
UNIVERSITY OF LIVERPOOL

AN OPEN SOURCE INFORMATION SYSTEM FOR 

INTEGRATED WATER BASIN MANAGEMENT

Thesis submitted in accordance with the requirements of the 

University of Liverpool for the degree of Doctor in Philosophy

2011

ANDREA LEONE

SCHOOL OF ENGINEERING



TABLE OF CONTENTS

TABLE OF CONTENTS.....................................................................................................2

LIST OF FIGURES AND TABLES................................................................................... 5

ACKNOWLEDGEMENT....................................................................................................6

THE AUTHOR..................................................................................................................... 7

DECLARATION.................................................................................................................. 8

COPYRIGHT....................................................................................................................... 9

LIST OF THE MOST USED ABBREVIATIONS...........................................................10

THESIS ABSTRACT......................................................................................................... 12

1 INTRODUCTION AND BACKGROUND..............................................................13

1.1 Background.......................................................................................................... 14

1.2 Research contributions........................................................................................ 21

1.3 Rational and methodology..................................................................................22

1.4 Thesis Structure.................................................................................................. 25

2 LITERATURE AND PROJECTS REVIEW........................................................... 27

2.1 Review.................................................................................................................28

2.2 Analysis and conclusions....................................................................................45

3 METHODOLOGY AND TECHNOLOGY ANALYSIS........................................50

3.1 Information System Background........................................................................51

3.2 Modelling environment approach.......................................................................52

3.3 Software technologies and system architecture.................................................56

3.3.1 Database Management Systems............................................................... 56

3.3.2 Modelling theory....................................................................................... 59

3.3.3 Geographic data management and information system........................... 62

3.3.4 Object oriented programming language................................................... 66

3.4 Human Interface and the Management of Information......................................69

3.5 Open information technologies...........................................................................71

3.5.1 Open source technologies..........................................................................71

3.5.1 Open source development trends and the research community..............75

3.5.2 Open systems and interoperability........................................................... 76

4 SYSTEM DESIGN.....................................................................................................78

2



4.1 Summary of the chapter....................................................................................... 79

4.2 Information system design..................................................................................79

4.3 System Architecture............................................................................................ 81

4.3.1 Object oriented architecture for models and components linking...........82

4.3.2 Client - server architecture....................................................................... 86

4.3.3 The N-Tier software architecture............................................................. 87

4.4 Information system implementing Technologies...............................................91

4.4.1 Programming languages analysis............................................................. 92

4.4.2 The recommended core programming language: JAVA....................... 103

4.4.3 Java Developing Environment: NETBEANS........................................ 114

4.4.4 SQL the data management language...................................................... 115

4.4.5 GIS, JAVA and the Open Geospatial Consortium specifications....... 117

4.4.6 The Database/Geo-database....................................................................122

4.4.7 The Graphical User Interface................................................................ 130

4.4.8 Application of simulation models...........................................................132

5 IMPLEMENTATION AND CASE STUDY........................................................133

5.1 Introduction........................................................................................................134

5.2 Development of the Information system.......................................................... 134

5.3 Information exchange and data paths...............................................................135

5.4 Interfaces implementation................................................................................. 140

5.5 Open Source Database projects comparison and selection..............................141

5.6 The hydro geo-database.................................................................................... 148

5.7 Analysis of GIS projects................................................................................... 149

5.8 GIS implementation: Open Map and JavaBeans............................................. 156

5.9 The Graphical User Interface............................................................................160

5.10 Implementation of simulation models.........................................................162

5.11 Information System architecture.................................................................163

6 APPLICATION OF THE OBJECT ORIENTATION TO THE DATA LAYER 166

6.1 Introduction........................................................................................................167

6.2 System evolution towards Object Oriented persistence...................................168

6.3 Choice of Persistence Standard.........................................................................169

6.4 Implementation and Case Study.......................................................................170

6.4.1 The transparent persistence solution........................................................171

3



6.4.2 Object Database solution....................................................................... 174

6.4.3 ODBMS implementation....................................................................... 175

6.5 Quantitative comparison................................................................................... 176

6.6 Discussions and Conclusions............................................................................ 178

7 CONCLUSION AND FURTHER STUDY............................................................180

7.1 Conclusion......................................................................................................... 181

