision	. 153
4.11.1.3. Reliability	. 153

4.11.2. Reliability Study	154
4.11.2.1. 2D IAS and Mandible Morphometry	155
4.11.2.2. 2D IAS and Incisor Morphometry	155
4.11.2.3. 2D IAS and Colour and Whiteness Assessment	155
4.11.2.4. 3D IAS and Incisor Morphometry	155
4.11.3. Statistics	156
4.11.3.1. Standard Deviation	156
4,11.3.2. Standard Deviation of the Difference	156
4.11.3.3. Mean Difference	156
4.11.3.4. Standard Error	156
4.11.3.5. Intra Class Correlation Coefficient	156
4.11.3.6. Bland and Altman Plot	157
4.11.3.7. Coefficient of Repeatability/ Limits of Agreement	157
4.11.3.8. Confidence Intervals	158
4.11.3.9. Significant Measurement Bias	158
4.11.4. Validation Study	159
4.11.4.1. Pearsons Correlation Coefficient	159
4.11.4.2. Scatter Plot	159
4.11.4.3. t-test	159
4.11.5. Principal Component Analysis	160
4.11.6. Experimental Study	161
4.11.6.1. Analysis of Variance	161
4.11.6.2. Multiple Comparisons	.161

4. Materials and Methods

4.1. INTRODUCTION

The study sample mice were supplied by The Medical School at The University of Liverpool and by The Dental School at The University of Manchester as part of the collaborative Wellcome Trust programme. The study used one reliability population (n = 20) and one experimental population (n = 35), which itself contained two separate populations; (i) *Amelx* and (ii) *Enam* containing respective wild-type control groups and multiple mutant genotype groups. The experimental group contained recently sequenced gene mutations (Matsuya *et al.*, 2005; Barron *et al.*, 2010). Each of the seven groups contained five individuals. Both the left and right side hemi-mandibles and mandibular incisors were imaged from buccal, lingual and labial aspects (views).

A number of novel hardware and software developments are included here as part of the method development - this involved significant personal input, internal departmental development and inter-disciplinary collaborations. An established 2D IAS was modified with a macro-lens for imaging the mouse dentition. A bespoke colour and whiteness algorithm was developed internally by customising industry standard imaging software for a new approach to the mouse application. The new techniques utilised existing measurement parameters and determined novel morphometric variables for phenotype assessment.

The 3D IAS was an entirely new concept that drew from the technological advances and innovations documented in the recent literature. A novel rotary stage was designed and developed as a modification to a non-contact surface profilometer (NCSP) measurement device that was made available through institutional collaboration. The rotary stage was a removable adaptation fabricated by industrial partners. The NCSP device was adapted to obtain multiple 3D images from multiple angles in 360°. This new system introduced a novel method of multiple-image combination by image indexing, which employed powerful 3D computer aided design software to construct the 3D models. Further collaborative development of bespoke 3D analytical software innovatively expanded the 3D measurement repertoire of the system.

The 3D IAS represents an original approach to 3D imaging of small mouse teeth that would not have been possible without the multi-disciplinary specialities of an extensive collaborative network.

86

4. Materials and Methods

4.2. STUDY SAMPLE

Ethical approval was granted according to the Wellcome Trust programme ethics reference number 06/Q0104/38. Laboratory mice were euthanized using Home Office approved methods according to Chapter 14 of The Animal (*Scientific Procedures*) Act 1986 (www.archive.official-documents.co.uk/document/hoc/321/321-xa.htm).

4.2.1. Criteria for Inclusion

Mouse oral cavities were examined with a dissection microscope (Bresser, Meade Instruments Corp, California, USA) according to protocols outlined in the 'Phenotyping of mouse oral cavity - primary first line and primary extended' standard operating procedure obtained from the European Mouse Phenotyping Resource of Standardised Screens website (<u>www.empress.har.mrc.ac.uk</u>) (Green *et al.*, 2005). Any mice identified with uncharacteristic anatomical malformations were not included in the study sample. Mice were recorded on a Mouse Dental Anomalies Record Form (<u>www.eumorphia.org</u>) (Brown *et al.*, 2008). Any hemi-mandibles or mandibular incisors (specimens) damaged during extraction were not included in the study sample.

4.2.2. Reliability Population

The reliability population was a genetically homogenous inbred multi-purpose strain of Charles River CD-1TM (Charles River Inc., MA, USA) wild-type mice (n = 20) obtained from the Medical School Animal House at The University of Liverpool, UK.

A mixed sex population of 20 mice (10 females and 10 males) was euthanized by CO_2 asphyxiation at 3 months (90 days) of age. The mice were decapitated using a laboratory animal guillotine and frozen by Animal House staff according to local protocols. The mice were thawed in a fridge 24 hours before collection. The mice were sexually and skeletally mature. No gross phenotypic variation or sexual dimorphism was evident.

4.2.3. Experimental Population

Two experimental populations (i) *Amelx* and (ii) *Enam* were obtained from RIKEN GSC (Wako, Tokyo, Japan) by Prof. Mike Dixon's Laboratory, School of Dentistry, The University of Manchester, UK. Breeding colonies were established and maintained on a DBA/2J genetic background by Ms. Charlotte Hunt and Dr. Martin Barron, School of Dentistry, The University of Manchester, UK.

The populations were congenic Dilute Brown Agouti strain mice. The separate M100800 (*Amelx*) and M100395 (*Enam*) populations had mutations in their amelogenin gene and enamelin gene respectively. The mutant mice were generated during large-scale ENU mutagenesis (<u>www.brc.riken.jp/lab/gsc/mouse/</u>). The mutations were human orthologues of the *AMELX* gene (OMIM300391) and *ENAM* gene (OMIM606585).

The M100800 mutation in the *Amelx* mice affected the 64th amino acid of the full-length amelogenin peptide, changing a Tyrosine residue to a Histidine residue and resulting in a missense mutation Y64H (Mouse Genome Informatics Accession ID: 3807977). The only difference found between the wild-type (n = 160) littermates and affected male (n = 72) and female (n = 54) mice analysed was a T to C transition at nucleotide 249 of the *Amelx* coding sequence (Barron *et al.*, 2010). This mutation lies within the conserved tri-tyrosyl motif (PYPSYGYEPMGGW) of amelogenin positioned towards the C-terminus of the tyrosine-rich peptide (TRAP) domain (Barron *et al.*, 2010).

The M100395 mutation in the *Enam* mice affected the 55th amino acid of the full-length enamelin peptide, changing a Serine residue to an Isoleucine residue and resulting in a missense mutation p.S55I (Mouse Genome Informatics Accession ID: 3055582). There was a discrepancy as to which amino acid was affected in Figure 3. of the Masuya *et al.*, (2005) paper. The M100521 mutation actually affected the splice junction between exons 4 and 5 (Dr. Martin Barron, unpublished personal communication). The M100395 depicted was actually the M100514 mutation (Dr. Martin Barron, unpublished personal communication).

The two separate experimental populations (i) *Amelx* and (ii) *Enam* each contained one wild-type control group and multiple mutant genotype groups. The different genotype groups were defined by the inheritance patterns of the individuals within the group.

Each group contained five individual mice.

The *Amelx* population consisted of four genotype groups;

(i) wild-type $Amelx^{WT}$ males (n = 4) and female (n = 1)

- (ii) *heterozygous Amelx*^{X/Y64H} females (n = 5)
- (iii) hemizygous Amelx^{Y/Y64H} males (n = 5)
- (iv) homozygous Amelx^{Y64H/Y64H} females (n = 5)

The Enam population consisted of three genotype groups;

- (i) wild-type $Enam^{WT}$ males (n = 2) and females (n = 3)
- (ii) heterozygous $Enam^{Rgsc395}$ males (n = 2) and $Enam^{Rgsc395}$ females (n = 3)
- (iii) homozygous Enam Rgsc395 males (n = 2) and females (n = 3)

There were therefore 20 *Amelx* mice and 15 *Enam* mice. The wild-type mice were unaffected littermate controls. The wild-types were used as a baseline for data comparison.

4.2.4. Animal Husbandry (Prof. Dixon's Laboratory)

All experimental animals were maintained under strict uniform conditions (12 hour light/dark cycle, 22 ± 1 °C ambient room temperature at 60% relative humidity). Mice were fed on a pellet diet (ID#801722 CRM P, Special Diets Service, Essex, UK) that was crushed to a powder. Food and water was available *ad libitum*.

New-born mice were left with their mothers for 21 days and weaned thereafter. Adult female and male mice were separated and housed in same sex cages containing a maximum of 5 mice per cage. Mice were inspected daily and their bedding changed as necessary. All mice were euthanized by cervical dislocation at 3 months (90 days) when the mice were sexually and skeletally mature. Mice were age and weight matched, within and between the genotype groups. No gross phenotypic variation or sexual dimorphism was evident.

4.2.5. Storage and Preparation

All mice were studied as part of an experimental continuum taking place at different institutions (and locations). Due consideration for the various investigations dictated that the

mice were not treated with or exposed to any interferential methods or chemicals, e.g. boiling (Bader, 1965), ethanol fixation (Moinichen *et al.*, 1996), enzymatic digestion (Luther, 1949; Gruneburg, 1951) or skeletonisation by insects (Atchley *et al.*, 1985) were all prohibited.

The most suitable and effective method of preservation during transport was determined by piloting the effects on six specimens, two under each of the following conditions: (i) freeze drying with CO_2 dry-ice; (ii) air drying at room temperature; (iii) preservation in 10% neutral buffered formalin.

The freeze dried specimens were very dehydrated. The surrounding tissues were brittle and flaky/ powdered, and fixed hard to the hemi-mandible. The air dried specimens were also dehydrated but less than when freeze dried. The surrounding tissues were also fixed to the hemi-mandible but less so than when freeze dried. For both the freeze dried and air dried specimens the surrounding tissues were difficult to remove while preparing for imaging.

The 10% neutral buffered Formalin was most suitable transport method because the surrounding tissues were hydrated and removed without difficulty. There were no discernible adverse affects on the gross morphology, colour or phenotype of any specimens.

All specimens used for imaging were stored in 1.5ml³ eppendorfs (Eppendorf AG, Hamburg, Germany) in a freezer at -80.0°C after micro-dissection and imaging.

4.2.6. Micro-dissection/ Extraction

Mouse heads arrived in 10% neutral buffered formalin in 50ml³ centrifuge tubes. Specimens were repeatedly washed with Phosphate Buffer Solution and distilled water to remove the Formalin. This was carried out under a Fume Cupboard (Holliday Fielding Hocking Ltd, Leeds, UK) according to local protocols because of the carcinogenicity of Formalin.

The hemi-mandible and incisor specimens were extracted in sequence using a pair of tweezers (Swann-Morton, Sheffield UK) and a size 11 surgical blade scalpel (Swann-Morton, Sheffield, UK), in a petri-dish (Barloworld Scientific, Stone, UK) under a dissection microscope (Bresser, Meade Instruments Corp, California, USA) at X1.5 magnification.

Gross dissection of hemi-mandibles removed the skin, attached muscle, ligament and surrounding tissues. Hemi-mandibles were divided at the mandibular symphysis by scalpel incision. Each hemi-mandible was excised separately. Fine dissection prevented damage to the fragile coronoid and other anatomical features that were relatively weak amongst the strong surrounding tissues.

Mandibular incisors were extracted after the hemi-mandibles had been imaged. The supporting bone was progressively removed from around the incisor, from the distal-tip towards the proximal-end. The structural integrity of the incisor was strong at the hard mineralised distal-tip and weak at the soft and vascularised proximal-end. Care was taken to avoid damage or removal of any surface enamel.

All unwanted animal tissues were autoclaved and incinerated according to local protocols. The mouse heads were returned to and stored in the original 50ml^2 centrifuge bottles in 10% neutral buffered formalin. Specimens used for imaging were stored at -80.0°C.

4. Materials and Methods

4.3. 2D IMAGE ANALYSIS SYSTEM

The 2D Image Analysis System (IAS) used for digital imaging and measurement (Brook *et al.*, 2005a, 2005b) was modified with a macro-lens for murine specimen imaging (Figure 7.).

Figure 7. The 2D Image Analysis System

(A) camera and macro-lens; (B) lights; (C) desktop PC; (D) photographic stand; (E) customised tooth holder.

The system was composed of a desktop PC, digital camera, photographic stand and lights. It was operated under standardised conditions of magnification, orientation and illumination.

4.3.1. Personal Computer

The desktop Personal Computer (PC) was a Dell Optiplex620 (Dell Inc, Texas, USA) - Intel® Pentium® 4, 3.40GHz Computer Processing Unit - with 2MB (mega bytes) of RAM (random access memory) and a 250.0GB (giga byte) hard-drive running on the Microsoft Windows XP Professional 2002 SP2 platform (Microsoft Corp, New Mexico, USA). The 19 inch monitor was 32-Bit true-colour with a 1280 X 1024 pixel resolution.

To maximise the efficiency of large file transfer the camera and PC were connected by high speed IEEE 1394 Fire Wire (Belkin International Inc., California, USA). Image files were saved directly to the PC.

4.3.2. Digital Camera

The digital camera was a 13.5 mega pixel Kodak DCS Pro Single Lens Reflex/c (Eastman Kodak Company, Geneva, Switzerland). The camera utilised single lens reflex technology with a system of semi-automatic and moving mirrors so that exactly what was seen through the viewfinder, in the field of view (FOV), was captured in the 2D image. The viewfinder incorporated an eyepiece dioptre that was adjusted to suit each operator's individual eyesight.

The camera contained a photosensitive charge-coupled device (CCD) sensor that converted analogue images into electric signals to produce high resolution (13.5 mega pixel) digital photographs. A 2D image file size was 39.0MB; 13MB per Red, Green and Blue colour channels (RGB). Images were 32-Bit high quality true colour images displayed in an array of 4500 X 3000 pixels.

The camera operating system was the Kodak Professional DCS Firmware version 5.4.1 software. The camera contained a SanDisk (SanDisk Corp, California, USA) Ultra® II Compact Flash 2.0GB memory card.

The camera was operated in manual focus and exposure modes. This was the most versatile means of imaging.

4.3.3. Macro-Lens

The camera was fitted with a Macro Photo Lens MP-E65mm F2.8 1-5X (Sigma Corp, Kanagawa, Japan). The macro-lens facilitated small object imaging by maximising the proximity of the specimen in the FOV. The macro-lens was fitted with an ultra violet (UV) polarising filter during colour and whiteness imaging.

93

The macro-lens magnification was fixed at X2 and X3 during the morphometric and colour and whiteness imaging respectively. This allowed the FOV to be fully utilised.

4.3.4. Photographic Stand

The camera was mounted vertically onto a photographic copy stand (Kaiser, Odenwald, Germany), aligned perpendicular to the plane of the specimen. This stand was robust and provided stability for long exposures. It had a scale for precise specimen alignment and realignment for consistency, standardisation and reliability.

4.3.4.1. Vertical Height:

The vertical height was determined by the vertical graduated scale between 0.0-50.0cm. It was manually adjusted by a hand cranked rotary arm. This method varied the distance between the camera and the specimens. It was used to focus the camera at a fixed magnification.

4.3.5. Camera Settings

4.3.5.1. Aperture size:

The macro-lens aperture was minimum f2.8 and maximum f16. An aperture of f16 was used for morphometric imaging and colour and whiteness assessment to maximise the photographic depth of field (DOF). This gave a greatest distance from the plane of focus in which the image remained sharp, both in front and behind the specimen.

4.3.5.2. Shutter Speed:

The shutter speed was between maximum 1 and minimum 1/1000 seconds. The aperture size and shutter speed were balanced to give an optimum overall exposure that provided the greatest amount of light and DOF. A fast shutter speed (¹/₄ second) was used for morphometric imaging. A slow shutter speed (3.2 seconds) was used for colour and whiteness assessment as less light and a larger DOF were determining factors. The settings minimised the possible effect of camera shake.

4.3.5.3. International Organisation for Standardisation (ISO) Sensitivity:

The ISO sensitivity of a digital camera relates to the original photographic film-speed rating - a measure of light sensitivity of photographic film. The digital equivalent equates to the CCD sensor sensitivity and accounts for sensor noise and lighting conditions. On the ISO scale, between minimum 0 and maximum 1200, daylight = 100 ISO. An ISO of 160 was used throughout as the stability of the photographic stand allowed an optimum balance of image quality.

4.3.5.4. Magnification:

Magnification was fixed at X2 and X3 during the morphometric and colour and whiteness imaging respectively.

4.3.6. Imaging Background

Specimens were positioned on a black mat velvet background that lay flat on the photographic stand base during imaging sessions. Therefore, specimens were readily distinguished from the background. This benefitted objective morphometric measurement, particularly *perimeter* and *surface-area* variables. It also reduced light reflection and was kept free of dust by using a compressed air canister (Dust Off, Falcon Safety products, New Jersey, USA). During colour and whiteness assessment, the incisor perimeter was easily objectively selected against the black background.

4.3.7. Illumination

Illumination was provided by two horizontal fluorescent lights containing D60 daylight bulbs (Osram, Munich, Germany). They were colour 12 with a reproduction index of 90-100. The conditions were designed to replicate average middle of the day ambient sunlight (Guan *et al.*, 2005; Smith *et al.*, 2008a). The light intensity was set to level 4, between minimum 0 and maximum 8.

The photographic stand provided further means to control the lighting. The diagonal height position of each light was determined by their distance from the specimen, on a scale of 1-17 inches (minimum = 1, maximum = 17). The lights were set to 6 inches. This was important because UV radiation emits heat. Illumination was monitored for heat effects.
Also, each light could be adjusted in multiple directions providing additional ways of controlling light intensity and direction. The diagonal angle of each light was set to $\pm 45^{\circ}$ to the vertical.

The lights were fitted with removable polarising sheets to give non-polarised and polarised illumination during the colour and whiteness imaging. All other settings were the same for morphometric and colour and whiteness imaging.

4.3.8. Calibration

A 10.0mm scale (Minitool Inc, California, USA), with 0.1mm divisions, was included in all morphometric images for calibration. Each separate image was individually calibrated using a linear scale.

Each colour and whiteness image was individually calibrated against a British Ceramic Research Association white tile that was captured at the start of each imaging session.

4.3.9. Image Capture

All 2D images were acquired using host software Kodak Professional DCS Camera Manager Version 4.2 (Eastman Kodak Company, Geneva, Switzerland). This permitted the operators to control the camera settings and various imaging parameters through the PC. The images were captured by clicking 'Take Image' in the host software, rather than directly through the photographic equipment. This minimised physical interference with the assembly, i.e. from camera shake, and also minimised error and maximised exposure possibilities, i.e. slow shutter speed. The camera settings were adjusted in the 'Camera Properties' tab. The camera time and date settings were 'synchronised to the computer'.

All images were previewed and examined using Kodak Photo Desk Version 4.3 software (Eastman Kodak Company, Geneva, Switzerland). The images were checked and could be discarded and repeated if necessary, e.g. if the exposure and/ or focus were unacceptable.

During imaging the hemi-mandible and incisor specimens were removed from storage in 1.5ml^2 eppendorfs where they were kept on dry ice in an insulated polystyrene box. Once a

specimen was in position on the background, only the camera vertical height was adjusted for focusing. Image capture took 30 seconds per incisor. Maintaining uniform conditions of temperature and hydration minimised any possibility of fluctuations that could affect size and or colour. Effort was made throughout to minimise experimental error.

4.3.10. File Format and Saving

The 2D image files were automatically saved to the PC in 'raw' .DCR file format. These files contained unprocessed/ uncompressed data from the CCD sensor. The .DCR files were converted into the more common versatile Tagged Image File Format (TIFF) using the Photo Desk software. The DCR and TIFF file formats were typically 12.0MB and 39.0MB in size respectively. Filenames were determined and root directories selected in the 'Capture Session' tab.

No image compression or colour adjustment was required during the imaging process. This prevented data loss and did not compromise quality or quantity of information/ detail.

4.4. 2D MORPHOMETRIC MEASUREMENT

The 2D morphometric measurements were obtained using Image Pro Plus (IPP) software version 5.1 (Media Cyberenetics Inc, Maryland, USA). In the 2D IAS the linear measurements represented projected flat surface distances between two points, rather than the actual 3D measurements that followed the 3D contour of the tooth surface in the 3D IAS.

To open a 2D image (.TIFF file) the 'File' dropdown menu and 'Open' commands were used to select a file from the Microsoft Windows Explorer (Microsoft Corp, New Mexico, USA) directory. Open files were viewed by selecting the '3000 X 4500 resolution' option in the 'File Load Option' dialogue box.

4.4.1. 2D Measurement Procedure

Hemi-mandibles and incisors were carefully orientated during 2D imaging by positioning the measurement markers on the different anatomical landmark features. A 'local zoom' function (200%) enhanced the precise positioning of the measurement markers, the function of the measurement tools and the calibration procedure. The local zoom function contributed to minimising operator measurement errors, and increased operator reliability and consistency.

Using the IPP dropdown menu, the 'Measure', 'Calibration' and 'Spatial Calibration Wizard' options were selected to calibrate each image separately. In the 'create spatial calibration' dialogue box 'active' images were calibrated in mm units using the 'spatial reference' (Figure 8.).

Figure 8. 2D Morphometric Image Calibration

(A) 2D image .TIFF file; (B) 10.0mm linear scale; (C) scaling reference line (green line); (D) local zoom (200%). A calibration report for each image indicated an average calibration was 0.004105 μm/pixel.

The individual calibration of each image allowed for any magnification or focus variation between the images. The precision of the calibration procedure was improved and the potential error minimised when aligning the scaling reference line and linear scale with the 'local zoom' tool.

The following steps were used to obtain the 2D measurements. In the IPP dropdown menu, the 'Measure' and 'Measurements...' options were selected. The measurement markers were placed using the 'click and drag' features, in the 'Measurement' dialogue box. The cursor was used to position the markers on the specific anatomical landmarks. When the cursor moved over an existing marker it changed colour which aided repeatable landmark positioning for the different measurement variables.

4.4.2. 2D Mandible Measurements

The following eight measurements were obtained from 2D images taken from the buccal and lingual view (total = 16 variables), for both the left and right side hemi-mandibles; *overall-length* (mm); *ascending-height* (mm); *basal-length* (mm); *mandible-angle* (°); *coronoid-condyle-length* (mm); *diagonal-length* (mm); *mandible-area* (mm²); *mandible-perimeter* (mm) (Figure 9.).

(A) buccal view or lateral aspect; (B) lingual view or medial aspect. Morphometric variables included; (1) overall-length (mm); (2) ascending-height (mm); (3) basal-length (mm); (4) mandible-angle (°); (5) coronoid-condyle-length (mm); (6) diagonal-length (mm); (7) mandible-area (mm²) and (8) mandible-perimeter (mm). Scale = 10.0mm. Left hemi-mandible shown.

To determine the projected *overall-length*, *ascending-height*, *basal-length*, *mandible-angle*, *coronoid-condyle-length* and *diagonal-length* linear measurement variables, the 'Measure' and 'Measurements...' options were selected from the dropdown menu. In the 'Measurements' dialogue box the 'line', 'angle measurement' and 'trace' click and drag features were used.

To determine the *mandible-perimeter* and projected *surface-area* measurements, the 'Measure' and 'Count Size...' options were selected from the dropdown menu. In the 'Count/ Size' dialogue box, the 'Measure', 'Select Measurements', 'Area' and 'Perimeter' options were selected. In the 'Edit' dropdown box, the 'Draw Merge objects' measurement tool was then used to automatically trace the observable mandible perimeter by double clicking on tooth surface on the black background in the active image. In the 'View' dropdown menu, the 'Measurement Data' Option was selected and the data displayed and recorded.

The 2D mandible morphometric measurements were obtained from both the buccal and lingual surfaces of both the left and right side hemi-mandibles. The morphometric measurement separated the mandibles into different developmental modules (or units) that taken together represented overall growth and morphometry.

4.4.2.1. overall-length: The overall-length determined the overall longitudinal length of the mandible from the angular process landmark to the inter-dental spine landmark, from the proximal-end to the distal-tip (Figure 10.).

4.4.2.2. ascending-height: The ascending-height determined the overall latitudinal length of the mandible from the angular process landmark to the coronoid landmark (Figure 11.).

Figure 11. Mandible ascending-height

(A) buccal and (B) lingual views. Scale = 10.0mm.

4.4.2.3. basal-length: The basal-length determined the length from the mandible angular process landmark to the mandible border landmark (Figure 12.).

Figure 12. Mandible basal-length

4.2.4.4. *mandible-angle:* The *mandible-angle* determined the angle between the angular process landmark and the mandible border landmark. This represented the curvature between the *ascending-height* and *basal-length* (Figure 13.).

Figure 13. Mandible mandible-angle

(A) buccal and (B) lingual views. Scale = 10.0mm.

4.4.2.5. coronoid-condyle-length: The coronoid-condyle-length determined the length between the coronoid process and condyle process (at the apex of articular surface). It estimated the temporo-mandibular joint growth and morphometry (Figure 14.).

4.4.2.6. *diagonal-length:* The *diagonal-length* determined the overall diagonal length of the mandible form the condyle process landmark to the mandible boarder landmark (Figure 15.).

Figure 15. Mandible diagonal-length

(A) buccal; (B) lingual views. Scale = 10.0mm.

4.4.2.7. *mandible-perimeter:* The *mandible-perimeter* determined the observable mandible perimeter. It estimated overall growth and morphometry (Figure 16.).

Figure 16. Mandible mandible-perimeter

4.4.2.8. *mandible-area*: The *mandible-area* determined the observable mandible area. It estimated overall growth and morphometry (Figure 17.).

Figure 17. Mandible mandible-area

(A) buccal; (B) lingual views. Scale = 10.0mm.

The buccal and lingual surfaces of the hemi-mandibles were anatomically different. These differences in the observable perimeter were traced around the molars and alveolar processes at the dental ridge and reflected in the *mandible-perimeter* and *mandible-area* measurement values.

4.4.3. 2D Incisor Measurements

The following six measurements were obtained from 2D images taken from the buccal and lingual view (total = 11 variables), for both the left and right side incisor; projected *overall-length* (mm); projected *labial-length* (mm); angle-of-curvature (°); projected width-atmidpoint (mm); projected perimeter (mm²); projected surface-area (mm²). The projected *labial-length* was only obtained from the buccal surface view (Figure 18.).

(A) buccal view; (B) lingual view. Morphometric variables included; (1) overall-length (mm); (2) angle-ofcurvature (°); (3) width-at-midpoint (mm); (4) incisor-perimeter (mm) and (5) incisor-area (mm²). An additional variable (6) labial-length (mm) was obtained from the proximal-end to distal-tip landmarks in the buccal image. Scale = 10.0mm. Left incisor shown. An important landmark was positioned at the beginning of the distinct change in surface texture and colour at the proximal-end. This distinctive feature marked the beginning of the *pre-secretory* stage of enamel formation. It that was readily located in the 2D morphometric images (Figure 18.), in the colour and whiteness images (Figures 27. and 28.) and in the 3D morphometric images (Figure 41.).

To determine the projected *overall-length*, projected *labial-length*, angle-of-curvature, and projected *width-at-midpoint* linear measurement variables, the 'Measure' and 'Measurements...' options were selected from the IPP dropdown menu. In the 'Measurements' dialogue box the create click and drag features 'add perpendicular distance measurements from a line', 'line', 'angle measurement' and 'trace' tools were used.

To determine the projected *incisor-perimeter* and projected *incisor-area* measurements, the 'Measure' and 'Count Size...' options were selected from the IPP dropdown menu. In the 'Count/ Size' dialogue box, the 'Measure', 'Select Measurements', and 'Area' and 'Perimeter' options were selected. In the 'Edit' dropdown box, the 'Draw Merge objects' measurement tool was used to automatically trace the observable tooth perimeter by double clicking on tooth surface perimeter on the black background in the active image. In the 'View' dropdown menu, the 'Measurement Data' Option was selected and the data displayed and recorded.

The measurement tool automatically traced the *mandible-perimeter* and projected *incisor-perimeter* variables on the black background. The mandible molar teeth (dental ridge), mandibular symphysis (mandible boarder to inter-dental spine), and the incisor proximal-end landmark features required manual operator input but the automated measurement tools minimised operator subjectivity.

4.4.3.1. *projected overall-length:* The 2D projected *overall-length* was used to determine the overall longitudinal length of an incisor, from the proximal-end to the distal-tip (Figure 19.).

Figure 19. Incisor 2D projected overall-length

2D projected overall-length of a left incisor. Buccal view. Scale = 10.00mm.

4.4.3.2. *projected labial-length:* The 2D projected *labial-length* determined the overall longitudinal incisor length - along the labial surface - from the proximal-end to the distal-tip landmarks. It accounted for incisor curvature along the labial surface. It estimated the quantity of longitudinal enamel growth/ deposition. The 2D images were taken from the buccal view only, as the values were identical from the labial view (Figure 20.).

Figure 20. Incisor 2D projected labial-length

2D projected *labial-length* of a left incisor. Buccal view. Scale = 10.0mm.

4.4.3.3. angle-of-curvature: The angle-of-curvature was used to determine the angle between the distal-tip and proximal-end landmarks. It was used to estimate the curved morphology of the incisor. It was taken from the buccal and lingual views (Figure 21.).

Figure 21. Incisor 2D angle-of-curvature

2D angle-of curvature of a let incisor. Buccal view. Scale = 10.0mm.

4.4.3.4. *projected width-at-midpoint:* The 2D projected *width-at-midpoint* was used to determine the incisor antero-posterior diameter. It was used as an estimate of lateral growth and tooth bulk at the tooth curve tangent and was taken from the buccal and lingual views (Figure 22.).

Figure 22. Incisor 2D projected width-at-midpoint

2D projected width-at-midpoint of a left incisor. Buccal view. Scale = 10.0mm.

4.4.3.5. *incisor perimeter:* The 2D projected *perimeter* was used to determine the complete incisor perimeter. It was used as an estimate of the overall quantity of enamel growth/ deposition and was taken from the buccal and lingual views (Figure 23.).

Figure 23. Incisor 2D projected perimeter

2D projected *perimeter* of a left incisor. Buccal view. Scale = 10.0mm.

4.4.3.6. *incisor surface-area*: The 2D projected *surface-area* determined the flat surface area of tooth enamel. The measurement estimated of the quantity of enamel growth/ deposition and was taken from the buccal and lingual views (Figure 24.).

Figure 24. Incisor 2D projected surface-area

2D projected *surface-area* of a left incisor. Buccal view. Scale = 10.0mm.

4.5. COLOUR AND WHITENESS IMAGING

The colour and whiteness imaging used the same equipment as the 2D IAS with minor camera setting alterations. Incisors were positioned differently using a custom specimen holder (Figure 25.).

Figure 25. Customised Tooth Holder

(A) camera lens; (B) incisor clamp and black modelling clay; (C) black matt background; (D) base; (E) adjustable stand.

The versatile holder could be rotated in three planes. Incisors were elevated at 6.0mm from the photographic base. Graduated scales enabled precise positioning and repositioning for consistency, standardisation and reliability. The adjustable clamp secured different incisors with the aid of black modelling clay (Flair PLC, Surrey, UK).

4.5.1. Image Capture

The same 2D IAS macro-lens was fitted with a UV polarising filter. The horizontal lights on the photographic stand were also fitted with removable polarising sheets for the non-polarised and polarised imaging.

4.5.2. Camera Settings

The following settings were the same for non-polarised and polarised illumination; Aperture = f16; Shutter Speed = 3.2 seconds; ISO = 160; Magnification = X3.

4.5.3. Orientation Settings

The enamel colour and whiteness was objectively assessed on the labial surface from the labial view using the 2D IAS because enamel only develops on the labial surface of mouse incisors (Hay, 1961). Incisors were imaged from a slight buccal orientation to maximise the directly observable enamel surface to investigate mineralisation (Figure 26.).

Figure 26. Colour and Whiteness Assessment Image

The labial surface enamel from the labial view, in a slight buccal orientation. The black background was discernable. The modelling clay was not seen in polarised images.

Incisors were securely fixed in a horizontal orientation to best utilise the camera FOV. The labial surface was perpendicular to the focal plane in the camera FOV. The mid-point of the incisor was used or focusing. This optimised the focal plane within the DOF.

4.5.4. Non-Polarised and Polarised Images

Non-polarised light describes the normal angle of light wave travel from source relative to a surface. On the other hand, polarised light describes transverse light waves that travel perpendicular to the normal angle. Incisor enamel has a high albedo and has highly reflective properties and optical heterogeneity. Therefore, a Hoya Circular Polarising filter (55mm diameter) (Tokina Co. Ltd., Tokyo, Japan) was used to eliminate polarised light.

The polarising filter was screwed onto the macro-lens. Polarising film sheets were fitted to the copy stand horizontal lights. During imaging a piece of polarisation film (held in front of the macro-lens) was used to ensure polarisation - through the viewfinder the incisors appeared bright when non-polarised or, after turning the filter 90°, appeared dark when polarised. Both non-polarised and polarised images were taken to determine the influence of UV light reflections during colour and whiteness assessment (Figure 27.).

Figure 27. Colour and Whiteness Imaging Illumination

(A) polarised and (B) non-polarised images. No reflection was present in the polarised image.

The colour and whiteness images were sensitive to surface interference from non-polarised light reflection that distorted and introduced artifice. Polarised images contained no light reflection. Although the polarised images lacked the normal translucent appearance, this did not reduce detail and increased contrast, increased colour saturation and did not affect exposure.

4.6. COLOUR AND WHITENESS ASSESSMENT

The 2D colour and whiteness assessment obtained standardised measurements with a bespoke colour calibrated algorithm using in-house customised Adobe Photoshop CS2 Version 9 software (Adobe Systems Inc, California, USA) and Microsoft Excel spreadsheet (Microsoft Corporation, Redmond, Washington, USA).

Adobe Photoshop was customised by installing 'A Set New White Tile.jsx' and' Add Sample.jsx' preset JavaScript files in the PC Program Files root directory of Microsoft Windows Explorer. Two keyboard shortcuts or Hot Keys were created by selecting the 'Edit', 'Keyboard Shortcuts...' options from the dropdown menu. The Application Menu Commands 'File', 'Scripts' 'A Set New White Tile.jsx' and 'File', 'Scripts' 'Add Sample' were mapped to the 'Ctrl +.' and 'Ctrl +,' hot keys respectively.

4.6.1. Calibration

A spectrophotometrically colour standardised British Ceramic Research Association white tile (#0520, Ceram Ltd, Staffordshire, UK) was imaged at the start of each imaging session to ensure colour balanced corrected images, under polarised and non-polarised illumination.

In the Adobe Photoshop dropdown menu, the 'Rectangular Marquee Tool' was used to select a central area of the white tile. Using the Ctrl+. hot key a spreadsheet file was automatically generated that contained the Red Green Blue (RGB) colour data from the selected area. Using the algorithm the RGB values were automatically calculated into calibrated Commission Internationale de l'éclairage (CIE) *lightness* (L); *green/ red* (A); *yellow/ blue* (B) and *whiteness* (WI) colour space outputs. (Negative A values indicated green while positive values indicated *red*; negative B values indicated *blue* and positive values indicated *yellow*; L = 0 values yield black and L = 100 values yielded white.) The resulting colour space values were calibrated against the standardised white tile values and accounted for the ambient illumination of a specific imaging session.

To open a colour and whiteness (.TIFF) file the 'File' dropdown menu and 'Open...' options were used to select a file from the Microsoft Windows Explorer directory. The individual incisor images were opened in a batch corresponding to the white tile image taken at the start of that imaging session. A 'Zoom' tool (25.0%) was used to magnify images to fill the PC monitor screen. The automatic 'Magnetic Lasso Tool' feature was used to objectively trace the enamel surface perimeter. The zoom function minimised operator measurement errors and maximized operator consistency.

4.6.2. Assessment Procedure

Enamel was assessed in four distinct anatomical surface regions; (i) whole, and proceeding from the proximal-end to the distal-tip, (ii) gingival, (iii) middle, and (iv) incisal, that corresponded to the pre-secretory, secretory and mature histological stages of enamel formation. The following measurements, CIE L = lightness; green/ red; yellow/ blue and whiteness were obtained in the whole, gingival, middle and incisal regions (total = 16 variables), for both the left and right hand side incisors, in each of the non-polarised and polarised colour and whiteness images (Figure 28.).

Figure 28. Incisor Colour And Whiteness Assessment

(A) Whole enamel surface region selection; (B) gingival (red), middle (green) and incisal (blue) anatomical regions. The automated software separated the anatomical regions equidistantly. The algorithm calculated CIE lightness; green/red; yellow/ blue and whiteness colour space values for each of the four regions. Right incisor.

In the Photoshop dropdown menu, the 'Magnetic Lasso Tool' option feature was used to automatically trace the observable incisor perimeter and objectively encompass the labial enamel surface. (The following settings were refined to precisely trace the perimeter variable; feather = 0 pixels, width = 10 pixels, edge contrast = 50% and frequency = 57.) Using the Ctrl+, hot key the *whole* region was either assessed independently or separated into the three colour coordinated regions equidistantly. This minimised human subjective input and error.

Each incisor image was opened in a sequence within the batch and the algorithm used the RGB colour data outputs from each region to automatically calculate CIE LAB and WI colour space values. These calibrated colour space values were automatically exported into a colour coded spreadsheet. All data was collated into a single spreadsheet for analysis. The software and algorithm were objective, practical and minimised human input. They also expedited data collection efficiently with limited data handling.

4. Materials and Methods

4.7. 3D IMAGE ANALYSIS SYSTEM

The 3D Image Analysis System (IAS) included image acquisition, file transformation and 3D model reconstruction steps. The 3D morphometric measurement was the last step in the series. The equipment incorporated custom hardware and software modifications of a Non-Contact Surface Profilometer measurement device (NCSP) to deliver a versatile high systematic resolution (1.0µm) 3D IAS (Figure 29.).

Figure 29. 3D IAS Equipment

(A) z-distance measurement sensor (including optoelectric control unit on the left); (B) coordinate measuring machine platform and rotary stage; (C) ProScan CPU stack; (D) desktop PC.

The NCSP (Scantron ProScan 2000, ScanTron Industrial Products Ltd., Taunton, UK) collectively referred to a Coordinate Measuring Machine (CMM) mechanical platform, that was movable in the X and Y coordinate directions, and a Z-distance measurement sensor that was movable in the vertical Z coordinate direction. The CMM was connected to a central Computer Processor Unit (CPU) stack in a local area network that was controlled by Scantron ProScan 2000 V2.1.17 software (Scantron Industrial Products Ltd., Taunton, UK). The Microsoft Windows XP Professional 2002 SP2 (Microsoft Corp, New Mexico, USA)

operating system was on a Dell Optiplex620 desktop PC (Dell Inc, Texas, USA) with Intel® Pentium® 4 CPU, 3.40GHz, 5GB RAM and a 250GB hard-drive. The monitor was 19 inch, 32-Bit true-colour 1280 X 1024 pixel resolution, supported by a ATI Radeon Sapphire HD 3650 512MB graphics card (Advanced Micro Devices, Inc., CA, USA).

4.7.1. Non-Contact Surface Profilometer (NCSP)

The Z-distance measurement sensor was precisely movable in the Z coordinate direction for single point dynamic focusing, independent of the CMM. The Z-distance measurement sensor contained a modular optical pen (STIL S.A., Provence, France) which combined a magnifier (range 200mm-210mm focal length) and a chromatic lens (range 100 μ m-24mm depth of field). The optical pen was connected by a fibre-optic cable (Corning Inc, NY, USA) to a CHR 150-L optoelectric control unit (STIL S.A., Provence, France) containing a high resolution (75.0nm) chromatic confocal sensor.

Also, within the control unit there was a digital signal processing board, a spectrometer and a 50W tungsten halogen lamp that generated polychromatic (white) light. It was essential that the most appropriate sensor was chosen for the murine application because of the heterogeneous albedo of enamel. The S3/16 model optical sensor accepted all kinds of materials. The measurement range (3.5mm) was the interval between the lower and upper measuring limits of the sensor and the maximum deviation on a surface that the sensor could measure. The working distance (16.4mm) was the distance between the sensor and the middle of the measuring range. This allowed enough space to account for the 360° rotation of the incisors.

The small 'Spot Size' (8.0 μ m) was pertinent to the lateral features being measured, e.g. fissures required a sensor that could adequately resolve fine enamel surface structures. The spectral sensor had a high Z coordinate (axial) resolution of 75.0nm. The linearity or actual error was 0.035 μ m± (0.1% of range), with a sensor accuracy of 0.4 μ m (STIL S.A., Provence, France). This was ample to measure the smallest surface feature.

The resolution of the Proscan2000, an axial resolution of 5.0nm measured at a rate of up to 1,000 points per second, equated to the smallest quantity measurable (<u>www.scantron-net.co.uk/proscan2000</u>). The overall systematic resolution took into account the precise

movement of the CMM platform $(0.1\mu m)$ and the actual 'Step Size' $(1.0-25.0\mu m)$ parameters. The NCSP systematic resolution was $1.0\mu m$.

4.7.1.1. CMM Movable Platform:

By mechanically moving the specimen in the X and Y coordinate directions, using the CMM platform, and simultaneously measuring the Z coordinate of each point, by the stationary chromatic spectral sensor, it was possible to obtain high resolution micro-topographic images. The CMM travel was predominately in the Y coordinate direction (Figure 30.).

Figure 30. Direction of CMM Platform Travel and Data Collection

The mechanical movement of the CMM in X and Y coordinate directions from the start position 'home' coordinate point of origin. The lines represent the travel of the CMM beneath the stationary Z-coordinate measurement sensor. Data collection lines scanned in Y (black line) until complete and the CMM platform retraced in X (red line) to the beginning point of the next line. This procedure was repeated one line at a time.

The Y direction travel along the longitudinal axis of the specimens maximised data collection and minimised 'no-data' collection making the most efficient use of scan times (e.g. 15 minutes for the 5.0x10.0mm area). The distance between the black lines equalled the 'Step Size X (mm)'. 'Step Size X' multiplied by 'Number Of Steps X' equalled 'Part Size X'. Similrly 'Part Size Y' equalled 'Step Size Y' multiplied by 'Number Of Steps Y' (Figure 31.).

Number Of Scans-	CALCULATION OF CALCULAR		A CONTRACTOR	Scan No
Parts in X Direction	1	Parts in Y Direction:	1	Cancel
X Pitch (mm)	0	Y Pitch (mm)	0	
Individual Part Details	11 11 11 11 11 11 11 11 11 11 11 11 11			
Start Position X (mm)	68.4	Start Position Y (mm)	62.5	Key Move St
Step Size X (mm):	0.025	Step Size Y (mm)	0.025	
Number Of Steps X:	200	Number Of Steps Y:	400	¥
Part Size X (mm)	5.000	Part Size Y (mm)	10.000	

Figure . The 'Scanning Setup' dialogue box in the Proscan2000 software.

The individual scan 'Individual Part Details' coordinate inputs were determined iteratively by preparatory scans. The 'Start Position' coordinates were required later for X and Y offset mathematical calculations. The Z-distance measurement sensor moved in the vertical Z-axis to obtain Z coordinate data by dynamic focusing (Figure 32.).

Figure 32. Z-Distance Measurement

The 'Live Data' screen in Proscan2000 displayed the Z coordinate distance measurement (or height). The middle (1.75mm) of the sensor measuring range (3.5mm) was used to optimise 3D data collection.

Changes in Z-distance ('Height'), displayed in the 'Live Data' screen, between the specimen surface and a known reference point on the rotary stage precisely engineered steel mandrel (c = 6.0mm), were recorded for each specimen. The change in Z-distance (along with the X and

Y coordinates) determined the specimen's position in the local coordinate system. X, Y and Z coordinate data point offset calculations spatially adjusted the 3D image files for each individual specimen in a novel process of image indexing that was used to reconstruct the 3D models.

4.7.1.2. Novel Customised Modifications:

The CMM platform was modified with a novel and customised rotary stage. The rotary stage consisted of a precisely engineered steel mandrel with known dimensions (Figure 33.).

Figure 33. Precisely Engineered Steel Mandrel

(A) photograph of mandrel (plan view); (B) schematic of mandrel including known dimensions used for calculating the Z coordinate offset; (C) diagram of the mandrel (reference/ object surface) in the NCSP system. The central axis of rotation or datum line (at x = 0) was located within the sensor measuring range. The precisely engineered steel mandrel served as the absolute reference surface within the local coordinate system.

The bespoke rotary stage was mounted on the CMM platform from above using four screws. The adaptation was completely removable (Figure 34.).

Figure 34. The Customised Rotary Stage

(A) CMM movable platform; (B) customised rotary stage (stepper motor and micro-precision rotation stage); (C) rotary stage in position on the CMM platform. The incisors were secured by a milled clamp at the end of the mandrel, tightened firmly using four 2.0mm diameter screws.

A precision position stepper motor controller (C663 Mercury [™] Step, Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany) and a micro-precision rotation stage (M-006.2S, Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany) were operated from the PC by Rotary software (Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany). The incisors were thereby rotated 360° at predetermined 45° intervals (e.g. 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°). The 3D data was collected in the intervals between each rotation. The number of intervals related to the number of multi-view micro-topographical surface-maps or 3D images required to reconstruct a complete 360° model (Figure 35.).

Figure 35. Multiple Multi-view Micro-Topographical Surface-maps

The equipment was largely automated in the X, Y and Z coordinate directions so the inputs, controlling the intervals and degrees of rotation, provided a complementary and versatile means of data collection. (Complete scan time for one incisor model was 15 minutes x 8 files = 2 hours.) The multi-view micro-topographical surface maps or 3D images were previewed and saved in native/ proprietary Proscan (.prn) files. The files went through a series of file type transformations towards a complete 3D surface structural model.

Eight individual micro-topographical surface-maps. At each interval between rotations a micro-topographical surface-map or 3D image file was generated, previewed and saved, e.g. a 360° revolution with 45° intervals produced 8 individual multi-view files (360/45 = 8).

4.7.2. File Format and Saving

In the .prn file type the incisor surface was defined in terms of 3D Cartesian (X,Y and Z) coordinate data points. The 3D spatial location of each point within a local geometric coordinate system was established between the CMM and the Z-distance measurement sensor. In order to correct the relative position of each coordinate data point, the multiple .prn files were imported into Microsoft Excel spreadsheets to be offset by a specific mathematical calculation (Figure 36.).

Figure 36. Calculating Coordinate Data Point Offsets

A (plan view)

B (front view)

Calculating the geometric mathematical offsets; (A) plan view, the X and Y coordinates were, determined in the 'Scanning Setup'; (B) front view, the Z coordinate was the recorded Z distance (or height) between the specimen clamp to a known point on the 6.0mm circumference step of the mandrel. The offsets were noted for X, Y and Z for all images and were subtracted from the corresponding coordinate data point values in the .prn image files after being imported into a spreadsheet.

The .prn files were imported into a spreadsheet in a 'comma delimited text file format' (.csv file). The offset values were obtained from the 'Start Position' coordinates for the X and Y coordinates, and from the Z-distance between the specimen (at 0° position) and the 6.0mm circumference of the mandrel. The three different values were subtracted from the three different X, Y and Z coordinate data point columns in the spreadsheet. The offset adjusted files were saved in .csv format.

The .csv files were converted to a text file format (.txt file) by changing the file extension in Microsoft Windows Explorer. The .txt file was compatible for import in point cloud data format into SolidWorks Premium2008 software (DassaultSolidWorks, Massachusetts, USA). Each file was spatially corrected according to the novel 3D image registration process of indexing.

Thus, the steel mandrel not only fixed the incisors firmly in position within the measuring range, and established a central axis of rotation (used as a datum line), but it also provided a reference for calculating Z offsets and combining the multiple 3D images.
4.7.3. Final 360° 3D File

To produce a 360° 3D model the multiple multi-view images were assembled together in the local coordinate system using the mandrel as an absolute reference surface. The central axis of rotation of the mandrel served as a datum line (at X = 0) about which each separate image in the series was opened in sequence and spatially adjusted in SolidWorks by the corresponding degrees of rotation (e.g. 45°, 90°, 135°, 180°...) predetermined by the intervals of the rotary stage (Figure 37.).

(A) schematic of the mandrel from a front view. The degrees of rotation correspond to the predetermined intervals of the rotary stage. The centre of the circle was the central axis of rotation where the incisor was clamped. Screen-shot image series of file type transformations from; (B) coordinate point cloud data; (C) polygon mesh file conversion; (D) multiple spatially corrected/ adjusted 3D images before 3D modelling.

4. Materials and Methods

4.7.4. 3D Modelling (.stl File Production)

After each individual point cloud data .txt file was indexed around the datum line the separate files for each incisor were saved as an .xyz file type. The mathematically offset and spatially corrected .xyz files were then converted back into .txt files by changing the file extension in Microsoft Windows Explorer. The coordinate data from each separate .txt file was copied and pasted into a single .txt file using Microsoft Notepad (Microsoft Corp, New Mexico, USA). This file was opened in the Solidworks software and converted into a single triangulated polygon mesh using the 'Scan to 3D' add-on and 'Mesh Prep Wizard' features (Figure 38.).

Figure 38. 360° 3D Surface Structure Model

Screen shot images from the 360° 3D surface structure model of a mouse right mandibular incisor. The 3D model files could be exported in various file formats to be compatible with analytic software packages. The 3D model shows the mandrel clamp at the proximal-end.

The 3D models were edited/ trimmed at the proximal-end landmark feature to remove the mandrel clamp and were saved in .stl format. The distinct surface texture change that distinguished the start of the *pre-secretory* stage of enamel formation was used as a landmark feature - it was the same landmark as the 2D IAS morphometric and colour and whiteness assessment images. The feature was located distally from the mandrel clamp. The remaining hole was closed flat using the Solidworks 'Mesh Prep Wizard'.

No image compression occurred during file type transformations. This prevented any data loss and did not compromise quality or quantity of information, or surface detail.

4. Materials and Methods

4.8. 3D MORPHOMETRIC MEASUREMENT

All 3D morphometric measurements were obtained using Cloud 3D surface viewer software (Dr. Robin Richards, University College London, UK), except the *surface-roughness* measurement that was obtained using ProScan 2000 software (ScanTron Industrial Products Ltd., Taunton, UK). In the 3D IAS both projected and actual linear measurements were possible. The projected measure represented the flat surface distances between two points, as seen in the 2D IAS, but the additional actual 3D measurement followed the 3D contour of the tooth surface for greater analytical power.

4.8.1. Operating Instructions

To open a 3D model (.STL) the 'File' dropdown menu and 'OpenSTL' commands were used to select a file from the Microsoft Windows Explorer directory. Opened files were viewed by the 'Fit to window' command in the 'Options' dropdown menu.

For each measurement, the precise X, Y and Z coordinate position and orientation of incisors were recorded in the respective 'Offsets (mm)' and 'Angles (degrees)' commands in the 'View – all objects affected' dialogue box. Incisors were consistently repositioned and reorientated in the exact location for repeat measurements. Therefore, repeat measurement markers were reliably replaced.

Incisors were rotated in all directions by selecting 'Rotate' in the 'Mode' dropdown menu. The incisor 3D models were rotated in fixed X, Y and Z coordinate dimensions/ planes by holding down either the right or both buttons on the mouse and rotating clockwise/ anticlockwise around a fixed central axis.

A 'Zoom' function was operated by holding both the left and right mouse buttons together, moving the mouse forwards to zoom in, and moving the mouse backwards to zoom out. The onscreen zoom was monitored in mm in the 'Size - field of view' dialogue box display. This maintained the different magnifications for the different measurements and ensured consistent measurement marker placement.

135

There was no additional calibration procedure because the .STL files contained internal calibration data (in mm) established within the 3D IAS.

4.8.2. 3D Measurement Procedure

Incisors were orientated in 3D in a position appropriate to attain each measurement. Measurement markers were placed on the anatomical landmark features of the incisor image surface and did not move.

The following steps were used to obtain the 3D measurements. In the Cloud dropdown menu, the 'Mode', 'PlaceMarkers' options were selected. The cursor displayed ('MARK') and measurement markers were placed on the landmark features of the incisor surface. Measurement lines between markers were displayed by selecting 'Set Ref Point' and 'Set Line Point' in the 'Measurements (mm)' dialogue box. The line was used as a guide for further marker placement. The cross of each marker point was used to ensure all marker points were equidistant. The last marker was superimposed over the final marker (usually marker B) to obtain the projected and actual measurements.

In the 'Meas' dropdown menu of the 'Measurements (mm)' dialogue box, the 'Length of polyline' option was selected and a 'Measure line segments' dialogue box appeared. To obtain the projected measurement, the wanted makers (e.g. A and B) were selected and moved to the 'these markers will be used' box using the 'move to wanted list' button. Alternatively, to obtain the projected measurement the wanted makers (e.g. A, C D...) were selected and moved to the 'these markers will be used' box using the 'move to wanted list' button. The actual and projected measurement data was recorded and saved in a spreadsheet.

The 3D *surface-roughness* measurement was obtained differently using the ProScan2000 software. The rotary stage was not required and the NCSP was used as originally designed. The incisors were placed directly onto the CMM moveable platform and immobilised in modelling clay. The high resolution selected region examples scan parameters were different from those used for the 3D model reconstructions (Figure 39.).

Figure 39. 3D Surface Region Scan Parameters

anning Setup	are states			
Number Of Scans			an anna a' saine a'	Scan Now
Parts in X Direction	1	Parts in Y Direction:	Tradestation	Cancel
X Pitch (mm).	0	Y Pitch (mm)	0	
Individual Part Details				
Start Position X (mm):	81.900	Start Position Y (mm)	47.300	Key Move Sta
Step Size X (mm):	0.0010	Step Size Y (mm)	0.0010	200
Number Of Steps X:	200	Number Of Steps Y:	500	
Part Size × (mm):	0.200	Part Size Y (mm)	0.500	
Scan Direction		Scan Type		
C Scan In X Directio	n	Normal		
Scan In Y Directio	n	C Intensity		

Scan parameters used for the high resolution selected surface regions; Step Size = $1.0\mu m$; Part size = $200x500\mu m$). The *surface-roughness* measurements were automatic data outputs that were saved in a spreadsheet after imaging.

The high resolution scans were obtained using the 'Step Size', 'Number of Steps' and 'Part Size' displayed in the 'Scanning Setup' window. The selected region example images were saved as individual .prn files. They were not multi-view images and did not require combination or reconstruction as in the 3D modelling. Therefore, no offset calculation or indexing was required.

One example scan was obtained for each of the seven genotype groups, in each of three representative regions of enamel surface (i) *gingival*, (ii) *middle* and (iii) *incisal* (Figure 40.).

Figure 40. Selected 3D Surface Region

(A) gingival; (B) middle; (C) incisal enamel surface regions corresponded to the anatomical thirds. Left = proximal-end, right = distal-tip. Rectangles represent the high resolution $(1.0\mu m)$ selected area examples $(200x500\mu m)$ and contain individual $100\mu m$ scales.

The three selected area example scans were obtained along the longitudinal labial axis of the incisors between the proximal-end and the distal-tip. The dimensions $(200x500\mu m)$ were dictated by the surface under inspection, which according to the recommendations of the International Organisation for Standardisation (ISO 4288-1996) were sufficient to give a true representation of the texture of the enamel surface. The proximal-end was taken to be 0.0mm and the Y coordinate start positions for each image/ region were measured at approximately +3.0mm, +6.0mm and +9.0mm respectively.

The corresponding X coordinate start positions for each image/ region were determined by subtracting 100µm from the X coordinate at the centre of the labial surface. This ensured that the 200x500µm selected region obtained surface data from a central surface for each region. The high resolution examples were obtained from approximately the same regional locations as individual incisor dimensions varied. Each region was equidistant to minimise subjectivity.

4.8.3. 3D Incisor Measurement

The following eleven measurements were obtained from 3D models from the buccal, lingual and labial views (x16 variables), for both the left and right side incisors (x32 variables); projected *overall-length* (mm); projected *labial-length* (mm); actual *labial-length* (mm); projected *width-at-midpoint* (mm); actual *width-at-midpoint* (mm); actual *perimeter* (mm); actual *surface-area* (mm²); total *surface-area* (mm²); total *volume* (mm³) and *surface-roughness* (µm).

All 3D measurements were taken on the buccal and lingual surfaces, except the following; (i) *labial-length*, (ii) *circumference*, (iii) total *surface-area*, (iv) total *volume* and (v) *surface-roughness*. The 3D projected and actual *labial-lengths* were taken in from the labial surface. The 3D *circumference*, total *surface-area* and total *volume* were obtained once for each left and right incisor. *Surface-roughness* was only obtained on the labial surface because of the asymmetrical distribution of enamel.

The distinct surface texture change that distinguished the start of the *gingival* region/ *pre-secretory* stage of enamel was used as a landmark feature - this was the same landmark as the 2D IAS morphometric and colour and whiteness assessment images.

4.8.3.1. *projected overall-length:* The 3D projected *overall-length* was used to determine the overall longitudinal length of an incisor, from the proximal-end to the distal-tip (Figure 41.).

Figure 41. 3D projected overall-length

Buccal view of a left incisor. Scale = 10.00mm.

4.8.3.2. *labial-length:* The 3D *labial-length* determined the overall longitudinal incisor length along the labial surface, from the proximal-end to the distal-tip landmarks. It accounted for incisor curvature along the labial surface. It estimated the quantity of longitudinal enamel growth/ deposition (Figure 42.).

Labial view of a left incisor, slight buccal orientation. Actual surface measurement (green line/ marker crosses). Scale = 10.0mm.

4.8.3.3. actual labial-length: The 3D actual labial-length was used to determine the overall longitudinal length of an incisor along the labial surface. The measurement accounted for incisor curvature and topography along the labial surface. It was used to estimate the quantity of longitudinal enamel growth/ deposition. It was taken from the labial view (Figure 43.).

Figure 43. 3D actual labial-length

(A) Labial view; (B-D) various labial orientations exhibiting the difference between the actual (red line) and projected (green line/ markers crosses) measurements. Left incisor shown.

4.8.3.4. *projected width-at-midpoint:* The 2D projected *width-at-midpoint* and 3D projected *width-at-midpoint* were used to determine the incisor antero-posterior diameter. They were used as an estimate of lateral growth and tooth bulk at the tooth curve tangent. Both were taken from the buccal and lingual views (Figure 44.).

Buccal view of a left incisor. Scale = 10.0mm.

4.8.3.5. actual width-at-midpoint: The 3D actual width-at-midpoint was used to determine the incisor antero-posterior diameter. The measurement estimated lateral growth and tooth bulk at the tooth curve tangent and it accounted for incisor curvature and surface topography. It was taken from the buccal and lingual views (Figure 45.).

Figure 45. 3D actual width-at-midpoint

(A) projected measurement; (B) actual surface measurement; (C-D) difference between the projected (red line) and actual measurements (green line/ markers crosses) from two views. Buccal surface of a left incisor.

The *width-at-midpoint* was taken on both buccal and lingual surfaces to investigate the difference between their respective projected and actual measurements, and to identify asymmetry. The *width-at-midpoint* measurement of the buccal and lingual surfaces quantified enamel growth/ deposition as enamel forms on the labial surface only.

4.8.3.6. *incisor perimeter:* The 3D actual *perimeter* was used to determine the complete incisor perimeter, accounting for incisor surface topography. It was used as an estimate of the overall quantity of enamel growth/ deposition. It was taken from the buccal and lingual views (Figure 46.).

Figure 46. 3D actual perimeter

Buccal view of a left incisor. Scale = 10.0mm.

4.8.3.7. total and marked surface-area: The 3D surface-area determined both the total and the marked surface area of enamel and accounted for the incisor surface topography. The measurements were used to estimate the quantity of enamel growth/ deposition. The marked surface-area measurement was taken from the buccal and lingual view (Figure 47.).

Figure 47. 3D surface-area

(A) 3D total (yellow) *surface-area*; (B) 3D marked (orange) *surface-area*. Buccal view of a left incisor. Scale = 10.0mm.

4.8.3.8. *circumference:* The *circumference* was used to determine the antero-posterior circumference. The measurement was used as an estimate of lateral growth and tooth bulk at the tooth curve tangent. It was taken from multiple views in 360° (Figure 48.).

Figure 48. 3D circumference

(A) buccal surface; (B) lingual surface; (C-D) buccal and lingual views displaying the actual 'on surface' measurements. Left incisor shown.

4.8.3.9. *total volume:* The 3D *volume* was used to determine the volume of the incisor. It was used as an estimate of tooth bulk and the quantity of enamel growth/ deposition. It accounted for the incisor's complete surface topography (Figure 49.).

Figure 49. 3D total volume

Buccal view of a left incisor.

4.8.3.10. surface-roughness: The surface-roughness measurement was used to determine the enamel surface roughness in each of the three representative regions of the labial surface (i) gingival, (ii) middle and (iii) incisal (Figure 50.).

Figure 50. 3D surface-roughness

(A) gingival/ pre-secretory; (B) middle/ secretory; (C) incisal/ mature regions. The top of the image represents the proximal-end and the bottom of image represents the distal-tip. The 200X500 μ m images were obtained at 1.0 μ m resolution on the labial surface. The recommended ISO cut-off filter was calculated; sampling length (0.25mm), evaluation length (1.25 mm), step-size (1.0 μ m) and number of steps (1250);[(cut-off 0.25mm / 2) / step-size 0.001mm) = 125].

In the 'General' tab, 'Proscan2000 Configuration' and 'Analysis Functions Required' menu, the Roughness Average (Ra) surface characteristic function was selected. The measurement of form can be separated into roughness and waviness components (Thomas, 1982; Whitehouse, 1994). The 'Surface Filter' function was applied to remove the waviness component and leave the surface roughness information. By clicking 'Profile Analysis' the *surface-roughness* measurement data was exported into a Microsoft Excel spreadsheet (.csv) file containing separate mean X and Y coordinate Ra values.

4.9. 2D AND 3D MORPHOMETRIC MEASUREMENT

4.9.1. 2D and 3D Incisor Measurement

The following four measurements (except the projected and actual *labial-length*) were obtained from 3D models from the buccal and lingual view of the 2D images (total = 6 variables), for both the left and right side incisors: projected *overall-length* (mm); projected *labial-length*; actual *labial-length*; projected *width-at-midpoint* (mm).

All 2D measurements were taken both from the buccal and lingual view of the 2D images except the projected *labial-length* that was only taken from the buccal view as the values were the same. The *angle-of-curvature* was not obtained in 3D as it was limited in the 2D X and Y coordinate dimensions.

4.9.1.1. projected overall-length: The 2D projected and 3D projected overall-length were used to determine the overall longitudinal length of an incisor, from the proximal-end to the distal-tip (Figure 51.).

Figure 51. 2D projected overall-length and 3D projected overall-length

(A) 2D projected; (B) 3D projected. Left incisor, buccal view. Scale = 10.00mm.

The distinct surface texture and colour change that distinguished the start of the *pre-secretory* stage of enamel formation was used as a landmark feature - this was the same landmark as the colour and whiteness assessment images.

4.9.1.2. *labial-length:* The 2D projected *labial-length* and 3D actual *labial-length* determined the overall longitudinal incisor length along the labial surface, from the proximal-end to the distal-tip landmarks. It accounted for incisor curvature along the labial surface. It estimated the quantity of longitudinal enamel growth/ deposition. The 2D measurement was taken from the buccal view, and the 3D measurement was taken from the labial view (Figure 52.).

Figure 52. 2D projected labial-length and 3D actual labial-length

(A) 2D projected (yellow line); (B) 3D actual (buccal view); (C) 3D actual (labial view) Left incisor. Scale = 10.0mm.

4.9.1.3. *actual labial-length*: The 3D actual *labial-length* was used to determine the overall longitudinal length of an incisor along the labial surface. The measurement accounted for incisor curvature and topography along the labial surface. It was used to estimate the quantity of longitudinal enamel growth/ deposition. It was taken from the labial view (Figure 52.).

4.9.1.4. *projected width-at-midpoint:* The 2D projected *width-at-midpoint* and 3D projected *width-at-midpoint* were used to determine the incisor antero-posterior diameter, between the lingual and labial surfaces. They were used as an estimate of lateral growth and tooth bulk at the tooth curve tangent. Both were taken from the buccal and lingual views (Figure 53.).

Figure 53. 2D projected width-at-midpoint and 3D projected width-at-midpoint

(A) 2D projected (B) 3D projected . Left incisor, buccal view. Scale = 10.0mm.

4.9.1.5. *incisor perimeter:* The 2D projected *perimeter* was used to determine the complete incisor perimeter. The 3D actual *perimeter* accounted for the incisor surface topography. It was used as an estimate of the overall quantity of enamel growth/ deposition. It was taken from the buccal and lingual views (Figure 54.).

(A) 2D projected ; (B) 3D actual. Left incisor, buccal view. Scale = 10.0mm.

4.9.1.6. *incisor surface-area*: The 2D projected *surface-area* determined the flat surface area of tooth enamel. The 3D actual *surface-area* determined the marked surface area of enamel and accounted for the incisor surface topography. The measurements estimated of the quantity of enamel growth/ deposition. Both were taken from the buccal and lingual views (Figure 55.).

Figure 55. 2D projected surface-area and 3D actual surface-area

(A) 2D projected; (B) 3D actual marked. Left, incisor, buccal view. Scale = 10.0mm.

4. Materials and Methods

4.10. SUMMARY

An established 2D IAS was modified with a macro-lens for the small mouse application. An original standardised algorithm was developed in-house for the enamel colour and whiteness assessment. A bespoke 3D IAS was developed by adapting a high resolution measurement device with a rotary stage to obtain 3D images in 360°. Analytical measurement tools and 3D modelling software were customised for this application.

Two study samples were obtained for (i) multiple-operator method reliability and validation, and (ii) experimental comparative analysis. The reliability sample was a homogenous population of general laboratory mice (n = 20). The experimental sample was heterogenous population of congenic mice consisting of two separate populations each containing a control genotype groups and mutant genotype groups (n = 35) with recently described gene sequence mutations. The left and right side hemi-mandibles and mandibular incisors were imaged.

Hardware and software developments were undertaken and demonstrated novel input through inter-disciplinary collaboration. The new 2D IAS, new colour and whiteness and new 3D IAS were used to image the two study samples. These four approaches extended the measurement capacity for comparative investigation, using established parameters and new variables for objective and quantitative macro-metric and micro-metric murine dental phenotyping.

4.11. METHOD RELIABILTY AND VALIDATION

4.11.1. Introduction

Reliability measured the consistency of the instruments and methods, providing a measure of the total system error. This was determined by the statistical analysis of repeat measurements with the same equipment, on the same object and under the same conditions. Both intraoperator and inter-operator reliability was necessary for complete method assessment and validation (Smith and Harris, 2009). Also, to determine the validity of the new measurement methods it was essential to examine the measurement agreement with those of established methods recognised as benchmarks or as a definitive 'gold standard'. Both operator reliability and method agreement must be demonstrated as a reliable method may still be inaccurate.

The accuracy of each method was tested to identify measurement errors, defined as the difference between a measured and a true value. Measurement inaccuracies may be caused by (i) random (experimental) errors, which may vary from observation to observation, or (ii) systematic errors/ biases. All measurement methods contain experimental error.

Experimental error is inversely related to the degree of the reliability of the measurement method (Hunter and Priest, 1960). The greatest source of experimental error (that affects precision and reliability) may be landmark identification or positioning (Bhatia and Harrison, 1987). On the other hand, systematic errors are predictable, typically constant or proportional to the true value (Houston, 1983). They may be caused by imperfect instrument calibration, imperfect methods of observation or external interference in the measurement process (Keiser, 1990). Experimental errors may be identified by significant bias and eliminated.

There are number of terms associated with error and measurement reliability.

4. Materials and Methods

4.11.1.1. Accuracy/ Validity:

Accuracy is the closeness of a measurement to the true value. It was necessary to consider the validity of the measurement methods. The validity was assessed statistically for acceptability.

4.11.1.2. Precision:

The precision (or reliability) of a measurement method is the degree to which repeated measurements give the same value under unchanged conditions. Highly precise instruments have small variability (standard deviation) in the fluctuations of their measurements.

4.11.1.3. Reliability:

Reliability is the consistency of the measurement methods and measurements over a given number of repeat measurements on the same object under identical conditions, ideally by more than one operator. Reliability measures were developed by Bland and Altman (1986, 1999). Methods are deemed reliable (within a range) if they yield consistent results for the same measure, or are unreliable if repeat measurements give different results. Reliability also varies according to the skills of the operator and may improve through training.

4.11.2. Reliability Study

To make consistent observations an investigator must be familiar with a measurement technique. Each measurement method was piloted and standard operating procedures/ measurement protocols were written and revised iteratively. The protocols were used to provide adequate multiple operator training.

Before measuring the study sample the 2D IAS, the colour and whiteness and the 3D IAS measurement methods were all appraised during a reliability study that tested their experimental and systematic errors. The reliability studies established both the closeness of agreement between independent measurements obtained with the same method on an identical object, under the same conditions, by one identical operator (intra-operator repeatability) and by two different operators (inter-operator reproducibility).

Images were obtained with the same equipment, in the same laboratory, on separate occasions with a minimum interval of 1 week. Measurements were carried out after a minimum interval of 24 hours. The three independent operators were (I) Mr. Thomas Liam Coxon (TLC), (II) Mr. James Henry Hibbard (JHH) and (III) Dr. Aliya Stretton (AS). Operator I trained operators II and III in all methods. The first repeat measurements from each intra-operator repeatability study were used for the inter-operator reproducibility.

The exact number of images and measurements used in the comprehensive reliability and validation studies are detailed herein.

4.11.2.1. 2D IAS Mandible Morphometry:

2D images of the left and right hemi-mandibles (x2) were obtained from the buccal and lingual views (x4 images), from each individual in the reliability sample (x80 images). Each image was repeated by operators I and II (total x160 images). Eight variable measurements (x8) were obtained from each image.

4.11.2.2. 2D IAS Incisor Morphometry

2D images of the left and right incisors (x2) were obtained from the buccal and lingual views (x4 images), from each individual in the reliability sample (x80 images). Each image was repeated by operators I and II (total x 160 images). Five measurements were obtained from each image (+1 additional measurement from every buccal image) by operators I and II.

4.11.2.3. 2D IAS and Colour and Whiteness Assessment:

2D images of the left incisors were obtained from the labial view under polarised and nonpolarised lighting conditions (x2 images), from each individual in the reliability sample (x40 images). Each image was repeated by operators I and III (total x80 images). Thirty two measurements were obtained from each image by operators I and III.

4.11.2.4. 3D IAS Incisor Morphometry:

3D images/ 3D model files of the left and right incisors (x2) were obtained from each individual in the reliability sample (x40 images). Each model was repeated by operators I and II (total x80 images). Sixteen measurements were obtained from each model by operators I and II.

Repeat images/ 3D model files were obtained by operator I only. Independent (multiple operator) intra-operator repeatability tested for experimental error and systematic error while and inter-operator reproducibility tested experimental error. Inter-operator repeats were not required for the 3D actual *surface-area*, marked *surface-area*, total *volume* and *surface-roughness* measurements because the values were identical computer outputs from the same 3D model files.

4.11.3. Statistics

The following descriptive statistics were used to quantitatively summarise the data.

4.11.3.1. Standard Deviation:

The standard deviation (SD) measured the measurement variability. It may be thought of as the average difference from the mean of the sample.

4.11.3.2. Standard Deviation of the Difference:

The Standard Deviation of the Difference (SD Diff'.) was used to assess measurement variability for the repeat measures.

4.11.3.3. Mean Difference:

The Mean Difference (MD).

4.11.3.4. Standard Error:

The standard error of the sample mean (SE) indicated the variability around the estimate of the mean measurement. It was used to calculate the 95% confidence intervals (1.96xSE) either side of the mean.

4.11.3.5. Intra-class Correlation Coefficient:

The Intra-class Correlation Coefficient (ICC) was used to assess the degree of correlation between quantitative measurement methods and measurements made by independent operators measuring the same quantity for intra-operator repeatability and inter-operator reproducibility (Fleiss and Shrout, 1977; Fleiss, 1986a, 1986b). In paired measurements the ICC was a more natural measure of association than the Pearson's Correlation Coefficient because it accounted for the biological variation of the samples.

Donner and Eliasziw (1986) classified the ICC values as;

Slight (0.000-0.200), Fair (0.210-0.400), Moderate (0.410-0.600), Substantial (0.610-0.800) and excellent (0.810-1.000) correlations.

4.11.3.6. Bland-Altman Plot:

Bland-Altman plots were created to observe operator and method agreement diagrammatically (Bland and Altman, 1986, 1999). They visualise the measurement variation between the two operators and the two methods by plotting the average of two measurements (horizontal X axis) against the difference between each measurement (vertical Y axis). This illustrates the size of the measurement variation and its distribution about zero. Therefore, it is possible to demonstrate not only the overall degree of agreement but also the presence of any biases.

The plots reveal any possible unwanted relationships between the differences and the averages (Figure 56.).

Figure 56. Bland-Altman Plots Measurement Distribution

(A) a proportional error; (B) a case where the variation of at least one method depended strongly on the magnitude of the measurements; (C) expected systematic error. The average of the two measurements is displayed on the horizontal X axis against the difference between each measurement on the vertical Y axis.

A horizontal line is drawn at the MD. Dashed lines drawn at the MD \pm 1.96 X SD Diff[°] are equal to the limits of agreement (or the coefficient of repeatability).

4.11.3.7. Coefficient of Repeatability/ Limits of Agreement:

The coefficient of repeatability (CR) was used as a precision measure to determine the agreement strength or repeatability of a measurement. It was calculated as \pm SD of Diff' (about MD = zero) X 1.96. The CR was given for the intra-operator repeatability and was equal to the limits of agreement (LOA) given for the inter-operator reproducibility. Both were displayed within the Bland-Altman plots.

4.11.3.8. Confidence Intervals:

Confidence intervals (CI) are typically stated at the 95% confidence level. They specify a range within which 95% of the population would be expected to lie (Bland and Altman, 1986). If the range is too wide it could suggest that either a larger population or a more discriminatory variable is required.

4.11.3.9. Significant Measurement Bias:

A bias estimate was calculated for each variable. A MD less than the SE X 1.96 implied no significant bias.

4.11.4. Validation Study

The new colour and whiteness method was not comparable with any existing murine techniques, as described in the literature review. However, the validity was fully tested (see Appendix 4. List of Original Publications). The novel 3D IAS was validated here against the existing 2D IAS.

The following statistics were used to quantitatively summarise the validation study data.

4.11.4.1. Pearson's Correlation Coefficient:

Pearson's Product-Moment Correlation Coefficient (PCC) was used to measure the strength of agreement between the two methods, at the p = 0.01 (1%) significance level (two-tailed). It is the most commonly applied statistic for method agreement studies because it quantifies the differences between measurements made by independent operators on the same variables (Bland and Altman, 1986, 1999). Scatter plots were used to identify outliers.

The interpretation of the PCC depends on the context and purposes of the method comparison and several guidelines are offered (Rodgers and Nicewander, 1988). The PCC ranges in values from -1 (a perfect negative relationship) to +1 (a perfect positive relationship), where a value of 0 indicates no linear relationship. Regarding the size of the measurement correlation, a positive correlation, for example, may be Small (0.1 – 0.3), Medium (0.3 – 0.5) or Large (0.5-1.0).

4.11.4.2. Scatter Plot:

Scatter plots illustrated the degree of correlation between the measurements from the two different methods and showed up any outliers.

4.11.4.3. t-test:

A student's *t*-test (two-tailed) is the most commonly used hypothesis test. In the validation study a Repeated Measures *t*-test was used to reject the null hypothesis; e.g. that there were significant differences ($p \ge 0.01$) between the two measurement methods.

4.11.5. Principal Component Analysis

The PCA was used as an exploratory analysis to discover patterns of relationships between variables. Total Variance Explained tables were given to show how much variance each component (or the combination of multiple variables) accounted for as a percentage of the total variance of shape.

Principal components that accounted for less than one Eigenvalue were extracted. The Scree plot illustrated at what point (Eigenvalue \geq one) additional components no longer had a discernable effect on the amount of variance of shape.

4.11.6. Experimental Study

The following statistics were used to quantitatively summarise the experimental study data.

4.11.6.1. Analysis of Variance (ANOVA):

A one-way Analysis of Variance (ANOVA) measured phenotype variation between the different groups. Multiple pair-wise comparisons simultaneously compared all possible pairs of means to identify which group means were significantly different from one another. A Bonferroni calculation corrected the p = 0.05 (5%) significance level for the increased probability of making type-1 errors (false positives) that occur normally when making numerous multiple comparisons. The significance level (α) was divided by the number of variables tested (α /n), e.g. 0.05/ (22 or 32) = 0.002 (2-tailed). The Bonferroni significance level (p = 0.002) was a robust adjustment, particularly with respect to the independence of the variables. Therefore, where applicable, any significant differences (p < 0.05) observed before the Bonferroni correction were also detailed.

ANOVA was reliable when assuming (i) variables were normally distributed, (ii) samples were independent and (iii) variances were all equal. The F-distribution statistic was presented as a convention.

4.11.6.2. Multiple Comparisons:

Tukey's Honestly Significant Difference (HSD) test was used in conjunction with the ANOVA. It was essentially a multiple *t*-test that also corrected for the increased probability of false positives by requiring a stronger level of evidence for significance to be achieved in each pair-wise test. The p = 0.05 (5%) significance level was used (2-tailed).

The one-way ANOVA and Tukey's HSD tests compensated for the large number of inferences being made and were more suitable than doing multiple *t*-tests.

5. RESULTS

5.1. METHOD RELIABILITY AND VALIDATION	163
5.1.1. Introduction	163
5.1.2. Reliability - 2D Mandible Measurement	. 164
5.1.2.1. Intra-Operator Repeatability Operator I	164
5.1.2.2. Intra-Operator Repeatability Operator II	165
5.1.2.3. Inter-Operator Reproducibility Operators I and II	166
5.1.3 Reliability - 2D Incisor Measurement	. 167
5.1.3.1. Intra-Operator Repeatability Operator I	. 167
5.1.3.2. Intra-Operator Repeatability Operator II	. 168
5.1.3.3. Inter-Operator Reproducibility Operators I and II	169
5.1.4. Reliability - Colour and Whiteness Assessment	.170
5.1.4.1. Intra-Operator Repeatability Operator I	. 170
5.1.4.2. Intra-Operator Repeatability Operator III	171
5.1.4.3. Inter-Operator Reproducibility Operators I and III	172
5.1.5 Reliability - 3D Incisor Measurement	173
5 1 5 1 Intra-Operator Repeatability Operator I	173
5.1.5.2. Inter-Operator Reproducibility Operators I and II	174
5.1.6 Validation - 2D and 3D Incisor Measurement	175
5.1.6.1 Method Validation Operator I	175
5.1.7 Summary	177
5.1.8 Impact on Null Hypotheses	177
5.1.6. Impact on run-rrypoineses	/ /
5.2 PRINCIPAL COMPONENT ANALYSIS	178
5.2.1 Introduction	178
5.2.7. PCA of 2D Mandible Measurement	170
5.2.2. I CA of 2D Indiantible Measurement	191
5.2.4. BCA of Colour and Whiteness Association	102
5.2.5 PCA of 2D Incider Measurement	103
5.2.5.1 Duosal and Lingual Viewa	104
5.2.5.1. Buccal and Lingual Views	104
5.2.5.2. Ladial view	. 180
5.2.6. Summary	.187
5.2 EVDEDIMENTAL COMPADISON	100
5.3. EAPERIMIENTAL COMPARISON	100
5.3.1. Introduction	
5.3.2. Ameix Experimental Comparison	. 189
5.3.2.1. Amela 2D Mandible Measurement	189
5.3.2.2. Amela 2D Incisor Measurement	. 190
5.3.2.3. Amela Colour and Whiteness Assessment	191
5.3.2.4. Amelx 3D Incisor Morphometry	193
5.3.3. Enam Experimental Comparison	. 194
5.3.3.1. Enam 2D Mandible Measurement	. 194
5.3.3.2. Enam 2D Incisor Measurement	. 195
5.3.3.3. Enam Colour and Whiteness Assessment	196
5.3.3.4. Enam 3D Incisor Morphometry	1 98
5.3.4. Amelx and Enam 3D Surface Analysis	19 9
5.3.5. Summary	200
5.3.6. Impact on Null-Hypotheses	. 201

5.1. METHOD RELIABILITY AND VALIDATION

5.1.1. Introduction

Fliess Intra-class Correlation Coefficient determined intra-operator repeatability and interoperator reproducibility. Bland-Altman plots displayed a graphical representation of measurement method agreement, distribution about the mean, bias and limits of agreement. Pearson's Correlation Coefficient, Scatter Plots and Repeated Measures *t*-tests demonstrated the 2D IAS and 3D IAS method agreement towards validation.

Descriptive statistics summarised the reliability, validation and experimental data; Mean Difference, Standard Deviation, Standard Deviation of the difference, Standard Error and Coefficient of Repeatability (or Limits of Agreement).

Principal Component Analysis and Scree Plots revealed a number of underlying variable associations defining the shape of the mandible and incisor.

Bonferroni corrected one-way ANOVA multiple comparisons (p = 0.002) and Tukey's HSD tests (p = 0.05) identified phenotype variation.

Reliability and validation measurements were carried out by three independent operators.

5.1.2. Reliability - 2D Mandible Measurement

This section details one example variable from each of the intra-operator repeatability and the inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1. Tables 1-6).

5.1.2.1. Intra-Operator Repeatability Operator I (TLC):

Table 2. Intra-operato	r I Statistics - le	ft mandible bucca	l view overall-length
------------------------	---------------------	-------------------	-----------------------

Mean Difference (mm)	0.025
Standard Deviation of Difference (mm)	0.243
Standard Error (mm)	0.054
Bias (Mean Diff. < SE X 1.96)	0.106
Coefficient of Repeatability ±	0.476
Intra-class Correlation Coefficient	0.919

Intra-operator repeatability (ICC 0.791-0.988) was classified as substantial to excellent (Donner and Eliasziw, 1987); right buccal *diagonal-length* (ICC \geq 0.791) showed the lowest repeatability and left buccal *overall-length* (ICC \leq 0.988) showed the highest repeatability (Appendix 1. Tables 1. and 2.).

5.1.2.2. Intra-Operator Repeatability Operator II (JHH):

Table 3. Intra-operator II Statistics - left mandible buccal view over	erall-length
--	--------------

Mean Difference (mm)	0.016
Standard Deviation of Difference (mm)	0.072
Standard Error (mm)	0.016
Bias	0.031
Coefficient of Repeatability ±	0.141
Intra Class Correlation Coefficient	0.993

Figure 58. Intra-operator II Bland-Altman Plot - left mandible buccal view overall-length

Intra-operator repeatability (ICC 0.810-0.997) was classified as excellent (Donner and Eliasziw, 1987); right lingual *ascending-height* (ICC \geq 0.810) showed the lowest repeatability and right buccal *mandible-angle* (ICC \leq 0.997) showed the highest repeatability (Appendix 1. Tables 3. and 4.).

5.1.2.3. Inter-Operator Reproducibility Operators I and II (TLC and JHH):

Mean Difference (mm)	-0.069
Standard Deviation of Difference (mm)	0.113
Standard Error (mm)	0.025
Bias	0.049
Limits of Agreement ±	0.221
Intra Class Correlation Coefficient	0.980

Table 4. Inter-operator Statistics - left mandible buccal view overall-length

Figure 59. Inter-operator Bland-Altman Plot - left mandible buccal view overall-length

Inter-operator reproducibility (ICC 0.820-0.979) was classified as excellent (Donner and Eliasziw, 1987); left mandible lingual *diagonal-length* (ICC \geq 0.820) showed the lowest reproducibility and left lingual *mandible-area* (ICC \leq 0.993) showed the highest reproducibility (Appendix 1. Tables 5. and 6.).

5.1.3. Reliability - 2D Incisor Measurement

This section gives the statistics of one example variable from each of the intra-operator repeatability and the inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1. Tables 7-9.