7.2 Further studies.................................................................................................. 184

8 REFERENCES...............................................  186

4



LIST OF FIGURES

Figure 1.1: the Architecture of the OpenMI project........................................................ 34

Figure 2.1: evolution of modelling integration................................................................. 48

Figure 3.1: the physical component of a GIS according to AGI......................................64

Figure 4.1: Structure of an object oriented IWRM System.............................................. 83

Figure 4.2: Internal and external data interchange paths.................................................. 85

Figure 4.3: the two levels of the linking interface............................................................ 86

Figure 4.4: A typical N-Tier model, Application Architecture........................................ 89

Figure 4.5: MySQL GIS Data types (abstract types in gray)..........................................124

Figure 5.1: the IS architecture and the data paths............................................................138

Figure 5.2: The JDBC access scheme..............................................................................141

Figure 5.3: an overview of the Arc-hydro data model (Maidment, 2002).................  148

Figure 5.4: the OpenMap architecture (openmap.bbn.com)........................................... 158

Figure 5.5: Database connectivity....................................................................................159

Figure 5.6: the structure of the GUI showing the open source projects integrated......161

Figure 5.7: the IS architecture.......................................................................................... 164

Figure 5.8: GUI of IS showing the database manger tool...............................................165

Figure 5.9: GUI of IS showing the GIS and the modelling tools................................... 165

Figure 6.1: a) O-R Mapping; b) Object DB....................................................................170

Figure 6.2: Partial representation of the data model........................................................171

Figure 6.3: comparison of the implementation stack for the two solutions................... 176

Figure 7.1: Information system developed and managed by the community of users. 184

LIST OF TABLES

Table 3.1: Example of data needed for IS for water resources management............... 588

Table 6.1: Results of the test 1 "time series" data...................................................... 17777

Table 6.2: Results of the test 2 "monitoring station" data.........................................  17777

5



ACKNOWLEDGEMENT

My profound gratitude goes to my supervisor Prof. Daoyi Chen for his precious 

guidance, patience, trust, wisdom and flexibility.

I would like to thank Dr. Shahriar Shams for his valuable support throughout this 

research work.

I extend my thanks to my present employer, the Joint Research Centres of the European 

Commission, for supporting and giving me the time for the completion of this Thesis, in 

particular to Dr, Cesar Cannona Moreno.

A special thank goes to my partner Giorgia for helping me in finding back the 

enthusiasm and the strength to continue this work.
Special warm thanks go to my parents, Mariella e Gianni, to my sister Francesca, and to 

my entire family for their unconditional love and support.

6



THE AUTHOR

Andrea Leone owns a Master’s Degree in Civil and Environmental Engineering from 

the Faculty of Engineering of the University of Palermo (Italy).

He started his career as researcher in hydroinformatics for private consultants in Italy.

He completed a Master of Science in Innovation and New Technologies Management at 

the Area Science Park of Trieste (Italy).

He has been working as programme officer for international development and research 

management for the past 5 years for the European Commission.

He has published three International Journal papers related to this Thesis:

- Leone, A, Shams, S., Chen, D., 2006. An Object-Oriented and OpenGIS Supported 

Hydro Infonnation System (30-HIS) for Upper Mersey River Basin Management. 

Journal of River Basin Management, Vol. 4 issue 2 pp 1-9.

- Leone, A., Chen, D., 2007. Implementation of an object oriented data model in an 

information system for water catchment management: Java JDO and Db4o Object 

Database. Environmental Modelling & Software, Elsevier, Vol. 22, Issue 12, December 

2007, pp 1805-1810.

- Chen, D., Shams, S., Carmona-Moreno, C., Leone, A., 2010. Assessment of Open 

Source GIS Software for Water Resources Management in Developing Countries. J of 

Hydro-Environment Research, Vol. 4, Issue 3, October 2010, pp 253-264.

7



DECLARATION

No portion of the work referred to in the dissertation has been submitted in support of 

an application for another degree or qualification of this or any other University or other 

institute of learning.

8



COPYRIGHT

(i) Copyright in text of this dissertation rests with the Author. Copies (by any process) 

either in full, or of extracts, may be made ONLY in accordance with instructions given 

by the Author and lodged in the Harold Cohen Library of Liverpool University. Details 

may be obtained from the Librarian. This page must form part of any such copies made. 

Further copies (by any process) of copies made in accordance with such instructions 

may not be made without the permission (in writing) of the Author.

(ii) The ownership of any intellectual property rights which may be described in this 

dissertation is vested in The University of Liverpool, subject to any prior agreement to 

the contrary, and may not be made available for use by third parties without the written 

permission of the University, which will prescribe the terms and conditions of any such 

agreement.

(iii) Further information on the conditions under which disclosures and exploitation may 

take place is available from the Head of Faculty of Engineering.

9



LIST OF THE MOST USED ABBREVIATIONS

API Application Programming Interface

COBRA Concise Object Relational Architecture

DBMS Database Management System

RDBMS Relational Database Management System

DSS Decision Support System

ESRI Environmental Systems Research Institute

EU European Union

FOSS Free and Open Source Software

GFOSS Geographic Free and Open Source Software

GIS Geographic Information Systems

GUI Graphical User Interface

GWP Global Water Partnership

DB Data Base

HIS Hydro Information System
IWRM Integrated Water Resources Management

IWBM Integrated Water Basin Management

IS Information System

IT Information Technology

JDBC Java Database Connectivity

JDO Java Data Object

JDOQL JDO Query Language

NO A A National Oceanic and Atmospheric Administration

ODBC Open Database Connectivity

OGC Open GIS Consortium

ODBMS Object Database Management System

ODB Object Data Base

OO Object Oriented

OpenMI Open Modelling Interface

RMI Java Remote Method Invocation

SQL Structured Query Language

10



WFD

XML

USDA

Water Framework Directive 

Extensible Markup Language 

United States Department of Agriculture

11



THESIS ABSTRACT

This thesis aims at researching on how the current stage of hydroinformatics modelling could 
evolve with relevance to new European (and international) water resource management 
policies analysing IT solutions such as standardisation and openness (intended as open source 
code). This thesis demonstrates the applicability of the open source approach to 
hydroinformatics and its relevance to integration of software components through a case 

study. This case study consists of the development of an Object-Oriented and OpenGIS 

supported pilot information system taking into consideration the fundamental Open 
technologies and Open Standards. The pilot information system uses Java as core 

programming language; SQL as data base language in its first implementation; the OpenGIS 

consortium Specifications as standard for the GIS enabled components. The system integrates 
open source projects like OpenMap as geographical information system and PostgreSQL with 

PostGIS extension as relational database.

Besides, this research work intends to demonstrate the importance and the relevance of the 
object oriented approach at data management level in hydroinformatic applications. 
Consequently an evolution of the IS developed is also proposed. At a first stage all the 
component of the IS are based on object oriented technologies except for the data 
management level based on a relational database. This is because the relational logic still 
represents the uncontested choice of information system for developers in hydroinformatics 

despite the “Object - Relational impedance mismatch”. We studied solutions to address this 

issue and therefore we presented our experience in testing two different technologies for 

developing an object oriented data management layer: (i) the Java solution to obtain 

transparent persistence, the Java Data Object Technology (JDO); (ii) a purer Object solution 

with a light Open Source Object Database, Db4o. The process for implementing the two 

technologies in the hydro-information System is described and the two different solutions are 

analysed and compared.

12



CHAPTER I

1 INTRODUCTION AND BACKGROUND

13



1.1 Background

There is a general consensus on the fact that water resources should be holistically managed to 

improve environmental sustainability and an integrated water resources management is 
needed to achieve it. However, its application is rather complex and new and still finds many 

unresolved issues in Europe and all over the world.
The political endorsement to the importance of the rational use of water resources, with the 
concept of Integrated Water Resources Management (IWRM), has been agreed only since the 
major international environmental conferences of the early 1990s (RIO 19921, Dublin 1992, 