5.1.3.1. Intra-Operator Repeatability Operator I (TLC):

Table 5. Intra-operator I Statistics – left 2D incisor buccal view overall-len	ıgt	th
--	-----	----

Mean Difference (mm)	0.087
Standard Deviation of Difference (mm)	0.387
Standard Error (mm)	0.087
Bias	0.171
Coefficient of Repeatability ±	0.759
Intra Class Correlation Coefficient	0.908

Intra-operator repeatability (ICC 0.826-1.000) was classified as excellent (Donner and Eliasziw, 1987); right buccal *angle-of-curvature* (ICC \geq 0.826) showed the lowest repeatability and all *width-at-midpoint* (ICC 1.000) measurements showed equally high repeatability (Appendix 1. Table 7.).
5.1.3.2. Intra-Operator Repeatability Operator II (JHH):

1 able 0. Intra-operator 11 Statistics - left 2D incisor buccal view overall-leng	Table	e 6.	Intra-o	perator	Π	Statistics	-	left	2D	incisor	buccal	view	overal	l-leng	rti	h
---	-------	------	---------	---------	---	------------	---	------	----	---------	--------	------	--------	--------	-----	---

Mean Difference (mm)	-0.011
Standard Deviation of Difference (mm)	0.168
Standard Error (mm)	0.038
Coefficient of Repeatability ±	0.329
Bias	0.074
Intra-class Correlation Coefficient	0.987

Figure 61. Intra-operator II Bland-Altman Plot - left 2D incisor buccal view overall-length

Intra-operator repeatability (ICC 0.925-1.000) was classified as excellent (Donner and Eliasziw, 1987); right lingual *overall-length* (ICC ≥ 0.955) showed the lowest repeatability and all *width-at-midpoint* (ICC 1.000) measurements showed equally high repeatability (Appendix 1. Table 8.).

5.1.3.3. Inter-Operator Reproducibility Operators I and II (TLC and JHH):

Mean Difference (mm)	0.270
Standard Deviation of Difference (mm)	0.467
Standard Error (mm)	0.104
Bias	0.203
Limits of Agreement \pm	0.915
Intra Class Correlation Coefficient	0.852

Table 7. Inter-operator Statistics - left 2D incisor buccal view overall-length

Figure 62. Inter-operator Bland-Altman Plot – 2D left incisor buccal view overall-length

Inter-operator reproducibility (ICC 0.768-1.000) was classified as substantial to excellent (Donner and Eliasziw, 1987); right buccal *angle-of-curvature* (ICC \geq 0.768) showed the lowest reproducibility and all *width-at-midpoint* (ICC 1.000) showed equally high reproducibility (Appendix 1. Table 9.).

5.1.4. Reliability - Colour and Whiteness Assessment

This section details one example variable from each of the intra-operator repeatability and inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1 Tables 10-15.

5.1.4.1. Intra-Operator Repeatability Operator I (TLC):

Table 8. Intra-operator I	Statistics - non-polarise	d gingival region lightness
---------------------------	---------------------------	-----------------------------

Mean Difference	-0.081
Standard Deviation of Difference	2.083
Standard Error	0.466
Bias	0.953
Coefficient of Repeatability ±	4.083
Intra Class Correlation Coefficient	0.812

Figure 63. Intra-operator I Bland-Altman Plot - non-polarised gingival region lightness

Intra-operator repeatability (ICC 0.731-0.999) was classified as substantial to excellent (Donner and Eliasziw, 1987); non-polarised *gingival* region *yellow/ blue* showed the lowest repeatability (ICC \geq 0.731) and polarised *incisal* and *whole* region *red/ green* colour components showed the highest repeatability (ICC \leq 0.999) (Appendix 1. Tables 10. and 11.).

5.1.4.2. Intra-Operator Repeatability Operator III (AS):

Mean Difference	1.417
Standard Deviation of Difference	4.756
Standard Error	1.063
Bias	2.083
Coefficient of Repeatability ±	9.322
Intra Class Correlation Coefficient	0.563

Table 9. Intra-operator III Statistics - non-polarised gingival region ligning
--

Figure 64. Intra-operator III Bland-Altman Plot - non-polarised gingival region lightness

Intra-operator repeatability (ICC 0.400-0.973) was classified as fair to excellent (Donner and Eliasziw, 1987); non-polarised *gingival* region *yellow/ blue* showed the lowest repeatability (ICC \ge 0.400) and polarised *whole* region *yellow/ blue* colour components showed the highest repeatability (ICC \le 0.973) (Appendix 1. Tables 12. and 13.).

5.1.4.3. Inter-Operator Reproducibility Operators I and III (TLC and AS):

Mean Difference (mm)	3.331
Standard Deviation of Difference (mm)	4.676
Standard Error (mm)	1.046
Bias	2.050
Limits of Agreement ±	9.165
Intra Class Correlation Coefficient	0.219

Table 10. Inter-operator Statistics - non-polarised gingival region lightness

Figure 65. Inter-operator Bland-Altman Plot - non-polarised gingival region lightness

In the main, inter-operator reproducibility (ICC 0.126 - 0.939) was classified as slight to excellent (Donner and Eliasziw, 1987); non-polarised *gingival* region *yellow/ blue* showed the lowest reproducibility (ICC \geq 0.126) and polarised *middle* region *red/ green* colour components showed the highest reproducibility (ICC \leq 0.939) (Appendix 1. Tables 14. and 15.).

5.1.5. Reliability - 3D Incisor Measurement

This section details one example variable from each of the intra-operator repeatability and inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1 Tables 16-20.

5.1.5.1. Intra-Operator Repeatability Operator I (TLC):

Table 11. Intra-operator I Statistics - left 3D incisor buccal view projected overall-length

Mean Difference (mm)	-0.028
Standard Deviation of Difference (mm)	0.282
Standard Error (mm)	0.063
Bias	0.124
Coefficient of Repeatability ±	0.553
Intra-class Correlation Coefficient	0.922

Figure 66. Intra-operator I Bland-Altman Plot - left 3D incisor buccal view projected *overall-length*

Intra-operator repeatability (ICC 0.750-1.000) was classified as substantial to excellent (Donner and Eliasziw, 1987); right lingual actual *width-at-midpoint* (ICC \ge 0.750) showed the lowest repeatability and all projected *width-at-midpoint* measurements showed equally high repeatability (ICC \le 1.000) (Appendix 1. Tables 16. and 17.).

5.1.5.2. Inter-Operator Reproducibility Operators I and II (TLC and JHH):

Table 12. Inter-operator Statistics - left 3D incisor buccal view projected overall-length

Mean Difference (mm)	-0.068
Standard Deviation of Difference (mm)	0.104
Standard Error (mm)	0.023
Bias	0.045
Limits of Agreement \pm	0.203
Intra Class Correlation Coefficient	0.986

Figure 67. Inter-operator Bland-Altman Plot – left 3D incisor buccal view projected *overall-length*

The inter-operator reproducibility (ICC 0.818-1.000) was classified as excellent (Donner and Eliasziw, 1987); right buccal actual *width-at-midpoint* (ICC \geq 0.818) showed the lowest repeatability and left buccal and lingual projected *width-at-midpoint*, and *circumference* and right buccal projected *width-at-midpoint* and lingual projected and actual *width-at-midpoint* (ICC \leq 1.000) showed equally high repeatability (Appendix 1. Tables 18. and 19.).

5.1.6. Validation - 2D and 3D Incisor Measurement

This section details of one example variable from the intra-operator repeatability and the inter-operator reproducibility datasets for brevity. The full data is recorded in Appendix 1 Tables 20.

5.1.6.1. 3D Method Validation Operator I (TLC):

Table 13. Validation Statistics - left incisor buccal view	projected	overall-length
--	-----------	----------------

Mean Difference (mm)	0.154
Standard Deviation of Difference (mm)	0.371
Standard Error (mm)	0.083
Bias	0.163
Limits of Agreement \pm	0.727
t-test	0.079*
Pearson's Correlation Coefficient	0.866**

*No significant difference at the 0.01 (1%) level (2-tailed). **Pearson's Correlation Coefficient was significant at the 0.01 (1%) level (2-tailed).

Figure 68. Validation Scatter Plot - left incisor buccal view projected overall-length

Figure 69. Validation Bland-Altman Plot - left incisor buccal view projected overall-length

The 2D and 3D method agreement showed a significant ($p \le 0.01$) large positive correlation (PCC 0.710 - 0.999) (Appendix 1. Table 20.). The repeated measures *t*-test showed there were no significant differences ($p \ge 0.01$) between the 2D IAS and 3D IAS measurements, except in the projected *width-at-midpoint* variable. The left lingual projected *width-at-midpoint* (PCC ≥ 0.710) showed the smallest positive correlation and the right labial projected *labial-length* (PCC ≥ 0.999) showed the largest positive correlation.

5.1.7. Summary

There was predominately substantial to excellent reliability for all three independent operators for all three measurement methods.

There were negligible differences in reliability between the left and right side mandibles and incisors, and between the buccal, lingual and labial views.

Bland-Altman plots indicated negligible systematic error, proportional error and bias.

The 2D IAS gold standard successfully validated the new 3D IAS and the two methods could be used interchangeably.

5.1.8. Impact on Null-Hypotheses

In relation to the hypotheses of this investigation, the null hypotheses were rejected in all cases in the reliability and validation studies indicating that all the methods were reliable, practical and objective and had good sensitivity for detecting differences between groups.

The methods identified macro-metric and micro-metric differences in a homogeneous congenic murine population. The methods were well suited to the small mammalian application.

5.2. PRINCIPAL COMPONENT ANALYSIS (PCA)

5.2.1. Introduction

Principal Components Analysis (PCA) established which variable relationships were responsible for describing shape. These formed the principal components derived from the factor analysis process. The values showed inter-relationships for each variable and were used to understand what each identified component signified. Following convention, components were only considered that scored over one Eigenvalue, as illustrated in the Scree plots.

5.2.2. PCA of 2D Mandible Measurement

This section gives the PCA statistics of the left side buccal view as an example for brevity as the data was similar for both the left and right sides, and for buccal and lingual views (Table 14. and Figure 70.). The full data is recorded in Appendix 2. Table 1.

Α				В		
	Total	Variance Ex	plained		Compone	ent Matrix
COMPONENT	In	itial Eigenva	lues	MEASUDEMENT VADIADIE.	Comp	onent
COMINICALIVI	Total	% of Variance	Cumulative %	MEASUREMENT VARIABLE	1	2
1	4.368*	54.599	54.599	mandible-area (mm^2)	0.902	-0.251
2	2.097*	26.216	80.815	basal-length (mm)	0.882	0.372
3	0.990	12.375	93.190	mandible-perimeter (mm)	0.874	-0.349
4	0.337	4.216	97.406	ascending-height (mm)	0.850	0.219
5	0.126	1.577	98.983	overall-length (mm)	0.821	0.348
6	0.048	0.605	99.588	diagonal-length (mm)	0.766	-0.113
7	0.026	0.323	99.911	mandible-angle (°)	0.055	-0.963
8	0.007	0.089	100.000	coronoid-coronoid-length (mm)	-0.159	-0.815

Table 14. PCA Mandible Mon	phometry -	left side	buccal	view
----------------------------	------------	-----------	--------	------

(A) Total variance of shape explained; (B) Extracted components matrix. *Eigenvalue > 1.

Figure 70. PCA Scree Plot Mandible Morphometry - left side buccal view

(C) Scree Plot.

Two components were identified; (i) component one (54.6%) and (ii) component two (26.2%) that accounted for 80.8% of the total variance in mandible shape (Appendix 2. Table 1). Component one highlighted a directly proportional size correlation between most variables. The *mandible-area*, *basal-length* and *mandible perimeter* showed the largest positive inter-relationships. The *coronoid-condyle-length* showed a negative relationship

which suggested a decrease in *coronoid-condyle-length* was related to an increase in mandible size. This later relationship was only small and may indicate that the size of this variable was static.

Component two highlighted an inversely proportional correlation between *coronoid-condyle-length* and *mandible-angle* and *diagonal-length*, which suggested a decrease in *coronoid-condyle-length* was related to an increase in *mandible-angle*. A larger *mandible-angle* gave a smaller mandible. This relationship was logical when studying the curved morphology of the incisor in the morphometric images (Figure 9.).

5.2.3. PCA of 2D Incisor Measurements

This section gives the PCA statistics of the left side buccal view as an example for brevity as the data was similar for both the left and right sides, and for buccal and lingual views (Table 15. and Figure 71.). The full data is recorded in Appendix 2. Table 2.

Table 15. PCA 2D Incisor Mor	phometry - left	side buccal view
------------------------------	-----------------	------------------

Α				B							
	Tota	al Variance	e Explained			Compon	ent Matrix				
COMPONENT	. I	nitial Eiger	nvalues		MEASUREMENT VARIARIE	Component					
COMPONENT	Total	% of	Cumulative		MEASUREMENT VARIABLE	1	2				
	Total	Variance	%			1	2				
- 1	3.758*	75.165	75.165		projected perimeter (mm)	0.989	-0.102				
2	1.067*	21.335	96.500		projected overall-length (mm)	0.979	-0.069				
3	0.140	2.791	99.292		projected surface-area (mm ²)	0.970	0.192				
4	0.030	0.592	99.883		angle-of-curvature (°)	-0.883	0.358				
5	0.006	0.117	100.000		projected width-at-midpoint (mm)	0.316	0.941				

(A) Total variance of shape explained; (B) Extracted components matrix. *Eigenvalue > 1.

Figure 71. PCA Scree Plot 2D Incisor Morphometry - left side buccal view

(C) Scree Plot.

Two components were identified; (i) component one (75.2%) and (ii) component two (21.3%) that accounted for 96.5% of the total variance in incisor shape (Appendix 2. Table 2). Component one highlighted a directly proportional size correlation between the majority of variables. The projected *perimeter*, projected *overall-length* and projected *surface-area* showed the largest positive inter-relationships. The *angle-of-curvature* showed a strong negative relationship which suggested a decrease in *angle-of-curvature* was related to an increase in incisor size. Component two highlighted a directly proportional relationship

between the *angle-of-curvature* and the projected *width-at-midpoint* variables. Therefore wider teeth were straighter. A large *angle-of-curvature* gave a small incisor because of the curved morphology of the incisor (Figure 18.).

5.2.4. PCA of Colour and Whiteness Assessment

PCA was not performed on the colour and whiteness assessment because of the different algorithmic relationships between the individual RGB values and the individual colour space outputs L A B and W. The PCA results would distort any relationship between the variables and elucidate no meaningful component correlations.

5.2.5. PCA of 3D Incisor Measurement

The PCA statistics of the left side buccal view was given as an example for brevity as the variance was similar for both the left and right sides, and for buccal and lingual views (Table 16. and Figure 72.). The 3D labial view was detailed separately (Table 17. and Figure 73.). The full data is recorded in Appendix 2. Tables 3. and 4.

5.2.5.1. Buccal and Lingual Views:

Α				В		-			
COMPONENT	Tota In	l Variance itial Eigen	Explained values		Component Matrix Component				
	Total	% of Variance	Cumulative %	MEASUREMENT VARIABLE	1	2			
1	2.435*	48.693	48.693	marked surface-area (mm ²)	0.909	0.266			
2	2.159*	43.175	91.868	projected overall-length (mm)	0.864	-0.352			
3	0.231	4.61 1	96.479	actual perimeter (mm)	0.862	-0.430			
4	0.124	2.483	98.962	projected width-at-midpoint (mm)	0.152	0.952			
5	0.052	1.038	100.000	actual width-at-midpoint (mm)	0.309	0.934			

Table 16. PCA 3D Incisor Morphometry left side buccal view

(A) Total variance explained; (B) Extracted components matrix. *Eigenvalue > 1.

Figure 72. PCA Scree Plot 3D Incisor Morphometry left side buccal view Scree Plot

⁽C) Scree Plot.

Two components were identified; (i) component one (48.7%) and (ii) component two (43.2%) that accounted for 91.9% of the total variance in incisor shape (Appendix 2. Tables 3. and 4.). Component one highlighted a directly proportional size correlation between most variables. The marked *surface-area*, projected *overall-length* and actual *perimeter* showed

the largest positive inter-relationships. The projected and actual *width-at-midpoint* showed a lesser correlation, which may suggest they changed little compared to the other variables.

Component two highlighted a directly proportional link with projected *width-at-midpoint* and actual *width-at-midpoint*. Secondly, component two highlighted an inversely proportional correlation between *overall-length* and actual *perimeter* with projected and actual *width-at-midpoint*. The negative relationship suggested a reduced *width-at-midpoint* with increased incisor size in general.

5.2.5.2. Labial view:

Α				В		
	Tota	l Variance	Explained		Compone	ent Matrix
COMPONENT	. In	itial Eigen	values	MEASUREMENT VARIARIE	Comp	onent
	Total	% of Variance	Cumulative %	MEASOREMENT VARIABLE	1	2
1	2.946*	58.922	58.922	total surface-area (mm ²)	0.926	-0.030
2	1.277*	25.538	84.460	projected labial-length (mm)	0.918	-0.231
3	0.474	9.475	93.935	actual labial-length (mm)	0.904	-0.312
4	0.187	3.733	97.668	total volume (mm ³)	0.628	0.561
5	0.117	2.332	100.000	circumference (mm)	0.188	0.901

(A) Total variance explained; (B) Extracted components matrix. *Eigenvalue > 1

Figure 73. PCA Scree Plot 3D Incisor Morphometry left side labial view

(C) Scree Plot.

Two components were identified; (i) component one (58.9%) and (ii) component two (25.5%) that accounted for 84.5% of the total variance in incisor shape (Appendix 2. Tables 3. and 4.). Component one highlighted a directly proportional size correlation between all variables. The total *surface-area*, projected *labial-length* and actual *labial-length* showed the strongest positive inter-relationships.

Firstly, component two highlighted a directly proportional relationship between total *volume* and *circumference*. Secondly, component two highlighted an inversely proportional relationship between total *surface-area*, projected *labial-length* and actual *labial-length* with *circumference* (and to a lesser extent with *total volume*). This relationship linked with the second component of the buccal view, showing that longer teeth are slimmer. Therefore, their *circumference* and *volume* remained largely unchanged or reduced.

5.2.6. Summary

The PCA predominantly revealed two main components for each method that described shape, e.g. 2D mandible measurement component one highlighted a directly proportional size correlation between variables.

The PCA identified a number of underlying morphological trends and associations that may not have otherwise been evident.

5.3. EXPERIMENTAL COMPARISON

5.3.1. Introduction

The following descriptive statistics summarised the experimental comparison data; Mean, Standard Deviation, Mean Difference, Standard Error and 95% Confidence Intervals.

A one-way ANOVA indicated the Bonferroni corrected significant differences (p < 0.002) in the experimental comparison. Post Hoc Multiple Comparison Tukey's HSD tests identified between which experimental groups the significant differences (p < 0.05) occurred.

The Bonferroni correction was considered to be a harsh adjustment and should ideally only be applied to independent variables. The variables within this study arguably had varying degrees of independence. For this reason any significant differences (p < 0.05) observed before the Bonferroni correction were also detailed.

Experimental measurements were carried out by operator I (TLC).

5.3.2. Amelx Experimental Comparison

This section details one example variable from each of the multiple *Amelx* experimental group comparisons for brevity. The full data is recorded in Appendix 3. Tables 1-22.

5.3.2.1. Amelx 2D Mandible Measurement:

|--|

	HEM	I-MANDIBLE	ANOVA							MULTIPLE COMPARISON								
MEASUREMENT			1			95% CI (ofMean		[the read of			1		95%	CI		
VIEW	ASPECT	VARIABLE	GROUP	Mean	SD	SE	lower	upper	min'	max	F	Sig.	GROUPS	MD	SE	lower	upper	Sig.
		VANABLE		1	1		bound	bound			l			<u> </u>		bound	bound	
													WT-HET	0.126]	-0.687	0.940	0.970
			WT	11.782	0.132	0.059	11.618	11.947	11.611	11.922	1		WT-HEMI	0.343		-0.470	1.157	0.631
TEET	DUCCAT	the second second second	HET	11.656	0.252	0.112	11.344	11.968	11.288	11.954	0.05	0.007	WT-HOMO	0,725	10.004	-0.089	1.539	0.090
LEFT	BUCCAL	overall-length (mm)	HEMI	11.439	0.649	0.290	10.633	12.245	10.338	11.924	12.495 0.0 1	0,097	HET-HEMI	0.217	0.284	-0,596	1.031	0.869
			HOMO	11.057	0.554	0.248	10.370	11.745	10.219	11.735			HET-HOMO	0.599	ì	-0.215	1,412	0,193
													HEMI-HOMO	0.382	1	-0.432	1.195	0,551

Bonferroni corrected significant differences ($p \le 0.002$) in the *mandible-angle* variable identified morphological variation between one and more of the four *Amelx* groups (Appendix 3. Tables 1-4.). The post hoc multiple comparisons indicated that the significant differences ($p \le 0.05$) occurred between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups, between the *Amelx*^{X/Y64H} and *Amelx*^{Y64H/Y64H} groups, and between the *Amelx*^{Y764H} and *Amelx*^{Y64H/Y64H} groups. For example, in accordance with the PCA, the *mandible-angle* showed the *Amelx*^{WT} mandibles (66.219°) were the smallest, followed in descending order of size by the *Amelx*^{X/Y64H} (67.261°), *Amelx*^{Y/Y64H} (67.838°) and *Amelx*^{Y64H/Y64H} (71.885°) mandibles. The *mandible-angle* represented the overall bulk of the mandible as a combined measure of the *ascending-height* and *basal-length* variables.

Uncorrected significant differences ($p \le 0.05$) occurred in eight of the thirty two (25%) mandible variables; between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups (x 7 variables), between the *Amelx*^{X/Y64H} and *Amelx*^{Y64H/Y64H} groups (x 5 variables) and between the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups (x 2 variables).

5.3.2.2. Amelx 2D Incisor Measurement:

MANDIBU	JLAR INCISORS						ANOVA						мніти	NECO	MPARI	SON	
	<u> </u>				95% CI of Mean		fean			-				95% CI			
VIEW/ ASPECT	CT MEASUREMENT VARIABLE	GROUP	Mean	\$D	SE	lower	upper	min'	max	F	Sig.	GROUPS	MD	SE	lower	upper	Sig.
			r	· · · · · ·		Jocana	ovana	,				WT-HET	0.217		-0.721	1.154	0,910
		WT	10.560	0.758	0.339	9.619	11.501	9.808	11.699	9.165 0.001	WT-HEMI	0.369	1	-0,569	1,306	0,680	
		HET	10.343	0.474	0.212	9.755	10.931	9.521	10.701			WT-НОМО	1,565		0,627	2,502	0.001**
LEFT BUCCAL	overali-length (mm)	HEMI	10.191	0.475	0.212	9,602	10.781	9.428	10.615		0,001*	HET-HEMI	0.152	10,328	-0.786	1.089	0.966
. 1		номо	8.995	0.223	0.100	8,719	9.271	8.738	9.247			HET-HOMO	1,348	1	0.411	2.285	0.004**
						****************	*** **********	*****			-	немі-номо	1.196	1	0.259	2.134	0.010**

Table 19. Statistics Amelx left 2D incisor buccal view overall-length

*Bonferroni corrected Significant Difference ($p \le 0.002$). **Significant Difference ($p \le 0.05$).

Bonferroni corrected significant differences ($p \le 0.002$) in all the incisor variables - except overall-length ($p \ge 0.008$), width-at-midpoint ($p \ge 0.051$) and labial-length ($p \ge 0.243$) that did indicate considerable differences - identified morphological variation between one and more of the four *Amelx* groups (Appendix 3. Tables 5-8.). The post hoc multiple comparisons indicated that the significant differences ($p \le 0.05$) occurred between the *Amelx*^{WT} and *Amelx*^{Y/Y64H} groups (x 3 variables), between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups (x 3 variables), between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups (x 15 variables), between the *Amelx*^{Y64H/Y64H} groups (x 15 variables), and between the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups (x 15 variables), and between the *Amelx*^{Y/Y64H} incisors (10.566mm) were the largest, followed in descending order of size by the *Amelx*^{X/Y64H} (10.343mm), *Amelx*^{Y/Y64H} (10.191mm) and *Amelx*^{Y64H/Y64H} groups or between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} groups.

Uncorrected significant differences ($p \le 0.05$) occurred in eighteen of the twenty two (82%) incisor variables between the *Amelx*^{WT} and *Amelx*^{Y/Y64H} groups (x 3 variables), between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H/Y64H} groups (x 18 variables), between the *Amelx*^{X/Y64H/Y64H} and *Amelx*^{Y64H/Y64H} groups (x 18 variables), and between the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups (x 15 variables).

5.3.2.3. Amelx Colour and Whiteness Assessment:

	MANDIBULAR	ICISORS		ANOVA										MULTIPLE COMPARISON				
SIDE	REGION/ STAGE	COLOUR COMPONENT	GROUP	Mean	SD	SE	95% CI lower bound	of Mean upper bound	min'	max	F	Sig.	GROUPS	MD	SE	95% lower bound	Cl upper bound	Sig.
1				- 200 - 20 - 20									WT-HET	10.855	1	5.001	16.709	0.000**
			WT	48.519	2.385	1,066	45,558	51,480	45,235	51.083	1		WT-HEMI	9.522		3.668	15.376	0.001**
IFET	GINGIVA1/	Relition	HET	37.664	4.760	2.129	31,754	43.574	34.154	44.923	11 500	0.000*	WT-HOMO	8.690	2046	2.836	14.545	0.003**
1.1.1	SECRETORY	ngminess	HEMI	38.998	2.996	1.340	35.278	42.718	35.079	43.418) II.390 V	0.000	HET-HEMI	-1.333	2.040	-7.187	4.521	0.913
			номо	39.829	2.134	0.954	37.179	42,479	37.616	42,754		HET-HOMO	-2.165		-8.019	3.690	0.719	
													НЕМІ-НОМО	-0,831		-6.686	5,023	0,977

Table 20. Statistics Amelx left gingival region lightness

* Bonferroni corrected Significant Difference (p ≤ 0.002).
** Significant Difference (p ≤ 0.05).

Bonferroni corrected significant differences ($p \le 0.002$) in nineteen of the thirty two (59%) variables identified colour and whiteness variation between one and more of the four *Amelx* groups (Appendix 3. Tables 9-16.). The post hoc multiple comparisons indicated that the significant differences ($p \le 0.05$) occurred in the *lightness* colour component, in all four enamel surface regions, and in the *yellow/ blue* and *whiteness* colour components in the *middle*, *incisal* and *whole* regions; between the *Amelx*^{WT} and *Amelx*^{X/Y64H} groups (x 10 components), between the *Amelx*^{WT} and *Amelx*^{Y/Y64H} groups (x 15 components), between the *Amelx*^{X/Y64H} groups (x 12 components), between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} groups (x 12 components), between the *Amelx*^{Y/Y64H} groups (x 16 components), and between the *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H} groups (x 6 components).

Uncorrected significant differences ($p \le 0.05$) occurred in twenty seven of the thirty two (84%) incisor variables between the $Amelx^{WT}$ and $Amelx^{X/Y64H}$ groups (x 13 components), between the $Amelx^{WT}$ and $Amelx^{Y/Y64H}$ groups (x 17 components), between the $Amelx^{WT}$ and $Amelx^{Y/Y64H}$ groups (x 12 components), between the $Amelx^{X/Y64H}$ and $Amelx^{Y/Y64H}$ groups (x 15 components), between the $Amelx^{X/Y64H}$ and $Amelx^{Y/Y64H}$ groups (x 17 components), and between the $Amelx^{Y/Y64H}$ and $Amelx^{Y/Y64H}$ groups (x 17 components), and between the $Amelx^{Y/Y64H}$ and $Amelx^{Y/Y64H}$ groups (x 17 components), between the $Amelx^{Y/Y64H}$ groups (x 17 components), between the $Amelx^{Y/Y64H}$ groups (x 17 components), between the $Amelx^{Y/Y64H}$ and $Amelx^{Y/Y64H}$ groups (x 17 components), and between the $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ groups (x 6 components).

The enamel surface constituted: gingival region lightness (33.144 - 49.034), green (-5.114 - 1.086), yellow (1.970 - 8.998) and whiteness (39.292 - 88.966); middle region lightness (36.862 - 51.694), green (-4.036 - -0.782), yellow (0.074 - 6.482) blue (-0.514) and whiteness

(58.068 - 97.603); incisal region lightness (32.826 - 54.707), green (-7.198 - -0.316), blue (-1.552 - -0.660) yellow (8.386 - 12.344) and whiteness (18.800 - 107.451); whole region lightness (36.334 - 51.694), green (-5.322 - -1.084), yellow (0.354 - 7.632) and whiteness (49.926 - 97.930). Lightness and whiteness values were higher than yellow/ blue values in all regions. The green values were similar throughout.

The significant differences observed between the $Amelx^{WT}$ group and the three mutant groups occurred specifically in the *lightness*, *yellow/ blue* and *whiteness* colour components in the *incisal* and *whole* enamel surface regions.

5.3.2.4. Amelx 3D Incisor Measurement:

MAN		ΑΝΟΥΑ									MULTIPLE COMPARISON			
VIEW/ A SPECT	MEA SUREMENT VA RIA BLE	GROUP	Mean	SÐ	SE	95% Cl of Me lower upp bound bound	m r min'	max	F	Sig.	GROUPS	MD	95% CI SE lower upper bound bound	Sig.
LEFT BUCCAL	projected overall-length (mm)	WT HET HEMI HOMO	10.041 9.222 9.106 8.618	0.684 0.603 0.402 0.661	0.306 0.270 0.180 0.295	9.191 10.8 8.472 9.97 8.607 9.60 7.798 9.43	1 9.294 1 8.627 4 8.552 8 7.447	10.804 9.917 9.482 9.042	4.879	0.014	WT-HET WT-HEMI WT-HOMO HET-HEMI HET-HOMO HEMI-HOMO	0.819 0.935 1.423 0.116 0.604 0.488	-0.263 1.901 -0.147 2.017 378 0.341 2.505 -0.966 1.198 -0.478 1.686 -0.594 1.570	0.175 0.103 0.008 0.990 0.408 0.582

Table 21. Statistics Amelx left 3D incisor buccal view projected overall-length

Bonferroni corrected significant differences ($p \le 0.002$) in the *surface-area* and *volume* variables identified morphological variation between one and more of the four *Amelx* groups (Appendix 3. Tables 17-22.). The post hoc multiple comparisons indicated that the significant differences ($p \le 0.05$) occurred between the *Amelx*^{WT} and *Amelx*^{X/Y64H} groups (x 4 variables), between the *Amelx*^{WT} and *Amelx*^{Y/Y64H} groups (x 4 variables), and between the *Amelx*^{WT} and *Amelx*^{Y/64H/Y64H} groups (x 4 variables). For example, the *Amelx*^{WT} incisors *surface-area* (14.375mm²) and *volume* (5.373mm³) were the largest, and the *Amelx*^{Y/Y64H} incisors *surface-area* (11.344mm²) and *volume* (4.320mm³) were the smallest; the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} incisors were of intermediate size. There were no significant differences between the *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H} groups, between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H} groups, between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H} groups, between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} and *Amelx*^{Y/Y64H/Y64H} and *Amelx*^{Y/Y64H/Y64H} and *Amelx*^{Y/Y64H/Y}

Uncorrected significant differences ($p \le 0.05$) occurred in twenty two of the thirty (73%) incisor variables between the $Amelx^{WT}$ and $Amelx^{X/Y64H}$ groups (x 10 variables), between the $Amelx^{WT}$ and $Amelx^{Y/Y64H}$ groups (x 15 variables), and between the $Amelx^{WT}$ and $Amelx^{Y64H/Y64H}$ groups (x 21 variables).

5.3.3. Enam Experimental Comparison

This section details one example variable from each of the multiple *Enam* experimental group comparisons for brevity. The full data is recorded in Appendix 3. Tables 23-39.

5.3.3.1. Enam 2D Mandible Measurement:

Table 22. Statistics Enam left mandible buccal view overall-length

HEMI-MANDIBLES	ΑΝΟΥΑ									MINTER COMPARISON						
MEASUREMENT			n SD	SE	95% CI of Mean		1		F	- Sig.	GROUPS	MD		95% CI		, 1
VIEW/ ASPECT VARIABLE	GROUP	Mean			lower upper	min'	max	SE					lower	upper	r Sig.	
		1	<u>;</u>	1	bound	bound								bound	bound	
,	WT	12.138	0.465	0.208	11.561	12.714	11,716	12.85	ł		WT-HOMO	0.089		-0.616	0.794	0.940
LEFT BUCCAL ; overall-length (mm)	номо	12.049	0.438	0.196	11.505	12.592	11.470	12.457	0.167 0,848	0,848	WT-HET 0.152 HOMO-HET 0.063	0.152	0.264	-0.553	0.857	0,836
· · · · · · · · · · · · · · · · · · ·	HET	11.986	0.341	0.153	11.562	12.409	11.687	12,560					-0.642	0.768	0.969	

There were no statistically significant differences (p < 0.002) in mandible variables between any of the three *Enam* groups (Appendix 3. Tables 23-26.). No follow up post hoc multiple comparisons were implemented. However, the *Enam*^{WT} group appeared to have the largest mandibles, followed in descending order of size by the *Enam*^{Rgsc395} *heterozygous* and the *Enam*^{Rgsc395} *homozygous* mandibles, e.g. *overall-length Enam*^{WT} (12.138 mm), *Enam*^{Rgsc395} *homozygous* (12.049 mm) and *Enam*^{Rgsc395} *heterozygous* (11.986 mm).

5.3.3.2. Enam 2D Incisor Measurement:

Table 23. Statistics Enam left 2D incisor buccal view overall-length

MANDIBULAR		pr 1														
VIEW/ ASPECT MEA SUREMENT VARIABLE		GROUP	Mean	SD	SE	95% CI lower	of Mean upper	nin'	max	F	Sìg.	GROUPS	MD	SE lower	CI	Sig.
LEFT BUCCAL ove	rall-length (mm)	WT HOMO HET	9.705 9.481 9.652	0.406	0.182 0.141 0.165	9.201 9.089 9.195	10.210 9.872	9.186 9.136 9.086	10.244 9.926 10.032	0.516	0.609	WT-HOMO WT-HET HOMO-HET	0.225 0.054 -0.171	-0.391 0.231 -0.562 -0.787	0.841 0.670 0.445	0.607 0.971 0.745

There were no significant differences (p < 0.002) in incisor variables between any of the three *Enam* groups (Appendix 3. Tables 27-28.). No follow up post hoc multiple comparisons were implemented. However, there were uncorrected significant differences (p \leq 0.05) identified in the *angle-of-curvature* variable between the *Enam*^{WT} and *Enam*^{Rgsc395} *heterozygous* groups (x 3 variables). In accordance with the PCA, the *angle-of-curvature* showed that the *Enam*^{WT} (128.688°) incisors were the largest, followed in descending order of size by the *Enam*^{Rgsc395} *heterozygous* (128.715) and the *Enam*^{Rgsc395} *heterozygous* (130.808°) incisors.

5.3.3.3. Enam Colour and Whiteness Assessment:

Table 24. Statistics Enam left gingival region lightness

MANDIBULAR INCISORS				ANOVA															
· • ·							95% CI of Mean			[mobili		95% CI		. 1		
SIDE	STAGE COMPONENT	GROUP	Mean SD		SE	lower	upper	upper min'		F Sig.		GROUPS	MD	SE	lower	upper	Sig.		
·	;	•	WT	59.602	7.387	3.304	50.429	68,775	46.520	63.810	1		WT-HOMO	26.596		13.473	39.719	0.000**	
ELEFT -	GINGIVAL/ SECRETORY	CRETORY lightness	/AL/ IORY lightness	номо	33.006	9.865	4.412	20.757	45.255	20.391	43.139	.139 16.390 0.000		WT-HET	21,320	4.919	8.197	34.444	0.000**
i			HET	38.281	5.439	2.432	31.528	45.035	34.818	47.834	1		HOMO-HET	-5.275		-18.399	7,848	0,548	

* Bonferroni corrected Significant Difference ($p \le 0.002$). ** Significant Difference ($p \le 0.05$).

Bonferroni corrected significant differences ($p \le 0.002$) in nine of the thirty two (28%) variables identified colour and whiteness variation between one and more of the three *Enam* groups (Appendix 3. Tables 29-36.). The post hoc multiple comparisons indicated that the significant differences ($p \le 0.05$) occurred in the *lightness*, *yellow/ blue* and *whiteness* colour components, predominately in the *incisal* and *whole* regions; between the *Enam*^{WT} and *Enam*^{Rgsc395} homozygous (x 9 components) and the *Enam*^{WT} and *Enam*^{Rgsc395} heterozygous (x 9 components) differences identified between the *Enam*^{Rgsc395} homozygous and *Enam*^{Rgsc395} heterozygous groups.

Uncorrected significant differences ($p \le 0.05$) occurred in thirteen of the thirty two (41%) colour and whiteness variables between the $Enam^{WT}$ and $Enam^{Rgsc395}$ homozygous (x 12 components) and between the $Enam^{WT}$ and $Enam^{Rgsc395}$ heterozygous groups (x 13 components), most notably in the additional *middle* enamel surface region.

The enamel surface constituted: gingival region lightness (33.006 - 59.602), green (-3.202 - 0.380), yellow (4.336 - 7.064) and whiteness (50.204-70.158); middle region lightness (42.079 - 47.467), green (-3.058 - -1.858), yellow (0.392 - 6.638) and whiteness (55.944 - 63.408); incisal region lightness (42.773 - 48.884), green (-4.326 - 2.114), yellow /blue (-3.020 - 14.120) and whiteness (8.948 - 114.262); whole region lightness (41.097 - 44.432), green (-3.176 - 1.580), yellow (1.594 - 8.150) and whiteness (46.550 - 88.236). Lightness and whiteness values were higher than yellow/ blue values in all regions.

The significant differences that were observed between the $Enam^{WT}$ group and the two mutant groups occurred specifically in the *lightness*, *yellow/ blue* and *whiteness* colour components in the *middle*, *incisal* and *whole* enamel surface regions.

5.3.3.4. Enam 3D Incisor Measurement

MANDIBULAR INCISORS	1														
	i	MULTIPLE COMPARISON													
MEASUREMENT			í	95% CI	of Mean								95%	5 CI	
VIEW/ ASPECT VARIABLE	GROUP	iean SI	SE SE	lower	upper	min'	max	F	Sig.	GROUPS	MD	SE	lower	upper	Sig.
			1	bound	bound								bound	bound	
	WT 9.	777 0.6	5 0.302	8.940	10.615	9.118	10.847			WT-HET	0.703		-0.280	1.686	0.178
LEFT BUCCAL projected overall-length (mm)	HOMO 9,074	.074 0.6	0 0.277	8.304	9.843	8.070	9.490	5,525	0.023	WT-НОМО	1.187	0.368	0,204	2.170	0.019
· · · · · · · · · · · · · · · · · · ·	HET 8.	.590 0.4	3 0.189	8.065	9.115	8.099	9,261			нет-номо	0.484		-0.499	1.467	0.415

Table 25. Statistics Enam left 3D incisor buccal view projected overall-length

Bonferroni corrected significant differences ($p \le 0.002$) in the *overall-length* variable identified morphological variation between one and more of the three *Enam* groups (Appendix 3. Tables 37-39.). The post hoc multiple comparisons indicated that the significant differences ($p \le 0.05$) occurred between the *Enam*^{WT} and *Enam*^{Rgsc395} heterozygous groups and between the *Enam*^{Rgsc395} heterozygous groups. For example, the projected overall-length showed the *Enam*^{WT} (9.777mm) incisors were largest, followed in descending order of size by the *Enam*^{Rgsc395} homozygous (9.074mm), and the *Enam*^{Rgsc395} heterozygous (8.590mm) incisors.

Uncorrected significant differences ($p \le 0.05$) occurred in twelve of the fifteen (80%) incisor variables between the $Enam^{WT}$ and $Enam^{Rgsc395}$ heterozygous groups (x12 variables), between the $Enam^{WT}$ and $Enam^{Rgsc395}$ homozygous groups (x1 variable) and between the $Enam^{Rgsc395}$ heterozygous and $Enam^{Rgsc395}$ homozygous groups (x1 variable).

5.3.4. Amelx and Enam 3D Surface Analysis

The *surface-roughness* measured one individual incisor from each genotype group, so no group averages were obtained (Table 26. and Appendix 3. Table 40.).

Table 26. 3D Surface Analysis

	MANDIBULA	AR INCISORS	GROUP(n = 1)									
Second A	MEASUREMENT	PECIONI STACE	1	An	nelx	Enam						
	VARIABLE	REGION STAGE	WILD-TYPE	HETEROZYGOUS	HEMIZYGOUS	HOMOZYGOUS	WILD-TYPE	HETEROZYGOUS	HOMOZYGOUS			
		gingival/pre-secretory	2.000	1,900	1,500	2.000	2.800	2.400	1.900			
1	surface-roughness (µm)	middle/ secretory	3.200	2.100	1,900	2.300	3.600	2.800	2.300			
l		incisal/ mature	5,400	2,300	2.100	3.400	5.100	3,500	4.200			

Each value was a single measurement. No statistical analysis performed.

Amelx^{WT} and *Enam*^{WT} had similar and higher *surface-roughness* values compared to their respective mutant groups. In all groups the *surface-roughness* value increased from the *gingival*, *middle* through to the *incisal* enamel surface regions.

5.3.5. Summary

The 2D IAS mandible morphometry identified significant differences between the $Amelx^{WT}$ and $Amelx^{Y64H/Y64H}$ groups, but not between any of the *Enam* groups; the $Amelx^{WT}$ mandibles were the largest followed in descending order of size by the $Amelx^{X/Y64H}$, $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ mandibles.

The 2D IAS incisor morphometry identified significant differences between the $Amelx^{WT}$ and $Amelx^{Y/Y64H}$ groups, between the $Amelx^{WT}$ and $Amelx^{Y64H/Y64H}$ groups, between the $Amelx^{X/Y64H}$ and $Amelx^{Y64H/Y64H}$ groups, and between the $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ groups; the $Amelx^{WT}$ incisors were the largest followed in descending order of size by the $Amelx^{X/Y64H}$, $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ incisors. The 2D IAS incisor morphometry identified significant differences between the $Enam^{WT}$ and $Enam^{Rgsc395}$ heterozygous groups; the $Enam^{WT}$ incisors were the largest followed in descending order of size by the $Amelx^{WT}$ incisors were the largest followed in descending order of size by the $Enam^{Rgsc395}$ heterozygous groups; the $Enam^{WT}$ incisors were the largest followed in descending order of size by the $Enam^{Rgsc395}$ heterozygous and the $Enam^{Rgsc395}$ heterozygous incisors.

The colour and whiteness assessment indicated significant differences between the *Amelx*^{WT} group and all three of the *Amelx* mutant groups, and between the *Enam*^{WT} and *Enam*^{Rgsc395} *heterozygous* groups and between the *Enam*^{WT} and *Enam*^{Rgsc395} *homozygous* groups. The *Amelx*^{WT} and *Enam*^{WT} groups constituted low *lightness*, high *yellow/ blue* and low *whiteness* colour components, whereas the mutants groups constituted high *lightness*, low *yellow/ blue* and high *whiteness* colour components. The site of these significant differences varied between the *Amelx* groups and the *Enam* groups; in the *Amelx* incisors the differences were identified in the *incisal* and *whole* regions, while in the *Enam* incisors the differences were identified in the *middle*, *incisal* and *whole* regions.

The 3D IAS incisor morphometry identified significant differences between the $Amelx^{WT}$ and $Amelx^{X/Y64H}$, between the $Amelx^{WT}$ and $Amelx^{Y/Y64H}$ and between the $Amelx^{WT}$ and $Amelx^{Y64H/Y64H}$ groups; the $Amelx^{WT}$ incisors were the largest, the $Amelx^{Y64H/Y64H}$ incisors were the smallest and the $Amelx^{X/Y64H}$ incisors were of an intermediate size. Also, the 3D IAS incisor morphometry identified significant differences between the $Enam^{WT}$ and $Enam^{Rgsc395}$ heterozygous groups, between the $Enam^{WT}$ and $Enam^{Rgsc395}$ homozygous groups and between the $Enam^{WT}$ incisors were the morphometry identified significant differences between the $Enam^{WT}$ and $Enam^{Rgsc395}$ homozygous groups and between the $Enam^{WT}$ incisors were the morphometry identified significant $Enam^{Rgsc395}$ homozygous groups and between the $Enam^{WT}$ incisors were $Enam^{WT}$ incisors were $Enam^{WT}$ incisors were $Enam^{WT}$ incisors were $Enam^{WT}$ incisors we

200

largest and the *Enam*^{Rgsc395} *heterozygous* incisors were the smallest. The 3D IAS identified significant differences between the *Amelx*^{WT} controls and all three mutant groups only.

The incisor enamel *surface-roughness* values were higher in the *Amelx*^{WT} and in the *Enam*^{WT} controls compared to their respective mutant groups. The *surface-roughness* values increased through the *gingival*, *middle* and *incisal* enamel surface regions.

5.3.6. Impact on Null-Hypotheses

In the *Amelx* experimental group comparisons, the null hypotheses were rejected because all the methods identified significant differences between the control and the mutant groups.

In the *Enam* experimental group comparisons, the null hypotheses were rejected because all the methods identified significant differences between the control and the mutant groups, except in the 2D IAS mandible morphology.

6. DISCUSSION

6.1. METHOD DEVELOPMENT, RELIABILITY AND VALIDATION	
6.1.1. Introduction	203
6.1.2. Morphological Measurement	
6.1.3. Principal Component Analysis	
6.1.4. Colour and Whiteness Assessment	
6.1.5. Summary	205
6.2. EXPERIMENTAL COMPARISONS	206
6.2.1. Introduction	206
6.2.2. Amelx Experimental Comparison	206
6.2.3 Amelx Summary	
6.2.4. Enam Experimental Comparison	
6.2.5. Enam Summary	219
6.2.6. Amelx and Enam Summary	220
<i>2</i>	

6.1. METHOD DEVELOPMENT, RELIABILITY AND VALIDATION

6.1.1 Introduction

The development of the materials and methods involved considerable personal and departmental input, and hardware and software customisation to suit the experimental phenotype to genotype comparison. All methods provided practical, objective and quantitative analysis of mouse mandibles and incisors with low levels of experimental and systematic error (Donner and Eliasziw, 1987), high levels of operator consistency (Fleiss, 1986a, 1986b) and high levels of method agreement (Bland and Altman, 1986, 1999).

6.1.2. Morphological Measurement

The 2D morphometric methods were more reliable than the previous direct manual measurement methods (Moorees *et al.*, 1957; Hillson *et al.*, 2005) and equalled the substantial to excellent reliability of the gold standard in 2D clinical image analysis (Brook *et al.*, 2005; Brook *et al.*, 2007; Smith *et al.*, 2009b). The novel murine application benefitted from a macro-lens modification and highly standardised orientation, magnification and illumination conditions. Intra-operator repeatability was higher than inter-operator reproducibility, as would be expected (Harris and Smith, 2009).

The original concept of the 3D IAS was to exploit the recent advances in 3D technologies (Hajeer *et al.*, 2004) and to provide a small mammalian tooth imaging tool that could be applied to the molecular model of choice for human dental disease (Qui, 2006; Fleishmannova *et al.*, 2008). The NCSP device was modified with a novel rotary stage designed to be largely automated but versatile, e.g. the stage was removable so the system could be switched between human and murine tooth analysis. The equipment was successfully adapted to obtain multiple 3D images from multiple angles in 360° with less measurement error than other clinically acceptable 3D systems e.g. Santoro *et al.*, (2003), Quimby *et al.*, (2004) and Stevens *et al.*, (2006). The novel method of image indexing was introduced to reconstruct the 3D models and the powerful analytical software realised the full potential of the new system with actual on surface measurement variables that accounted for the 3D topographical contours of the tooth surface.
The resolution of the new 3D macro-metric structure and 3D micro-metric surface analysis system on the mineralised dental tissues compared well with the laser scanning method of Halazonetis *et al.*, (2001), and required less specimen preparation than confocal microscopy (Evans *et al.*, 2001). The high systematic resolution (1.0 μ m) provided enhanced discriminatory powers over other techniques e.g. Apuzzo *et al.*, (2006) and gave excellent economy compared to X-ray μ CT (Rowe *et al.*, 2001; Kim *et al.*, 2007).

The 2D IAS was proven to be a highly reliable method suitable for validating the 3D IAS (Rodgers and Nicewander, 1988). In the 2D and 3D IAS the multiple independent intraoperator repeatability tested total system error (including experimental error and systematic error), which was often overlooked in the literature (Harris and Smith, 2009). The 2D IAS and 3D IAS were complementary and showed significant method agreement and measurement correlations. The 3D IAS incisor morphometry was validated with excellent reliability and could be used interchangeably with the 2D IAS. However, the limitation of a small sample population (n = 1) for the *surface-roughness* assessment was recognised and will form part of the Future Work.

6.1.3. Principal Component Analysis

The Principal Component Analysis defined mandible and incisor morphology and revealed a number of interesting size relationships with biomechanical implications, e.g. the *mandible*-*angle* variable and the incisor *angle-of-curvature* variable were inversely proportional to mandible and incisor size respectively. The variables with the highest reliability scores (e.g. the incisor *width-at-midpoint*) also accounted for the majority of the morphological variation, which will strengthen the experimental interpretation.

6.1.4. Colour and Whiteness Assessment

The colour and whiteness assessment contained a highly novel software algorithm designed and developed in-house to calculate international standard CIE LAB and WI colour space values (Joiner, 2004; Wee *et al.*, 2006). The bespoke method was a great improvement compared to the conventional methods used in human studies, e.g. shade guides (Paul *et al.*, 2002), spectrophotometers (Guan *et al.*, 2005) and colourimeters (Khurana *et al.*, 2007). The predominantly excellent reliability exceeded that of any existing methods apparent in the literature (Joiner *et al.*, 2008) and compared well with the translated human application that was validated during clinical trials (Smith *et al.*, 2008a). The method was especially sensitive and selective as it quantified tooth colour and whiteness in three separate surface regions that corresponded to three stages of enamel developmental, reaching beyond the limitations of the more subjective descriptions (Smith and Warshawsky, 1975, 1976; Robinson *et al.*, 1983).

6.1.5. Summary

All four measurement methods showed predominantly excellent reliability. The modified 2D IAS, the novel colour and whiteness assessment and the novel 3D IAS greatly extended the measurement capacity for the comparative experimental investigation. A combination of established parameters and new morphometric variables delivered a more comprehensive repertoire for objective and quantitative macro-metric and micro-metric dental phenotyping. These unique biometric methods enabled innovative novel ways of empirically exploring anatomical growth, biological development and organic mineralisation in the mouse model.

6.2. EXPERIMENTAL COMPARISONS

6.2.1 Introduction

The 2D IAS mandible and incisor morphology, incisor enamel colour and whiteness assessment and 3D IAS incisor morphometry and surface assessment will be discussed in terms of the separate *Amelx* and *Enam* experimental comparisons.

6.2.2. Amelx Experimental Comparison

The *Amelx*^{WT} group displayed normal mandible and incisor morphology (Gaunt, 1964; Atchley *et al.*, 1985; Bailey, 1985) with typical enamel deposition, thickness and colour distribution (Hay, 1961; Moinchen *et al.*, 1996). The *Amelx*^{Y64H/Y64H} and *Amelx*^{Y/Y64H} groups were most affected, displaying slightly dysmorphic mandibles and severely pathological incisor enamel (Gibson *et al.*, 2001, 2007, Wright *et al.*, 2009). The *Amelx*^{X/Y64H} group incisors were mildly affected (Figure 74.).

(A) $Amelx^{WT}$; (B) $Amelx^{X/Y64H}$; (C) $Amelx^{Y/Y64H}$; (D) $Amelx^{Y64H/Y64H}$. Scale = 10.0mm.

In humans, the P \rightarrow T mutation in the conserved tri-tyrosyl motif of amelogenin N-terminus underlies a unique but consistent AI phenotype (Collier *et al.*, 1997; Hart *et al.*, 2000; Ravassipour *et al.*, 2000; Wright *et al.*, 2003). The murine *Amelx* Y64H mutation within the same tri-tyrosyl motif was recently shown to result in hypomineralised enamel in the *Amelx*^{X/Y64H} group and result in severely hypoplastic enamel in the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups (Barron *et al.*, 2010). The significant differences observed here between the *Amelx*^{WT} and *Amelx*^{X/Y64H} groups, between the *Amelx*^{WT} and *Amelx*^{Y/Y64H} groups and between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups, suggested that the amelogenin protein was involved in mandible and incisor morphological development, as well as enamel mineralisation.

Amelogenin has been shown to be expressed in various developing tissues (Hu *et al.*, 2006), including the dental supporting tissues (Deutsch *et al.*, 2006). The significant differences observed here (e.g. *mandible-angle*) between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups, and between the *Amelx*^{X/Y64H} and *Amelx*^{Y64H/Y64H} groups, suggested that the amelogenin protein was involved in mandible morphological development. These results were consistent with the involvement of the amelogenin protein in alveolar bone formation and remodelling (Haze *et al.*, 2007), and supported amelogenin's multifunctional role in the craniofacial-complex (Gruenbaum-Cohen *et al.*, 2008).

Amelogenin functions during enamel structural organisation (Robinson *et al.*, 1981a, 1983). Full length amelogenin localised to early prism cores was present in secretory stage enamel ECM deposits (Deutsch, 1989; Robinson *et al.*, 1989). The *Amelx*^{WT} mice expressed a functional *Amelx* gene (Hu *et al.*, 2001b), which led to the secretion of a full length amelogenin (Gibson *et al.*, 2005) and was essential for generating full thickness correctly mineralised enamel (Gibson *et al.*, 2001, 2007, 2009). The *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups expressed only the *Amelx* Y64H mutation containing allele (Masuya *et al.*, 2005), which led to the absence of full length amelogenin in the secretory stage enamel ECM extracts and was shown to be the primary causality of aberrant enamel mineralisation (Barron *et al.*, 2010). The significant differences in incisor morphology observed here (e.g. *incisorperimeter*) between the *Amelx*^{WT} and *Amelx*^{Y/64H/Y64H} groups, between the *Amelx*^{WT} and *Amelx*^{Y/Y64H} and between the *Amelx*^{WT} and *Amelx*^{Y64H/Y64H} groups, supported the involvement of the amelogenin protein in incisor morphological development. Biochemical and histological analysis showed the ameloblast cells of the affected $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ mice contain engorged cellular organelles with large accumulations of the truncated Y64H amelogenin (Barron *et al.*, 2010). This considerable intracellular protein retention suggested that the Y64H mutation caused the impaired secretion of a truncated Y64H amelogenin protein and that the subsequent loss of amelogenin function disrupted enamel mineralisation (Barron *et al.*, 2010). The failure to successfully traffic and secrete amelogenin down the usual pathways into the enamel ECM was proposed to be a key mechanistic factor underpinning the aberrant incisor morphology and enamel mineralisation of AIH1.

Amelogenin interacts directly with the ameloblastin protein through its tri-tyrosyl motif (Ravindranath *et al.*, 1999, 2003; Wright *et al.*, 2003). The two proteins are proposed to share a common secretory pathway (Zalzal *et al.*, 2008) and they potentially function by way of synergistic interactions (Hatakeyama *et al.*, 2009). The enamel hypoplasia of the affected $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ mutant mice had a similar pathology to the ameloblastin mutant mice that expressed a truncated ameloblastin variant (Fukumoto *et al.*, 2004; Smith *et al.*, 2009c; Wazen *et al.*, 2009). Therefore, enamel defects involving ameloblastin secretion and function may rely on similar protein-protein interactions that were compromised in the presence of the Y64H mutant amelogenin, e.g. Y64H amelogenin-ameloblastin interactions that regulate correct nanosphere self-assembly (Fincham *et al.*, 1995; Paine *et al.*, 2002) may have resulted in the structurally abnormal protein complexes that were not appropriately trafficked prior to secretion (Barron *et al.*, 2010).

Furthermore, abnormal amelogenin-ameloblastin interactions may be only a part of the pathology of impaired Y64H amelogenin secretion as it has also been proposed that cytokeratin protein-protein interactions at the dentino-enamel junction (Ravindranath *et al.*, 1999; Wright, 2006) may also be important in amelogenin protein chaperoning, trafficking and secretory processes (Ravindranath *et al.*, 2003, 2004) that may have been affected in the presence of the Y64H amelogenin variant (Barron *et al.*, 2010). This has led to the suggestion that the actual mechanism responsible for AI may be related to amelogenin cell binding activity and cell signalling functions, but also the cell proliferation functions of ameloblastin (Gibson *et al.*, 2007, 2009).

208

The significant differences in incisor morphometry observed here (e.g. *overall-length*) between the *Amelx*^{YY64H} and *Amelx*^{Y64H/Y64H} groups and between the *Amelx*^{X/Y64H} and *Amelx*^{Y64H/Y64H} groups was not readily explained by the expression of the single *Amelx* mutation containing allele in the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups, which would have been expected to have produced more similar incisor morphology in the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups than was observed in the *Amelx*^{WT} and *Amelx*^{X/Y64H} that showed no significant differences. However, the similar incisor morphology in the *Amelx*^{X/Y64H} and *Amelx*^{X/Y64H} groups and the significant differences between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} groups indicated that the *Amelx*^{X/Y64H} incisors were of an intermediate size. The significant colour and whiteness differences observed between the *Amelx*^{X/Y64H} and *Amelx*^{Y/Y64H} groups and between the *Amelx*^{X/Y64H} groups (e.g. *incisal* region *lightness* colour component) provided further evidence that the *Amelx*^{X/Y64H} group had an intermediate enamel phenotype.

The *Amelx*^{X/Y64H} females displayed mildly affected enamel hypomineralisation because of a mosaic pattern of expression of both the normal functional *Amelx* gene and the Y64H mutation containing *Amelx* allele reflecting the lyonisation hypotheses (Lyon, 1961) of X-chromosomal inactivation (Huynh and Lee, 2005). Clusters of ameloblasts alternately expressed either the normal gene or the mutant allele and secreted either the functional or defective amelogenin protein (Witkop, 1967; Gibson *et al.*, 2001). Therefore, it was proposed that both the full length amelogenin and the partial secretion of the truncated Y64H amelogenin may have contributed to the more normal and more affected intermediate morphology and enamel mineralisation observed in the *Amelx*^{X/Y64H} incisors. The 2D and 3D incisor morphology and colour and whiteness assessment presented here strongly supported the *Amelx*^{X/Y64H} group intermediate phenotype.

The significant colour and whiteness differences that were observed between the $Amelx^{WT}$ and $Amelx^{X/Y64H}$ groups, between the $Amelx^{WT}$ and $Amelx^{Y/Y64H}$ and between the $Amelx^{WT}$ and $Amelx^{Y64H/Y64H}$ groups, occurred specifically in the *lightness*, *yellow/ blue* and *whiteness* colour components in the *incisal* and *whole* enamel surface regions. The *incisal* region represented the *secretory* stage and the *whole* region represented all three developmental stages of enamel formation (Smith and Warshawsky, 1975, 1976; Smith and Nanci, 1989). The $Amelx^{WT}$ incisors were smooth with typically distributed enamel composed of low *lightness*, high *yellow/ blue* and low *whiteness* colour components that were consistent with

normal intact enamel containing iron pigment (Halse, 1972). In contrast, the $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ incisor enamel was rough where present and was composed of high *lightness*, low *yellow/ blue* and high *whiteness* colour components, which had the most severely affected and similar enamel phenotypes, e.g. the high *lightness* values in the *incisal* region.

This discolouration was consistent with the presence of aberrantly mineralised enamel and the absence of correctly mineralised enamel, comparable to that observed in humans with similar gene mutations (Witkop and Sauk, 1976; Collier *et al.*, 1997; Ravassipour *et al.*, 2000; Hart *et al.*, 2000; Wright *et al.*, 2003). The presence of normal intact enamel in the $Amelx^{WT}$ incisors, of hypomineralised enamel in the $Amelx^{X/Y64H}$ incisors, and hypoplastic enamel in the $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ mutant incisors provided further evidence of the important role of amelogenin in enamel mineralisation.

The significant incisor morphological differences in the 3D surface-area and volume variables supported the 2D incisor morphometry that also showed the $Amelx^{WT}$ group had the largest incisors and the $Amelx^{Y64H/Y64H}$ group had smallest incisors (Figure 75.).

Figure 75. Amelx Phenotype Comparison - 3D IAS Incisor Morphology and surfaceroughness Analysis

(A) Amelx^{WT}; (B) Amelx^{X/Y64H}; (C) Amelx^{Y/Y64H}; (D) Amelx^{Y64H/Y64H}; (1) incisal; (2) middle; (3) gingival enamel surface regions. Rectangles = 200x500μm. No scale.

The 3D IAS presents the first report of a 3D micro-metric surface analysis of murine enamel using NCSP technology and the ISO Ra standard measurement (Figure 75.). In the *Amelx*^{WT} group the incisor enamel *surface-roughness* increases through the *gingival*, *middle* and *incisal* surface regions that represent the progressive developmental stages of enamel mineralisation. This contrasts with the diminishing surface roughness that would be expected

from a loss of organic matrix and the increasingly smooth crystal surface morphology as revealed by Atomic Force Microscopy (Kirkham *et al.*, 1998). Nevertheless, the increasing *surface-roughness* observed in all the affected *Amelx*^{X/Y64H}, *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} incisors is consistent with the presence of pathological enamel. As mutations that lead to defective ECM processing are thought to impair enamel mineral initiation, fusion, and crystal growth leading to short mineral segments in hypoplastic AI or abnormally large crystals in hypomature AI (Robinson *et al.*, 2003).

The areas of missing enamel in the $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ groups make it difficult to carry out meaningful enamel thickness measurements on severely affected incisors. However, TMR images demonstrate significantly reduced enamel mineral content in the $Amelx^{X/Y64H}$ group incisors (Barron *et al.*, 2010) and are supported by the nano-CT images of unerupted incisors in the $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ groups (Myers *et al.*, 2009).

The 3D IAS incisor morphology presented here identifies significant differences between the *Amelx*^{WT} group and between each of the individual mutant groups. In contrast to the 2D IAS, the 3D IAS identifies significant differences between the *Amelx*^{WT} and *Amelx*^{X/Y64H} groups, while showing no significant differences between the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} groups. This suggests that the novel 3D IAS is particularly sensitive in detecting differences in incisor morphology and is more representative of the actual phenotype. The 3D IAS more accurately differentiated between the different phenotypes of the different genotype groups than the 2D IAS equivalent. The 3D IAS was well suited to the mouse incisor application.

The 2D IAS incisor morphology and colour and whiteness assessment findings and the 3D IAS incisor morphology and surface analysis findings were complementary and supported one another respectively. The new 3D IAS provided further morphological and topographical information that improved sensitivity in detecting the subtle morphological differences between the more affected and more unaffected *Amelx* mice incisors, e.g. the new actual *surface-area* and *volume* variables that measure the 360° of tooth bulk and enamel deposition.

The phenotype comparison presented here quantitatively supported the effect of amelogenin on enamel mineralisation in a mouse model of AIH1.

6. Discussion

6.2.3. Amelx Summary

The significant differences observed between the wild-type and the mutant groups identified abnormal mandible morphology, incisor morphology and colour and whiteness in the mutant groups. This may be directly attributed to the loss of amelogenin protein function caused by the Y64H mutation.

The significant differences between the normal $Amelx^{WT}$ control mandibles and the abnormal $Amelx^{Y64H/Y64H}$ mutant mandibles supported a role for amelogenin in mandible development. The significant phenotype deviation in the mandible and incisor morphology and in the incisor colour and whiteness between the normal $Amelx^{WT}$ controls and the severely abnormal Amelx mutants was evidence both of the important role of amelogenin in development and of the pathological effects of mutations in the gene. Thus, the abnormal morphology exhibited in the Amelx mutant mandibles and incisors was directly attributed to the Y64H mutation. The aberrant mineralisation and apparent absence of enamel in the Amelx mutant incisors, particularly in the *incisal* region, was not the result of post-eruptive breakdown but was primarily a developmental defect related to the Amelx gene Y64H mutation that led to the disruption of the amelogenin protein function, leading to the enamel defects. The results demonstrate that amelogenin affects mandible and incisor morphology - reflecting enamel quantity, growth and development - and also that amelogenin affected enamel colour and whiteness - reflecting enamel quality and mineralisation.

The significant deviations between the enamel phenotypes of control and mutant animal groups presented here, along with recently published parallel findings (Barron *et al.*, 2010), infer that the failed secretion and the loss of function of the Y64H amelogenin protein may be the causative mechanism underpinning the dysplastic enamel mineralisation observed. These studies demonstrate that the mutation of the amelogenin gene was the outstanding factor in the pathogenesis of AIH1.

6.2.4. Enam Experimental Comparison

The *Enam*^{WT} group displayed normal mandible morphology (Gaunt, 1964; Atchley *et al.*, 1985; Bailey, 1985) and incisors with typical enamel deposition, thickness and colour distribution (Hay, 1961; Moinchen *et al.*, 1996). The *Enam*^{*Rgsc395} <i>heterozygous* and *homozygous* groups both displayed severely affected pathological incisor enamel (Masuya *et al.*, 2005; Seedorf *et al.*, 2007; Hu *et al.*, 2008; Smith *et al.*, 2009c; Wright *et al.*, 2009) (Figure 76.).</sup>

Figure 76. Enam Phenotype Comparison - 2D IAS Mandible Measurement, Incisor Measurement and Colour and Whiteness Assessment

(A) Enam^{WT}; (B) Enam^{Rgsc395} heterozygous; (C) Enam^{Rgsc395} homozygous. Scale = 10.0mm.

In humans, *ENAM* mutations cause autosomal dominant AI (Rajpar *et al.*, 2001; Kida *et al.*, 2001; Mardh *et al.*, 2002; Hart *et al.*, 2003a, 2003b; Kim *et al.*, 2005b) and show haploinsufficiency (Hu and Yamakoshi, 2003; Ozdemir *et al.*, 2005). In mouse models of AI, the *Enam* gene mutations in similar sequences reflected this dose effect in the hypoplastic enamel of the *Enam*^{*Rgsc395}</sup> <i>heterozygous* and *homozygous* mice (Matsuya *et al.*, 2005) and in the enamel agenesis of the *Enam*-null mice (Seedorf *et al.*, 2007; Hu *et al.*, 2008; Smith *et al.*, 2009c; Wright *et al.*, 2009). The significant differences in incisor morphology and colour and whiteness between the *Enam*^{WT} and *Enam*^{Rgsc395} *homozygous* and between the *Enam*^{WT} and</sup>

Enam^{Rgsc395} *heterozygous* suggested that the enamelin protein was involved in incisor morphological development, as well as enamel mineralisation.

There were no statistically significant differences between the three *Enam* group mandibles. This suggested that the enamelin protein had no effect on mandible morphology in contrast to *Amelx*. However, the significant differences in incisor morphology observed here suggested that the *Enam*^{WT} incisors were the largest, followed in descending order of size by the *Enam*^{Rgsc395} *homozygous* and *heterozygous* groups, e.g. in the *angle-of-curvature* variable.

The *Enam*^{WT} mice expressed the functional *Enam* gene (Hu *et al.*, 2001b). This led to the secretion of the full length enamelin protein essential for generating full thickness and correctly mineralised enamel (Hay, 1961; Moinchen *et al.*, 1996). The *Enam*^{Rgsc395} *homozygous* and *heterozygous* groups, that expressed the *Enam* S55I mutation containing allele, displayed thin aberrantly mineralised enamel that lacked the full length enamelin and its functionally important processing products (Masuya *et al.*, 2005). Failed secretion and loss of function of a similar truncated enamelin variant was unable to mediate proper enamel mineralisation (Seedorf *et al.*, 2007). The significant differences in incisor morphology observed here between the *Enam*^{WT} and *Enam*^{Rgsc395} *homozygous* groups (e.g. *angle-of-curvature*) and between the *Enam*^{WT} and *Enam*^{Rgsc395} *homozygous* groups (e.g. marked *surface-area*), are compatible with the enamelin protein involvement in incisor morphological development.

The significant colour and whiteness differences that were observed between *Enam*^{WT} and *Enam*^{Rgsc395} *homozygous* groups and between the *Enam*^{Rgsc395} *heterozygous* groups occurred specifically in the *lightness*, *yellow/ blue* and *whiteness* colour components in the *middle*, *incisal* and *whole* enamel surface regions. The *middle* and *incisal* regions represented the *secretory* and *mature* stages, and the *whole* region represented all three developmental stages of enamel formation (Smith and Warshawsky, 1975, 1976; Smith and Nanci, 1989). The *Enam*^{WT} incisor enamel was smooth, normally distributed and demonstrated low *lightness*, high *yellow* and low *whiteness* colour components, consistent with the normal enamel colour containing iron pigment (Halse, 1972). In marked contrast, the *Enam*^{Rgsc395} *homozygous* and *heterozygous* incisor enamel was rough and where present demonstrated high *lightness*, low *yellow* and high *whiteness* colour components. This discolouration was consistent with the presence of aberrantly mineralised enamel and/ or the absence of correctly mineralised

enamel (Masuya *et al.*, 2005). Similar enamel discolouration and severely pathological enamel mineralisation was the result of a similar loss of enamelin protein function in a number of other *Enam* mutant mouse models of AI (Seedorf *et al.*, 2007; Hu *et al.*, 2008; Smith *et al.*, 2009c; Wright *et al.*, 2009). This enamel defect was indicative of localised enamel hypoplasia similar to that observed in humans with similar mutations (Rajpar *et al.*, 2001; Kida *et al.*, 2002; Mardh *et al.*, 2002; Hart *et al.*, 2003a, 2003b; Kim *et al.*, 2005b).

The significant phenotype deviation in incisor morphology and enamel colour and whiteness, between the *Enam*^{WT} control incisors and the enamel in the *Enam*^{Rgsc395} *homozygous* and *heterozygous* mutant incisors, was suggested to be directly attributable to the *Enam* S55I mutation that disrupted the secretion of the truncated enamelin S55I protein and caused the subsequent loss of function. The absence of any significant colour and whiteness differences between the *Enam*^{Rgsc395} *homozygous* and *heterozygous* groups suggested they had similar pathological enamel phenotypes (Figure 77.).

Figure 77. Enam Phenotype Comparison - 3D IAS Incisor Morphology and surfaceroughness Analysis

(A) Enam^{WT}; (B) Enam^{Rgsc395} homozygous; (C) Enam^{Rgsc395} heterozygous; (1) incisal; (2) middle; (3) gingival enamel surface regions. Rectangles = 200x500μm. No scale.

The 3D IAS provided the first report of a 3D micro-metric surface analysis of murine enamel using NCSP technology and the ISO Ra standard measurement (Figure 77.). In the *Enam*^{WT} group the incisor enamel *surface-roughness* increased through the *gingival*, *middle* and *incisal* surface regions that represented the progressive developmental stages of enamel mineralisation. This contrasted with the diminishing surface roughness that would be expected from a loss of organic matrix and the increasingly smooth crystal surface morphology as revealed by Atomic Force Microscopy (Kirkham *et al.*, 1998). Nevertheless, the increasing *surface-roughness* observed in the two affected *Enam*^{Rgsc395} *heterozygous* and *homozygous* incisors is consistent with the presence of pathological enamel, as mutations that lead to defective ECM processing are thought to impair enamel mineral initiation, fusion, and crystal growth leading to short mineral segments in hypoplastic AI (Robinson *et al.*, 2003).

The 2D IAS incisor morphology and colour and whiteness assessment findings and the 3D IAS incisor morphology and surface analysis findings were complementary and supported one another respectively. The new 3D IAS provided further morphological and topographical information that improved sensitivity in detecting the subtle morphological differences between the more affected and less affected *Enam* mice incisors, e.g. the new actual *surface-area* and *volume* variables that measure the 360° of tooth bulk and enamel deposition.

The phenotype comparison presented here quantitatively supported the effect of enamelin on enamel mineralisation in a mouse model of AIH2 that phenocopied AI patients presenting with similar mutations.

6. Discussion

6.2.5. Enam Summary

The significant phenotype variation in incisor morphology and incisor colour and whiteness between the normal $Enam^{WT}$ control group and the severely abnormal Enam mutant groups was indicative of the pathological enamel defect. Enamelin variants and functionally important enamelin processing products were either absent or truncated significantly in *Enam* mutant mice suggesting that the non-functional enamelin S55I was unable to mediate proper enamel mineralisation because of impaired secretion. Failed enamelin secretion was also observed in a number of other *Enam* models that displayed similar severely aberrant enamel mineralisation.

The aberrant incisor morphology and enamel mineralisation, and apparent areas of absent enamel in the *Enam* mutant incisors, particularly in the *middle* and *incisal* regions, was not the result of post-eruptive breakdown but was primarily a developmental defect directly attributed to the *Enam* gene S55I mutation and subsequent disruption to the enamelin protein function. The results demonstrated that enamelin affected incisor morphology - reflecting enamel quantity, growth and development - and also that enamelin affected enamel colour and whiteness - reflecting enamel quality and mineralisation.

The phenotype comparison presented here quantitatively supports the affect of enamelin on enamel mineralisation in a mouse model of AIH2 that phenocopies AI patients presenting with similar mutations. The significant deviations between the enamel phenotypes of control and mutant animal groups suggests that the failed secretion and the loss of function of the enamelin S55I protein was the underpinning mechanism evident in the dysplastic enamel mineralisation observed. The *Enam*^{WT} control group displayed normal intact enamel compared to the *Enam*^{Rgsc395} *homozygous* and *heterozygous* mutant groups that displayed hypoplastic enamel or completely absent enamel indicative of AIH2. The supports the suggestion that enamelin mutations are the outstanding factor in the pathogenesis of AIH2.

6.2.6. Amelx and Enam Summary

The *Amelx*^{WT} and *Enam*^{WT} controls demonstrated normal enamel and the mutant groups were affected.

Significant differences in mandible morphology were observed between the *Amelx* groups but not between the *Enam* groups. This infers that amelogenin affected mandible development but that enamelin did not.

The significant differences in incisor morphology were observed between the *Amelx* groups and also between the *Enam* groups. This infers that both amelogenin and enamelin affected incisor enamel quantity, growth and development.

There were more significant differences between the *Amelx* groups than between the *Enam* groups. This suggested amelogenin had a greater affect on incisor development than enamelin.

The significant differences in enamel discolouration and the differences in enamel surface roughness observed between the *Amelx* groups and between the *Enam* mutant groups suggest that the amelogenin and enamelin proteins affect incisor enamel quality and mineralisation.

The 2D IAS and 3D IAS incisor morphology results were similar and supported one another. The colour and whiteness assessment and 3D IAS surface analysis results were similar and supported one another. There was no statistical support for the *surface-roughness* findings, which will be addressed in the Future Work.

The sites of the significant enamel discolouration were different between the *Amelx* groups and the *Enam* groups: in the *Amelx* incisors the differences were found only in *incisal* and *whole* regions, while in the *Enam* incisors the differences occurred in the *middle*, *incisal* and *whole* regions. The *middle* and *incisal* regions represented the *secretory* and *mature* stages of enamel formation, while the *whole* region represented all three developmental stages of enamel formation. Thus, the significant differences suggested that enamelin mutation affected the *secretory* stage of enamel formation and that amelogenin mutation did not. This implies that enamelin had an earlier, more localised effect on the secretory stage of amelogenesis than amelogenin and supported the regulatory functions of the different ECM proteins during the different stages of enamel growth and formation.

The colour and whiteness assessment differentiated between hypomineralised $Amelx^{X/Y64H}$, hypoplastic $Amelx^{Y/Y64H}$ and $Amelx^{Y64H/Y64H}$ and local hypoplastic $Enam^{Rgsc395}$ homozygous and heterozygous enamel phenotypes. According to the different gene mutation and subsequent protein disruption, the enamel defects were observed in a surface region specific manner that correlated to the distinct developmental stages of enamel formation.

Translating the phenotype observations made here in mice to the human counterpart must be undertaken with caution, with respect to the alternative splicing of amelogenin and the various cleavage products of enamelin that contribute to variable protein function, and also the considerable epigenetic effects within the broader genetic background of the human population.

7. CONCLUSIONS

7.1. METHOD RELIABILITY AND VALIDATION 7.1.1. Summary	
7.2. EXPERIMENTAL COMPARISON	225
7.2.1. Introduction	
7.2.2. Amelx Experimental Comparison	
7.2.3. Enam Experimental Comparison	
7.2.4. Amelx and Enam Summary	228
7.3. IMPACT ON AIMS	229
7.4. IMPACT ON NULL HYPOTHESES	

7.1. METHOD RELIABILITY AND VALIDATION

Four novel measurement methods were successfully applied for murine dental phenotyping; 2D IAS (i) mandible morphology, (ii) incisor morphology (iii) enamel colour and whiteness assessment and (iv) 3D IAS incisor morphology and surface analysis.

The reliability of the 2D IAS mandible and incisor morphology was substantial to excellent. The reliability of the colour and whiteness assessment was predominately excellent. The reliability of the 3D IAS incisor morphology was substantial to excellent.

The 2D IAS and the 3D IAS incisor morphology gave significant method agreement and the 3D IAS was validated by large measurement correlations. Potential experimental and systematic error testing gave highly satisfactory results.

The 2D IAS and 3D IAS could be used with equal validity for incisor morphology.

7.1.1. Summary

In relation to the Aims of this investigation, the 2D IAS and 3D IAS were highly reliable measurement methods that were validated to provide additional morphological information.

These innovations were complementary and provided practical and objective approaches to the quantitative macro-metric and micro-metric characterisation of murine mandible morphology, incisor morphology and enamel mineralisation.

7.2. EXPERIMENTAL COMPARISON

7.2.1. Introduction

In relation to the aims and hypotheses of this investigation, there was significant phenotype variation between the wild-type control mice and the experimental mutant mice. The significant differences in the mandible and incisor morphology and in the colour and whiteness variables demonstrated the effect of the amelogenin protein and the enamelin protein on normal and abnormal enamel mineralisation. In complimentary studies (Barron *et al.*, 2010) the gene mutations were proposed to have truncated their respective protein protein and the loss of function and the observed pathological enamel phenotypes.

The *Amelx*^{WT} and *Enam*^{WT} mice did not contain gene mutations and were unaffected so served as a baseline for the explicit phenotype to genotype correlation of the two models of AI: the *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} mutant mice displayed severely hypoplastic enamel characteristic of AIH1; the *Amelx*^{X/Y64H} mutant mice displayed hypomineralised enamel characteristic of AIH1; the *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* mutant mice displayed hypoplastic enamel characteristic of AIH1; the *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* mutant mice displayed hypoplastic enamel characteristic of AIH1; the *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* mutant mice displayed hypoplastic enamel characteristic of AIH2.

The enamel colour and whiteness phenotypes presented here were representative of enamel mineralisation and were differentiated by specific surface region and developmental stage comparisons.

7.2.2. Amelx

The significant morphological differences between the groups of *Amelx* mice suggested an active role for amelogenin in mandible bone formation and in generating the full thickness of enamel during mandibular incisor development; the unaffected *Amelx*^{WT} mice had the largest mandibles and incisors while the affected *Amelx*^{X/Y64H}, *Amelx*^{Y/Y64H} and *Amelx*^{Y64H/Y64H} mutant mice displayed smaller mandibles and incisors. The observed phenotypes supported the multifunctional role of the amelogenin protein in the development of the craniofacial-complex.

The significant colour and whiteness differences between the groups of *Amelx* mice suggested an essential role for amelogenin in incisor enamel mineralisation; the unaffected *Amelx*^{WT} mice incisors displayed normal smooth enamel in contrast with the affected *Amelx*^{YY64H} and *Amelx*^{Y64H/Y64H} mutant mice incisors that displayed discoloured and rough pathological enamel. The more mildly affected *Amelx*^{XY64H} mutant mice displayed intermediate incisor morphology and incisor enamel phenotype, which reinforced the phenotype to genotype correlation. The phenotype variation in the *incisal* surface region corresponded to a delayed function of amelogenin in the specific *mature* developmental stage of enamel formation. The 3D surface analysis corroborated the presence of abnormal enamel in the *Amelx* mutant mice.

Similar to the known mutational affects of *AMELX* in humans, the *Amelx*^{Y64H/Y64H} and *Amelx*^{Y/Y64H} mouse incisor enamel was hypoplastic and the *Amelx*^{X/Y64H} mouse incisor enamel was hypomineralised and indicative of AIH1.

7.2.3. Enam

The absence of significant difference between the groups of *Enam* mice mandibles suggested the enamelin protein had no role in mandible development. The significant morphological differences between the groups of *Enam* mice incisors suggested a role for the enamelin protein in incisor development; the unaffected *Enam*^{WT} mice had the largest incisors and the affected *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* mutant mice incisors were smaller. The phenotype variation in 2D incisor morphology supported the essential function of the enamelin protein in generating full thickness enamel.

The significant colour and whiteness differences between the *Enam* mice incisors supported the role of enamelin in enamel mineralisation; the *Enam*^{WT} mice incisors displayed normal smooth enamel in contrast with the affected *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* mice incisors that displayed discoloured and rough pathological enamel. The similar aberrant enamel phenotypes in the *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* mice incisors reinforced the phenotype to genotype correlation. The phenotype variation in the *middle* and *incisal* surface regions corresponded to the earlier more localised effect of enamelin in the *secretory* and subsequent *maturational* developmental stages of enamel formation. The 3D surface analysis corroborated the presence of pathological enamel in the *Enam* mutant mice.

Similar to the known mutational affects of *ENAM* in humans, the *Enam*^{Rgsc395} *homozygous* and *Enam*^{Rgsc395} *heterozygous* enamel was hypoplastic and indicative of AIH2.

7.2.4. Amelx and Enam Summary

The study showed that the *Amelx* and *Enam* gene mutations in mice, in similar domains to the *AMELX* and *ENAM* gene mutations in humans, produced comparable enamel defects that served as exploratory models for studying the aetiology of AI; the *Amelx* mutants displayed hypoplastic/ hypomineralised enamel indicative of X-linked AI (AIH1,OMIM301200) and *Enam* mutants displayed local hypoplastic enamel indicative of autosomal dominant AI (AIH2, OMIM104500).

The experimental comparison presented evidence of significant phenotype variation between the controls and the experimental mutants in two relevant mouse models that reflected human AI. The measurement methods correlated the phenotype to the genotype and supported the role of the amelogenin and enamelin proteins in incisor morphological development and enamel mineralisation.

The study successfully linked phenotype with underlying genetic lesion and supported protein-protein secretory interactions proposed to be a pathological mechanism underpinning abnormal enamel formation.

7.3. IMPACT ON AIMS

- i. Four new measurement methods were successfully developed; (i) a 2D image analysis system (IAS) to measure murine mandible morphology, (ii) incisor morphology and (iii) incisor enamel colour and whiteness, and (iv) a 3D IAS to measure incisor morphology and enamel surface structure.
- ii. The novel repertoires of variables were highly reliable and valid.
- **iii.** The 2D IAS and 3D IAS approaches demonstrated complementary practical solutions that facilitated both the macro-metric and micro-metric investigation of the reliability population, with additive 3D IAS information.
- iv. The mandible morphology and incisor morphology represented enamel quantity, growth and development. The colour and whiteness and 3D surface assessment represented enamel quality and mineralisation.
- v. The new measurement methods were used to characterise the two populations of mice with specific gene mutations in the enamel ECM proteins amelogenin (*Amelx*, OMIM300391) and enamelin (*Enam*, OMIM606585). The *Amelx* and *Enam* populations were suitable mouse models of X-linked *Amelogenesis imperfecta* (AIH1, OMIM301200) and autosomal dominant local hypoplastic *Amelogenesis imperfecta* (AIH2, OMIM104500) respectively.
- vi. The wild-type control groups were successfully compared with the experimental mutant groups.
- vii. Significant phenotype differences were indentified in the mandible dimensions and incisor dimensions, and in the colour and whiteness assessment.
- viii. This quantitatively supported the involvement of amelogenin and enamelin in mandible and incisor morphology and enamel mineralisation. The multifunctional role of amelogenin in the development of the craniofacial complex was supported.
 - **ix.** The enamel colour and whiteness assessment successfully differentiated between overlapping phenotypes according to the *Amelx* and *Enam* gene mutations in a surface region specific manner that correlated to the distinct developmental stages of enamel formation.