Johannesburg 2002, etc.). IWRM was considered as a step towards sustainable development. 
The international community asked to “develop integrated water resource management and 

water efficiency plans by 2005” in World Summit on Sustainable Development (WSSD) held 

in Johannesburg, 2002.
The Technical Advisoiy Committee of the Global Water Partnership defined Integrated Water 
Resources Management as a “process which promotes the coordinated development and 

management of water, land and related resources in order to maximize the resultant economic 

and social welfare in an equitable manner without compromising the sustainability of vital 
ecosystems,” (GWP2 IWRM, 2004).
Therefore the IWRM approach aims at addressing water-related development problems by 
including different sub-sectors — such as waste water management, irrigation, hydropower 

production, industrial uses, etc. as a single unit with simultaneous interactions with the others 

more effectively and efficiently than using traditional approaches where sub-sectors are 

considered separately. IWRM aims to ensure that current demands for water are met without

1 UN Conference on Environment and Development in Rio de Janeiro 1992, International Conference on Water and Environment of Dublin 

1992, World Summit on Sustainable Development of Johannesburg 2002.

2 Global Water Partnership (GWP) is an agency created by the World Bank, the United Nations Development Program (UNDP) and the 

Swedish International Development Agency (SIDA) to "support countries In the sustainable management of their water resources." 

(www.gwpforum.org)

14

http://www.gwpforum.org


jeopardizing the ability of future generations to meet their water demand (GWP IWRM, 

2004).
It is worth to mention that beyond the traditional sub-sectors already cited, many other 
functions of a river basin ought to be accepted, such as tourism, nature, biodiversity 
conservation and cultural heritage.
This in contrast to the fact that due to the intrinsic complexity of water resources 

management, to lack of long term programming by the responsible institutions and to the 

complexity of the institutional set up itself, traditionally river basin management has been 

seen only in terms of water supply. The focus of management has emphasised on the various 
uses of water rather than on various sub-sectors and their integration with one another. 

Consequently, following the outlined idea, and moving from fragmented towards integrated 

management, according to the World Summit for Sustainable Development (WSSD) Plan of 
Implementation Directive, one of the most important actions to undertake is to “develop and 

implement national/regional strategies, plans and programmes with regard to integrated river 
basin, watershed and groundwater management...” (GWP IWRM, 2004).
At the European level, the Water Framework Directive (WFD), adopted on 23rd October 
2000, seeks to improve the sustainability of water use and water demand management thereby 
establishing a European water policy. The WFD is the most substantial piece of the European 
Union water sector related legislation. It requires all inland and coastal waters to reach “good 

ecological status” by 2015. This task will be achieved by drawing the framework for 
management and protection of water bodies by river basin district. The implementation of the 

WFD identifies the river basin management as the foundation for integrated water resources 

planning.
River basins and catchment areas have always been recognised as a useful rational unit of 

analysis for water management. Therefore the basin is the "geographical unit" to consider 

when balancing all the possible use of water and their impact on the environment. The 
integrated river basin management will be earned out by establishing a river basin district 
structure within which demanding environmental objectives will be set out, including 

ecological targets for surface and ground waters. As rivers and catchment areas are physical

15



and ecological entities, changing patterns of land and resource use in upstream areas will have 

an impact on downstream areas (GWP IWBM, 2004).

It is therefore justified that the approach of the Integrated Water Resources Management had 

to be implemented through an effective integrated water basin management (IWBM).
In this sense, the goals of integrated river basin management fall within the framework of 

sustainable development principles according to which environmental conservation is of equal 

importance to economic efficiency and social equity, all sought in a long-term perspective on 

the basis of intergenerational equity.
From an institutional and organizational point of view, an environmental system and its 

complex nature requires a high level of integration within and between managing structures. 
To be effective river basin and catchment management organizations will have to encourage 
co-operation between stakeholders. A high degree of horizontal co-operation is required 
principally among interdisciplinary institutions at the preparation and designing stage and a 
high level of vertical collaboration is required between the institutions at the stage of 

implementation (UNEP, 1999).
From a scientific and technical point of view, integrated river basin management entails 
managing simultaneously the whole basin knowledge base. Managing independently 

environmental processes cannot produce sensible and supported decisions as when taking into 

account the wider vision suggested by the IRBM approach.
The water catchment policy makers and the water catchment managers need to understand all 

the possible impacts of pursuing any given policy. Implicitly this involves the need both to 

understand and to be able to model not only the individual catchment processes but also its 

interactions to have the necessary decision support tools.
Environmental processes are linked to and influenced by interactions of many users. Besides 
the multiple use of the water resource in a river basin and the several decision makers 
involved make the system even more complex. Considering these interactions, 

interdependencies and interrelations among the above mentioned processes and components 

and given the quantity and quality of data analysis involved in all the relevant processes, as a 

consequence the analysis of river basin systems and related decision-making processes has to

16



be supported by the application of advanced Information and Communication Technology 

Tools (ICT- Tools).

This variety of decision support tools to be employed in River Basin Management includes: 

data-bases (DB) for managing and structuring the collections of data, Geographic Information 
Systems (GIS) for geospatial data analysis and management and modelling and simulation 
tools for a variety of purposes such as uncertainty and risk analysis, Environmental Impact 
Assessment (EIA), Strategic Environmental Assessment (SEA), economic evaluation of costs 

and benefits, environment-development scenarios and many other kinds of models. All those 

components are essential elements of Decision Support Systems (DSS) comprising of a class 

of computer-based information systems directly supporting users and managers in monitoring 
tasks and decision making processes in order to apply sustainable development principles 

(Becker, 2005).
In the last ten years, in order to support IWRM, increasingly powerful software tools and 

systems have been developed and used, coping with the complexity of environmental systems 

in general and basin systems in particular. The constant development of more complex 
software systems on one side and the improved processing capacities of hardware on the other 
side fostered the enhancement of performances of information systems (software + hardware). 
Therefore users and managers can benefit, through a more complete and reliable integrated 
modelling exercise, from a better representation and interpretation capabilities of natural 
phenomena. However in an operational context, the difficulties of implementing, handling and 

integrating such tools still create important obstacles for applications oriented to support the 

tasks of managers of river basin systems.
The analysis and adaptation of software architecture schemes towards the integration and 
implementation of software systems for simulation models and knowledge management 

related to integrated river basin management has been the major focus of this research. The 

application of computer science to water resources management, particularly related to 

hydraulic modelling (e.g. computational fluid dynamics), already includes an extensive 

literature. The term hydroinformatics is referenced from the defining text on the subject, 

Abbott (1991). Abbott clarified the meaning and defined the context for the discipline further 
than the mere application of information technology to problems of “the aquatic

17



environment”. According to Abbott, the Hydroinformatics is more about people, in the sense 

of socio-economic perspective, rather than just about technology. This approach tries to 

highlight the importance of representing a complex system such as the environment of which 

the evolution is interdependent with human activities. The use of hydroinformatics tools has 

to be seen through its direct or indirect impact on socio-economical issues. Abbot explains 

that it cannot be considered a science in the purest sense "because common-sense truths have 

also to be accommodated within Hydroinformatics, this subject cannot itself be a science, 

even though it draws upon many sciences" (Abbott, 1991). Abbott highlights the fact that 

large amounts of data about a “water system” have always been "available but not readily 

accessible". The immediate example is that usually hydrological data have always been stored 

in the technically unreachable files of local administrations. With the development of 

hydraulic simulation models, these data had "ceased to act upon our present world". Finally 

that data can be "immediately accessible", the role of hydroinformatics is to treat the data in 

order to allow decision-makers to read through the resulting information carrying out their 

tasks.

Besides, Abbott (1999) argued also that the application of Hydroinformatics can be an 

effective support to decision making processes for users, developer and mangers of water 

resources. Abbott reaffirms, underlines and expands similar concepts later (Abbott, 2007) 

"Applications of numerical modelling, like applications of almost everything else nowadays, are 

characterised by a change in the way that knowledge is produced and employed within society". 

This change has to be taken into account in the way that knowledge is produced and employed 

within information systems. Therefore this evolution in the way that knowledge is treated in 

society is reflected in parallel in the evolution of generations of numerical modelling as it is 

explained below.
The research described in this work takes its origins from the fact that the current state of 

modelling technology could be adequate to support effectively the decision making process 

with the necessary improvements to the integration capabilities of the variety of tools and 

methods (DSS, GIS, DB, etc.) used in River Basin Management in offline and real-time 

contexts.