7.4. IMPACT ON NULL HYPOTHESES

- xiv. The 2D IAS will not be reliable reject
- xv. The colour and whiteness assessment will not be reliable reject
- xvi. The 3D IAS will not be reliable reject
- xvii. The 3D IAS will not be valid reject
- xviii. The mandible and incisor morphometry, and colour and whiteness assessment will not quantify phenotype reject
 - xix. The mandible and incisor morphology will not represent enamel quantity, growth and development reject
 - **xx.** The colour and whiteness and 3D surface assessment will not represent enamel quality and mineralisation reject
 - **xxi.** The control and mutant groups will not show evidence of statistically significant phenotypic variation reject
- **xxii.** There will be no significant differences in the mandible dimensions between wild-type and mutant populations reject
- **xxiii.** There will be no significant differences in the incisor dimensions between wild-type and mutant populations reject
- **xxiv.** There will be no significant differences in the enamel phenotype between wild-type and mutant populations reject
- xxv. The *Amelx* mutants will not display hypoplastic/ hypomineralised enamel indicative of X-linked AI (AIH1,OMIM301200) reject
- xxvi. The *Enam* mutants will not display local hypoplastic enamel indicative of autosomal dominant AI (AIH2, OMIM104500) reject

8. FUTURE WORK

8.1 RELIABILITY AND VALIDATION	232
8.2 METHOD DEVELOPMENT	232
8.3 EXPERIMENTAL COMPARISON	232

8.1. Reliability and Validation

Further 3D incisor morphometry intra-operator repeatability data would corroborate the exceptionally high reproducibility presented. Also, incisor intra-operator and inter-operator reliability data would validate the 3D IAS for *surface-roughness* measurement.

8.2. Method Development

The study demonstrates the successful modification of existing methods for new applications and presents original methods. This establishes a strong precedent for expanding the new methods to future applications, e.g. an alternative NCSP chromatic sensor may include 3D mandible morphology.

8.3. Experimental Comparison

The mandibular molars and maxillary incisors and molars of the experimental populations remain preserved for future use. The existing image archive and data records may be used in future studies.

Increasing the small sample population (n = 1) for the *surface-roughness* assessment would provide the necessary statistical support to strength the experimental comparison.

The current investigation provides collaborative potential for a broader series of similar investigations using other mouse models of AI, e.g. the recently described ECM protein amelobastin mice (Seedorf *et al.*, 2007) and enamelin-null mice (Hu *et al.*, 2008) and/ or the ECM proteases kallikrien *Klk-4* (Simmer *et al.*, 2009) and enamelysin *Mmp-20* (Wright *et al.*, 2009).

Indeed this was positively discussed with Dr. Jan Hu from The University of Michigan at Ann Arbor Dental School, USA at the American Association of Dental Research and Canadian Association of Dental Research conference in Washington DC USA in April 2010. There is considerable potential for applying the novel measurement methods beyond the mouse model and to other small mammalian dental applications, e.g. rodents and bats (Evans *et al.*, 2001).

At the time of writing, example incisors from each experimental group are with Dr. Paul Anderson at Queen Mary, University of London awaiting X-ray Micro-Tomography (Anderson *et al.*, 1996). It is hoped this will provide valuable quantitative enamel mineral density data and additional 3D structural information.

9. REFERENCES

ABLAL, M.A., KAUR, J.S., COOPER, L., JARAD, F.D., MILOSEVIC, A., HIGHAM, S.M. & PRESTON, A.J. (2009) The erosive potential of some alcopops using bovine enamel: An *in vitro* study, *Journal of Dentistry*, vol. 37, no. 11, pp. 835-839.

ADDISON, W.H. & APPLETON, J.L. (1915) The structure and growth of the incisor teeth of the albino rat, *Journal of Morphology*., vol. 26, pp. 43-96.

ALDRED, M.J., CRAWFORD, P.J., ROBERTS, E., GILLESPIE, C.M., THOMAS, N.S., FENTON, I., SANDKMJL, L.A. & HARPER, P.S. (1992a) Genetic heterogeneity in X-linked Amelogenesis imperfecta, Genomics, vol. 14, pp. 567-573.

ALDRED, M.J., CRAWFORD, P.J.M., ROBERTS, E. & THOMAS, N.S.T. (1992b) Identification of a nonsense mutation in the amelogenin gene (*AMELX*) in a family with X-linked *Amelogenesis imperfecta* (AIH1), *Human Genetics*, vol. 90, pp. 413-416.

ALDRED, M.J., SAVARIRAYAN, R. & CRAWFORD, P.J.M. (2003) Amelogenesis imperfecta: a classification and catalogue for the 21st century, Oral Diseases, vol. 9 no. 1, pp. 19-23.

AMAR, S., KARCHER-DJURICIC, V., MEYER, J.M. & RUCH, J.V. (1986) The lingual (root analogue) and the labial (crown analogue) mouse incisor promotes ameloblast differentiation, *Arch. Anat. Microsc. Morphol*, no. 75, pp. 229-239.

ANDERSON, P., BOLLET-QUIVOGNE, F.R., DOWKER, S.E.P. & ELLIOTT, J.C. (2004) Demineralization in enamel and Hydroxyapatite aggregates at increasing ionic strength, *Archives of Oral Biology*, vol. 49, pp. 199-207.

ANDERSON, P., ELLIOTT, J.C., BOSE, U. & JONES, S.J. (1996) A comparison of the mineral content of enamel and dentine in human premolars and enamel pearls measured by X-ray microtomography, *Archives of Oral Biology*, vol. 41, no. 3, pp. 281-290.

ANDERSON, P., LEVINKIND, M. & ELLIOTT. J.C. (1998) Scanning microradiographic studies of rates of *in vitro* demineralisation in human and bovine dental enamel, *Archives of Oral Biology*, vol. 43, pp. 649-656.

ANSORGE, H. (2001) Assessing non-metric skeleton characters as a morphological tool, *Zoology*, vol. 104, no. 3-4, pp. 268-277.

APUZZO, N.D. (2006) Overview of 3D surface digitization technologies in Europe, in B. Corner, D., P. Li & M. Tocheri (eds), *Three-Dimensional Image Capture and Applications VI, Proc. of SPIE-IS&T Electronic Imaging*, vol. 6056, SPIE, San Jose, pp. 1-13.

ARENDS, J. & TEN BOSCH, J.J. (1992) Demineralization and remineralisation evaluation techniques, *Journal of Dental Research*, vol. 71, no. suppl 1, pp. 924-928.

ASQUITH, J., GILLGRASS, T. & MOSSEY, P. (2007) Three-dimensional imaging of orthodontic models: a pilot study *European Journal of Orthodontics*, vol. 29, pp. 517-522.

ATCHLEY, W.R. & HALL, B.K. (1991) A model for development and evolution of complex morphological structures, *Biological Reviews*, vol. 66, no. 2, pp. 101-157.

ATCHLEY, W.R., PLUMMER, A.A. & RISKA, B. (1985) Genetics of mandible form in the mouse, *Genetics*, vol. 111, no. 3, pp. 555-577.

AYOUB, A.F., WRAY, D., MOOS, K.F., JIN, J., NIBLETT, T.B., & URQUHART, C. (1997) A three-dimensional imaging system for archiving dental study casts: a preliminary report, *International Journal of Adult Orthodontics and Orthognathic surgery*, vol. 12, pp. 79-84.

BABA, O., TAKAHASHI, N., TERASHIMA, T., LI, W., DENBESTEN, P.K. & TAKANO, Y. (2002) Expression of alternatively spliced RNA transcripts of amelogenin gene exons 8 and 9 and its end products in the rat incisor, *Journal of Histochemistry and Cytochemistry*, vol. 50, pp. 1229-1236.

BACKMAN, B. (1988) *Amelogenesis imperfecta*--clinical manifestations in 51 families in a northern Swedish county, *Scandinavian Journal of Dental Research*, vol. 96, pp. 505-516.

BACKMAN, B. & HOLM, A.K. (1986) *Amelogenesis imperfecta*: prevalence and incidence in a northern Swedish county, *Community Dentistry & Oral Epidemiology*, vol. 14, pp. 43-47.

BADER, R.S. (1965) Heritability of Dental Characters in the House Mouse, *Evolution*, vol. 19, no. 3, pp. 378-384.

BAILEY, D.W. (1985) Genes that affect the shape of the murine mandible: Congenic strain analysis, *Journal of Heredity*, vol. 76, no. 2, pp. 107-114.

BAILEY, D.W. (1986) Genes that affect morphogenesis of the murine mandible: Recombinant-inbred strain analysis, *Journal of Heredity*, vol. 77, no. 1, pp. 17-25.

BARRETT, M.J., BROWN, T. & LUKE, J.I. (1963) Dental observations on Australian aborigines: mesiodistal crown diameters of deciduous teeth, *Australian Dental Journal*, vol. 8, pp. 299-302.

BARRON, M.J., BROOKES, S.J., KIRKHAM, J., SHORE, R.C., HUNT, C., MIRONOV, A., KINGSWELL, N.J., MAYCOCK, J., SHUTTLEWORTH, C.A. & DIXON, M.J. (2010) A mutation in the mouse *Amelx* tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked *Amelogenesis imperfecta*, *Human Molecular Genetics*, p. ddq001.

BARTLETT, J.D., BENIASH, E., LEE, D.H. & SMITH, C.E. (2004) Decreased Mineral Content in MMP-20 Null Mouse Enamel is Prominent During the Maturation Stage, *Journal of Dental Research*, vol. 83, no. 12, pp. 909-913.

BARTLETT, J.D., SIMMER, J.P., XUE, J., MARGOLIS, H.C. & MORENO, E.C. (1996) Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ, *Gene*, vol. 183, no. 123-128.

BARTLETT, J.D., SKOBE, Z., LEE, D.H., WRIGHT, J.T., LI, Y., KULKARNI, A.B. & GIBSON, C.W. (2006) A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel, *European Journal of Oral Science*, vol. 114, no. Suppl. 1, pp. 18-23.

BEAMER, W.G., DONAHUE, L.R., ROSEN, C.J. & BAYLINK, D.J. (1996) Genetic variability in adult bone density among inbred strains of mice, *Bone*, vol. 18, pp. 397-403.

BELL, A., AYOUB, A.F. & SIEBERT, P. (2003) Assessment of the accuracy of a threedimensional imaging system for archiving dental study models, *Journal of Orthodontics*, vol. 30, pp. 219-223.

BENATAR, M., WYNCHANK, S. & ADAMS, L.P. (1989) Measurements of reflection hologram images, *Physics in Medicine and Biology*, vol. 34, pp. 1259-1268.

BERKOWITZ, S. & PRUZANSKY, S. (1968) Stereophotogrammetry of serial casts of cleft palate, *Angle Orthodontist*, vol. 38, no. 136-149.

BHATIA, S.N. & HARRISON, V.E. (1987) Operational performance of the travelling microscope in the measurement of dental casts, *British Journal of Orthodontics*, vol. 14, pp. 147-153.

BIGGERSTAFF, R.H. (1969) Electronic methods for the analysis of the human post-canine dentition, *American Journal of Physical Anthropology*, vol. 31, pp. 235-242.

BLAND, J.M. & ALTMAN, D.G. (1986) 'Statistical methods for assessing agreement between two methods of clinical measurement', *The Lancet*, vol. i, pp. 307-310.

BLAND, J.M. & ALTMAN, D.G. (1999) 'Measuring agreement in method comparison studies', *Statistical Methods in Medical Research*, vol. 8, no. 2, pp. 135-160.

BOLTON, W.A. (1962) The clinical application of a tooth-size analysis, *American Journal of* Orthodontics, vol. 48, pp. 504-529.

BOOKSTEIN, F.L. (1984) A statistical method for biological shape comparisons, *Journal of Theoretical Biology*, vol. 107, pp. 475-520.

BOOKSTEIN, F.L. (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape, *Medical Image Analysis*, vol. 1, no. 3, pp. 225-243.

BOOKSTEIN, F.L. (1998) A hundred years of morphometrics, in C.P. Kingenburg & F.L. Bookstein (eds) vol. 44(1-2), ACTA Zool. Sci. Hung., pp. 7-59.

BOURSOT, P., DIN, W., ANAND, R., DARVICHE, D., DOD, B., VON DEIMLING, F., TALWAR, G.P. & BONHOMME, F. (1996) Origin and radiation of the house mouse: mitochondrial DNA phylogeny, *Journal of Evolutionary Biology*, vol. 9, no. 4, pp. 391-415.

BOYDE, A. (1967) The Development of Enamel Structure, *Proceedings of the Royal Society of Medicine*, vol. 60, pp. 13-18.

BROOK, A.H. (2009) Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development, *Archives of Oral Biology*, vol. 54, pp. S3-S17.

BROOK, A.H., ELCOCK, C., AL-SHAROOD, M.H., MCKEOWN, H.F., KHALAF, K. & SMITH, R.N.P. (2002) Further studies of a model for the aetiology of anomalies of tooth number and size in humans, *Connective Tissue Research*, vol. 43 no. 2-3, pp. 289-295.

BROOK, A.H., ELCOCK, C., HALLONSTEN, A.L., ET AL. & ROBINSON, D.L. (2001) The development of a new index to measure enamel defects. , in A.H. Brook (ed.), *Dental Morphology*, Sheffield University Academic Press UK Sheffield, pp. 59-66.

BROOK, A.H. & JOHNS, C.C. (1995) Dental anomalies of number and size in a Romano-British population, *International Symposium on Dental Morphology*, ed. R. Radlanski, Brunne, GBR, Berlin, pp. 177-180.

BROOK, A.H., LATH, D.L., BROOK, B.J. & SMITH, R.N. (2005b) Further consideration of the aetiology of development anomalies of the dentition, in E. Zadzinska (ed.), *Current Trends in Dental Morphology Research*, 13th International Symposium on Dental Morphology University of Lodz Press, Poland, pp. 467-474.

BROOK, A.H., PITTS, N.B. & RENSON, C.E. (1983) Determination of tooth dimensions from study casts using an image analysis system, *Journal of International Association of Dentistry for Children*, vol. 14, pp. 55-60.

BROOK, A.H., PITTS, N.B., YAU, F. & SANDAR, P.K. (1986) An image analysis system for the determination of tooth dimensions from study casts: comparison with manual measurements of mesio-distal diameter, *Journal of Dental Research*, vol. 65, no. 3, pp. 428-431.

BROOK, A.H., SMITH, R.N., ELCOCK, C., AL-SHAROOD, M.H., SHAH, A.A., KARMO, M., KHALAF K. & ROBINSON, D.L. (1999) Accurate tooth morphology measurement using a new image analysis system, *Journal of Dental Research*, vol. 78, no. 5, pp. 386.

BROOK, A.H., SMITH, R.N., ELCOCK, C., AL-SHAROOD, M.H., SHAH, A.A., KHALAF, K., ROBINSON, D.L., LATH, D.L. & KARMO, M. (2005a) The measurement of tooth morphology: Validation of an image analysis system, in E. Zadzinska (ed.), *Current Trends In Dental Morphology Research*, University of Lodz Press, Poland. pp. 475-482.

BROOK, A.H., SMITH, R.N. & LATH, D.J. (2007) The clinical Measurement of tooth Colour and Stain, *International Dental Journal*, vol. 57, no. 5, pp. 234-330.

BROOK, A.H., UNDERHILL, C., FOO, L.K. & HECTOR, M. (2006) Approximal attrition and permanent tooth crown size in a Romano-British population, *Dental Anthropology*, vol. 19, pp. 23-28.

BROOKES, S.J., KIRKHAM, J., SHORE, R.C., WOOD, S.R., SLABY, I. & ROBINSON, C. (2001) Amelin extracellular processing and aggregation during rat incisor amelogenesis., *Archives of Oral Biology*, vol. 46, pp. 201-208.

BROOKES, S.J., ROBINSON, C., KIRKHAM, J. & BONASS, W.A. (1995) Biochemistry and molecular biology of amelogenin proteins of developing dental enamel, *Archives of Oral Biology*, vol. 40, pp. 1-14.

BROWN, S., LAD, H., GREEN, E., GKOUTOS, G., GATES, H. & ANGELIS, M.H.D. (2008) Eumorphia and the European Mouse Phenotyping Resource for Standardized Screens (EMPReSS), in Standards of Mouse Model Phenotyping. Prof. Dr. Martin Hrabé de Angelis (ed.), *Standards of Mouse Model Phenotyping*, pp. 311-320. (www.eumorphia.org)

BUCHAILLARD, S.I., ONG, S.H., PAYAN, Y. & FOONG, K. (2007) 3D statistical models for tooth surface reconstruction, *Computers in Biology and Medicine*, vol. 37, no. 10, pp. 1461-1471.

BUTCHER, G.W. & STEPHENS, C.I. (1981) The reflex optical plotter; a preliminary report, *British Dental Journal*, vol. 151, pp. 304-305.

BUTLER, P.M. (1939) Studies of the mammalian dentition. Differentiation of the postcanine dentition, *Proceedings of the Zoological Society of London*, vol. 109 no. B, pp. 329-356.

BUTLER, P.M. (1956) The ontogeny of molar pattern, Biological Review, vol. 31, pp. 30-70.

BUTLER, P.M. (1995a) Ontogenetic aspects of dental evolution, International Journal of Developmental Biology, vol. 39, pp. 25-34.

BUTLER, W.T. (1995b) Dentin matrix proteins and dentinogenesis, *Connective Tissue Research*, vol. 33, pp. 59-65.

BUTLER, W.T., BRUNN, J.C., QIN, C. & MCKEE, M.D. (2002) Extracellular Matrix Proteins and the Dynamics of Dentin Formation, *Connective Tissue Research*, vol. 43, no. 2-3, pp. 301-307.

CARLSSON, K. & ALUND, N. (1987) Confocal imaging for 3-D digital microscopy, *Applied Optics*, vol. 26, no. 16, pp. 3232-3238.

CHAMPAGNE, M. (1992) Reliability of measurements from photocopies of study models, *Journal of Clinical Orthodontics*, vol. 26, pp. 648-650.

CHEN, E., YUAN, Z.A., WRIGHT, J.T., HONG, S.P., LI, Y., COLLIER, P.M., HALL, B., D'ANGELO, M., DECKER, S., PIDDINGTON, R., ABRAMS, W.R., KULKARNI, A.B. & GIBSON, C.W. (2003) The Small Bovine Amelogenin LRAP Fails to Rescue the Amelogenin Null Phenotype, *Calcified Tissue International*, vol. 73, no. 5, pp. 487-495.

CHEN, F., BROWN, G.M. & SONG, M. (2000) Overview of three-dimensional shape measurement using optical methods, *Optical Engineering*, vol. 39, no. 1, pp. 10-22.

CHEVERUD, J.M., HARTMAN, S.E., RICHTSMEIER, J.T. & ATCHLEY, W.R. (1990) Quantitative genetic analysis of localized morphology in inbred mouse mandibles using finite element scaling analysis, *Journal of Craniofacial Genetics and Developmental Biology*, vol. 11, no. 3, pp. 122-137. CHEVERUD, J.M., LEWIS, J.L., BACHRACH, W.M. & LEW, W.D. (1983) The measurement of form and variation in form: an application of three-dimensional quantitative morphology by finite element methods, *American Journal of Physical Anthropology*, vol. 62, pp. 151-165.

CHEVERUD, J.M., ROUTMAN, E.J., DUARTE, F.A.M., VAN-SWINDEREN, B., COTHRAN, K. & PEREL, C. (1996) Quantitative Trait Loci for Murine Growth, *Genetics*, vol. 142, no. 4, pp. 1305-1319.

CHOSACK, A., EIDELMAN, E., WISOTSKI, I. & COHEN, T. (1979) Amelogenesis imperfecta among Israeli Jews and the description of a new type of local hypoplastic autosomal recessive Amelogenesis imperfecta, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 47, pp. 148-156.

CHRZANOWSKI, W., ARMITAGE, D.A., KNOWLES, J.C., SZADE, J., KORLACKI, W. & MARCINIAK, J. (2008) Chemical, Corrosion and Topographical Analysis of Stainless Steel Implants after Different Implantation Periods, *Journal of Biomaterials Applications*, vol. 23, no. 1, pp. 51-71.

CHUAH, J.H., ONG, S.H., KONDO, T., FOONG, K.W.C. & YONG, T.F. (2001) 3D space analysis of dental models, *564 Proceedings of SPIE*, vol. 4319 ed. K.M. Seong, pp. 564-573.

CIAMBOTTI, C., NGAN, P., DURKEE, M., KOHLI, K. & KIM, H. (2001) Comparison of dental and dentoalveolar changes between rapid palatal expansion and nickel-titanium palatal expansion appliances, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 119, no. 1, pp. 11-20.

COLLIER, P.M., SAUKK J.J., ROSENBLOOM, S.J., YUAN, Z.A. & GIBSON, C.W. (1997) An amelogenin gene defect associated with human X-linked *Amelogenesis imperfecta*, *Arch Oral Biol*, vol. 42, pp. 235-242.

COMMISSION INTERNATIONALE DE L' E'CLAIRAGE, C.I.E. (1986) Commission Internationale de l' E'clairage colorimetry, 2nd edition, Central bureau of the CIE, Paris.

COOPER, W.J. & ALBERTSON, R.C. (2008) Quantification and variation in experimental studies of morphogenesis, *Developmental Biology*, vol. 321, no. 2, pp. 295-302.

CRAWFORD, P., ALDRED, M. & BLOCH-ZUPAN, A. (2007) Amelogenesis imperfecta, Orphanet Journal of Rare Diseases, vol. 2, no. 1, p. 17.

CROMPTON, A.W. (1963) The Evolution of the Mammalian Jaw, *Evolution*, vol. 17, no. 4, pp. 431-439.

CURLESS, B. & LEVOY, M. (1996) A Volumetric Method for Building Complex Models from Range Images, *Computer Graphics, SIGGRAPH*; 303-312.

DACULSI, G. & KEREBEL, B. (1978) High-resolution electron microscope study of human enamel crystallites: size, shape, and growth, *Journal of Ultrastructural Research*, vol. 65, pp. 163-172.
DAHLBERG, A.A. (1945) The changing dentition of man, Journal of the American Dental Association, vol. 32, pp. 676-690.

DAVIS, G.R. & WONG, F.S.L. (1996) X-ray microtomography of bones and teeth, *Physiological Measurements*, vol. 17, no. 3, pp. 121-146.

DEUTSCH, D. (1989) Structure and function of enamel gene products, *The Anatomical Record*, vol. 224, no. 2, pp. 189-210.

DEUTSCH, D., CATALANO-SHERMAN, J., DAFNI, L., DAVID, S. & PALMON, A. (1995) Enamel Matrix Proteins and Ameloblast Biology, *Connective Tissue Research*, vol. 32, no. 1-4, pp. 97-107.

DEUTSCH, D., HAZE-FILDERMAN, A., BLUMENFELD, A., DAFNI, L., LEISER, Y., SHAY, B., GRUENBAUM-COHEN, Y., ROSENFELD, E., FERMON, E., ZIMMERMANN, B., HAEGEWALD, S., BERNIMOULIN, J.P. & TAYLOR, A.L. (2006) Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: brain and cells of the hematopoietic system, *European Journal of Oral Sciences*, vol. 114, no. Suppl 1, pp. 183-189.

DIBIASE, A.T., ELCOCK, C., SMITH, R.N. & BROOK, A.H. (2006) A new technique for symmetry determination in tooth morphology using image analysis: Application in the diagnosis of solitary maxillary median central incisor, *Archives of Oral Biology*, vol. 51, no. 10, pp. 870-875.

DONG, J., GU, T.T., SIMMONS, D. & MACDOUGALL, M. (2000) Enamelin maps to human chromosome 4q21 within the autosomal dominant *Amelogenesis imperfecta* locus, *European Journal of Oral Sciences*, vol. 108, no. 5, pp. 353-358.

DONNER, A. & ELIASZIW, M. (1987) 'Sample size requirements for reliability studies', *Statistics in Medicine*, vol. 6, pp. 441-448.

DOUGLAS, R.D. (1997) Precision of *in vivo* colorimetric assessments of teeth, *The Journal* of Prosthetic Dentistry, vol. 77, no. 5, pp. 464-470.

DOWKER, S.E.P., ELLIOTT, J.C., DAVIS, G.R. & WASSIF, H.S. (2003) Longitudinal Study of the Three-Dimensional Development of Subsurface Enamel Lesions during *in vitro* Demineralisation, *Caries Research*, vol. 37, no. 4, pp. 237-245.

DU, C., FALINI, G., FERMANI, S., ABBOTT, C. & MORADIAN-OLDAK, J. (2005) Supramolecular Assembly of Amelogenin Nanospheres into Birefringent Microribbons, *Science*, vol. 307, no. 5714, pp. 1450-1454.

DURET, F., BLOUIN, J.L. & DURET, B. (1988) CAD CAM in dentistry, Journal of the American Dental Association, vol. 117, pp. 715-720.

ELCOCK, C., LATH, D.L., LUTY, J.D., GALLAGHER, M.G., ABDELLATIF, A., BÄCKMAN, B. & BROOK, A.H. (2006) The new Enamel Defects Index: testing and expansion, *European Journal of Oral Sciences*, vol. 114, no. s1, pp. 35-38.

ELLIOTT, J.C., ANDERSON, P., GAO, X.J., WONG, F.S.L., DAVIS, G.R. & DOWKER, S.E.P. (1994) Application of scanning microradiography and X-ray microtomography to studies of bones and teeth, *Journal of X-Ray Science and Technology*, vol. 4, no. 2, pp. 102-117.

ELTON, V., COOPER, L., HIGHAM, S.M. & PENDER, N. (2009) Validation of enamel erosion *in vitro*, *Journal of Dentistry*, vol. 37, no. 5, pp. 336-341.

ENCISO, R., LEWIS, J.P., NEUMANN, U. & MAH, J. (2003) 3D tooth shape from radiographs using thin-plate splines, *MMVR11-NextMed: Health Horizon, The 11th Annual Medicine Meets Virtual Reality Conference*, pp. 62-64.

EVANS, A.R., HARPER, I.S. & SANSON, G.D. (2001) Confocal imaging, visualization and 3-D surface measurement of small mammalian teeth, *Journal of Microscopy*, vol. 204, no. 2, pp. 108-119.

FEARNE, J.M., ANDERSON, P. & DAVIS, G.R. (2004) 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation, *British Dental Journal*, vol. 94, pp. 634-638.

FEARNHEAD, R.W. (1960) Mineralization of Rat Enamel, *Nature*, vol. 188, no. 4749, pp. 509-510.

FEDERATION DENTAIRE INTERNATIONAL, (FDI) (1992) A review of the developmental defects of dental enamel index (DDE index), *International Dentistry Journal*, 42, 411-426.

FESTING, M. (1972) Mouse strain identification, Nature, vol. 238, pp. 351-352.

FINCHAM, A.G., BELCOURT, A.B., TERMINE, J.D., BUTLER, W.T. & COTHRAN, W.C. (1983) Amelogenins. Sequence homologies in enamel-matrix proteins from three mammalian species, *Biochemistry Journal*, vol. 211, pp. 149-154.

FINCHAM, A.G., MORADIAN-OLDAK, J., DIEKWISCH, T.G.H., LYARUU, D.M., WRIGHT, J.T., BRINGAS, P. & SLAVKIN, H.C. (1995) Evidence for Amelogenin Nanospheres as Functional Components of Secretory-Stage Enamel Matrix, *Journal of Structural Biology*, vol. 115, no. 1, pp. 50-59.

FINCHAM, A.G., MORADIAN-OLDAK. J. & SIMMER, J.P. (1999) The structural biology of the developing dental enamel matrix, *The Journal of Structural Biology*, vol. 126, no. 3, pp. 270-299.

FLEISCHMANNOVA, J., MATALOVA, E., TUCKER, A.S. & SHARPE, P.T. (2008) Mouse models of tooth abnormalities, *European Journal of Oral Sciences*, vol. 116, no. 1, pp. 1-10.

FLEISS, J.L. (1986a) The design and analysis of clinical experiments, in, *Reliability of measurement*, Wiley and Sons Inc, New York, pp. 1-32.

FLEISS, J.L. (1986b) 'Confidence intervals vs significance tests: quantitative interpretation ', *American Journal of Public Health*, vol. 76, no. 5, pp. 587-588.

FLEISS, J.L. & SHROUT, P.E. (1977) 'The effects of measurements on some multivariate procedures', *American Journal of Public Health*, vol. 67, pp. 1188-1191.

FONG, C.D., CEMY, R., HAMMARSTROM, L. & SLABY, I. (1998) Sequential expression of an amelin gene in mesenchymal and epithelial cells during odontogenesis in rats, *European Journal of Oral Sciences*, vol. 106, pp. 324-330.

FONG, C.D. & HAMMARSTROM, L. (2000) Expression of amelin and amelogenin in epithelial root sheath remnants of fully formed rat molars, *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology*, vol. 90, pp. 218-223.

FROMMER, J. (1964) Prenatal development of the mandibular joint in mice, *The Anatomical Record*, vol. 150, pp. 449-461.

FRYE, M.S. & HEDGES, S.B. (1995) Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-valine, *Molecular Biology and Evolution*, vol. 12, no. 1, pp. 168-176.

FUCHS, T.O.J., KACHELRIESS, M. & KALENDER, W.A. (2000) System performance of multislice spiral computed tomography, *IEEE Engineering in Medicine and Biology*, vol. 19, no. 5, pp. 63-70.

FUKUMOTO, S., KIBA, T., HALL, B., LEHARA, N., NAKAMURA, T., LONGENECKER, G., KREBSBACH, P.H., NANCI, A., KULKARNI, A.B. & YAMADA, Y. (2004) Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts, *Journal of Cell Biology*, vol. 167, pp. 973-983.

FUKUMOTO, S. & YAMADA, Y. (2005) Review: Extracellular Matrix Regulates Tooth Morphogenesis, *Connective Tissue Research*, vol. 46, no. 4, pp. 220 - 226.

GANT, D.G., KAPPELMAN, J. & KETCHAM, R.A. (2001) Hominid enamel and dentin volumes by means of HRXCT 3D reconstuction, in E. Zadzinska (ed.), *Current Trends in Dental Morphology Research*, University of Lodz Press, Poland, pp. 483-499.

GARCÍA-GODOY, F., VILLALTA, P., BARTIZEK, R.D., BARKER, M.L. & BIESBROCK, A.R. (2004) Tooth whitening effects of an experimental whitening toothbrush relative to an 8.7% hydrogen peroxide paint-on gel control., *American Journal of Dentistry*, vol. 17 no. Spec pp. 25A-30A.

GAUNT, W.A. (1955) The development of the molar pattern of the mouse, *Mus musculus*, *ACTA Anatomica*, no. 24, pp. 249-268.

GAUNT, W.A. (1956) The development of enamel and dentine on the molars of the mouse, with an account of the enamel-free areas, *ACTA Anatomica (Basel)*, vol. 28, no. (1-2), pp. 111-134.

GAUNT, W.A. (1964) The development of the teeth and jaws of the albino mouse, *ACTA Anatomica*, vol. 57, pp. 115-151.

GIBSON, C.W., KULKARNI, A.B. & WRIGHT, J.T. (2005) The Use of Animal Models to Explore Amelogenin Variants in *Amelogenesis imperfecta*, *Cells Tissues Organs*, vol. 181, pp. 196-201.

GIBSON, C.W., LI, Y., DALY, B., SUGGS, C., YUAN, Z., FONG, H., SIMMONS, D., ARAGON, M., KULKARNI, A.B. & WRIGHT, J.T. (2009) The Leucine-Rich Amelogenin Peptide Alters the Amelogenin Null Enamel Phenotype, *Cells Tissues Organs*, vol. 189, no. 1-4, pp. 169-174.

GIBSON, C.W., YUAN, Z.A., HALL, B., LONGENECKER, G., CHEN, E., THYAGARAJAN, T.T., SREENATH, T., WRIGHT, J.T., DECKER, S., PIDDINGTON, R., HARRISON, G. & KULKARNI, A.B. (2001) Amelogenin-deficient mice display an *Amelogenesis imperfecta* phenotype, *Journal of Biological Chemistry*, vol. 276, no. 34, pp. 31871-31875.

GIBSON, C.W., YUAN, Z.A., LI, Y., DALY B, SUGGS, C., ARAGON, M.A., ALAWI, F., KULKARNI, A.B. & WRIGHT, J.T. (2007) Transgenic mice that express normal and mutated amelogenins, *Journal of Dental Research*, vol. 86, no. 4, pp. 331-335.

GOODKIND, R.J. & SCHWABACHER, W.B. (1987) Use of a fiber-optic colorimeter for *in vivo* color measurements of 2830 anterior teeth, *The Journal of Prosthetic Dentistry*, vol. 58, no. 5, pp. 535-542.

GOSHTASBY, A.A., NAMBALA, S., DERIJK, S.G. & CAMPBELL, S.D. (1997) A system for digital reconstruction of gypsum dental casts, *IEEE Transactions on Medical Imaging*, vol. 16, no. 5, pp. 664-674.

GREEN, E.C.J., GKOUTOS, G.V., LAD, H.V., BLAKE, A., WEEKES, J. & HANCOCK, J.M. (2005) EMPReSS: European Mouse Phenotyping Resource for Standardized Screens, *Bioinformatics*, vol. 21, no. 12, pp. 2930-2931. (<u>http://www.empress.har.mrc.ac.uk/</u>)

GREENE, S.R., YUAN, Z.A., WRIGHT, J.T., AMJAD, H., ABRAMS, W.R., BUCHANAN, J.A., TRACHTENBERG, D.I. & GIBSON, C.W. (2002) A new frameshift mutation encoding a truncated amelogenin leads to X-linked *Amelogenesis imperfecta*, *Archives of Oral Biology*, vol. 47, no. 3, pp. 211-217.

GRUENBAUM-COHEN, Y., TUCKER, A.S., HAZE, A., SHILO, D., TAYLOR, A.L., SHAY, B., SHARPE, P.T., MITSIADIS, T.A., ORNOY, A., BLUMENFELD, A. & DEUTSCH, D. (2008) Amelogenin in cranio-facial development: the tooth as a model to study the role of amelogenin during embryogenesis, *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, vol. 310B, pp. 1-13.

GRÜNBERG, H. (1951) The genetics of a tooth defect in the mouse, *Proceedings of the Royal Society of London*, vol. 138, no. 892 pp. 437-451.

GRÜNBERG, H. (1963) The Pathology of Development: A Study of Inherited Skeletal Disorders in Animals, Blackwell Scientific, Oxford.

GRÜNBERG, H. (1965) Genes and genotypes affecting the teeth of the mouse, *Journal of Embryology & Experimental Morphology*, vol. 14, pp. 137-159.

GUAN, Y.H., LATH, D.L., LILLEY, T.H., WILLMOT, D.R., MARLOW, I. & BROOK, A.H. (2005) The measurement of tooth whiteness by image analysis and spectrophotometry: a comparison, *Journal of Oral Rehabilitation*, vol. 32, no. 1, pp. 7-15.

GUÉNET, J.-L. & BONHOMME, F. (2004) Origin of the Laboratory Mouse and Related Subspecies, in J.H. Professor Hans & B. Professor Gillian (eds), *The Laboratory Mouse*, Academic Press, London, pp. 1-11.

GUILD, J. (1931) The colorimetric properties of the spectrum, *Philosophical Transactions of the Royal Society of London*, vol. 230, pp. 149-187.

GUTIERREZ, S.J., CHAVES, M., TORRES, D.M. & BRICEÑO, I. (2007) Identification of a novel mutation in the enamelin gene in a family with autosomal-dominant *Amelogenesis imperfecta*, *Archives of Oral Biology*, vol. 52, no. 5, pp. 503-506.

HAJEER, M.Y., MILLETT, D.T., AYOUB, A.F. & SIEBERT, J.P. (2004) Current Products and Practices: Applications of 3D imaging in orthodontics, *Journal of Orthodontics*, vol. 31, pp. 154-162

HALAZONETIS, D.J. (2001) Acquisition of 3-dimensional shapes from images, American Journal of Orthodontics and Dentofacial Orthopedics, vol. 119, pp. 556-560.

HALL, B.K. (1991) Cellular interactions during cartilage and bone development, *Journal of Craniofacial Genetics and Developmental Biology*, no. 11, pp. 238-250.

HALSE, A. (1972) Location and first appearance of rat incisor pigmentation, *Scandinavian Journal of Dental Research*, vol. 80, pp. 428-433.

HAMMAD, I.A. (2003) Intra-rater repeatability of shade selections with two shade guides, *The Journal of Prosthetic Dentistry*, vol. 89, no. 1, pp. 50-53.

HAMMARSTROM, L., HEIJL, L. & GESTRELIUS, S. (1997) Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins, *Journal of Clinical Periodontology*, vol. 24, pp. 669-677.

HARADA, H., KETTUNEN, P., JUNG, H.S., MUSTONEN, T., WANG, Y.A. & THESLEFF, I. (1999) Localization of putative stem cells in dental epithelium and their association with Notch and FGF signalling, *Journal of Cell Biol.*, vol. 147, pp. 105-120.

HARRIS, E.F. & BAILIT, H.L. (1988) A principal components analysis of human odontometrics, *American Journal of Physical Anthropology*, vol. 75, no. 1, pp. 87 - 99.

HART, P.S., ALDRED, M.J., CRAWFORD, P.J.M., WRIGHT, N.J., HART T.C. & WRIGHT, J.T. (2002b) *Amelogenesis imperfecta* phenotype-genotype correlations with two amelogenin gene mutations, *Archives of Oral Biology*, vol. 47, no. 4, pp. 261-265.

HART, P.S., HART, T.C., MICHALEC, M.D., RYU, O.H., SIMMONS, D., HONG, S. & WRIGHT, J.T. (2004) Mutation in kallikrein 4 causes autosomal recessive hypomaturation *Amelogenesis imperfecta, Journal of Medical Genetics*, vol. 41, no. 7, pp. 545-549.

HART, P.S., HART, T.C., SIMMER, J.P. & WRIGHT, J.T. (2002a) A nomenclature for Xlinked *Amelogenesis imperfecta*, *Archives of Oral Biology*, vol. 47, no. 4, pp. 255-260.

HART, P.S., MICHALEC, M.D., SEOW, W.K., HART, T.C. & WRIGHT, J.T. (2003a) Identification of the enamelin (g.8344delG) mutation in a new kindred and presentation of a standardized ENAM nomenclature, *Archives of Oral Biology*, vol. 48, pp. 589-596.

HART, P.S., HART, T., GIBSON, C.W. & WRIGHT, J.T. (2000) Mutational analysis of Xlinked *Amelogenesis imperfecta* in multiple families, *Archives of Oral Biology*, vol. 45, pp. 79-86.

HART, T.C., HART, P.S., GORRY, M.C., MICHALEC, M.D., RYU, O.H., UYGUR, C., OZDEMIR, D., FIRATLI, S., AREN, G. & FIRATLI, E. (2003b) Novel ENAM mutation responsible for autosomal recessive *Amelogenesis imperfecta* and localised enamel defects, *Journal of Medical Genetics*, vol. 40, no. 12, pp. 900-906.

HATAKEYAMA, J., FUKUMOTO, S., NAKAMURA, T., HARUYAMA, N., SUZUKI, S., HATAKEYAMA, Y., SHUM, L., GIBSON, C.W., YAMADA, Y. & KULKARNI, A.B. (2009) Synergistic Roles of Amelogenin and Ameloblastin, *Journal of Dental Research*, vol. 88, no. 4, pp. 318-322.

HAY, M.F. (1961) The development *in vivo* and *in vitro* of the lower incisor and molars of the mouse, *Archives of Oral Biology*, vol. 3, p. 86-109.

HAYASHI, K., UECHI, J. & MIZOGUCHI, I. (2003) Three-Dimensional Analysis of Dental Casts Based on a Newly Defined Palatal Reference Plane, *The Angle Orthodontist*, vol. 73, no. 5, pp. 539-544.

HAZE, A., TAYLOR, A.L., BLUMENFELD, A., ROSENFELD, E., LEISER, Y., DAFNI, L., SHAY, B., GRUENBAUM-COHEN, Y., FERMON, E., HAEGEWALD, S., BERNIMOULIN, J.-P. & DEUTSCH, D. (2007) Amelogenin expression in long bone and cartilage cells and in bone marrow progenitor cells, *The Anatomical Record*, vol. 290, pp. 455-460.

HEARD, E. & DISTECHE, C.M. (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome, *Genes and Development*, vol. 20, no. 14, pp. 1848-1867.

HIGHAM, S.M., PENDER, N., DE JONG, E.D.J. & SMITH, P.W. (2009) Application of biophysical technologies in dental research, *Journal of Applied Physics*, vol. 105, no. 10, pp. 102048-102048.

HILLER, C.R., ROBINSON, C. & WEATHERELL, J.A. (1975) Variations in the composition of developing rat incisor enamel, *Calcified Tissue Research*, vol. 18, no. 1, pp. 1-12.

HILLSON, S., FITZGERALD, C. & FLINN, H. (2005) Alternative dental measurements: Proposals and relationships with other measurements, *American Journal of Physical Anthropology*, vol. 126, no. 4, pp. 413-426.

HIROGAKI, Y., SOHUMURA, T., SATOH, H., TAKAHASHI, J. & TAKADA, K. (2001) Complete 3-D reconstruction of dental cast shape using perceptual grouping, *IEEE Transactions on Medical Imaging*, vol. 20, pp. 1093-1101.

HIXON, E.H. & OLDFATHER, R.E. (1958) Estimation of the sizes of unerupted cuspid and bicuspid teeth, *The Angle Orthodontist*, vol. 28, no. 4, pp. 236-240.

HO, C.T. & FREER, T., J. (1999) A computerized tooth-width analysis, *Journal of Clinical* Orthodontics, no. 33, pp. 498-503.

HOLLAND, N.D. & CHEN, J. (2001) Origin and early evolution of the vertebrates: New insights from advances in molecular biology, anatomy, and palaeontology, *BioEssays*, vol. 23, no. 2, pp. 142-151.

HORROCKS, L.R., BROOK, A.H., ALVESALO, L. & SMITH, R.N. (2009) A Three-Dimensional Comparison of the Modifying Effects of Familial Genetic Contribution in Turner Syndrome, in T. Koppe, G. Meyer & K.W. Alt (eds), *Comparative Dental Morphology. Frontiers of Oral Biology*, vol. 13, Karger, Basel, pp. 148-152.

HOUSTON, W.J.B. (1983) The analysis of errors in orthodontic measurements, American Journal of Orthodontics, vol. 83, pp. 382-390.

HU, B., NADIRI, A., KUCHLER-BOPP, S., PERRIN-SCHMITT, F., PETERS, H. & LESOT, H. (2006) Tissue Engineering of Tooth Crown, Root, and Periodontium, *Tissue Engineering*, vol. 12, no. 8, pp. 2069-2075.

HU, J.C.C., HART, T.C., DUPONT, B.R., CHEN, J.J., SUN, X., QIAN, Q., ZHANG, C.H., JIANG, H., MATTERN, V.L. & WRIGHT, J.T. (2000) Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development, *Journal of Dental Research*, vol. 79, no. 912-919.

HU, J.C.C., SIMMER, J.P., BARTLETT, J.D., NANCI, A., QIAN, Q., ZHANG, C., RYU, O.H., XUE, J., FUKAE, M., UCHIDA, T. & MACDOUGAL, M. (1998) Cloning and characterization of mouse enamelin, *Connective Tissue Research*, vol. 39, pp. 47-61.

HU, C.C., RYU, O.H., QIAN, Q., ZHANG, C.H. & SIMMER, J.P. (1997) Cloning, Characterization, and Heterologous Expression of Exon-4-containing Amelogenin mRNAs, *Journal of Dental Research*, vol. 76, no. 2, pp. 641-647.

HU, J.C.C. & YAMAKOSHI, F. (2003) Enamelin and autosomal-dominant Amelogenesis imperfecta, Critical Reviews in Oral Biology & Medicine., vol. 14, pp. 387-398.

HU, J.C.C. & SIMMER, J.P. (2007) Developmental biology and genetics of dental malformations, *Orthodontics and Craniofacial Research*, vol. 10, no. 2, pp. 45-52.

HU, J.C.C., CHUN, Y.-H.P., HAZZAZZI, T.A. & SIMMER, J.P. (2007) Enamel Formation and Amelogenesis imperfecta, Cells Tissues Organs, vol. 186, pp. 78-85.

HU, J.C.C., HU, Y., SMITH, C.E., MCKEE, M.D., WRIGHT, J.T., YAMAKOSHI, Y., PAPAGERAKIS, P., HUNTER, G.K., FENG, J.Q., YAMAKOSHI, F. & SIMMER, J.P. (2008) Enamel Defects and Ameloblast-specific Expression in Enam Knock-out/lacZ Knock-in Mice, *Journal of Biological Chemistry*, vol. 283, no. 16, pp. 10858-10871.

HU, J.C.C., SUN, X., ZHANG, C. & SIMMER, J.P. (2001b) A comparison of enamelin and amelogenin expression in developing mouse molars, *European Journal of Oral Sciences*, vol. 109, no. 2, pp. 125-132.

HU, J.C.C., SUN, X., ZHANG, C., LIU, S., BARTLETT, J.D. & SIMMER, J.P. (2002) Enamelysin and kallikrein-4 mRNA expression in developing mouse molars, *European Journal of Oral Sciences*, vol. 110, no. 4, pp. 307-315.

HU, J.C.C., ZHANG, C.H., YANG, Y., KARRMAN-MARDH, C., FORSMAN-SEMB, K. & SIMMER, J.P. (2001a) Cloning and Characterization of the Mouse and Human Enamelin Genes, *Journal of Dental Research*, vol. 80, no. 3, pp. 898-902.

HUNTER, W.S. & PRIEST, W.R. (1960) Errors and discrepancies in measurement of tooth size, *Journal of Dental Research*, vol. 39, pp. 405-414.

HUYNH, K.D. & LEE, J.T. (2005) X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny, *Nature Reviews Genetics*, vol. 6, no. 5, pp. 410-418.

INTERNATIONAL STANDARD ORGANISATION, (ISO) Rules and Procedures for Assessment of Surface Texture, no. 4288-1996.

IWASAKI, K., BAJENOVA, E., SOMOGYI-GANSS, E., MILLER, M., NGUYEN, V., NOURKEYHANI, H., GAO, Y., WENDEL, M. & GANSS, B. (2005) Amelotin-a novel secreted, ameloblast-specific protein, *Journal of Dental Research*, vol. 84, pp. 1127-1132.

IWATA, T., YAMAKOSHI, Y., HU, J.C.C., ISHIKAWA, I., BARTLETT, J.D., KREBSBACH, P.H. & SIMMER, J.P. (2007) Processing of Ameloblastin by MMP-20, *Journal of Dental Research*, vol. 86, no. 2, pp. 153-157.

JARAD, F.D., RUSSELL, M.D. & MOSS, B.W. (2005) The use of digital imaging for colour matching and communication in restorative dentistry, *British Dental Journal*, vol. 199, pp. 43-49.

JERNVALL, J., KERÄNEN, S.V.E. & THESLEFF, I. (2000) Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography, *Proceedings of the National Academy of Sciences*, vol. 97, no. 26, pp. 14444-14448.

JERNVALL, J., KETTUNEN, P., KARAVANOVA, I., MARTIN, L.B. & THESLEFF, I. (1994) Evidence for the role of the enamel knot as a control centre in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene, *International Journal of Developmental Biology*, vol. 38, pp. 463-469.

JERNVALL, J. & SELAENNE, L. (1999) Laser confocal microscopy and geographic information systems in the study of dental morphology, *Palaeontologia Electronica*, vol. 2, p. 18.

JERNVALL, J. & THESLEFF, I. (2000a) Reiterative signaling and patterning during mammalian tooth morphogenesis, *Mechanisms of Development*, vol. 92, no. 1, pp. 19-29.

JERNVALL, J. & THESLEFF, I. (2000b) Return of lost structure in the developmental control of tooth shape, in M.F. Teaford, M.M. Smith & M.W.J. Ferguson (eds), *Development, Function and Evolution of Teeth* Cambridge University Press, Cambridge, pp. 13-21.

JOFFE, L. (2004) Current Products and Practices OrthoCADTM: digital models for a digital era, *Journal of Orthodontics*, vol. 31, no. 4, pp. 344-347.

JOINER, A. (2004) Tooth colour: a review of the literature, *Journal of Dentistry*, vol. 32, no. Supplement 1, pp. 3-12.

JOINER, A., HOPKINSON, I., DENG, Y. & WESTLAND, S. (2008) A review of tooth colour and whiteness, *Journal of Dentistry*, vol. 36, no. Supplement 1, pp. 2-7.

KANAZAWA, E., SEKIKAWA, M. & OZAKI, T. (1984) Three-dimensional measurements of the occlusal surfaces of the upper molars in a Dutch population, *Journal of Dental Research*, vol. 63, pp. 1298-1301.

KARRMAN, C., BACKMAN, B., DIXON, M., HOLMGREN, G. & FORSMAN, K. (1997) Mapping of the locus for autosomal dominant *Amelogenesis imperfecta* (AIH2) to a 4-Mb YAC contig on chromosome 4qll-q21, *Genomics*, vol. 39, pp. 164-170.

KARRMAN, C., BACKMAN, B., HOLMGREN, G. & FORSMAN, K. (1996) Genetic heterogeneity of autosomal dominant *Amelogenesis imperfecta* demonstrated by its exclusion from the AIH2 region on human chromosome 4Q, *Archives of Oral Biology*, vol. 41, pp. 893-900.

KAWASAKI, K. & WEISS, K.M. (2003) Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster, *Proceedings of the National Academy of Sciences*, vol. 100, no. 7, pp. 4060-4065.

KEISER, G.A. (1990) Human adult odontometrics, Cambridge University Press.

KELLER, U. & HIBST, R. (1993) Lasers in dentistry: clinical application today and tomorrow, *Dental Applications of Lasers*, vol. 2080, SPIE, Budapest, Hungary, pp. 2-9.

KHALAF, K., ELCOCK, C., SMITH, R.N. & BROOK, A.H. (2005b) Fluctuating dental asymmetry of multiple crown variables measured by image analysis system, *Archives of Oral Biology*, vol. 50, pp. 249-253.

KHALAF, K., ROBINSON, D.L., ELCOCK, C., SMITH, R.N. & BROOK, A.H. (2001) Determination and comparison of size variables of upper central incisors in patients with supernumerary teeth, in A.H. Brook (ed.), *Dental Morphology*, Sheffield University Academic Press UK pp. 343-350.

KHALAF, K., ROBINSON, D.L., ELCOCK, C., SMITH, R.N. & BROOK, A.H. (2005a) Tooth size in patients with supernumerary teeth and a control group measured by image analysis system, *Archives of Oral Biology*, vol. 50, no. 2, pp. 243-248.

KHALAF, K., SMITH, R.N., ELCOCK, C. & BROOK, A.H. (2009) Multiple crown size variables of the upper incisors in patients with supernumerary teeth compared with controls, *Archives of Oral Biology*, vol. 54, pp. S71-S78.

KHAMBAY, B.S., NEBEL, J.C., BOWMAN, J., AYOUB, A.F., WALKER, F. & HADLEY, D. (2002) A pilot study: 3D stereo photogrammetric image superimposition on to 3D CT scan images — the future of orthognathic surgery, *International Journal of Adult Orthodontics and Orthognathic Surgery*, vol. 17, pp. 244-252.

KHURANA, R., TREDWIN, C.J., WEISBLOOM, M. & MOLES, D.R. (2007) A clinical evaluation of the individual repeatability of three commercially available colour measuring devices, *British Dental Journal*, vol. 203, no. 12, pp. 675 -680

KIDA, M., ARIGA, T., SHIRAKAWA, T., OGUCHI, H. & SAKIYAMA, Y. (2002) Autosomal-dominant hypoplastic form of *Amelogenesis imperfecta* caused by an enamelin gene mutation at the exon-intron boundary, *Journal of Dental Research*, vol. 81, pp. 738-742.

KIDA, M., SAKIYAMA, Y., MATSUDA, A., TAKABAYASHI, S., OCHI, H., SEKIGUCHI, H., MINAMITAKE, S. & ARIGA, T. (2007) A Novel Missense Mutation (p.P52R) in Amelogenin Gene Causing X-linked *Amelogenesis imperfecta*, *Journal of Dental Research*, vol. 86, pp. 69-72.

KIM, I., PAIK, K.-S. & LEE, S.-P. (2007) Quantitative evaluation of the accuracy of microcomputed tomography in tooth measurement, *Clinical Anatomy*, vol. 20, no. 1, pp. 27-34.

KIM, J.W., SEYMEN, F., LIN, B.P., KIZILTAN, B., GENCAY, K., SIMMER, J.P. & HU, J.C. (2005b) ENAM mutations in autosomal-dominant *Amelogenesis imperfecta*, *Journal of Dental Research*, vol. 84, pp. 278-282.

KIM, J.W., SIMMER, J.P., HU, Y.Y., LIN, B.P.L., BOYD, C., WRIGHT, J.T., YAMADA, C.J.M., RAYES, S.K., FEIGAL, R.J. & HU, J.C.C. (2004) Amelogenin p.M1T and p.W4S Mutations Underlying Hypoplastic X-linked *Amelogenesis imperfecta*, *Journal of Dental Research*, vol. 83, no. 5, pp. 378-383.

KIM, J.W., SIMMER, J.P., LIN, B.P., SEYMEN, F., BARTLETT, J.D. & HU, J.C. (2006b) Mutational analysis of candidate genes in 24 *Amelogenesis imperfecta* families, *European Journal of Oral Science*, vol. 114 no. Suppl 1, pp. 3-12.

KIM, J.-W., LEE, S.-K., LEE, Z.H., PARK, J.-C., LEE, K.-E., LEE, M.-H., PARK, J.-T., SEO, B.-M., HU, J.C.C. & SIMMER, J.P. (2008) FAM83H Mutations in Families with Autosomal-Dominant Hypocalcified *Amelogenesis imperfecta*, *The American Journal of Human Genetics*, vol. 82, no. 2, pp. 489-494.

KIM, J.-W., SIMMER, J.P., HART, T.C., HART, P.S., RAMASWAMI, M.D., BARTLETT, J.D. & HU, J.C.-C. (2005a) MMP-20 mutation in autosomal recessive pigmented hypomaturation *Amelogenesis imperfecta*, *Journal of Medical Genetics*, vol. 42, no. 3, pp. 271-275.

KIM, J.Y., CHA, Y.G., CHO, S.W., KIM, E.J., LEE, M.J., LEE, J.M., CAI, J., OHSHIMA, H. & JUNG, H.S. (2006a) Inhibition of Apoptosis in Early Tooth Development Alters Tooth Shape and Size, *Journal of Dental Research*, vol. 85, pp. 530-535

KIRKHAM, J., BROOKES, S.J., SHORE, R.C., BONASS, W.A., SMITH, D.A., WALLWORK, M.L. & ROBINSON, C. (1998) Atomic force microscopy studies of crystal surface topology during enamel development., *Connect Tissue Research*, vol. 38(1-4), no. 91-100, pp. 139-145.

KIRKHAM, J., BROOKES, S.J., SHORE, R.C., WOOD, S.R., SMITH, D.A., ZHANG, J., CHEN, H. & ROBINSON, C. (2002) Physico-chemical properties of crystal surfaces in matrix-mineral interactions during mammalian biomineralisation, *Current Opinion in Colloid* & *Interface Science*, vol. 7, no. 1-2, pp. 124-132.

KIRKHAM, J., ZHANG, J., BROOKES, S.J., SHORE, R.C., WOOD, S.R., SMITH, D.A., WALLWORK, M.L., RYU, O.H. & ROBINSON, C. (2000) Evidence for charge domains on developing enamel crystal surfaces, *Journal of Dental Research*, vol. 79, no. 12, pp. 1943-1947.

KLINGENBERG, C.P. (2002) Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms, *Gene*, vol. 287, no. 1-2, pp. 3-10.

KLINGENBERG, C.P., LEAMY, L.J. & CHEVERUD, J.M. (2004) Integration and Modularity of Quantitative Trait Locus Effects on Geometric Shape in the Mouse Mandible, *Genetics*, vol. 166, no. 4, pp. 1909-1921.

KLINGENBERG, C.P., LEAMY, L.J., ROUTMAN, E.J. & CHEVERUD, J.M. (2001) Genetic Architecture of Mandible Shape in Mice: Effects of Quantitative Trait Loci Analyzed by Geometric Morphometrics, *Genetics*, vol. 157, no. 2, pp. 785-802.

KONDO, T., ONG, S.H. & FOONG, K.W.C. (2004) Tooth segmentation of dental study models using range images, *IEEE Transactions on Medical Imaging*, vol. 23, no. 3, pp. 350-362.

KORKHAUS, G. (1930) A new orthodontic Symmetrograph, International Journal of Orthodontics, vol. 16, pp. 665-668.

KRINKE, G.J. (2004) Normative Histology of Organs, in H.J. Hedrich & G. Bullock (eds), *The Laboratory Mouse*, Academic Press, London, pp. 133-166.

KURODA, T., MOTOHASHI, N., TOMINAGA, R. & IWATA, K. (1996) Threedimensional cast analysing system using laser scanning, *American Journal of Orthodontics* and Dentofacial Orthoptics, vol. 110, pp. 365-369. LAGERSTRÖM-FERMÉR, M., DAHL, N., NAKAHORI, Y., NAKAGOME, Y., BÄCKMAN, B., LANDEGREN, U. & PETTERSSON, U. (1991) A deletion in the amelogenin gene (AMG) causes X-linked *Amelogenesis imperfecta* (AIH1), *Genomics*, vol. 10, no. 4, pp. 971-975.

LAGERSTRÖM-FERMÉR, M. & LANDEGREN, U. (1995) Understanding Enamel Formation from Mutations Causing X-Linked *Amelogenesis imperfecta*, *Connective Tissue Research*, vol. 32, no. 1-4, pp. 241-246.

LAGERSTRÖM-FERMÉR, M., NILSSON, M., BÄCKMAN, B., SALIDO, E., SHAPIRO, L., PETTERSSON, U. & LANDEGREN, U. (1995) Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked *Amelogenesis imperfecta*, *Genomics*, vol. 26, no. 1, pp. 159-162.

LATH, D.L., JOHNSON, C., SMITH, R.N. & BROOK, A.H. (2006) Measurement of stain removal *in vitro*: a comparison of two instrumental methods, *International Journal of Dental Hygiene*, vol. 4, no. 3, pp. 129-132.

LATH, D.L., SMITH, R.N., GUAN, Y.H., KARMO, M. & BROOK, A.H. (2007b) Measurement of stain on extracted teeth using spectrophotometry and digital image analysis, *International Journal of Dental Hygiene*, vol. 5, no. 3, pp. 174-179.

LATH, D.L., WILDGOOSE, D.G., GUAN, Y.H., LILLEY, T.H., SMITH, R.N. & BROOK, A.H. (2007a) A digital image analysis system for the assessment of tooth whiteness compared to visual shade matching, *Journal of Clinical Dentistry*, vol. 18 no. 1, pp. 17-20.

LAU, E.C., MOHANDAS, T.K., SHAPIRO, L.J., SLAVKIN, H.C. & SNEAD, M.L. (1989) Human and mouse amelogenin gene loci are on the sex chromosomes, *Genomics*, vol. 4, no. 2, pp. 162-168.

LAVELLE, C.L.B. (1972) Maxillary and mandibular tooth size in different racial groups and different occlusal categories, *American Journal of Orthodontics*, vol. 61, pp. 29-37.

LAVELLE, C.L.B. (1983) Study of mandibular shape in the mouse, *ACTA Anatomica*, vol. 314-320, no. 117 p. 4.

LAZZARI, V., TAFFOREAU, P., AGUILAR, J.-P. & MICHAUX, J. (2009) Topographic maps applied to comparative molar morphology: the case of murine and cricetine dental plans (Rodentia, Muroidea), *Paleobiology*, vol. 34, no. 1, pp. 46-64.

LEBLOND, C.P. & WARSHAWSKY, H. (1979) Dynamics of enamel formation in the rat incisor tooth, *Journal of Dental Research*, vol. 58(B), pp. 950-975.

LEE, S.J. & CHANG, D.Y. (2005) Laser scanning probe with multiple detectors used for sculptured surface digitization in reverse engineering, *Journal of Physics*, vol. 13, pp. 155-158.

LELE, S. & RICHTSMEIER, J.T. (1991) Euclidean distance matrix analysis: a coordinatefree approach for comparing biological shapes using landmark data, *American Journal of Physical Anthropology*, vol. 86, no. 3, pp. 415-427. LENCH, N.J., BROOK, A.H. & WINTER, G.B. (1994) SSCP detection of a nonsense mutation in exon 5 of the amelogenin gene (AMGX) causing X-linked Amelogenesis imperfecta (AIH1), Human Molecular Genetics, vol. 3, pp. 827-828.

LENCH, N.J. & WINTER, G.B. (1995) Characterisation of molecular defects in X-linked Amelogenesis imperfecta (AIH1), Human Mutation, vol. 5, pp. 251-259.

LESOT, H. & BROOK, A.H. (2009) Epithelial histogenesis during tooth development, *Archives of Oral Biology*, vol. 54, pp. S25-S33.

LESOT, H., PETERKOVA R, VONESCH J-L, VIRIOT L, TURECKOVA J, PETERKA M & RUCH, J.V. (1998) Early stages of tooth morphogenesis in mouse analyzed by 3D reconstructions, *European Journal of Oral Sciences*, no. 106, pp. 64-70.

LESOT, H., VONESCH, J.L., PETERKA, M., TURECKOVA, J., PETERKAKOVA, R. & RUCH, J.V. (1996) Mouse molar morphogenes revisited by three dimensional reconstruction: (II). Spatial distribution 01 mitoses and apoptosis in cap to bell staged first and second upper molar teeth. , *International Journal of Developmental Biology*, vol. 40, pp. 1017-1031.

LEZOT, F., DESCROIX, V., MESBAH, M., HOTTON, D., BLIN, C., PAPAGERAKIS, P., MAURO, N., KATO, S., MACDOUGALL, M., SHARPE, P. & BERDAL, A. (2002) Cross-Talk Between Msx/Dlx Homeobox Genes and Vitamin D During Tooth Mineralization, *Connective Tissue Research*, vol. 43, no. 2, pp. 509 - 514.

LEZOT, F., THOMAS, B., HOTTON, D., FOREST, N., ORESTES-CARDOSO, S., ROBERT, B., SHARPE, P. & BERDAL, A. (2000) Biomineralization, Life-Time of Odontogenic Cells and Differential Expression of the Two Homeobox Genes MSX-1 and DLX-2 in Transgenic Mice, *Journal of Bone and Mineral Research*, vol. 15, no. 3, pp. 430-441.

LEZOT, L., THOMAS, B., GREENE, S.R., HOTTON, D., YUAN, Z.-A., CASTANEDA, B., BOLAÑOS, A., DEPEW, M., SHARPE, P. & GIBSON, C., W., BERDAL, A. (2008) Physiological implications of DLX homeoproteins in enamel formation, *Journal of Cellular Physiology*, vol. 216, no. 3, pp. 688-697.

LI, W., GIBSON, C.W., ABRAMS, W.R., ANDREWS, D.W. & DENBESTEN, P.K. (2001) Reduced hydrolysis of amelogenin may result in X-linked *Amelogenesis imperfecta*, *Matrix Biology*, vol. 19, no. 8, pp. 755-760.

LI, W., MATHEWS, C., GAO, C. & DENBESTEN, P.K. (1998) Identification of two additional exons at the 3' end of the amelogenin gene, *Archives of Oral Biology*, vol. 43, no. 6, pp. 497-504.

LI, Y., YUAN, Z.-A., ARAGON, M.A., KULKARNI, A.B. & GIBSON, C.W. (2006) Comparison of body weight and gene expression in amelogenin null and wild-type mice, *European Journal of Oral Sciences*, vol. 114, no. s1, pp. 190-193.

LIAO, B.-Y. & ZHANG, J. (2008) Null mutations in human and mouse orthologs frequently result in different phenotypes, *Proceedings of the National Academy of Sciences*', vol. 105, pp. 6987-6992.

LINDE, A. & GOLDBERG, M. (1993) Dentinogenesis, *Critical Reviews in Oral Biology & Medicine*, vol. 4, no. 5, pp. 679-728.

LINE, S.R.P. (2001) Molecular morphogenetic fields in the development of human dentition, *Journal of Theoretical Biology*, vol. 211, no. 1, pp. 67-75.

LINE, S.R.P. (2003) Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution, *Evolution and Development*, vol. 5, no. 3, pp. 295-304.

LOEW, F.M. & COHEN, B.J. (2002) Laboratory Animal Medicine Historical Perspectives, in J.G. Fox, L.C. Anderson, F.M. Loew & F.W. Quimby (eds), *Laboratory Animal Medicine (Electronic Book)*, Academic Press, Amsterdam; Oxford.

LU, Y., PAPAGERAKIS, P., YAMAKOSHI, Y., HU, J.C.C., BARTLETT, J.D. & SIMMER, J.P. (2008) Functions of KLK4 and MMP-20 in dental enamel formation, *Biological Chemistry*, vol. 389, no. 6, pp. 695-700.

LUCKETT, W.P. & HARTENBERGER, J.L. (eds) (1985) Evolutionary Relationships among Rodents. A Multidisciplinary Analysis, Plenum, New York.

LUMSDEN, A.G.S. (1988) Spatial organisation of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ, *Development*, vol. 103, pp. 155-169. LUTHER, P. G. (1949) Enzymatic maceration of skeletons, *Proceedings of the Linnean Society*, 161, 146-147.

LYNGSTADAAS, S.P., MOINICHEN, C.B. & RISNES, S. (1998) Crown morphology, enamel distribution and enamel structure in mouse molars, *The Anatomical Record*, vol. 250, pp. 268-280.

LYON, M. (1961) Gene action in the X chromosome of the mouse (Mus musculus L.), Nature, vol. 190, pp. 372-373.

MAAS, R., & BEI, M. (1997) The genetic control of early tooth development, *Critical Reviews in Oral Biology & Medicine*, vol. 8, no. 4-39.

MACDOUGALL, M. (2003) Dental structural diseases mapping to human chromosome 4q21, *Connective Tissue Research*, vol. 44, pp. 285-291.

MACDOUGALL, M., DUPONT, B.R., SIMMONS, D., REUS, B., KREBSBACH, P., KÄRRMAN, C., HOLMGREN, G., LEACH, R.J. & FORSMAN, K. (1997) Ameloblastin Gene (AMBN) Maps within the Critical Region for Autosomal Dominant *Amelogenesis imperfecta* at Chromosome 4q21, *Genomics*, vol. 41, no. 1, pp. 115-118.

MACDOUGALL, M., NYDEGGER, J., GU, T.T., SIMMONS, D., LUAN, X., CAVENDER, A. & D'SOUZA, R.N. (1998) Developmental Regulation of Dentin Sialophosphoprotein during Ameloblast Differentiation: A Potential Enamel Matrix Nucleator, *Connective Tissue Research*, vol. 39, no. 1, pp. 25 - 37.

MACDOUGALL, M., SIMMONS, D., GU, T.T. & DONG, J. (2002) MEPE/OF45, a new dentin/bone matrix protein and candidate gene for dentin diseases mapping to chromosome 4q21, *Connective Tissue Research*, vol. 43, no. 320- 330.

MACENTEE, M. & LAKOWSKI, R. (1981) Instrumental colour measurement of vital and extracted human teeth, *Journal of Oral Rehabilitation*, vol. 8, no. 3, pp. 203-208.

MAO, J.J. & NAH, H.-D. (2004) Growth and development: hereditary and mechanical modulations, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 125, no. 6, pp. 676-689.

MARDH, K.C., BACKMAN, B., HOLMGREN, G., HU, J.C., SIMMER, J.P. & FORSMAN-SEMB, K. (2002) A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant *Amelogenesis imperfecta* (AIH2), *Human Molecular Genetics*, vol. 11, pp. 1069-1074.

MARGOLIS, H.C., BENIASH, E. & FOWLER, C.E. (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation, *Journal of Dental Research*, vol. 85, no. 9, pp. 775-793.

MASUYA, H., SHIMIZU, K., SEZUTSU, H., SAKURABA, Y., NAGANO, J., SHIMIZU, A., FUJIMOTO, N., KAWAI, A., MIURA, I., KANEDA, H., KOBAYASHI, K., ISHIJIMA, J., MAEDA, T., GONDO, Y., NODA, T., WAKANA, S. & SHIROISHI, T. (2005) Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human *Amelogenesis imperfecta* (AI), *Human Molecular Genetics*, vol. 14, no. 5, pp. 575-583.

MASUYAMA, T., MIYAJIMA, K., OHSHIMA, H., OSAWA, M., YOKOI, NORIHIDE.,, OIKAWA, T. & TANIGUCHI, K. (2005) A novel autosomal-recessive mutation, whitish chalk-like teeth, resembling *Amelogenesis imperfecta*, maps to rat chromosome 14 corresponding to human 4q21, *European Journal of Oral Sciences*, vol. 113, no. 6, pp. 451-456.

MAYERS, M., FIRESTONE, A.R., RASHID, R. & VIG, K.W.L. (2005) Comparison of peer assessment rating (PAR) index scores of plaster and computer-based digital models, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 128, no. 4, pp. 431-434.

MAYHALL, J.T. & ALVESALO, L. (1992) Sexual dimorphism in the three-dimensional determinations of the maxillary first molar; cusp height, area, volume and position, in Smith.P. & Freund (eds), *Structure, Function and Evolution of Teeth*, Tel Aviv.

MAYHALL, J.T. & KAGEYAMA, I. (1997) A new, three-dimensional method for determining tooth wear, *American Journal of Physical Anthropology*, vol. 103, pp. 463-469.

MCCOLLUM, M.A. & SHARPE, P.T. (2001a) Evolution and development of teeth, *Journal of Anatomy*, vol. 199, no. 1-2, pp. 153-159.

MCCOLLUM, M.A. & SHARPE, P.T. (2001b) Developmental genetics and early hominid craniodental evolution, *Bio Essays*, vol. 23, no. 6, pp. 481-493.

MCKEOWN, H.F., ROBINSON, D.L., ELCOCK, C., AL-SHAROOD, M. & BROOK, A.H. (2002) Tooth dimensions in hypodontia patients, their unaffected relatives and a control group measured by a new image analysis system, *European journal of Orthodontics*, vol. 24, no. 2, pp. 131-141.

MECKEL, A.H., GRIEBSTEIN, W.J. & NEAL, R.J. (1965) Structure of mature human dental enamel as observed by electron microscopy, *Archives of Oral Biology*, vol. 10, no. 5, pp. 775-783.

MIK, K.H.Y. & COOKE, M.S. (1998) Space analysis a comparison between sonic digitization (DigiGraphTM Workstation) and the digital calliper, *European Journal of Orthodontics*, vol. 20, no. 653-661.

MILETICH, I. & SHARPE, P.T. (2003) Normal and abnormal dental development, *Human Molecular Genetics*, vol. 12, no. Review Issue 1, pp. R69-R73.

MINDERMANN, A., NIEMZ, M.H., EISENMANN, L., LOESEL, F.H. & BILLE, J.F. (1993) Comparison of three different laser systems for application in dentistry, *Dental Applications of Lasers*, vol. 2080, SPIE, Budapest, Hungary, pp. 68-76.

MITSIADIS, T.A. & SMITH, M.M. (2006) How do genes make teeth to order through development? *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, vol. 306B, no. 3, pp. 177-182.

MOINICHEN, C.B., LYNGSTADAAS, S.P. & RISNES, S. (1996) Morphological Characteristics of Mouse Incisor Enamel, *Journal of Anatomy*, vol. 189, no. 2, pp. 325-333.

MOORE, W.J. (1973) An experimental study of the functional components of growth in the rat mandible, *ACTA Anatomica (Basel)*, vol. 85, pp. 378-385.

MOORREES, C.F.A. & REED, R.B. (1964) Correlations among crown diameters of human teeth, *Archives of Oral Biology*, vol. 9, pp. 685-697.

MOORREES, C.F.A., THOMSEN, S.O., JENSEN, E. & YEN, P.K. (1957) Mesiodistal crown diameters of the deciduous and permanent teeth in individuals, *Journal of Dental Research*, vol. 36, no. 39-47.

MORADIAN-OLDAK, J., PAINE, M.L., LEI, Y.P., FINCHAM. A.G. & SNEAD, M.L. (2000) Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy, *Journal of Structural Biology*, vol. 131, pp. 27-37.

MOSS, M.L. (1988) Finite element method comparison of murine mandibular form difference, *Journal Craniofacial Genetics and Developmental Biology*, vol. 8, pp. 3-20.

MOTOHASHI, N. & KURODA, T. (1999) A 3D computer-aided design system applied to diagnosis and treatment planning in orthodontics and orthognathic surgery, *European journal of Orthodontics*, vol. 21, pp. 263-274.

MOYERS, R.E. (1988) A handbook of orthodonics, Fourth Edition, Year Book Medical Publishers

MYERS, S.L., SHORE, R.C., BROOKES, S.J., BARRON, M.J., DIXON, M.J. & KIRKHAM, J. (2009) Non-destructive Quantitative Phenotyping of Murine Enamel (227), *British Society for Dental Research*, Glasgow, September 1-4.

NAGANO, T., KAKEGAWA, A., YAMAKOSHI, Y., TSUCHIYA, S., HU, J.C.-C., GOMI, K., ARAI, T., BARTLETT, J.D. & SIMMER, J.P. (2009) Mmp-20 and Klk4 Cleavage Site Preferences for Amelogenin Sequences, *Journal of Dental Research*, vol. 88, no. 9, pp. 823-828.

NAKAHORI, Y., TAKENAKA, O. & NAKAGOME, Y. (1991) A human X-Y homologous region encodes 'amelogenin, *Genomics*, vol. 9, pp. 264-269.

NAKASIMA, A., TERAJIMA, M., MORI, N., HOSHINO, Y., TOKUMORI, K., AOKI, Y. & HASHIMOTO, S. (2005) Three-dimensional computer-generated head model reconstructed from cephalograms, facial photographs, and dental cast models, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 127, no. 3, pp. 282-292.

NANCI, A.R. (2003) Ten Cate's Oral Histology; Development, Structure, and Function, Seventh Edition, Mosby, St Louis.

NEBGEN, D.R., INOUE, H., SABSAY, B., WEI, K., HO, C.S. & VEIS, A. (1999) Identification of the chondrogenic-inducing activity from bovine dentin (bcia) as a low-molecular-mass amelogenin polypeptide, *Journal of Dental Research*, vol. 78, pp. 1484-1494.

NISHII, Y., NOJIMA, K. & TAKANE, Y., ET AL. (1998) Integration of the maxillofacial three-dimensional CT image and the three dimensional dental surface image, *Journal of the Japanese Orthodontic Society*, vol. 57, no. 189-194.

OHSHIMA, H., NAKASONE, N., HASHIMOTO, E., SAKAI, H., NAKAKURA-OHSHIMA, K. & HARADA, H. (2005) The eternal tooth germ is formed at the apical end of continuously growing teeth, *Archives of Oral Biology*, vol. 50, no. 2, pp. 153-157.

OKUBO, S.R., KANAWATI, A., RICHARDS, M.W. & CHILDRESS, S. (1998) Evaluation of visual and instrumental shade matching, *Journal of Prosthetic Dentistry*, vol. 80, pp. 642-648.

OLT, S. & JAKOB, P.M. (2004) Contrast-enhanced dental MRI for visualization of the teeth and jaw, *Magnetic Resonance in Medicine*, vol. 52, no. 1, pp. 174-176.

ONLINE MENDELIAN INHERITANCE IN MAN, (OMIM) National Centre for Biotechnology Information, USA. National Library of Medicine, USA, National Institute of Medicine, USA. <u>http://www.ncbi.nlm.nih.gov/omim</u>

OSBORN, J.W. (1971) The ontogeny of tooth succession in *Lacerta vivipara*, *Proceedings of the Royal Society of London*, vol. 179, pp. 261-289.

OSBORN, J.W. (1978) Morphogenetic gradients: fields versus clones, in P.M. Butler & K.M. Joysey (eds), *Development, Function and Evolution of Teeth*, Academic Press, London, pp. 171-201.

OTHMAN, S.A. & HARRADINE, N.W.T. (2006) Tooth-size Discrepancy and Bolton's Ratios: a literature review, *Journal of Orthodontics*, no. 33, pp. 45-51.

OZDEMIR, D., HART, P.S., FIRATLI, E., AREN, G., RYU, O.H. & HART, T.C. (2005) Phenotype of ENAM Mutations is Dosage-dependent, *Journal of Dental Research*, vol. 84, no. 11, pp. 1036-1041.

PAINE, M.L., LEI, Y.-P., DICKERSON, K. & SNEAD, M.L. (2002) Altered Amelogenin Self-assembly Based on Mutations Observed in Human X-linked *Amelogenesis imperfecta* (AIH1), *Journal of Biological Chemistry*, vol. 277, no. 19, pp. 17112-17116.

PAINE, M.L. & SNEAD, M.L. (2005) Tooth developmental biology: disruptions to enamelmatrix assembly and its impact on biomineralization, *Orthodontics and Craniofacial Research*, vol. 8, no. 4, pp. 239-251.

PAINE, M.L., ZHU, D.-H., LUO, W., BRINGAS, P., GOLDBERG, M., WHITE, S.N., LEI, Y.-P., SARIKAYA, M., FONG, H.K. & SNEAD, M.L. (2000) Enamel Biomineralization Defects Result from Alterations to Amelogenin Self-Assembly, *Journal of Structural Biology*, vol. 132, no. 3, pp. 191-200.

PAINE, M.L., ZHU, D.-H., LUO, W. & SNEAD, M.L. (2004) Overexpression of TRAP in the Enamel Matrix Does Not Alter the Enamel Structural Hierarchy, *Cells Tissues Organs*, vol. 176, pp. 7-16.

PAPAGERAKIS, P., IBARRA, J.M., INOZENTSEVA, N., DENBESTEN, P. & MACDOUGALL, M. (2005) Mouse Amelogenin Exons 8 and 9: Sequence Analysis and Protein Distribution, *Journal of Dental Research*, vol. 84, no. 7, pp. 613-617.

PAPAGERAKIS, P., LIN, H.K., LEE, K.Y., HU, Y., SIMMER, J.P., BARTLETT, J.D. & HU, J.C.C. (2008) Premature Stop Codon in MMP20 Causing *Amelogenesis imperfecta*, *Journal of Dental Research*, vol. 87, no. 1, pp. 56-59.

PAPAGERAKIS, P., MACDOUGALL, M., HOTTON, D., BAILLEUL-FORESTIER, I., OBOEUF, M. & BERDAL, A. (2003) Expression of amelogenin in odontoblasts, *Bone*, vol. 32, pp. 228-240.

PARKINSON, C.R. & SASOV, A. (2008) High-resolution non-destructive 3D interrogation of dentin using X-ray nanotomography, *Dental Materials*, vol. 24, no. 6, pp. 773-777.

PARSONS, T.E., KRISTENSEN, E., HORNUNG, L., DIEWERT, V.M., BOYD, S.K., GERMAN, R.Z. & HALLGRÍMSSON, B. (2008) Phenotypic variability and craniofacial dysmorphology: Increased shape variance in a mouse model for cleft lip, *Journal of Anatomy*, vol. 212, no. 2, pp. 135-143.

PAUL, S., PETER, A., PIETROBON, N. & HAMMERLE, C.H.F. (2002) Visual and Spectrophotometric Shade Analysis of Human Teeth, *Journal of Dental Research*, vol. 81, no. 8, pp. 578-582.

PIRTTINIEMI, P., ALVESALO, L., PIRILÄ-PARKKINEN, K., SILVÉN, O., HEIKKILÄ, J., JULKU, J. & KARJALAHTI, P. (1999) A new method for measuring three-dimensional dental morphology, *Proceedings of the 11th International Symposium on Dental Morphology*, University of Oulu.

PISPA, J. & THESLEFF, I. (2003) Mechanisms of ectodermal organogenesis, *Developmental Biology*, vol. 262, pp. 195-205.

PLATT, J.P. (1893) Ectodermic origin of the cartilages of the head, Anat Ans, vol. 8, pp. 506-509.

PLYUSNIN, I., EVANS, A.R., KARME, A., GIONIS, A. & JERNVALL, J. (2008) Automated 3D Phenotype Analysis Using Data Mining, *Public Library of Science ONE*, vol. 3, no. 3, p. e1742.

QUI (2006) Mighty Mouse, Nature, vol. 444, pp. 814-816.

QUIMBY, M.L., VIG, K.W.L., ROBERT, G.R. & FIRESTONE, A.R. (2004) The Accuracy and Reliability of Measurements Made on Computer-Based Digital Models, *Angle Orthodontist*, vol. 74, no. 3, pp. 298-303.

RAJPAR, M.H., HARLEY, K., LAING, C., DAVIES, R.M. & DIXON, M.J. (2001) Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant *Amelogenesis imperfecta*, *Human Molecular Genetics*, vol. 10, pp. 1673-1677.

RAMAESH, T., AND BARD, J.B.L. (2003) The growth and morphogenesis of the early mouse mandible: a quantitative analysis, *Journal of Anatomy*, vol. 203, no. 2, pp. 213-222.

RAVASSIPOUR, D.B., HART, S., HART, T.C., RITTER, A.V., YAMAUCHI, R.M., GIBSON, C. & WRIGHT, J.T. (2000) Unique enamel phenotype associated with amelogenin gene (*AMELX*) codon 41 point mutation, *Journal of Dental Research*, vol. 79, pp. 1476-1481.

RAVINDRANATH, H.H., CHEN, L.S., ZEICHNER-DAVID, M., ISHIMA, R. & RAVINDRANATH, R.M. (2004) Interaction between the enamel matrix proteins amelogenin and ameloblastin, *Biochemical and Biophysical Research Communications*, vol. 323, pp. 1075-1083.

RAVINDRANATH, R.M.H., BASILROSE, R.M., RAVINDRANATH, N.H. & VAITHEESVARAN, B. (2003) Amelogenin interacts with cytokeratin-5 in ameloblasts during enamel growth, *Journal of Biological Chemistry*, vol. 278, pp. 20293-20302.

RAVINDRANATH, R.M.H., MORADIAN-OLDAK, J. & FINCHAM, A.G. (1999) Tyrosyl motif in amelogenins binds N-acetyl-D-glucosamine, *Journal of Biological Chemistry*, vol. 274, pp. 2464-2471.

REICH, C. (1998) Photogrammetric matching of point clouds for 3D measurement of complex objects, *Proceedings of SPIE*, vol. 3520, pp. 100-110.

REIF, W.E. (1982) Evolution of dermal skeleton and dentition in vertebrates: the odontode-regulation theory, *Evolutionary Biology*, vol. 15, pp. 287-368.

REKOW, E.D. (2006) Dental CAD/CAM systems: A 20-year success story, Journal of the American Dental Association, vol. 137, no. suppl1, pp. 5S-6.

RICHMOND, S. (1987) Recording the dental cast in three dimensions, American Journal of Orthodontics and Dentofacial Orthopedics, vol. 92, pp. 199-206.

RINSES, S. (1979b) Amethod of calculating the speed of movement of ameloblasts during rat incisor amelogenesis, *Archives of Oral Biology*, vol. 24, pp. 299-306.

RISNES, S. (1979a) A scanning electron microscope study of aberrations in the prism pattern of rat incisor inner enamel, *American Journal of Anatomy*, vol. 154, pp. 419-436.