18



The development of Hydroinformatics — and the further development of those tools which 

are fundamental to Hydroinformatics— has been limited by the ad hoc way in which 

Hydroinformatics systems have been developed.
There has been a lack of research into (and thereafter development of) software architectures 

for the construction of flexible modelling engines, and as a result for the overall systems to be 

able to deal with the integrated water enviromnent complexity (Harvey, 2002).
Trying to define simulation models in hydroinformatics in a generic way, they can be thought 
as piece of software constituted by an engine (in general an algorithm composed of 
mathematical and logical relations that are analysed by numerical methods) treating an mput 
and providing an output. Simulation models in hydroinformatics generally aim at 

representing, interpreting, studying, foreseeing, etc. phenomena related to the environment. 

Simulation models per se are becoming continuously more powerful thanks to the extensive 
research and development work going on in the sector. However, models have different 

strengths and weaknesses and during the various phases of a modelling exercise it may be 
appropriate to replace one model by another or to upgrade a model with the new findings. 

Different situations require different combinations of models, and the different models need to 
be integrated in an environmental information system capable of supporting the managers in 

their decision making processes. It is not possible to create a "definitive" information system 
which can be adapted in eveiy situation of river basin management. Being “definitive” in this 
case used to identify static system that cannot be updated or modified.
Abbott (1991) expected that the next generation of modelling was ought to develop a 
wrapping layer embedding the numerical model as means of connection to the 

hydroinformatics system. Nowadays, the approaches are either "adapting" existing modelling 

tools as components of larger systems or "copying and pasting" existing modelling algorithms 

and codes into another modelling tool, which is more adapted to new tasks of dealing with 

river basin complexity (for example Tomicic and Yde, 1998).

An elucidating approach on modelling evolution given by Abbott (2007), proposes to organise 

the different stages of development in five generations. The first generation was focusing on 

algorithms based on a series of equations, the second on tailoring solutions case by case 

through dedicated projects, the third generation introduced the concept of modelling systems

19



allowing developers to build customised models. In the fourth generation those modelling 

systems were organised in packages until getting to the fifth generation with the introduction 
of the concept, as defined by Abbott, of ‘software-as-a-service’. The most important variation 
for the modelling-knowledge needed by users was introduced in the fourth generation in 
which companies started to give active support services (training courses, telephonic and on 
line support, etc.). In the transformation from third to fourth generation modelling, more than 

just a change on the level of knowledge needed by the users, there was also a change on the 
kind of knowledge needed. In fact, the level of knowledge needed related to computational- 
hydraulic mathematics modelling related was reduced dramatically, with on the other hand a 
strong increase on knowledge needed related to the other scientific domains involved in an 
information system in which all needed environmental models should be integrated.
In the fifth generation of modelling, this need for integration of different kinds of domain of 

knowledge is still increasing. The new issue in the information systems for water basm 
management and for environmental modelling in general, as mentioned above, is no longer 
numerical-computational software but a complete integration of environmental, hydraulic and 
mathematical and computational models.
It is important to follow the strategies of international IT corporations, such as IBM as these 

give an interesting overview of the general development trends of the IT sector to which 

hydroinformatics is directly related. Therefore, supporting the development of the fifth 
generation of modelling in hydroinformatics, it is interesting to cite the IBM’s recent 
important change of focus towards “middleware” (Bradbury, 2008). Middleware is defined as 

the piece of software which acts as a layer between the level of the operating systems and the 
applications in such a way as to promote a wide range of new applications and their 

integration. This middleware, which is not just a piece of software but also a conceptual 

approach to IS architecture, can be identified in the case of the fifth generation modelling 

defined by Abbot, as the interface between the generic knowledge and the particular domain 
knowledge needed in the IS and included in the application modelling tools.
The approach of treating the different kinds of knowledge with different applications and 
integrating them together through a middleware brings to a complete rethinking of modelling 

system and supports the evolution of the fifth generation. As already emphasised, the

20



knowledge needed to undertake the approach supported by integrated water basin 

management is significant in terms of quantity and variety, and even so difficult to identify 

that the one-provider only strategy cannot possibly work. Sources of knowledge rely 

increasingly upon other participants on the supply side to contribute much more easily and 

effectively in the processes of knowledge provision.

This multi-actors approach to knowledge provision entails a need for a heterogeneous 

approach to knowledge gathering interfacing that can only be realised by providing 

connection channels to the knowledge producers based on open-source software which they 
can most conveniently adapt to their own standards and peculiarities (Abbott, 2007). This 
open-source based strategy is a consistent thread all over this research work being the solution 
proposed for tire software technology approach to move towards some of the issues 

highlighted in the previous paragraphs and related to the integrated water basin management. 
The necessity to involve heterogeneous source of knowledge to the need for constant 

evolution and adaptability of the software, for integration of different modelling tools to the 
need for an open approach to information system development, the open-source software can 
be a good solution, as discussed below and in the next chapters.

1.2 Research contributions

This research is meant to undertake an exploratory approach to information system 
development, with a technology transfer from informatics research to hydroinformatics 
practice following analysis of requirements of integrated water resources management..
In particular this thesis aims at demonstrating the importance of the concept of integration in 
the current stage of hydro informatics modelling evolution with relevance to the new European 

(and international) water resource management policies and analyse solutions such as 

standardisation and opemiess (intended as open source code). In order to achieve these 

objectives, the information system architecture will be tailored to become a framework with 

different levels in which different components are able to work together as one "flexible and 

replaceable" part of the larger hydroinformatics software system.

21



Based on the usefulness and the relevance of open source code to hydromformatics, this thesis 

aims at demonstrating the applicability of the open source approach to hydroinformatics 
through a case study by developing an open source based pilot information system. This 
development entailed the approach of integration of existing open source code through the 
development of software interfaces.

Finally the thesis intends to demonstrate the importance and the relevance of the object 

oriented approach at data management level in hydroinformatic applications.

1.3 Rational and methodology

According to ATIS (Alliance for Telecommunication Industry Solutions, www.atis.org) an 
Information System (IS) can be defined as:

1. A system, whether automated or manual, that comprises people, machines, and/or 
methods organized to collect, process, transmit, and disseminate data that represent 
user information.

2. Any telecommunications and/or computer related equipment or intercomiected 

system or subsystems of equipment that is used in the acquisition, storage, 
manipulation, management, movement, control, display, switching, interchange, 
transmission, or reception of voice and/or data, and includes software, firmware, and 
hardware.

3. The entire infrastructure, organization, personnel, and components for the 

collection, processing, storage, transmission, display, dissemination, and disposition of 
information.

Following this schema, an appropriate definition for our hydroinformatics information system 
can be: a group of interdependent software tools (also components) that interact regularly to

22

http://www.atis.org


perform a task; a system that collects, stores, process and visualize data through a user 

interface.
The main task of the information system is to support the end user in the integrated 

management of a water basin. Being the IS a set of interdependent software tools, its design 

and implementation focuses on the linkages and integration among the different components 
that constitute its structure. Besides, this research further looks into the flexibility of its 

structure in integrating a new innovative component such as an object oriented database (as it 

will be defined in the next chapters).
Particularly, the information system shall allow the end user to model and manage 
environmental systems such as a water basin, dealing with its complexity, variability, 
dynamism, its continuing evolution and with the amount of complex knowledge to manage. 
Therefore the software system shall allow the end user to better manage water quantity 
models, water quality models, geomorphologic analysis models, GIS, other water basin and 
environmental models, and in general to manage and process all the “environmental 

knowledge” related to the IWBM.
To meet these goals, we can first set a list of general requirements of such an information 

system: integrability, extensibility, portability and open source based.

According to Bass, Clements, and Kazman, "integrability" refers to the possibility for 
separately developed elements (in our case geoDB, GIS, Simulation models, DSS, etc.) to 

work together fulfilling software's requirements (Bass, 2003).
Extensibility is the degree to which something is able to be enhanced in the future to meet the 

changing requirements or goals. It is necessaiy because the platform can be extended with 
new simulation models and/or new management tools useful to the end users.
Since there are various organisational management approaches in the basin enviromnent, 
which use different kinds of information systems in terms of software and hardware; 

portability is a fundamental feature to encourage effective scientific, technical and 

administrative cooperation. Another important feature of the portability is the support of 
knowledge sharing using standard technologies to make the information system widely 

compatible and accessible, above all in various web client contexts (Intranet, Internet, etc.).