RISNES, S. (1987) Multiplane sectioning and scanning electron microscopy as a method for studying the three-dimensional structure of mature dental enamel, *Scanning Microscopy*, vol. 1, pp. 1893-1902.

RISNES, S. (1998) Mature enamel morphology and forming enamel dynamics: Crystal orientation, crystal continuity, prism diameter, Retzius lines, and prism cross-striations, *Proceedings of the 11th International Symposium on Dental Morphology Research*, eds J.T. Mayhall & T. Heikkinen, Oulu University Press, Finland, pp. 312-322.

RISNES, S., SEPTIER, D., DE PERIERE, D.D. & GOLDBERG, M. (2002) TEM Observations on the Ameloblast/Enamel Interface in the Rat Incisor, *Connective Tissue Research*, vol. 43, no. 2-3, pp. 496-504.

ROBINSON, C., BRIGGS, H.D. & ATKINSON, P.J. (1981a) Histology of enamel organ and chemical composition of adjacent enamel in rat incisors, *Calcified Tissue International*, vol. 33, no. 5, pp. 513-520.

ROBINSON, C., FUCHS, P. & WEATHERELL, J.A. (1981b) The appearance of developing rat incisor enamel using a freeze fracturing technique, *Journal of Crystal Growth*, vol. 53, pp. 160-165.

ROBINSON, C., BRIGGS, H.D., KIRKHAM, J. & ATKINSON, P.J. (1983) Changes in the protein components of rat incisor enamel during tooth development, *Archives of Oral Biology*, vol. 28, pp. 993-1000.

ROBINSON, C., KIRKHAM, J., STONEHOUSE, N.J. & SHORE, R.C. (1989) Control of crystal growth during enamel maturation, *Connective Tissue Research*, vol. 22, pp. 139-145.

ROBINSON, C., BROOKES, S.J., SHORE, R.C. & KIRKHAM, J. (1998) The developing enamel matrix: nature and function, *European Journal of Oral Sciences*, vol. 106, pp. 282-291.

ROBINSON, D.L., BLACKWELL, P.G., STILLMAN, E.C. & BROOK, A.H. (2001) Planar Procrustes analysis of tooth shape, *Archives of Oral Biology*, vol. 46, no. 3, pp. 191-199.

ROBINSON, D.L., BLACKWELL, P.G., STILLMAN, E.C. & BROOK, A.H. (2002) Impact of landmark reliability on the planar Procrustes analysis of tooth shape, *Archives of Oral Biology*, vol. 47, no. 7, pp. 545-554.

ROBINSON, C., SHORE, R.C., WOOD, S.R., BROOKES, S.J., SMITH, D.A.M., WRIGHT, J.T., CONNELL, S. & KIRKHAM, J. (2003) Subunit Structures in Hydroxyapatite Crystal Development in Enamel: Implications for Amelogenesis imperfecta, Connective Tissue Research, vol. 44, pp. 65-71.

RODGERS, J.L. & NICEWANDER, W.A. (1988) Thirteen Ways to Look at the Correlation Coefficient, *The American Statistician*, vol. 42, no. 1, pp. 59-66.

ROSSOUW, P.E., PRESTON, C.B., LOMBARD, C.J. & TRUTER, J.W. (1993) A longitudinal evaluation of the anterior border of the dentition, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 104, no. 146-152.

ROTH, V.L. (1988) The biological basis of homology, in C.J. Humphries (ed.), Ontogeny and Systematics, Columbia University Press, New York.

ROWE, S.H. & WELFORD, W.T. (1967) Surface Topography of Non-Optical Surfaces by Projected Interference Fringes, *Nature*, vol. 216, no. 5117, pp. 786-787.

ROWE, T., COLBERT, M.W., KETCHAM, R.A., MAISANO, J.A. & OWEN, P.R. (2001) High-resolution X-ray computed tomography in vertebrate morphology, *Journal of Morphology*, vol. 248, no. 3, p. 277.

RUCH, J.V. & LESOT, H. (2000) Molecules implicated in odontoblast terminal differentiation and dentinogenesis, in M.F. Teaford, M.M. Smith & M.W.J. Ferguson (eds), *Development, Function and Evolution of Teeth* Cambridge University Press, Cambridge, pp. 22-36.

SAKAKURA, Y., FUJIWARA, N. & NAWA, T. (1989) Epithelial cytodifferentiation and extracellular matrix formation in enamel-free areas of the occlusal cusp during development of mouse molars: light and electron microscopic studies, *American Journal of Anatomy*, vol. 184, pp. 287-297.

SALAZAR-CIUDAD, I. & JERNVALL, J. (2002) A gene network model accounting for development and evolution of mammalian teeth, *Proceedings of the National Academy of Sciences*, vol. 99, no. 12, pp. 8116-8120.

SALAZAR-CIUDAD, I., JERNVALL, J. & NEWMAN, S.A. (2003) Mechanisms of pattern formation in development and evolution, *Development*, vol. 130, no. 10, pp. 2027-2037.

SALIDO, E.C., YEN, P.H., KOPRIVNIKAR, K., YU, L.C. & SHAPIRO, L.J. (1992) The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes, *American Journal of Human Genetics*, vol. 50, no. 2, pp. 303-316.

SALMIVIRTA, K., SOROKIN, L.M. & EKBLOM, P. (1997) Differential expression of laminin alpha chains during murine tooth development, *Developmental Dynamics*, vol. 210, pp. 206-215.

SANTORO, M., GALKIN, S., TEREDESAI, M., NICOLAY, O.F. & CANGIALOSI, T.J. (2003) Comparison of measurements made on digital and plaster models, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 124, no. 1, pp. 101-105.

SATO, K., HATTORI, M. & AOBA, T. (1996) Disturbed enamel mineralization in a rat incisor model, *Advances in Dental Research*, vol. 10, no. 2, pp. 216-224.

SAUK, J.J., LYON, H.W. & WITKOP, C.J. (1972) Electron optic microanalysis of two gene products in enamel of females heterozygous for X-linked hypomaturation *Amelogenesis imperfecta*, *American Journal of Human Genetics*, vol. 24, no. 3, pp. 267-276.

SAVARA, B.S. (1965) Applications of photogrammetry for quantitative study of tooth and face morphology, *American Journal of Physical Anthropology*, vol. 23, pp. 427-434.

SAVARA, B.S. & SANIN, C. (1969) Data acquisition method for measuring dentitions and tests for accuracy, *American Journal of Physical Anthropology*, vol. 30, pp. 315-318.

SCOTT, P.J. (1981) The Reflex Plotters: Measurement without Photographs, *The Photogrammetric Record*, vol. 10, pp. 435-446.

SEEDORF, H., KLAFTEN, M., EKE, F., FUCHS, H., SEEDORF, U. & HRABE DE ANGELIS, M. (2007) A Mutation in the Enamelin Gene in a Mouse Model, *Journal of Dental Research*, vol. 86, no. 8, pp. 764-768.

SEEDORF, H., SPRINGER, I.N., GRUNDNER-CULEMANN, E., ALBERS, H.K., REIS, A., FUCHS, H., HRABE DE ANGELIS, M. & AÇIL, Y. (2004) *Amelogenesis imperfecta* in a New Animal Model-a Mutation in Chromosome 5 (human 4q21), *Journal of Dental Research*, vol. 83, no. 8, pp. 608-612.

SEKIGUCHI, H., ALALUUSUA, S., MINAGUCHI, K. & YAKUSHUI, M. (2001) A new mutation in the amelogenin gene causes X-linked *Amelogenesis imperfecta*, *Journal of Dental Research*, vol. 80, p. 617.

SHARPE, P.T. (1995) Homeobox genes and orofacial development, *Connective Tissue Research*, vol. 32, no. 1-4, pp. 17-25.

SHARPE, P.T. (2000) Homeobox genes in initiation and shape of teeth during development in mammaian embryos, in M.F. Teaford, M.M. Smith & M.W.J. Ferguson (eds), *Development, Function and Evolution of Teeth*, Cambridge University Press, Cambridge, pp. 3-12.

SHELLHART, W.C., LANGE, D.W., KLEUMPER, G.T., HICKS, E.P. & KAPLAN, A.L. (1995) Reliability of the Bolton tooth-size analysis when applied to crowded dentitions, *Angle Orthodontist*, vol. 65, pp. 327-334.

SHELLIS, P. & BERKOVITZ, B.K.B. (1981) Comparative anatomy of dentition. The dentition of laboratory rodents and lagomorphs., in J.W. Osborn (ed.), *Dental Anatomy and Embryology*., vol. 1, Blackwell Scientific Publications, Oxford, pp. 432-439.

SIMMER, J.P. (1995) Alternative splicing of amelogenins, *Connective Tissue Research*, vol. 32, pp. 131-136.

SIMMER, J.P. & FINCHAM, A.G. (1995) Molecular mechanisms of dental enamel formation, *Critical Reviews in Oral Biology & Medicine*, vol. 6, pp. 84-108.

SIMMER, J.P., FUKAE, M., TANABE, T., YAMAKOSHI, Y., UCHIDA, T., XUE, J., MARGOLIS, H.C., SHIMIZU, M., DEHART, B.C. & HU, C.C. (1998) Purification, characterization, and cloning of enamel matrix serine proteinase 1, *Journal of Dental Research*, vol. 77, pp. 377-386.

SIMMER, J.P., HU, C.C., LAU, E.C., SARTE, P., SLAVKIN, H.C. & FINCHAM, A.G. (1994) Alternative splicing of the mouse amelogenin primary RNA transcript, *Calcified Tissue International*, vol. 55, pp. 302-310.

SIMMER, J.P., HU, Y., LERTLAM, R., YAMAKOSHI, Y. & HU, J.C.-C. (2009) Hypomaturation enamel defects in Klk4 knock-out/ lacZ knock-in mice, *Journal of Biological Chemistry*, vol. 284, pp. 19110-19121.

SINGH, I.J. & SAVARA, B.S. (1964) Methods for making tooth and dental arch measurements, *Journal of the American Dental Association*, vol. 69, pp. 719-721.

SMITH, C.E. (1998) Cellular and Chemical Events During Enamel Maturation, Critical Reviews in Oral Biology & Medicine, vol. 9, no. 2, pp. 128-161.

SMITH, C.E. & NANCI, A. (1989) A method for sampling the stages of amelogenesis on mandibular rat incisors using the molars as a reference for dissection, *The Anatomical Record*, vol. 225, no. 3, pp. 257-266.

SMITH, C.E. & WARSHAWSKY, H. (1975) Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radio autography using 3H-thymidine, *The Anatomical Record*, vol. 183, no. 4, pp. 523-561.

SMITH, C.E. & WARSHAWSKY, H. (1976) Movement of entire cell populations during renewal of the rat incisor as shown by radio autography after labelling with 3Hthymidine. The concept of a continuously differentiating cross-sectional segment, *American Journal of Anatomy*, vol. 145, pp. 225-259.

SMITH, C.E., WAZEN, R., HU, Y., ZALZAL, S.F., NANCI, A., SIMMER, J.P. & HU, J.C.C. (2009c) Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin, *European Journal of Oral Sciences*, vol. 117, no. 5, pp. 485-497.

SMITH, M.M. (2003) Vertebrate dentitions at the origin of jaws: when and how pattern evolved, *Evolution and Development*, vol. 5, pp. 394-413

SMITH, M.M. & COATES, M.I. (2000) Evolutionary origins of teeth and jaws: developmental models and phylogenetic patterns, in M.F. Teaford, M.M. Smith & M.W.J. Ferguson (eds), *Development, Function and Evolution of Teeth*, Cambridge University Press, Cambridge, pp. 133-152.

SMITH, M.M. & JOHANSON, Z. (2003) Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates, *Science*, vol. 299, pp. 1235-1236.

SMITH, R.N, LATH, D., RAWLINSON, A., KARMO, M. & BROOK, A. (2008b) Gingival inflammation assessment by image analysis: measurement and validation, *International Journal of Dental Hygiene*, vol. 6, no. 2, pp. 137-142.

SMITH, R.N., COLLINS, L.Z., NAEENI, M., JOINER, A., PHILPOTTS, C.J., HOPKINSON, I., JONES, C., LATH, D.L., COXON, T.L., HIBBARD, J.H. & BROOK, A.H. (2008a) The *in vitro* and *in vivo* validation of a mobile non-contact camera-based digital imaging system for tooth colour measurement, *Journal of Dentistry*, vol. 36, no. Supplement 1, pp. 15-20.

SMITH, R.N., ELCOCK, C., ABDELLATIF, A., BÄCKMAN, B., RUSSELL, J.M. & BROOK, A.H. (2009a) Enamel defects in extracted and exfoliated teeth from patients with *Amelogenesis imperfecta*, measured using the extended enamel defects index and image analysis, *Archives of Oral Biology*, vol. 54, pp. S86-S92.

SMITH, R.N., KARMO, M., RUSSELL, J. & BROOK, A.H. (2007) The variability of the curvature of the labial surface of the upper anterior teeth along the facial axis of the clinical crown, *Archives of Oral Biology*, vol. 52, no. 11, pp. 1037-1042.

SMITH, R.N., RAWLINSON, A., LATH, D.L. & BROOK, A.H. (2006) A digital SLR or intra-oral camera: preference for acquisition within an image analysis system for measurement of disclosed dental plaque area within clinical trials, *Journal of Periodontal Research*, vol. 41, no. 1, pp. 55-61.

SMITH, R.N., RAWLINSON, A., LATH, D.L., ELCOCK, C., WALSH, T.F. & BROOK, A.H. (2004) Quantification of dental plaque on lingual tooth surfaces using image analysis: reliability and validation, *Journal of Clinical Periodontology*, vol. 31 no. 7, pp. 569-573.

SMITH, R.N., ZAITOUN, H., COXON, T.L., KARMO, M., KAUR, G., TOWNSEND, G., HARRIS, E.F. & BROOK, A.H. (2009b) Defining new dental phenotypes using 3-D image analysis to enhance discrimination and insights into biological processes, *Archives of Oral Biology*, vol. 54, pp. S118-S125.

SNEAD, M.L., LAU, E.C., FINCHAM, A.G., ZEICHNER-DAVID, M., DAVIS, C. & SLAVKIN, H.C. (1989) Of mice and men: Anatomy of the amelogenin gene, *Connective Tissue Research*, vol. 22, pp. 101-109.

SOFAER, J.A. (1975) Genetic variation and tooth development, *British Medical Bulletin*, vol. 31, pp. 107-110.

SOHMURA, T., NAGAO, M., SAKAI, M., WAKABAYASHI, K., KOJIMA, T., KINUTA, S., NAKAMURA, T. & TAKAHASHI, J. (2004a) High-resolution 3-D shape integration of dentition and face measured by new laser scanner, *IEEE Transactions on Medical Imaging*, vol. 23, no. 5, pp. 633-638.

SOHMURA, T., TOJIMA, T., WAKABAYASHI, K. & TAKAHASHI, J. (2000) Use of an ultrahigh-speed laser scanner for constructing three-dimensional shapes of dentition and occlusion, *The Journal of Prosthetic Dentistry*, vol. 84, no. 3, pp. 345-352.

SOHMURA, T., WAKABAAYSHI, K., LOMUNKONG, R., HOJO, H., KUSUMOTO, N., OKUDA, H., KOJIMA, T., NAKAMURA, T., YATANI, H. & TAKAHASHI, J. (2004b) 3D shape measurement of dental casts using medical x-ray CT, *Dental Materials Journal*, vol. 23, pp. 121-128.

STANTON, F.L., FISH, G.D. & ASHLEY-MONTAGUE, M.F. (1931) Description of three instruments for use in orthodontic and cephalometric investigations, with some remarks on map construction *Journal of Dental Research*, vol. 11, pp. 885-902.

STEPHANOPOULOS, G., GAREFALAKI, M.E. & LYROUDIA, K. (2005) Genes and Related Proteins Involved in *Amelogenesis imperfecta*, *Journal of Dental Research*, vol. 84, no. 1117-1126.

STEVENS, D.R., FLORES-MIR, C., NEBBE, B., RABOUD, D.W., HEO, G. & MAJOR, P.W. (2006) Validity, reliability, and reproducibility of plaster vs digital study models, *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 129, no. 6, pp. 794 - 803.

STRAUSS, R.E. & F.L., B. (1982) The truss: body form reconstructions in morphometrics, *Syst. Zool*, vol. 31, pp. 113-135.

TACHIBANA, H. & MATSUMOTO, K. (1990) Applicability of X-ray computerized tomography in endodontics, *Endodontics & Dental Traumatology*, vol. 6, no. 1, pp. 16-20.

TAKADA, K., LOWE, A.A. & DECOU, R. (1983) Operational performance of the reflex metrograph and its applicability to the three-dimensional analysis of dental casts, *American Journal of Orthodontics*, no. 83, pp. 195-199.

TEN BOSCH, J.J. & COOPS, J.C. (1995) Tooth color and reflectance as related to light scattering and enamel hardness, *Journal of Dental Research*, vol. 74, no. 1, pp. 374-380.

TERAI, H., SHIMAHARA, M., SAKINAKA, Y. & S., T. (1999) Accuracy of integration of dental casts in three-dimensional models., *Journal of Oral and Maxillofacial Surgery*, vol. 57, no. 662-665.

TERMINE, J.D., BELCOURT, A.B., CHRISTNER, P.J., CONN, K.M. & NYLEN, M.U. (1980) Properties of dissociatively extracted fetal tooth matrix proteins. Principal molecular species in developing bovine enamel, *Journal of Biological Chemistry*, vol. 120, pp. 9760-9768.

THAM, P. (1957) Photogrammetric application in dentistry, *Photogrammetric Engineering*, vol. 23, pp. 668-670.

THESLEFF, I. (2006) The genetic basis of tooth development and dental defects, American Journal of Medical Genetics, vol. 140A, no. 23, pp. 2530-2535.

THIELKE, S., SERANO, J.G. & LEPE, X. (1998) A method for true coordinate threedimensional measurement of casts using the measuring microscope, *The Journal of Prosthetic Dentistry*, vol. 80, pp. 506-510. THOMAS, T.R. (1982) Profile description, in T.R. Thomas (ed.), Rough Surfaces, Longmans, London, pp. 72-90.

THOMAS, B.L. & SHARPE, P.T. (1998) Patterning of the murine dentition by homeobox genes, *European Journal of Oral Sciences*, vol. 106, no. Suppl 1, pp. 48-54.

TIZIANI, H.J. & UHDE, H. (1994) Three-dimensional image sensing by chromatic confocal microscopy, *Applied Optics*, vol. 33, pp. 1838-1843.

TOMASSETTI, J.J., TALOUMIS, L.J., DENNY, J.M. & FISCHER, J.R. (2001) A comparison of 3 computerized Bolton tooth size analyses with a commonly used method, *Angle Orthodontist*, vol. 71, no. 351-357.

TOMES, J. (1850) On the structure of the dental tissues of the order Rodentia, *Philosophical Transactions of the Royal Society of London*, vol. 140, pp. 529-567.

TOWNSEND, G., HARRIS, E.F., LESOT, H., CLAUSS, F. & BROOK, A. (2009) Morphogenetic fields within the human dentition: A new, clinically relevant synthesis of an old concept, *Archives of Oral Biology*, vol. 54, pp. S34-S44.

TOYOSAWA, S., FUJIWARA, T., OOSHIMA, T., SHINTANI, S., SATO, A., OGAWA, Y., SOBUE, S. & LJUHIN, N. (2000) Cloning and characterization of the human ameloblastin gene, *Gene*, vol. 256, pp. 1-11.

TSUTSUI, T.W., RIMINUCCI, M., HOLMBECK, K., BIANCO, P. & ROBEY, P.G. (2008) Development of craniofacial structures in transgenic mice with constitutively active PTH/PTHrP receptor, *Bone*, vol. 42, no. 2, pp. 321-331.

TUCKER, A. & SHARPE, P. (2004) The cutting-edge of mammalian development; how the embryo makes teeth, *Nature Reviews Genetics*, vol. 5, no. 7, pp. 499-508.

TUCKER, A.S. (2006) *Encyclopedia of Life Sciences*, TUCKER, A.S., John Wiley & Sons, <u>www.mrw.interscience.wiley.com/emrw/978047005902/els/article/a0005989/current/html</u>

TUCKER, A.S., MATTHEWS, K.L. & SHARPE, P.T. (1998) Transformation of tooth type induced by inhibition of BMP signalling, *Science*, vol. 82, pp. 1136–1138.

TUCKER, A.S. & SHARPE, P.T. (1999) Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place, *Journal of Dental Research*, vol. 78, pp. 826-834.

VAAHTOKARI, A., ABERG, T., JERNVALL, J., KERÄNEN, S.V.E. & THESLEFF, I. (1996) The enamel knot as a signalling center in the developing mouse tooth, *Mechanisms of Development*, vol. 54, pp. 39-43.

VAN DER BURGT, T.P., TEN BOSCH, J.J., BORSBOOM, P.C.F. & KORTSMIT, W.J.P.M. (1990) A comparison of new and conventional methods for quantification of tooth color, *Journal of Prosthetic Dentistry*, vol. 63, pp. 155-162.

VAN DER LINDEN, F.P.G.M., BOERSMA, H., ZELDERS, T., PETERS, K.A. & RAABEN, J.H. (1972) Three-dimensional analysis of dental casts by means of the Optocom, *Journal of Dental Research*, vol. 51.

VAN VALEN, L.M. (1982) Homology and causes, *Journal of Morphology*, vol. 173, no. 3, pp. 305-312.

VEIS, A. (2003a) Amelogenin gene splice products: potential signalling molecules, *Cellular* and Molecular Life Sciences, vol. 60, pp. 38-55.

VEIS, A. (2003b) Mineralization in Organic Matrix Frameworks, *Reviews in Mineralogy and Geochemistry*, vol. 54, no. 1, pp. 249-289.

VEIS, A. (2005) A window on biomineralization, Science, vol. 307, pp. 1419-1420.

WANG, X.-P., SUOMALAINEN, M., FELSZEGHY, S., ZELARAYAN, L.C., ALONSO, M.T., PLIKUS, M.V., MAAS, R.L., CHUONG, C.-M., SCHIMMANG, T. & THESLEFF, I. (2007) An Integrated Gene Regulatory Network Controls Stem Cell Proliferation in Teeth, *Public Library of Science ONE Biology*, vol. 5, no. 6, p. e159.

WANG, X.-P., SUOMALAINEN, M., JORGEZ, C.J., MATZUK, M.M., WERNER, S. & THESLEFF, I. (2004) Follistatin Regulates Enamel Patterning in Mouse Incisors by Asymmetrically Inhibiting BMP Signalling and Ameloblast Differentiation, *Developmental Cell*, vol. 7, no. 5, pp. 719-730.

WARSHAWSKY, H., BAI, P. & NANCI, A. (1987) Analysis of crystallite shape in rat incisor enamel, *Anatomical Record*, vol. 218, no. 380-390.

WARSHAWSKY, H., JOSEPHSEN, K., THYLSTRUP A. & FEJERSKOV, O. (1981) The development of enamel structure in rat incisors as compared to the teeth of monkey and man, *Anatomical Record*, vol. 200, pp. 371-399.

WATERSTON, R.H., LINDBLAD-TOH K, BIRNEY E, and LANDER ES. (2002) Initial sequencing and comparative analysis of the mouse genome, *Nature*, vol. 420, no. 6915, pp. 520-562.

WATTS, A. & ADDY, M. (2001) Tooth discolouration and staining: Tooth discolouration and staining: a review of the literature, *British Dental Journal*, vol. 190, no. 6, pp. 309-316.

WAZEN, R.M., MOFFATT, P., ZALZAL, S.F., YAMADA, Y. & NANCI, A. (2009) A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects, *Matrix Biology*, vol. 28, no. 5, pp. 292-303.

WEE, A.G., LINDSEY, D.T., KUO, S. & JOHNSTON, W.M. (2006) Color accuracy of commercial digital cameras for use in dentistry, *Dental Materials*, vol. 22, no. 6, pp. 553-559.

WEISS, K.M., STOCK, D.W. & ZHAO, Z. (1998) Dynamic interactions and the evolutionary genetics of dental patterning, *Critical Reviews in Oral Biology & Medicine*, vol. 9, pp. 369-398.

WENTWORTH-THOMPSON, D.A. (1942) On Growth and Form, Cambridge University Press, Cambridge

WHITEHOUSE, D.J. (1994) Handbook of Surface Metrology, Institute of Physics Publishing, Bristol.

WINTER, G.B. & BROOK, A.H. (1975) Enamel hypoplasia and anomalies of the enamel, *Dental clinics of North America*, vol. 19, pp. 3-24.

WITKOP, C.J. (1957) Hereditary defects in enamel and dentin, ACTA Genetica et Statistica Medica, vol. 7, pp. 236-239.

WITKOP, C.J. (1967) Partial expression of sex-linked recessive Amelogenesis imperfecta in females compatible with the Lyon hypothesis, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 23, pp. 174-182.

WITKOP, C.J. (1975) Hereditary defects of dentin, *Dental clinics of North America*, vol. 19, pp. 25-45.

WITKOP, C.J. (1989) Amelogenesis imperfecta, Dentinogenesis Imperfecta and Dentin Dysplasia revisited - problems in classification., Journal of Oral Pathology and Medicine, vol. 17, pp. 547-553.

WITKOP, C.J. & SAUK, J.J. (1976) *Heritable defects of enamel*, in R.E. Stewart & G.H. Prescott (eds), Oral Facial Genetics, Mosby, St. Louis. pp. 151-226.

WOLPERT, L. (1969) Positional information and the spatial pattern of cellular differentiation, *Journal of Theoretical Biology*, vol. 25, pp. 1-47.

WONG, F.S., ELLIOTT, J.C., ANDERSON, P. & DAVIS, G.R. (1995) Three dimensional mineral distribution in the enamel of a rat incisor measured by X-ray microtomography, *Bone*, vol. 16, no. 6, pp. 690-690.

WONG, F.S., ELLIOTT, J.C., DAVIS, G.R. & ANDERSON, P. (2000) X-ray microtomographic study of mineral distribution in enamel of mandibular rat incisors, *Journal of Anatomy*, vol. 196, no. 03, pp. 405-413.

WRIGHT, J.T. (2006) The Molecular Etiologies and Associated Phenotypes of Amelogenesis imperfecta, American Journal of Medical Genetics, vol. 140, no. 23, pp. 2547-2555.

WRIGHT, J.T., HART, P.S., ALDRED, M.J., SEOW, K., CRAWFORD, P.J., HONG, S.P., GIBSON, C.W. & HART, T.C. (2003) Relationship of phenotype and genotype in X-linked *Amelogenesis imperfecta*, *Connective Tissue Research*, vol. 44(Suppl 1), pp. 72-78.

WRIGHT, J.T., HART, T.C., HART, P.S., SIMMONS, D., SUGGS, C., DALEY, B., SIMMER, J.P., HU, J.C.C., BARTLETT, J.D., LI, Y., YUAN, Z.-A., SEOW, W.K. & GIBSON, C.W. (2009) Human and Mouse Enamel Phenotypes Resulting from Mutation or Altered Expression of *AMEL, ENAM*, *MMP20* and *KLK4*, *Cells Tissues Organs*, vol. 189, no. 1-4, pp. 224-229.

WRIGHT, W.D. (1928) A re-determination of the trichromatic coefficients of the spectral colours, *Transactions of the Optical Society*, vol. 30, pp. 141-164.

XIAO, S., YU, C., CHOU, X., YUAN, W., WANG, Y., BU, L., FU, G., QIAN, M., YANG, J., SHI, Y., HU, L., HAN, B., WANG, Z., HUANG, W., LIU, J., CHEN, Z., ZHAO, G. & KONG, X. (2001) Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP, *Nature Genetics*, vol. 27, pp. 201-204.

ZALZAL, S.F., SMITH, C.E. & NANCI, A. (2008) Ameloblastin and amelogenin share a common secretory pathway and are co-secreted during enamel formation, *Matrix Biology*, vol. 27, no. 4, pp. 352-359.

ZELDITCH, M.L., DEBRY, R.W. & STRANEY, D.O. (1989) Triangulation-Measurement Schemes in the Multivariate Analysis of Size and Shape, *Journal of Mammalogy*, vol. 70, no. 3, pp. 571-579.

ZHANG, X., ZHAO, J., LI, C., GAO, S., QIU, C., LIU, P., WU, G., QIANG, B., LO, W.H. & SHEN, Y. (2001) DSPP mutation in dentinogenesis imperfecta Shields type II, *Nature Genetics*, vol. 27, pp. 151-152.

ZHANG, X.Z., ANDERSON, P., DOWKER, S.E.P. & ELLIOTT, J.C. (2000) Optical Profilometric Study of Changes in Surface Roughness of Enamel during *in vitro* Demineralization, *Caries Research*, vol. 34, no. 2, pp. 164-174.

ZHU, D., PAINE, M.L., LUO, W., BRINGAS, P., JR. & SNEAD, M.L. (2006) Altering Biomineralization by Protein Design, *Journal of Biological Chemistry*, vol. 281, no. 30, pp. 21173-21182.

ZHU, Q., SUN, Y., LU, Y., WANG, X., PRASAD, M., FENG, J. & QIN, C. (2010) Cleavage-Site Residue Substitution Blocks Processing of Dentin Sialophosphoprotein *in vivo*, *American Association of Dental Research*, Abstract 1249, Washington DC, USA

ZILBERMAN, O., HUGGARE, J.A.V. & PARIKAKIS, K.A. (2003) Evaluation of the Validity of Tooth Size and Arch Width Measurements Using Conventional and Three-Dimensional Virtual Orthodontic Models, *The Angle Orthodontist*, vol. 73, no. 3, pp. 301-306.

Websites:

Digital Morphology Resource, National Science Foundation Digital Library at The University of Austin, Texas, USA. (http://digimorph.org/index.phtml)

European Mouse Phenotyping Resource of Standardised Screens (www.empress.har.mrc.ac.uk)

Gene Expression, Tooth and Craniofacial Development Group of the Developmental Biology Programme, Institute of Biotechnology, University of Helsinki (<u>http://bite-it.helsinki.fi</u>)

Mouse Dental Anomalies Record Form (www.eumorphia.org)

Mouse Genome Informatics (http://www.informatics.jax.org/)

National Centre for Biotechnology Information, National Library of Medicine, USA, National Institute of Medicine, USA. (www.ncbi.nlm.nih.gov/genome/guide/mouse/)

Parliament of the United Kingdom, Animal (*Scientific Procedures*) Act 1986 (Chapter 14) (www.archive.official-documents.co.uk/document/hoc/321/321-xa.htm)

RIKEN BioResources Center, Japan. ENU mutagenesis screening (www.brc.riken.jp/lab/gsc/mouse/)

Scantron Industrial Products Ltd., Taunton, UK (www.scantron-net.co.uk/proscan2000)

10. APPENDIX

10.1. Reliability and Validation Data Tables	271
10.2. Principal Component Analysis	. 292
10.3. Experimental Data Tables	.296
10.4. List of Original Publications	.337

10.1. APPENDIX 1. RELIABILITY AND VALIDATION

Table 1. 2D left Mandible Morphometry Intra-Operator Repeatability (TLC)

		CD-1 KELLAR	П
		INITRA-OPERATOR (TLC)	٦
μ <u>μ</u>	TEPEAT	$\frac{n}{2} = \frac{2}{3} + \frac{4}{5} + \frac{5}{6} + \frac{3}{7} + \frac{8}{8} + \frac{9}{9} + \frac{n}{10} + \frac{11}{12} + \frac{13}{13} + \frac{16}{15} + \frac{17}{16} + \frac{19}{19} + \frac{20}{20} + \frac{10}{20} + \frac{30}{20} + \frac{30}{2$	8
h	1	208 12.519 9.895 13.186 12.233 12.476 11.997 12.212 11.867 12.339 11.986 12.153 12.434 12.678 11.628 11.209 12.241 12.224 12.473 12.767 12.187 0.643 0.054 0.476 0.106 0.954 12.471 12.156 12.471 12.156 12.338 11.959 12.158 12.471 10.652 13.371 12.156 12.338 11.959 12.158 12.061 12.709 11.623 11.828 12.338 11.958 12.471 12.156 12.338 11.959 12.159 11.844 12.738 12.464 12.778 12.464 12.728 12.463 0.054 0.476 0.054	616
	- 6	881 6.569 4.873 6.601 6.139 6.476 6.812 6.814 6.812 6.812 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.816 6.826 6.136 6.106 6.106 6.486 4.338 6.201 6.131 6.146 6.726 6.836 6.176 0.382 0.106 0.024 0.208 0.047 0.9 118 6.581 6.387 6.136 6.136 6.176 6.176 0.382 6.106 6.106 6.486 4.338 6.201 6.133 6.146 6.726 6.863 6.176 6.726 6.376 0.058 0.066 <td>583</td>	583
	1 - 14	HI 7.557 6.000 7.557 7.562 7.336 7.362 7.148 7.053 7.746 6.967 6.966 6.968 7.464 7.701 8.054 7.312 0.431 0.048 0.441 0.355 7.316 7.336 7.341 7.746 6.967 7.326 6.914 7.311 0.048 0.418 0.044 0.804 0.805 0.914 7.518 7.336 0.336 7.318 7.336 0.341 7.518 7.336 0.346 0.814 0.694 0.85 0.834 7.464 7.851 7.361 7.323 0.8914 7.518 7.323 0.934 7.851 7.348 0.336 0.348 0.336 0.348 0.336 0.348 0.33	653
	- 6	000 65210 85720 85720 88 100 49 000 51.170 63.660 51.540 49 410 62.650 64 330 62.280 53.610 (22.620 48.110) 51.230 67.910 61.626 56 640 640 59 619 9344 0.053 1.805 0.404 3.538 0.792 0.9 340 55.55 (25.50 48.200 58.200 58.400 57.55 (25.50 48.200 58.400 57.50 58.200 58.400 57.50 58.200 58.400 57.50 58.200 58.400 57.50 58.400 57.50 58.500 58.500 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.400 57.50 58.500 58.500 58.400 57.50 58.500 58.500 58.400 57.50 58.500 58.	56
(internet	- 7	43 2.935 3.336 2.807 4.205 3.007 3.204 3.254 3.854 3.854 3.162 4.192 3.004 3.233 3.004 3.235 3.504 3.235 3.504 3.255 3.504 3.255 3.504 3.255 3.504 3.255 3.504 3.255 3.504 3.255 3.504 3.255 3.504 3.255 3.504 3.255 3.505 3.507 3.507 3.504 3.255 3.505 3.507 3.504 3.255 3.505 3.526 0.527 0.005 0.527 0.016 0.857 0.016 0.857 0.016 0.852 3.556 3.550 3.556 0.527 0.052 0.527 4.056 3.650 3.556 0.557 0.052 0.	128
	- 2	100 8.867 8.861 8.964 8.476 8.298 8.276 8.298 8.208 8.364 8.879 9.367 9.320 8.367 9.364 8.875 9.366 9.357 8.772 0.087 0.149 0.033 0.222 0.065 0.323 8.376 8.366 8.365 8.366 8.366 8.366 8.366 9.367 9.386 0.037 0.149 0.033 0.262 0.055 0.366 0	853
	- 6	333 56.598 32.250 38.521 33.524 33.5459 33.017 35.569 35.197 35.569 35.197 35.575 32.206 35.197 35.578 32.527 34.578 31.571 32.207 35.548 17.781 0.357 11.228 0.276 2.423 0.541 0.357 11.258 0.257 0.258 0.2	202
<u> </u>	- 7	730 33.041 35.311 42.136 37.261 37.697 35.716 37.993 30.588 38.593 37.426 54.906 37.568 40.078 34.153 32.613 38.278 38.688 38.748 42.800 37.488 2.823 0.156 0.3798 0.592 0.133 0.800 0.592 0.133 0.800 0.592 0.133 0.800 0.592 0.133 0.800 0.592 0.134 0.5916 0.140 0.2526 38.254 38.058 38.708 42.566 37.202 3.001 0.156 0.350 0.058 0.592 0.139 0.800 0.5916 0.130 0.800 0.592 0.139 0.800 0.5916 0.130 0.800 0.5916 0.156 0.157 856 30.078 35.000 0.157 856 30.078 35.000 0.156 0.157 856 30.078 0.5916 0.157 856 37.0516 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.058 0.5916 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.156 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.156 0.157 856 37.050 0.156 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 37.050 0.157 856 0	807
!	1	688 12.570 10.778 13.591 12.369 12.363 11.973 12.319 12.290 12.528 12.057 12.349 12.405 12.249 12.405 12.275 11.268 12.252 12.250 12.370 0.544 0.008 0.052 0.021 0.181 0.041 0.0	180
		156 6.609 4.729 6.556 6.404 6.510 6.510 6.002 5.850 6.604 6.821 6.102 0.016 0.002 0	186
<u>}</u>	- 2	07 7456 6053 7587 7457 7455 7587 7445 7093 7447 6387 7476 7161 7154 7645 7828 7.042 7.052 7.055 6.958 7.467 7.576 7.375 7.349 7.005 0.150 0.150 0.150 0.057 0.945 0.057 0.054 0.294 0.057 0.954 0.150	8
- f	- 6	609 64.529 84.756 67.080 50.063 50.054 65.654 51.818 49.858 61.100 65.908 62.161 55.650 (65.423 47.367 151.059 68.011 59.850 56.811 (65.957 59.258 78.151 67.957 59.258 78.151 67.958 79.258 78.151 751 751 751 751 751 751 751 751 751	<u>8</u>
(IIII	1	108 2.940 3.255 2.940 3.157 3.200 3.177 3.200 3.278 3.200 2.770 2.943 4.101 3.851 3.738 3.601 0.490 0.012 0.151 0.014 0.012 0.151 0.057 0.057 0.012 0.151 0.012 0.151 0.012 0.151 0.057 0.057 0.012 0.151 0.012 0.151 0.012 0.151 0.057 0.012 0.012 0.151 0.057 0.012 0.012 0.151 0.057 0.012 0.012 0.151 0.057 0.012 0.012 0.151 0.057 0.012 0.012 0.151 0.012 0.151 0.057 0.012 0.012 0.151 0.057 0.012 0	쯇
	- 6	[57] 8884 8744 9.154 8.975 8.943 8.880 8.441 8.881 9.070 8.241 8.587 8.902 9.064 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.906 9.487 8.907 9.046 9.487 8.902 9.024 9.487 8.902 9.026 9.487 8.902 9.024 9.487 8.902 9.024 9.487 8.902 9.024 9.487 0.305 0.151 0.024 0.256 0.374	874
:	1	(35) 38.731 33.962 40.356 35.577 35.000 35.6200 34.306 33.449 37.788 35.877 36.252 36.940 38.590 33.405 35.199 357.302 34.720 36.915 39 96.205 24.260 20146 0.401 0.050 0.786 0.176 0.976 0.176 0.978 0.176	88
	1	227/38.973 35786 42.935 37.386 38.754 35.322 38.586 30.928 28.537 36.590 35.288 37.726 40.962 33.299 32.831 37.694 39.217 38.651 43.652 37.568 3.136 0.078 0.290 0.065 0.568 0.127 0.933 35.399 38.169 36.775 34.615 35.738 44.120 33.172 32.786 36.919 39.118 39.042 43.161 37.491 3.191 0.078 0.290 0.065 0.568 0.127 0.933 35.999 38.169 36.775 34.615 35.738 44.120 33.172 0.5913 95.118 39.042 43.161 37.491 3.191 0.078	86

10.1. Appendix 1. Reliability and Validation

Table 2. 2D right Mandible Morphometry Intra-Operator Repeatability (TLC)

	· · · · · ·		ICC	1 0.988	4 0.819	1 0.921	5 0.976	7 0.955	0.791	2 0.887	9 0.907	0.836	9 0.856	1 0.802	5 0.981	0.953	0.862	106.0	1 0.872
			Bias	0.03	0.05	0.06	0.49	0.06	0.02	0.20	0.13	10.980	0.05	0.02	0.39	0,051	0.041	0.15(0.10
			Ű	0.10	0.353	3 0.244	3,667	0.437	0.316	1.133	1.895	0.310	0.312	0.357	3,290	0,449	0.272	566.0	2.240
		listics	SE	4 0.013	0 0:040	4 0.021	1 0.418	3 0.05(1 0.036	8 0.125	9 0.21	8 0.03	9 0.036	2 0.041	1 0.376	0.051	0.031	0.107	3 0.256
		Sla	n SD.	0 0.05	8 0.184	9 0.12	3 1.87	7 0.22	1 0.16	3 0.57	96.0	0 0.151	0.15	0.182	1 1.68	1 0.22	0 0.135	t 0.477	3 1.145
			Mea	6 0.01	3 0.05	5 9 0.03	5 -0.35	2 4 0.00	7 9 0.06	9 4 -0.15	0 8 0.15	9 -0.02	0.05	5 0.06	4 5 -0.20	4 0.01	3 -0.01	9 0.03	4 5 0.25
			n sd	0 0.28	2E.0 1	5 0.29 1 0.33	4 8.84 7 8.27	2 0.72 5 0.74	0.24	9 1.16 1 1.28	1 216	3 0.26 3 0.27	0.30	8 0.28: 5 0.31	9 8.73 0 8.13	6 0.69 6 0.77	0.23	8 1.049 7 1.056	2 2.01- 4 2.47:
		-1	Mca	8 1244 1 1243	6.37. 6.31	7.46	1 58.35 58.70	3.43	8.88	35.45 35.61	38.13	8 12.40 1 12.42	6.41(7.42	57.54	3.500	8.857	36.44 36.41	37.76
			20	12.718	6.990	7.486	65.984 64.090	3.292	8.739	38.046	41.766	12.764	6.897	7.309	65.084 64.090	3.292 3.075	8.739	37.001 38.046	41.766 42.009
			19	12,763	6.381	8.242 8.261	63.394 63.508	2.835 3.087	9.176	36.789 36.591	39.623 39.477	12,756	6.402	8.189 8.224	62.560 62.650	3.102	9,152	38,021	39.082 38.865
			18	2.393	6.460	7.417	4.157	3.156 3.146	9.038	5.967	8.799	2.331	5,473 5,338	7.363	3.480	3.147 3.152	8.866	6.775	8.645
		!	17	2.378	378	338	105 6	339	845	5. <u>223</u> 5.162	974 3	385 1	533	324	9 010 0	537 591	936 2 825 2	(723 3 (444 3	E 946.3
				016 12	965 6 995 6	7 150	185 51 193 51	088 4 155 4	530 8 328 8	035 35 434 35	955 37 265 37	894 12 921 12	971 6 969 6	594 7	550 50 680 51	224 4 151 4	518 8 141 8	869 36 721 36	183 38 37
Ż				85 12 18 12	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SO 7.0	30 63. 75 63.	76 3.(57 3.1	0 8 8	07 35. 85 35.	47 34.	25 11	53 55	50 7.0 58 6.6	27 61. 20 61.	3.1 3.1 3.1	90 8.5 8.4	46 35. 93 35.	74 34, 56 33,
1 11C V			1	94 123	4 60 3 5.9	8 7.1	53 64.3 13 65.5	1 2.5	2 8.5 5 8.4	50 36.1 54 35.6	22 35.3 39 36.5	95 12 5 77 12 3	7 6.1 5 5.9	6 7.2	10 65.3	2 27	8 8 2	12 34.7 52 35.4	15 36.0 17 34.8
1 10 1	2	1	14	8 12.76	6.80	8.08	0 63.06	3.14	9.42	36.16	5 40.75 5 40.38	12.29	6.92	7.31	0 63.14	3.33	8.94 9.19	9 36.70 9 37.45	5 40.30 41.08
E	3		10	12.25	6.355	7.376	58.64	3.494	8.833	35.22	37.82	12.46	6.512	7.660	52.97	3.596	8.798	36.51	37.41(
		g	13	12,004	6.194	7.226 070	64.802 65.434	3.150	8.657 8.465	35.035 34.889	34.767 35.144	12,094	6.161	7.128	64.330	3.117	8.628	35.664	34,591 34,598
		ATOR	8	12,190	5.941	7.069	63.748 64.468	3.204	8.790	34.899 34.843	37.701	12.148	5.949	7.102	63.980 53.980	3.035	8.633 8.636	35.721	36.834 36.571
		OPER-	10	2,717	5.209 5.186	7.697	7.884	2.526	8.845 8.496	6.979	9.651	2 422	5.206	7.737	6.730	2.538	446.5	7.877	8.714 8.561
	i,	NIRA	6	1 335 1	986 996	60 44	9 8 6	971	218 1	597 3	454 3	167 1 167 1	647 6	573	790 6	147 889	867 86	483 3	544 3 906 3
			50	350 12	90 90 90 90 90 90 90 90 90	574 7.	986 44 91 47	<u>165</u>	X64 9. X83 8.	427 33 931 33	841 37 740 33	272 12 236 12	37 6.	126 7. 149 7.	570 44 887 47	<u>10</u> 12 13	9 20 11 9 9	453 35 362 35	372 37 994 32
	;		1	HO 12	9.9 9.9	21 23	4 4 16	6 C	83 8.9	23 36. 37 35	88 37. 40 37.	62 12 03 12	31 6.6	12 7.5	04 01 14 14	58 4.8 33 5.1	57 9.0 52 9.2	19 35. 80 35.	62 37. 01 36.
			7	7 120	9 6.3 4 6.3	2 7 2	0.48.1	44	9 8.6	1 34.5	0 35.6	9 11.9	9 64	4 7.0	9 47.4	9 4.6	7 8.4 8.4	0 35.4	3 35.1
	!,			0, 12, 65	6.33	7,400	57.74	334	8.74	35.30	39.85	12.54	6.49	734	58.42	3.34	8.76	36.49	38.56
	1		5	12.53	6.089	7,409	47.242	3.414	8.737	34,303	36.529	12.545	6.032 5.993	7.273	47.320 53.220	4,037	8.924	36.358	36.303 36.572
			÷.	13.052	6.410 6.468	7.595	68.684 65.635	2.786	9.114	37.748	42.154	12.949	6,466	7.572	67.720 66.490	2,630	9.167 9.118	38.808	40.862
			'n	2.565	5225	7.244	6.656	3.033	382	6.637	8.924	2.554	5.374	1.440	4.390	395	0.183	7.502	9.598
			, ri	5561	248	680	0.705 6	868	565 296	384 3	E 866.9	556 1	817 0	364	300 6	731	323	619 3	620 3
		;		164 12	9 9 5 8	83 7	916 40 932 40	157 4	794 8 8 80	997 34	882 36 918 36	158 12 186 12	40 6. 47 6.	1 98	820 40 060 39	90 95 4 3	11 8. 11 8.	482 36 603 35	449 36 459 36
		•~•	PEAT	- 4	0.0	- 7	1 55		- 1 88 88	1 33 2 33	1 36 36	- 4	0 0 - 0	1 7.	2 20	- 7 7 7	1 2 8	 2. 3	1 37 2 37
	مغہ	1	RE			<u> </u>		6		i	:					2			
			F					14 (m		ê						th (mm		2	
			EMEN	Ê	(umu)		- -	d-leng	(IIII)	er (m	(, 111	Ê	(uuu)		6	d-leng	(um)	er (mn	~u
	RLES		VARIA	gth (m	height	4 (mm	ngle (огона	ngth (erimet	nea (n	gth (m	height	4 (mm	ngle (oronoi	ngth (erimet	rea (m
	MAND		W	all-len	nding-	ignot-h	dible-a	noid-c	h-lano	dible-p	dible-a	all-Icn	nding-	l-lengi	dible-a	noid-c	onal-le	dible-p	dible-a
	HEMIL		;	over	asce	pased	шт	COP	diag	шт	nom	over	asce	basa	uou	Coro	diag	шан	ирні
	-	-	SPECT					nua								NGUA			
			EW/ A:					ī.				 E				3			arahan ar an
			AII.									ž							

Table 3. 2D left Mandible Morphometry Intra-Operator Repeatability (JHH)

		Ŋ	11 0.993	9 0.916	9 0.971	1 0.991	6 0,891	13 0.980	0.967	15 0.994	8 0.909	6/6/0 15	14 0.994	70 0.994	25 0.962	¥6 0.957	4 0.984	1000
	-	۳ ۳	1 0.14	8 0.43	1 0.26	6 2.21	7 0.29	9 0.13	2 0.90	9 0.62	0 0.49	9 0.26	4 0.10	6 1.77	1 0.22	1 0.18	0 0.66	10.70
		Bia	6 0.03	0 ⁰ 0	1 0.06	3 0.49	4 0.06	5 0.02	G 0.20	1 0.13	0 0.98	0 0:02	2 0.02	2 0.35	6 0.05	1 0.04	6 0.15	010
intiac.		8	2 0.01	4 0.05	7 0.03	1 0.25	1 0.03	8 0.01.	9 0.10	9 0.07	4 0.50	3 0.03	3 0.01	G 0.20	5 0.02	15 0.02	6 0.07	000
10		3 범 미	6 0.07	4 0.22	5 0.13	4 1.13	5 0.15	6 0.06	8 0.45	0 0.31	4 0.25	9 0.13	6 0.05	64 0.90	9 0.11	60.0	6 0.33	20.0
		Dif	1 5 0.01	4 0.05	0.04 0.04	3-046	10.07	1 0.01 8	33-0.00	2 8 0.06	6 0.03	6 3 3 0.02	3 4 -0.01	9 15 -0.1 <u>5</u>	5 0.01	2 5	0.0	200
		u SI	55 0.61 39 0.65	0 0.55 6 0.53	7 0.54 3 0.63	50 8.94 14 8.74	0 0.38 5 0.30	7 0.32	58 1.65 76 1.78	05 2.85 14 2.80	99 0.57 55 0.58	2 0.64 3 0.65	9 0.42 5 0.42	89 8.20 43 8.14	0 0.42	6 0.33 5 0.34	52 1.87 14 1.85	47 3.05
		Mea	9 12 2	6.18 6.12	7.35	6 60.1 ² 2 60.61	3.56 1 3,48	8.85	3 35.16	1 37.5(5 37.44	0 12.39 7 12.30	6.11 6.08	5 7.33 7.35	3 59.7	3.46	8.81	3 36.5 ¹ 9 36.5	3 37.4
		20	12.82	6.87	7.92	65.15	3.488	9.51	37.72	43.09	13.11	6.842	8.041	63.68	3.623	9.638	39.66	43.66
		19	12,446	6.563	7.743	57.556 58.965	3.636	9.033 9.013	35,470 35,108	38,919	12.642	6.405 6.380	7.696	56.953 57.934	3.596 3.635	9.060 9.052	36.891 37.180	38,919
aanoo oo oo oo		18	12.241	6.646 6.362	7.501	50.201 51.055	3.584	8.879	36.369 37.335	38,816 38,275	12.204	6.710	7.484	50.268 50.768	3.565	9.018	34.986	39.040
		17	2262	252	058	5.501 6	141	720	5,717 5 5,325 5	8.430	2.374	973	.078	8.536 6	568	678	1.591	2.038
		6	329 II 195 II	008 6 556 6	342 7	628 60 014 6	396 3 552 3	8 09/8	976 31 412 30	035 38 746 38	264 1:	<u>377 5</u> 756 5	128 7 133 7	436 66 560 66	316 2 768 2	512 8	236 3. 368 3(045 3
			36 12. 89 12.	72 6.0 00 5.6	4 7	14 51. 95 53.	33.5	2 8 8 8 8 8	51 33 23 33	26 33. 47 32.	14 12. 47 12.	31 5.5 13 5.5	1.7 IV 1.7 ES	12 51. 24 52	27 3.5 3.7	36 8.6	81 35. 16 35.	15 33
ž		1 15	6 11.6 7 11.5	5.77	707	8 51.4 5 50.9	3.75	8.21	1 32.0	1 34.3	4 11 7	5.55 5.61	7.07	4 51.2 3 50.7	3.55	8.29	5 33.5 6 33.4	6 32.8
ABILF		14	12.69	6.753	8.160	63.08 63.11	3.247	9.310	36.54	38.83	12.76	6.779	1E0'8	61.67.	3.319	9.260	38.12	40.71
REL		13	2,396	6.313	7,640	57.253 56.754	3.449 3.536	8.839	34.893 34.958	87.447 87.455	2.557	6.557	7.572	52.247	3.974	E68.8	36,958	7 629
8	Ē	12	205 1	362	191	821	326	502	484	501.0	2320 1	278	E 2	045	175	407 479	806	928
	ĒX	1	020 13	87 6	75 7	233 6. 395 6.	112 3 121 3	54 8 8 8	600 3 ⁽	502 3 ⁴ 884 3 ⁴	082 L	355 6 89 6	19	902 60 951 60	60 50	8 8 89	297 36 352 36	058 34
	EKAI	- 20	52 12 (74 12 (3 61	0.7 0	25 25	5 3.2	6 8,8 7 8,8	97 35. 98 35.	74 37.	27 12. 96 12	0.6.C	6 7.0 0 7.0	56 63. 59 62.	17 3.2	0 8.7	77 36. 72 36.	36
	5-5	101	1123	6.47	7.75	62.19	3.32	8.98	7 35.5 ⁰ 5 35.3 ⁰	38.4	12.6	6.58	7.59	0 61.2	3.40	8.82 8.82	9 36.8 [°] 36.0 [°]	1 38 1
		6	11.897	4.380	6.883	44.736 45.031	3.511	8.230	776.EE	30.760	11.994	4.346	6.934 6.934	49.290 49.470	3.207	8.315	34.105	121 15
		8	2 241	5.153	7.448	4.410 3.875	1 290	1200	4.254	8,110	2.336	5.497	7340	1.712	1307	205	6.199	8 250
		7	980 1	010	1114	957 5 368 5	212	492 E14	900 3	729 3	057 1	970	198	811 5 647 5	24	374	302 3	8
			75 11 12 12	51 6	777	30 63	35 3.	5 5 C	07 34 62 34	81 35 58 35	47 12 09 12	2 2	87 6. 87	03 63 01 63	16 3. 19 3.	8 4	53 36 73 36	55 57
		9	0 12.4 8 12.5	61:	7.2	9 51.7 4 52.0	4 0.	8.2	1 34.0	0 38.1	7 12.6	61.	73	5 53.5 7 51.3	3.8	8.2	0 35.5	7 38 7
		\$	12,28	6.035	7.49	53.71	3.825	9.100	34.81	37.41 37.13	12.34	5.646	7.395	57.45 59.21	3.290	8.91	36.56	36 75
		4	13.396	6.568	7.514	57.096 56 958	3.061	060.6	38.786	42.248	13.643 13.985	6.565	7.591	67.223 66.746	2.963 3.142	9.132	40.911	020 070
		e E	38	314	237	7.055	657	698 108	727.1	5.614	0.796	724	237	934	305	835	987	1908
		-	526 10 478 9	78 5	5 5 5	416 87	86 5	217 8	271 31	936 35 854 36	811 10	43 4 4 205	93 6 93 6	544 8 958 8/	21 3 65 3	52 8 77 8 8	432 33	8
			54 12 58 17	17 6.	2 7 9	10 65	80 3.	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55 37. 14 37	36 38. 02 38	00 21 21 21 21	40 6. 30 6.	7 99	80 63. 52 64	38		21 38	20 20
		AT - 1	12.6	6.2	7.5	52.7	43	0.6	35.3	39.0	12.8	6.2	73	51.8	4 4	68	35.9	201
		REPE			1	1-10		1-10	1-10		1-10	1	- 6			1-0		1-
		È					gth (mm		Ê	1		_			grh (mm		(III	
		ABLE	(un	(uuu) ,		0	id-len	(uuu)	ter (m	1m ²)	Î	t (mm)	ê	©	id-len	(unu)	ter (m	
TELES		VARU	gth (n	height	ih (mn	ngle	orono	ugu	verime	trea (r	gth (n	heigh	(h (mn	ngle	ororo	ugih	rime	
(AND		IW	all-len	nding-	l-leng	lible-a	noid-c	onal-l	lible-p	tible-a	nəl-lle	-guipt	l-leng	tible-a	noid-c	onal-l	fible-f	
EMLA			over	ascei	basa	тат	coro	diag	manu	тапс	neve	asce	basa	manu	coro	diag	тап	
H	1	PECT					JCCAL								IGUAI			
		W/AS					ы				. F				3			
		Ę									ГĒ							

Table 4. 2D right Mandible Morphometry Intra-Operator Repeatability (JHIH)

			CLAREDARIJTY
<u>т</u>	HEMI-MANDIBLES		
VIEW/ ASPECT	MEASUREMENT	REPEAT	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean SD Mean SD SE Bias CR ICC
	overall-length (mm)	14	1205 1250 1250 1250 1250 1258 10.14 1256 1256 12751 1243 1257 1258 1259 1259 1256 1240 1283 1260 1241 1295 1280 1241 1295 1280 1259 1280 1258 1284 10.158 1258 1258 1258 1258 1258 1258 1258 1
	ascending-height (mm)	- רו	6002 6488 6363 6428 5363 6428 6202 6101 6622 6301 6477 5990 6108 6529 6787 6003 6382 6302 6406 6900 6322 0278 0065 0158 0035 0093 0310 0818 546 6406 620 6321 0278 0065 0310 0818 0310 0818 546 620 546 6406 620 546 6405 6406 6406 6406 6406 6406 6406
	basal-length (mm)	- 6	8420 232 242 252 752 752 752 752 752 752 752 752 75
	mandible-angle (°)	-, 61	28.111 41 823 66.112 68.384 48.351 66.224 49.780 45.756 64.682 64.628 14 563 64.0481 64.362 65.421 56.203 48.290 63.356 65.491 56.102 153.275 56.182 153.377
BULLAL	coronoid-coronoid-length (mm)	2	3.311 4.863 2.766 2.601 3.899 3.196 4.063 3.800 3.863 2.909 3.112 3.005 3.554 1.3.139 2.571 3.033 3.897 3.056 2.862 3.105 3.359 0.574 0.036 0.113 0.025 0.049 0.221 0.977 3.556 3.556 2.861 2.703 3.854 3.355 3.356 3.355 2.861 2.703 3.854 3.355 2.861 2.703 3.854 3.355 2.861 2.703 3.955 2.861 2.703 3.955 2.861 2.703 2.86
-	diagonal-length (mm)	2	8.865 8.989 8.981 9.152 8.796 8.762 8.617 8.960 8.804 8.771 8.766 8.391 8.858 9.377 8.320 8.454 8.814 8.845 8.454 8.814 8.845 9.111 8.664 8.490 8.0016 0.016 0.016 0.011 0.137 0.570 8.501 8.501 8.501 8.501 8.501 8.501 8.501 8.501 8.500
	mandihle-perimeter (mm)	- 6	33.700/33.711/137.255/37.783/44.520/33.542/34.280/33.183/37/121/35.683/35.597/35.156/36.559/35.156/36.559/35.156/36.559/35.156/36/35.3589/36.261/35.702/35.359/35.765/35.485/1.396/33.697/0.046/35.578/35.446/33.567/35.356/35.356/35.356/35.356/35/37.267/35.253/35.559/35.769/35.
	mandible-area (nm²)		36.763, 36.899 41.266 42.151 37.163 40.380 35.401 37.823 44.324 40.143 37.695 42.647 36.856 35.124 38.163 35.124 38.163 35.204 39.579 42.162 38.237 12.370 0.259 0.304 0.068 0.133 0.556 0.958 0.967 36.856 35.177 37.782 38.450 35.781 41.064 41.767 36.891 40.552 35.076 33.756 40.423 36.455 35.177 37.782 38.450 33.758 41.054 35.258 0.226 0.304 0.068 0.133 0.556 0.058 0.058 0.059 0.059 0.059 0.059 0.059 0.058 0.059
	overall-length (mm)	1	12251 12529 12577 12.002 12.557 12.697 12.040 12.340 12.340 12.159 12.289 12.289 12.745 12.487 11.954 12.385 12.385 12.385 12.385 12.385 12.385 12.385 12.557 12.077 12.078 12.085 12.28
	ascending-height (ram)	- 14	6 164 6 589 6 382 6 470 5 591 6 251 6 140 6 652 6 596 5 96 6 6 508 6 598 6 696 6 508 6 696 6 508 109 100 1 5 902 6 504 6 506 6 508 100 100 100 100 100 100 100 100 100 1
	basal-length (mm)	1	7258 7 640 7 640 7 640 7 640 7 640 7 647 7 474 7 504 7 647 7 750 7 725 7 255 7
	mandible-angle (°)	2	26.600 39 39 36 62 57 67 482 47.582 59 001 50.131 51.719 47.766 57,100 64.204 52.405 61.207 64.504 52.405 61.207 64.504 52.405 52.666 63 802 61.030 65.315 87.118 77.64 7.58 10.301 50.343 10.57 76 57.588 62.036 64.504 55.500 64.504 55.500 64.50
	L coronoid-coronoid-length (mm)	- 61	3.887 5.258 2.553 2.674 4.005 3.950 3.173 2.555 3.292 2.171 3.212 4.166 3.257 3.245 <td< td=""></td<>
	diagonal-length (mm)	7	8.923 8.774 9016 9124 8.836 8.832 8.668 9.247 9368 8.835 8.690 8.737 8.737 9.737 9.739 8.547 8.859 8.959 9.038 8.753 8.874 0.050 9.038 8.763 8.874 0.260 9.036 0.011 0.316 0.821 8.845 8.859 9.058 8.658 8.859 9.262 0.005 0.161 0.036 0.011 0.316 0.821 8.845 8.855 9.014 9.909 9.162 8.757 8.810 8.601 9.304 8.700 8.868 8.721 8.747 8.731 9.333 8.421 8.404 8.913 9.061 9.061 9.068 9.658 8.859 0.262 0.005 0.161 0.036 0.011 0.316 0.821
	mandible-perimeter (mm)	7 7	35.879 35.522 38.17 39 130 35.522 38.17 39 130 35.528 35.657 35.655 35.655 35.529 35.657 35.529 35.657 35.528 37.545 35.542 35.542 35.542 35.542 35.542 35.542 35.542 35.542 35.547 37.556 35.573 37.556 35.573 37.556 35.573 37.556 35.573 37.556 35.573 37.556 35.573 37.556 35.574 35.549 35.547 35.549 35.557 37.556 35.573 35.547 35.557 37.556 35.575 37.556 35.577 37.576 35.577 37.576 35.577 37.576 35.577 37.577 35.577 37.577 35.577 37.577 35.577 37.577 35.577 37.577 35.577 37.577 35.577 37.577 35.577 35.577 37.577 35.577 35.577 37.577 35.577 37.577 35.5777 35.5777 35.577 35
	mandible-area (mm ²)	2	37.348 35.952 40.158 40.442 35.770 35.577 35.577 35.572 36.572 34.450 37.112 40.956 35.485 33.810 38.336 33.810 38.336 35.587 37.914 2358 200 37.514 2358 2014 25.577 37.917 35.587 35.579 37.517 35.587 35.587 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 37.591 41.025 35.359 35.578 35.587 35.5

Table 5. 2D left Mandible Morphometry Inter-Operator Reproducibility (TLC & JHH)

	A ICC	21 0.980	78 0.946	92 0.917	89 0.975	63 0.862	51 0.906	47 0.968	166'0 99	186.0 71	49 0.957	16 0.927	28 0.970	84 0.829	86 0.820	15 0.899	
	ias LC	049 0.2	084 0.3	E'0 880	892 3.5	104 0.4	057 0.2	190 0.8	171 0.7	047 0.2	078 0.3	071 0.3	923 4.1	108 0.4	086 0.3	384 1.7	
CS	SE B	.025 0.	.043 0.	,045 0.	.455 0.	053 0.	0 000	.097 0.	.087 0.	.024 0.	1040 0.	.036 0.	471 0.	.055 0.	0.044	196 0.	
Statisti	<u>6</u> , <u>7</u>	0.113 0	0.193 0	0.200 0	2.035 0	0.236 0	0.128 0	0.432 0	0 165.0	0.108 0	0.178 0	0,161 0	2.106 0	0.247 0	0.197 0	0.875 0	_
	Mean Dif.	0.069	0 620.0	0.045 0	0.531	0.059 (0,070	0.120 0	0,016 (0.029	0.060	0,055 (0.502	0.041	0:030	0.347 0	
-	ß	0.643	0.605	0.431 0.542	9.344 8.942	0.511	0.323 -	1.781 1.693	2.853	0.544	0.615	0.423	8.915 8.209	0.490	0.303	2.186	3136
	Mean	12.187 12.255	6.208 6.180	7.312 7.357	59.619 60.150	3.501 3.560	8.787 8.857	35.048 35.168	37.488 37.505	12.399	6.172 6.112	7.284 7.339	59.287 59.789	3.501 3.460	8.846 8.816	36.205 36.552	37 568
CD-I RELABILITY INTER-OPERATOR	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.508 12519 9.883 13.186 12.235 12.476 11.997 12.212 11.867 12.239 11.986 12.151 12.434 12.678 11.529 12.241 12.473 12.75 12.564 12.576 10.192 13.396 12.220 12.475 11.900 12.241 11.897 12.366 12.020 12.225 12.396 12.726 12.262 12.264 12.465 12.287	6.381 6.569 4.873 6.601 6.134 6.105 6.097 6.478 4.359 6.424 6.144 6.342 6.463 6.812 6.204 5.971 6.203 6.317 6.778 6.875 6.777 6.778 6.773 6.777 6.777 6.778 6.773 6.772 6.787 6.773 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 6.775 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.7555 7.7555 7.755 7.755 7.755 7.755 7.755 7.7555 7.755 7.755 7.755 7.7	7.441 7.557 6.060 7.557 7.564 7.136 7.165 7.165 7.1746 6.967 6.946 6.988 7.464 7.701 8.054 7.753 7.660 7.557 7.564 7.366 7.365 7.055 7.055 7.191 7.640 8.166 7.364 6.988 7.464 7.791 8.055 7.754 7.660 8.160 7.064 7.064 8.166 7.004 7.342 7.926 7.925	22.050 65.210 86.750 86.700 49.050 151.170 65.660 51.540 49.410 162.650 64.330 62.280 53.610 62.650 148.110 51.250 67.910 161.626 56 46.64 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.05 155 46.	4.343 2.943 3.306 2.807 4.008 4.200 3.007 3.007 3.024 3.248 3.854 3.162 4.192 3.004 3.203 3.004 3.248 3.854 3.162 4.192 3.004 3.204 3.248 3.854 3.162 4.192 3.004 3.203 3.004 3.248 3.854 3.175 3.248 3.854 3.176 4.256 3.248 3.854 3.749 3.806 3.141 3.584 3.854 3.469 3.277 3.749 3.749 3.806 3.141 3.684 3.684 3.646 3.747 3.795 3.846 3.449 3.777 3.795 3.449 3.749 3.806 3.141 3.864 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 3.684 <th< td=""><td>9060 8867 888 9060 9.00 2.00 8867 824 8.442 8.968 8.233 8.723 8.754 8.509 8.576 8.989 8.208 8.266 8.564 8.879 8.298 9.519 9.059 8.70 8.969 9.515</td><td>34.993 36.998 32.290 38.921 33.994 33.690 34.684 34.209 33.017 35.569 35.219 35.060 35.219 35.060 35.219 35.060 35.219 35.717 35.296 35.239 35.717 35.717 35.717 35.717 35.295 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35</td><td>38,720,39041 35,311 42,136 37,261 37,697 35,716 37,993 30,958 38,395 37,426 34,905 37,568 40,078 34,153 32,613 38,278 38,698 38,748 42,80 39,005 38,956 35,614 42,2248 37,410 38,181 35,729 38,110 30,760 38,474 37,502 35,103 37,447 38,821 34,326 33,035 38,430 38,816 39,011 43,05</td><td>12.608 12.570 10.778 13.591 12.369 12.633 11.973 12.319 12.290 12.528 12.057 12.349 12.405 12.76 11.644 12.264 12.329 12.329 12.572 13.09 12.800 12.811 10.756 13.643 12.347 12.647 12.356 12.011 12.627 12.052 12.359 12.557 12.744 11.714 12.564 12.274 12.217 12.642 12.318</td><td>6496 6609 4729 6556 6044 6322 5585 6486 4383 6531 6090 6215 6594 6510 6092 5830 6053 6690 6494 6821 6521 6524 6510 6092 5831 5877 5973 6710 6492 6821 6321 5230 6537 5597 55973 6710 5492 6822</td><td>7307 7486 6.003 7.587 7.587 7.445 7.003 7.447 6.587 7.476 7.161 7.155 7.645 7.828 7.022 7.035 6.998 7.407 7.676 7.872 7.113 7.572 8.033 7.071 7.128 7.078 7.484 7.808 8.045 7.045 7.585 6.537 7.591 7.591 7.590 6.599 7.540 6.599 7.540 6.599 7.540 7.057 7.113 7.572 8.033 7.071 7.128 7.078 7.484 7.808 8.045</td><td>22.669 (44.229) 84.726 (67.080) 50.043 (56.624 (51.818) 49.858 (61.100) 63.908 (62.161) 53.630 (63.423 (47.367) 51.059) 68.011] 59.830 (56.381] 65.950 (56.364) 63.950 (56.264) 52.247] 61.884 (51.212) 51.436 (63.258) (56.268) 56.358 (55.68) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.26</td><td>4.408 2.940 3.256 2.913 3.940 4.119 2.828 4.206 3.265 3.322 3.157 3.200 3.770 2.943 4.101 3.814 2.977 3.523 3.758 5.621 4.206 2.721 3.306 2.721 3.306 2.720 2.963 3.250 3.816 3.104 4.307 3.307 3.407 3.309 3.175 3.974 3.319 3.598 3.588 2.816 2.899 2.670 3.566 2.671 2.977 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978</td><td>91157 8.834 9.774 9.154 8.975 8.947 8.447 9.006 8.906 8.856 8.877 8.860 8.449 8.881 9.070 8.241 8.357 8.557 8.952 9.004 9.457 8.948 8.871 8.958 8.447 8.895 9.260 8.248 8.612 8.678 9.018 9.060 9.658 8.971 8.971 8.778 8.774 8.905 8.715 8.750 8.758 8.407 8.895 9.260 8.296 8.295 8.612 8.678 9.018 9.060 9.658</td><td>35.665 38.731 [33.962] 40.856 [35.537] 33.060 [35.620 34.306 [37.788 [35.877] 36.222 [36.940] 38.990 [33.405 [37.192 [37.302] 34.915 [39.65 [35.657] 34.69 [39.965 [35.657] 34.99 [37.302] 34.915 [39.65 [35.657] 34.911 [35.650 [35.957] 35.951 [35.857] [36.397] 35.877 [36.397] 36.896 [37.184 [38.152 [33.581] 35.252 [37.391] 36.891 [39.65 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.1</td><td>38 277 38 277 38 272 35 286 37 286 37 286 37 37 38 586 30 228 38 537 35 580 35 283 37 256 40 362 33 289 32 831 37 694 39 217 38 651 43 69</td></th<>	9060 8867 888 9060 9.00 2.00 8867 824 8.442 8.968 8.233 8.723 8.754 8.509 8.576 8.989 8.208 8.266 8.564 8.879 8.298 9.519 9.059 8.70 8.969 9.515	34.993 36.998 32.290 38.921 33.994 33.690 34.684 34.209 33.017 35.569 35.219 35.060 35.219 35.060 35.219 35.060 35.219 35.717 35.296 35.239 35.717 35.717 35.717 35.717 35.295 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35.717 35	38,720,39041 35,311 42,136 37,261 37,697 35,716 37,993 30,958 38,395 37,426 34,905 37,568 40,078 34,153 32,613 38,278 38,698 38,748 42,80 39,005 38,956 35,614 42,2248 37,410 38,181 35,729 38,110 30,760 38,474 37,502 35,103 37,447 38,821 34,326 33,035 38,430 38,816 39,011 43,05	12.608 12.570 10.778 13.591 12.369 12.633 11.973 12.319 12.290 12.528 12.057 12.349 12.405 12.76 11.644 12.264 12.329 12.329 12.572 13.09 12.800 12.811 10.756 13.643 12.347 12.647 12.356 12.011 12.627 12.052 12.359 12.557 12.744 11.714 12.564 12.274 12.217 12.642 12.318	6496 6609 4729 6556 6044 6322 5585 6486 4383 6531 6090 6215 6594 6510 6092 5830 6053 6690 6494 6821 6521 6524 6510 6092 5831 5877 5973 6710 6492 6821 6321 5230 6537 5597 55973 6710 5492 6822	7307 7486 6.003 7.587 7.587 7.445 7.003 7.447 6.587 7.476 7.161 7.155 7.645 7.828 7.022 7.035 6.998 7.407 7.676 7.872 7.113 7.572 8.033 7.071 7.128 7.078 7.484 7.808 8.045 7.045 7.585 6.537 7.591 7.591 7.590 6.599 7.540 6.599 7.540 6.599 7.540 7.057 7.113 7.572 8.033 7.071 7.128 7.078 7.484 7.808 8.045	22.669 (44.229) 84.726 (67.080) 50.043 (56.624 (51.818) 49.858 (61.100) 63.908 (62.161) 53.630 (63.423 (47.367) 51.059) 68.011] 59.830 (56.381] 65.950 (56.364) 63.950 (56.264) 52.247] 61.884 (51.212) 51.436 (63.258) (56.268) 56.358 (55.68) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.268) (56.26	4.408 2.940 3.256 2.913 3.940 4.119 2.828 4.206 3.265 3.322 3.157 3.200 3.770 2.943 4.101 3.814 2.977 3.523 3.758 5.621 4.206 2.721 3.306 2.721 3.306 2.720 2.963 3.250 3.816 3.104 4.307 3.307 3.407 3.309 3.175 3.974 3.319 3.598 3.588 2.816 2.899 2.670 3.566 2.671 2.977 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978 2.978	91157 8.834 9.774 9.154 8.975 8.947 8.447 9.006 8.906 8.856 8.877 8.860 8.449 8.881 9.070 8.241 8.357 8.557 8.952 9.004 9.457 8.948 8.871 8.958 8.447 8.895 9.260 8.248 8.612 8.678 9.018 9.060 9.658 8.971 8.971 8.778 8.774 8.905 8.715 8.750 8.758 8.407 8.895 9.260 8.296 8.295 8.612 8.678 9.018 9.060 9.658	35.665 38.731 [33.962] 40.856 [35.537] 33.060 [35.620 34.306 [37.788 [35.877] 36.222 [36.940] 38.990 [33.405 [37.192 [37.302] 34.915 [39.65 [35.657] 34.69 [39.965 [35.657] 34.99 [37.302] 34.915 [39.65 [35.657] 34.911 [35.650 [35.957] 35.951 [35.857] [36.397] 35.877 [36.397] 36.896 [37.184 [38.152 [33.581] 35.252 [37.391] 36.891 [39.65 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.195 [35.1	38 277 38 277 38 272 35 286 37 286 37 286 37 37 38 586 30 228 38 537 35 580 35 283 37 256 40 362 33 289 32 831 37 694 39 217 38 651 43 69
	OPERAT	TLC	DIF.	TLC	DIT	TLC	日 日 日	DIF	DIT DIT	TLC	DT H	TLC	TLC JHH		TIC	11.C	1
HEMI-MANDIBLES	V/ASPECT MEASUREMENT	overall-length (nm)	ascending-height (mm)	basal-length (mu)	mandible-angle (°)	BUCCAL coronoid-coronoid-length (mm)	diagonal-length (mm)	mandible-perimeter (mm)	mandible-area (nmt)	overall-length (mm)	ascending-height (nm)	basal-length (nm)	mandible-angle (°)	LINGUAL coronoid-length (mm)	diagonal-length (mm)	mandible-perimeter (nm)	
Table 6. 2D right Mandible Morphometry Inter-Operator Reproducibility (TLC & JHH)

		DA ICC	226 0.888	319 0.829	190 0.948	365 0.979	717 0.840	247 0.846	515 0.827	946 0.907	237 0.904	318 0.830	265 0.870	\$55 0.972	559 0.875	282 0.836	456 0.838	0 0 57
		Bias L(0.059 0.3	0.071 0.3	0.043 0.1	0.753 3.	0.161 0.1	1,0555 0,1	7339 17	0.435	1.053 0.1	30 170.C	202 0.2),862 3.5).147 O.(1063 0.5	1.1 225	C C 2361
	stics	SE	0:030	0.036 (0.022 (0.384 (0.082	0.028	0.173	0.222 (0.027	0.036 (0.302	0.440 (0.075	0.032	0.166 0	5 5500
	Stati	SD. Dif.	0.133	0.163	0.097	1.717	0.366	0,126	0.773	0.993	0.121	0.162	0.135	1.967	0.336	0.144	0.743	3211
	:	Mean Dif	6 -0.067	3 0.051	5 0.031	5 -0.379	2 0.093	0.066	-0.027	0.106	0.039	0.086	0.008	+ -0.570	t -0.007	-0.017	0.016	1 0.740
	1	an SD	40 0.28 07 0.33	14 0.29 13 0.27	55 0.29: 14 0.32	54 8.846 32 7.833	12 0.72 19 0.57	1 0.24 5 0.25	59 1.169 85 1.390	31 2.16(37 2.37(03 0.261 43 0.280	0 0.300	3 0.285	49 8.734 18 7.764	15 0.694 2 0.623	7 0,233 4 0,260	48 1.049 31 1.469	62 2.014
		19 20 M	2796 12 801 12	381 6.980 6.3 406 6.900 6.3	242 7.309 7.4 297 7.399 7.4	1.394 65.984 58. 789 65.974 58.	835 3.292 3.4 862 3.105 3.3	176 8.739 8.8 111 8.664 8.3	736 37.265 35	0.623 41.766 38. 0.579 42.162 38.	2 780 12 718 12 2 832 12 773 12	402 6.980 6.4 506 6.825 6.3	189 7.309 7.4 068 7.361 7.4	.560 65.084 57. .030 65.315 58.	102 3.292 3.5 251 3.257 3.5	152 8.739 8.8 038 8.763 8.8	.021 37.001 36. .384 39.279 36.	082 41.766 37.
		17 18	2378 12393 12 2414 12430 12	6.425 6.611 6. 5.308 6.402 6.	7.338 7.417 8. 7.363 7.444 8.	1.171 64.157 63 2.927 64.688 62	1,467 3.156 2. 3.897 3.056 2.	8.845 8.977 9. 3.814 8.845 9.	5.223 35.967 36 5.389 36.361 36	7.974 39.581 39 8.163 39.204 39	2385 12.410 12 2385 12.395 12	5.333 6.473 6. 5.902 6.504 6.	7.324 7.363 8. 7.345 7.433 8.	0.930 63.480 62 2.696 63.802 61	1.537 3.147 3. 1.156 3.245 3.	3,936 8,866 9. 3,883 8,930 9.	6.723 36.775 38 6.520 37.052 38	8.106 38.645 39
ABUTY		15 16	12.385 12.016 1	6.044 5.965 6.083 6.083	7.075 7.013	64.330 63.185 5 65.491 61.600 5	2.776 3.088 4 2.571 3.203 3	8.502 8.530 8 8.320 8.454 8	36.107 35.035 3 36.007 34.896 3	35.347 34.955 3 36.836 35.13413	12.511 11.894 1 12.487 11.954 1	6.137 5.971 6 6.109 6.021 5	7.170 6.983	65.327 61.550 5 64.367 61.546 5	2.731 3.224 4 2.717 3.212 4	8.549 8.518 8 8.364 8.467 8	34.746 35.869 3 34.501 35.422 3	36.074 34.183 3
CD-1 RELV		13 14	M 12258 12794 0 12401 12833	4 6.355 6.804 8 6.529 6.787	6 7.376 8.084 8 7.223 7.987	1 58,390 63,063 1 58,390 63,356	0 3.625 3.141 5 3.554 3.139	7 8.939 9.542 1 8.858 9.373	5 35.221 36.160 7 35.156 36.590	(7 37.828 40.792 (8 37.607 40.647	4 12.461 12.295 9 12.289 12.745	1 6.512 6.927 5 6.308 6.893	8 7.660 7.316 5 7.253 7.590	0 52.970 63.140 4 52.495 61.927	1 3.846 3.653 0 3.675 3.292	3 8.798 8.942 7 8.737 9.370	4 36.519 36.702 7 35.928 37.543	1 37,416 40,305
	OPERATOR	n = 20	17 12 270 12 00 91 12 381 12 06	9 5.941 6.194 77 5.990 6.106	77 7.306 7.226	25 63.748 64.80 48 64.362 62.81	1 3.070 3.150 9 3.112 3.005	1 8.790 8.657 1 8.766 8.391	79 34.899 35.03 21 35.683 35.59	28 37.701 34.76 43 37.935 35.12	07 12 210 12 09 66 12 200 12 12	6 5.949 6.161 6 5.956 6.046	17 7.102 7.128 14 7.075 7.226	80 63.900 64.38 00 64.250 64.90	8 3.035 2.941 6 3.153 3.160	4 8,633 8,628 5 8,690 8,737	77 35.547 35.66 73 35.219 35.65	14 36.834 34.59
	INTER	, 9 9 10	340 12.335 12.7 424 12.143 12.7	68 6.656 6.20 52 6.301 6.47	774 7.600 7.69 11 7.533 7.67	986 44.918 67.6 786 45.635 64.0	49 2.971 2.47 00 3.863 2.90	64 9.218 8.84 60 8.804 8.77	427 33.597 36.9 290 33.183 37.1	841 37.454 39.9. 828 34.324 40.1	272 12.313 12.50 340 12.186 12.40	48 6.647 6.20 62 6.592 6.19	26 7.573 7.73 74 7.504 7.64	570 44.790 66.71 719 47.766 67.10	07 3.147 2.53 50 3.773 2.52	02 9,298 8,94 47 9,308 8,83	453 35.483 37.8° 555 34.296 37.6	372 37.544 38.7
		6 7 1	717 12.040 12	339 6.394 6.6	302 7.263 7.5 362 1 7.194 7.5	.636 48.229 44 224 49.780 49	343 4.439 4.7 196 4.063 3.8	748 8.683 8.9 762 8.617 8.9	301 34.523 36. 920 33.542 34.	857 35.788 37. 380 35.491 37.	549 11.982 12. 697 12.040 12	378 6.452 6.6 231 6.140 6.6	344 7.012 7.5 418 7.183 7.4	420 47.540 44.	341 4.358 4.8 401 4.012 3.9	767 8.457 9.0 832 8.608 9.2	492 35.619 35. 865 35.635 35.	561 35.062 37.
		4 5	3.052 12.532 12 3.141 12.536 12	6.410 6.089 6 6.428 5.864 6	7.650 7.362 7.	38,684,47,242,59 38,384,48,351,60	2.601 4.027 3. 2.601 3.899 3.	9.114 8.737 8. 9.152 8.796 8.	17 748 34 302 35 17 783 34 520 34	12 154 36.529 39 12 151 37.163 40	2 949 12 549 12 3 023 12 557 12	6.466 6.032 6. 6.470 5.931 6.	7.572 7.543 7. 7.567 7.474 7.	57,720 47,320 58 57,482 47,582 59	2.630 4.037 3. 2.674 4.083 3.	9.167 8.924 8. 9.124 8.836 8.	8.808 36.358 36 9.130 35.288 35	0.862 36.303 38
	A subscription of the second second	2 1 3	8 12.447 12.490 1 5 12.504 12.984	6.733 6.225 6.488 6.363	7.618 7.467	5 40.705 66.656 6 1 41.828 66.112 6	4.868 2.807 4.863 2.766	8.839 8.982 8.989 8.981	33.600 35.270 3	2 36.938 38.924 4 3 36.839 141.266 4	3 12 507 12 518 1 12 529 12 572 1	6.817 6.374	7.640 7.640	0 40,300 64,390 6 39,989 62,575 6	4.731 3.086 5.258 3.553	8.788 9.183 8.774 9.016	2 36.005 37.812 3 3 35.532 38.171 3	36.772 39.598 4
		ж	12.148	6,064 6,064	7.245	55.910	3.757	8.794	33.700	36.882 36.763	12.158	6.140	7.258	55.820 56.690	3.909	8.846	35.482 35.875	37.445
		OPERATO	JUT HHL	DIT. HEL	TLC	TLC	2,1T HHL	JTLC HHL	21 표	JHH	UL E	2 번	JIT.	2 E	21 HH	2E	JT 王	21LC
	SE	SUREMENT	h (mm)	(mm) <i>M</i>	(unu)	le (")	noid-length (mm)	th (mm)	i <i>meter</i> (mm)	1 (mm²)	i (mm)	'ght (mm)	(uuu)	le (°)	moid-length (mm)	ith (mm)	'meter (mm)	-
	HEMI-MANDIB(MEAS	overall-length	ascending-hei	hasal-length (mandible-ang	coronoid-coro	diagonal-leng	mandible-peri.	nundible-area	overall-length	ascending-hei	basal-length (mandible-ang	coronoid-coro	diagonal-leng	mandible-peri.	
	-	VIEW/ ASPECT			· •• ·		BUUCAL			-		•••••	P.6. 187 -					

Table 7. 2D Incisor Morphometry Intra-Operator Repeatability (TLC)

														9	RELIAE	BILITY		1	1							1				1 1
TIONIVIAI											NTR/	V-OPER	ATOR (1	ទ្ឋ												Statis	ខ្ម		ł	1
VIEW/ ASPECT	MEASUREMENT	REPEAT	-	2	 	4	· · ·	9		80	1- 1-	10 %	11	12	13	14	15	16	17	11	51	1 20	Mez	u SD	Dif.	명원	SE	Bias	Q M	U I
	overail-length (mm)	- 7	10.544 1	0.777	1.064 7	942 1	0.628 1	1 185.1 1 275.1	0.920	1 919.0	0.902	10.214	10.488	10.730	10.263	10.546	10.01	10.26	6 10.6	58 11.2 43 10.7	93 IO.7 42 IO.5	46 8.0	73 10.4	32 0.90 45 0.89	5 0.087	0.387	0.087	0 171.0	759 0.9	38
	angle-of-curvature (°)	- " ~1	112.640 1	13.920 11 13.800 11	6.220 12 5.490 12	17.230 11	1.180 I	5.750 L1	4.190 11	5,390 11 5,640 11	1.210 1	14.810	112,790	115.410	115.810	116.870	115.12	0 115.0	40 113.2 20 113.2	90 114. 80 114.	210 113.1 130 112.1	30 135.1 20 135.4	116.4 116.4	121 5.36 155 5.45	0 0.166	1.496	0.335 (1,657 2.	932 0.9	8
BUCCAL	width-at-midpoint (mm)	- 7	1.070	1 040	024 1	052	040	127 042	082 1	1 990 1 120	066	1.054	1.027	1.037	1.021	1.018	1.036	0.99	9 1.05	2 1.1: 6 1.0	1.05 1.05	1.00 1.00	1 1.06 27 1.04	60 0.03 16 0.02	7 9 0.014	0.035	0.003	016 0.	069 1.0	8
	incisor-perimeter (mm)		25.472 2	6 729 2	7 216 1	9.316 2	5.118 2	8.206 2 6.815 2	6.762 2 5.651 2	5.811 2	6.848	25.287	26.003 26.484	26.464 25.308	25.026 25.731	25.653	24.22	25.22	4 25.8	38 28.1 16 26.5	20 26.1 47 26.0	65 17.7 89 17.6	53 25.4 92 25.2	10 2.57 94 2.54	0 0.116	1.058	0.237	116 2	0.74 0.9	18
	incisor-area (ntm²)		11.466	2 111 1	2.007 8	825 1	0.820 1	3.748 1	2.695 I	2366 1	2.386 1.107	11.236	11.981	11.917	11.083	11.548	10.76	E6.01	8 11.8 2 11.8	9 12.4	43 12.6 63 12.5	46 8.3(81 8.3(01 11.6 08 11.4	23 1.34 57 1.18	2 0.166	0.741	0.166	325 1.	452 0.8	62
LEFT	overall-length (mm)		10.541 1	0.844 1	014 7	881 1	0.596	1.041	0.918 1	0.920 1	0.140	0.560	10.725	10.750	10.330	11.418	10.08	10.35	8 10.6	10.7	43 10.8 56 10.6	66 8.0% 89 8.47	22 10.4 76 10.3	42 0.89 79 0.81	7 6 0.063	0.275	0.061	,120 0	6.0 955	92 1
	angle-of-curvature (")	4 1	112.430 1	11,016.61	5.800 12	7,210 11	6,640 1	6,500 1	4.450 [1]	5.440 11	5.480	15.570	113.140	115,900	116.200	111.740	115.54	0 114.8	20 112.9	00 114.	90 114.4	70 136.4	110 1164	H2 5.63	0.071	0.931	0.219	.429 1.	923 0.9	58
FINGUAL	width-at-midpoint (mm)	~	1.090	11 038 1	5.190 12 .037 1	051 1	020	039	075 1	1 690	1.055	1.053	1.097 1 078	900.01 1.008	1.022	1040	1/071	1.03	011.06	3 1.0	01 00 1 00 1 00 1 00	1011	1 02 1 1 05 1 1 05	10°C 17	2 0.000	0,024	0.005	010 0	047 1.0	0
	incisor-perimeter (mm)	1 - 6	25.315 2	6 719 2	7.240 19	9.320 2	5.012 2 4.975 2	6.826 2	5.377 2.	5.786 2 5.782 2	6.842	25.371	25.951	26,415	25,204	28.599	24.25(25.25	9 25.9 3 26.0	38 26.7 01 26.6	13 26.1	43 17.6 78 17.6	93 25.4 34 25.2	18 2.56 39 2.52	4 0.179	0.667	0.149	1 292 1	307 0.9	55
	incisor-area (mn ²)	a – , c	11.426 1	2 201 1	1.923 8 8 161 8	903 1	0.786 1	2,430 1	2.757 1: 1.526 1:	2 455 1	2.487	11.308	12,035	11.148	11.104	13.220	10.848 10.858	10.98	811 0	0 124 124	93 12.7 65 12.6	75 8.3(31 8.2(2 11.6 24 11.5	13 1.23 10 1.20	1 0.103	0.490	0.110	1216 0	960 0.9	80
•	labial-length (mm)	1 - 1	11.547	0.379 10	10000	0.503 1	0.532 1	1 284 1	1 553 1	1 444	0.547	9.357	10.105	12.057	10.795	11.223	10.16	11.78	6 10.9	50 10.0	76 9.5 ⁰ 75 9.5 ¹	9 8.4 5 8.4	10.5 10.6	93 0.87 41 0.89	2-0.04	8 0.249	0.056 (0.109 0.	488 0.9	51
	overall-length (mm)	1 - 1 -	10.825	1695 IC	1 1/2 1/2	0.883 8	846	0.320	951 10	764 9	573	0.538	9.645	9.475 9.496	10.180	10.298	8.030 8.068	10.47	0 9.75 3 9.70	2 10.2 3 11.0	23 9.7 10 9.97	9.20 9.32	53 9.92 26 9.88	13 0.69 10 0.70	9 0.043	0.334	0.075 (.147 0	655 0.8	06
	angle-of-curvature (°)	1	116,200 1	11 05280 11 8 955 17	9.140 12	0.630 12	23.550 I	4.840 1	4 950 12	1.220-12	1 046.13	16.050	24.420	121.280	123.950	122.190	129.49	1.9.1	80 122.9 90 121.5	90 123. 80 117.	1.911 020	50 123.8 50 124.6	880 121.3 570 121.1	555 3.47 54 4.40	5 0.200	0 2.388	0.534	.047 4	681 0.3	26
BUCCAL	width-at-midpoint (mm)	9 6	1.116	045	030 0	982	027	.054	032 1	169 1	.044	1.047	1.008	1.030 1.004	1.030	1.025	0.996 1.008	999.0	8 1.01 2 1.07	3 1.0	1.00 10.1	5 1.10	1.04	13 0.04 10 0.03	6000 9	0.038	0.009	018 0	074 1.0	00
	incisor-perimeter (mm)	- 6	26.554 2 25.195 2	3.014 2	1,943 2,1806 2,1	5.409 1	9.663 2	3.221 2	3.920 2	101 2	2.609	25.128	24,565	21.739	23.268 23.372	24.462 24.371	19.10	24.55	2 24.8 4 23.U	25.4 23 26.7	29 23.4 18 23.4	29 21.8 30 21.7	55 23.5 49 23.3	89 1.88 39 1.89	5 0.250	0.690	0.154 (301 1	352 0.9	8
	incisor-area (nm ²)		12 844 1	0.120 1	1.129 1	1.279	1 884 1	1 013 1	0.526 1	0.561	0.046	11.616	10.570 10.536	9.531	10.319	10.891	8.016	10.01	7 10.6	37 11.4 37 12.8	54 10.7 42 10.7	00 10.2 11 10.3	35 10.5 49 10.4	80 1.14 61 1.12	3 0.115	0.559	0.125	1.245 1.	036 0.3	2
RIGHT	overall-length (nm)		10.338	9.427 10 9.310 10	0.477 10	0.819 8	1823	804 1	0.594 5	148 1	0.086	11.217	9.683	9.435 9.444	10.109	10.324	8.030	10.46 10.43	1 9.73	2 102 9 104	85 9.67 84 9.71	3 9.1	70 9,85 14 9,87	0.69 19 0.68	7 0.013	0.254	0.057	0.112 0.	498 0.9	1 22
• • •	angle-of-curvature (°)	- 7	117.800 1	19.330 11 19.047 12	9.100 12	0.290 12	3.670 1	0.140 1	4.640 12 4.070 12	5.320 ⁻ 12 7.360-12	22.470 1	18.070	24.180	120,670	121,460	122.620	128.64	0 118.7	60 122.7 10 123.0	60 122. 20 117.	50 124.8	50 127.	121 011 2121 010	888 3.43 997 4.14	5 -0.10	9 2.241	105.0	.982 4	392 0.8	1 2 1
TINGUAL	. width-at-midpoint (mm)	- <u>-</u>	1.065	1.016	047 0	.005	045	038	240	101.	£60.1	1.131	1.018 1.038	1.028 1.020	1.011	1.053	1.012	1.02	4 1.07	2 1.0	55 L.0	1.1	24 1.05 39 1.04	53 0.03 16 0.06	8 0.008	8 0.037	0.008	0.016 0	073 1.0	181
	incisor-perimeter (mm)	- ' 0	25.458 2 25.244 2	2 006 2	5.077 2	5.401 1	9.799 2	2 158 2	5.494 2	2 848 2	3.820	25.184	24.493	21.758	23.286	24.413	19.100	24.45	9 23.5	51 25.3 36 25.4	86 23.3 75 23.4	86 21.6 13 21.7	71 23.4	34 1.89 61 1.90	2 3 0.072	0.507	0.113	0 127.0	994 0.9	3
	incisor-area (mm²)	- 6	11.666	9.609 1	0.992 1	1.367	1912	1 200	1 1620	0.492 1	1.163	11.581	10.483	9.522	10.248	10.830	8.013	10.90	6 10.3 0 10.3	59 11.4 22 11.5	87 10.7 83 10.7	00 10.2 09 10.2	77 10.4 81 10.4	72 1.07 26 1.13	4 7 0.046	6 0.481	0.108	0.212 0	943 0.9	8
	labial-length (mm)	7 1	12,189 1 12,193 1	1.144 10 0.877 1	1 1060	2.055	000	0.375 1	1 059 1	1.217 5	9.353	12.072	11.662	9966 9.776	9.836 10.198	12.326	8,844 9,186	10.93	1111 3 11.1	14 10.5 39 10.5	49 9.5(70 9.5	8 10.4 0 10.5	84 10.7 67 10.7	29 1.05 38 1.06	2-0:00	9 0.189	0.042	0 680'	370 0.9	22

10.1. Appendix 1. Reliability and Validation

Table 8. 2D Incisor Morphometry Intra-Operator Repeatability (JHH)

ſ		Ŋ	0.987	666'0	1.000	0.988	0.995	0.995	0.955	1.000	166:0	£66'0	0.996	0.996	1.000	0.992	0.982	0.925	0.994	1.000	0.995	0.984
		R	0.329	1.360	0.039	0.304	0.229	0.220	3.546	0.033	0.335	0.263	0.098	0.706	0.029	0.316	0.145	0.486	0.706	0.025	0.361	0.182
	1	Bias	3 0.074	MOE.0	1 0.008	5 0.069	0.051	0.049	0.794	800.0	0.074	0.059	0.216	0.157	0.006	120.0	0.033	0.108	0.157	900.0	0.080	0.041
	atics	SE	8 0.038	4 0.155	0000	5 0.03	7 0.026	2 0.025	9 0.405	7 0.004	1 0.038	0.030	0110	0.080	2 0:00	0,036	1 0.017	3 0.055	0.080	0,003	0.041	0.021
	Stati	n SD.	1 0.16	0.69	3 0.02(5 0.15	6 0.117	0.112	4 1.805	2 0.013	5 0.171	6 0.134	7 0.050	1 0.360	9 0.012	4 0.161	4 0.074	0.248	0 0.360	2 0.013	6 0.184	2 0.093
		Mea	7 6 -0.01		-0.01	10.04 10.04	0-0-0	0.03(8 -0.13	6-0.01	2 0.06	0-0.05	-0.03	5 -0.05	-0.00	9-0.14	9 -0.17	0.012	10.04	-0.01	-0.03	10.16
		- CS	3 0.99	05 6.35 15 6.60) 0.03 1 0.02	2 2.57 6 2.58	3 1.17 8 1.18	6 1.08 5 1.06	70 6.07 24 5.72	0.02	0 2.54 5 2.50	6 1.19 5 1.19	0.72	19 4.07 10 4.18	0.02	1 1.75	2 0.99 6 0.97	0.61	6 3.26 7 3.39	0.02	0 1.84 5 1.81	2 1.03
		Mca	10.16	2 114.66	5 1 0.1	25.20	11.42	10.02 9.99	0 114 T	190'I	25.25	11.46	97.9 97.9	116.95	1.035	23.21	10.16	9.628	116.73 116.77	1.042	23.18	10.21
	;	20	7.718	136.88	1.120	17.655	8.157 8.291	7.643	135.98 134.18	1.072	17.721	8.154	8.952 9.022	127.25	1.071	21.832	9.823 9.963	8.980 9.035	117.59	1.076	21.737 21.515	10.066
		61	10.032	09.719	1.103	25.882	12.379	10.169 10.127	10,015	1.067	26,485 26,104	12.421	9,705	14,239	1.039	23.211	10.510 10.670	9.609	15,101	866.0 1.021	23.213	10.514
	-	81	207	1.432 1	020	234	277 389	0.147	1 078 1	760 260	359	441	285	1.605 1	EL0	21 165	301	165	1.613 1 1.765 1	047	382	243
		7	202	11 100	50 1	8 8	823 12 837 12	93 10 10	11 520	1 1	50 54 54 54 54 54 57 57 57 57 57 57 57 57 57 57 57 57 57	008 12 12 12	6 6	740 11	39 1	68 25 07 25	11 11 12	76 10 80 10	501 11 612 11	1 1	5 5	11 02
	;		6 10.	0110	10.1	5 26	2 II 1 II 1 II	5 10.5 6 10.5	26 111. 25 117.	2 1.0	2 26.	0 11.8 6 12.0	9.9.	58 114. 98 114.	1.0	1 23.0	4 10.1 9 10.2	7 9.4 8.4	77 114.	9 1.0	8 23.1	9 10.1
		16	9.76	9.113.4	100	24.95	10.79	9.79	9 113.00 51 113.00	26.0	25.16	10.83	96.6 916.6	115.1	00.1	24.28	10.68 10.91	9,887	115.27	0,989	24.34	10.70
	:	15	9.693 9.860	112.52	1.067	24.098	10.724	9.749 9.841	113.079	1.059	24.183 23.935	10.757	8.105 8.276	118.713	0.998 1.022	18,875	7.993	8.150 8.239	119.056	1.033	100.01	7.875
È			10.800	10.296	610.1	28,316	12.971	10.824	10.608	1.024	28.323	13.062	9.954 10.033	14.663 14.856	1.035	24,137 24,295	10.720	9,981 10.061	15.002	1.023	24.170	10.653
TABI		19		4159	590 IEO	5.563	.458	121	4.365 I	EL 50	5.925	871	743	8.866 9.165	016 041	1,159	0.112	704	8.752 1 9.654 1	110	060.0	107
			603 9	11 8.40	5.₹	325 2	1 20	11 II 12 II 13 II 14 III	048 11 896 11	8 8	24 12 13	038 11	20 9 9 21 9 9	570 11	1 100	2 2 2	119 1(84 1(24 9 68 9	489 11 698 11	98	54 2 74 2 2 2 2 2 2	87 10
	R (JHH		27 10. 80 10.	23 112	7 9	<u>2</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 05	8 0	43 114 87 113	7 8	22 23	1 1	8 8 9.0	12 118 64 118	5 0 ⁰	35 21. 27 21.	35 9.3 80 9.5	0 9.1 1.2	25 118 63 118	9 10	20 21 8 21.	55 9.2
	RATO		102	7 114.1	5.9	26.5	11.9	102	1 114.1 3 113.8	8.8	26.4	119	9.97	6 115.0 5 115.3	10.1	24.5	10.2	9.9	5 115.6 1 116.0	0.99	24.3	10.3
	Id-OF	.0	10.192 10.185	111.40	1.108	26.02	12 114	10.213	112.02	1.120	25.973	12.076	9.996 10.021	112.85	1.021	24.995	11.506	9.913 9.984	112,56	1.039	24,972 25,240	11.420
	Ē	6	9.620 9.634	112,706	1.040	24.211	11.115	9.630	112.725	1.050	24.350	10.966	9.357	116.493	1.025	22.548	9.899 10,154	9.253	115,336	1.031	22,538	9.964
			0.556	3.852	073	6.836 6.616	2413	0.588	4.055	075	5.803	2.425	1890	7.711 8.001	680 160	2.956	0.397	.740	8,100 1	.102	2,745	0.357
		 F	1 516	11 231	387	503 2 503	532 1	324	1.12	12 96	547 2	534 1 756 1	555 1 716 1	762 11 595 11	35 1 1	712 2	430 1	568 568 714 5	012 11 934 11	<u>7</u> 2	773 2 978 2	- 905
			5 5 7 8	68 112 98 112	5 0	2, 2, 2	11 11 85 11 12 85	26 02 26 72	96 112	8 10	2 2 8	11 5 11 5	49 9.6 1 9.7	39 111 111 01	1 10	21 23	101	5 9.6	87 112 24 111	7 1.0	ន ន	7 10.
		9	11.5	1113.6	20.1	26.55	12.1	10.5	8 113.5 0 113.7	1.05	26.7	12.20	10.50	1223	1.05	21.85	9.77 21.01	9.57	1226	1.05	21.92	67.6
		ŝ	10.307	114.13	1.053	25.099	10.866	10.336	114.02	1.036	25.104	01919 10,873	8.649	121.97(1.021	108.01	7.940	8.652 8.701	121.94	1.030	19.656 19.672	7.889
		4	7.878	27.071	101	970.91 867.81	8.917	6.826 6.826	26.612	1.071	19.172 19.167	8.907	0.457	20,443 20,351	1.001	25,140	11.211	10.687	20.656 20.685	1.011	25.985	11.761
	•		689	6.917	059	1867	190	70K	6.639	990 6 1 0	686	550 2	1561	7.825 1	018	1,627 1,712	.763 .845	1191	8.907 1	<u>8</u> 8	SE3 869	.837
			1 1	678 1 356 1	2 : R	2 2	1 603	1 55	659 11 795 11	4 4 1 1	88.00	241 IS	3 29	372 11	81	69 24	2 2 2 2	82 10	11 006 11 10 11 11	1 S	2 2	11
		ч	1 11.2	5,112	1.0 1.0	6 26.9	4 12.3	8 11.3	17 114. 04 111.	01	6 26.9	7 122 8 121	0 9.3 4 9.3	5 118. 86 119	1.0	12 8	2 9.4 3 9.5	3 9.3	611 6	01	6 22 0	8 9.4
			10.62	112.00	1 072	25.68	85 11 11 39	10.57	111.41	1.071	25.56	11.53	10.99	111.15	1.052	25.11	11.51	10.08 9.94(112.45	1.056	25.38	11.43
		REPEAT		- 11	- : N	- 6	- 10	- 6	- 6	- 14	- 6	- 6	- 6	- 11	- 7	- 4	- 7	- 7	- 14	- 4	- 14	1
		_ <u>-</u>	-	ε	(IIII)	(ing		_	ε	(uuu)	(uuu			ε	(unu)) (IIII			e	Ĵ.	(îm	
	ORS	REME	th (mo	rature	dpoint	meter ((mm²)	ch (mm	antor	dpoint	meter ((uuu)	th (mm	vature	dpoint	meter ((mant)	th (mm	vature	dpoint	meter ((mm ²)
	R INCIS	VAR	all-leng	e-of-cu	h-al-mi	or-peri	or-arec	all-lens	e-of-cu	im-10-4	or-peri	or-area	all-leng	e-of-cm	h-at-mi	or-peri	or-area	all-leng	e-of-cu	h-at-mi	or-peri	or-are
	BULAF	.	очеп	angl	widt	incis	încis	over	angl	L widt	incis	incis	over	angh	width	incis	incis	niere	angl	L width	incis	incia
	IGNVJ	SPECT			UCCAL					NGUAL					UCCAL					NGUAL		
	Z	EW/A.			ā			 5		E					ā			 E		H		
		5	Ι.	-				3										ž				

Table 9. 2D Incisor Morphometry Inter-Operator Reproducibility (TLC & JHH)

		ğ	5 0.852	9 0.908	6 1.000	5 0.907	0 0.818	2 0.812	7 0.932	7 1.000	7 0.954	8 0.887	7 0.903	2 0.768	1 1.000	6 0.926	6 0.864	2 0.824	7 0.815	9 1.000	1 0.959	2 0.908
		s LOA	3 0.91	1 3.665	8 0.074	38 2.22	1 1.480	:96°0	15 2.887	2 0.05	1.527	5 0.281	22 0.541	10 4.92	4 0.06	33 1.054	30 0.80¢	17 0.61:	5.03	14 0.05	12 0.95.	71 0.76
	-	E Bia:	0,20	19 0.82	10'0 60	54 0.40	59 0.33	10 0.21	29 0.64	00 90	74 0.34	33 0.06	62 0.12	61 1.10	0.01	27 0.05	92 0.18	70 0.13	75 0.57	07 0.01	08 0.21	87 0.17
	tistics	i, i,	167 0.1	772 0.4	0.0 E	35 0.2	755 0.1	191 0.1	173 0.3	0.0 627	779 0.1	570 0.0	0.0	511 0.5	331 0.0	539-0.0	111 0.0	312 0.0	570 0.5	330 0.0	485 0.1	189 0.0
	Sta	E D SI	70 0.4	16 1.8	11 0.0	1,1	00 0:7	17 0.4	22 1.4	05 0.0	68 0.7	47 0.5	63 0.2	65 2.5	0.4	178 0.5	611	264 0.3	52 2.5	722 0.0	254 0.4	52 0 3
	1	ы М С	07 07 0.2	60 1.8	137 131 0.0	570 573 0.2	70 70 0.2	897 388 0.4	1.6 1.6	22 23 0.0	564 546 0.1	231 90	591 727 0.1	175 1.8 159 1.8	046 027 0.0	385 754 0.4	144 993 0.4	594 617 0.2	435 1.1 316	0.0 026 0.0	892 0.2 849 0.2	074 0.7
		can S	432 0.5 163 1.0	1,421 5.5 1,605 6.5	060 0.0 049 0.0	410 2.	623 I.1 423 I.1	.442 0.8 .026 1.0	i.442 5.6	055 0.(049 0.(418 2.	.613 1.1 .466 1.1	923 0.0 760 0.1	.355 3.4	043 0.0 029 0.0	589 1.2 111 1.1.	.580 1. .162 0.9	892 0.4 628 0.4	1.888 3.4 0.736 5.1	053 0.1 032 0.1	.434 1. .180 1.	472 1.0
	-	W	79 10. 18 10.	160 116 882 114	81 1.0 98 1.0	753 25. 566 25.	01 H 24 H	82 IO. 59 IO.	410 116 989 114	73 1.0 72 1.0	593 25. 721 25.	62 11. 54 11.	63 9. 52 9.	880 121 259 119		855 23. 832 23.	232 IO	6 6	110 121 596 120	04 I. 76 I.	671 23. 737 23.	277 10
		8	16 8.0 22 7.7	30 135. 19 136	3 1.0	55 17.5 22 17.5	46 8.3 79 8.1	56 8.0 59 7.6	70 136. 15 135.	3 1.0 7 1.0	43 17.6 35 17.7	75 8.3 21 8.1	5 9.2 1 8.9	50 123. 39 127.	9 1.0	21.2 11 21.4	00 10. 10.	9 8.9	70 127. 01 .127.	0.1 8 0.1	86 21.0 13 21.0	00 10.
	1	19	10.74	113.1	1.09	26.16	12.64	10.86	114.4	1.07	26.14	12.77	9.63	119.1	1.02	23.42	10.70	9.67	0 124.8 3 125.1	1 8	23.38	10.70
		18	11.293	114,210	1.153	28.120 26.277	13.843	10.743	114.290	1.087	26.713 26.238	12.493	10.223	123.020	1.046	25.429	11.454	10.285	122,450 121,613	1.047	25.386 25.382	11.487
		11	0.668	13.290	1.050	25.888 26.026	1.840	0.611	11.023	1.063	25.958 26.020	1.860	9.752 9.507	24.740	1.039	24.826	10.697 10.116	9.732	22.760 24.501	1.031	23.551 23,102	10.359
		16	766	5,040 1 3,400 1	993 002	.145	1 366	1358 1 795 1	1.820.1	972	299	1 086	470 249	9.180 1	998 982	552	877	1461 887	8.760 1	023 989	. 499 348	936
	1		93 9.	525 11:	36 0. 67 1.	25 25 80 25	61 10 24 10	82 10 49 9.	540 11/079	71 1.	50 25 83 25	57 10	30 IO 05 9.	713 115	96 0. 98 0.	05 24 875 24	16 10 20 10	30 10 50 9	640 11 056 11	12 I	24 24	13 10
			6 10.0 0 9.6	70 115. 36 112.	1.0	3 24.2 6 23.5	8 10.7	8 10.0	40 115. 08 113.	011	9 24.2 3 24.1	0 10.5 2 10.7	8 8.0 4 8.1	90 129. 53 128.	0.0	2 19.1 7 18.8	7 8.0	4 8.0	20 128. 02 129.	3 1.0	3 19.1 0 19.0	0 8.0
NH2		14	10.54	116.87	1.018	25.65	11.54 12.97	11.41	111.74	70.1	28.59	13.22	10.29	124.66	1.025	24,46	10.72	10.32	122.62	1.05	24.41 24.17	10.83
TAR		EI	10.263	115.810	1.021	25.026 25.563	11.083 11.458	10.330 10.321	116.200 114.365	1.022 1.072	25.204	11.104	10.234 9.738	123.950	1.030	23,268	10.319	10.109	121.460	1.011	23.286	10.248
		12	0.730	15.410	.037	6.464 5.325	1.094	0.750	15.900	1.008	6.415 5.098	2.011	0.475 8.995	21.280	060.1	1.540	9.632	9.435	20.670 18.489	1.028	1.790	9.522
	ATOR		488 1	11 067.3	079	550 2	950 I	218 9	3.140 11 4.143 11	034	951 2	1 250.	645 <u>9</u> 78 8	4.800 11 5.012 11	015 (565 2 235 2	570	58 950	4.180 15	018 999	(493 2 (320 2	483
	-OPER	<i>n</i> = 20	93 10 93 10	810 112 405 113	54 1. 68 1.	87 26 25 26	36 11 01 11	10 10 10 10 10 10 10 10 10 10 10 10 10 1	570 113 021 114	53 1	71 25 73 26	11 08 12 176 11	167 9. 96 9.	050 12 ⁴ 856 12 ⁴	1 1	28 24 35 24	16 10 16 10	53 9. 13 9.	070 12 ² 566 12 ²	68 1. 39 0.	2 24	10
	INTER	Ĕ	2 10.2	0 114.8	10.1	8 25.2	5 11.2 7 12.0	1 10.2	0 115.5 5 112.0	0.0	25.3	7 11.3 6 12.0	10.4	0 116. 3 112.8	9 8	9 25.1 8 24.9	6 11.6	6 10.6	80 118. 16 112:	<u> </u>	0 25.1 8 24.5	3 11.5
		6	10.90	115.71	1.066	26.84	12.38	10,90	115.48	1.05	26.84	12.48	9.57	121.3	3 8	22.54 22.54	10.01	10.08	115.2	1.09	23.82	11.16
	ł	80	10.919	115.390	1.057	26.811 26.836	12.340 12.413	10.920	115.440	1.069	26.786	12.351	10.426 10.681	121.220	1.169	24,101 22,813	11.694	9.748 9.657	125.320	1.104	22.853	10.492
	ł		0.920	14.520	1.082	6.762 5.503	2.695	0.918	14.450 12.246	1.075	6.779 5.547	2.757	1250	14.950	032	3.846	0.526	0.594	14.640	1.041	5.494	1.933
	i	9	581 1 494	11 057.9	127	206 2	748 1 249 1	520	500 1	039	826 2 751 2	430 I 302 I	320	1.840 1	81 IS	221 2 880 2	013 1	S76 1	4.740 1 2.687 1	038	.158 2 923 2	962 1
	: ;		11 12	111 000 111 113	1	18 28 26	20 13 66 12	96 11 56 10	23 113 23 113	1 1	12 26 26	86 12 19 12	01 01	50 12 ²	5.5	63 23 17 21	11 0	5 6 6	570 12 ⁴ 947 122	12 B	75 23	12 9.
			10.6	0.116.0	1.02	25.1	10.8	10.5	0 116.6 2 114.0	8 0	25.0	10.7	8.7	0 123.	01	9 19.6	7.87	8.6	0 123.6	9 9	7 19.5 5 19.6	6.2 7
	1	4	7.942	127.23	1.052	19.079	8.825 8.917	7,881	127.21	1:0.1	19.32	8.903	10.44	120.59	0.982	25.45	11.27	10.68	120,29	1.005	25.39	11.36
	1		11.687	16,220	1.054	27.381	12.007	11.706	15,800	1.037	27.240	11.923	10.371	19,140	1.030	24.943 24.627	11.129	10.611	19.100	1.051	25.077 24.635	10.992
		2	818	3.920 1	63 63 10	754	502	335	3.910 1	038	648 968	241 201	326	9.280 1	045	014	415	427	9.330	016	900	666
	ł	-	21 10	040 11	1 1	712 26 86 26	166 12 94 12	11 IC	430 11	1 1	15 26	26 12 37 12	222 <u>9</u>	200 11	1 16	54 23 13 22	244 IC	6 86	800 11 499 11	50 65	2 2 2	513 9
			10.5	112		25.4	11.5	01 01	112	2 2	25.2		01 10	111	12.8	26.	123	01	117	0.1	ร่ ร	Ξ
	;	OPERATO	DIT.		21 표	TLC	LICC THE	TLC	D1T	日田	TLC	DIT HE	DIT.	D11	DIT HE	21L	TLC		21C	21 11	21 번	ЦС
		E E	æ	e	(mu)	(uuu)		Ê	e	(uuu)	(iiii		Ê	e.	(uuu)	(uuu)		Ê	0.	(uuu)	(uuu)	
	ORS	TABLE	gth (m	rvature	idpoint	incter	a (mu ²	guh (m	rvature	idpoint	imeter	o (mm²	gth (m	nvahar	idpoint	imeter	a (mm ²	gth (m	rvatur	idpoint	imeter	
	R INCLÉ	VIEASU VAR	all-len	e-of-cu	h at m	nor-pen	ior-area	uəl-lla	le-of-cn	in-at-m	ued-ros	ior-are	all-len	no-fo-a	ha-ta-ti	uad-sos	sor-are	all-len	le-of-cu	m-to-d	iad-ios	
	BULAI		over	angl	C widt	incis	incis	over	angl	Lwidt	incis	incis	over	gna	L widt	incis	inciv	over	ang	L widt	inci]
	IANDI	SPECT			UCCAI					INGUA.					UCCAI					INGUA		
	N	UEW/ A			Ē				× .	п					<u>д</u>					Π		
		5						3					1					Ъ,				

10.1. Appendix 1. Reliability and Validation

Table 10. Reliability Colour and Whiteness Assessment Intra-Operator Repeatability (TLC) non-polarised

COLOUR AND V	WHITENESS		CD-I RELIABILITY	-
(non-pola	urised)		INTRA-OPERATOR (TLC) Statistics	
REGION/ STACE	COLOUR	REPEAT	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean SD Mean SD Dif Dif SE Bias CF	R IC
	lightness	1 2 7	411 71.186 74.747 75.335 70.211 72.938 71.082 71.173 65.202 70.880 66.098 71.020 74.100 71.796 74.866 66.101 65.317 65.316 67.239 68.890 70.477 3.238 -0.081 2.083 0.466 0.953 71.056 74.864 65.879 64.500 67.172 65.346 75.819 70.777 72.777 71.055 74.864 65.879 64.500 67.172 65.346 75.819 70.777 72.777 71.055 74.864 65.879 64.500 67.172 65.346 75.819 70.777 72.7777 72.777 72.777 72.777 72.777 72.777 72.777 72.777 72.777 72.777 72.777 72.7777 72.7777 72.777 72.777 72.777 72.777	83 0.812
GINGIVAL /	uəaıd /paı	1 69	773 (65.30) (66.81.37) (66.843) (55.003) 35.640 (54.005) (55.302) (55.402) (56.401) (55.440) 70.956 (53.559 (50.004) (55.4106) 368 (57.250) (56.446) (53.228) (53.240) 35.842 (53.328) (55.106) (55.341)	48 0.925
PRE-SECRETORY	yellow/blue	1 67 2 67	312272 68.162 66.092 67.942 66.060 59.249 65.540 64.620 65.943 67.348 62.748 62.748 65.741 65.374 66.494 67.513 (85.258 63.830 66.074 65.554 61.817 65.554 61.822 10.807 61.822 10.807 61.822 10.807 61.816 61.780 61.816 61.780 61.816 61.780 61.822 10.807 61.822 10.807 61.816 61.780 61.822 10.807 61.816 61.780 61.816 61.780 61.822 10.807 61.816 61.780 61.822 10.807 61.816 61.780 61.816 61.780 61.816 61.780 61.822 10.807 61.816 61.780 61.816 61.780 61.822 10.807 61.816 61.780 61.816 61.780 61.822 10.807 61.816 61.780 61.816 61.780 61.822 10.807 61.816 61.780 61.822 10.807 61.816 61.780 61.822 10.807 61.816 61.780 61.822 10.807 61.816 61.780 61.822 10.807 61.816 61.780 61.807 61.807 61.800 6	20 0.731
	whiteness	1 66	747.169.442 69.941 69.765 64.349 62.368 66.875 66.903 65.663 67.914 64.187 66.046 70.410 67.468 70.882 67.474 64.470 67.310 65.291 67.176 2.328 7.0124 1.299 0.290 0.568 2.568 67.059 66.307 63.969 66.387 63.969 66.388 65.502 64.763 67.399 67.391 67.756 70.992 66.307 63.969 66.388 65.502 64.763 67.302 2.151 1.299 0.290 0.568 2.54	46 0.838
	lightness	- 4	10 3.440 1.770 0.700 2.440 1.750 2.170 1.300 3.580 5.500 -0.140 1.640 2.460 0.730 1.480 6.210 5.580 7.060 5.740 4.240 3.027 2.077 0.246 0.055 0.108 0.48 10.5 3.560 7.56	82 0.993
MIDDLE	uəəng 'bən	- 1	560 -0.310 -1.150 0.100 0.590 2.590 -0.730 -1.510 0.420 -2.330 -2.120 2.910 -1.560 -1.550 0.670 0.680 -0.310 0.040 2.320 -0.317 1.523 0.044 0.291 0.065 0.127 0.57 0.520 -0.310 -0.400 -1.150 0.500 -0.310 -0.420 -0.340 -0.420 -2.540 -2.270 -2.440 -1.210 -1.790 0.580 0.940 -0.100 0.210 2.660 -0.341 1.488 0.044 0.291 0.065 0.127 0.57	70 0.982
SECRETORY	yellow/blue	2 - 4	170 4.820 4.420 4.220 4.320 4.870 4.870 4.870 4.870 4.870 4.480 5.730 4.900 4.880 5.130 4.670 4.610 5.430 5.430 5.400 4.600 5.420 4.600 5.290 4.600 5.290 4.870 4.010 5.000 5.	24 0.880
	u'hiteness	1 -1 -1 2 -0	110 - 0.280 - 0.980 - 0.170 0.830 - 0.910 - 1.240 0.770 0.560 - 2.280 - 1.500 - 1.560 - 1.560 - 1.240 1.610 1.230 1.440 0.980 1.160 - 0.216 1.226 0.006 0.171 0.038 0.074 0.33 0.074 0.33 0.074 0.33 0.074 0.33 0.074 0.33 0.500 - 0.820 - 1.110 0.540 0.550 - 2.290 - 1.510 - 1.540 - 1.540 - 1.000 1.460 1.540 1.540 1.540 0.040 0.550 - 2.290 - 1.510 - 1.540 - 1.540 - 1.540 - 1.600 1.540 1.540 1.540 0.040 0.540 0.540 0.540 0.550 - 2.290 - 1.510 - 1.540 - 1.5	35 0.991
	lightness	1 3. 2 3.	10 2.620 3.930 3.290 3.680 2.2470 3.560 4.240 4.240 4.980 5.300 2.520 3.800 2.520 3.720 5.560 2.210 8.760 5.340 7.240 6.520 8.140 4.524 1.939 0.253 0.498 0.111 0.218 0.57 3.50 2.210 8.760 5.300 7.440 4.571 1.909 0.253 0.498 0.111 0.218 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57	76 0.960
INCISAL/	red/green	1 10 2 9.	140 9450 8470 8770 8770 8770 12330 5290 9220 13.640 2.610 3.990 9.650 15.150 11.100 5.979 9.080 4.560 5.650 6.510 4.410 8.367 3.516 0.120 0.335 0.120 0.235 1.04 0.20 0.235 1.04 0.20 0.235 0.120 0.235 1.04 0.20 0.235 0.120 0.235 1.04 0.20 0.235 0.236 0.	49 0.988
MATURE	yellow/ blue	1 14 2 13	300 12.450 13.300 10.010 13.290 10.700 13.940 13.440 14.5260 10.250 14.610 18.260 13.210 11.160 11.620 13.210 14.780 14.780 74.50 15.510 20.770 15.167 2.995 0.127 0.487 0.127 0.487 0.127 0.487 0.129 0.214 0.251 0.510 13.600 15.160 10.620 14.750 15.600 13.480 11.160 10.640 9.950 14.780 74.90 15.420 20.160 13.040 3.010 0.127 0.487 0.129 0.214 0.251 0.551	55 0.987
	whiteness	2 8	660 7.3440 8.080 6.920 8.730 6.320 8.360 9.990 7.050 5.970 8.610 11.340 9.250 8.970 6.020 9.180 7.800 6.790 9.090 10.580 8.290 8.144 7.820 6.390 8.10 9.550 6.390 8.10 9.550 7.100 5.740 9.900 11.410 9.050 8.810 9.030 7.520 6.390 8.810 9.910 8.114 1.517 0.184 0.405 0.091 0.178 0.79	94 0.958
	lightness	1 76 2 77	450 81.560 75.940 78.170 83.450 77.210 81.920 75.380 73.570 71.480 78.350 70.840 82.040 78.350 70.370 82.160 58.350 72.170 64.340 57.190 60.710 74.386 7.211 -0.524 2.118 0.474 0.7240 77.180 72.550 70.840 82.040 78.390 70.980 83.340 58.490 71.460 65.560 68.000 62.950 77.143 -0.524 2.118 0.474 0.9724 1.550 77.560 70.840 82.040 78.390 70.980 83.340 58.490 71.460 65.560 68.000 62.950 77.143 -0.524 2.118 0.474 0.9724 1.550 77.560 70.840 82.040 78.390 70.980 83.340 58.490 71.460 65.560 68.000 62.950 77.143 -0.524 2.118 0.474 0.9724 1.550 77.560 70.840 82.040 78.390 70.980 83.340 58.490 71.460 65.560 68.000 62.950 77.143 -0.524 2.118 0.474 0.9724 1.550 77.560	51 0.956
	red/green	1 52 2 53	720 55.160 66.520 58.040 42.039 74.490 53.200 37.400 82.880 81.200 54.290 30.850 46.570 48.180 69.170 56.970 75.620 70.650 67.240 76.070 59.668 14.701 0.089 2.063 0.44.90 73.310 55.270 84.700 29.980 47.570 48.690 69.540 57.060 77.720 72.070 68.230 77.470 59.579 14.727 0.089 2.063 0.461 0.094 4.04	166.0
א הטענק אוני	yellow/ blue	1 35 2 35	110 43.180 39.490 53.040 39.520 492.29 36.5410 38.220 31.120 51.570 36.940 16.950 39.460 48.170 47.480 53.110 32.370 62.330 30.300 5.480 39.458 12.974 0.287 0.286	11 0.995
	whiteness	1 57 2 59	250 62.270 61.220 60.340 65.380 58.270 68.550 59.760 53.160 65.190 69.280 58.690 47.530 56.270 57.280 58.760 55.530 62.170 66.090 56.870 50.730 50.94 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0.364 0 1.627 0	39 0.966

~	\mathcal{C}
	ō
	5
	2
	\mathcal{O}
-	≍
	2
	5
1	-
C	()
	٦,
E	
É	
	≻
	吕
1	_
	5
	2
	Ξ
	ğ
	፵
	X
	3
F	Y,
	<u>۔</u>
	ö
-	Ē
	σ
	Ð
	ā
1	5
`	-
	<u> </u>
	ñ
	ᄇ
	1
	Ξ
	55
	H
	~
	\overline{S}
	SSSI
	Sessi
	SSessi
	Assessi
•	ASSessi
•	SS ASSessi
•	ess Assessi
•	ness Assessi
•	eness Assessi
•	iteness Assessi
•	niteness Assessi
1	/hiteness Assessi
	Whiteness Assessi
	Whiteness Assessi
	id Whiteness Assessi
	and Whiteness Assessi
	and Whiteness Assessi
	ir and Whiteness Assessi
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iur and Whiteness Assessi
	our and Whiteness Assessi
	olour and Whiteness Assessi
	olour and Whiteness Assessi
	Colour and Whiteness Assessi
	v Colour and Whiteness Assessi
	ity Colour and Whiteness Assessi
	lify Colour and Whiteness Assessi
	oility Colour and Whiteness Assessi
	ability Colour and Whiteness Assessi
	iability Colour and Whiteness Assessi
	eliability Colour and Whiteness Assessi
	celiability Colour and Whiteness Assessi
	Keliability Colour and Whiteness Assessi
	. Keliability Colour and Whiteness Assessi
	1. Keliability Colour and Whiteness Assessi
	11. Keliability Colour and Whiteness Assessi
	e I.I. Keliability Colour and Whiteness Assessi
	le II. Keliability Colour and Whiteness Assessi
	ble 11. Keliability Colour and Whiteness Assessi
	able 11. Keliability Colour and Whiteness Assessi

		<u>I</u> C	0.956	0.985	0.960	1/20	0.993	0.994	0.970	0.993	0.992	0.999	0.995	0.995	0660	666'0	0.995	0.994
		ų	1.868	1.119	1.256	1.141	0.600	0.316	0.417	0.335	0.539	0.234	0.590	0.321	2.176	1.377	2.474	1.348
		Bias	0.417	0.251	0.280	0.255	0.133	0.071	0.094	0.075	0.120	0.074	0.131	0.071	0.486	0.310	0.553	0.301
	stics	SE	0.213	0.128	0.143	0.130	0.068	0.036	0.048	0.038	0.061	0.038	0.067	0.036	0.248	0.158	0.282	0.154
	Stati	Dif.	0.953	0.571	0.641	6 0.582	0.306	0,161	0.213	0.171	0.275	0.172	0.301	0.164	1.110	0.706	1.262	0.688
		Mear Dif	0.383	-0.40	-0.25	-0.08(-0.049	0.035	0.080	0.026	-0.02	0.016	-0.213	-0.03	0.225	0.115	1.081	0.327
		SD	3.432 3.557	4.047 3.894	2.444	2.428	2.448 2.589	1.531 1.517	0.879	1.412	2.035 2.117	3.563 3.634	3.502 3.546	1.649 1.661	7.770 8.113	15.328	15.855 15.982	6.851 6.907
		Mean	69.873 69.489	64,682 65.085	61.999 62.252	65.751 65.837	3.261 3.310	0.187 0.152	-3.619	0.224	4.941 4.966	9.722 9.706	15.158 15.369	9.488 9.522	72.884 72.659	53.832 53.718	29.501 28.420	55.002 54.675
		20	66.450 65.451	65.975 66.344	59.125 59.467	64.065 64.039	5.180 5.050	2.990	-2.240	2.130	8.640 8.550	5.440 5.330	24.010 24.330	12.000 12.050	58.670 58.830	71.910	11.540	44.450 44.000
		19	4.663	4,366	2.359	4.158	6.020	0.430	3.510 3.470	1.410	6.790	7.470	7.870	0.120	6.310	3.450 3.930	8.290 8.040	2.190
		18	5.839 6 5.746 6	3.393 6	3.637 6 5.279 6	7.370 6	960 (0.100	200 -	220 1	340 6	460	.120 1	580 1	9.930 6	6.850 6 6.940 6	0.400 1	680 5
		17	.169 6 <u>5</u>	.659 68 266 69	288 65 900 65	442 6	140 7 590 8	740 -0	460 -3 440 -3	970 2 090 2	430 8 890 8	140 6 870 6	280 7 490 8	480 7 530 7	950 59	500 66 370 66	920 62 020 60	230 62 830 62
		9	141 64. 869 63	423 62 561 63	731 60 053 60	129 62 498 62	-90 -90 -90 -90 -90 -90 -90 -90 -90 -90	70 I.	500 -1. 100	90 1. 30 2.	20 5	150 5. 140 4.	530 16. 340 16.	310 8. 200 8.	110 71. 350 70.	570 73. 560 74.	390 23. 050 23.	770 59. 970 58
		1.1.9	92 66. 17 62.	95 69. 22 69.	03 65. 44 66.	98 66. 93 65.	20 6.9 30 7.9	90 1.7 90 1.9	90 -2	10 2.7 40 3.0	70 8.7 50 9.5	10 10. 10 10.	70 11.	0 10.	80 58. 10 54.	00 52.0 50 52.5	40 46. 80 47.0	80 51. 30 51.
ПТУ		12	22 73.7 15 74.1	54 65.4 78 67.0	66 61.3 51 62.4	8 67.3 39 68.2	0 0.7	0 -1.1	0 -2.8	0.1-0.9	0 2.3(0 5.9	0 12.1	0 6.15	0 83.0	0 69.7	0 42.7	0 68.4
ILABI		14	5 71.65 71.44	9 64.9(1 64.97	4 63.90 1 63.70	3 66.91	0.75	0.03	4.64	0 -1.30	6.30	0 13.27	0 13.64	0 10.65	0 67.00 0 67.42	0 39.04 38.90	0 36.91 36.25	50.05
D-I RI		13	73.37	72.09	63.91 64.31	70.06	2,620	-2.03(4.69	-1.210	3.960	13.12	16.32	10.74	76.10	41.27	25.30	50.26
Ŭ	6 E	12	68.194 69.087	59.319 60.561	56,935 58,393	61.843 63.065	1.360	-1.390	-3.360	-1.030	2.920	15.350	18.760 19.540	11.650	81.340	27.950	10.510	45.290 44 780
	ATOR	11 20	72.832	69.496 69.054	64.726 64.042	69.308 68.846	-0.320	-1.850	-3.760	-1.990	6.290	12,210	16.650	11.250	57.480 57.300	44.350 43.670	24,380	18.120
	-OPER	" 0	8.264	2.208	1.032	4.363	5.840	0.790	4.630	1.140	5.240	4.120	1.110	5.630	1.520	8.780	6.920	066.9
	NTRA	- 6	0.173 6	6.167 6 5.135 6	3.349 6	5.942 6	050	540	- 060'	390 530	910	290	1 066 7	800	1.310 7	7 066.0	3.050 4 7.520 4	1.930 6
		8	222 70	510 6(113 6(330 6. 421 6.	329 66 708 66	340 5 290 4	530 I 600 I	570 -3	950 I 050 I	470 4 140 4	530 5 860 5	920 17	820 8 950 8	010 7 980 74	240 77 730 70	540 18	130 57
			915 69. 768 69.	300 60. 398 61	182 59. 148 59.	957 63. 963 63.	8.8	6 6 9 9	8 8 4 4	80 -0. 50 -1.	90 4 4 4	300 14. 300 14.	870 14. 90.15.	40 10. 40 10.	90 75. 70 74.	\$40 32. 720 30.	610 29. 810 28.	50 49. 40 48
		_	67 70. 60 70.	32 63.8 51 63.8	22 62. 01 62.	60 65.9 50 65.9	0 2.7	0.0	00 -3.5 00 -3.5	0.0-0.0	0 2.8	0 10.5	90 15.8 70 15.9	0 9.3	40 80.6 70 80.9	00 49.3 90 48.7	90 26.0 70 25.8	80 55.6 20 55.6
		9	8 74.4	77 59.4 01 59.8	8 57.4 9 57.4	1 64.1 3 64.0	0 1.63	0 2.55	0 -1.7	0 0.94	0 4.25	0 7.51	0 13.8	0 8.18	0 74.8	0 63.6	0 33.8	0 60.4
		2	f 66.92 8 67.76	9 56.29 9 57.00	2 60.92 9 61.51	1 61.57 5 62.27	2.45(1.55(1 -3.58	0.480	2.55(14.13	15.45 15.59	10.00	83.14	33.08	27.95	52.58
		4	74.01/	63.03	63.642	67.64 ⁴	0.290	0.340	-3.540	-0.790	3.280	10.270	10.950	7.750	77.730	51.260	48.710	62.140
	:	m	74.854 73.357	62.831 63.582	60.956 60.965	66.625 66.423	1.600	-0.610	-3.830	-0.740	3.950	9.370	15.480 15.800	9.090 9.160	75.870	<u>55.350</u> 55.850	27.800 26.120	56.660
		17	9.668 59.267	57.581	4.139	57.207	3.500	0.080	4.210	0.070	3.240	1.310	5.180	9.350	9.620	8.880	0.360	5.680
	: : :	 	1.797 6	9.302 6	4.236.6	8.645 6	140	2.150 -	5.280 -	110	010	2.600 1	7.430 1	0.880	5.830 7	2.150 4	0.630 3	9.550 5
		TAT	<u> </u>	00	313	000	<u>ຕ</u> ;ຕ	<u> </u>			4:4	<u> </u>		= =	7.7	4 4	ম ম	4.4
	:	LEPI		- 7	- 2	- 7	2	6	7	7.7	1 .6	- 7	- 7	- 7	- 7	- 7	- 2	
TESS		OUR	555	ига	/ blue	ess	222	иәә	/ blue	ess	32	u a a	blue /	ess	32	uəə	blue '	ess
(HIII)	(p	COMP COMP	lightne	red/ gr	yellow	whiten	lightne	red/ gr	yellow	whiten	lightne	red/gr	yellow.	whiten	lightne	red/ gr	yellow.	whiten
A DU W	olarise	ΒA		· . .`.	ORY	•			RY .				ш	•			1	• •
LOUR,	5	TS /NC		4GIVA1	ECRET			E DDLE	RETO			ICISAL	ATUR			, ,	OLE/ A	
g		REGI		6	PRE-S		*	X	SEC			Z	Ň				Ч≽	

10.1. Appendix 1. Reliability and Validation

Table 12. Reliability Colour and Whiteness Assessment Intra-Operator Repeatability (AS) non-polarised

ENESS CD-I RELIABILITY CD-I RELIABILITY Statistics Statistics 00000R RPPEAT 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 50 Nem 5D Statistics 0 0 11 12 13 14 15 16 17 18 50 Mem 5D Statistics 0 1 12 13 14 15 16 17 18 50 57.54 57.74 54.51 56.73 57.74 56.736<	115 0.87 119 0.42 78 0.85	000 0.917 150 0.939 90 0.957	63 0.910 63 0.918 52 0.950	0.959 56 0.970
ENESS CD-1 RELABILITY CD-1 RELABILITY Statistics 0000UR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean SD Statistics. 0000UR REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean SD 56 7 8 9 10 11 12 13 16 17 18 19 20 Mean SD 56 74 4576 57.46 14.17 47.75 10.6 17.71 66.523 55.74 55.74 14.77 17.75 10.6 17 18 16.705 66.106 66.605 66.106 66.605 65.60 56.61 16.77 15.76 27.66 17.76	249 1.1 272 1.2 220 0.9	447 2.0 549 2.4 355 1.5	294 1.3 803 8.0 888 9.8	413 6.3 751 3.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.127 0. 1139 0. 112 0.	1228 0. 1280 0.	(150 0. (920 1. (453 0.)	.721 1. .383 0.
CD-I RELABILITYOLOURRPEAT1234567891011121314151617181920MeanCOURMPONENTI234567891011121314151617181920MeanSDMeanMPONENTI1234567891011121314151617181920MeanSDMeanMPONENTI1234567891011121314151617181920MeanSDMeanMPONENTI1234567891011121314151617181920MeanSDMeanMPONENTI112234565.91366.93566.93566.93567.71666.23567.71667.73567.71667.73567.71667.73567.74667.23567.74677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7677.7776.767	0.569 0 0.622 0 0.499 0	1.020 0 1.250 0 0.811 0	0.673 0 4.114 0 5.027 0	3.224 0 1.712 0
ENESS CD-I RELABILITY CD-I RELABILITY Image: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 OLOUR RPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MPONENT 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MPONENT 1 67.95 66.93 66.91 66.93 66.93 66.93 66.93 66.93 66.93 66.93 66.93 66.93 66.14 67.06 69.70 66.70 67.94 65.96 67.96 65.96 67.96 65.93 66.43 65.30 66.13	0.312 0.473 0.472 0	0.161]	0.251 (0.583 4 0.873 2	1.136 2 0.251 1
ENESS CD-I RELABILITY CD-I RELABILITY Mean 0.00UR RPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MPONENT 1 7226 65.392 11.933 0.5391 66.07 86.093 86.793 66.433 67.716 66.449 65.716 66.423 65.233 67.146 <i>Neuronent</i> 1 7226 65.392 17.246 77.323 66.933 66.933 66.933 65.716 66.737 66.433 65.736 66.433 65.736 66.433 65.735 66.136 65.736 65.735 66.136 65.735 65.136 65.735 66.136 65.735 65.136 65.735 65.136 65.735 65.136 65.735 65.136 65.735 65.735 65.136 65.735 65.146 65.735 65.16 65.735 65.16 65.735 65.16	1.263 1.230 0.674 0.681 1.246	2.760 2.136 3.844 3.597 2.823 2.823 2.823	1.641 1.659 0.997 5.729 5.728	2.054 1.220 6.718
ENESS CD-I RELABILITY CD-I RELABILITY 0 0 11 12 13 14 15 16 17 18 19 20 0 0 11 12 13 14 15 16 17 18 19 20 0 0 11 12 13 14 15 16 17 18 19 20 0 0 11 12 13 14 15 16 17 18 19 20 0 0 11 12 13 66.536 66.93 66.23	0.477 0.789 3.694 4.167 0.742	5.177 5.016 9.351 8.881 2.238 2.238	8.721 8.470 2.580 3.162 5.706 1 6.579 1	3.653 1 2.517 1 8.447
ENESS CD-I RELABILITY CD-I RELABILITY 0.000R REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0.000R REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 7.951 64.357 70.457 63.305 66.356 66.433 62.584 64.932 66.433 67.786 66.366 67.791 68.779 68.270 66.428 65.770 65.316 64.449 66.7791 68.270 66.428 65.770 65.316 64.449 66.7791 68.270 66.428 65.770 65.316 64.449 66.7791 68.270 66 7.791 68.271 66.270 66 66.230 67 66.28 66.107 65.271 68.4	820 820 860 860	880 100 100 100 100 100 100 100 100 100	1.800 1.140 7.0980 7.0250 7.0250 7.0250 5.8100 5.8100 5.8100 5.81000 5.81000000000000000000000000000000000000	4.740 4 7.640 4 5.020 5
ENESS CD-I RELABILITY 0.00UR REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 0.00UR REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0.00UR Repeat 1 6 7 8 9 10 11 12 13 14 15 16 17 18 0.00UR Responded to 1 6 7 8 9 10 11 12 14 15 16 17 18 2 60.98 64.95 64.45 65.57 16.45 65.39 65.41 67.37 64.41 65.71 65.39 65.41 65.39 66.41 65.30 65.36 65.39 65.41 66.50 65.30 65.36 65.30	410 2 150 1 340	790 10 3380 8 3380 10 220 10	830 1 880 1 270 50 410 5	220 1 260 4
ENESS CD-I RELABILITY 0.00UR II 2 3 4 5 6 7 8 9 10 11 12 15 16 17 0.00UR II 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 0.00UR III 2 3 4 5 6 7 8 9 10 11 12 15 16 17 0.00UR III 2 3 4 5 6 7 8 9 10 11 12 15 16 17 16 17 10 16 17 16 16 17 16 17 16 16 17 17 16 17 17 16 17 16 17 16 17 16 16 17 16 17 16 16 16 <td>870 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td> <td>240 5. 240 5. 230 4. 550 14 1300 13</td> <td>260 7. 130 7. 940 70 780 76 980 72 980 72</td> <td>010 35 700 36 700 62</td>	870 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	240 5. 240 5. 230 4. 550 14 1300 13	260 7. 130 7. 940 70 780 76 980 72 980 72	010 35 700 36 700 62
ENLESS CD-1 RED LABIL/TY DOCOUR n = 20 WPONIDNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 OLOUR REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 Interst 2 68.906 66.435 15.67 71.466 730 66.73 65.95 66.13 67.47 67.076 67.146 67.1076 67.146 67.1076 67.114 69.256 66.136 67.414 65.7114 69.296 67.016 67.114 69.2016 67.114 69.2016 67.114 67.204 67.2016 67.114 67.2016 67.114 67.2016 67.114 67.2016 67.114 67.2016 67.114 67.2016 67.214 67.6216 64.401 67.2016 67.114 67.2016 6		900 9.11 900 9.13 90 3.0 90 7.0 80 7.0 80 7.0	80 7. 10 7. 510 55 510 55 770 76	550 63. 780 64
ENLESS CD-1 REILABILITY DOCOUR III 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 OLOUR REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 MPONIBNT 1 2256 65.392 71.953 65.932 75.056 65.936 67.967 66.956 65.957 66.976 66.956 66.956 66.956 66.957 66.1407 66.1401 66.1401 66.1401 66.1367 <td>90 0.4 180 -0.1 70 0.1</td> <td>90 4.5 90 4.5 10 6.6 13 70 12</td> <td>50 8.1 10 7.7 780 73. 780 73. 740 66.</td> <td>550 37. 570 40.</td>	90 0.4 180 -0.1 70 0.1	90 4.5 90 4.5 10 6.6 13 70 12	50 8.1 10 7.7 780 73. 780 73. 740 66.	550 37. 570 40.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10 0.4 50 -1.0 10 -3.4 10 0.8	10 7.9 20 5.9 20 9.7	00 8.3 40 8.0 90 64. 60 57.4	60 54. 20 54.
ENESS CD-1 REI_ARII DOLOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DOLOUR REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 MPONIBYT REPEAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 MPONIBYT 1 72256 65.329 71.935 65.21 63.239 63.20 67.30 63.70 66.65 65.23 63.72 66.025 64.23 65.43 65.43 65.43 65.43 65.43 65.29 65.23	0 -1.6	00 1.3	00 6.10 2.2 00 87.8 00 85.5 00 61.5 10 74.5	0 55.1 20 48.3 10 69.3
ENESS CD-18 DOCOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 OCOUR 1 22.256 65.3397 71.953 6.293 5.6037 6.6037 6.6037 6.6177 8 9 10 11 12 13 Intests 2 66.395 71.953 6.5393 6.6353 6.6037 6.6177 78 6.6177 78 6.6177 11 12 13 Intests 2 66.395 6.4334 6.4357 7.460 70.339 6.6369 6.6779 6.6173 6.717 6.6331 6.423 6.1367 6.6331 6.423 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.1367 6.433 6.137 6.633 6.143 6.11667 6.433 6.143 <td< td=""><td>0 - 2 - 3 0 - 5 - 5 2 - 5 2 - 5 2 - 5 2 -</td><td>8.62 8.25 0 12.03 0 12.13 0 12.41 0 12.41</td><td>0 10.50 0 58.96 0 59.70 0 44.95 0 43.32</td><td>0 47.9</td></td<>	0 - 2 - 3 0 - 5 - 5 2 - 5 2 - 5 2 - 5 2 -	8.62 8.25 0 12.03 0 12.13 0 12.41 0 12.41	0 10.50 0 58.96 0 59.70 0 44.95 0 43.32	0 47.9
ENESS INTRA-OPERATOR (AS) OLOUR 1 2 3 4 5 6 7 8 9 10 11 12 OLOUR I 22256 (55392) 71.953 (52.982 56.923) 72.460 (70.329 (56.990 61.590 73.88 6 7 8 9 10 11 12 WPONENT I 22256 (55.392) 71.953 (52.982 56.923) 72.460 (70.329 (56.990 61.590 561.590 61.590 61.590 661.560 164.277 663.81 (56.731 63.291 66.731 68.230 164.237 63.291 (64.21 66.431 62.731 63.281 66.930 161.590 66.11 56.11 165.414 164.11 167.001 64.964 61.607 64.552 61.148 (64.131 65.431 62.549 66.110.184 (64.131 65.449 66.101 65.641 66.110 164.541 65.110 164.272 66.1299 66.1999 66.110 164.297 66.11 186.110 164.200 60.080 160.778 (66.022 61.1281 66.529 66.11 186 71.11 186 71.11 182 71.014 166.130 164.564 61.010 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.640 164.701 66.600 164.701 66.600 164.701 66.600 164.701 66.600 164.701 66.600 164.701 66.600 156.00 10.590 164.571 66.300 164.971 66.300 164.971 66.300 164.971 66.300 164.971 66.200 164.971 66	-2.12 -2.12 -2.14 -2.14 -2.14 -2.14	5.41(5.41(11.73 0 11.49 0 11.91	9.82(9.44(0.70,46 1.16 46.64 1.46.74) 43.65) 44.13) 54.23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-2.03(-1.81(-3.75(-3.75(-3.75(-3.75(2.090 2.090 18.120 17.020	12.61(11.79(81.78(84.24(19.58(16.16(14.58 20.53 142.87
TENESS INTRA-OPI OLOUR 2 3 4 5 6 7 8 9 10 OLOUR 1 72.256 65.392 71.453 62.823 75.456 66.77 8 9 10 MPONENT 1 72.256 65.392 71.453 62.823 75.469 66.77 73 66.97 66.97 66.97 66.97 66.97 73 66.935 66.935 66.935 66.935 66.17 77 96.436 66.17 77 8 9 10 77 74 66.335 66.435	-2.060 -3.080 -5.140 -2.340	3.800 4.260 9.250 9.590 13.420 13.730	8.640 8.910 79.670 78.960 56.270 53.650	38.100 35.380 58.860
ENESS INTE OLOUR 2 3 4 5 6 7 8 9 OLOUR 1 7.2256 6.5392 71.953 6.298 5.692 7.463 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0135 6.0110 9 Intests 2 6.0395 6.1.657 71.955 5.4395 5.4355 5.4355 5.4355 6.0135 6.0135 6.0135 6.0135 6.0136 6.0135 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0136 6.0336 6.0237 6.0327 6.0132 6.0326 6.0336 6.0336 6.0337 6.0132 6.0326 6.0136 6.0337 6.0132 6.0132 6.01327 6.0132 6.01327 6.0132 6.01327 6.01327 6.01327	-0.140 -0.440 -0.440 -0.310 -0.310	5.700 5.700 3.310 9.540 9.540	6.260 6.030 68.140 69.980 80.330 80.080	55.030 54.540 68.490
ENESS 3 4 5 6 7 8 OCOUR 1 2 3 4 5 6 7 8 OCOUR 1 22356 65.332 11.953 62.932 75.460 70.235 65.933 Intests 2 68.996 68.453 61.667 74.05 85.731 66.033 66.035 <td>0.010 0.440 -3.780 -0.180 0.270</td> <td>5.570 5.440 5.360 16.150 16.150</td> <td>8.640 7.940 70.900 71.400 76.130</td> <td>27.500 28.780 58.920</td>	0.010 0.440 -3.780 -0.180 0.270	5.570 5.440 5.360 16.150 16.150	8.640 7.940 70.900 71.400 76.130	27.500 28.780 58.920
TENESS 1 2 3 4 5 6 7 OLOUR REPEAT 1 2 3 4 5 6 7 OLOUR 1 7.2.25 5.3.27 11.953 62.982 74.60 7 MPONENT 1 1 2.2.25 6.4.35 1.5.67 146.0 70.457 53.815 <i>invess</i> 2 6.048 6.1.567 14.18 55.51 64.251 64.215 <i>streen</i> 1 67.001 64.964 66.1667 64.552 66.2315 55.490 60.303 62.316 64.235 66.217 65.439 64.205 66.2315 62.379 64.205 66.231 66.231 66.231 66.231 66.231 66.231 66.232 66.231 66.232 66.237 66.232 67.236 66.237 67.236 66.237 67.236 66.237 67.236 66.237 67.236 67.236 66.237 67.236 66.237 67.236 67.236 <td>1.210 4.360 1.490</td> <td>5.700 6.390 13.920 13.210 12.140</td> <td>8.640 0.470 11.160 15.350 16.590 18.060</td> <td>H.150 11.370 51.290</td>	1.210 4.360 1.490	5.700 6.390 13.920 13.210 12.140	8.640 0.470 11.160 15.350 16.590 18.060	H.150 11.370 51.290
TENESS 3 4 5 6 OLOUR 1 2236 (63392, 11953, 62, 923 (7240) 7 OLOUR 1 72, 236 (63392, 11953, 62, 923 (7240) 7 Imeass 2 6, 939 (63, 433 (61, 65) (63, 7140) 7 Imeass 2 6, 939 (63, 61, 95) (13, 67) (14, 96) (48, 57) (14, 60) 70, 457 (60, 70) <i>green</i> 1 67, 901 (64, 96, 66, 166) (63, 734 (61, 54, 45) (63, 572) (60, 900) (60, 800) 6 <i>wrbhue</i> 2 60, 903 (64, 328) (44, 901 (63, 66) (57, 294 (67, 377) (60, 900) (60, 900) (60, 900) (60, 900) (60, 900) (60, 900) (60, 900) (60, 900) (60, 900) (60, 900) (70, 90, 900) (70, 900) (70, 900) (70, 90, 900) (70, 900)	0.000		0.410 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.750 4 0.570 4 6.290 5
TENESS 1 2 3 4 5 OLOUR 1 72.256 65.392 71.592 65.922 72.256 MPONENT 1 72.256 65.392 71.592 65.922 72.256 Imeass 1 72.256 65.392 71.592 65.292 72.257 72.256 72.266	880 150 450 450 450 450 450 450 450 450 450 4	310 3 350 4 720 1 590 1 760 1	910 11 830 9 630 7 630 7 70 41 280 41	530 4(470 4(790 5(
TENESS 3 4 OLOUR 2 3 4 MPONENT 1 7 3 4 MPONENT 1 7 3 4 MPONENT 1 7 3 4 Streen 1 67.96 63.36 64.37 54.8 Streen 1 67.00 64.96 64.66 7.85 61.73 25 ow/ blue 2 60.04 65.61 63.26 61.73 25 61.01 7.73 25 61.01 65.60 7.73 25 61.10 7.71 25 61.10 7.71 25 61.10 7.71 26 7.73 25 61.10 7.71 25 61.00 7.71 25 61.10 7.71 25 61.10 7.70	970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	750 9. 2 130 2 130 2 130	80 7. 500 7. 300 82 440 82 430 54 930 55	640 42 510 39 110 61
IENESS 1 2 3 4 OLOUR NPONENT REPEAT 1 2 3 4 MPONENT REPEAT 1 2 3322 11.953 62.714 MPONENT 1 72.256 65.392 61.657 71.4 <i>Intests</i> 2 60.986 66.435 61.657 71.4 <i>Streeth</i> 1 67.994 64.800 66.16 66.7 71.4 <i>owt</i> 1 67.994 66.101 3927.4 66.26 66.323 64.101 66.7 64.16 <i>owt</i> 1 67.001 64.328 64.00 66.5 66.1 66.328 66.1 66.328 66.1 66.329 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.1 66.328 66.4.00 66.5	50 1.7 60 -2 80 -3 20 0.0	80 2.3 30 11. 20 11.	80 8.3 50 8.6 90 87. 50 83. 20 41.	30 46. 10 46. 60 60.
IENESS 1 OLOUR 1 2 3 MPONENT REPEAT 1 2 3 MPONENT 1 7256 65392 719 Imeass 2 63.980 64.433 61.6 Wroule 1 67.954 64.833 64.6 Wrblue 2 66.048 64.101 86.6 Wrblue 2 64.304 61.6 64.964 61.6 Wrblue 1 67.001 64.954 61.6 0.65 61.0 96.4 Mreass 1 63.876 64.316 60.7 0.01 64.955 62.0 0.65 Innexs 2 64.116 65.318 64.4 60.55 60.4 60.55 60.45 <	80 -1.6 80	0 5.1 0 5.1 0 10.4 90 8.4	0 7.9 0 8.3 10 73.4 80 51.2 20 50.2	30 59.7 80 55.8 90 61.6
IENESS IENESS OLOUR 0.0001R MPONENT 1 2 MPONENT 1 72.256 65.35 Intests 2 68.96 68.45 <i>Wreun</i> 1 67.301 64.95 <i>ow' blue</i> 2 60.048 63.10 <i>ow' blue</i> 2 64.32 64.35 <i>ower</i> 1 67.001 64.95 <i>ower</i> 1 67.301 64.95 <i>ower</i> 1 67.301 64.95 <i>ower</i> 1 69.16 67.301 <i>ower</i> 1 64.32 64.32 <i>tenecoss</i> 2 64.16 64.37 <i>tenecoss</i> 2 64.31 0.475 <i>tenecoss</i> 2 -1.310 0.417	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 3.77 0 7.11 0 7.11 0 12.6	0 7.65 0 77.2 0 83.3 0 63.5 0 63.5	0 41.9
ENESS ENESS OLOUR REPEAT MPONENT 1 MPONENT 2 Ineass 2 Sreen 1 0m/ blue 2 0m/ blue 2 1 63.98 messs 1 0m/ blue 2 1 63.91 1 63.91 1 63.91 1 63.91 1 63.91 1 63.91 1 63.91 1 63.91 1 1 1 1.90 1 1.90 1 1.90 1 1.90	0 -0.54 -0.54 -0.49 -0.49	5.771 5.771 9.44(9.44(11.02	9.04(8.47(73.49 69.60 1 54.64) 48.96) 49.50) 57.23
ENESS OLOUR REPEAT MPONENT REPEAT MPONENT REPEAT Intess 1 ow/blue 2 bness 1 tness 2 tness 1 tness 2	-1.500 -1.3330 -1.570 -1.570	1.940 2.560 13.090 9.760 10.260 10.260	8.330 7.290 83.966 82.256 82.256 41.170 52.910	52.290 51.950 60.110
ENESS DOLOUR MPONENT Iness green eness Iness	-, ~ ~ ~ ~		7 7 7 7 7	- 6 -
EF 9 0 5 5 5 5 5 5	cd/ grcen ellow/ blue hiteness	ightness ed' green etiow/ blue	hiteness ghtness sd/green	ellow/ blue
0LOUR AND W (non-polari AON/ STACE A ANGTVAL/ SECRETORY SECRETORY	MIDDLE/	MATURE		

Table 13. Reliability Colour and Whiteness Assessment Intra-Operator Repeatability (AS) polarised

		ICC	0.648	0.723	0.557	0.758	0.885	0.902	0.654	0.890	0.926	0.946	176.0	0.947	0.884	0.956	0.973	0.948
		ų	9.218	5.153	3.467	3.934	1.997	0.996	0.876	0.888	2.044	2.491	1.537	1.084	9.332	9.371	6.170	4.543
		Bias	2.062	5.153	3.467	2.007	0.447	0.223	0.196	0.198	0.457	0.557	0.343	0.243	2.087	2,095	1.380	1.015
	tics	SE	1.052	0.588	0.396	0.449	0.228	0.114	0.100	0.101	0.233	0.284	0.175	0.124	1.065	1.069	0.704	0.518
	Statis	ß ä	14.703	2.629	1.769	2.007	1.019	0.508	0.447	0.453	1.043	1.271	0.784	0.553	4.761	4.781	3.148	2.318
		Mear Dif.	-0.07]	1.672	0.816	0.888	0.752	0.285	0.326	0.433	0.203	0.079	0.030	0.135	1.633	0.701	1.055	0.251
	: : : :	ß	5.266 5.827	3.995	2.107	2.958	2.675 2.462	1.341	0.644	1.332 1.274	2.907 2.446	3.964 3.580	3.116 3.243	1.691	10.997 9.355	16.097 15.511	13.494 14.231	6.871 7.236
		Mean	65.787 65.859	64.888 63.216	62.002 61.186	64.348 63.460	2.508 1.756	0.220 -0.066	-2.877 -3.204	0.026	5.992 5.789	11.148 11.069	14.374 14.345	10.266 10.131	72.580	49.763 49.062	35.882 34.827	53.577 53.325
CD-1 RELIABILITY	INTRA-OPERATOR (AS)	r = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7 7 7 668 60 871 56 723 72 124 69 283 60 267 70 66 701 57 552 72 972 71 350 67 705 67 905 64 292 57 292 63 109 64 701 57 552 72 973 71 350 67 705 67 992 64 424 65 252 57 921 63 109 64 731 55 65 352 70 567 350 56 705 67 992 56 423 67 952 57 950 56 952 56 952 57 950 56 952 57 950 56 952 952 56 952 952 56 952 952 572 56 952 952 56 952 952 56 952 952 56 952 952 56 952 952 952 952 752 952 752 952 952 952 752 952 952 952 952 952 952 952 952 952 9	0 62.604 60.295 54.609 65.044 65.318 62.096 71.834 64.756 64.809 62.390 69.477 65.800 66.154 67.611 65.003 71.721 61.055 67.172 7 60.384 60.319 55.776 59.336 65.877 56.461 68.835 62.171 65.007 17.088 70.219 64.478 67.341 67.500 65.043 66.212 64.150 65.960	9 61.500 61.285 59.578 62.088 61.859 60.737 65.924 61.427 61.426 56.667 64.013 64.240 65.002 64.710 61.990 63.626 58.4422 62.672 64.613 64.249 65.002 64.710 61.990 63.757 65.628 64.427 61.467 65 61.255 57.341 (62.919 65.729 62.291 64.2856 62.499 60.857 (60.886 61.467	0 65.805 61.347 56.909 66.658 65.626 60.323 68.334 64.387 61.409 64.669 68.527 65.878 66.222 65.980 64.178 64.477 60.396 64.941 71 61.941 64.969 68.527 65.878 66.222 65.980 64.178 64.477 60.296 64.941 71 61.941 64.960 75 75.965 65.741 64.255 65.547 64.255 75 75.878 65.229 75 75.75 75.758 758 75.758 758 758 758 758 758 758 758 758 758	D 1450 0.320 2210 1.350 1.590 0.560 4.080 4.900 -0.370 1.520 0.440 -1.060 0.490 5.290 3.890 10.310 5.300 4.520 0 4.50 0 1.580 1.520 0 4.50 0 1.580 0.500 1.520 0 1.580 0.500 0 1.580 0.550 0 1.580 0 1	0 - 40.610 - 0.940 2.420 1.830 - 0.270 - 0.710 1.190 0.590 - 2.190 - 0.970 - 1.220 - 1.320 - 0.510 0.390 0.940 1.1180 0.210 2.200 - 2.050 - 0.510 - 0.510 0.550 0.550 0.550 - 0.510 - 2.510 - 0.510 - 2.510 - 0.510 - 2.510 - 0.510 - 2.510 - 0.510 - 2.510 -	0 3.380 2.330 2.430 2.450 2.450 3.170 3.370 2.810 3.460 3.540 2.230 2.410 4.070 2.310 3.080 3.250 2.450 1.050 0.4270 3.080 3.250 1.25	0 - 0.730 - 0.230 0.810 0.330 - 0.420 - 1.010 0.960 0.830 - 2.050 - 0.880 - 1.190 - 2.040 - 0.790 0.950 0.550 3.270 0.790 2.170 0.1 - 390 - 1.380 0.1 - 390 - 1.520 - 0.520 - 1.520 - 0.520 - 2.200 0.520 - 2.200 0.520 - 2.200 0.520 - 2.200	1 4.220 6.590 3.880 2.510 5.720 5.920 2.920 4.950 9.730 1.880 9.050 5.230 12.401 10.340 0 3.390 6.330 5.870 2.950 5.920 2.300 5.820 9.420 1.670 6.330 5.730 10.340 1 3.390 6.330 5.870 2.500 5.820 2.300 5.820 9.420 1.670 6.330 5.470 10.780 9.050 5.300 9.650	0 8810 11940 14.380 11.290 13.860 15.800 6.780 4.980 12.150 19.610 13.590 13.470 9.380 9.610 7.930 4.230 6.580 10.400 0 9.760 12.700 6.280 2.400 10.510 8.870 6.240 7.300 9.920	014550 9420 14500 15530 15580 14800 18820 10.300 15890 19880 14180 12.750 12.110 11.50 15830 9180 16.380 20.070 014550 9770 14460 14340 15130 14,040 18.190 10.210 16.890 19540 14.340 12.730 14.130 10.510 16.230 8.310 17.150 20.720	0 9110 9220 1050 9230 10.560 9380 10.660 12.360 10.160 7180 11.050 13.570 10.780 11.910 7.330 9,800 9,400 8,610 9,910 13.400 0 9559 9230 11.201 12.200 9,050 9,800 9,800 8,330 10.040 13.150	0 77.210 73.490 87.300 82.529 79.680 71.160 70.900 68.140 79.670 81.780 70.460 58.960 87.840 61.780 73.960 77.940 70.370 50.980 01 75 80 68.300 75 570 550 550 70.450 556.950 84.950 55.490 84.950 55.490 550 550 550 550 550 550 550 550 550 5	0 59 550 46.310 34 200 49 610 39 250 30 280 66.800 74.860 45.900 14.440 41.090 40.840 57.200 56.350 62.060 76.160 69.030 53.310 05 57.200 55.350 63.060 76.160 69.030 53.310 05 57.500 55.500 14.450 10 33.500 155.500 55.5000 55.500 55.500 55.500 55.500 55.5000 55.500 55.500 55.500 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.5000 55.50	0 33 590 56 590 34 800 31 220 50 586 33 450 18 270 53 210 29 320 9 26 0 37 440 43 250 45 780 49 520 29 850 57 980 25 940 12 680 0 33 460 53 550 50 54 5780 55 550 50 55 550 50 55 550 50 55 550 50	0 58.260 57.570 52.000 57.230 51.220 44.290 54.220 66.110 50.070 40.210 51.790 47.050 65.320 55.280 57.130 60.260 55.280 54.140 0 11.720 0 57.940 57.160 57.660 57.
		1	70.305 66	67.378 62 62.356 61	65.172 61 61.302 60	67.687 62 64.850 62	0.590 2	-0.880 0.	-2.750 -2	-0.970 0.	2.350 6. 2.650 7.	16.260 11 13.470 12	13,420 12 12,390 13	10.490 10 9.330 10	83.960 73 82.240 64	30.260 46 39.230 44	40.790 43	52.870 54 56.780 50
		REPEAT	5	7	- 6	7 - 7	7	7	7	- 6				2		1	7	-1 62
WHITENESS	ed)	COMPONENT	lightness	red/ green	yellow/ blue	whiteness	lightness	red/ green	yellow/ blue	whiteness	lightness	red/ green	yellow/ blue	whiteness	lightness	red/ green	yellow/blue	whiteness
COLOUR AND	(nolaris	REGION/ STAGE		GINGIVAL /	PRE-SECRETORY		and an and a second and a second at a	MIDDLE/	SECRETORY			INCISAL/	MATURE				WHOLE/ALL	

10.1. Appendix 1. Reliability and Validation

Table 14. Reliability Colour and Whiteness Assessment Inter-Operator Reproducibility (TLC & AS) non-polarised

		ğ	0.219	0.492	0,126	0.131	0.753	0.873	0.222	0.855	0.758	0.827	0.843	0.768	0.764	0.829	0.841	0.826
		LOA	9.165	7.415	5.523	6.490	1.864	1,380	1.558	0.910	3,116	3.947	2.787	1.993	2.380	216.9	1.917	6.950
		Bias	2.050	1.659	1,235	1.440	0.417	1,380	0.349	0.204	: 869.0	0,882	0.623	0.445	2,768 1	3.650 1	2,664 1	1.554
	ic.	SE	1.046	0.846	0.630	0.740	0.213	0.157	0.178	0.104	0.356	0.450	0.318	0.227	1.412	1.862	1,359	0.793
	Statis	9. jä	4.676	3.783	2.818	3.311	0.951	0.704	0.795	0.464	1.590	2.014	1.422	1.017	6.316	8.325	6.080	3.546
		Mcan Dif	3.331	0.022	-0.996	-1.863	-1.472	-0.161	0.574	-0.526	-0.653	0.984	-0.929	0.423	-1.807	-3.962	4.155	-1.562
		SD	3.238 4.505	3.842 3.568	2.378 1.874	2.328 2.763	2.077 2.411	1.523 1.263	0.666	1.226	1.939 2.760	3.516 3.844	2.995 2.823	1.482	7.211	14.701 15.729	12.974 12.054	5.994 6.718
		Mean	70.477 67.146	65.284 65.306	65.526 64.530	67.176 65.313	3.027 1.555	-0.317 -0.477	4.267	-0.216	4.524 5.177	8.367 9.351	13.167 12.238	8.298 8.721	74.386	59.668 55.706	39.498 43.653	50.009 58.447
		20	8.890 °	6.190	3.966	5.412	1.240 2.730	0.140	3.750	.160	3.140	1.410 3.430	0.770	0.580	. 012.0	6.070 9,810	5,480	0.730 6.020
		6	428 6	.146 6 520 6	584 6	293 6 431 6	740	040	860	086	520	510 4	210 2	1 060	370 5	340 7	300 2	260 4
		8	336 67 067 66	290 66 728 65	074 66 494 63	310 66 930 65	2 000 2 4	310 -0	100 100 100 100 100 100 100 100 100 100	90 O	240 5.	550 6. 030 4.	720 I5 550 I4	200 9 260 9	340 67 940 70	650 67 780 76	330 30 010 35	090 56 700 62
		7	317 68. 076 60	368 67. 719 68	830 66 622 63	470 <i>67.</i> 953 63.	20 7.	0-000	88	90 1.	40 7. 90 11.	60 5. 40 3.	780 7.	80 6.	170 64. 960 47.	620 70. 870 80.	370 62. 550 63.	170 66. 780 64
		11	01 65. 76 67.	19 61	38 63. 22 67	24 64. 98 66.	10 5.5 50 3.7	0.0	30 -3.9	0 1.3	50 5.3 4.7	30 4.5 50 6.6	00 14.	30 7.8 50 8.1	50 72. 80 73.	70 75. 40 66.	10 32. 50 37.	30 62. 80 60
		H	6 66.1 57 67.0	14 69.5 19 68.7	13 68.2 14 67.6	12 67.4 23 66.9	0 6.2	0 0.6	0 -3.4	0 1.6	0 8.7	0.9.0	0 10.0	0 9.1	50 58.3 10 61.7	70 56.9 00 64.7	80 53.1 50 54.3	50 56.5 00 60 0
		15	5 74.8K	0 69.00 5 64.44	67.51	8 70.88	- 1.48	-1.55 -1.61	3.05	-1.12 -1.61	122	7.99	0 11.37	0 6.10	0 82.16	0 69.17	0 47.48	0 69.32
ILLTY		14	71.79	63.55	66.49 66.27	67.46 66.45	0.730	-1.56(5.5	-1.58(5.560 8.620	11.100	11.16	8.970	70.37	48.18 44.93	47.99	57,28(
ELAB		13	71.798	70.956	65.374 66.577	70.410	2.460	-2.910	-5.130	-1.620	3.720	11.730	13.210 12.370	9.250	76.820	46.570 46.640	39.400 43.650	56.270
A-IR	~	1	1.020	3,440	2.178	6.046	0.650	2.120	3.890	1.350	2,520	5.150	8.260	1.340	1.780	0.850	6.950 4.580	0530
ľ	RATO	0	5.098 1.530	3.374 (2,748 6	4.187 (0.140	2 060	820	280	8 8	650 1	3.610 1 3.420 1	610	8,330 8	4.290	6.940	8690
	R-OPE	<u>n = 2</u>	880 60 909 6	433 6	346 6	914 6	570 440 4	420	1 1 8 2	760	290 3	9 060 9 010	250 1	970 8 260 8	480 7	330 5	970 30 030 31	280 51 490 51
	INTE		02 70 579 68	760 66	M3 67	63 67 137 66	2 G	0 9 0 0	7 7	0 9	20 5. 70 6.	10 3.	50 10 50 9	40 5. 6.	570 71	80 81	20 51 50 55	90 69
			73 65.2 33 68.6	22 66.7	0 65.5	3 65.6	0 3.5	0 1.5	0 -3.7	0 0.7	0 4 9	0 2.6	10 15.2 10 16.1	0 7.0	0 73.0	0 82.8	90 31.1 50 27.5	0 65.1
		60	2 71.7 9 63.6	2 63.4	0 64.6	5 66.9 2 62.1	0.11	0 -1.00	4 4	-1.24	5.70	0 13.9	0 13.4	9.99	1 17 1	0 37.4	0 38.2	0 53.1
		7	70.32	63,35	65.54	C8,83	2.170	P 9	1 8 4	-146	2.540	9.920	13.94	8.360	81.92	53.20	36.41	59.76
	-	0	72.938	54,606	59.249	62.368	1.750	2,690	-2.530	0.830	3.680	5.290	10.700	6.320 7.910	77.210	74.490	49.230	68.550
		5	70.211	58.640	6.060	51.949	2,440	0.990	3.760	0.170	2.200	12,330	1.440	8.730	3.450	12.030	9.350 16.640	58.270
		+	5,335	5.003	7.942	9.765	0.700	001	1250	006.0	290	0.470	0.010	920	8.170 8	8.040	3.040	5.380
	ł	ím.	747 7	843 6 516 6	972 6	9 19 19 19 19 19 19 19 19 19 19 19 19 19	770 0	061.08	180	1 086	930	170 8	300	080	940 7	520 5	490 S	840 6
	•		188 74 192 71	787 66	162 66 162 66	H2 69 328 64 69	40	10	1 1 1	9 - 88 6	899	30 8.	120 13	40 40 8.	560 75	00 60	80 39	820 60
		_	11 71. 56 65	16 68	12 68	69 F	0 3.4	99	7 7	0-0	0 2.6	40 9.5 90 11	00 12. 60 11.	9.7 0	50 81.	20 55. 70 48	10 43	10 61.
	: -	Ж	4 <u>6</u>	69.5	67.2	69	2.71	37			 	101	14.3	9.6	76.4	527	35.4	57.0
		OPERATO	AS	TLC	TIC Y	2 2 2 2 2 2 2 2 2 2 2 3	TLC AS	TLC	DT S	JIC V	AS	TLC	SS SS	TLC	DIT S	TLC	TLC	TLC
VESS		LOUR	255	reen	/ blue	10.55	ess	reen	/ blue	26.55	ess	ren	/ blue -	1055	ess	reen	/ blue -	iess -
VHITE	(head)	8 W0	lightn	red' g	yellow	white	lightn	red/ g	yellow	whiter	lightn	red/g	yellow	whiten	lightn	red/g	yellow	whiter
R AND V	alon-noa	STAGE		/ I.V.	LETORY			I F/	TORY			AL/	URE		;		2 ALL	
1010		NOD		VENE	E-SECR			UCIN	SECRE		:	INCIS	MATI		÷		VHOLE	
					PR				•••••		1.	·· -			:		••	

اجلير
6
1.15
<u></u>
<u>S</u>
7
ίΩ
\triangleleft
&
υ
Ц
U
×
E
. <u>ם</u>
Ę.
ğ
ã
ž
Ţ
윕
13
ଧ
Q.
닑
Ĕ
픤
E
al
S
S
SS
\triangleleft
SS
g
ē
Ē.
\geq
-
ğ
Ľ
B
-ăl
ŭ
ΞI
•ii
ام.
iab
<u>celiab</u>
Reliab
5. Reliab
e 15. Reliab
ble 15. Reliab
Table 15. Reliab

		Ŋ	0.272	0.705	0.584	0.398	0.874	0.939	0.309	0,891	0.735	0.812	0.872	0.816	0.797	0.857	0.816	0.895
		LOA	9.716	6,158	4.140	5.612	1.985	1.327	1.590	1.229	1.217	3,838	3.026	1.464	12.134	15.057	13.655	5.706
		Bias	2.172	1.378	1.411	1.254	0.457	0.286	0.357	0.274	0.255	0.858	0.676	0.327	2.731	3.367	3.054	1.276
		SE	1.108	0.703	0.472	0.640	0.233	0.151	0.182	0.140	0.130	0.438	0.345	0.167	1.384	1.718	1.558	0.651
		В. Я	4.957	3.142	3 2.112	2.863	1.013	3 0.677	2 0.812	0.627	0.621	6 1.958	1.544	3 0.747	6.191	7.682	1 6.967	2.911
		Mean Dif.	4.085	-0.20(-0.00	1.403	0.753	-0.03	-0.742	0.199	-1.05	-1.420	0.783	-0.778	0.304	4.070	-6.38]	1.425
	S	ß	3.432 5.266	4.047 3.995	2.444 2.107	2.428 2.958	2.448 2.675	1.531 1.341	0.879	1.412 1.332	2.035	3.563 3.964	3.502 3.116	1.649 1.691	077.7	15.328 16.097	15.855 13.494	6.851 6.871
	Statist	Mean	69.873 65.787	64.682 64.888	61.999 62.002	65.751 64.348	3.261 2.508	0.187 0.220	-3.619 -2.877	0.224 0.026	4.941 5.992	9.722 11.148	15.158 14.374	9.488 10.266	72.884 72.580	53.832 49.763	29.501 35.882	55.002 53.577
		20	66.450 64.781	65.975 67.172	59.125 62.672	64.065 64.941	5.180 4.520	2.990 2.900	-2.240 -1.060	2.130	8.640 10.340	5.440 10,400	24.010 20.070	12.000 13.400	58.670 50.980	71.670 53.310	11.540	44.450
		61	3.109	4.366	2.359 : 8.442 (4.158 0.936	.020	0.430	3.510	300	.740	.580	7.800	0.120	0.370	9.030	5.940	5.000
		18	5.839 6 7.921 6	3.393 6 1.721 6	3.637 6	5.991 6 1.477 6	960 6	180 (. 450 -	220	340 6	230 6	.180 1	500 1	7.940 7	5.850 6 5.160 6	2.660 1	3.240 5
		17	.169 6 ⁴	659 68 003 7	288 6 990 6	442 6	140 7 890 1(740 -C 940 1	460 -3	970 2 650 3	430 8	140 6 930 4	830 9	480 7400 8	.950 55 960 47	500 66	.920 62 .850 5	130 6
			141 64 424 65	423 62 611 65	731 60 710 61	129 62 980 64	990 6. 290 3.	700 I.	5-065	790 I.	790 5. 050 5.	150 5. 510 7.	530 16 150 15	310 8.	110 71 780 73	670 73 350 63	390 23 920 29	770 59 580 57
		5	792 66. 092 64.	495 69 154 67	303 65 002 64	398 66. 222 65.	90 5.	1. 060 1. 010	390 -2. 310 -3.	910 2. 790 0.	70 8. 80 9.	40 10. 80 9.	170 11. 110 11.	80 10. 30 9.	380 58. 840 61	700 52. 200 56.	780 49.	480 51. 320 55.
È		1 1	92 73. 05 67.	64 65. 00 66.	66 61. 40 63.	18 67. 78 66.	50 0.7 60 0.4	30 -1.0	40 -2.5 70 -2.5	89	10 2.0 30 1.8	70 5.5	40 12. 50 12.	90 6.I	60 83. 60 87.	40 69. 40 57.	10 42. 50 45.	90 68. 50 65.
LIABIL		1	76 71.6 50 67.7	19 64.9 77 65.8	14 63.9 13 64.2	53 66.9 27 65.8	0 -1.0	00 -0.9	6 7 7 0	90 -1.3 90 -2.0	0 6.4	20 13.2 90 13.4	20 13.6 30 12.7	40 10.6 30 11.9	00 67.0 50 58.9	70 39.0 90 40.8	00 36.9 10 43.2	50 50.0 90 47.0
P-I RE		13	4 73.3 2 71.3	9 72.0 0 69.4	5 63.9 7 64.0	3 70.00 9 68.5	0.44	0 -2.0	0 24 10	0 -1.19	1 3.96	0 13.1	0 16.3	0 10.7	0 70.46	0 41.2	0 25.30	0 50.2
σ	<u>l</u> GR	12	68.19 72.97	59.31 62.39	56.93	8 61.84 0 64.66	1.520	-0.97	-2.93	-1.03	2.920	15.35	18.76	11.65	81.34	14.44	9.26	45.29
	PERAT	= 20	72.832	69.49 6 64.809	64.726	69.308 61.405	-0.320	-1.850	-3.760	-1.850	6.290	12.150	16.650	11.250	67.480 79.670	44.350	24.380	48.120 50.070
	TER-O	n 10	68.264 66.701	62.208 64.756	61.815 61.427	64.363 64.387	5.840 4.900	1.010	-4.630	1.140	5.380 6.620	4.120	11.230	6.630 7.180	71.520 68.140	74.860	46.920 53.210	66.990 66.110
	Z	6	70.173 8.770	56.167 71.834	3.349 3.924	56.942 58.334	5.050	1.190	3.090	0.960	4.910 6.230	5.290 6.780	7.990	8.800	73.050	72.280	8.050	57.930
		8	9.222 3	0.510 6	9.330 6	3,329 6	340	0.530	1.440 3.370	0500	470	6.800	4.920	0.820	5.010	0.280 6	9.540	9.130
		7	915 6 283 6	318 6	182 5 ¹ 859 61	957 6.	790 1	200	830	080 -(420 -)	720 7	860 1	870 1-	340 It 860 L	690 7	340 3:	.610 2 860 3	650 4
		 	467 70 124 69	432 63 044 65	422 62 088 61	160, 65 658 65	30 2 50 1.	0.00	700 -3	10 0	50 ¹ 2.	10 10 290 13	890 15 530 15	80 9. 80 10	840 80 520 79	600 ¹ 49	890:26 220 30	480 55 230 51
			28 74. 23 72.	97 59. 09 65.	28 57. 78 62	71 64.	50 1.6 10 1.3	20 2.5 20 1.8	80 -1. 30 -2.	80 0.5 10 0.3	50 4.2 30 2.5	80 11	50 13. 00 15.	00 8.1 50 9.3	40 74.00 82	80 63. 00 49.	50 33. 00 31.	80 60. 00 <i>57</i> .
		2	14 66.9 71 56.7	39 56.2 35 54.6	12 60.9 35 59.5	H 61.5 17 56.9	0 2.4	0 1.73	0 -2.4	0 0.45	0 2.5	30 14.0 10 14.3	0 15.4	0 10.5	80 83.1 30 87.3	50 33.0 10 34.2	0 27.9 34.8	f0 52.5 70 52.0
	-	4	4 74.01 8 60.87	1 63.03 4 60.25	5 63.64 D 61.25	5 61.64 5 61.34	0.29	0.34	0 -3.54	0.75	1 3.50	11.94	0 10.90	9.29	77.7	0 51.26 0 46.31	0 48.71	0 62.14 0 57.57
	:	i m	74.85	62.83	60.95	66.62 65.80	1.450	-0.61(-3.83(-0.73	3.950	9.370	15.48	9.090	75.87	55.351 59.551	27.80	56,66
	t f	2	69.668 63.647	67.948 62.640	64.139 61.679	67.464 62.660	3.500 2.380	0.080	-2.940	0.070	3.240 6.080	11.040	15.180 12.660	9.350	73 490	48.880 46.750	30.360 43.240	55.680 54.030
	r 1	1	71.797	67.378	64.236	68.645 67.687	3.300	-2.140	-5.280	-1.110	4.010	12.740	17.430	10.880	76.230	42.150 30.260	20.630	49.550 52.870
		ATOR -							U.,			ر بار ا		0.0			0.0	0 0
-		OPER/	LT A	TT A	T. A	E A	L A	E A	T A	L A	L A	L A		TT A	E A	Γ×	E A	E A
FSS	}	OUR	88	uəə	blue	\$22	52	uəz	blue	552	22	uəz	blue	555	22	uəz	blue	222
/HTTEN	- -	COMP	lightne.	red/ gri	yellow/	whitem	lightne.	red' gri	yellow/	whitene	lightne.	red' gri	yellow/	whitem	lightne.	red/ gri	/mollar	whiten
ANDW	polarise	ΈVŒ		Γ/	TORY		,	ច	RY		-	2	ı با				ALL	
a O I		LS /NO		NGVA	SECRE			TIDOIT	CRETC			NCISAL	ATUF				HOLEV,	
E	5	REG		E	PRE-			4	SE			Ц	2		*		IM	

10.1. Appendix 1. Reliability and Validation

Table 16. Reliability 3D left Incisor Morphometry Intra-Operator Repeatability (TLC)

				ľ
MA	VNDIBULAR INCISORS			
			INTRA-OPEATOR (TLC)	-
VIEW/ ASPEC	T MEASUREMENT VARIABLE	REPEAT	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean SD Mein SD 8E Bias CR 1CC	у.
	projected overall-length (mm)	- 4	9 268 8 597 9 419 9 912 9 720 9 138 9 428 9 200 9 417 8 063 8 809 9 694 9 545 9 507 7,986 9 566 9 566 9 566 9 566 9 566 9 566 7 208 9 115 0 695 0 282 0 263 0 124 0 553 0 125 0 053 0 124 0 553 0 125 0 053 0 125	12
	projected width-at-niidpoint (nm)		1234 1070 1023 1056 1057 1166 1157 1050 1157 1156 1158 1132 1050 1152 1291 1061 1152 1150 1052 1156 1156 1156 1156 1052 0012 002 002 002 0051 1251 120 1050 1200 120	8
BUCCA	L actual width-ut-midpoint (nm)		1577 1336 1233 1404 1336 1537 1433 1537 1433 1559 1472 1451 1566 1744 1479 1429 1422 1422 1422 1568 0199 0002 0051 0011 0014 0101 0305	8
	actual <i>perincter</i> (mm)	61	22.097.21.561 [22.956] 24.061[24.409] 23.082 [24.268] [23.431] 20.114 [21.429] [23.807] 23.807 [23.445] [9.047] [23.459] [22.685] 21.915 [22.927] [6.786] 22.501 [1.391] 0.105 [1.085] 2.540 [27.428] 2.741 [23.451] 20.584 [11.049] 22.647] 22.647 [22.647] 2	5
	marked <i>surface-area</i> (mm²)	1-10	14.908 [13.247] [13.446] [6.226] [13.946] [6.814] [15.936] [6.460] [15.632] [13.802] [13.802] [13.802] [13.802] [13.802] [15.801] [17.821] [15.919] [12.175] [15.616] [15.413] [15.601] [16.636] [13.263] [15.129] [1.522] 0.171 0.563 [15.902] [12.612] [14.912] [15.612] [15.612] [15.612] [15.612] [15.525] [16.715] [15.526] [15.52	8
	projected overall-length (mm)	- 7	9225 8.966 9.426 9905 9.648 9.164 9.661 9277 9.446 8.088 8.965 9.658 9.521 9.436 7.930 9.546 9.158 8.941 9.655 7.024 9.133 0.703 0.016 0.159 0.035 0.070 0.311 0.974 9.345 9.000 9.546 9.201 9.556 9.256 9.540 7.216 9.149 0.659 0.016 0.159 0.035 0.070 0.311 0.974	2
	projected width-at-midpoint (mm)	1 . 1 .	1.165 1.074 0.956 1.052 1.055 1.138 1.099 1.166 1.145 1.117 1.166 1.125 1.266 1.098 1.096 1.096 1.010 1.020 1.139 1.011 1.201 1.229 0.066 0.001 0.028 0.006 0.012 0.056 1.000	8
LET LINGUA	vL actual width-at-midpoint (nm)	5 - 7	1272 1272 1286 1287 1287 1287 1281 1282 1282 1282 1282 1282 1283 00055 0005 0001 0001 0005 0001 0001 0005 0001 0001 0005 005 0005 0005 <th< td=""><td>52</td></th<>	52
	actual <i>perimeter</i> (mm)	- 6	21.855 [21.812 [22.360 [24.353] [24.531 [257.266] [25.267 [24.364 [24.537 [25.354 [24.257 [25.254 [24.257 [25.254 [24.254 [25.255 [25.259 [1.847 [21.354 [24.251 [25.255 [25.255 [25.257 [24.254 [24.251 [25.255 [25.255 [25.256 [25.257 [24.254 [24.477 [25.251 [25.255 [25.255 [25.256 [25.257 [24.254 [24.477 [25.251 [25.255 [25.255 [25.255 [25.255 [25.256 [25.257 [24.254 [24.475 [24.254 [24.254 [25.255 [25.2	8
	marked s <i>urface-area</i> (mm²)	- 7	13.875 11.663 11.254 14.632 12.723 14.218 14.756 14.590 14.176 11.570 12.163 14.428 16.006 13.839 11.135 14.234 15.405 12.522 15.193 10.239 13.449 1.631 0.199 0.383 0.188 0.238 0.518 14.256 15.314 14.170 12.300 8.941 13.259 1.932 0.199 0.383 0.198 0.387 1.731 0.231 0.231 0.231 0.231 13.600 13.556 14.286 15.314 14.170 12.300 8.941 13.259 1.932 0.199 0.383 0.198 0.387 1.731 0.231 0.231 0.231 0.231 0.231 0.236 14.286 15.314 14.170 12.300 8.941 13.259 1.932 0.199 0.383 0.198 0.387 0.387 0.387 0.387 0.387 0.383 0.387 0.38	38
	projected labial-length (mm)	- 6	9216 8310 9359 9824 9688 9223 9637 9185 9359 8.034 8.882 9667 9455 9502 7393 9539 9209 8238 9664 7.053 9115 0658 0.030 0297 0.066 0.130 0.582 0.913 9506 9.566 7.722 9.145 0.702 0.145 0.7	4
/	actual <i>labial-length</i> (mm)	- 6	10.165 9,734 10.496 10.383 11.601 10.205 10.365 10.305 10.355 9,135 9,397 11.234 10.805 10.622 8,825 10.564 10.607 9,896 11.174 7,523 10.319 0,359 0.036 0.492 0.110 0.216 0.964 0.888 9,558 10.547 10.418,10.546 11.496 7,543 10.277 1.072 0.036 0.492 0.110 0.216 0.964 0.888 0.557 10.477 9,409 11.003 11.396 10.415 11.496 10.511 11.396 10.511 11.396 10.511 11.396 10.511 9,915 10.571 10.071 10.555 10.395 9,068 10.551 10.418,10.546 11.496 7,543 10.277 1.072 0.036 0.492 0.110 0.216 0.964 0.888	88
. LABIAJ	L circunference (mm)		3.256 3.001 2.559 2.667 3.194 3.015 3.195 3.113 3.015 3.091 2.982 3.291 3.292 3.202 3.066 0.199 0.024 0.004 0.307 3.277 2.966 2.966 2.961 3.194 2.013 3.115 3.011 2.975 3.207 3.066 0.199 0.024 0.046 0.307 3.277 3.291 3.295 3.205 3.057 3.207 3.057 3.057 0.019 0.024 0.046 0.307	57
	total <i>surface-area</i> (mm ²)	- 7	35.551 32.106 30.785 34.528 35.971 39,000 36.225 35.605 34.613 28.079 33.736 36.076 38.413 34.015 28.734 35.416 32.464 35.461 24.52 33.871 3.552 14.75 35.509 34.775 35.599 34.880 30.552 34.812 35.589 34.880 30.552 34.812 35.589 34.479 33.165 23.565 33.539 34.43 0.332 14.479 34.785 35.371 26.020 33.776 34.775 35.599 34.870 30.552 34.812 35.589 34.80 30.552 34.812 35.589 34.479 33.165 23.565 33.539 34.43 0.332 14.479 34.584 35.712 55.729 35.771 25.020 33.776 34.775 35.599 34.870 30.552 34.812 35.589 34.80 30.552 34.812 35.589 34.479 33.165 23.569 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.439 34.449 34.4	17
	total v <i>olume</i> (mm ³)	2	5644 5.240 6.205 6.501 4.838 7.041 9.703 7.546 8.420 7.546 8.159 4.943 6.804 7.711 7.715 4.753 6.877 1.306 0.130 0.332 0.079 0.154 0.691 0.561 7.715 4.753 6.877 1.306 0.130 0.332 0.079 0.154 0.691 0.360 5.279 5.240 6.558 6.473 4.866 7.186 7.741 6.802 7.676 0.150 0.232 0.079 0.154 0.691 0.360	8

Table 17. Reliability 3D right Incisor Morphometry Intra-Operator Repeatability (TLC)

		Ŋ		0.982		1,000		0.875		0.942	0.898		0 077	412.0	1.000		0.750		0 871		0 979		0 976		0.952		0.875		0.957		0.878	
		б		0.228		0.053		0.089		1.374	1.656		1 786	2	0.059		0.065		1 706		0 784		CLC 0	}	0.551	1	0.093		2.240		0.916	
		Bias		0.051		0.012		0.020		0.307	0/2/0		0.064	5	0.013		0.014		0 387		0 175	2	0.061		0 173		0.021		0.501		0.205	
	stics	SE		0.026		0.006		0.010		0.157	0.189		0.022	(C)))	0.007		0.007		0 105		0.089		0.031	;	0.063		0.011		0.256		0.104	
	Stati	ë 2	Ë	0.117		0.027		0.045		0.701	0 845		9710	2	0:030		0.033		0.871		0.400	3	0.130		0.781	1070	0.047		1.143		0.467	
		Mean	Ë	0.082		0.002		-0.015		0.273	1220		0,00	5	-0.001		0.005		0 505	}	0.030	}	0.080		0178	3	0.011		-0.217		-0.233	-
		SD		0.741	0.739	0.092	0.083	0.093	0.083	6 2.230 3 2.090	5 1.807	4 1.955	9 0.748	0.725	0.036	0,042	6 0.063	0.053	6 1.865	1 1.994	5 1.236	6 1.335	9 0.740	7 0.738	0.956	1 0.992	E60'0 6	100'n s	50.5 8	5 4.077	2 0.970	2 1.085
		Mear		8.972	8.890	1.437	1.452	3.049	3.038	1 21.95 9 21.68	5 14,46	3 14.24	8.939	8.839	1.120	1.121	1296	1.290	3 21.94	1 21.44	9 12.95	4 12.91	8.955	8.877	9.992	9.864	3.045	2016	7 31.99	7 32.21	6.272	6.505
			ន	8.827	8.618	1.209	1.192	1.512	1.533	20.53	14.56	13.40	8.798	8.578	1.194	1.155	1344	1.300	20.83	20.95	12.21	12.20	8.828	8.853	9.836	9.459	3.191	071.6	31.73	28.93	5.908	5.368
			6	8.962	8.867	1.189	1.169	1.482	1.431	21.803	14,101	15.405	8.925	8.871	1.173	<u>1.1</u>	1.285	1.298	21.312	22.435	14.074	14.470	8.973	8.836	9,962	9.812	3.058	870.C	35.17	35.690	5.557	6.344
			8	8.727	8.684	1.132	1.141	1.445	1.483	20.969	13.717	13.702	8.715	8.714	1.145	1.125	1.278	1.256	20.958	20,439	12.234	12.367	8.699	8.714	9.668	9.632	3.068	C/0.5	32.069	32.069	7.493	7.493
			5	9.123	9.154	1.114	1.153	1.376	1.480	22.430	14.135	13.927	9.115	8.888	1.113	1.154	1.248	1.282	22.802	21.322	12.820	12.775	9,122	8.935	10.283	9.802	2.990	5.0.2	32.245	32.200	5.666	5.657
	1 · ·		9	9.426	9.405	1.073	1.108	1.341	1.471	22.863 23.376	14.607	13.683	9.495	9.326	1.074	1.095	1.208	1,230	23.117	22.665	13.096	13.138	9.450	9.371	10.635	10.564	2.916	C/67	31.855	31.917	5.766	5.777
۲ ۲	1		15	7.567	7.582	1.092	1.097	1.383	1.384	18.334 18.161	1.219	10.323	7.548	7.426	1.102	1.121	1.276	1.254	1E0.61	17.687	10.033	9.715	7.582	7.529	8.296	8.234	2.922	766.2	26.158	24.970	4.950	5.026
ABILIT			14	9.741	9.689	1.118	1.071	1.501	1.492	3.325	5.745	6.240	69.6	9.678	1.113	1.082	1.282	1.249	4.937	3.368	4.166	4.600	9.722	9.756	0.886	1.019	3.076	10.F	3.858	4.602	6.976	7.559
-1 REL			<u></u>	616.8	691.	.137	960.	468	.455	1.378 2 1.890 2	6.100 1	6.836 1	8.854	3.795	.048	.168	320	321	1.125 2	1.466 2	2.606 1	2.103	3.894	3.751	1 221.0	9.636 1	002	946	0.192 3	2.065 3	180.7	7.590
6	ទ្ម		51	8 666	129	108 1	082	409	429 1	9.481 2	1 278	.592 1	992 8	204 8	.126 1	.076	325 1	261 1	9,675 2	9.775 2	0.477	0.851 1	.016	.135 8	719 S	871 5	972	921	5.749 3	5.341 3	838 7	558 7
	TOR (T		=	300	111 8	131 1	140	440 1	499	458 19	361 1	308 1	316 7	162 8	100	131 1	201	256 1	738 19	054 19	.175 1(920 10	313 8	124 8	432 8	051 8	011 2	019 2	.086	246 20	798 4	041 5
	DPERA'	n = 20	2	819 9.	753 9.	1 960	084 1.	275 1.	260 1.	287 22 433 22	323 14	248 14	857 9.	744 9.	116 1.	158 1.	218 1.	261 1.	22 228.	855 22	285 13	759 12	772 9	708 9.	098 10	002 10	031 3.	52	627 34	.947 35	310 7	022 8
	TRA-0			332 9.	156 9.	I 1.	1. 19	588 1.	<u></u>	831 25	136 15	978 16	261 9.	165 9.	1.	10 1.	356 1.	319 I.	986 24	932 23	873 14	835 14	96 96	191 9.	395 111	591 11	3.	960 3.	468 34	122 34	368 6.	346 7.
	16			41 8	61 8.4	85 1.1	82 1.1	25 1.0	56 1.(850 19. 330 20.	135 16.	320 16.	01 8.	73 8.	72 1.	89 1.1	17 1.	21 1.1	047 19.	876 19.	12	569 12.	43 8.	53 8.	154 9.	177 9.	88 3.(25	102 30	880 32.	10 7.	03 7.
				11 9.3	47 9.0	1.1 63	1.1	52 1.5	99 1.5	89 23. 16 21.	57 17.	77 15.8	21 9.3	27 9.0	34 1.1	58 1.1	39 1.3	[3 1.3	95 23.0	93 21.8	26 14.0	28 14.0	9.9.3	13 9.1	33 10.4	82 10.	3.2	35 3.2	80	14 33.	24 6.9	<u> 05</u> 6.0
	:		-	4 9.6	8 9.5	1.0	4 1.1	0 13	3 1.2	76 24.3 98 22.9	55 14.9	50 14.6	6 9.2	2.6 6	2 1.0	3 1.0	9 12	9 12	41 22.9	73 22.6	26 13.2	52 13.0	6 9.6	2 9.6	9 11.2	0 11.5	11 2.9	9 3.0	15 34.1	97 34.2	6 6.7	96 7.0
			9	6 8.76	3 8.69	9 1.13	8 1.15	3 1.45	8 1.43	7 21.2	4 13.2	4 13.9	6 8.80	6 8.64	8 1.11	9 1.13	5 1.32	0 1.36	11 20.8	9 21.6	6 12.7	32 13.0	2 8.76	6 8.62	3 9.63	6 9.55	3 3.13	8 3.1	12 37.2	24 36.2	4 5.75	6 6.25
			5	1 7.18	6.97	1.10	1.07	1.43	7 1.43	6 16.81 6 16.71	4 10.21	7 9.81	3 7.10	6.95	3 1.09	1.07	5 1.26	1.27	8 18.43	5 16.12	1 12.31	7 12.15	3 7.16	8 6.94	0 7.70	0 7.36	9 2.95	1 2.89	5 22.3	4 21.23	7 4.20	5 3.95
	ι 4		4	9.93	9.97	1.056	1.08	1.40	1.427) 25.68 D 25.61	5 16.14	3 14.83	9.978	9,999	1.08	1.040	1.47	1.4	7 24.18	1 24.67	3 14.92	14.24	9.95	10.03	3 11.17	11.30	2.99	2.99	34.96	36.17	6.91	7.58
			3	9.192	9.021	1.123	1.092	1.412	1.392	22.20 22.490	14.316	13.10	9.168	9,048	1.118	1.093	1.310	1.301	22.00	21.77	12.418	12.090	9.112	8.988	10.05	9.917	3.134	3.093	30.82	30.58	6.173	6.008
			2	116'8	8.628	1.148	1.137	1,479	1.460	21.763 20.533	15.635	14,913	8.896	8.616	1.155	1.137	1.348	1.352	21.956	21.061	12.807	11.960	8,835	8.663	9.673	9,601	3.110	3.114	35.142	34.910	5.800	6,638
	•		-	9.756	9.648	1.138	1.152	1.456	1.481	24.282 23.250	15.757	15.115	9.738	9:363	1.123	1.121	1.293	1,254	24.115	22.953	14.608	14.358	9.726	9.316	10.978	10.070	3.122	3,081	34.066	35,906	7.200	7.328
		REPEAT		1	7	-	ન	-	1	- 6	-	2	-	2	-	7		10	-	2	-	12	-	6		7	1	17	-	2	-	7
		;		Î	ĺ		(uuu) /	1	Ê					Ē			1	Ē						Ē								
		VENT	E		10 1121		uodpa	and the		Ê	,	(JUIU)		ngth (n		napon) INIOC		Ê	'	(uuu)		au) 412		(uuu)			1	(un		
	CISOR	SURE	ARIAB	1 10	נומון-זמי		th-al-u	and and de	ar-ma	ter (m		ce-area		rall-le	2	1-10-UIL		ar-mal		ster (m		се-алеа		ial-len		-length	(uuu)			area (I	-	(mm')
	ARIN	MEA	Þ	100	נכת מאפ		ted wid	- And	-motat.	perime		d surfa		ted ove		ted W/G	1	-uppter		perime		d <i>surfa</i>		ted <i>lab</i>		labial	alorenc		,	urface-		olume
	IDEIDI				nafard .	. .	project		actual	actual].	marke		projec		brolec		actual		actual		marke		projec		actual	circu		-	totals		total1
	MAP	2. COL	SFECT						UCCAL									NGUAL					1				1 4 10 4	ABIAL				
			EW A				•••••		đ			•••••					-	H									•					
		5	7].	411													RIC														

Table 18. Reliability 3D left Incisor Morphometry Inter-Operator Reproducibility (TLC & JHH)

		-	CD-I RELABILITY	1
¥W	ANDIBULAR INCISORS	•	INTER-OPEA.TOR	
VIEW/ ASPECT	r VARIABLE	OPERATOR	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean SD Mean SD. SE Blas CR ICC	ខ្ល
ana	projected overall-length (mm)	JHC JHH	9.268 8.957 9.419 9.912 9.720 9.138 9.428 9.200 9.417 8.063 8.809 9.644 9.545 9.567 7.986 9.566 9.050 8.874 9.664 7.081 9.115 0.695 0.049 0.023 0.045 0.203 0.986 9.133 0.709 9.135 0.695 0.104 0.023 0.045 0.203 0.986 0.144 9.922 9.181 9.717 9.418 9.701 9.450 8.113 8.846 9.750 9.559 8.003 9.567 9.299 8.766 9.558 9.268 7.066 9.133 0.709 0.043 0.003 0.045 0.203 0.986	986
	projected width-at-midpoint (mm)	21 HH	1 234 1.000 0.992 1.056 1.057 1.145 1.106 1.146 1.188 1.132 1.990 1.152 1.299 1.162 1.146 1.152 1.290 1.152 1.291 1.001 1.092 1.192 1.092 1.195 1.217 1.131 0.071 0.008 0.007 0.008 0.007 1.000 1.000 1.000 1.201 1.000 1.201 1.000 1.000 1.201 1.000 1.200	8
BUCCAI	L'actual width-at-midpoint (nm)	TLC THE	1.577 1.336 1.235 1.443 1.537 1.456 1.744 1.479 1.425 1.432 1.432 1.432 1.640 1.000 0.031 0.054 0.012 0.024 0.106 0.011 1.522 1.412 1.256 1.537 1.521 1.570 1.530 1.470 1.530 1.470 0.012 0.024 0.012 0.024 0.016 0.017 1.522 1.411 1.521 1.521 1.570 1.570 1.530 1.470 1.566 0.119 0.024 0.012 0.024 0.016 0.016	116)
	actual <i>perimeter</i> (mm)	TLC	22.097 21.961 22.456 24.066 24.409 23.058 24.258 23.391 23.431 20.114 21.425 23.850 23.801 23.801 23.801 23.801 23.801 23.802 23.655 21.915 23.977 16.756 22.501 1.931 0.236 0139 20.174 24.565 13.977 15.756 23.977 15.756 23.501 1.931 0.236 0.335 20.174 0.556 0.335 0.047 0.556 0.335 0.047 0.556 0.335 0.047 0.556 0.375 0.556 0.375 0.556 0.3756 0.356 0.3756 0.35	616)
	marked <i>surface-area</i> (mm²)	TLC	14 908 [13.247] [13.446] [6.226] [13.946] [6.814] [15.926] [15.946] [15.962] [15.883] [6.771] [17.821] [15.919] [12.175] [15.919] [12.175] [15.631] [15.636] [13.645] [13.632] [13.896] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [15.946] [16.231] [16.231] [16.231] [16.231] [15.946] [16.231] [16.231] [15.946] [16.231] [15.946] [16.231] [15.946] [16.231]	886
	projected overall-length (nm)	JIC JIH	9225 8296 9426 9465 7500 9546 9158 8541 9133 0703 0055 <td< td=""><td>266</td></td<>	266
LET	projected wi <i>dth-at-midpoint</i> (nan)	TLC	1.165 1.074 0.956 1.002 1.055 1.139 1.090 1.166 1.147 1.106 1.125 1.256 1.098 1.096 1.114 1.116 1.160 1.201 1.208 1.122 0.066 0.014 0.003 0.006 0.027 1.000 1.177 1.254 1.091 1.107 1.074 0.955 1.066 1.061 1.061 1.188 1.190 1.167 1.125 1.122 1.129 1.177 1.224 1.199 1.132 0.067 0.014 0.003 0.006 0.027 1.000	8
LINGUAL	L actual width-at-midpoint (mn)	22 변	1366 1257 1256 1256 1256 1256 1256 1256 1257 1250 1250 1250 1250 1260 1250 1250 1250 1250 1250 1250 1260 0264 0012 0054 0012 0054 0012 0084 0084 0012 0084 0012 0084 0012 0084 0012 0084 0012 0084 0012 0084 0012 0084 0084 0084 0084 0084 0084 0084 008	688
	actual <i>perimeter</i> (mm)	TLC	21.835 21.812 22.300 24.353 24.531 25.758 24.365 22.591 20.098 21.631 24.535 23.382 23.138 19.276 23.437 22.331 21.802 23.776 17.565 22.529 1.847 0.401 0.398 0.0175 0.089 0.175 0.098 0.078 0.0957 0.0951 0.	957
-	marked surface-area (mm²)	TLC	13.875 11.643 11.254 14.652 12.723 14.218 14.736 14.756 14.570 12.163 14.428 16.006 13.839 11.135 14.234 15.408 12.232 15.195 10.239 13.449 1.631 0.035 0.234 0.052 0.102 0.458 0.990 11.135 11.255 10.455 13.546 12.546 14.301 11.747 12.230 14.156 14.130 11.102 14.156 11.356 10.455 13.546 13.646 13.646 13.646 13.646 13.646 13.646 13.646 13.646 14.301 11.747 12.230 14.156 14.136 11.102 14.156 11.235 10.455 13.546 13.646 13.646 13.646 14.301 11.747 12.230 14.156 14.136 11.102 14.156 14.136 13.546 13.646 13.646 13.646 14.301 11.747 12.230 14.156 14.136 14.156 14	8
	projected <i>labial-lengtl</i> i (mm)	TLC JHH	9216 890 9359 9824 9688 9232 9267 9457 9707 9212 9435 8267 9488 9559 9550 8404 8882 9567 9498 9559 9550 8958 9559 9550 8958 9559 7171 9415 068 0017 0033 0149 0592 0295 9510 749 0512 8556 9550 7171 9467 0652 0005 0017 0017 0018 0499 0595	8
LABIAI	L actual <i>labial-length</i> (mm)	TLC JHH	10.165 9.784 10.496 10.883 11.601 10.229 111.119 10.306 10.885 9.185 9.188 10.805 10.6621 8.825 10.864 10.662 8.825 10.864 10.667 9.886 11.174 7.523 10.313 0.959 0.037 0.135 0.030 0.035 0.265 0.567 0.565 0.567 0.565 0.566 10.565 0.566	587
	circunference (mn)	TLC	3226 3001 2539 2966 2674 3156 3061 3198 3123 3118 3129 3465 3697 3154 3488 3171 3178 3129 3465 3401 2992 2991 2992 3297 3297 3297 3207 3206 0199 4002 0028 0.002 0.028 0.002 0.002 0.002 0.002 0.005 1.000	8

Table 19. Reliability 3D right Incisor Morphometry Inter-Operator Reproducibility (TLC & JHH)

ſ	• 1		Ŋ	866.0		0001	~	5150	010.0		0.7.U	0.002	CPC-0	996 0		w i	7.00	0001		1 001	10/10	0,010	2	2000		080.0		0.957	10.0
			ర	160.0		0000	~~~~	10.01	1000	- 10 I	1.0.1	9790	242.2	1200		0.067	1000	0.053		0 505		0100	210.0	0 1 20	C	0.219	010.0	600	760.0
			Bias	0.020		0.007		2100	112.2		122.0	144	H 170	0.016	21212	700	110.0	0.017	-	0 132	3	191.0	101.0	0000	2	1200		1600	12010
	-	stics	SE	0.010		2000	200.0	0000	0,000	2110	0.110	100	0.074	8000	-	2000	200	0.006	222.7	0.068	200	6000	700.0	0.015	10.0	0.006	0.00.0	1100	110'0
		Stati	Ü. H	0.047		210.0		0000	מרחיח	0130	41C'N	022.0	0 <i>00</i> .0	9006	2000	0.031	1000	0.07	1-0-10	0.204	5	5170	C14:0	0.066	3	0160	701.0	2000	100
			Mean Dif.	-0.027		~~~~~~	~.~~	0.026		C 1 7 7	-0.1J	0,000	0.000	-0 M34	1000	-0010	010-0	200.0-		7010	~~~~~~	0.015	C10.0	-0.056	rm	7 CU U	-0.01+	0000	n=n'n=
			ß	0.741	0.745	0,041	0.036	0.092	0.108	5 2.230	9 2.052	5 1.807	7 1,810	0.748	0.740	0.032	0.049	0.063	0.063	6 1.869	1.797	5 1.236	1.097	0.740	0.742	0.956	6 0.949	0.093	0.077
			Mean	8.972	8.999	1.127	1.149	1.437	1.473	21.95	1 22.085	5 14.46	14.39	8.939	8.973	211	1,134	1.296	1.303	21.94	5 22.140	12.95	12.940	8.959	9.014	9.992	10.06	3.049	3.070
			52	8.827	8.857	1.209	1.216	1.512	1.527	21.281	21.31	14.56	14.574	8.798	8.831	1.194	1,229	1.344	1.380	20.83	21.22	12.219	12.787	8.828	8.899	¹ 9.836	9.998	3.191	3.131
			19	8.962	8.997	1.189	1.208	1.482	1.466	21.803	22,423	14.101	14,015	526.8	8.949	1.173	1.204	1.285	1.274	21.312	21.925	14.074	13,353	8.973	8.980	9.962	9.994	3.058	3.095
			18	8.727	8.756	1.132	1.175	1.445	1.512	20.969	21.275	13.717	13.704	8.715	8.710	1.145	1.126	1.278	1.258	20.958	21.036	12.234	12.967	8.699	8.965	9,668	9.759	3.068	3.111
			17	9.123	9.162	1.114	1.152	1.376	1,363	22.430	22.385	14.135	13.976	9.115	9,170	1.113	1.121	1.248	1.261	208.22	23.015	12.820	13.235	9.122	9.133	10.283	10.369	2.990	3.057
	1		16	9.426	9.592	1.073	1.103	1.341	1.350	22.863	23.125	14.607	14.624	9.495	9.561	1.074	1.096	1.208	1.271	23.117	23.596	13.096	13.131	9.450	9.482	10.635	10.796	2.916	2.930
	: ; ;		15	7.567	7.581	1.092	1.112	1.383	1,449	18.334	18,329	11.219	11.004	7.548	7.594	1.102	1.185	1.276	1.302	1E0.61	19.698	10.033	10.111	7.582	7.588	8.296	8.332	2.922	3.029
	VBILLT		14	9.741	9.783	1.118	1.130	1.501	1.483	3325	23,565	15.745	15.740	9.697	9.684	1.113	1.078	1.282	1.324	766.937	24.869	14.166	3.998	9.772	9.735	0.886	0.984	3.076	3.116
	RELLA		13	616.8	3.892	1.137	1.159	1.468	1.487	378	2.151	6.100	6.265	3.854	8.784	1.148	L.176	1.320	1.348	1.125	1.589	2.606	2.606	3.894	3.894	9.722	9.768	3.002	3.098
1	Ðİ,		12	\$ 666.	040	108	127	409	4 84	9.382 2	9.509 2	1.578 1	1.756 1	992	0 1 9	.126	121	325	.316	9.675 2	9.649 2	0.477 11	0.871 1	016	018 8	5 6123	5 961	972	033
		LATOR	=	300	312 8	131 1	143 1	440	475 1	458 1	31 1	361 1	.345 1	316 7	359 8	100	029	201	191	738 1	110 19	.175 1(.085 10	313 8	331 8	.432 8	454 8	011 2	900
		R-OPE	<i>n</i> = 2(6 618	834 9	1 960	121	275 0	238	287 22	467 23	323 14	970 14	857 9	857 9	116 1	131 1.	218 1	229 1	823 22	015 23	285 13	435 13	772 9.	848 9.	01 860	124 10	031 3.	054 3
		ELE	6	32 9.	31 9.	81 1.	1	88 1.	50 1.	831 25	045 25	136 15	959 15	6 19	46 91	42 1.	38 1.	56 1.	77 1.	986 24	582 25	873 14	987 · 14	6 8	38 9.	95 11.	62 - 11	60 3.1	44 3.
				41 8.3	48 8.3	85 1.1	11	25 : 1.6	1 .1	50 19.	33 20	35 16.	15 15.	11 8.2	81 8.3	72 1.1	33 1.1	17 I.3	91 1.3	47 19	17 19.	2	10 12	13 8.2	DI 8.3	54 9.3	75 9.5	38 3.0	35 3.0
				1:93	5 9.3	3 1.1	121	2 1.5	8 15	89 23.3	86 23.3	57 17.4	56. 17.7	1 93	6 93	4 : 1.1	0 1.19	6 13	1.2 1.2	95 23.0	12,22.9	26 14.0	01 14.0	6.6	8 9.4	33 10.4	52 10.4	5 3.20	6 3.2
			, , , , , , , , , , , , , , , , , , ,	4 9.61	2 9.57	2 1.00	4 1.12	0 1.26	7 1.28	16 243	6.23.3	55 14.9	7 14.1	6 9.2	0 9.24	2 1.05	9 1.05	9 1.2	1 1.20	11 22.9	23.3	6 13.2	5 12.5	9.6	9 9.62	9 11.2	7 113	1 2.98	9 3.04
				5 8.76	9 8.82	9 1.13	5 1.13	3 1.45	1.48	7 21.2	3 21.49	4 13.25	8 13.59	5 . 8.80	5 8.84	11.1	5 1.13	5 1.32	130	1,20.8	9 ¹ 21.29	6 12.72	5:12.02	2 8.76	8.83	3 9.63	69.6	3 3.13	5 3,13
	,	,	• vn }	7.18	5 7.219	1.10	11	1.43	1.51	5 16.81	17.45	10.21	10.23	7.10	5, 7.16	1.09	1.08	1.26	5	3 18.43	7 18.60	12.31	5 12 64	7.16	7.20	0.1.70	1.84	2.95	2.96
			4	9.933	10.03	1.056	1.097	1.401	1.452	25.68	24.35	16.14	15.90	9.978	10.03	1.088	1.09	1.475	1.461	24.18	24.02	14.92	14.580	856.6	9.982	11.170	11.14	2.999	2.981
			m	9,192	9.214	1.123	1.123	1.412	1,484	22.209	22.576	14.316	14.102	9.168	9.216	1.118	1.137	1.310	1.338	22.007	22.191	12,418	12.621	9,112	9.269	10,053	10.036	3.134	3.047
			19	8.911	8.925	1.148	1.167	1.479	1.572	21.763	21,629	15.635	14.961	8.896	8.930	1.155	1.155	1.348	1.329	21.956	22.334	12.807	12.645	8.835	8.977	9.673	9.708	3.110	3.121
	:	:	-	9.756	6.707	1.138	1.159	1.456	1.534	24.282	24,723	15.757	15.340	9.738	9.746	1.13	1.163	1.293	1.323	24,115	23.679	14.608	14.207	9.726	9.762	10.978	11.113	3.122	3.107
			LATOR	З	HH	Ц	Ē	З	H	З	Ē	Ч	E	Ч	HH	З	H	З	HE	З	Ē	З	HH	Ц	Ē	З	H	2	H
		•	OPEH	H :	5	L.				-	5				<u>Б</u>	F	ľ	F	- -	-	5			F	5		5	-	5
			н	()	(mm)		um) muc		Ē			.	ନ୍କ]	(um)		uu) mic]	(uuu)				ନ		Ē		-		
	30	2	EMEN	lowath	ugua		i-miapo		unodp		(Ling		uu) pa	I much	ußuat		r-maps	- Andrews	nnoda		Ú UU	.	ea (m	.) urgua		uuu) 7/7	,	Ê
	Colore	NCIDO	EASUR VARIA	lloan	-111124	1.14	n-uner.		m-in-u		meter (face-ar	11	-unia		nain-a	1	-10-U		neler		face-ar		H-IDIGE	:	guai-Ir	`	uce (m
	L L L L	ULAKI	Ξ.	o harred	וברוכת ר		lected y		tal Widt	.	ial peri.		ked <i>sur</i>		o nanad	-	lected h		IAI WIGI		ial peri.		ked sur		ected h		ian labi	•	umfere
		INDIA	. L		lo id		ford	Ι.	vL act:		actu		mart		ford		lojd		41-actt		actu		man		loud .	l'	L actu	·	circ
	2	Ŷ	ASPEC						BUCCA									VI KUNI									LABIA		
			vilew/					,	•					1		ļ	5	-	-					I					
I				1												i	×												

10.1. Appendix 1. Reliability and Validation

Table 20. 2D And 3D Incisor Morphometry Validation

		PCC	0.866**	0,885**	0.850**	0.710**	0.994**	0.856**	0.962**	0.814**	0.969**	0.777**	0.999**	0.905**
		I-test	•6/0.0	0000	0.052*	0.000	•680°	0.032*	0.256*	0.000	0.042*	0.000	0.077*	0:030*
		LOA	0.727	0.069	0.790 (0.052	0.151 (0.976	0,400 (0.071	0.377 (0.032	0:060	0.882 (
	5	Bias	0.163	0.015	0.177	0.012	0.034	0.218	0,089	0.071	0.084	0.007	0.013	0.197
	Statist	SE	0.083	0,008	06070	0.006	0.017	0.111	0.046	0.008	0.043	0.004	0.007	0.101
		Ci Xi	175.0	0.035	0.403	0.027	0.077	0.498	0.204	0.036	0.192	0.016	0.031	0.450
	: •	Mear Dif.	0.154	-00 07	0.187	-0.06	0000	0.257	0,054	-0.07	0.094	-0.075	0.013	0.337
		sD 1	0.731	0.051	0.756	0.055	96970 96970	3 0.902 6 0.948	0.695	0.060	0.782	0.034	0.741	9 1.057
		Mear	9766 11.6	10.1	9.132 9.133	1.123	9.11.5 2.11.5	10.49	9.025 8.972	1.127	9.033 8.939	1.120	8.972 8.959	9.992
		30	7.447	1.079	7.024	1.083	7.031	8.440 7.523	8.898 8.827	1.145	8.868 8.798	1.090	8.827 8.828	9.836
	!	16	9.606 9.664	1,070	9.495	1.106	9,664 9,654	9.559 9.630	9.095 8.962	1.189	8.653 8.925	1.173	8.962	9.568 9.962
		18	9.118	1.148	9.089	1.160	8.874 8.928	10.076 9.896	8.727	1.091	9.007	1.082	8.727 8.699	9.549
		17	9.020	1.050	9.158	1.045	9.050	0.960	9.292	1.114	9.093	1.038	9.123	0.283
	: :	91	9.661	0.974 1.092	9.608 9.546	198	9950	1,785	0.216	5963	0.358	0.984 1.074	0.426	0.635
Z	1	15	586 986	010	567 930	6 8	986 986	107 1	882	986 260	868	10 20	567	844 I
IDAT(<u>.</u>	463 8	012	851 8	1 80 86	507 7	.268 9 .622 8	19 17	994 0 118 1	893 7	1 250	7117	0.326 8
I VAL		- - E1	075 9 545 9	201	521 9	213 1	545 9 495 9	195 11 100 10	782 9	010 0	231 9 854 9	998	6 16	722 10
8	z		389 9.	1 5	480 9.	1 20	6 5	057 10 284 10	8 8 66	1 20	92 8 8	037 LU	8 90	900 90 19 9.
	DATIO		01 69 60 60	1 10	0 9 9 9	<u>4</u> 8	8 8	87 11.	8 80	31 1.1	97 8.1 16 7.5	 8 8	00 7.5 8.0	572 8.9
	INALI	1 20	8.8 5	0.1.0	5 8 6 8 9 8	017	50 50 50 50 50 50	5 9.9	9.93	1.1 5	1.6 9.1	9 0.9	9 9.1 2 9.1	72 10.6 98 10.4
	DOHIE	- 2	8 8.10 7 8.06	3 1.03	6 8.0	8 1.0	9.8.0	17 9.35 5 9.13	0 9.77 2 9.81	6 10	6 9.81 1 9.82	1 10	2 9.81 5 9.77	5 11.0
	ME	, ,	10.33	5.8	9.44	1.14	9.41	10.84	8.27	1.18	8.10	1.1	8.33	1 9.35
		×0	9,200	- 19 11 10 10	9.376	1.136	9.185	10.30	9.505	1.164	9.301	1.172	9.341	11.21
		7	9.522 9.428	200 1.100	9.578	1.090	9.637	11.119	9.611	0.993	9.212	1.026	9.609 9.609	10.969
		د .	9.534	1.041	9.563	1.049	9.138 9.223	11.284	8.937	1.132	8.873 8.806	1.112	8.764 8.769	10.375 9.639
		្ទំ	9.100	1001	9.648	1.001	9.720 9.688	10.532	7.131	1.1097	7.106	860.1	7 162	8.015
		् - च	0.415	0.972 1.056	0.475	0.975	0.912 824	0.503	0.045	1957 1056	10.294 879.0	966.0	856.0	2.055
		'n	372 1	5	1 11	956	419 9	1 100 1	178 1	13 062	489 1	035 0	112 9	1 106.0
		 N	144 9 957 9	010 0	169 9 986 9	036 1	6 016	379 10 784 10	022 9 911 9	1 1 1	027 9 896 9	082 1 155 1	911 9	144 10 673 10
		-	5 56 50 50	1 7	57 9. 25 8.	079 1. 165 1.	268 8. 216 8.	547 10 165 9.	504 9. 756 8	127 1. 138 1.	90 9. 138 8.	059 1. [23 1.	756 8. 726 8.	189 10 978 9.
	; - ;	8	6 6	2 2	6.6	<u> </u>	6 6	<u>a</u> a	<u>6</u> 6		5 5		6 6	1 0
		METH	ន ឆ	ត្តៈគ្គ	ន ន	ន ្ព	ត្ត [្] ត្ត	ម ម	ត	8 8	8 8	តុខ្ល	ត	ର୍ ନ
			(uuu)	11 (mm)	(uuu	// (mn)	(114	(um	(uuu	11 (mm)	(uuu	<i>nt</i> (mm)	(m	(un
	2	MENT	mgth (midpoi) high	midpoi	n) Higi	ngth (m) Higu	midpoi	hign:	midpoi	ng th (n	u) 418ı
	CISOR	ASURE	erall-l	dih-at-	erall-le	dih-ai-	bial-lei	hial-le	erall-le	dih-at-	crall-le	dth-at-	bial-lei	bial-lei
	ARIN	NE	ted ov	ted wi	ted ov	cted wi	ted la	ted la	ted ov	ted wi	ted ov	ted wi	ted la	ted <i>lal</i>
			projec	projec	projec	projec	projec	projec	projec	projec	projec	projec	projec	projec
	MAI	RECT		JCCAL		NGUAL		ABIAL		JCCAL		NGUAL		
1		SW/ ME		ы	I	5 5	• • • •	1		B	I	3 5		ן ב - יי
		. F				3						RIG		

*No Significant Difference at the 0.01 (1%) level (2-tailed). ** Significant Pearson's Correlation at the 0.01 (1%) level (2-tailed).

10.2. APPENDIX 2. PRINCIPAL COMPONENT ANALYSIS

Table 1. 2D PCA Mandible Morphometry

	8
-	-
3	
2	
اق	
-	
<u> </u>	
2	
긠	
Ĕ.	
ē	
뒹	
티	
ž	
-	
읟	
-12	
2	
3	
Σ	
0	
51	
-	
C	
A	<

×

0

Love Put			-				/	/			Companies Number
1	Irrix			51	22	46	16	48	13	63	15
	ent Ma	ponent	4	-0.2	0.3	-0.3	0.2	0.3	-0.1	9	0.8
	Compon	Com	-	0.902	0.882	0.874	0.850	0.821	0.766	0.055	-0.159
		MEASUREMENT VARIARIE		mandible-area (nm ²)	basal-length (nm)	mandible-perimeter (mm)	ascending-height (mm)	overall-length (mm)	diagonal-length (mm)	mandible-angle (")	coronoid-coronoid-length (mm
	lained	les	Cumulative %	54.599	80.815	93.190	97.406	586 383	99.588	116.66	100.000
	Variance Exp	tial Egenvalu	% of Variance	54.599	26.216	12.375	4.216	1.577	0.605	0.323	0.089
	Total	Int	Total	4.368*	2.097*	0.990	0.337	0.126	0.048	0.026	0.007
-		CAMBONIENT.	TATING INCO	-	2		4	\$	9	7	80

PCA 2D Mandible Morphometry - left lingual V

ς

Scree Plut									1			Compensed Number
		Ļ	_	_	_		_		_			-
		*		`.	•	-	-				*	
	int Matrix	onent	"	•	-0.175	0.299	0.137	0.236	-0.479	0.032	-0.925	0.897
	Compone	Comp	-	-	0.913	0.901	0.858	0.831	0.801	0.678	0.017	-0.051
			MEAST DEMENT VARIABLE	MEASUREMENT VANAAL	mandible-area (mm ²)	basal-length (mm)	overall-length (mm)	ascending-height (nun)	mandible-perimeter (mm)	diagonal-length (mm)	mandible-angle (")	coronoid-coronoid-length (nm)
	lained	les	Cumulative	%	52.179	78.237	88.662	96.277	98.029	99.408	99.842	100.000
	Variance Exp	tial Eigenvah	10 %	Variance	52.179	26.059	10.424	7.616	1.752	1.379	0.435	0.158
	Total	Ini	1-1-1	I otal	4.174*	2.085*	0.834	0.609	0.140	0.110	0.035	0.013
V		COMPOSITING	INFINITION		-	2	3	4	\$	9	7	8

PCA 2D Mandable Morphometry - right buccal

Scree Plot

×			B			C
	Total	Variance Ex	plained		Compone	nt Matrix
COMPACTACINET.	In	itial Figenval	ues		Comp	onent
INFINITIAN	Total	% of Variance	Cumulative %	MEASUREMENT VARIABLE	-	2
1	4.023*	50.286	50.286	mandible-area (mm ²)	0.912	0.064
2	2.164*	27.056	77.342	overall-length (mm)	0.888	0.045
9	0.783	9.792	87.135	mandible-perimeter (mm)	0.763	-0.356
4	0.407	5.088	92 222	basal-length (mm)	0.761	0.375
5	0.335	4.192	96.414	diagonal-length (mm)	0.715	0.462
9	0.171	2.142	98.556	mandible-angle (*)	0.493	-0.822
7	0.080	0.999	99.555	coronoid-coronoid-length (mm)	-0.504	0.729
8	0.036	0.445	100.000	ascending-height (nm)	0.482	0.686

PCA 2D MandibleMorphometry - right lingual A

Companient Numbe

		MEASUREMENT VARIA	mandible-area (mm ²)	overall-length (mm)	mandible-perimeter (mm)	basal-length (nun)	diagonal-length (mm)	mandible-angle (")	coronoid-coronoid-length	ascending-height (nun)
plamed	lues	Cumulative %	48.480	74.719	86.339	91.426	95.500	661 86	155.00	100.000
Variance Eq	tial Egenval	% of Variance	48.480	26.239	11.620	5.087	4.074	2.694	1.358	0.449
Total	Ini	Total	3.878*	2.099*	0.930	0.407	0.326	0.215	0.109	0.036
	VA INVALUAT	THENOLIMO	-	2		4	5	9	7	8

0.410

10.2. Appendix 2. Principal Component Analysis

Table 2. 2D PCA Incisor Morphometry

*Eigenvalue > 1.

PCA 2D Incisor Morphometry - left buccal

Scree Plot								/	/	
		~	/	/						
	4		3	•	nis	Auel	61a	1		-
	C	int Matrix	onent	2		-0.102	-0.069	0.192	0.358	0.941
		Compone	Comp	-		0.989	6.60	0.970	-0.883	0,316
-1	8		MEASI IREMENT VARIARI F			projected perimeter (nun)	projected overall-length (mm)	projected surface-area (mm2)	angle-of-curvature (")	projected width-at-midpoint (mm)
W/01	-	-		vc	1					-
0 1 2 - 4		Explaince	nvalues	Cumulati	7/8	75.165	96.500	262.66	99.883	100.000
INTONIC		I Variance	nitial Ege	Jo %	vanancc	75.165	21.335	2.791	0.592	0.117
ININ		Tota	1	Total		3.758*	1.067*	0.140	0:030	0.006
0920 07 UV	V		COMPONENT			-	2	3	4	5

PCA 2D Incisor Morphometry - left lingual

Component Number

Scree Plot

					/	_	/	J
L		-	h	NEAU	•813		1	
C	nt Matrix	onent	2	-0.055	-0.045	0.121	-0.061	66.0
	Compone	Comp	-	0.995	0.983	196.0	-0.938	-0.075
		MEASI IREMENT VARIARI F		projected perimeter (nm)	projected overall-length (nm)	projected surface-area (mm2)	angle-of-curvature (*)	projected width-at-midpoint (mm)
	Explained	values	Cumulative	75.326	95.665	786.987	99.840	100.000
	Variance	tial Eigen	% of Variance	75.326	20.339	3.322	0.853	0.160
	Total	Ini .	Total	3.766*	1.017*	0.166	0.043	0.008
V		COMPONENT		-	5	ŝ	4	5

PCA 2D Incisor Morphometry - right buccal

Scree Plot

						L.
	Tota	I Variance	Explained		Component	
COMPONENT	In	itial Eigen	ivalues	MEA STIDEMENT VA BLA BLE		
COMPONENT	Total	% of Variance	Cumulative %	TRANSVORT INSTRUMENTAL	-	1 eny
-	3.376*	67.522	67.522	projected surface-area (mm2)	0.970	1. rauet
2	0.964	19.271	86.793	projected overall-length (mm)	0.947	1
3	0.533	10.656	97.448	projected perimeter (nun)	0.937	1
4	0.111	2.222	99.670	angle-of-curvature (*)	-0.725	
5	0.016	0.330	100.000	projected width-at-midpoint (mm)	0.368	2

PCA 2D Incisor Morphometry - right lingual

Scree Plot

		/	/	/				
C			•	Paul	ha	1		8
	Component		-	0.959	0.958	0.956	-0.790	0.391
		MEASUREMENT VARIABLE		projected perimeter (mm)	projected surface-area (nm ²)	projected overall-length (mm)	angle-of-curvature (")	projected width-at-midpoint (mm)
-	Explained	values	Cumulative	70.551	89.139	98.196	99.518	100.000
	Variance	itial Eigen	% of Variance	70.551	18.588	9.056	1.323	0.482
	Total	In	Total	3.527*	0.929	0.453	0.066	0.024
V		COMPONENT		-	2	3	4	\$

Table 3. PCA 3D Incisor Morphometry - left

Component Number

*Eigenvalue > 1.

PCA 3D Incisor Morphometry - left buccal

<

<

*Eigenvalue > 1.

•

Table 4. PCA 3D Incisor Morphometry - right

PCA 3D Incisor Morphometry - right buccal

Component Number

Scree Plot

A			В			C	
	Tota	Variance	Explained		Compone	ent Matrix	
COMPONENT	IJ	itial Eigen	values	MFASTIREMENT VARIARI F	Comp	onent	
	Total	% of Variance	Cumulative %		-	13	
-	2.676*	53.528	53.528	projected overall-length (mm)	0.968	-0.078	
2	1.179*	23.587	77.116	actual perimeter (mm)	0.966	-0.106	
3	0.833	16.665	93.781	marked surface-area (mm ²)	0.889	0.102	
4	0.278	5.550	99.331	projected width-at-midpoint (mm)	-0.006	0.786	
5	0 033	0 669	100 000	actual width-at-midnoint (mm)	127	0 731	

PCA 3D Incisor Morphometry - right labial

A			H		
	Tota	I Variance	Explained		Component
COMPONENT	чI	itial Eigen	values	MEAST DEMENT VABLABLE	
COMPONENT ON THE	Tatal	% of	Cumulative	TIGUNUA INTIMINOCUTIA	-
	1 01al	Variance	0/0		-
1	3.465*	69.300	69.300	projected labial-length (mm)	0.946
5	0.849*	16.989	86.289	actual labial-length (mm)	0.934
3	0.463	9.256	95.545	total surface-area (mm ²)	0.917
4	0.205	4.107	99.652	total volume (mm ³)	0.775
5	0.017	0.348	100.000	circumference (mm)	0.508

C

Component Numbe

Compo

10.3. EXPERIMENTAL COMPARISON

Table 1. Amelx 2D Mandible Morphometry - left buccal

IMEIH	-WANDURE					VNONV				_		THEFT	SCOMP	VRISON		•
•					03% CI	ofMean							•	5.0		
VIEW/ ASPECT	VARIABLE	GROUP	Mean	SD SN	lower hound	upper -	1	X .	F Sug	<u> </u>	ROUTS	9	SE low	ind By D	v ∾	×
										F	WT-FILT	0 126	Ŧ	50 . LHS	0	ß
		ΥŢ	11.782	0 132 0 05	9 11 618	. 11 947	11.611	11 922		5	VT-HEMI	0343	Ŷ	В	51	169
			11.656	0.252 0.11	2 11 344	11.968	11 288	1.954		3	DMOILT	522.0	Ť	i e	10 66	8
	overall-length (mm)	IME	11.439	0.649 0.29	10.03	12.245	REE.01	11.924	195 003	=	ET-LEMI	0.217	ë ₹	. 365	0 10	69R
		IIOMO	11.057	0.554 0.24	0.5.01	11.745	10.219	11.735		Ē	OMORTS	0.599	Ÿ	, IS	0 11	661
							,	•		Ē	OMOTHIM	0.342	Ģ	- - 	95 0	551
·										ŕ	THE PLAN	0.112.4	9	r0 _22	6 9	Ī
		5	6.005	0.139 0.06	2 5832	6178	5 782	ę 163	ł		T-TIEMI	0.246	Ÿ	0 560	ور. د	8
			5	0.1101.0.06	1000	21.9	KI9	E H		• 3	OWOIPL	257.0	. =	- - -	00 90	
	ancending-height (nm)	Ì						5 m 12	110 0.007			0	6[1		F	2 8
								100 \$			UNUIT:		12			
							ļ			1 9		0.20	Ş		-	ž
•										1	UTT 1 15T	0.161			i e	ls
		-		-00 V20 V	-	-	5	;	÷						3 3 1 5	2 2
		¥	ŝ	100 4010	7/20					• ;	IMPIT-1		-		= 3 6 8	2 5
	basal-length (mm)	Ŧ	. 0.00	0,092 0,04	(K) 1		10	0. FIN/	732 0.54	×: ∞		0.77	- 8		s'	2
		ENGH H	980	0.460 0.20	6190		6110	65E.7		Ξ	ET-HEMI	1004	Ť		8 8	8
		OWO	14.9	0.12 0.16	6 6329	57	6.407	7351		H.	OWOIHIS	0.08	P	20	8 8	ŝ
,										₿	MI-HOMO	. 1200 :	ę.	00	5	g
			:			:		1		<u> </u>	NT-LET	100	Ŧ	27. 192	ອ ສ່	847
		ž	66219	1.273 0.56	9 64 638	661.199	61.349	57.620		*	INGII-L/	8	7	28 27	3 2	597
	C. Share and the second of	HEL	67.261	3.033 1.35	161-69 2	11 027	63.937	11072	200 0.00	<u>₹</u>	OWOILT	-5.666	- 01 - 01	F) E	00 000	
	() arking annual	HEM	67.838	2.037 0.91	1 65.309	70.368	65.700	20.078		Ξ;	ET-LIEMI	-0.578	Ŧ	3.C	50 58	52
		HOMO	71.885	1.205 0.53	91 TO.3KB	73.382	70.357	1000.07		₩.	ET-HOMO	З Т	Ŧ	5	58 0.01	÷
The second second										FIE	OMOH-IM	-1.046	-22	0- 01	190 0.03	:
- 100000 1.2									ļ		WT-HET	-0.155	9	0.1	8	280
		5	2,739	0.011.0.05	0. 2.601	78 2	2.590	1987		3	IMER-T	12010-	Ģ	E0 1894	0 50	ŝ
	coronoid-coronoid-	Ē	2,895	0.306-0-13	8 2.512	3.277	2.588	3.383	22 0 CW	≥ 2	T-HOMO	-0.016	E0- 11	6.0	8 8	£
	length (mm)	HEMI	2.760	0.118 0.05	3 2614	2.906	2.638	2.911		면 기	ET-HEMI	161.0	9	12 04	81	689
		HOMOH	2.756	0.160 0.07	2 2557	2.955	2.501	2.932		HE	OMOH-IS	0.139	9	10 80	8	202
		;								ΗĒ	MI-HOMO	0.005	-03	42 0.3	51 1.0	8
• •											VT-IET	0:039	20-	57 0.6	36	ŝ
-		¥	1204	0.134 0.06	0 8,337	8.671	612 B	8.592		3	DVEN-L	0.032	9	65 0.6	50 83	8
	:	HEL	8.465	0.193 0.06	5128	8.704	8.156	302	1	₹	UHIOMO	-0.326	5	23 0.2	8	ទ
	diagonal-lengih (mm)	INCIH	2213	0.537_0.24	0, 7806	6EI-6	7.746	8.960	170 174	1	ET-HEMI	-0.008	9.9	5.0 - M	58	8
		HOMO	8.830	0.303 0.13	6 8454	9.205	8.538	5EE.6		Ë	CTHOMO	9360-	9	5	60 1E	020
		:		•				1		Ê	OMOI-TIM	-0.358	-02	54 0.2	39 0.	348
•											NT-HEF	0313	-15	54 21	90 98	ş
		ž	34.001	0.645 0.28	8, 33.200	34.801	133.367	17.921		*	THEMI	0.633	7	55	8	<u> 8</u> 9
	(ma) and an inclusion of Additional of Additional of Additional of Additional of Additional of Additional of Ad	Ħ	33.688	0.348 0.15	5 33.256	34.120	33.223	94.128	301 0.18	};	T-HOMO	0.998	807	69 2.8	5 6	∃
-		INCH	BOE EE	1,777 0.79	5 31.162	35.574	30.468	35.085	2	=; ;	INGI-10	0.320	7	17 14	- 10 - 10	ş
		OMOII	33.003	0.752 0.33	5, 32.069	33.936	12.021	1002		Ë	CI-LIOMO	0.685	7	82 25	ଞ ଜା	8
										EH	MI-HOMO	0.365		27	32 0.	g
										*	NT-HET	90t-D-	ŗ,	18 3.1	80	5
		5	34.072	0.626 0 28	33 295	34.850	33.207	188.14		1	TT-HEM	0.155	÷	58 3.6	5	8
	, ; ;	Ē	34.478	1.448 0.64	7 32,680	36.276	32.094	165.51	200	≥	OMOIT	0.123	-13	89 3.6	SE SE	8
	mandible-area (unit)	IME	33.918	3.456 1.54	5 29.626	38.209	28.598	46.581 U	8		ET-HEMI	0.560	-29	52 4.0	3	5
		HOMO	33.949	0.798 0.35	7 32.958	34.940	32.957	15:097		臣	T-HOMO	0.529	4	4.0	5	E
									-	Ē	OWOHING	1004	1	-	1	ş

Table 2. Amelx 2D Mandible Morphometry - left lingual

HEM	I-MANDIBLE			,		ANOVA	_				, 2	MULTIPI	ECOM	PARUSO	z	
VIEW/ ASPECT	MEASUREMENT VARIABLE	GOUP	Mean	SD SE	95% CI lower bound	of Mean upper bound	, Lini	Nut	щ	Sig.	CROUPS	MD	a BS	95%C	1 ound ound	Sig.
											WT-HET	-0.048	Υ.	01810	0.714	860
		WT	11.798	0109_0.049	0 11.662	11 933	11:691	916 11			WT-HEWI	0.263	4	• 499	<u>8</u> .	0.758
	overall-length (mm)	HEL 1	11.846	0.341 -0 150 0.67 - 0.50	2 11.423	12.269	11.279	12.159 11.005	873	0.175	WT-HOMO	0.508	0366	122	1071	1369
		HOMO	11.289	0357 016	0 10.846	11 733	11.029	11 868			HET-HOMO	0.557	14.	0.205	1319	8610
					:			,			HEMI-HOMO	0.245	. Ч	0.517	1.007	3.795
											WT-HET	0.028	т.	0.410	0.467	8660
		ΨT	6.047	0.196 0.08	3 5 873	6.290	5.795	6.298			WT-HEMI	EEE 0		9010	111.0	0.174
		HET	6.018	0.240_0.10	5721	6316	5611	6,205			WT-HOMO	0.536	ļ	160	0.975 0.	014**
	ascending-height (mm)	HEMI	5714	0350 015	5.279	6148	5 129	6009	10 169	80	HET-HEMI	102.0		12	0.743	0,234
		HOMO	5511	0 129 0 051	5 350	5671	5347	5.694			HET-HOMO	0.508		690	0.946 0	••100
		;	:	:	i i		i			-	HEMI-HOMO	0.203	4	5520	0.642	1950
											WT-HET	0.104	P	1940	0.674	1953
		TW	7 098	0.149 0.06	5 6.914	7 283	6.833	7312			WT-HEMI	0.180		0300	0.750	1080
		HET	566.9	0.169:0.07	5. 6.785	7 204	672	7.154			WT-HOMO	0.354		0.217	126.0	0.321
	hasal-length (nm)	ILEN(6.918	0.447_0.200	0 6.364	7.473	. 6251	7.480	113	ES.	HET-HEMI	0.076	- 1661 D	1610	0.647	0860
		HONO	. SEL 9	0384 017	6 2/3	1001	5115	TAT T		•	HET-HOMO	0.250	, T	0.321	0.820	1090
						ĺ					HEMI-HOMO	0.174	17	0.397	0.744	0230
											WT-HET	-1.056	'	4879	1917	888
		TUT	65167	1211058	015 19 5	202 22	63.600	2022.99			WT-FIFMI	-1.109	- 1	431	2714	0.840
			11.20	TA 202 E	21109	Pre un	1055	11 580			WT-HOMO	5.7.5	ί,	0 546	0 100 1	••00
	mandible-angle (°)		8	141 CDC C		500		L'ori	299 0.1		הפר הפיעו	500	1 336	, Mar	044	, mi
			0/700	100 4/2		10000									0 2400	
		ЮМОН	168 0/	0.50	69.310	72.471	88.327	2236	ł	1.2	HET-HOMO	190	Υļ.	R i		- 410
The second s										-	OMOH-IME	1012	~	8 438	0.792 0	010
TELI TINGOAL								,			WTHET	-0.113		0.485	0.258	0.819
		ΤW	2844	0.127 0.05	7 2.686	3 002	2663	2.987			WT-HEMI	. 600	ч	0.295	0.449	0 933
	coronaid-caranoid-	HET	2.958	0.349 0.15	5 2524	3.391	2.743	3.571	Ē	07240	WI-HOMO	-0.027	1000	0338	0.345	1660
	length (mm)	IMEH	2,767	0.146 0.06	5 2.586	2.949	2.572	2.958	10	ĥ	HET-HEMI	0.190	, T	0.181	0.562	0480
		HOMO	2.871	0 0 22 0 04	3 2.750	2.992	2766	3.018			HET-HOMO	0.087	, т	0.285	0.458	9060
					:	;				_	HEMI-HOMO	-0.104	-	0.475	0.268	0.854
											WITHET	•0.063	- T]	0.680	0.555	16610
		ΤW	8.564	0.113 0.05	8.423	8704	8.385	8.671			WT-HEWI	0.067	. 1	0.550	0.685	0.989
		HET	8.626	0.304 0 13	5 8.249	, 904	8205	666.8		-	OMOH-TW	-0.247	4 246.0	9864	0.370	0.668
	diagonal-length (mm)	HEMI	. 8496	0484 021	7 7 895	9008	7852	n. 116'B	6	2	IMEH-TEH	0.130		0487	0.747	05610
		HOMO	8811	0.354 0.15	8 8371	9251	8513	5076			HET-HOMO	40.184		0802	0.433	8238
			:		i		•	:			HEMI HOMO	1.0.314	-	0 932	0.303	0.484
											WT-HET	-01.0	ŕ	2774	2.560	66610
		WT	35.657	0.951 0.42	5 34.476	36.838	34.272	36.813			WT-HEMI	0.613		1054	3.279	11610
		HEL	35.764	1.050 047	0 34,460	37.068	34,459	36.867			WT-HOMO	0.990	Ì	161	3.657	117
	nandible-penmeter (mm)	HEMI	1504	2 465 1.10	31.984	38.105	10.894	37,217	620	0.612	HET-HEMI	0.719	. 266 0	1.947	3.386	0.866
		nowo	14 667	V2.0 8/2.0	137701	15,621	10712	32,545			FIFT-HOMO	1001		1 570	3.764	0.649
		OMOT							t	,	TEMI-HOMO	111	Į.	7780	1011	1477
											CIATOLI-HATTL	1010		2130	101 5	1080
				010 0100	Ū.	JC JC	, 10, 11			-	WIT UID O	1023 0		. 07	199	1000
		M	2014	000 01010	110.00						TATEL I M		1.		200	2000
	mandible-area (nm ²)	IIII	40. CE	2310 1 US	2, 52,830	210.85	31.980	38.2/8	1656	1650	DIVIDIT-I M	0.00 h	1 1 1 1		2023	076.0
		HEWI	34.15/	3690 169	212.02	38.739	28,585	36805			HEI-HEMI	Ā,		+107	80	01/10
		OWOH	33 812	1058 047	3_32.498	35 126	161.15	102.55	, ,		HEI-HOMU	7/371	-		e no	200
		_								-	DMOH-IMEIH	0.345		3776	4466	20.0

Table 3. Amelx 2D Mandible Morphometry - right buccal

m decup m HET w HEM HEM	Mcan	SD SE	93× CI	of Mean								Ĩ		
M HEIT COURT	Mcan	20				-	•				1		5	ŝ
M HEI HOMOH VT WT		-	bound	bound		ľ	- -		GROUPS	a w	#	bound	upper	7
M HEI HEM HOMOH VT WT								t	WT-HET	١,		0.724	in i	3
m) HEM HEM HOMO WT WT	62811	01.0 01.0	7, 11 583	12.176	11.447	12110			WT-HEMI	0.37		10.588	NCEL	0.6
HEM HOMO HOMO	11.640	0.137 0.06	021711	11,8,11	11.408	11.767	5	2	WT-HOMO	0.60		855.0-	1367	5
WT WT	11.504	0.987 0.44	1 10.279	12.729	9,896	12.23		8	HET-HEMI	6.19		-0.827	1.099	0.0
T H	11.275	0.287 0.12	8. 10.91K	11.631	10.966	11.704			HET-HOMO	996.0		-0.597	1.328	0
WT HET								1	HEMI-HOMO	0.230		6.733	1.192	5
, F									WT-HET	0.06		40.276	1014 (D	69
HEL	6.012	0.138 0.06	1 5.841	CR1 9	5 803	4E.9			WT-HEMI	20		-0.117	0.367	0.7
	5.9 %	0.0 222.0	9. 5 670	523	5.620	6.148	00 000	1	DWOH-TW	25.0	2	0.031	0.715	0.03
HEMI	5.747	0.251 0.11	2: 5.476	8603	Ę	6.078	n'n ene		HET-HEMI	0.135		0.130	10570	9
OMOFI	5.639	10'0.601'0	5.504	5.74	5,518	, 1 2.5		-	HET-HOMO	030	27	0.03	0.649	9
								-	TEMI-HOMC	910		¥1.0-	061-0	9
					•				WT-HET	10		106.0-	0.618	9
¥	6.913	0.123 0.05	5 6.760	7,066	6.741	7,033			WT-HEMI	10		-0.873	0.646	5
HEL	7.055	0.234 0.10	5 6.764	7.346	6.693	7.350		2	WT-HOMO	0.141	200	-0.61X	006'0	60
HEMI	7.026	0.762 0.34	1 6.081	7.972	5.753	7.695		ş	HET-HEMI	0.02		162.0-	0,787	5
HOMOH	6.772	0.232 0.10	4 6.484	7.060	6.413	2.040		-	HET-HOMO	0.25		1440	1.042	0.7
				,					HEMI-HOMC	52		-0.505	1.014	6
								F	WT-HET	3.6		-8.262	0.962	6
T¥.	62.554	1.917 0.85	7 60.174	166,10	59.878	61.604	ļ		WT-HEMI	T		-8.780	110	0.0
HET	66.205	1373 0.61	4 64,500	62,909	64.380	67.922	200		WT-HOMO	-121-		-12.126	-2.902	00.0
HEMI	66.77.2	3.534 1.58	1 62.334	71.111	63.164	72.663	1010 797	-	HET-HEMI	-0.51		5.130	4:094	8
OWOH	70.068	2817 1.26	0 66.570	73.566	67.518	74,810			HET-HOMO	386		5442	0.749	0.1
• 		L			-	•			IEMI-HOMO	16.6-10		-7.958	1,266	0.2
								T	WT-HET	0.061		-0.359	0.482	5
- MT	2.926	0.273 0.12	2 2587	3.265	2.537	3.284	1	<u>+</u>	WT-HEMI	0.045	1 -	176.0-	840	8
4- HET	2.865	0.138_0.06	2 2.693	÷ 3.037	2.624	2.972			WT-HOMO	0.01		-0.386	0.454	0.99
HENI	2 877	00 1900	107.5	236.0	044.0	0 1.66	.066	5	HET-HEMI	100	147	-0.432	0.408	1.00
ONOR	100	310 2720	2.465	DIFF	T	125		-	HET-HONO	i i i i i i i i i i i i i i i i i i i		877.0	LOF 0	
								-	HEMI-HOMO	10.0		-0.436	0405	×.
								t	WT-HET	-0.21		-0.666	0227	2
Ţ	8.347	0.074 0.03	3 8,256	8.438	8.246	8.450	ł	<u> </u>	WT-REMI	10.38		-0.836	0.057	00
HET	8,566	0,271 0,12	1 8,230	8.903	8.140	8.877			WT-HOMO	-036		-0.811	0.082	0.13
INBH	8.736	0.366 0.16	4 8.282	9.191	8.247	9.148	10 20	ŝ	HET-HEMI	5	9CI 70	-0.616	0.276	0.70
HOMOH	8.711	0.176 0.07	9 8.493	8.930	8.461	8.897		<u> </u>	HET-HOMO	10		-0.591	106.0	6.0
									IEMI-HOMC	0.025		-0,421	124-0	0.9
									WT-HET	0.458		-2.601	3.517	60
WT	34.721	2.195 0.98	31.995	37,447	OPETE	695'RE	1		WT-HEMI	1256		-1.802	4315	0.6
HEL	34.263	0.988 0.44	2, 33.036	35.490	23.147	35,680	100	1	WT-HOMO	1.556	5	-1.503	4.615	9
HEMI (mm)	191-EE	2.189 0.97	9 30.747	36,182	30.046	15.237 ⁰	5 6	3	HET-HEMI	0.79		-2260	3.857	0.87
OMOH	331.EE	0.919 0.41	1 32,024	34,306	32.180	34,169			HET-HOMO	1.098		-1.961	4.157	6.7
		-							IEMI-HOMO	0.296		-2.759	3.358	0.95
									WT-HET	0.096		-3.875	4.066	1.0
WT	34,615	1.768 0.79	1 32420	36,811	33.035	37.637	ļ		WT-HEMI	0.227		-3.743	¥.198	0.0
, HET	34.520	1.218 0.54	5 33.008	36.032	32,400	35.320	-	i }	WDH-TW	60.0	-	1 ,067	3,873	00.1
HEMI	34,388	3.399 1.52	0 30.167	38.609	722.62	37.316	13 13	ŝ	HET-HEMI	0.132	\$ 	-3,838	4,102	1.00
OMOH	34.713	1.758 0.78	5 32.530	36.896	32.299	36.305		1	HET HOMO	-019		116	3.77	0.99
								,	IEMI-HOMC	-0.32		N N N	3,646	6.0
	m) HEM HOMO HOMO HOMO HOMO HOMO HOMO HOMO H	(m) HET 8,565 HEM 6,776 HEM 0,8711 HEM 1,726 HEM 1,34,725 HEM 1,34,755 HEM 1,355 HEM 1,3	WI HET 8,566 0.271 0.12 HEM X756 0.266 0.16 0.05 HOMO R.71 0.176 0.05 0.05 HET 34.721 2.195 0.08 0.45 HET 14.262 0.089 0.41 0.017 0.035 HET 14.262 0.299 0.41 0.099 0.011 HEM 13.464 2.199 0.099 0.011 0.011 0.015 HEM 13.464 2.199 0.099 0.011 0.011 0.011 0.011 HEM 13.464 2.199 0.029 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011	W) HET 8,566 0,271 0,121 8,290 HEM X756 0,266 0,166 8,290 HOMO 8,711 0,176 0,295 8,993 HET 34,721 2,195 0,893 3,1995 HET 34,721 2,195 0,893 3,1995 HET 34,721 2,195 0,999 30,797 30,797 HET 34,721 2,195 0,999 0,179 32,054 HMMI 33,464 2,199 0,911 22,054 32,054 HMMI 34,326 1,238 0,591 22,04 33,066 HMMI 34,326 1,238 0,591 22,09 30,167 HMMI 34,326 1,238 0,391 23,09 30,167 HMMI 34,326 1,336 2,359 33,068 32,306	M ¹ HET 8.566 (0.271 0.236 (0.271 8.239 8.991 HDMIO 8.771 0.156 0.166 8.893 8.991 HDMIO 8.771 0.1576 0.0575 1.893 8.993 HDMIO 8.771 2.195 0.977 3.047 3.647 HET 3.346 0.166 8.803 8.493 3.649 HDMIO 3.146 0.979 3.0747 3.047 3.646 HDMI 3.346 2.1895 0.979 3.0747 3.649 HDMIO 3.146 1.344 2.199 0.071 3.043 3.493 HDMI 3.346 1.218 0.979 3.0747 3.043 3.043 HDMI 3.346 2.189 0.979 3.0747 3.043 3.043 HDMIO 3.146 1.136 0.979 3.0747 3.043 3.043 HDMIO 3.146 1.136 0.979 3.0747 3.046 3.049 </td <td>M3 HET 8.366 0.271 0.121 8.290 8.001 8.140 HEM 8.766 0.266 0.266 0.266 9.191 8.447 HEM 8.716 0.176 0.076 0.076 1.995 37.447 MM HEM 34.721 2.195 0.989 1.995 37.447 MM HEM 34.721 2.195 0.986 1.995 37.447 31.416 MM HEM 34.665 0.986 0.447 30.442 31.416 MM HEM 34.665 0.999 0.411 32.064 33.446 MM HEM 34.665 1.788 0.977 34.686 30.467 MM HEM 34.665 1.788 0.977 34.686 32.460 MM HEM 34.366 1.288 0.901 32.060 32.400 MM HEM 34.368 32.996 32.400 36.666 32.590 HEM <td< td=""><td>Mail HFF A.566 0.277 0.121 8.220 8.100 8.741 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 9.194 9.194 9.194 9.194 9.194 9.194 9.194 9.247 9.194 9.247 9.194 9.2467 9.2467 9.2467 9.2467 9.2467 9.2467 9.2467 9.2466 9.2466 9.2466 9.2466 9.2467 9.2466 9.2467 9.2467 9.2467 9.2467 9.2466 9.2467 9.2466 9.2467 9.2466 9.2466 9.2466 9.2467 9.2466 9.2467 9.2466 9.2467 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2</td><td>ml HER 8.66 0.271 0.121 8.290 8.401 8.775 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.262 0.269 0.267 0.262 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 <th0.263< th=""> <th0.263< th=""> 0.263<!--</td--><td>mt HFF X.566 0.277 0.121 8.200 8.001 8.247 2.622 0.066 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.146 8.247 9.146 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.148 7.422 0.066 HEM Atrial 0.196 8.292 3.199 3.447 31.401 38.56 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 <</td><td>ml HET 8.566 0.271 0.121 8.299 9.191 8.577 0.122 8.299 9.194 8.677 0.006 HET-HBM HEM 8.756 0.266 0.276 0.106 8.877 0.142 8.677 0.006 HET-HBM HEM 8.756 0.266 0.1076 8.293 9.191 2.247 9.148 2.629 4.661 8.897 HEM-HBM (mm) HET 34.265 37.447 33.149 8.693 33.249 18.690 WT-HBT (mm) HET 34.265 37.447 33.149 38.691 33.249 18.991 WT-HBT (mm) HET 34.265 37.447 33.136 33.237 WT-HBT WT-HBT (mm) HET 34.265 37.447 34.165 37.346 35.357 WT-HBT (mm) HET 34.265 37.447 34.165 37.347 HET-HBMO (mm) HET 34.365 37.496</td><td>ml HET 8.56 (0.27) 0.212 (229 8.90 8.14 9.14 0.12 0.26 HEM R.756 (0.25) (0.27) (1.21) (229 (1.6) (229) (1.6) (220) (1.6) (220) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6)</td><td>ml HET 8.566 0.277 0.121 8.297 9.191 2.427 9.141 2.622 0.056 HET-HEMI 0.176 0.156 HEM 8.756 0.366 0.107 0.121 8.297 9.191 2.247 9.142 2.629 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176<!--</td--><td>ml HET 3.566 0.271 0.121 8.297 9.14 8.777 1.602 0.364 0.136 0.666 HEM 8.76 0.266 0.271 0.121 8.297 9.14 8.77 0.066 HET-HEM -0.136 0.0156 0.666 HEM 8.77 0.105 0.616 8.297 3.147 8.247 1.918 -0.218 0.616 -0.201 0.421 HEM 0.471 0.478 0.299 3.747 3.149 8.897 0.411 2.026 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 <t< td=""><td>ml HET 8.56 (1.21) 8.290 (1.14) 8.297 (1.14) 8.297 (1.14) 6.205 (1.16) 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.025 HET-HEM.(1 0.176 0.015 0.015 0.015 0.015 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015</td></t<></td></td></th0.263<></th0.263<></td></td<></td>	M3 HET 8.366 0.271 0.121 8.290 8.001 8.140 HEM 8.766 0.266 0.266 0.266 9.191 8.447 HEM 8.716 0.176 0.076 0.076 1.995 37.447 MM HEM 34.721 2.195 0.989 1.995 37.447 MM HEM 34.721 2.195 0.986 1.995 37.447 31.416 MM HEM 34.665 0.986 0.447 30.442 31.416 MM HEM 34.665 0.999 0.411 32.064 33.446 MM HEM 34.665 1.788 0.977 34.686 30.467 MM HEM 34.665 1.788 0.977 34.686 32.460 MM HEM 34.366 1.288 0.901 32.060 32.400 MM HEM 34.368 32.996 32.400 36.666 32.590 HEM <td< td=""><td>Mail HFF A.566 0.277 0.121 8.220 8.100 8.741 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 9.194 9.194 9.194 9.194 9.194 9.194 9.194 9.247 9.194 9.247 9.194 9.2467 9.2467 9.2467 9.2467 9.2467 9.2467 9.2467 9.2466 9.2466 9.2466 9.2466 9.2467 9.2466 9.2467 9.2467 9.2467 9.2467 9.2466 9.2467 9.2466 9.2467 9.2466 9.2466 9.2466 9.2467 9.2466 9.2467 9.2466 9.2467 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2</td><td>ml HER 8.66 0.271 0.121 8.290 8.401 8.775 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.262 0.269 0.267 0.262 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 <th0.263< th=""> <th0.263< th=""> 0.263<!--</td--><td>mt HFF X.566 0.277 0.121 8.200 8.001 8.247 2.622 0.066 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.146 8.247 9.146 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.148 7.422 0.066 HEM Atrial 0.196 8.292 3.199 3.447 31.401 38.56 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 <</td><td>ml HET 8.566 0.271 0.121 8.299 9.191 8.577 0.122 8.299 9.194 8.677 0.006 HET-HBM HEM 8.756 0.266 0.276 0.106 8.877 0.142 8.677 0.006 HET-HBM HEM 8.756 0.266 0.1076 8.293 9.191 2.247 9.148 2.629 4.661 8.897 HEM-HBM (mm) HET 34.265 37.447 33.149 8.693 33.249 18.690 WT-HBT (mm) HET 34.265 37.447 33.149 38.691 33.249 18.991 WT-HBT (mm) HET 34.265 37.447 33.136 33.237 WT-HBT WT-HBT (mm) HET 34.265 37.447 34.165 37.346 35.357 WT-HBT (mm) HET 34.265 37.447 34.165 37.347 HET-HBMO (mm) HET 34.365 37.496</td><td>ml HET 8.56 (0.27) 0.212 (229 8.90 8.14 9.14 0.12 0.26 HEM R.756 (0.25) (0.27) (1.21) (229 (1.6) (229) (1.6) (220) (1.6) (220) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6)</td><td>ml HET 8.566 0.277 0.121 8.297 9.191 2.427 9.141 2.622 0.056 HET-HEMI 0.176 0.156 HEM 8.756 0.366 0.107 0.121 8.297 9.191 2.247 9.142 2.629 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176<!--</td--><td>ml HET 3.566 0.271 0.121 8.297 9.14 8.777 1.602 0.364 0.136 0.666 HEM 8.76 0.266 0.271 0.121 8.297 9.14 8.77 0.066 HET-HEM -0.136 0.0156 0.666 HEM 8.77 0.105 0.616 8.297 3.147 8.247 1.918 -0.218 0.616 -0.201 0.421 HEM 0.471 0.478 0.299 3.747 3.149 8.897 0.411 2.026 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 <t< td=""><td>ml HET 8.56 (1.21) 8.290 (1.14) 8.297 (1.14) 8.297 (1.14) 6.205 (1.16) 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.025 HET-HEM.(1 0.176 0.015 0.015 0.015 0.015 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015</td></t<></td></td></th0.263<></th0.263<></td></td<>	Mail HFF A.566 0.277 0.121 8.220 8.100 8.741 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 8.247 9.194 9.194 9.194 9.194 9.194 9.194 9.194 9.194 9.247 9.194 9.247 9.194 9.2467 9.2467 9.2467 9.2467 9.2467 9.2467 9.2467 9.2466 9.2466 9.2466 9.2466 9.2467 9.2466 9.2467 9.2467 9.2467 9.2467 9.2466 9.2467 9.2466 9.2467 9.2466 9.2466 9.2466 9.2467 9.2466 9.2467 9.2466 9.2467 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2466 9.2	ml HER 8.66 0.271 0.121 8.290 8.401 8.775 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.262 0.269 0.267 0.262 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 <th0.263< th=""> <th0.263< th=""> 0.263<!--</td--><td>mt HFF X.566 0.277 0.121 8.200 8.001 8.247 2.622 0.066 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.146 8.247 9.146 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.148 7.422 0.066 HEM Atrial 0.196 8.292 3.199 3.447 31.401 38.56 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 <</td><td>ml HET 8.566 0.271 0.121 8.299 9.191 8.577 0.122 8.299 9.194 8.677 0.006 HET-HBM HEM 8.756 0.266 0.276 0.106 8.877 0.142 8.677 0.006 HET-HBM HEM 8.756 0.266 0.1076 8.293 9.191 2.247 9.148 2.629 4.661 8.897 HEM-HBM (mm) HET 34.265 37.447 33.149 8.693 33.249 18.690 WT-HBT (mm) HET 34.265 37.447 33.149 38.691 33.249 18.991 WT-HBT (mm) HET 34.265 37.447 33.136 33.237 WT-HBT WT-HBT (mm) HET 34.265 37.447 34.165 37.346 35.357 WT-HBT (mm) HET 34.265 37.447 34.165 37.347 HET-HBMO (mm) HET 34.365 37.496</td><td>ml HET 8.56 (0.27) 0.212 (229 8.90 8.14 9.14 0.12 0.26 HEM R.756 (0.25) (0.27) (1.21) (229 (1.6) (229) (1.6) (220) (1.6) (220) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6)</td><td>ml HET 8.566 0.277 0.121 8.297 9.191 2.427 9.141 2.622 0.056 HET-HEMI 0.176 0.156 HEM 8.756 0.366 0.107 0.121 8.297 9.191 2.247 9.142 2.629 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176<!--</td--><td>ml HET 3.566 0.271 0.121 8.297 9.14 8.777 1.602 0.364 0.136 0.666 HEM 8.76 0.266 0.271 0.121 8.297 9.14 8.77 0.066 HET-HEM -0.136 0.0156 0.666 HEM 8.77 0.105 0.616 8.297 3.147 8.247 1.918 -0.218 0.616 -0.201 0.421 HEM 0.471 0.478 0.299 3.747 3.149 8.897 0.411 2.026 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 <t< td=""><td>ml HET 8.56 (1.21) 8.290 (1.14) 8.297 (1.14) 8.297 (1.14) 6.205 (1.16) 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.025 HET-HEM.(1 0.176 0.015 0.015 0.015 0.015 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015</td></t<></td></td></th0.263<></th0.263<>	mt HFF X.566 0.277 0.121 8.200 8.001 8.247 2.622 0.066 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.146 8.247 9.146 HEM X.766 0.266 0.166 8.202 9.191 8.247 9.148 7.422 0.066 HEM Atrial 0.196 8.292 3.199 3.447 31.401 38.56 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66 <	ml HET 8.566 0.271 0.121 8.299 9.191 8.577 0.122 8.299 9.194 8.677 0.006 HET-HBM HEM 8.756 0.266 0.276 0.106 8.877 0.142 8.677 0.006 HET-HBM HEM 8.756 0.266 0.1076 8.293 9.191 2.247 9.148 2.629 4.661 8.897 HEM-HBM (mm) HET 34.265 37.447 33.149 8.693 33.249 18.690 WT-HBT (mm) HET 34.265 37.447 33.149 38.691 33.249 18.991 WT-HBT (mm) HET 34.265 37.447 33.136 33.237 WT-HBT WT-HBT (mm) HET 34.265 37.447 34.165 37.346 35.357 WT-HBT (mm) HET 34.265 37.447 34.165 37.347 HET-HBMO (mm) HET 34.365 37.496	ml HET 8.56 (0.27) 0.212 (229 8.90 8.14 9.14 0.12 0.26 HEM R.756 (0.25) (0.27) (1.21) (229 (1.6) (229) (1.6) (220) (1.6) (220) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6)	ml HET 8.566 0.277 0.121 8.297 9.191 2.427 9.141 2.622 0.056 HET-HEMI 0.176 0.156 HEM 8.756 0.366 0.107 0.121 8.297 9.191 2.247 9.142 2.629 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 </td <td>ml HET 3.566 0.271 0.121 8.297 9.14 8.777 1.602 0.364 0.136 0.666 HEM 8.76 0.266 0.271 0.121 8.297 9.14 8.77 0.066 HET-HEM -0.136 0.0156 0.666 HEM 8.77 0.105 0.616 8.297 3.147 8.247 1.918 -0.218 0.616 -0.201 0.421 HEM 0.471 0.478 0.299 3.747 3.149 8.897 0.411 2.026 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 <t< td=""><td>ml HET 8.56 (1.21) 8.290 (1.14) 8.297 (1.14) 8.297 (1.14) 6.205 (1.16) 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.025 HET-HEM.(1 0.176 0.015 0.015 0.015 0.015 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015</td></t<></td>	ml HET 3.566 0.271 0.121 8.297 9.14 8.777 1.602 0.364 0.136 0.666 HEM 8.76 0.266 0.271 0.121 8.297 9.14 8.77 0.066 HET-HEM -0.136 0.0156 0.666 HEM 8.77 0.105 0.616 8.297 3.147 8.247 1.918 -0.218 0.616 -0.201 0.421 HEM 0.471 0.478 0.299 3.747 3.149 8.897 0.411 2.026 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 <t< td=""><td>ml HET 8.56 (1.21) 8.290 (1.14) 8.297 (1.14) 8.297 (1.14) 6.205 (1.16) 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.025 HET-HEM.(1 0.176 0.015 0.015 0.015 0.015 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015</td></t<>	ml HET 8.56 (1.21) 8.290 (1.14) 8.297 (1.14) 8.297 (1.14) 6.205 (1.16) 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.156 6.011 0.025 HET-HEM.(1 0.176 0.015 0.015 0.015 0.015 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.025 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

Table 4. Amelx 2D Mandible Morphometry - right lingual

HEMI	MANDIBLE	3 	-				1							
	· · · · · · · · · · · · · · · · · · ·		1	•	NOVA	1		i		MULT	DE CO	MPARUS	s I	
VIEW/ ASPECT	MEASUREMENT VARIABLE	GROUP Mean	SD SE	lower	upper	niir 	aX F	Sig.	GROUPS	QW	ß	lower	upper	Sig.
		-	- 1	Dunog	DUNCO	-			WT-DET	0.049		- UOUDO	1.007	0000
		WT 11.936	0.221 0.099	11.662	12211	1.591:12	22		WT-HEMI	9550		-0.62	1294	157.0
	A	HET 11.888	0.125 0.056	11.733	12.043	1.742 12	020	0470 6	WT-HOMO	0.455	1	-0.504	1,413	0,542
	(unu) Higher-Herder	HEMI 11.601	0.985 0.440	10.378	12,823	9.990 12	285	0/+/0	HET-HEM	0.288	CCC.0 1	129'0-	1.246	0.826
•		HOMO 11.482	0.298 0.133	11.112	11.851	11.000.11	748		HET-HOM	0.407		-0.552	1365	0.627
,									HEMI-HOM	0 0.119		653.0-	1.078	0.984
ı.			:	-	1	÷		;	WT-HET	0.023		+7E-0-	0.570	766.0
		WT 6.060	0.151 0.067	5.873	6.247	5.861 6.	273		WT-HEMI	0.299		-0.048	0.646	0.105
	according-holade (mm)	HET 6,037	0,117 0,052	5,892	6,182	5.890 6.	146 5 71	0 0 007**	WDH-TW	0.415	10121	0.068	0.762	0.017**
	man usianstrumentaria	HEMI 5.761	0.321 0.144	5.363	6.160	5.332 6.	8		HET-HEM	0.276		12010-	0.63	0.146
••		CHOIC DIMINI	600'0 /000'0	à	t.		10	;	MOH-IAN	7450 0			1010	5/12 U
1									WT-HET	-0.168		-0.866	1620	1060
		WT 7,006	0.108 0.049	6.871	7.141	6.901 7.	181		WT-HEMI	-0.064	 -	-0.762	0.635	6.993
		HET 7,174	0,180 0,081	6.950	. 10E.T	7.021 7	Ş		WT-HOMO	0.173	*** 	-0.525	0.872	0.892
	basal-length (nun)	HEMI 7.070	0.709 0.317	6.189	7.950	5.877 7.	557 0.68	97CU 0	HET-HEMI	0.104	. 447.0	-0.595	0.802	672.0
		HOMO 6.833	0.221 0.099	6.558	7.107	6.469 7.	010		HET-HOM	145.0	,	-0.358	1.039	0.520
									HEMI-HOM	7EZ.0 C		-0,462	0.936	0.768
1									WT-HET	-3.447	t	-8.183	06E1	0.215
		WT 61.434	2.125 0.950	58.796	64.072 .5	8,480 63	266		WT-HEMI	-3.880		8.717	956.0	0.141
	mandihle-anale (")	HET 64.880	1,403 0.627	63.138	66.622 6	3.090 66	680	S 0.004**	WT-HOMO	-7.612	1.690	-12.448	-2.775	002**
		HEMI 65.314	3.891 1.740	60.482	20.146	22 2261	80		HET-HEMI	-0,434	i-	-5.270	4,403	0.994
		940.69 OMOH	6411 9292	65.77	72319 6	6.605.73	521		HET-HOMO	1165		-9.002	169,0	0.105
RIGHT LINGIAL-			,						HEMI-HOM	3.71		8.568	I.105	0.163
			1		1				WT-HET	0'000	• •	-0.262	0.382	15610
		WT 3.100	0.185 0.083	2.871	3.330	2.818 3.	- 192		WT-HEMI	0.08		-0.230	0.405	0.882
	coronald-coronoid-	HET 3.041	0.084 0.038	2.937	3.145	2923 3.	115	0,518	MOH-TW	0.170	0.113	-0.152	0.492	0,452
	(num) wildow	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100'0 CFT'0	0027	021.5	r 7707					.د. ب			1660
		NCKT OWOH		0007	7076	°C (110)	- 19		MOH-IMEH	0.088			0,410	0.862
1					1				WT-HET	0.941	-	-1.592	3,474	0.716
		WT 8.458	0.107 0.048	8.326	8,591	3352 8.	516		WT-HEMI	-0358	• ·	-2.891	2.174	776'0
	diagonal-length (mm)	HET 7.517	2.769 1.238	4.079	10.955	0.569 8.	884 0.95	2 0.439	WT-HOMO	-0.345	0.885	-2.877	2,188	616.0
		HEMI 8.817	03335 0.150	8.400	622G	6 5653	52		HET-HEMI	-1200		-3.832	<u></u>	0.478
		HUMO 8 8013	C(0)0 217.0	:	790.6	N ATCS			MOH-12H	907-T- 0		012.0-	7 546	1 000
•									WT-HET	-1.64		4.623	1334	0.417
		WT 34.150	2,028 0.907	31.631	36.668 3	1.017 36	20	,	WT-HEMI	-0.934	•••••	5.913	2044	0.806
	(mm) antennan althur	HET 35.794	0.815 0.365	34.782	36.806 3	4.887 36	740	7270 0	WT-HOMC	-0.336	W	-3.315	2.642	0.988
•	mminus-permanen (mmi)	HEMI 35.084	2,231 0,998	32313	37,855	1.553 37	810		HET-HEMI	0.710		-2.268	3.688	0.902
		HOMO 34.486	1.039 0.465	33,196	35.777 3	3.003 35	856		HET-HOMO	1308		-1.670	4.286	0.602
I									MOH-IMBH	0.598		-2.380	3.576	0.938
		- CC3 72 - 1111	1 000 0 001			1.00			WT-HET	202.0-		127	2810	0.938
		HET 35.578	1210 2071	2012	, 114-100 E E56-5E	5 006 35	576		WT-HOMO	1650	-	-2.922	4110	0.962
	mandible-area (mm ²)	HEMI 34.775	9121 9656	30.558	38.992 2	9.519 37.	597 0.37	0.772	HET-HEMI	0.753	1.229	-2.763	4.268	0.927
		HOMO 34.228	1.342 0.600	32.561	35.895 3	2.030 35	489		HET-HOMO	1.299	:	-2.216	4.815	0.719
		•		:		:	1		HEMI-HOM	0.547		-2.969	4.062	0.970

10.3. Appendix 3. Experimental Comparison

Table 5. Amelx 2D Incisor Morphometry - left buccal

	MANDIB	ULAR INCISORS	;			•	3	ANOV	٨				1	MULTIP	LECO	MPARISC	z	
				-		• •	95% CI o	ofMean								92%	۵	
VIEW/	ASPECT	MEASUREMENT	GROUP	Mean	ß	SE	lower	upper	min'	тах	ч	Sig.	GROUPS	QW	SE	lower	upper	Sig.
No. 1.* 10		VANIADLE					pound	bound								punoq	punoq	
													WT-HET	0.217	1	-0.721	1.154	0.910
			ΨT	10.560	0.758	0.339	9.619	11.501	9.808	11.699			WT-HEMI	0.369	l	-0.569	1.306	0.680
			HET	10.343	0.474	0.212	9.755	10.931	9.521	10.701	0 165	*1000	WT-HOMO	1.565	902.0	0.627	2.502	0.001**
		overall-length (mm)	HEMI	10.191	0.475	0.212	9.602	10.781	9.428	10.615	C01.6	IM'N	HET-HEMI	0.152	0707	-0.786	1.089	0.966
			OMOH	8.995	0.223	0.100	8.719	9.271	8.738	9.247			HET-HOMO	1.348	. <u></u> ł	0.411	2.285	0.004**
			a fange mehr understallt an Alexandra et a										HEMI-HOMO	1.196		0.259	2.134	0.010**
													WT-HET	1.003		-2.942	4.947	0.885
			WT	117.476	2.535	1.134	114.328	120.624	113.427	120.321			WT-HEMI	-1.751		-5.696	2.193	0.594
		3	HET	116.473	2.477	1.108	113.398	119.549	113.953	120.000		+0000	WD-HOMO	-16.758	1 270	-20.703	-12.813	0.000**
		angle-of-curvature (")	HEMI	119.228	1.704	0.762	117.112	121.343	118.266	122.234	140.61		HET-HEMI	-2.754	5/C1	-6.699	1.190	0.230
			HOMO	134.234	1.882	0.842	131.897	136.572	132.324	136.997		. ,	HET-HOMO	-17.761	in nin l	-21.705	-13.816	0.000**
													HEMI-HOMO	-15.007		-18.951	-11.062	0.000**
													WT-HET	0.009	~~~~	-0.055	0.073	0.979
			ΨT	0.987	0.032	0.014	0.947	1.027	0.952	1.033			WT-HEMI	0.049		-0.015	0.113	0.165
			HET	0.978	0.038	0.017	0.931	1.025	0.926	1.028	5 102 5	**000	WT-HOMO	0.079		0.015	0.143	0.013**
LEFT	BUCCAL	width-at-midpoint (nm)	HEMI	0.938	0.029	0.013	0.901	0.974	0.910	0.980) /08.0		HET-HEMI	0.040	770.0	-0.024	0.104	0.305
			HOMOH	0.908	0.040	0.018	0.858	0.958	0.848	0.956		,	HET-HOMO	0.070	ł	0.006	0.134	0.029**
							and a state of the						HEMI-HOMO	0.030		-0.034	0.094	0.556
													WT-HET	-0.163		-2.426	2.100	0.997
			WT	25.014	1.940	0.868	22.605	27.423	22.821	27.560			WT-HEMI	0.725		-1.538	2.988	0.796
			HET	25.177	1.348	0.603	23.503	26.851	22.800	26.137	770 01	*0000	WT-HOMO	4.985	0.701	2.722	7.248	0.000**
		incisor-perimeter (mm)	HEMI	24.289	0.556	0.249	23.598	24.980	23.687	25.042	10.000		HET-HEMI	0.888	16/.0	-1.375	3.151	0.681
			ОМОН	20.029	0.605	0.271	19.278	20.781	19.302	20.699			HET-HOMO	5.147	l	2.885	7.411	0.000**
													HEMI-HOMO	4.256		1.997	6.523	0.000**
													WT-HET	0.122) 	-1.180	1.425	0.993
			WT	10.956	1.132	0.506	9.551	12.362	9.696	12.554			WT-HEMI	0.850	l	-0.453	2.153	0.280
			HET	10.834	0.804	0.360	9.835	11.833	9.455	11.528	15 731	*0000	WT-HOMO	2.723	0.455 ~	1.420	4.025	0.000**
		incisor-area (mm ⁻)	HEMI	10.106	0.336	0.150	9.689	10.523	9.701	10.615	107.01	,	HET-HEMI	0.728		-0.575	2.031	0.407
			OMOH	8.234	0.182	0.081	8.008	8.459	7.968	8.383			HET-HOMO	2.600	1	1.297	3.903	0.000**
													HEMI-HOMO	1.872		0.570	3.175	0.004**

.

Table 6. Amels 2D Incisor Morphometry - left lingual

	CAUCILINI NALU						ANOVA			1		and the second sec	MULTIP	LE CON	MPARIS	z	
A ANDERES A CONTRACT	MEASUREMENT			6	5	5%CI₀	fMean]	Ĺ		Salicaci	Ş	ĥ	95%	ווס	Sig
VIEW/ ASPECT	VARIABLE	JOD H	Mean	2	มู้	lower bound	bound		IRAX	L	-11c	CIOOLO I	3	3	bound	upper bound	50.
												WT-HET	-0.056	-	-0.999	0.887	0.998
•		WT	10.463	0.563	0.252	9.764	11.161	9.834	11.118	1		WT-HEMI	0.195		-0.748	1.138	0.933
		HET	10.518	0.741	0.331	9.598	11.438	9.578	11.280	1073	**0000	WT-HOMO	1.137	0.220	0.194	2,080	0.016**
	overall-length (mm)	HEMI	10.268	0.433	0.194	9.730	10.805	9.606	10.617	100.0	0.008	HET-HEMI	0.251		-0.692	1.194	0.871
		OMOH	9.326	0,182	0.082	660.6	9.553	9.044	9.545			HET-HOMO	1.192	l	0.249	2,135	0.011**
			4 4		, !							HEMI-HOMO	0.942		-0.001	1.885	0.050**
•												WT-HET	0.865		-3.477	5.206	0.940
		WT	117.317	2.848	1.274	13.780	120.853	112.824	120.689			WT-HEMI	-2.183	L	-6.524	2.159	0.495
	•	HET	116.452	2.770	1.239	13.012	119.892	113.580	120.731		40000	WT-HOMO	-14,806		-19.147	-10.465	**000.0
	angle-of-curvature (°)	HEMI	119.499	1.606	0.718	17.505	121.494	117.944	122.171	40.247	v.uuu*	HET-HEMI	-3.047		-7.389	1.294	0.226
		ОМОН	132.123	2.158	0.965	29.443	134.802	129.980	135.133	-		HET-HOMO	-15.671		-20.012	-11.329	**000.0
												HEMI-HOMO	-12.623		-16.965	-8.282	**000.0
•.												WT-HET	0.012		-0.036	0,061	0.884
		ΜT	166.0	0.024	0.011	196.0	1.021	0.964	1.017			WT-HEMI	0.0544	L	0,006	0,103	0.026**
		HET	0.978	0.026	0.012	0.946	1.011	0.959	1.015	2122	*0000	WT-HOMO	0.0696	0.017	0.021	0.118	0.004**
TELL TRUCIAL	width-at-midpoint (mm)	HEMI	0.936	0.021	0.009	0.910	0.963	0.911	0.960	010'/	. 700'0	HET-HEMI	0.042	100	-0.007	0.091	0.104
		НОМО	0.921	0.034	0.015	0.879	0.964	0.870	0.955			HET-HOMO	0.0572		0.009	0.106	0.019**
		1										HEMI-HOMO	0.015		-0.033	0.064	0.808
•												WT-HEF	-0.212	i	-2.265	1.841	166'0
•.		WT	24.882	I.487	0.665	23.036	26.729	22.956	26.463			WT-HEMI	0.631		-1.422	2,684	0.815
		HET	25.094	1.389	0.621	23.369	26.820	23.059	26.358	211.21	*0000	WT-HOMO	4.150		2.097	6.203	**000.0
	incisor-perimeter (mm)	HEMI	24.251	0.610	0.273	23.493	25.009	23.611	25.066	11.01		HET-HEMI	0.843		-1.210	2.896	0.650
		НОМО	20.732	0.796	0.356	19.745	21.720	19.537	21.771	4 12 14 14 14 14 14 14 14 14 14 14 14 14 14		HET-HOMO	4.362		2.309	6,415	**000.0
•												HEMI-HOMO	3.519		1.466	5.572	0.001**
				~~~~	•••••							WT-HEF	0.179	<b>ل</b> ہ ۔ ۔	-1.066	1.424	0.976
-		WT	11.015	0.867	0.388	9.939	12.091	10.008	11.967			WT-HEMI	0.850		-0.395	2.095	0.246
		HET	10.836	0.951	0.425	9.654	12.017	9.640	11,666	13 333	*000 U	WT-HOMO	2.467	0.435	1.223	3.712	**000.0
	incisor-area (mm ⁻ )	HEMI	10.165	0.355	0,159	9.723	10.606	9.729	10.705		00010	HET-HEMI	0.671		-0.574	1.916	0.437
		HOMO	8.547	0.332	0.149	8.135	8.960	8.087	8.942			HET-HOMO	2.288	i	1.043	3.533	0.000**
												HEMI-HOMO	1.617		0.373	2.862	**600.0
				~~~~		s						WT-HET	0.469	í	-0.496	1.435	0.522
		WT	10.924	0.520	0.232	10.279	11.569	10.167	11.516			WT-HEMI	0.703		-0.262	1.668	0.200
•		HET	10.455	0.581	0.260	9.733	11.176	9.718	11.248	1131		WT-HOMO	0.296	222.0	-0.669	1.261	0.816
	tabiat-tength (mm)	HEMI	10.221	0.654	0.292	9.410	11.033	9.536	11.193	1.4C.1	CH2.U	HET-FIEMI	0.233		-0.732	1.199	0.899
		HOMO	10.628	0.321	0.144	10.229	11.027	10.285	10.975			HET-HOMO	-0.173		-L.139	0.792	0.955
•			•)	-	•						HEMI-HOMO	-0.407		-1.372	0.558	0.632

Table 7. Amelx 2D Incisor Morphometry - right buccal

~	MANDIB	ULAR INCISORS	and an annumber of the second				-	'NONY	A	an anan afan ar anan ar				MULTIP	LECO	MPARIS	NO	
	,						95% CI (of Mean								95%	۵	
VIEW/ A	SPECT	MEASUREMENT	GROUP	Mean	ß	SE	lower	upper	'uim	max	ц	Sig.	GROUPS	QW	SE	lower	upper	Sig.
		VARIABLE			_		pound	ponoq								pound	punoq	
·													WT-HET	-0.051	ł	-0.930	0.829	0.998
			WT	10.626	0.421	0.188	10.102	11.149	9.919	10.982			WT-HEMI	0.488		-0.391	1.367	0.412
• • •			HET	10.676	0.649	0.290	9.871	11.482	9.801	11.374	1510	*1000	OMOH-TW	1.368	0.207	0.489	2.247	0.002**
		overall-length (mm)	HEMI	10.137	0.534	0.239	9.474	10.801	9.281	10.643	101.6	. 100.0	HET-HEMI	0.539	1000	-0.340	1.418	0.330
			HOMOH	9.258	0.246	0.110	8.952	9.563	8.846	9,494			HET-HOMO	1.419		0.539	2.298	0.001**
													HEMI-HOMO	0.880		100.0	1.759	0.050**
													WT-HET	-1.011		-4.887	2.866	0.877
			WT	116.801	2.834	1.268	113.282	120.321	112.810	119.088			WT-HEMI	-4.635		-8.512	-0.759	0.017**
		į	HET	117.812	1.329	0.594	116.162	119.463	116.471	119.577	202.02	*0000	WT-HOMO	-16.385	3361	-20.262	-12.509	0.000**
		angle-of-curvature (")	HEMI	121.437	2.030	0.908	118.916	123.958	118.306	123.937	000.10		HET-HEMI	-3.625		-7.501	0.252	0.071
			HOMOH	133.187	2.106	0.942	130.572	135.802	130.267	135.558			HET-HOMO	-15.374		-19.251	-11.498	0.000**
													HEMI-HOMO	-11.750	~~~~~	-15.626	-7.873	0.000**
													WT-HET	0.009		-0.074	0.092	0.989
			WT	0.979	0.039	0.017	0.931	1.028	0.912	1.008			WT-HEMI	0.060		-0.023	0.143	0.203
	11001		HET	0.970	0.067	0.030	0.887	1.054	0.859	1.041	C1 C E	1900	WD-TWO	0.074	10000	-0.009	0.157	0.089
KIGHI B	UCCAL	width-ai-midpoint (mm)	HEMI	0.919	0.029	0.013	0.884	0.955	0.878	0.947	717.0	100.0	HET-HEMI	0.051		-0.032	0.134	0.325
			OMOH	0.905	0.039	0.017	0.857	0.954	0.868	0.967			HET-HOMO	0.065		-0.018	0.148	0.154
													HEMI-HOMO	0.014		-0.069	0.097	0.963
													WT-HET	-0.091		-2.082	1.900	666.0
			WT	25.308	1.140	0.510	23.893	26.724	23.740	26.608		d	WT-HEMI	1.209	a	-0.782	3,199	0.338
			HET	25.399	1.608	0.719	23.403	27.395	23.083	27.174	00016	*0000	WT-HOMO	4.726	0,604	2.735	6.717	0.000**
-		incisor-perimeter (nati)	HEMI	24.100	0.851	0.381	23.043	25.156	23.077	24.916	070.17	3	HET-HEMI	1.299		-0.691	3.290	0.280
			ОМОН	20.582	0.482	0.216	19.983	21.181	19.792	21.049			HET-HOMO	4.817		2.826	6.808	0.000**
													HEMI-HOMO	3.517		1.527	5.508	**1000.0
													WT-HET	-0.212	لىمىدىسە	-1.702	1.278	0.977
			WT	10.916	0.682	0.305	10.069	11.763	9.914	11.546		. 1	WT-HEMI	0.682	d	-0.808	2.172	0.571
			HET	11.128	1.389	0.621	9.403	12.853	9.003	12.449	ALE D	. *1000	WT-HOMO	2.272	0 501	0.782	3.762	0.002**
		incisor-area (mm ⁻)	HEMI	10.234	0.462	0.207	9.661	10.808	9.643	10.815	170.0		HET-HEMI	0.893		-0.597	2.383	0.348
			OMOH	8.644	0.321	0.144	8.245	9.043	8.097	8.941			HET-HOMO	2.484		0.994	3.974	0.001**
													HEMI-HOMO	1.591		0.101	3.081	0.034**

Table 8. Amelx 2D Incisor Morphometry - right lingual

MAT	NDIBULAR INCISORS			and the second second second	anomatic alla sere e mo		ANOVA						MULTIP	LE COI	MPARIS	N	
VIEW/ ASPE	CT MEASUREMENT VARIABLE	GROUP	Mean	ß	E H	5% CI o lower bound	of Mean upper bound	nin'	max	ц	Sig.	GROUPS	Ð	Æ	95% lower bound	D upper bound	Sig.
												WT-HET	0.187		-0.764	1.137	0.942
		WT	10.635	0.379	0.169	10.164	11.105	10.030	10.981			WT-HEMI	0.497	<u></u>	-0.453	1.447	0.462
		HET	10.448	0.884	0.395	9.351	11.546	9.089	11.272	CW0 E	**0000	WT-HOMO	1.403	1 337	0.453	2,354	0,003**
	overait-tengin (mn)	HEMI	10.138	0.336	0.150	9.720	10.555	9.801	10.593	770/1	conto	HET-HEMI	0.310	377.0	-0.640	1.261	0.787
		OMOH	9.231	0.256	0.114	8.914	9.549	8.930	9.553			HET-HOMO	1.217		0.266	2.167	0.010**
							-					HEMI-HOMO	0.906		-0.044	1.857	0.064
-												WT-HET	-2.445		-5.611	0.722	0.163
		ΨT	116.540	2.648	1.184	113.252	119.827	112.785	118,580	and the same line of the same		WT-HEMI	-5.175		-8.341	-2.009	0.001**
	•	HET	118.984	1.301	0.582	117.369	120,600	117.156	120.362	011.001	*0000	WT-HOMO	-17.878	101	-21,044	-14.711	0.000**
	angle-of-curvature (°)	HEMI	121.715	1.516	0.678	119.832	123.597	119.324	123,434	746.CU1	-000.0	HET-HEMI	-2.730	/01-1	-5.897	0.436	0.104
		ОМОН	134.417	1.115	0.499	133,032	135.802	132.821	135.800			HET-HOMO	-15,433		-18.599	-12.267	**000.0
												HEMI-HOMO	-12.703		-15.869	-9.536	0,000**
												WT-HET	0.012		-0.062	0.086	6967
		WT	0.974	0.027	0.012	0.939	1,008	0:630	0.995			WT-HEMI	0.053		-0.021	0.127	0.216
		HET	0.962	0.062	0.028	0.885	1.039	0.862	1.026	200	**000	WT-HOMO	0.064	2	-0.010	0.138	0.104
RIGHT LING	JAL width-at-midpoint (mm)	HEMI	0.921	0.027	0.012	0.887	0.955	0.890	0.963	770'1	1.00.U	HET-HEMI	0.041	1070.0	-0.033	0.115	0.413
		OMOH	0.910	0.036	0.016	0.865	0.955	0.864	0.964			HET-HOMO	0.052	i	-0.022	0.126	0.222
			1									HEMI-HOMO	0.011		-0.063	0.085	0.972
												WT-HET	0.130		-1.991	2,251	866.0
		WT	25,305	1.354	0.605	23.625	26.986	23.573	26.995			WT-HEMI	1.419		-0.702	3.540	0.261
		HET	25.175	1.751	0.783	22.001	27.349	22.653	27.156	270.01	10000	WT-HOMO	4.933	1700	2.813	7.054	0.000**
	incisor-perimeter (mm)	HEMI	23.886	0.558	0.250	23.193	24.579	23.281	24,461	CH7.61		HET-HEMI	1.289	ŧ.	-0.832	3.410	0.337
		OMOH	20.372	0.534	0.239	19.708	21.035	19.804	21.086			HET-HOMO	4.803		2.682	6.924	**000.0
10 V												HEMI-HOMO	3.514	~	1.394	5.635	0.001**
• •	- - -											WT-HET	-0.085		-1.531	1.361	866.0
•••		WΤ	10.827	0.760	0.340	9.884	11.771	9.886	11,634			WT-HEMI	0.701		-0.745	2.147	0.525
•••	2 · · ·	HET	10.913	1.337	0.598	9.253	12.572	8.849	12.229	0 603	0.001*	WDH-TW	2.305	0 505	0.859	3,751	0.002**
	incisor-area (mm [*])	HEMI	10.126	0.266	0.119	9.796	10.456	9.747	10.427	CD0.2	100'0	HET-HEMI	0.786	2	-0.660	2.232	0.430
		HOMO	8.522	0.347	0.155	8.091	8.953	8,184	8.901			HET-HOMO	2.390		0.945	3,837	**100.0
	-											HEMI-HOMO	1.604		0.158	3.050	0.027**
												WT-HET	0.188		-0.891	1.268	0.958
		WΤ	10.865	0.783	0.350	9.893	11.837	9.664	EE8.11			WT-HEMI	0.731	`	-0.349	1.810	0.252
	1	HET	10.677	0.622	0.278	9.904	11.449	9.758	11.426	1 737	0 124	WT-HOMO	-0.195	122	-1.275	0.884	0.954
	tabiat-tength (mm)	HEMI	10.134	0.564	0.252	9.434	10,834	9.481	10.848	70777	47T'N	HET-HEMI	0.543	j	-0.537	1.622	0.495
		OMOH	11.060	0.326	0.146	10.655	11.465	10.503	11.366			HET-HOMO	-0.383		-1.463	0.696	0.743
			ь 5									HEMI-HOMO	-0.926		-2.006	0.154	0.106

10.3. Appendix 3. Experimental Comparison

Table 9. Amelx 2D Colour and Whiteness - left gingival/ pre-secretory

		Sig.	0.000**	0.001**	0.003**	0.913	0.719	0.977	0.084	0.390	0.743	0.775	0.421	0.926	0.468	0.938	1.000	0.208	0.508	0.916	0.585	0.736	1.000	0.137	0.614	0.708
N	ū	upper bound	16.709	15.376	14.545	4.521	3.690	5.023	0.277	1.245	1.867	3.863	4.485	3.517	2.688	6.716	5.456	9.622	8.362	4.334	49.507	21.885	34.741	6.548	19.404	47.025
PARISO	95%	lower bound	5.001	3.668	2.836	-7.187	-8.019	-6.686	-5.513	-4.545	-3.923	-1.927	-1.305	-2.273	-8.500	-4.472	-5.732	-1.566	-2.826	-6.854	-18.832	46.454	-33.598	-61.791	48.936	-21.314
 LE COM	1	SE		1				l			50	1.012	l	I		I	1 056			L						
NULTIPI		Ш	10.855	9.522	8.690	-1.333	-2.165	-0.831	-2.618	-1.650	-1.028	0.968	1.590	0.622	-2.906	1.122	-0.138	4.028	2.768	-1.260	15.337	12.284	0.571	27.622	14.766	12.856
V		GROUPS	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	IEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	IEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	IEMI-HOMO	WT-HET	WT-HEMI	WDH-TW	HET-HEMI	HET-HOMO	IEMI-HOMO
		Sig.		1	1		<u> </u>	1 144				0110	<u> </u>	<u> 144</u>		<u> </u>		1		H			6	1.189	-	<u> </u>
		Ĺ.			002 1						0360	0007					1631	+ cc. 1						16/1		
		max	-	51.083	44.923	43.418	42.754			-3.420	1.790	-1.990	-2.850			5.700	10.620	5.040	5.610			01.107	92.170	01.108	96.680	
		'uim	-	45.235	34.154	35.079	37.616			-5.240	-5.260	-3.470	-3.850			-1.960	0.940	0.000	0.140			61.390	28.950	72.130	60.340	
ANOVA	fMean	upper bound	-	51.480	43.574	42.718	42.479			-3.461	2.080	-1.951	-2.768			6.802	11.482	4.499	6.183			98.925	94.944	02.625	95.827	
	95% CI o	lower bound	-	45.558	31.754	35.278	37.179			-5.171	-5.476	-3.381	-3.808			-0.618	0.514	-0.559	0.277			54.438	27.744	75.306 1	56.393	
		SE		1.066	2.129	1.340	0.954	a - Anna an Anna a Anna a Anna a An		0.308	1.361	0.258	0.187			1.336	1.975	0.911	1.064			8.012	12.102	4.920	7.102	
		ß	-	2.385	4.760	2.996	2.134			0.688	3.042	0.576	0.419			2.988	4.417	2.037	2.378			17.914	27.061	11.001	15.880	
		Mean		48.519	37.664	38.998	39.829			4.316	-1.698	-2.666	-3.288			3.092	5.998	1.970	3.230			76.681	61.344	88.966	76.110	
		GROUP		WT	HET	HEMI	OMOH			WT	HET	HEMI	HOMO			WT	HET	HEMI	HOMOH			WT	HET	HEMI	OMOH	seen and a loss of the sector
ICISOKS		COLOUR			:	lightness				~~~~		rea/ green						yellow/ blue					:	whiteness		
MANDIBULAKIN		REGION/ STAGE												GINGIVAL	PRE-SECRETORY						I					
	:; ; ;	SIDE			·· ·										Let I					***			-			10.0°00'00'00'00'00'

Comparison
ltal
mer
jei,
EX
÷
Ľ.
Ĕ
ď
A.
Ľ.
Ξ

Table 10. Amelx 2D Colour and Whiteness - left middle/ secretory

			Sig.	0.067	0.994	0.151	.041**	,001**	0.230	.006**	,050**	0.589	0.711	073**	0.413	0.865	0.345	0.247	0.099	0.065	0.996	0.934	0.315	0.351	0.122	0.140	1.000
		ľ	apper	6.645	7.781	1.814	0.316 (6.284 (2.580	0.885 (0.003	1.303	3.237	4.543 (3.661	5.364	1.772	2.360	3.758	4.346	7.938	7.399	7.864	9.146	8.058	9.341	8.875
	ARISON	95% C	wer 1 und b	.450] 1	314	5.282	7.411 -	3.79 -	1.515	- 265	- 713	407	.473	.167	.049	336	928 1	340 1	.942 1	354 1	762	787 5	.322 1	040 1	.128	.845	6.311 4
	COMPA		2 <u>2</u>	Ŷ	ę.	-15	-17	-23	-14	Ņ.	4		ر 1-	ġ	-1.	6-	-7	-7 9	9	9	φ —	-37	-17-	₃₅ -76	-8-	8	-46
	PLE(53			5 7	Ř N			t		ò	ó ⊃			*****		r C	Ň				~	16.6	10.0	•	
	MULT		QW	8.097	-0.766	-6.734	-8.864	-14.83	-5.968	-3.240	-2.358	-1.052	0.882	2.188	1.306	-1.986	4.422	5.010	6.408	6.996	0.588	9.806	-29.72	-28.447	-39.53	-38.252	1.282
والموادية والمراجعة			GROUPS	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO
	,l		Sig.			, 000 k	. 100'0				·	**7000		<u> </u>				**010						2000	/00/70		
			щ		starts were been made to be	100 0	170.0					0 110 2	0.011					3 500 C	n 600°.0					2 001	7.301		
			max'		52.044	48.536	48.632	53.724			-3.240	2.950	-1.010	-1.910			5.140	18.390	1.110	2.280			71.000	111.152	108.841	113.428	
					37.934	31.156	42.757	49.431			-4.700	-2.630	-2.830	-4.290			4.040	-1.600	-1.990	-3.490			63.790	22.140	89.610	80.640	
	ANOVA	fMean	apper		51.516	15.674	166.81	4.209			3.351	2.008	0.771	1.848			5.067	5.894	1.865	2.590			1.708	20.147 -	06.665	14.089	
	ł	5% CI 0	ower ound b		8.403	8.051 4	2.461 4	9.178			4.721	3.600	2.585 -	4.120			3.925	2.930 1	1.717	3.618		:	4.040	4.011 1	8.541 1	8.552 1	
		9	p 1 SE		2.361 3	3.174 2	1.176 4	0.906 4			0.247 -	1.010	0.327 -	0.409 -			0.206	3.390 -	0.645 -	1.118 -			1.381 6	2.359 -	3.264 8	6.400 7	
			SD		5.280	7.096	2.629	2.026			0.552	2.258	0.731	0.915			0.460	7.580	1.443	2.500			3.088	49.997	7.298	14.310	
			Mean		44.960	36.862	45.726	51.694	and the second		-4.036	-0.796	-1.678	-2.984			4,496	6.482	0.074	-0.514			67.874	58.068	97.603	96.321	
	~~~~		ROUP		WT	HET	HEMI	OMO			WT	HET	HEMI	OMO			WT	HET	IEMI	OMO			WT	HET	IEMI	OMO	
							<u>                                     </u>	1-1-1	1		I			1			<u> </u>	ale com	I I					Na poor	5		
Sde	2		COLOUI				ugnmess					1	ea/ gree					117 11	110 /MOTI					1 ii	vnitenes		
USION			- 8					nen on overe					×.						) Je						~~~~		
ал па	NUTION		NB												)LE/	TORY											
ICTIN A MU			REG STA												MIDI	SECRE											
			SIDE					- * - *'					196 W 81			1 437				. er							001. at
				L			<b>.</b>								· ·					-	na						

10.3. Appendix 3. Experimental Comparison

Table 11. Amelx 2D Colour and Whiteness - left incisal/ mature

	MANDIBULAR IN	ICISORS						ANOVA						MULTIP	LE CON	APARISC	Z	
•					;   	5	5% CI 0	fMean							-16 4 - anal Per 1	95%	σ	
DE	REGION/ STAGE	COLOUR COMPONENT	GROUP	Mcan	SD	E E	lower bound	upper	min'	max	<u>تــ</u>	Sig.	GROUPS	QW	SE	lower bound	upper bound	Sig.
													WT-HET	11.437		4.294	18.580	0.002**
			ΨT	44.263	2.361	1.056	41.331	47.195	40.787	46.437			WT-HEMI	3.300		-3.843	10.444	0.563
			HET	32.826	5.970	2.670	25.414	40.238	27.509	42.817	200.20	*000	WD-HOMO	-10.444	7 407	-17.587	-3.301	0.004**
		lightness	HEMI	40.962	2.375	1.062	38.014	43.911	37.253	43.320	075.02		HET-HEMI	-8.136	2.43/	-15.280	-0.993	0.023**
			ОМОН	54.707	3.935	1.760	49.821	59.593	51.078	61.229			HET-HOMO	-21.881	6-anano	-29.024	-14.738	0.000**
						-							HEMI-HOMO	-13.745		-20.888	-6.601	0.000**
													WT-HET	4.490		-5.858	-3.122	0.000**
			WT	4.806	0.479	0.214	-5.401	4.211	-5.230	4.080			WT-HEMI	-4.388	54-4-2-0	-5.756	-3.020	0.000**
			HET	-0.316	1.019	0.456	-1.582	0.950	-1.630	0.820	002	*0000	WD-HOMO	0.012	0.470	-1.356	1.380	1.000
		red/ green	HEMI	-0.418	0.492	0.220	-1.029	0.193	-0.990	060.0	600.10		HET-HEMI	0.102	0.4/0	-1.266	1.470	0.996
···			OMOH	-4.818	0.881	0.394	-5.912	-3.724	-5.870	-3.500		<u> </u>	HET-HOMO	4.502		3.134	5.870	0.000**
	INCISAL/											<u> </u>	HEMI-HOMO	4.400		3.032	5.768	0.000**
	MATURE												WT-HET	2.870		-1.357	7.097	0.250
			WT	11.256	1.529	0.684	9.358	13.154	9.390	13.590			WT-HEMI	12.406		8.179	16.633	0.000**
			HET	8.386	3.523	1.576	4.011	12.761	2.210	10.930		*000	WT-HOMO	12.808	1.47	8.581	17.035	0.000**
		yellow/ blue	HEMI	-1.150	2.418	1.081	4.153	1.853	-3.350	2.290	0014-60		HET-HEMI	9.536	1.4/1	5.309	13.763	0.000**
			OMOH	-1.552	1.109	0.496	-2.929	-0.175	-2.590	0.290			HET-HOMO	9.938	l	5.711	14.165	0.000**
													HEMI-HOMO	0.402		-3.825	4.629	0.993
													WT-HET	-16.120		-43.319	11.079	0.358
			WΤ	26.062	8.874	3.969	15.043	37.081	13.640	38.620			WT-HEMI	-81.389		-108.588	-54.190	0.000**
		:-	HET	42.182	25.249	11.292	10.831	73.533	24.950	84.880	37 335	*0000	WD-HOMO	-74.879	0 507	-102.078	-47.680	0.000**
		wniteness	HEMI	107.451	11.930	5.335	92.637 1	22.264	90.070	18.589		'	HET-HEMI	-65.269		-92.468	-38.070	0.000**
			HOMOH	100.941	6.722	3.006	92.594	09.288	89.550	106.198		<u>/</u>	HET-HOMO	-58.759	*******	-85.958	-31.560	0.000**
													HEMI-HOMO	6.510		-20.689	33.709	106.0

#### * Bonferroni Corrected Significant Difference (p $\le 0.002$ ) ** Significant Difference (p $\le 0.05$ )

306

Comparison
Experimental
10.3. Appendix 3.

-

Table 12. Amelx 2D Colour and Whiteness - left whole/ all

		Sig.	**000.	0.141	0.526	.034**	**000	.010**	**000.	.002**	0.650	0.870	:003**	**910.	0.958	**1001	**800	.003**	0.003	1.000	0.993	,002**	,008**	i.001**	1 ^{.005**}	0.906
	I	pper ound	5.216 0	).556	2.735	0.357 0	7.178 0	1.518 0	1.552 0	1.080 0	1.044	2.244	1.368 0	3.896 0	3.506	9.948 0	9.884 0	0.690	0.626	1.184	7.476	3.962 0	8.058 0	16.304 0	0.400	1.037
RISON	95% C	ver u und b	509 1	051 5	872 2	- 63	.785 -	.125   -	- 960	624 -	500	300	324 4	352 3	966	<del>1</del> 52 9	388	194 1	130 1	312 4	.792 2	229 -1	- 326	571 -1	.668 -]	.230 3
OMPA		por	4.(	÷		-10	-17	-12	-2.	4	- <u>-</u> -2	-1.	0	0	4	ï	1.	64   1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	.1	4	7	<u></u>	sc -58	9 9	Ş	-19
PLEC		S			č		_				Ś							F.				5	7 0 10	; ;	<del></del>	
MULTI		Щ	9.913	4.253	-2.568	-5.660	-12.48	-6.821	-3.324	-2.852	-0.728	0.472	2.596	2.124	-0.742	5.700	5.636	6.442	6.378	-0.064	2.342	-39.09	-33.19	-41.43	-35.53	5.904
		GROUPS	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO
	<u>l</u>	Sig.		(	1000		1	<u> </u>			*000					1	*000		i	-			*000	- mn'r		
	A	۲L				J 166./1						) / <del>/</del> C.61					1114 6	11.114						0 502.21		
		max		49.478	41.909	44.737	51.665	and the second		-4.120	1.090	-0.840	-2.810			6.850	12.700	2.200	1.930			70.240	79.960	107.608	103.041	
		-uim		41.242	33.069	38.911	45.820			-4.800	-3.320	-2.230	-4.420	nan dan karan karan ta tanan dan dan dan dan dan dan dan dan dan		4.110	2.900	-1.310	-1.460			53.290	19.170	89.060	82.700	
ANOVA	fMean	upper bound		50.000	40.374	44.655	51.196			-4.061	1.052	-0.791	-2.865			7.444	11.620	2.459	2.503			67.145	85.859	107.878	104.650	
	5% CI 0	lower	-	41.769	31.570	38.609	45.710			4.751	-3.216	-2.317	-4.491			4.664	1.972	-1.751	-1.667			50.523	27.125	87.982	79.402	
		SE	-	1.482	1.585	1.089	0.988			0.124	0.769	0.275	0.293			0.501	1.738	0.758	0.751	· · · · · · · · · · · · · · · · · · ·		2.994	10.577	3.583	4.547	
		ß	~	3.314	3.545	2.435	2.209			0.278	1.718	0.615	0.655	,		1.119	3.886	1.695	1.679			6.694	23.651	8.012	10.167	
an an Ways a state of the second second		Mean		45.885	35.972	41.632	48.453	THE REAL PROPERTY AND ADDRESS OF		-4.406	-1.082	-1.554	-3.678			6.054	6.796	0.354	0.418	alam nanan manan manan ina		58.834	56.492	97.930	92.026	
		GROUP	~	WT	HET	HEMI	OMOH	*		WT	HET	HEMI	OMOH	Y		WT	HET	HEMI	OMOH			WT	HET	HEMI	OMOH	
CISORS	ne se anno ann an ann ann ann ann ann ann ann	COLOUR		_ <b>_</b>		lightness		<u>.                                    </u>				red/ green					:	yellow/ blue				-		whiteness		
MANDIBULAR IN		REGION/ STACE													WHOLE ALL				~~~~~		-1					
		SIDE				- Alan									LEFT								•			

10.3. Appendix 3. Experimental Comparison

Table 13. Amelx 2D Colour and Whiteness - right gingival/ pre-secretory

	MANDIBULARI	NCISORS						ANOVA						MULTIP	LE CON	APARIS(	N	
*						5	5% CI 0	fMean			d have not been and an and	·				95%	U	
SIDE	REGION/ STAGE	COMPONENT	GROUP	Mean	ß	SE	lower	upper bound	'nim	maď	ц	Sig.	GROUPS	MD	SE	lower bound	upper bound	Sig.
													WT-HET	14.187		7.996	20.379	0.000**
a analysis a company			WT	49.034	0.647	0.289	48.231	49.837	48.384	49.849	Na Anala Manda Interna di Angela di Angel	1	WT-HEMI	11.460		5.269	17.652	0.000**
			HET	34.847	5.785	2.587	27.664	42.029	27.181	41.990	000 10	+000	WT-HOMO	15.890		9.698	22.081	0.000**
		ingniness	HEMI	37.574	2.179	0.975	34.868	40.280	35.531	40.790	71.000		HET-HEMI	-2.727	5	-8.919	3.465	0.600
			ОМОН	33.144	2.864	1.281	29.588	36.701	29.497	36.190		1	HET-HOMO	1.703		4.489	7.894	0.859
													HEMI-HOMO	4.430		-1.762	10.621	0.213
													WT-HET	-4.028		-7.291	-0.765	0.013**
			WT	-5.114	0.875	0.391	6.200	4.028	-6.390	4.110			WT-HEMI	-2.868		-6.131	0.395	0.095
		71	HET	-1.086	3.001	1.342	4.812	2.640	-5.100	2.190	0 1021	10**	WT-HOMO	-2.800	1140	-6.063	0.463	0.106
		rea/ green	HEMI	-2.246	1.579	0.706	4.206	-0.286	-3.760	0.150	0 40C.4	1.01810.	HET-HEMI	1.160	1.140	-2.103	4.423	0.742
			OMOH	-2.314	0.860	0.385	-3.382	-1.246	-3.040	-0.850			HET-HOMO	1.228		-2.035	4.491	0.708
	GINGIVAL												HEMI-HOMO	0.068		-3.195	3.331	1.000
KIGHI	PRE-SECRETORY												WT-HET	-5.546		-11.423	0.331	0.068
			WT	3.452	2.605	1.165	0.218	6.686	-0.520	6.570		r	WT-HEMI	0.398		-5.479	6.275	766.0
		11	HET	8.998	4.669	2.088	3.200	14.796	4.350	15.530	1 501 0	**010	WT-HOMO	-2.028	120 0	-7.905	3.849	0.759
		anto inotiad	HEMI	3.054	2.896	1.295	0.542	6.650	-2.050	4.990	n Inc.c		HET-HEMI	5.944	± 0.1	0.067	11.821	0.047**
			HOMO	5.480	2.284	1.021	2.644	8.316	2.010	7.580			HET-HOMO	3.518		-2.359	9.395	0.350
													HEMI-HOMO	-2.426		-8.303	3.451	0.647
													WT-HET	34.932		-3.482	73.346	0.081
			ΨT	74.224	14.984	6.701	55.619	92.829	56.090	96.940			WT-HEMI	-8.144		-46.558	30.269	0.928
		Litomore	HET	39.292	32.139	14.373	0.613	79.197	-8.540	69:960	3 0/6 0	**000	WT-HOMO	14.046	20121	-24.368	52.460	0.726
		witheress	HEMI	82.368	16.412	7.340	1 066.19	02.746	71.540	10.952			HET-HEMI	-43.076	/74.01	-81.490	-4.663	).025**
			OMOH	60.178	16.612	7.429	9.551	80.805	44.720	85.340		1	HET-HOMO	-20.886	nar Hallon, Juli	-59.300	17.528	0.430
													HEMI-HOMO	22.190		-16.223	60.604	0.379

Comparison
Experimental
rri -
Appendix
10.3.

## Table 14. Amelx 2D Colour and Whiteness - right middle/ secretory

			Sig.	0.127	0.995	0.716	0.191	0.017**	0.574	0.004	0.028**	0.343	0.784	0.124	0.501	0.817	0.442	0.513	0.115	0.144	0.999	0.885	0.224	0.474	0.063	0.165	0.948
	Z	a	upper bound	14.003	8.326	4.826	2.005	-1.495	4.182	-0.899	-0.213	0.829	2.775	3.817	3.131	3.831	8.485	8.241	10.179	9.935	5.281	39.684	9.370	15.322	1.325	7.276	37.590
	ARISO	95% (	lower	-1.360	-7.037	10.537	13.358	16.858	11.182	-5.077	4.391	-3.349	-1.403	-0.361	-1.047	-7.219	-2.565	-2.809	-0.871	-1.115	-5.769	23.592	53.906	47.954	61.952	56.000	25.687
	ECOM	l	SE																1021					1 050	-		
	IULTIPL		MD	6.322	0.645	-2.855	-5.677	-9.177	-3.500	-2.988	-2.302	-1.260	0.686	1.728	1.042	-1.694	2.960	2.716	4.654	4.410	-0.244	8.046	22.268	16.316	30.314	24.362	5.952
	2		GROUPS	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO -	HEMI-HOMO
	ł.		Sig.			, , , , , , , , , , , , , , , , , , ,	- ** "CZU.	L				**200						100.0	100.0					**050			
			Щ				4.U9/ U					1111	00000					007 6	7.007					0 9666	0 007.0		
			max		45.821	48.929	46.142	50.730			-3.220	1.000	0.200	-1.650			6.520	11.080	2.920	3.940			79.900	105.471	101.099	102.006	
			'nim		40.963	28.357	41.109	43.001			-4.260	-2.700	-2.890	-3.950			2.540	-1.910	-0.540	-1.230			55.470	33.170	84.130	71.980	
	ANOVA	fMean	upper		46.540	47.238	45.799	50.449			-3.244	1.308	0:030	-1.359	na far de grade e na mente a metre		6.038	12.116	2.582	4.334			83.731	99.531	02.033	05.309	
	7	5% CI 0	lower bound		41.773	28.432	41.225	43.575			4.296	-2.872	-2.966	-3.661	and a subscription of the		1.930	-0.760	-0.534	-1.798			58.469	26.578	84.702 1	69.523 1	
		<u> </u>	SE		0.858	3.387	0.824	1.238			0.190	0.753	0.540	0.415			0.740	2.319	0.561	1.104			4.549	13.138	3.121	6.445	
	6		ß		1.920	7.573	1.842	2.768			0.424	1.683	1.207	0.927			1.654	5.185	1.255	2.469			10.173	29.377	6.979	14.411	
			Mean		44.157	37.835	43.512	47.012			-3.770	-0.782	-1.468	-2.510			3.984	5.678	1.024	1.268			71.100	63.054	93.368	87.416	
Andrew and an opposite of the	an interdenting and an		GROUP		WT	HET	HEMI	OMOH			WT	HET	HEMI	OMOH			WT	HET	HEMI	HOMO			WT	HET	HEMI	OMOH	
ICISORS			COLOUR COMPONENT		4		lightness	-	3		<u> </u>	:	red/green	<u>dan</u>	<u>1</u>		£		yellow/ bull	1					whiteness		
MANDIBUTAR IN			REGION/ STAGE		~~~~~					(********					MIDDLE	SECRETORY						f. 10 mm	age 40 110 A				
			SIDE								<b>b</b> .1 .1				2	RIGHT	••										

10.3. Appendix 3. Experimental Comparison

Table 15. Amelx 2D Colour and Whiteness - right incisal/ mature

	MANDIBULARI							ANOVA						MULTIP	ECON	<b>IPARISO</b>	z	
	) , ,					01	5% CI o	fMean								95%	ם	
SIDE	REGION/ STAGE	COLOUR	GROUP	Mean	ß	SE	ower	upper	'uim	max	۲L,	Sig.	GROUPS	МD	SE	lower	upper	Sig.
						<u> </u>	puno	punoc							***	punoa	pouna	
													WT-HET	8.418		3.370	13.466 (	<b>**100</b> .0
			WT	44.442	2.786	1.246	0.983	106.74	39.845	46.541			WT-HEMI	2.600		-2.448	7.648	0.475
			HET	36.024	4.335	1.939	0.641	41.407	29.875	41.315	011.70	****	WT-HOMO	-6.355	77	-11.403	-1.308 (	0.012**
		ugntness	HEMI	41.842	0.988	0.442	10.615	43.069	41.078	43.468	24.110		HET-HEMI	-5.818	ţ	-10.866	-0.770 (	0.021**
mpa			ОМОН	50.797	1.897	0.848	18.443	53.152	48.925	53.715			HET-HOMO	-14.774	لمستعدها	-19.821	-9.726 (	0000**
			g - selection - Andreas - Andre										HEMI-HOMO	-8.955		-14.003	-3.908 (	0.001**
													WT-HET	-5.624		-7.387	-3.861 (	**000.0
			WT	-7.198	1.232	0.551	8.728	-5.668	-8.250	-5.250		<u> </u>	WT-HEMI	-5.074		-6.837	-3.311 (	.000*
		2	HET	-1.574	1.117	0.500	2.961	-0.187	-2.530	0.090		*	WT-HOMO	-2.850	0 212	-4.613	-1.087 (	0.001**
		rea/ green	HEMI	-2.124	0.970	0.434	3.328	-0.920	-3.420	-0.850	70+++	, M	HET-HEMI	0.550	010.0	-1.213	2.313	0.809
			OMOH	-4.348	0.301	0.134	4.721	-3.975	-4.640	-3.840			HET-HOMO	2.774		1.011	4.537 (	).002**
	INCISAL/												HEMI-HOMO	2.224		0.461	3.987 (	.011**
THON Y	MATURE												WT-HET	3.886	1	-1.265	9.037	0.177
			WΤ	12.344	1.101	0.492	0.977	13.711	10.730	13.560			WT-HEMI	12.786		7.635	17.937 (	**000.0
			HET	8.458	5.258	2.352	1.929	14.987	1.660	14.390		*000	WT-HOMO	13.004	1 001	7.853	18.155 (	**000.0
		yellow Dille	HEMI	-0.442	1.682	0.752 -	2.530	1.646	-2.530	1.560	777.07		HET-HEMI	8.900	100.1	3.749	14.051 (	.001**
			ОМОН	-0.660	0.853	0.382	1.719	0.399	-1.940	0.160		1	HET-HOMO	9.118		3.967	14.269 (	.001**
													HEMI-HOMO	0.218		-4.933	5.369	0.999
													WT-HET	-25.088		-59.500	9.324	0.200
a			WT	18.800	7.229	3.233	9.824	27.776	10.750	30.190			WT-HEMI	-84.145		-118.558	49.733 (	**000.
			HET	43.888	36.139	l6.162 -	0.985	38.761	4.560	87.160	2 200 5	****	WT-HOMO	-78.731	000 01	-113.143	44.319 (	.000.
		wniteness	HEMI	102.945	8.086	3.616 9	02.906	12.985	93.110	12.164			HET-HEMI	-59.057	070.71	-93.470	-24.645 (	**000.
			ОМОН	97.531	4.798	2.146 9	01.573	03.488	92.160	04.234			HET-HOMO	-53.643		-88.055	-19.231 (	.002**
													HEMI-HOMO	5.415		-28.998	39.827	6960

Comparison	
Experimental	
Appendix 3.	
10.3.	

## Table 16. Amelx 2D Colour and Whiteness - right whole/ all

		ig.	**00	32**	661	139	03**	256	**00	01**	39**	805	060	381	803	26**	059	04**	10**	975	851	08**	053	**00	11**	785
		id S	0.0 00	5 0.0	0 0	0. 2	5 0.0	0.	7 0.0	1 0.0	9 0.0	0. 0	0.	1 0.	.0 .0	2 0.0	0.	6 0.0	0.0	6 0.	0 0	0.0	0 0	56 0.0	6 0.0	14 0.
N	U	nppe	14.50	10.45	7.06	0.98	-2.40	1.64	-1.98	-1.32	-0.09	2.78	4.00	3.34	2.99	9.27	8.63	10.65	10.02	3.74	34.25	-8.44	0.32	-15.9	-7.19	35.49
<b>PARISC</b>	95%	lower bound	4.440	0.395	-2.996	-9.075	-12.465	-8.420	-6.225	-5.559	-4.337	-1.453	-0.231	-0.897	-5.766	0.508	-0.128	1.892	1.256	-5.018	-19.218	-61.908	-53.148	-69.424	-60.664	-17.974
LECON	k	SE		L	1 750	00/.1			d	¹	1120	0./41					1 527	400.1					774	1. 1		
AULTIP		МD	9.470	5.425	2.034	4.045	-7.435	-3.390	-4.106	-3.440	-2.218	0.666	1.888	1.222	-1.384	4.890	4.254	6.274	5.638	-0.636	7.516	-35.174	-26.414	42.690	-33.930	8.760
V		GROUPS	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO	WT-HET	WT-HEMI	WT-HOMO	HET-HEMI	HET-HOMO	HEMI-HOMO
1		Sig.		<u> </u>	+000		L	L. <u></u> .			*000			L <u>—</u>			*000	. 700.0	<b>.</b>				*100		· .	
		ц			00111	) 821.11					0 040 11	1 6/0.11					5000	0.202.0					0 8620	7.024		
		max'		47.177	42.787	41.336	45.801			-5.190	1.000	-0.010	-2.470			8.650	11.580	2.700	3.540			68.470	87.890	105.740	94.420	
		'nim		43.832	28.596	38.590	42.462			-5.500	-3.260	-3.370	-3.920			4.400	1.480	-1.240	0.240			42.600	23.230	86.320	74.430	
ANOVA	ofMean	upper bound		47.394	42.692	41.711	45.481			-5.170	1.105	-0.275	-2.418			8.165	12.632	3.330	3.890			69.159	81.226	102.327	95.467	
	95% CI (	lower bound		44.213	29.976	39.047	42.058			-5.474	-3.537	-3.489	-3.790			4.331	2.632	-0.614	0.098			45.725	18.626	82.905	72.245	
		SE		0.573	2.290	0.480	0.616			0.055	0.836	0.579	0.247			0.691	1.801	0.710	0.683			4.220	11.273	3.498	4.182	
		ß		1.281	5.120	1.073	1.378			0.123	1.869	1.294	0.552			1.544	4.027	1.588	1.527			9.437	25.208	7.821	9.351	
		Mean		45.804	36.334	40.379	43.769			-5.322	-1.216	-1.882	-3.104			6.248	7.632	1.358	1.994			57.442	49.926	92.616	83.856	
		GROUP		WT	HET	HEMI	ОМОН			WT	HET	HEMI	ОМОН			WΤ	HET	HEMI	OMOH			WT	HET	HEMI	OMOH	
icisoito -		COLOUR COMPONENT			•	lightness					:	red/ green						yellow/ blue						whiteness		
MANDIBULAKIN		REGION/ STAGE							. <b>.</b>	ANARY 1014			a 1600 (g.) 100 (g.)				8 ka 10 a. Ang				ł			100 110 110 100 m		
	     	SIDE													RIGHT											
Table 17. Amelx 3D Incisor Morphometry - left buccal

ISON	%CI	r upper Sig.	d bound	3 1.901 0.175	7 2.017 0.103	2.505 0.008**	6 1.198 0.990	8 1.686 0.408	4 1.570 0.582	9 0.170 0.526	5 0.165 0.611	0 0.220 0.079	0.109 0.999	5 0.164 0.617	0 0.170 0.531	9 0.284 0.133	6 0.227 0.585	0.325 0.033**	4 0.100 0.729	6 0.198 0.876	9 0.255 0.314	4.461 0.021**	4.456 0.021**	4.656 0.012**	3 2.063 1.000	3 2.263 0.993	8 2.268 0.992	4.360 0.008**	4.304 0.010**	4.914 0.002**	9 1.827 1.000	VESU LEVO
OMPAR		lower	poun	-0.26	-0.14	0.341	-0.96	-0.47	-0.59	-0.05	-0.06	-0.01(	-0.12	-0.06	-0.06(	-0.02	-0.08(	0.012	-0.21	-0.116	-0.059	0.325	0.320	, 0.520	-2.075	-1.873	-1.868	0.594	0.538	<b>1.147</b>	° -1.935	-1 33
IPLEO		O SE		6]	5	ی بر	(5) [6]	¥	8	99	9	5	5	6	5	1	2	80	21.0 21.0	H	8	3	<b>9</b> 2	3	2	5	0	1	п	0	20 20	
MULT		M		0.8	0.95	0 1.45	I 0.11	0.06	IO 0.48	0.0	0.05	0.1(	0.0- 1	0.04	0.0	0.12	0.01	0.16	-0.0	0.04	0 0.05	2.35	2.38	0 2.58	-0.0	0.15	0 0.20	2.47	2.42	3.03	-0.0	220
	ala anda sense and the polyandarum data the data and	GROUPS		WT-HET	WT-HEM	WT-HOM	HET-HEM	HET-HOM	HEMI-HOM	WT-HET	WT-HEM	WT-HOM	HET-HEM	HET-HOM	HEMI-HOM	WT-HET	WT-HEMI	WT-HOM	HET-HEM	HET-HOM	HEMI-HOM	WT-HET	WT-HEMI	WOH-TW	HET-HEM	HET-HOM(	HEMI-HOM	WT-HET	WT-HEMI	WOH-TW	HET-HEM	THEFT TO A L
		Sig.					V.UI4**					5110	/11/0					0.020kk	8cU.U					**0000	/.					*1000	. 100.0	
		Ľت.					4.8/9						607.7					250	70C.C						000.0					201.0	0.407	
	-	max			10.804	9.917	9.482	9.042			1.144	1.110	1.073	1.058			1.463	1.376	1.457	1.348			24.685	22.231	21.714	21.952			15.407	13.805	12.650	
	1	min'			9.294	8.627	8.552	7.447			0.964	0.932	0.980	0.870			1.366	1.162	1.255	1.088			21.347	19.549	20.293	18.965			12.899	10.241	11.570	
ANOVA	fMean	upper	pound		10.891	9.971	9.604	9.438			1.152	1.104	1.063	1.048			1.470	1.401	1.460	1.387			25.460	22.360	21.766	22.273			15.812	13.770	12.473	
	95% CI 0	lower	pound		9.191	8.472	8.607	7.798			0.984	0.920	0.973	0.877			1.366	1.181	1.236	1.113			21.471	19.786	20.390	19.483			12.937	10.026	11.434	
•		SE			0.306	0.270	0.180	0.295			0.030	0.033	0.016	0.031			0.019	0.040	0.040	0.049			0.718	0.464	0.248	0.502			0.518	0.674	0.187	-
	1	SD			0.684	0.603	0.402	0.661			0.068	0.074	0.036	0.069			0.042	0.088	0.090	0.111			1.606	1.037	0.554	1.123			1.158	1.508	0.418	
		Mean			10.041	9.222	9.106	8.618			1.068	1.012	1.018	0.963			1.418	1.291	1.348	1.250			23.466	21.073	21.078	20.878			14.375	11.898	11.954	
 		ROUP			WT	HET	HEMI	OMO			ΨT	HET	HEMI	OMOF			WT	HET	HEMI	OMOF			WT	HET	HEMI	OMOF			WT	HET	HEMI	~
IDIBULAR INCISORS		MEASUKEMENI	VARIABLE				projected overali-lengin (min)						projected wiata-at-miapoint (mail)		9		!		actual wrath-at-miapoint (itin)	17	9		I		actual perimeter (mn)	1			1	, , ,	marked surface-area (mm)	
MAN	,	/ ASPECT								·									BUCCAL													
		VIEW													1			1														

## Table 18. Amelx 3D Incisor Morphometry - left lingual

		Sig.		0.219	0.113	012**	0.978	0.433	0.663	0.448	0.594	0.088	0.994	0.730	0.581	0.988	0.942	0.905	0.995	0.751	0.614	014**	0.069	.032**	0.853	0.978	0.977	**000	.014**	.004**	0.380	0.760	0.909
z	г	pper	punc	006	.054	503 0.	-266	.715	.561	.232	219	287	138	206	220	.147	.133	1204	.152	1223	1237	.614 0	206'	262 0	.820	.175	.883	562 0	417 0	.878 0	.840	301	.445
ARISO	9 <i>2</i> % C	wer u	q pun	.324 1	.170 2	278 2	.958 1	510 1	.663 1	0.071 0	.084 0	.016 0	.165 0	0 960.	.083 0	.184 0	.198 0	.126 0	.179 0	.108 0	.094 0	558 5	.149 4	206 5	236 1	.881 2	.173 2	593 5	449 4	910 4	.129 0	.667 1	.523 2
COMP		SE	q	<u> </u>	9	0	<b>9</b>	9	9	9	9	9	9	9	9	9	የ	0- 050	<u> </u>	9	9	0	우	0 100	ς. Έ	7	-7	-	0	0	¶ T	7	-
LTIPLE		QW		.788	.942	391	.154	.603	.449	180.	.067	136	0.013	.055	.068	0.019	0.032	039	0.014	.058	1/071	.086	.379	.734	0.708	0.353	.355	.577	.433	.894	1.144 ⁰	0.683	.461
MU		ST		HET 0	EMI	OMO 1	IEMI (	OMO (	OMOI	HET (	EMI (	OMO (	IEMI -	OMO (	OMOI	HET	IEMI -	OMO (	IEMI -	OMO 0	OMOE	HET	EWI	OMO	F IMI	T OMO	OMOF	HET 3	IEMI 2	OMO	IEMI -	OMO	IOMOI
		GROI		I-TW	WT-H	H-TW	HET-F	HET-H	HEMI-F	I-TW	WT-H	H-TW	HET-F	HET'H	HEMI-F	I-TW	WT-H	WT-H	HET-H	HET-H	HEMI-F	I-T-U	H-TW	WT-H	HET-	HET-H	HEMI-F	I-TW	WT-F	H-TW	HET-F	HET-H	HEMI-F
		Sig.				**010	0.019**					7010	071.0					0670	200'N					**010.0						0.001	. 100.0		
		ц					CP4.4					0100	017.7					763 0	0,00					1 007	166.4					10.070	10.0/0	an article states and	
		max			10.823	10.097	9.399	9.074			1.311	1.100	1.084	1.048			1.279	1.327	1.293	1.279			24.869	21.455	21.921	22.343			15.270	11.572	11.947	11.994	
		'uim			9.285	8.593	8.571	7.483			0.944	0.938	0.988	0.881	and the second se		1.044	1.135	1.150	1.036			21.140	19.830	20.041	17.118			12.406	9.042	10.696	8.571	
ANOVA	fMean	upper	punoq		10.900	10.081	9.552	9.454			1.261	1.101	1.079	1.035			1.306	1.299	1.294	1.291			25.424	21.387	22.182	23.568			15.279	11.666	12.044	12.700	
ł	5% CI of	lower	punoc		9.163	8.407	8.628	7.828			0.929	0.928	0.977	0.884			1.062	1.106	1.138	0.999			21.819	19.683	20.304	18.208			12.422	8.880	10.791	9.212	
		SE			0.313	0.301	0.166	0.293			0.060	0.031	0.018	0.027			0.044	0.035	0.028	0.052			0.649	0.307	0.338	0.965			0.515	0.502	0.226	0.628	
		ß			0.700	0.674	0.372	0.655			0.133	0.070	0.041	0.061			0.098	0.078	0.063	0.117			1.452	0.686	0.756	2.158			1.151	1.122	0.504	1.405	one and the second second
		Mean			10.032	9.244	9.090	8.641			1.095	1.015	1.028	0.960			1.184	1.203	1.216	1.145	And some spectrum states and states states and		23.622	20.535	21.243	20.888			13.851	10.273	11.418	10.956	
		ROUP			WT	HET	HEMI	OMOL			WT	HET	HEMI	OMOF			WT	HET	HEMI	OMOF			WT	HET	HEMI	OMOH			WT	HET	HEMI	OMOL	
MANDIBULAR INCISORS	And and a second s	1/ ASPECT MEASUREMENT VARIABLE					projected overall-length (mm)	1	3		1		projected width-at-midpoint (mm)		<u>4</u>		<u>}</u>		LINGUAL actual width-at-midpoint (mm)				1		actual perimeter (mm)	<u>+</u>			j	<u>,</u>	marked surface-area (mm ² )		
	1	VIEW	1.100 · 4																E				er mar 2 .										

#### * Bonferroni Corrected Significant Difference ( $p \le 0.002$ ) ** Significant Difference ( $p \le 0.05$ )

313

Table 19. Amelx 3D Incisor Morphometry - left labial

Z	ANDIBULAR INCISORS					•	NOVA					Σ	UTTPI	ECOM	PARISC	Z	
*****	. The second se			L				1		and the second second							_
	MEASI REMENT				<u>6</u>	5% CI of	Mean								95%	Б	
/ ASPEC	T WARABLE	GROUP	Mean	ß	SE	ower	upper	'uim	Mari	FS	.eo	GROUPS	QW	SE	lower 1	tpper	Sig.
					þ	ound t	punoc							-	bund b	puno	
												WT-HET	0.615		0.519	1.749	0.432
		ΤW	9.831	0.803	0.359	8.834	10.829	9.040	10.799			WT-HEMI	0.729		0.405	1.864	0.292
		HET	9.216	0.609	0.272	8.460	9.973	8.605	9.907	00 300 0		VT-HOMO	1.253		0.118	2.387 0	.023**
	projected labrai-lengin (mm)	HEMI	9.102	0.380	0.170	8.630	9.574	8.577	9.432	40.0 COE.E	H LLCt	HET-HEMI	0.114	- Ren	-1.020	1.249	0.991
		HOMOH	8.579	0.641	0.287	7.782	9.375	7.462	960.6		Ŧ	ET-HOMO	0.638		-0.497	1.772	0.402
												OMOH-IME	0.523	<u>ــــ</u>	0.611	1.658	0.564
												WT-HET	0.884		0.578	2.346	0.341
		WT	10.911	1.059	0.473	9.596	12.226	9.186	11.998			WT-HEMI	0.877		0.585	2.339	0.348
		HET	10.027	0.890	0.398	8.922	11.131	9.278	11.074			VT-HOMO	1.588		0.127	3.050 0	**I£0
	actual labial-lengin (mm)	HEMI	10.034	0.403	0.180	9.533	10.535	9.485	10.390	.0.0 <b>1</b> +7.c	1	IET-HEMI	-0.007		-1.469	1.455	1.000
		OMOH	9.323	0.732	0.327	8.414	10.231	8.086	9.914		H	ET-HOMO	0.704		0.758	2,166	0.530
		and an a first state of the second state of the									E	OMOH-IME	0.711		0.750	2.173	0.522
												WT-HET	0.264		0.040	0.568	0.100
		WT	2.962	0.144	0.065	2.783	3.142	2.804	3.189		-	VT-HEMI	0.155		0.148	0.459	0.480
, in the second se		HET	2.698	0.128	0.057	2.540	2.857	2.616	2.923	2067 0.00	A	VT-HOMO	0.399	10	0.095	0.702 0	**800
rybr	(IIII)	HEMI	2.807	0.243	0.109	2.505	3.109	2.424	3.040	n'n 700'r	-1 	IET-HEMI	-0.109	3	0.412	0.195	0.738
		ОМОН	2.564	0.127	0.057	2.406	2.721	2.388	2.685		H	ET-HOMO	0.135		0.169	0.438	0.595
	1993 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -										E	OMOH-IME	0.243	L	0.060	0.547	0.141
4.0 <b>10.00</b> 00.0.												WT-HET	4.030		0.487	7.574	0.023
		WT	27.954	1.310	0.586 2	6.328	29.580	26.206	29.487		-	VT-HEMI	5.154	L	1.611	3.698 0.	004**
		HET	23.924	1.737	0.777 2	1.767	26.081	22.411	26.664	200 276 2		/T-HOMO	4.142	1 720	0.599	7.686 0.	**610
	total surface-area (mm [*] )	HEMI	22.799	0.955	0.427 2	21.613	23.986	21.817	24.059	0.0	,_ t	IET-HEMI	1.124		2.419	1.668	0.801
		OMOH	23.811	3.114	1.392 1	9.945	27.677	20.962	28.775		Ξ	ET-HOMO	0.112		3.431	3.656	1.000
											Ŧ	OMOH-IME	-1.012		4.556	2.532	0.846
												WT-HET	0.664	l	0.044	1.284 0.	034**
		ΨT	5.373	0.496	0.222	4.756	5.989	4.687	6.027		-	VT-HEMI	1.024		0.404	1.643 0.	**100
		HET	4.709	0.203	160.0	4.457	4.961	4.497	4.979	0.0 910.0	<u>^</u>	OMOH-TV	1.053	-110	0.433	1.672 0.	001**
	volume (mm [*] )	HEMI	4.349	0.275	0.123	4.008	4.690	4.071	4.754	N'N 077'N	<u> </u>	UET-HEMI	0.360		0.260	679.0	0.375
		OMOH	4.320	0.325	0.145	3.916	4.724	4.087	4.871		H	ET-HOMO	0.389	•	0.231	800.1	0.312
											H	OMOH-IME	0.029	I	0.591	0.649	0.999

## Table 20. Amelx 3D Incisor Morphometry - right buccal

IAM	NDIBULAR INCISORS					Al	NOVA					ML	JLTIPLI	ECOM	PARISO	z	
					95	% CI of I	Mean							{	92% (		
VIEW/ ASPECT	VARIABLE	GROUP	Mean	ß	ы р R	wer u ound b	pper n	juin.	, Xau	F Sig	Ĕ.	OUPS	MD	SE	ower u pound b	pper ound	Sig.
											ΓW	-HET	0.865	!	0.121	0 609 0	.020**
		TW	10.082	0.450 0	201 9	.524 1	0.641 9	461 1	0.669		-TW	HEMI	0.887		0.143	1.631 0	.017**
entre anale o		HET	9.218	0.388 0	.174 8	:736 9	.700 8	.726	.765	100 0 000	"LM	HOMO	0.900		0.156	.644 0	.015**
	projected overall-length (mm)	HEMI	9.195	0.321 0	.143 8	5 197 5	8 593 8	.652	,431	'NN'N 68/.	HET	-HEMI	0.022	10710	0.722 (	.767	1.000
		ОМОН	9.182	0.469 0	210 8	665.	0.765 8	.643	),694		HET-	OMOH	0.035		0.709	0.780	0.999
				ar ar van gewonen af de fan							HEMI	-HOMO	0.013		0.731 0	157	1.000
											ΓW	-HET	0.047		0.091	).185	0.767
		WT	1.080	0.029 0	.013 1	.044	.115 1	.047	.121		-TW	HEMI	0.056		0.082	0.195	0.656
		HET	1.033	0.069 0	031 0	.947	.118 0	.913	.083	100 000	-TW	ОМОН	0.095	1 212	0.044	0.233	0.246
a tana an a	projected width-at-midpoint (mn)	HEMI	1.023	0.118 0	.053 0	1 1.877	.169 0	897	- 173	C'0 767	HE	-HEMI	0.00		0.129 (	0.148	0.997
		ОМОН	0.985	0.063 0	.028	1 906'	.064 0	.900	.077		HET-	OMOH	0.048		0.091	0.186	0.761
ana ana ang ang ang ang ang ang ang ang											HEMI	-HOMO	0.038		0.100	0.177	0.858
											ΓW	-HET	0.053	لسنسا	0.128 (	).234	0.835
		WT	1.370	0.056 0	.025 1	.301	.439 1	.324	.433		ΤW	HEMI	0.065		0.116 (	0.245	0.737
		HET	1.317	0.077 0	.035 1	.221	.413 1	.196	.411	190 909	-LM	ОМОН	0.082	0.062	0.099 (	0.262	0.578
RIGHT BUCCAL	actual width-at-midpoint (mm)	HEMI	1.305	0.139 0	.062 1	.132	.478 1	.173	,485	NO'N 070'	HET	-HEMI	0.012		0.169 (	0.192	0.998
- 		HOMO	1.288	0.107 0	048 1	.156 1	.421 1	.189	.470		HET-	OMOH	0.029		0.152 (	0.209	0.967
				and a second		and a second					HEMI	-HOMO	0.017		0.164	9.198	0.993
											LM	-HET	0.964		1.091	3.020	0.551
* 1947 (1944)		WT	23.568	0.622 0	278 2	2.795 2	4.341 22	2.670 2	4.348		TW	HEMI	2.708		0.652	t.763 0	**800
		HET	22.604	1.502 0	.672 2	0.739 2	4.469 2(	0.527 2	4.669	108 0.01	**	ОМОН	1.809	0 718	0.246	3.865	0.095
	actual perimeter (mm)	HEMI	20.860	0.877 0	.392 1	9.771 2	1.949 19	9.794 2	1.557	100 021	HEL	HEMI	1.743		-0.312	3.799	0.112
na (1000, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007, 1007,		HOMOH	21.759	1.322 0	591 2	0.117 2	3.401 20	0.216 2	3.658		HET	HOMO	0.845		1.210	2.900	0.650
		and some site and the second site of the second second									HEMI	-HOMOH-	-0.898		-2.954	1.157	0.605
											LM	-HET	1.414		-0.438	3.266	0.170
* * *		WT	13.984	1.541 0	.689 1	2.071 1	5.898 1	1.786 1	5.621		τw	HEMI	2.295	1	0.443	4.146 0	.013**
		HET	12.570	0.850 0	.380 1	1.515 1	3.626 1	1.098	3.225	2000 000	-TW **	HOMO	2.758	0.647 -	0.906	4.610 0	.003**
	marked surface-area (mm [*] )	HEMI	11.690	0.939 0	.420 1	0.524 1	2.855 1(	0.291 1	2.707	-00.0 620.	HEL	-HEMI	0.881	5	-0.971	2.732	0.540
		ОМОН	11.226	0.460 0	206 1	0.655 1	1.797 10	0.640 1	1.636	100 (1) (1) (1) (1) (1)	HET	OMOH	1.344		0.508	3.196	0.203
n, <b>and</b> anan .											HEMI	OMOH-	0.464		-1.388	2.315	0.889

Table 21. Amelx 3D Incisor Morphometry - right lingual

	MAI	NDIBULAR INCISORS		and the state			A	NOVA					W	ULTIPLI	ECOM	ARISO	7	
 							% CI of	Mean								95% C		•
VIEW/	'ASPECT	MEASUREMENT	GROUP	Mean	ß	SE	ower u	tpper	, uin	max	FS	ē.	GROUPS	QW	SE	DWer u	pper	Sig.
		TANADLE				P P	ound b	puno							۹ P	ound bo	pund	
													WT-HET	0.788		0.072	503 0.	\$**0
			WT	9.949	0.458	0.205	0.381 1	0.518 9	1515	0.638		-	WT-HEMI	0.717		002 1	433 0.	049**
			HET	9.161	0.373	0.167	8698	9.625 8	1.767	9.712			OMOH-T	0.766		051 1	482 0.	034**
		projected overali-lengin (mm)	HEMI	9.232	0.239	0.107	1.935	9.529 8	1.852	9.432	0.0 800.1		IET-HEMI	-0.071		0.786 0	645	0.992
			OMOH	9.183	0.469	0.210 8	109.8	9.765 8	1.621	9.682		Ξ	ET-HOMO	-0.022	-	0.737 0	694	000.1
												E	OMOH-IM	0.049	<b>T</b>	0.667 0	765 (	766.0
													WT-HET	0.001	т —	0.110 0	113 1	000,
			WT	1.070	0.030	0.013 1	.032	1.107	.023	1.107		-	VT-HEMI	0.037	т	0.074 0	149 (	0.775
			HET	1.068	0.033	0.015 1	.027	1.110	.021	1.106	0 210	A	OMOH-T/	0.081	T	0.031 0	193 (	1,203
		projected wigin-at-miapoint (init)	HEMI	1.032	0.102	0.046 0	.905	1.159 0	.899	1.162	.0 01 <i>6</i> .	8	ET-HEMI	0.036	T ACON	0.076 0	148 (	.794
			ОМОН	0.988	0.053	0.024 0	.922	1.055 0	.925	1.070		H	ET-HOMO	0.080	T	0.032 0	192 (	1215
												Ħ	OMOH-IM	0.044	Τ	0.068 0	156 (	.683
-													WT-HET	0.047		0 99.1	259 (	.922
			WT	1.249	0.068	0.031	.164	1.334 1	.158	1.351		-	VT-HEMI	0.021	<b>T</b>	0.192 0	234 (	.992
E Cia			HET	1.203	0.131	0.059 1	.040	1.365 1	.021	1.350	0 115	V 1	/T-HOMO	0.067	7	0.146 0	280 (	.804
THOM	LINGUAL	actual wiath-ar-mapoint (IIIII)	HEMI	1.228	0.167	0.075 1	021	1.436 1	.031	1.409	'n 11c'	H H	ET-HEMI	-0.026	τ t ?	.238 0	187 (	.985
			OMOH	1.182	0.074	0.033	160	1.274 1	104	1.273		Ξ	ET-HOMO	0.020	7	0 261.0	233 (	.992
												臣	OMOH-IM	0.046	<u>۲</u>	0.167 0	259 C	.924
													WT-HET	0.978		.114 3	070	1.554
			WT	23.460	0.677	0.303 2:	2.620 2	4.300 2	2.484 2	4.354		-	VT-HEMI	2.579		487 4	671 0.0	<b>113*</b> *
			HET	22.482	1.722	0.770 2	0.343 2	4.620 21	0.686 2	4.997	200 100	A	OMOH-T	1.605	Y j	.487 3	697 0	1.167
		actual perimeter (mm)	HEMI	20.881	0.691	0.309 2	0.023 2	1.739 20	0.149 2	1.650	nn 160.	H	ET-HEMI	1.601	T T T	.491 3	693 (	.169
			OMOH	21.855	1.203	0.538 20	0.361 2	3.348 21	0.111 2	3.192		H	ET-HOMO	0.627	•	.465 2	719 0	.826
												H	MI-HOMO	-0.974	<u>.</u>	066 1	118 0	.557
		-											WT-HET	2.191	0	301 4	081 0.(	020**
			WT	14.041	1.384	0.619	2.322 1	5.760 1	1.825 1	5.257		-	VT-HEMI	2.184	0	294 4	0.0	021**
			HET	11.850	0.664	0.297 1	1.025 1	2.675 1	1.055 1	2.786	00 203	<u>ح</u> ځ	/T-HOMO	3.007	1	.117 4	897 0.(	902**
		marked surface-area (mm ⁻ )	HEMI	11.857	1.313	0.587 10	0.227 1	3.487 9	866	3.431 '	0.0 620.	E S	ET-HEMI	-0.007		.897 1	882 1	000
		-	OMOH	11.034	0.531	0.238 1	0.374 1	1.693 11	0.223 1	1.637		Ξ	ET-HOMO	0.816	7	074 2	706	1.614
												비	OMOH-IM	0.824		066 2	713 0	608

* Bonferroni Corrected Significant Difference ( $p \le 0.002$ ) ** Significant Difference ( $p \le 0.05$ )

316

## Table 22. Amelx 3D Incisor Morphometry - right labial

MAI	NDIBULAR INCISORS						ANOVA					M	ULTIPL	ECON	IPARISC	Z	
	MEA ST DEMENT					95% CI c	ofMean								95%	ы	
VIEW/ ASPECT	VARIABLE	GROUP	Mean	ß	SE	lower bound	upper bound	'nin	max	ц	Sig.	GROUPS	<u>g</u>	SE	Jower bound b	upper Jound	Sig.
			1								J	WT-HET	0.887		0.187	1.587 0	.011**
		WT	10.086	0.417	0.186	9.568	10.603	9.533	10.653		ll	WT-HEMI	0.875		0.175	1.575 0	.012**
		HET	9.198	0.392	0.175	8.712	9.685	8.700	9.737		**	WT-HOMO	0.916	7700	0.216	1.616 0	**600
* 000 00 BF	projected labial-length (mm)	HEMI	9.211	0.262	0.117	8.886	9.536	8.779	9.429	0.005 U	4 100	HET-HEMI	-0.012	C+77.0	-0.712	0.687	1.000
		OMOH	9.170	0.450	0.201	8.611	9.729	8.636	9.669			HET-HOMO	0.029	•	-0.671	0.728	0.999
-100000 AP											<u>н</u>	<b>IEMI-HOMO</b>	0.041		-0.659	0.741	0.998
•• •••••												WT-HET	0.678		-0.495	1.851	0.379
		WT	10.864	0.582	0.260	10.141	11.587	10.023	11.542			WT-HEMI	0.838		-0.335	2.011	0.213
		HET	10.186	0.485	0.217	9.584	10.788	9.623	10.695		270.0	WT-HOMO	1.174	0 410	0.001	2.346	0:050
	actual <i>labial-length</i> (mm)	HEMI	10.026	0.390	0.174	9.542	10.510	9.584	10.390	7.077	/00/10	HET-HEMI	0.160	214-0	-1.013	1.333	0.979
		HOMO	9.690	0.977	0.437	8.478	10.903	8.132	10.803			HET-HOMO	0.496		-0.677	1.668	0.630
											F	<b>IEMI-HOMO</b>	0.336		-0.837	1.508	0.845
1999 No. 11 Au												WT-HET	0.172		-0.087	0.431	0.267
*** ***		WT	2.993	0.135	0.060	2.825	3.160	2.891	3.216			WT-HEMI	0.285		0.026	0.544 0	.028**
		HET	2.821	0.075	0.033	2.728	2.914	2.751	2.905	0 012 2	**00	WT-HOMO	0.382	0000	0.123	0.641 0	.003**
RIGHT LABIAL	circumference (mm)	HEMI	2.708	0.203	0.091	2.455	2.960	2.492	2.937	0 6/0.0		HET-HEMI	0.113	2000	-0.146	0.372	0.605
		OMOH	2.611	0.129	0.058	2.451	2.771	2.420	2.747			HET-HOMO	0.210		-0.049	0.469	0.134
				and the second se							F	<b>IEMI-HOMO</b>	0.097		-0.162	0,356	0.711
											}	WT-HET	2.995		-0.608	6.597	0.122
		ΨT	29.038	1.362	0.609	27.347	30.729	26.773	30.239		1	WT-HEMI	3.729	t	0.126	7.332 0	.041**
		HET	26.044	1.694	0.757	23.941	28.146	23.551	27.568	0 170 1	012**	WT-HOMO	4.557	1 750	0.954	8.159 0	.011**
	total surface-area (mm ² )	HEMI	25.309	2.538	1.135	22.158	28.460	22.039	28.431	1.712 0		HET-HEMI	0.734	Ì	-2.868	4.337	0.936
ana at 6 Me		OMOH	24.481	2.166	0.969	21.791	27.171	21.531	26.709			HET-HOMO	1.562		-2.040	5.165	0.611
											T.	IEMI-HOMO	0.828		-2.775	4.430	0.911
												WT-HET	0.961	ad	-0.073	1.995	0.073
er 1	ч	WT	5.772	0.959	0.429	4.581	6.962	4.769	6.904		t	WT-HEMI	1.288		0.254	2.322 0	.012**
	Ċ	HET	4.811	0.338	0.151	4.391	5.231	4.419	5.334	0 363 3	****	WT-HOMO	1.482	1920	0.448	2.516 0	.004**
	volume (mm [*] )	HEMI	4.484	0.362	0.162	4.034	4.934	3.945	4.923	0.40.0	5	HET-HEMI	0.327	2	-0.707	1.361	0.803
		OMOH	4.290	0.377	0.168	3.822	4.758	3.807	4.704			HET-HOMO	0.521		-0.513	1.555	0.494
		and a second sec										IEMI-HOMO	0.194		-0.840	1.228	0.949

Comparison
Experimental
. Appendix 3.
10.3.

Table 23. Enam 2D Mandible Morphometry - left buccal

		Sig.	0.940	0.836	0.969	0.948	0.469	0.651	0.140	0.153	0.998	0.985	0.642	0.542	0.810	0.773	0.997	0.348	0.565	0.914	0.957	0.912	0.991	1.000	0.907	0.908
Z	ธ	upper bound	0.794	0.857	0.768	0.463	0.603	0.555	0.888	0.877	0.490	4.204	2.599	2.350	0.262	0.254	0.334	0.801	0.722	0.440	2.470	2.576	2.339	3.207	2.702	2.706
ARISO	95%	lower	-0.616	-0.553	-0.642	-0.366	-0.226	-0.275	-0.114	-0.124	-0.512	-3.705	-5.310	-5.559	-0.422	-0.431	-0.351	-0.237	-0.316	-0.598	-1.996	-1.890	-2.127	-3.213	-3.718	-3.714
COMF		SE E		.264			1.155	L		.188			.482			.128			.194			.837	•		.203	
TIPLE		QW	.089	.152 (	.063	.049	.188 (	.140	.387	.376 (	0.011	.249	1.355 1	1.605	080.0	0.089 (	600.0	.282	.203 0	.079	.237	343 0	.106	0.003	0.508	.504
MUL		Ś	Q	L L	ET (	40 0	T C	IET 0	AO 0	T 0	IET -(	10 0	- E	ET  -	10 -(	)- L	ET  -(	10 0	T 0	ET  -(	10 0	T	ET 0	10 -(	¥ F	ET
		GROUP	/T-HON	WT-HE	OMOF	VOH-T	WT-HE	OMO-F	NOH-T'	WT-HE	H-OMC	<b>NOH-T</b>	WT-HE	H-OMC	<b>ICH-T</b>	WT-HE	H-OMC	T-HON	WT-HE	DMO-H	<b>T-HON</b>	WT-HE	H-OMC	T-HON	WT-HE	H-OMC
			×	<b>48</b>	Ť	N	75	Ĥ	8	33	Ħ	M	52	H	M	23	H	M	28	H	M	19	H	M	8	Ħ
	I	Sig		0.8			0.4			0.1			0.5			0.7			0.3			0.0			0.8	
		Щ		0.167			0.792			2.761			0.679			0.291			1.119			0.088			0.118	
		max	12.85	12.457	12.560	6.683	6.582	6.621	7.673	7.106	7.095	68.331	69.852	70.530	3.650	3.410	3.353	9.44	9.039	9.042	37.198	36.336	36.115	41.044	40.605	41.167
A		'nim	11.716	11.470	11.687	6.115	6.037	5.894	6.770	6.494	6.689	63.662	62.792	64.659	2.799	3.126	3.156	8.564	8.252	8.449	34.083	32.414	33.435	36.653	35.204	36.339
ANOV	Mean	upper	2.714	2.592	2.409	5.629	5.590	5.507	7.741	7.186	7.079	8.145	9.311	0.372	3.548	3.387	3.346	9.363	9.002	010.	6.647	6.834	6.066	0.516	0.875	1.033
	% CI of	wer t	.561 1	.505 1	.562 1	.073	014	818	.740	521 '	. 649	.967 6	.303 6	1.451	759	080	138	456 9	254 9	404	.530 3	.869 3	.426 3	.046 4	.694 4	.544 4
	95	E PC	208 11	1961.	.153 11	.100 6	.104 6	.124 5	.180 6	.120 6	.077 6	.752 63	262 62	.066 64	.142 2	.055 3	.037 3	.163 8	.135 8	109 8	561 33	714 32	475 33	805 36	933 35	808 36
		SD	.465 0	.438 0	.341 0	.224 0	.232 0	.278 0	.403 0	.268 0	.173 0	.682 0	.822 1	.384 1	.318 0	.124 0	084 0	.365 0	301 0	244 0	.255 0	.597 0	.063 0	.800 0	.086 0	.807 0
		lean	2.138 0	0.049 0	.986 0	351 0	.302 0	.162 0	.241 0	.853 0	864 0	6.056 1	5.807 2	7.412 2	.153 0	233 0	242 0	010 0	.628 0	.707 0	1 680.9	1.852	1.746	3.281	.284 2	.788 1
		<u>≥</u> 5	T T	10 V	T II	T 6	9 OV	T 6	T   7	40 6	T 6	T 66	40 65	T 67	T3	AO 3	T 3	T 8	40 8	T 8	T   35	AO 34	T   34	T   38	40 38	T 38
		<u> </u>	8	ЮН	E	M	ЮH	H	M	ЮH	HE	M	ЮH	HE	M	ЮH	HE	M	ЮH	HE	M	ЮH	HE	M	ЮН	HE
	AENT.	LE I		(uuu			<i>it</i> (mm)			(E			6			-010			(uuu)			eter (mm)			mm ² )	
ILES		ARIAB		i) high			g-heigh			gth (m			-angle			-coron(	(m		-length			-perime			-area (	
MANDIB	VEV	N.V.		overall-le			ascendin			basal-len			mandible			coronota Ionath ( <del>u</del>	יישאניי ווו		diagonal			mandible			mandible	
HEMI-		ASPECT	-					4 ni va 140 m							DULLAL											
		VIEW/												- 1.001 I												******

1.00		-																											
				Sig.		0.855	0.728	0.971	0.692	0.360	0.825	0.258	0.423	0.929	0.994	0.563	0.502	0.779	0.886	0.503	0.360	0.650	0.861	0.663	0.214	0.643	1.000	0.734	0:730
		z	ជ	upper	punoc	0.863	0.925	0.780	0.586	0.685	0.546	0.734	0.672	0.390	4.468	2.610	2.440	0.242	0.383	0.466	0.707	0.616	0.370	3.161	3.974	3.191	3.439	2.453	2.444
		ARISO	95%	DWer	puno	0.573	0.511	0.656	0.308	0.208	0.347	0.170	0.232	0.514	4.127	5.985	6.156	0.408	0.268	0.185	0.215	0.305	0.551	1.595	0.782	1.565	3.421	4.406	4.415
		OMP/		E	قـ	T	269 -(	T	<u>т</u>	167 -	Τ	<b>T</b>	169 -	Τ	1	611 -	Т 	<u>۲</u>	122	Т	т	173 -	т 		168			286 -	
		TPLE (		Ę		145	207 0.	062	139	239 0.	100	282	220 0.	.062	171	.687 1.	.858	.083	057 0.	140	246	156 0.	160.	783	596 0.	813	600	977 1.	.986
		MULT		A 		0.	0	ET 0.	0.0	0	ET 0.	0 0.	0	ET -0	0.	<b>-</b>	ET  -1	0- 0	o L	ET 0.	0 0	о 	ET  -0	0.0		ET 0.	0 0	<u>ې</u> ۲	ET  -0
				ROUPS		MOH-	T-HE	IH-OM	MOH-	T-HE	MO-HI	MOH-	T-HEJ	MO-HI	MOH-	T-HE	IH-OM	MOH-	T-HE	IH-OM	MOH-1	T-HEI	MO-HI	HOM-1	/T-HEJ	Ш-ОМ	MOH-1	/T-HE	MO-H
				6	;	ΓW	M	ЮН	ΓW	~	ЮH	ΓW	8	ЮН	ΓW	14	ЮН	LM	M (	OH	LM	#	ЮН	LW	2	HO	ΓW	2	ЮН
			I	Sig.			0.738			0.385			0.256			0.467			0.53(			0.384			0.242			0.68(	
				н			0.311			1.025			1.530			0.813			0.670			1.039			1.603			0.388	
				max		12.911	12.459	12.643	6.702	6.557	6.636	7.640	7.182	7.061	67.820	68.851	70.097	3.712	3.464	3.470	9.494	8.862	9.131	38.935	37.957	37.648	40.898	39.922	41.934
		-		nin'		11.721	11.445	11.698	6.111	6.019	5.819	6.901	6.481	6.696	53.216	52.275	54.031	3.006	3.262	3.005	8.585	8.324	8.518	35.619	34.965	34.086	36.682	34.656	36.820
		ANOV	Mean	pper	puno	2.795	2.535	2.462	5.672	5.532	5.517	7.574	7.188	7.138	7.411	8.551	0.233	3.603	3.471	3.432	9.370	8.942	9.054	9.160	7.865	7.279	0.321	0.601	1.640
		·	6 CI of	wer u	d buu	583 1	.554 1	503 1	074 (	937 (	752 (	. 61/	542	716	.823 6	.342 6	376 7	938	237	995	483	419 8	488	.154 3	.884 3	.844 3	.703 4	.405 4	337 4
			956	щ Ца	bo	218 11	11 11	11 [1]	08 6.	107 5.	<b>I</b> 38 5.	I54 6.	116 6.	)76 6.	326 62	298 61	235 63	120 2.	)42 3.	)79 2.	160 8.	94 8.	102 8.	721 35	537 34	519 33	332 35	936 35	955 36
-				D S		488 0.2	395 0.	386 0.	241 0.	240 0.	308 0.	344 0.	260 0.	170 0.(	848 0.8	903 1.2	761 1.2	268 0.	094 0.(	176 0.0	357 0.	210 0.0	228 0.	613 0.	201 0.2	383 0.0	860 0.3	092 0.9	135 0.
				can S		190 0.	045 0.	982 0.	373 0.	234 0.	35 0.	47 0.	365 0.2	927 0.	117 1.	946 2.	804 2.	271 0.2	354 0.1	213 0.	926 0.	580 0.2	771 0.2	157 1.	374 1.	562 1.	012 1.	003 2.	989 2.
				Ъ М		. 12.	0 12.	11.	. 9	0 62	.9	. 7.	0 6.8	6.9	. 65	0 64.	66.	3	0 3.	3.2	8	0 8.6	80	37.	IO 36.	35.	38.	IO 38.	38.
	000000.0000			E O		ΓW	MOH	HE	LM	MOH	HEI	LM	MOH	HEI	LM	MOH	HE	LM	HOM	HE	LM	HOM	HE	LM	HOM	E	LW	HOM	E
					à		(Ľ			(mm)						_			<b>-</b> ,			(uu			ir (mm)			m ² )	
	ç	2		JKEME TARTE	TIGUT		th (mr			neight	•		4 (mm)			) algu	•		ronoic	_		ngth (i			erimete			rea (m	
		TIBICI		AEASU VAD	J.LY		all-leng	•		iding-l	I		-lengti			lible-aı			10id-co	um) n		onal-le			lible-p			lible-a	
		I-MAN	-	4			overa			ascen			basal			mana		 	coror	Ignai		diago			mana			mana	
		Mah	tana dalamin'ny distant	SPECT														NGUAL											
				W/AS		1. 1 AND 1. 1											, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T.	-			. (111)							
				VIE														ΓĒ											

* Bonferroni Corrected Significant Difference ( $p \le 0.002$ ) ** Significant Difference ( $p \le 0.05$ )

Table 24. Enam 2D Mandible Morphometry - left lingual

10.3. Appendix 3. Experimental Comparison

Comparison
Experimental
ц.
Appendix
10.3.

Table 25. Enam 2D Mandible Morphometry - right buccal

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DIBLES
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	G
	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ħ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	H
	^
T $6.207$ $0.341$ $0.152$ $5.784$ $6.530$ $5.889$ $6.783$ $6.712$ $7.232$ $WT-HOMO$ $-0.159$ $-0.467$ $0.148$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.173$ $0.187$ $0.407$ $0.148$ $0.381$ $0.381$ $0.182$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ $0.381$ <th< td=""><td>Н</td></th<>	Н
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	H
	*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ЮH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ħ
	W.
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HOH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ΤW
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NOH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Έ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	.w
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ЮH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ħ
WIO         34.763         0.478         0.214         34.169         35.357         34.340         35.398         0.065         0.937         WT-HET         -0.136         0.466         -1.378         1.106         0.954           3T         34.916         0.997         0.446         33.679         36.154         34.195         36.668         HOMO-HET         -0.153         -1.396         1.089         0.942           T         37.621         1.789         0.800         35.400         39.841         35.219         39.893         WT-HOMO         -0.153         -1.396         1.089         0.942           MO         37.912         1.939         0.867         35.505         40.319         39.474         1.378         0.289         WT-HET         -1.706         1.100         4.640         1.227         0.303           MO         37.912         1.939         0.867         35.505         40.319         39.474         1.378         0.289         WT-HET         -1.706         1.109         4.640         1.277         0.303           37.323         41.131         37.818         41.692         HOMO-HET         -1.415         -1.415         4.349         1.519         0.429         0.303 <td>ß</td>	ß
Image: ST         34.916         0.997         0.446         33.619         36.154         34.195         36.668         HOMO-HET         -0.153         -1.396         1.089         0.942           T         37.621         1.789         0.800         35.400         39.841         35.219         39.893         WT-HOMO         -0.291         -3.225         2.642         0.962           MO         37.912         1.939         0.867         35.505         40.319         39.474         1.378         0.289         WT-HOMO         -0.291         -3.225         2.642         0.962           MO         37.912         1.939         0.867         35.505         40.319         39.474         1.378         0.289         WT-HET         -1.706         1.100         4.640         1.227         0.303           ST         39.327         1.453         0.650         37.523         41.692         HOMO-HET         -1.415         -4.349         1.519         0.429	<b>O</b> H
T         37.621         1.789         0.800         35.400         39.841         35.219         39.893         WT-HOMO         -0.291         -3.225         2.642         0.962           MO         37.912         1.939         0.867         35.505         40.319         39.474         1.378         0.289         WT-HET         -1.706         1.100         -4.640         1.227         0.303           ST         39.327         1.453         0.650         37.523         41.131         37.818         41.692         HOMO-HET         -1.415         -4.349         1.519         0.429	H
MO         37.912         1.939         0.867         35.505         40.319         34.709         39.474         1.378         0.289         WT-HET         -1.706         1.100         4.640         1.227         0.303           ST         39.327         1.453         0.650         37.523         41.131         37.818         41.692         HOMO-HET         -1.415         -4.349         1.519         0.429	*
3T     39.327     1.453     0.650     37.523     41.131     37.818     41.692     HOMO-HET     -1.415     -4.349     1.519     0.429	H
	H

		Sig.	0.921	0.826	0.977	0.734	0.858	0.972	0.308	0.933	0.484	0.506	0.554	966.0	0.208	0.721	0.575	0.564	0.600	866.0	1.000	1.000	1.000	0.982	0.458	0.562	≤0.002) <0.05)
Z	a	upper bound	0.607	0.552	0.655	0.747	0.698	0.532	0.147	0.301	0.502	1.700	1.792	3.071	0.106	0.233	0.457	0.257	0.267	0.433	2.545	2.559	2.547	3.101	1.792	2.020	nce (p ≤
ARISO	95%	lower pound l	-0.813	-0.868	-0.765	-0.416	-0.466	-0.631	-0.549	-0.394	-0.193	4.258	4.166	-2.888	-0.554	-0.427	-0.203	-0.589	-0.579	-0.414	-2.522	-2.508	-2.519	-3.558	4.867	-4.639	Differe
COMF		SE		0.266	L		0.218			0.130			1.117			0.124			0.159			0.950	L	J	1.248		ificant :c
LTIPLE		MD	-0.103	-0.158	-0.055	0.165	0.116	-0.050	-0.201	-0.046	0.154	-1.279	-1.187	0.092	-0.224	-0.097	0.127	-0.166	-0.156	0.010	0.011	0.025	0.014	-0.228	-1.537	-1.309	ed Sign ** 0:
NM		GROUPS	WT-HOMO	WT-HET	HOMO-HET	OMOH-TW	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	OMOH-TW	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	ferroni Correct
	<u></u>	Sig.		0.836			0.744			0.308			0.465			0.233			0.521			1.000			0.438		* Bont
		Γı		0.182			0.303			1.301			0.816			1.647			0.689			0.000			0.884		
		max	12.475	12.489	12.731	6.588	6.534	6.737	7.274	7.496	7.175	66.359	68.887	68.360	3.489	3.606	3.574	9.032	9.147	9.266	37.377	37.690	37.805	40.145	39.813	41.234	
A		'nim	11.382	11.521	11.647	5.885	5.594	5.772	6.734	6.872	6.828	62.723	64.167	63.743	2.979	3.181	2.987	8.557	8.453	8.649	35.020	32.903	34.467	35.137	33.852	37.813	
ANOVA	fMear	upper	12.537	12.547	12.597	6.585	6.590	6.603	7.197	7.446	7.183	66.749	68.736	68.318	3.432	3.647	3.571	1666.8	9.272	9.258	37.214	38.288	37.494	39.980	40.537	40.684	
	5% CI 0	lower	11.369	11.565	11.625	5.944	5.608	5.694	6.685	6.837	6.792	53.130	53.700	53.935	2.970	3.203	3.025	8.5241	8.582	8.578	34.526	33.429	34.195	34.843	34.742	37.213	
and a star many star water	6	ES 1	0.210	0.177	0.175	0.115	0.177	0.164	0.092	0.110	0.070	0.652	0.907	0.789 (	0.083	0.080	0.098	0.09	0.124	0.122	0.484	0.875	0.594	0.925	1.044	0.625	
		SD	0.470	0.395	0.392	0.258	0.395	0.366	0.206	0.245	0.157	1.458	2.028	1.765	0.186	0.179	0.220	0.19	0.278	0.274	1.082	1.956	1.328	2.068	2.334	1.398	
		Mean	11.953	12.056	12.111	6.264	6.099	6.148	6.941	7.142	6.987	64.935	66.218	66.127	3.201	3.425	3.298	8.762	8.927	8.918	35.870	35.858	35.844	37.411	37.639	38.949	
		GROUP	ΨT	OMOH	HET	ΨT	HOMO	HET	WT	HOMO	HET	WΤ	HOMO	HET	WT	HOMO	HET	WT	HOMO	HET	WT	HOMO	HET	ΨT	ОМОН	HET	
MANDIBLES		MEASUKEMENI VARIABLE		overall-length (mm)			ascending-height (mm)	, , ,		basal-length (mm)	· ·		mandible-angle (°)	I		coronoid-coronoid-	length (mm)		diagonal-length (mm)			mandible-perimeter (mm)			mandible-area (mm ² )		
HEMI-I	Annual and a second sec	VIEW/ ASPECT		an. No an a data a	80.000000000.00.000	-		all the could when the	an <b>L</b> aronnover ana.us.an.urg		. an <b>a</b> -na				RIGHT LINGUAL-		1 1000 - 1000 - 100		3				100 × 10 × 100	. <b>L</b>		an koğu, ve	

Table 26. Enam 2D Mandible Morphometry - right lingual

Table 27. Enam 2D Incisor Morphometry - left

	MANDIE	<b>BULAR INCISORS</b>	-														100	
		•			· · · · ·		•	ANUVI	- 				u		5	MFAK	5	
VIEW	ASPECT	MEASUREMENT	GROUP	Mean	ß	SE	5% CI o	fMean	min	Xam	<u>ب</u> با	Sig.	GROUPS	QW	SE	95%	с uner	Sic.
		VARIABLE					pounoq	pound				2				pound	ponoq	2
			ΨT	9.705	0.406	0.182	9.201	10.210	9.186	10.244			WT-HOMO	0.225		-0.391	0.841	0.607
		overall-length (mm)	ОМОН	9.481	0.315	0,141	9.089	9.872	9.136	9.926	0.516	0.609	WT-HET	0.054	0.231	-0.562	0.670	0.971
			HET	9.652	0.368	0.165	9.195	10.109	9.086	10.032			HOMO-HET	-0.171		-0.787	0.445	0.745
			WT	128.498	1.713	0.766	26.371	130.625	126.500	131.050			WT-HOMO	-0.387		-3.320	2.547	0.934
w		angle-of-curvature (°)	HOMOH	128.885	1.617	0.723 1	26.877	130.893	126.570	130.721	1.056	0.378	WT-HET	-1.536	1.100	-4.469	1.398	0.373
· North APR			HET	130.034	1.876	0.839 1	27.705	132.363	127.087	132.323			HOMO-HET	-1.149		4.083	1.784	0.564
			WT	0.994	0.044	0.019	0.940	1.048	0.947	1.043			WT-HOMO	0.023		-0.044	0.089	0.649
	BUCCAL	width-at-midpoint (mm)	OMOH	0.972	0.029	0.013	0.936	1.007	0.924	0.999	0.559	0.586	WT-HET	-0.001	0.025	-0.067	0:066	1.000
			HET	0.995	0.045	0.020	0.940	1.050	0.942	1.061			HOMO-HET	-0.023		-0.090	0.044	0.634
			WT	21.763	1.099	0.491	20.399	23.127	20.135	23.020			WT-HOMO	-0.381	*****	-2.218	1,455	0.847
		incisor-perimeter (mm)	HOMO	22.144	1.135	0.507	20.735	23.553	20.914	23.719	0.167	0.848	WT-HET	-0.092	0.688	-1.928	1.745	066'0
			HET	21.855	1.029	0.460	20.576	23.133	20.607	22.829			HOMO-HET	0.289	Lover	-1.547	2.126	0.908
			WT	9.573	0.652	0.292	8.763	10.382	8.650	10.300			WT-HOMO	0.614		-0.629	1.857	0.413
		incisor-area (mm ² )	OMOH	8.959	0.807	0.361	7.957	9.961	8.114	10.075	1.483	0.266	WT-HET	-0.141	0.466	-1.384	1.102	0.951
			HET	9.713	0.743	0.332	8.791	10.636	8.979	10.760			HOMO-HET	-0.755	1	-1.998	0.488	0.275
			WT	9.670	0.171	0.076	9.458	9.882	9.545	1/6'6			WDH-TW	0.005		-0.487	0.496	1.000
LEFT		overall-length (mm)	ОМОН	9.665	0.297	0, 133	9.296	10.034	9.348	10.143	0.366	0.701	WT-HET	0.139	0.184	-0.353	0.630	0.737
			HET	9.531	0.370	0.165	9.072	9.991	9.062	9.937			HOMO-HET	0.134		-0.357	0.625	0.752
			ΜT	128.688	0.669	0.299 1	27.857	129.518	127.833	129.454			<b>WDH-TW</b>	-0.028		-2.150	2.095	66610
		angle-of-curvature (°)	HOMOH	128,715	1.325	0.592 1	27.070	130.360	126.897	130.454	4.676	0.032**	WT-HET	-2.120	0.795	4.243	0.002	,050**
			HET	130.808	1.595	0.713 1	28.828	132.788	128.881	133.285			HOMO-HET	-2.093		4.215	0.029	0.053
			ΤW	0.983	0.056	0.025	0.914	1.052	0.931	1.047			WDH-TW	0,041		-0.043	0.126	0.420
	LINGUAL	width-at-midpoint (mm)	OMOH	0.941	0.031	0.014	0.902	0.980	0.901	0.984	1.395	0.285	WT-HET	-0.008	0.032	-0.093	0.077	0.966
			HET	0.991	0.059	0.026	0.917	1.064	0.941	1.092			HOMO-HET	-0.049		-0.134	0.035	0.301
			ΨT	21.670	0.414	0.185	21.156	22.184	21.290	22,302			WT-HOMO	-0.241		-1.325	0.843	0.827
		incisor-perimeter (mm)	HOMOH	21.911	0.891	0.398	20,804	23.017	20.915	22.831	1.930	0.188	WT-HET	0.539	0.406	-0.545	1.623	0.408
			HET	21.131	0.523	0.234	20.482	21.781	20.511	21.933			HOMO-HET	0.780		-0.305	1.864	0.176
			ΨT	9.563	0.409	0.183	9.055	10,071	9.094	10.212			WT-HOMO	0.715	1	-0.089	1.519	0.083
		incisor-area (mm ² )	HOMOH	8.848	0.650	0.290	8.042	9.655	8.299	9.713	3.049	0.085	WT-HET	0.179	0.301	-0.625	6.983	0.826
			HET	9.384	0.303	0.136	9.008	9.760	9.082	9.755			HOMO-HET	-0.536		-1.340	0.268	0.218
			ΨT	11.630	0.762	0.341	10.683	12.576	10.451	12.501			WT-HOMO	0.203	k	-0.981	1.388	0.892
		labial-length (mm)	OMOH	11.426	0.794	0.355	10,441	12.411	10.727	12.758	0.111	0.896	WT-HET	0.143	0.444	-1.042	1.328	0.945
			HET	11.487	0.518	0.232	10.843	12.130	10.846	12.249			HOMO-HET	-0.060		-1.245	1.124	066.0

#### Table 28. Enam 2D Incisor Morphometry - night

M	ANDIBI	ULAR INCISORS						ANOVA	_				M	IULTIPI	LECON	MPARIS	S	
VIEW/ ASI	PECT	MEASUREMENT VARIARIF	GROUP	Mcan	ß	ES B	5% CI of	f Mean unner	min'	max	н	Sig.	GROUPS	QM	E	95% lower	CI upper	Sig.
			WT	9.679	0.199 0	5 680	431	9,926	9.486	10.011			WT-HOMO	0.167		-0.497	0.830	0.785
		overall-length (mm)	ОМОН	9.512	0.612 0	1274 8	1,752	10.272	8.971	10.489	1.066	0.375	WT-HET	0.363	0.249	-0.301	1.026	0.344
			HET	9.316	0.222 0	5 660'	0.040	9.592	8.965	9.552			HOMO-HET	0.196		-0.467	0.860	0.717
	. •		WT	127.491	0.951 0	425 12	1016.31	28.671	125.982	128.417			WT-HOMO	-1.470		-4.057	1.118	0.319
		angle-of-curvature (°)	ОМОН	128.960	0.933 0	417 12	7.802	30.119	127.615	130.146	7.333	0.008**	WT-HET	-3.689	0.970	-6.276	-1.101 0	**2001
			HET	131.179	2.298 1	.028 11	326 1	34.032	129.294	134.755			HOMO-HET	-2.219		4.806	0.368	0.096
			WT	0.980	0.033 0	015 (	.940	1.021	0.953	1.036			OMOH-TW	0.011		-0.057	0.079	0,906
BU	CCAL	width-at-midpoint (mm)	OMOH	0.969	0.050 0	023 (	,907	1.032	0.915	1.044	0.304	0.743	WT-HET	-0.009	0.025	-0.077	0.059	0.934
			HET	0.989	0.035 0	016 (	.945	1.033	0.957	1.030			HOMO-HET	-0.020		-0.088	0.048	0.723
	l 12		WΤ	21,490	0.833 0	(373 2	0.455	22.524	20.547	22.312			WT-HOMO	-0.459		-1.690	0.772	0.594
		incisor-perimeter (mm)	ОМОН	21.949	0.622 0	1,278 2	1.177	22.721	21.372	22.672	3.138	0.080	WT-HET	0.689	0.461	-0.542	1.920	0.328
			HET	20.800	0.718 0	321 1	606.6	21.692	19.691	21.521			HOMO-HET	1.148	-	-0.083	2.380	0.068
			WΤ	9.422	0.553 0	247 8	1,736	10.109	8.903	10.184			WT-HOMO	0.479	لمتب	-0.504	1.463	0.422
		incisor-area (mm ² )	HOMOH	8.943	0.503 0	225 8	1,319	9.567	8.353	9.453	0.944	0.416	WT-HET	0.097	0.369	-0.886	1.081	0.962
			HET	9.325	0.679 0	304 8	1,482	10.168	8.589	10.230			HOMO-HET	-0.382		-1.365	0.602	0.570
			ΨT	9.698	0.235 0	105 5	.406	066.6	9.423	10.052			WDH-TW	0.384	1	-0.092	0.859	0.121
RIGHT		overall-length (mm)	HOMOH	9.314	0.200 0	5 680	1.066	9.562	9.045	9.525	2.356	0.137	WT-HET	0.235	0.178	-0.241	0.710	0.414
			HET	9.463	0.378 0	3 6911	1.993	9.933	8.832	9.751			HOMO-HET	-0.149		-0.625	0.326	0.688
	1		ΨŢ	127.409	1.076 0	481 12	6.072 1	28.746	126.167	129.011			OMOH-TW	-2.428		-4.872	0.016	0.052
		angle-of-curvature (°)	HOMOH	129.837	1.026 0	459 12	38.564 1	31.110	128.611	130.935	8.633	0.005**	WT-HET	-3.752	0.916	-6.196	-1.309 0	.004**
			HET	131.161	2.020 0	21 606.	38.653 1	33.670	128.265	133.563			HOMO-HET	-1.324		-3.768	1.119	0.350
			ΜT	0.981	0.052 0	023 (	1917	1.046	0.939	1.051			WT-HOMO	0.210		-0.217	0.637	0.416
E	IGUAL	width-at-midpoint (mm)	HOMOH	0.771	0.433 0	.194 (	).234	1.309	0.000	1.002	1.213	0.331	WT-HET	-0.011	0.160	-0.438	0.416	0.997
			HET	0.993	0.045 0	020 (	.937	1.049	0.958	1.054			HOMO-HET	-0.221		-0.648	0.206	0.380
			ΨT	21.686	0.378 0	169 2	1.217	22.155	21.368	22.280			WT-HOMO	-0.051	H	-1.091	0.990	166.0
		incisor-perimeter (mm)	HOMOH	21.736	0.609 0	1.272 2	0.980	22.493	20.806	22.394	1.647	0.233	WT-HET	0.586	0.390	-0.454	1.627	0.324
			HET	21.100	0.792 0	.354 2	0.116	22.083	19.938	22.017			<b>HOMOHET</b>	0.637	-	-0.404	1.677	0.270
~ **			ΤW	9.471	0.401 0	179	\$974	696.6	9.166	10.123			WDH-TW	0.626		-0.246	1.498	0.177
		incisor-area (mm ² )	HOMOH	8.845	0.540 0	1.242	8.174	9.516	8.062	9.307	2.548	0.120	WT-HET	-0.025	0.327	-0.897	0.847	0.997
			HET	9.496	0.591 0	264 \$	8.762	10.230	8.854	10.233			HOMO-HET	-0.651		-1.523	0.221	0.157
, 1	in the F		ΤW	11.421	1.173 C	525	964	12.878	9.393	12.447			WT-HOMO	0.133	است	-1.278	1.544	0.966
	***	labial-length (mm)	OMOH	11.288	0.833 0	1372	0.254	12.322	10.049	12.343	0.270	0.768	WT-HET	0.383	0.529	-1.028	1.794	0.754
	** ****		HET	11.038	0.170	076 1	0.827	11.249	10.777	11.206			HOMO-HET	0.250	-	-1.161	1.661	0.885

Table 29. Enam 2D Colour and Whiteness - left gingival/ pre-secretory

NUBULAKINGAUKS         ANOYA           REGION         COLOUR         GROUP         Mean         SD         SE         Iower         upper         min'         rmax         F         Sig.         GROU           STAGE         COMPONENT         GROUP         Mean         SD         SE         Iower         upper         min'         rmax         F         Sig.         GROU           STAGE         COMPONENT         WT         59.602         7.387         3.304         50.429         63.810         G.3810         WT-HC           Iighmess         HOMO         31.006         9.865         4.412         20.757         45.255         20.391         43.139         KT-HC           Inghmess         HOMO         31.006         9.865         4.412         20.757         45.253         20.391         43.139         KT-HC           Inghmess         HOMO         31.006         9.866         -5.608         -0.796         -5.530         0.200         WT-HC           Ted/ green         HOMO         0.380         2.941         1.312         0.800         1.446         4.320         0.800         WT-HC           SECKENTAL         WT         S1.71         0.380																			
	MANDIBULAKIN	<u> </u>	cisoks				an an ann a		ANOVA						MULTIP	LE COM	PARISON	-	
	DECION/	1						95% CI o	of Mean								95%	cı	
Ightmess         WT         59.602         7.387         3.304         50.429         68.775         46.520         63.810         WT-HO           NWT         59.602         7.387         3.304         50.429         68.775         46.520         63.810         WT-HO           HET         38.281         5.439         2.412         20.757         45.255         20.391         43.139         16.390         0.000*         WT-HO           WT         -3.202         1.937         0.866         -5.608         -0.796         -5.530         -0.220         WT-HO           Ved/green         WOMO         -3.202         1.937         0.866         -5.608         -0.796         -5.530         2.920         WT-HO           red/green         HOMO         -0.380         2.934         1.312         -4.023         3.263         -4.320         0.800         WT-HO           red/green         HOMO         -0.380         2.934         1.446         -4.320         0.800         WT-HO           WT         5.172         1.317         0.589         3.537         6.807         3.290         11.230         WT-HO           WT         HET         5.094         1.776         3.25	STACE		COMPONENT	GROUP	Mean	ß	SE	lower	upper	min'	max	Ľ	Sig.	GROUPS	QМ	SE	lower	upper	Sig.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								bound	pound								punoq	ponoq	
lightness         HOMO         33.006         9.865         4.412         20.757         45.255         20.391         43.139         16.390         0.000*         WT-HO           HET         38.281         5.439         2.432         31.528         45.035         34.818         47.834         HOMO           WT         -3.202         1.937         0.866         -5.608         -0.796         -5.530         -0.220         WT-HO           red/green         HOMO         -0.380         2.934         1.312         4.023         3.263         4.350         2.950         WT-HO           red/green         HOMO         -0.380         2.934         1.312         4.023         3.263         4.350         2.950         WT-HO           red/green         HOMO         -0.380         2.934         1.312         4.320         0.800         WT-HO           wT-H         MT         5.172         1.317         0.589         3.590         11.230         WT-HO           yetlow/ blue         HOMO         7.064         2.863         7.325         2.500         6.980         WT-HO           yetlow/ blue         HOMO         7.329         1.323         1.3230         1.446				MT	59.602	7.387	3.304	50.429	68.775	46.520	63.810			WT-HOMO	26.596		13.473	39.719 (	.000
HET         38.281         5.439         2.432         31.528         45.035         34.818         47.834         HOMO-           WT         -3.202         1937         0.866         -5.608         -0.796         -5.530         -0.220         WT-HO           wT-HO         -0.380         2.934         1.312         -4.023         3.263         -4.350         2.950         WT-HO           red/green         HET         -1.242         2.165         0.968         -3.530         1.312         4.320         0.800         WT-HO           yellow/blue         HET         -1.242         2.165         0.968         -3.530         1.6.607         3.290         7.000         WT-HO           yellow/blue         HOMO         7.124         2.165         0.968         3.530         10.608         3.990         11.230         WT-HC           yellow/blue         HOMO         7.064         2.863         7.325         2.500         6.980         WT-HC           whiteness         WT         6.807         3.295         2.550         7.326         WT-HC           whiteness         HOMO         5.094         1.796         2.334         7.6662         2.5560         WT-HC     <	1980 B		lightness	OMOH	33.006	9.865	4.412	20.757	45.255	20.391	43.139	16.390	0.000*	WT-HET	21.320	4.919	8.197	34.444 (	**000.0
WT -4.00         WT -3.202         1.937         0.866         -5.608         -0.796         -5.530         -0.220         WT-HO           red/green         HOMO         -0.380         2.934         1.312         -4.023         3.263         -4.350         2.950         WT         WT-HO           // HET         -1.242         2.165         0.968         -3.930         1.446         -4.320         0.800         WT-HO           // yellow/blue         WT         5.172         1.317         0.589         3.537         6.807         3.290         7.000         WT-HC           yellow/blue         HOMO         7.064         2.854         1.276         3.520         10.608         3.990         11.230         WT-HC           yellow/blue         HOMO         7.064         2.854         1.276         3.520         10.209         WT-HC           whiteness         WT         6.079         2.863         7.325         2.500         6.980         WT-HC           whiteness         WT         65.028         9.370         7.026         78.580         WT-HC           whiteness         HOMO         50.204         2.3009         10.209         12.424         0.276         WT-HC<	<b>1</b>			HET	38.281	5.439	2.432	31.528	45.035	34.818	47.834			HOMO-HET	-5.275		-18.399	7.848	0.548
red/green         HOMO         -0.380         2.934         1.312         -4.023         3.263         -4.350         2.950         1.840         0.201         WT-H           Y         HET         -1.242         2.165         0.968         -3.930         1.446         -4.320         0.800         PHOD         PHOMO           Y         WT         5.172         1.317         0.589         3.537         6.807         3.290         7.000         WT-HO           Y         WT         5.172         1.317         0.589         3.530         10.608         3.990         11.230         WT-HO           Yellow/blue         HOMO         7.064         2.854         1.276         3.530         10.608         3.990         11.230         WT-HO           Yellow/blue         HET         5.094         1.796         0.803         2.863         7.325         2.500         6.980         WT-HO           Whiteness         WT         65.028         9.370         4.190         53.344         78.580         74.200         WT-HO           Whiteness         HOMO         50.204         23.009         10.203         21634         78.200         73.580         74.200         WT-HO				WT	-3.202	1.937	0.866	-5.608	-0.796	-5.530	-0.220			WT-HOMO	-2.822		-6.844	1.200	0.189
Indext         Index         Index         Index <td></td> <td>-</td> <td>red/ green</td> <td>OMOH</td> <td>-0.380</td> <td>2.934</td> <td>1.312</td> <td>4.023</td> <td>3.263</td> <td>4.350</td> <td>2.950</td> <td>1.840</td> <td>0.201</td> <td>WT-HET</td> <td>-1.960</td> <td>1.508</td> <td>-5.982</td> <td>2.062</td> <td>0.422</td>		-	red/ green	OMOH	-0.380	2.934	1.312	4.023	3.263	4.350	2.950	1.840	0.201	WT-HET	-1.960	1.508	-5.982	2.062	0.422
V         WT         5.172         1.317         0.589         3.537         6.807         3.290         7.000           yellow/blue         HOMO         7.064         2.854         1.276         3.520         10.608         3.990         11.230         WT-HO           WT         FIET         5.094         1.796         0.803         2.863         7.325         2.500         6.980         WT-HO           WT         65.028         9.370         4.190         53.394         76.662         52.560         7.8580         HOMO           Whiteness         HOMO         50.204         23.009         10.290         21.634         78.570         74.200         WT-HC           Whiteness         HOMO         50.204         23.009         10.290         21.634         78.374         18.640         74.200         WT-HC	GINGIVAL	-		HET	-1.242	2.165	0.968	-3.930	1.446	-4.320	0.800			HOMO-HET	0.862		-3.160	4.884	0.837
yellow/blue         HOMO         7.064         2.854         1.276         3.520         10.608         3.990         11.230         1.424         0.279         WT-H           HET         5.094         1.796         0.803         2.863         7.325         2.500         6.980         HOMO-           WT         65.028         9.370         4.190         53.394         76.662         52.560         78.580         WT-HO           whiteness         HOMO         50.204         23.009         10.294         78.560         78.580         WT-HO           HFT         65.610         10.284         4.599         52.840         78.380         56.140         81.330         MT-HO	PRE-SECRETOR	_بد		J M	5.172	1.317	0.589	3.537	6.807	3.290	7.000			WT-HOMO	-1.892		-5.419	1.635	0.357
HET         5.094         1.796         0.803         2.863         7.325         2.500         6.980         HOMO-           WT         65.028         9.370         4.190         53.394         76.662         52.560         78.580         WT-HC           whiteness         HOMO         50.204         23.009         10.290         21.634         78.774         18.640         78.580         WT-HC           HFT         65.610         10.284         4.599         52.840         78.380         56.140         81.330         HOMO		-	yellow/ blue	OMOH	7.064	2.854	1.276	3.520	10.608	3.990	11.230	1.424	0.279	WT-HET	0.078	1.322	-3.449	3.605	866.0
WT         65.028         9.370         4.190         53.394         76.662         52.560         78.580         WT-HO           whiteness         HOMO         50.204         23.009         10.290         21.634         78.774         18.640         74.200         1.582         0.246         WT-HO           HFT         65.610         10.284         4.599         52.840         78.380         56.140         81.330         HOMO				HET	5.094	1.796	0.803	2.863	7.325	2.500	6.980			HOMO-HET	1.970		-1.557	5.497	0.330
whiteness         HOMO         50.204         23.009         10.290         21.634         78.774         18.640         74.200         1.582         0.246         WT-H           HFT         65.610         10.284         4.599         52.840         78.380         56.140         81.330         HOMO		-		μT	65.028	9.370	4.190	53.394	76.662	52.560	78.580			WT-HOMO	14.824		-11.370	41.018	0.321
HET 65.610 10.284 4.599 52.840 78.380 56.140 81.330 HOMO.			whiteness	OMOH	50.204	23.009	10.290	21.634	78.774	18.640	74.200	1.582	0.246	WT-HET	-0.582	9.818	-26.776	25.612	0.998
				HET	65.610	10.284	4.599	52.840	78.380	56.140	81.330			HOMO-HET	-15.406		-41.600	10.788	0.296

Comparison
Experimental
Appendix 3.
10.3.

# Table 30. Enam 2D Colour and Whiteness - left middle/ secretory

			Sig.		0.711	0.542	0.957	0.484	0.989	0.408	0.053	0.027**	0.922	0.033**	0.019**	0.948
		5	upper	punoq	5.587	4.739	7.126	1.045	1.979	2.813	8.198	8.792	4.716	-2.034	4.837	21.123
	ARISON	92% (	lower	pound	-10.360	-11.208	-8.821	-2.713	-1.779	-0.945	-0.046	0.548	-3.528	-49.885	-52.687	-26.728
	ECOMF		SE		. <b></b> J	2.989			0.704			1.545			8.968	
	MULTIPL		QW		-2.386	-3.234	-0.848	-0.834	0.100	0.934	4.076	4.6700	0.594	-25.959	-28.762	-2.803
			GROUPS		WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET
			Sig.			0.549			0.377			).021**			).014**	
			Ľ.,			0:630			1.060			5.413 (			6.254 (	
			max		46.413	50.256	48.255	-1.570	-0.720	-0.810	10.500	5.250	5.360	74.560	102.967	93.190
			'nim		35.647	35.036	43.186	-3.260	-3.650	-4.410	3.430	-1.180	0.470	32.120	64.310	69.780
	ANOVA	fMean	upper	punoq	47.910	52.253	48.253	-1.872	-0.364	-1.108	10.130	5.485	4.589	77.804	99.145	97.147
		95% CI 0	lower	punoq	36.248	36.678	42.374	-3.512	-3.352	-4.476	3.146	-0.361	-0.653	34.084	64.661	72.265
			SE		2.100	2.805	1.059	0.295	0.538	0.606	1.258	1.053	0.944	7.874	6.210	4.481
			ß		4.696	6.272	2.367	0.661	1.203	1.356	2.812	2.354	2.111	17.606	13.886	10.020
-			Mean		42.079	44.466	45.314	-2.692	-1.858	-2.792	6.638	2.562	1.968	55.944	81.903	84.706
			GROUP		ΜT	HOMO	HET	WT	OMOH	HET	WT	OMOH	HET	ΨT	HOMO	HET
	lisoks	E IO IOU	COMPONENT			lightness			red/ green	1		yellow/ blue			whiteness	
	MANDIBULAR INC	1100010	STACE STACE					-4		MIDDLE/	SECRETORY			<b>4</b>		
			SIDE								LEFT					

Table 31. Enam 2D Colour and Whiteness - left incisal/ mature

		0400																
	MANDIBULAK INC	ISOKS					1	ANOVA						MULTIPI	LE COM	PARISO	7	
	DECTON/						95% CI 01	fMean								95%	ថ	
SIDE	STACE	COMPONENT	GROUP	Mean	ß	SE	lower	upper	'uim	max	ч	Sig.	GROUPS	MD	SE	lower	upper	Sig.
	2000					-	bound	bound								pound	pound	
			WT	42.773	6969	3.117	34.120	51.426	33.297	49.404			WT-HOMO	-3.093		-13.053	6.868	0.693
		lightness	OMOH	45.865	6.853	3.065	37.356	54.375	40.085	57.566	0.777	0.482	WT-HET	-4.558	3.734	-14.519	5.403	0.464
			HET	47.331	3.003	1.343	43.602	51.060	42.308	50.378			HOMO-HET	-1.465		-11.426	8.495	0.919
	-		WT	-3.406	2.069	0.925	-5.975	-0.837	-5.480	-0.880			WT-HOMO	-1.292		4.829	2.245	0.606
		red/ green	ОМОН	-2.114	2.026	0.906	4.630	0.402	-5.510	-0.310	0.516	0.610	WT-HET	-0.318	1.326	-3.855	3.219	0.969
1	INCISAL/		HET	-3.088	2.189	0.979	-5.807	-0.369	-5.440	-0.140			HOMO-HET	0.974		-2.563	4.511	0.748
LEL	MATURE		ΤW	13.330	3.443	1.540	9.055	17.605	7.440	16.380			WT-HOMO	16.350		8.122	24.578	**000.0
		yellow/ blue	ОМОН	-3.020	0.513	0.229	-3.657	-2.383	-3.850	-2.450	4.393 (	.001*	WT-HET	10.376	3.084	2.148	18.604	0.014**
			HET	2.954	7.695	3.441	-6.601	12.509	-2.820	16.150			HOMO-HET	-5.974		-14.202	2.254	0.171
			WT	13.328	21.913	9.800	-13.880	40.536	-1.490	51.360			WT-HOMO	-100.934		-149.850	-52.018	.000**
		whiteness	ОМОН	114.262	2.935	1.313	110.617	117.906	111.179	117.978	5.575 (	*000.	WT-HET	-65.083	18.335	-113.999	-16.167 (	.010**
*****			HET	78.411	45.084	20.162	22.431 1	34.391	0.260	111.092			HOMO-HET	35.851		-13.065	84.767	0.166

Comparison
Experimental
ŝ
Appendix
Э.Э.
<u> </u>

## Table 32. Enam 2D Colour and Whiteness - left whole/ all

		Sig.		0.865	0.956	0.709	0.292	0.740	0.692	0.002**	**600'0	0.652	0.001**	0.006**	0.572
	C	upper	punoq	9.687	7.249	5.677	1.094	1.928	3.514	9.580	8.390	2.348	-17.566	-9.302	29.642
ARISON	95%	lower	punoq	-6.544	-8.983	-10.554	-4.266	-3.432	-1.846	2.504	1.314	-4.728	-60.322	-52.058	-13.114
E COMP		SE		1	3.042			1.005	L		1.326			8.013	
MULTIPL		QW		1.572	-0.867	-2.439	-1.586	-0.752	0.834	6.042	4.852	-1.190	-38.944	-30.680	8.264
		GROUPS		WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET
		Sig.			0.725			0.322			0.002*			0.001*	
		ц			0.330			1.247			11.650			13.114	
		max		48.305	47.285	46.946	-0.950	0.100	-0.060	10.560	3.800	7.950	52.280	97.180	93.460
		'nim		36.974	32.162	40.683	-4.460	-3.250	4.320	7.020	0.060	0.470	31.080	72.390	47.690
ANOVA	of Mean	upper	punoq	48.407	49.184	46.481	-1.384	0.334	-0.216	9.874	3.844	7.086	57.448	96.714	99.541
	95% CI c	lower	punoq	36.931	33.010	40.591	-4.948	-3.494	4.612	6.426	0.372	-0.490	35.652	74.274	54.919
		SE		2.067	2.913	1.061	0.642	0.689	0.792	0.621	0.625	1.364	3.925	4.041	8.036
		ß		4.621	6.513	2.372	1.435	1.541	1.771	1.388	1.398	3.051	8.777	9.037	17.969
		Mean		42.669	41.097	43.536	-3.166	-1.580	-2.414	8.150	2.108	3.298	46.550	85.494	77.230
		GROUP		WT	OMOH	HET	ΜT	ОМОН	HET	WT	OMOH	HET	ΤW	OMOH	HET
ISUKS		COMPONENT	TAPTATO TIMO		lightness			red/ green	,		yellow/ blue			whiteness	
MANDIBULAKINC		KEGION/					4			WHOLE ALL			<b>.</b>		<b>Lat.</b> (Max. and
		SIDE								Literi					Ar 100 -

Table 33. Enam 2D Colour and Whiteness - right gingival/ pre-secretory

			r Sig.	p	6 0.120	6 0.438	3 0.659	0 0.483	2 0.703	4 0.926	5 0.639	9 0.441	5 0.115	8 0.717	4 0.422	6 0.134
	z	°,	uppe	boun	17.19	14.03	6.35	1.35(	1.692	2.77	1.53	3.445	4.25	19.90	7.88	3.34(
	PARISO	<b>}</b> 26%	lower	ponoq	-1.830	-4.990	-12.673	-3.514	-3.172	-2.090	-3.147	-1.233	-0.427	-10.832	-22.856	-27.394
	E COM		SE			3.566			0.912			0.877			5.761	
	MULTIPI		MD		7.683	4.523	-3.160	-1.082	-0.740	0.342	-0.806	1.108	1.914	4.538	-7.486	-12.024
			GROUPS		WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	OMOH-TW	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET
			Sig.			0.138			0.499			0.133			0.151	
			ጮ			2.346		r.	0.736			2.399			2.222	
			max		55.118	39.738	44.265	-2.020	0.500	-0.330	6.530	7.630	6.100	75.900	68.410	81.930
			'nim		37.851	29.372	33.076	-3.710	-3.350	4.730	3.140	4.910	2.290	53.520	46.920	56.170
	ANOVA	of Mean	upper	pound	51.466	40.578	44.350	-1.824	0.278	0.486	7.117	7.767	6.286	73.302	69.782	81.782
		95% CI (	lower	pound	33.879	29.401	31.949	-3.432	-3.370	-4.262	3.771	4.733	2.386	52.042	46.486	58.534
			SE		3.167	2.013	2.233	0.289	0.657	0.855	0.602	0.546	0.702	3.829	4.195	4.187
			ß		7.082	4.501	4.993	0.647	1.469	1.912	1.347	1.222	1.571	8.561	9.381	9.362
			Mean		42.672	34.989	38.149	-2.628	-1.546	-1.888	5.444	6.250	4.336	62.672	58.134	70.158
			GROUP		WT	OMOH	HET	WT	OMOH	HET	WT	OMOH	HET	WT	ОМОН	HET
0400	SIDE		COMPONENT			lightness	-		red/ green			yellow/ blue			whiteness	•
	MANDIBULAK INU	DECTONI	NECIION STATE		- alife designs for					GINGIVAL/	PRE-SECRETORY			1		6-479-0-499-0-4
			SIDE								KIGHI					

Comparison
=
Ita
5
Ē
٠Ē
8
X
щ
m'
Ъ.
-
Ĕ
g
ā
$\overline{\mathbf{A}}$
9
2

# Table 34. Enam 2D Colour and Whiteness - right middle/ secretory

	et and						. 1			.	*	*	.	*	*	
			Sig.		0.554	0.395	0.955	0.648	0.775	0.287	0.013*	0.050*	0.737	0.005*	0.027*	0.641
ľ		כ	upper	ponoq	5.229	4.288	7.751	1.319	2.509	3.185	8.726	7.646	2.740	-9.871	-2.697	28.088
ARISON	1020	0%C4	lower	punoq	-12.154	.13.095	-9.633	-2.671	-1.481	-0.805	1.086	0.006	-4.900	-51.698	44.523	-13.739
COMP		l	SE	_		3.258 -		1	0.748			1.432			7.839	
H IT					5	m	1	9	+		2	2	0	2	2	+
LTIM			g		-3.46	-4.40	-0.94	-0.67	0.51	1.19	4.90	3.82	-1.08	-30.78	-23.6	7.17
			PS		OMO	ET	HET	OMO	ET	HET	OMO	ET	HET	OMO	ET	HET
			ROU		T-HC	WT-H	-OMC	T-HC	WT-H	-OMIC	T-HC	WT-H	-OMIC	T-HC	WT-H	-OMC
_					B		Ħ	M		Ħ	W	*	Ĥ	M	*	Η
	4		Sig.			0.392			0.315			0.012*			0.005*	
			Ч			1.013			1.274			6.483			8.443	
			max		54.200	49.154	53.827	-1.900	-1.360	0.010	7.880	2.130	6.160	87.090	101.241	99.150
			min'		37.749	42.505	40.108	-3.210	-2.510	-5.210	1.040	-0.960	-0.610	46.620	83.950	65.060
ANOVA	TA ONTA	fMean	upper	punoq	51.127	50.452	53.970	-1.803	-1.256	-0.704	8.537	1.832	4.810	82.626	103.188	103.151
		95% CI o	lower	pound	34.999	42.599	40.964	-3.285	-2.480	-5.412	2.059	-1.048	-1.866	44.190	85.197	70.885
	*		SE		2.904	1.414	2.342	0.267	0.220	0.848	1.167	0.519	1.202	6.922	3.240	5.811
			SD		6.495	3.162	5.237	0.597	0.493	1.896	2.609	1.159	2.688	15.478	7.245	12.993
			Mean		43.063	46.526	47.467	-2.544	-1.868	-3.058	5.298	0.392	1.472	63.408	94.192	87.018
			GROUP		WT	OMOH	HET	WT	HOMO	HET	WT	HOMO	HET	WT	HOMO	HET
n mln		Ē	NENT	INCINI		ess	1		uəə.			blue			ess -	<u> </u>
ISORS		0100		CUMPC		lightn	)		red/ gr	•		yellow/			whiten	
R INC					-				-		X					
BULA	a i anta analara sasa.			BAI						DDLE/	LETOR					
MAND		10	Ϋ́	n N						MI	SEC					
			SIDE		-						RIGHT					

Table 35. Enam 2D Colour and Whiteness - right incisal/ mature

		u quant							-									
	MANDIBULAKIN	CNDCID						ANOVA						MULTIP	LE COM	<b>PARISO</b>	7	
	PECTON/						95% CI o	f Mean				<u> </u>				62%	CI	
SIDE	STACE	COMPONENT	GROUP	Mean	ß	SE	lower	upper	'nim	max	ኴ	Sig.	GROUPS	МD	SE	lower	upper	Sig.
							punoq	punoq								ponoq	bound	
			WΤ	43.651	8.121	3.632	33.567	53.735	34.284	54.262			WT-HOMO	-5.233		-14.918	4.452	0.352
		lightness	ОМОН	48.884	4.569	2.044	43.210	54.558	45.443	56.702	1.101	0.364	WT-HET	-3.727	3.630	-13.412	5.958	0.575
			HET	47.378	3.465	1.549	43.076	51.680	41.345	50.066			HOMO-HET	1.506		-8.179	11.191	0.910
			WT	-4.278	1.547	0.692	-6.199	-2.357	-6.390	-2.460			WT-HOMO	-0.350		-3.220	2.520	0.944
		red/ green	ОМОН	-3.928	1.103	0.493	-5.298	-2.558	-5.790	-2.970	0.082	0.922	WT-HET	0.048	1.076	-2.822	2.918	666.0
	INCISAL		HET	-4.326	2.252	1.007	-7.122	-1.530	-6.220	-0.740			HOMO-HET	0.398		-2.472	3.268	0.928
1 E D Z	MATURE		WT	14.120	3.834	1.714	9.360	18.880	7.500	17.050			WT-HOMO	16.458		9.291	23.625	0,000**
		yellow/ blue	OMOH	-2.338	1.254	0.561	-3.895	-0.781	-3.720	-0.630	966.81	0.000*	WT-HET	9.800	2.686	2.633	16.967	0.008**
			HET	4.320	6.152	2.751	-3.319	11.959	-1.140	14.930			HOMO-HET	-6.658		-13.825	0.509	0.070
			WT	8.948	24.121	10.787	21.002	38.898	-7.580	50.850			WT-HOMO	-99.547		-142.555	-56.539	0.000**
		whiteness	ОМОН	108.495	5.777	2.584	01.322	115.668	99.480	114.369	19.434	0.000*	WT-HET	-61.749	16.121	-104.757	-18.742	0.006**
			HET	70.697	36.522	16.333	25.349	116.045	7.470	100.747			HOMO-HET	37.798		-5.210	80.805	0.087

Comparisor
Experimental
÷.
Appendix
10.3.

## Table 36. Enam 2D Colour and Whiteness - right whole/ all

Table 37. Enam 3D Incisor Morphometry left buccal

	MAN	NDIBULAR INCIDUO						ANOVA	-				V	AULTIP	LECO	APARIS	NC	
1 1 1	,       	AVE A ST IDEN ENT					95% CI	ofMean						444		95%	D	
VIEW/ AS	SPECT	VARIAR REF	GROUP	Mean	8	SE	lower	upper	min'	тах	( <u>1.</u>	Sig.	GROUPS	QW	SE	lower	upper	Sig.
							pound	pound								ponoq	pound	
			WT	9.777	0.675	0.302	8.940	10.615	9.118	10.847			WT-HOMO	0.703		-0.280	1.686	0.178
		projected overall-length (mm)	ОМОН	9.074	0.620	0.277	8.304	9.843	8.070	9.490	5.525 (	).023**	WT-HET	1.187	0.368	0.204	2.170	0.019**
			HET	8.590	0.423	0.189	8.065	9.115	8.099	9.261			HOMO-HET	0.484		-0.499	1.467	0.415
			WT	1.095	0.146	0.065	0.914	1.276	0.909	1.309			WT-HOMO	0.089	J	-0.089	0.267	0.406
		projected width-at-midpoint (mm)	ОМОН	1.006	0.080	0.036	0.906	1.106	0.912	1.083	3.109	0.082	WT-HET	0.166	0.067	-0.012	0.344	0.068
			HET	0.929	0.076	0.034	0.835	1.022	0.817	1.019			HOMO-HET	0.077		-0.101	0.255	0.498
			WT	1.388	0.132	0.059	1.224	1.552	1.192	1.492			WT-HOMO	0.066		-0.133	0.266	0.658
LEFT BU	UCCAL	actual w <i>idth-at-midpoint</i> (mm)	ОМОН	1.321	0.125	0.056	1.166	1.476	1.134	1.446	4.392 (	0.037**	WT-HET	0.216	0.075	0.017	0.416	0.034**
			HET	1.171	0.095	0.042	1.054	1.289	1.051	1.308			HOMO-HET	0.150		-0.050	0.350	0.153
			WΤ	24.157	1.547	0.692	22.237	26.078	23.012	26.304			WT-HOMO	1.642		-0.335	3.619	0.109
		actual <i>perimeter</i> (mn)	ОМОН	22.515	0.856	0.383	21.452	23.579	21.199	23.270	0.867 (	0.005**	WT-HET	3.083	0.741	1.106	5.060	0.003**
			HET	21.074	0.997	0.446	19.836	22.312	20.083	22.668			HOMO-HET	1.441		-0.536	3.418	0.169
			WT	13.605	1.154	0.516	12.173	15.037	12.257	14.936			WT-HOMO	0.729		-0.963	2.421	0.504
		marked surface-area (mm ² )	HOMO	12.876	0.731	0.327	11.968	13.784	11.845	13.804	3.977 (	.047**	WT-HET	1.779	0.634	0.087	3.471	**6E0.0
			HET	11.826	1.073	0.480	10.494	13.158	10.149	12.769			HOMO-HET	1.050		-0.642	2.742	0.261

Comparison
Experimental
ndix 3.
.3. Appei
10

#### Table 38. Enam 3D Incisor Morphometry left lingual

			Sig.		0.249	0.001**	0.027**	0.389	0.012**	0.129	0.836	0.283	0.575	0.040**	0.003**	0.378	0.672	0.051	0.213
	MPARISON	ច	upper	pound	0.956	1.620	1.250	0.162	0.247	0.192	0.222	0.293	0.253	4.082	5.118	3.030	1.878	2.831	2.372
		95%	lower	punoq	-0.215	0.449	0.078	-0.052	0.032	-0.022	-0.144	-0.073	-0.113	0.094	1.130	-0.958	-0.959	-0.005	-0.465
	LE CON		SE			0.220			0.040			0.069			0.747			0.532	
	AULTIP		QW		0.371	1.035	0.664	0.055	0.140	0.085	0.039	0.110	0.070	2.088	3.124	1.036	0.459	1.413	0.954
	V		GROUPS		WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET	WT-HOMO	WT-HET	HOMO-HET
			Sig.			0.002*			015**			0.305			.004**			0.057	
			ць			11.409			6.135 0			1.314			9.067 0			3.676	
		max'			10.033	9.485	9.092	1.120	1.053	1.011	1.290	1.385	1.189	26.268	23.321	22.623	13.854	12.997	12.028
	ANOVA	mint		610.6	8.864	8.159	0.989	0.905	0.826	1.061	1.032	0.969	22.258	20.868	20.553	11.565	11.377	10.427	
		fMean	upper	punoq	10.114	9.579	9.023	1.109	1.084	0.995	1.314	1.338	1.208	26.083	23.401	22.164	14.076	12.982	12.066
	and a statement	95% CI 0	lower	punoq	9.116	8.909	8.137	066.0	0.906	0.825	1.095	0.993	0.982	22.301	20.807	19.971	11.250	11.426	10.434
			SE		0.180	0.121	0.159	0.022	0.032	0:030	0.039	0.062	0.041	0.681	0.467	0.395	0.509	0.280	0.294
			ß		0.402	0.270	0.357	0.048	0.072	0.068	0.088	0.139	0.091	1.523	1.045	0.883	1.138	0.626	0.657
		Mean		9.615	9.244	8.580	1.050	0.995	0.910	1.205	1.165	1.095	24.192	22.104	21.068	12.663	12.204	11.250	
		GROUP		WT	OMOH	HET	WT	OMOH	HET	WT	ОМОН	HET	WT	ОМОН	HET	WT	ОМОН	HET	
	DIBULAK INCISOKS	MEASUREMENT VARIABLE				projected overall-length (mm)	3		projected width-at-midpoint (mm)			actual width-at-midpoint (mm)			actual <i>perimeter</i> (mm)			marked <i>surface-area</i> (mm ² )	
	MAN		VIEW/ ASPECT					L				LEFT LINGUAL							

Table 39. Enam 3D Incisor Morphometry left labial

#### Table 40. 3D Surface Analysis

		HOMOZYGOUS	1.900	2.300	4.200
	Enam	HETEROZYGOUS	2.400	2.800	3.500
		WILD-TYPE	2.800	3.600	5.100
GROUP(n = 1)		HOMOZYGOUS	2.000	2.300	3.400
	melx	S HEMIZYGOUS	1.500	1.900	2.100
	V	HETEROZYGOUS	1.900	2.100	2.300
		WILD-TYPE	2.000	3.200	5.400
AR INCISORS		KEGIUN 21 ACE	gingival/ pre-secretory	middle/secretory	incisal/ mature
MANDIBULA	MEASUREMENT	VARIABLE	a na an	surface-roughness (µm)	, ,

Table shows raw data. Values are single measurements. No statistical analysis performed.

.

#### **10.4. APPENDIX 4. LIST OF ORIGINAL PUBLICATIONS**

As a direct result of this project I was a contributing author on two peer reviewed journal articles; (i) the first paper was a multiple operator clinical trial that employed and validated the novel colour and whiteness assessment translated for the human application (in industrial partnership with Unilever PLC, Port Sunlight, UK.); (ii) the second paper employed the customised 3D analytical software translated for the human dental study model application (in collaboration with colleagues at the University College London).

- SMITH, R.N., COLLINS, L.Z., NAEENI, M., JOINER, A., PHILPOTTS, C.J., HOPKINSON, I., JONES, C., LATH, D.L., COXON, T.L., HIBBARD, J. & BROOK, A.H. (2008) 'The in vitro and in vivo validation of a mobile non-contact camera-based digital imaging system for tooth colour measurement', *Journal of Dentistry*, vol. 36, no. Supplement 1, pp. 15-20.
- SMITH, R.N., ZAITOUN, H., COXON, T.L., KARMO, M., KAUR, G., TOWNSEND, G., HARRIS, E.F. & BROOK, A.H. (2009) 'Defining new dental phenotypes using 3-D image analysis to enhance discrimination and insights into biological processes', *Archives of Oral Biology*, vol. 54, pp. S118-S125.

#### CONFERENCE ABSTRACTS

- 14.07.10-17.07.10
   COXON, T.L., BROOK, A.H., ANDERSON, P., & SMITH. R.N.
   3D morphometric and surface phenotyping mouse models of AI (138531)
   International Association of Dental Research (IADR) & Pan European Federation (PEF) Joint Scientific meeting in Barcelona, Spain. http://iadr.confex.com/iadr/2010barce/webprogram/Paper138531.html
  - 03.03.10-06.03.10
     COXON, T.L., BROOK, A.H., & SMITH. R.N.
     Quantifying phenotyping variation in mice with *Amelx* and *Enam* mutations (1405)
     Joint American & Canadian Association of Dental Research in Washington DC, USA. http://iadr.confex.com/iadr/2010dc/webprogram/Paper129170.html
  - 3. 30.10.09

COXON, T.L., BROOK, A.H., & SMITH. R.N. Phenotype-Genotype correlations in two mouse models of *Amelogenesis imperfecta* Postgraduate Researchers in Science & Medicine (PRISM) Conference 2009 The University of Manchester, Manchester, UK.

4. 01.09.09-04.09.09

COXON, T.L., BROOK, A.H., & SMITH. R.N. Phenotyping mouse models of *Amelogenesis imperfecta*. GSK - Mineralised Tissue Group Travel Award #124716 British Society for Dental Research (BSDR), Glasgow, UK. 5. 01.04.09-04.04.09

COXON, T.L., BROOK, A.H., ANDERSON, P., ADAMS, P., & SMITH. R.N. Measuring genotype-phenotype relationships in the murine dentition (0731) International Association of Dental Research (IADR) in Miami, USA.

6. 19.09.08

COXON, T.L., HIBBARD, J.H., BROOK, A.H., & SMITH. R.N. Phenotyping mouse models of *Amelogenesis imperfecta*. Postgraduate Researchers in Science & Medicine Conference (PRISM) 2008 The University of Liverpool, Liverpool, UK.

7. 10.09.08-12.09.08

COXON, T.L., HIBBARD, J.H., BROOK, A.H., & SMITH. R.N. Murine oro-facial morphology: a model for human dental anomalies. (0212) Pan European Federation (PEF) British Society for Dental Research (BSDR), London, UK.

8. 02.07.08-05.07.08

COXON, T.L., HIBBARD, J.H., KARMO, M., SMITH, R.N., & BROOK, A.H. Morphometric macro-measurement of murine mandibles and incisors. (2071) International Association of Dental Research (IADR) in Toronto, Canada.

9. 02.07.08-05.07.08

SMITH, R.N., STRETTON, A., COXON, T.L., & BROOK, A.H. Automated calibrated measurement of murine tooth colour and whiteness International Association of Dental Research (IADR) in Toronto, Canada.

10. 12.10.07

SMITH, R.N., KARMO, M., COXON, T.L., PETERS, H., & BROOK, A.H.
Phenotyping of a murine model for dental anomalies.
5th Annual Research & Development Open Day, Royal Liverpool University Hospital
Research & Development Directorate and Clinical Trials Unit. Education Centre,
Royal Liverpool University Hospital.

11.04.04.07

SMITH, R.N., KARMO, M., COXON, T., PETERS, H., & BROOK A. A new methodology for 2D imaging of murine dentition. (0190) British Society for Dental Research (BSDR) & Nordisk Odontogisk Förening Joint Scientific Meeting - University of Durham.

12.03.04.07-05.05.07

ZAITOUN, H., COXON, T.L., KARMO, M., BROOK, A.H., & SMITH R.N. Validation and applications of a 3D Laser Scanner for odontometry. (0174) British Society for Dental Research (BSDR) & Nordisk Odontogisk Förening Joint Scientific Meeting - University of Durham.