23



The forth general requirement is the open source technology. Open source is a development 

method for software that harnesses the power of distributed peer review and transparency of 

the process. The advantages of open source are better quality, higher reliability, more 

flexibility, lower cost, and an end to predatory vendor lock-in (www.opensource.org).
Hence, we used for our information system, when possible, open source technologies, because 
we reckon them a fundamental requirement in order to meet the other three requirements and 
for two other main reasons exposed below.
First, this is an academic research software and its results can be more interesting and more 
easily diffused if they are not tied to closed or proprietary technology; Second, the research 
subject is connected to the most basic and vital resource necessary to life, water, hence its 
result should be open and useable by everybody even without any software licence.
We reckon important at this moment affirm that this thesis focuses on hydroinformatics 
research and development but not on pure informatics research. Although the content is 
strongly related to IT, the main innovative points discussed and proposed are related to the 

applications of IT to water resources management and hydroinformatics in general. Therefore 
this research has not focused on developing and designing innovative technologies for 
information systems; rather we aim at researching on the best available technologies for 
information system development suitable to fit the needs of hydroinformatics in the field of 
IWBM/IWRM.
The main question is: how hydroinformatics should support and address the holistic approach 

introduced as a principle of IWRM?

Consequently the objective of this thesis is to describe experiences and present related case 
studies in conceiving and developing integrating data management and modelling systems for 
water catchment. To answer these questions, an overall framework was defined, outlining a 

series of criteria, describing and analysing a list of relevant projects.

As a result, the rational of this research, is to find, assess, adapt and implement existing 

technological solutions, allowing them to interoperate in an information system for integrated 

water resources management at water catchment level.

While many of the software components which would need to be embedded in our integrated 

systems (GIS, DB, geoDb, etc.) already exist and research in this field is continuous and

24

http://www.opensource.org


extensive, their integration in hydro informatics can be considered still relatively new as 
showed in the literature review (next chapter).

1.4 Thesis Structure

The organisation of this thesis is intended to approach the subject of this research firstly from 

a theoretical point view in a broader way, secondly to demonstrate a general possible 

application and thirdly to focus in particular on some interesting issues we faced and reckoned 
interesting. There are eight chapters and each chapter is briefly presented below:

Chapter I: This chapter provides introduction and background information with the 
objectives of the research.
Chapter II: The literature review with a list of similar and relevant research projects and 

information systems.
Chapter III: The presentation of the approach to the research, the methodology and the 

explanation of technology choices.
Chapter IV: The design of a prototype of the software information system and its 
architecture. The development sequence which makes use of existing open source 
software and their characteristics.
Chapter V: The implementation and the case study.
Chapter VI: The particular and innovative design, development and implementation of the 

data layer of the information system with an application of an object oriented database to 

hydro infoimatics.
Chapter VII: Conclusions and further work.

Chapter VIII: References.

The three sections in sequence "methodology and technology", "system design" and 

"implementation and case study", in conformity with the overall thesis structure, first initiate

25



and illustrate ideas from a broader theoretical approach and then progress focusing on 

concrete applications.

A particular explanation is worth for the section "Development of the data layer". In fact, in 

the first part of the research summarised in the "implementation and case study" section, some 

of the most innovative software technologies relevant to IWBM have been chosen for the 

different part of the system, nonetheless for the data layer the alternative of the "relational 

logic" was preferred to the more imiovative "object logic" because of the inadequate literature 
existing in hydroinformatics and in general also in applied informatics. This issue is then 
treated in deep in the "Development of the data layer" section, in which an application of the 
"object logic" to the data layer is developed with a case study analysed and assessed for this 
particular pmpose.

26



CHAPTER II

2 LITERATURE AND PROJECTS REVIEW

27



2.1 Review

Nowadays it is widely accepted that integrated water basin management requires a holistic, 
transversal and wider view of human impacts on water resources. A modelling framework for 
integrated catchment management must allow all domains of the catchment to be modelled 

and must allow the linking of, for example, environmental and economic models to 
hydrological models.

This recognition and the new legislation building on it, such as, the EU Water Framework 

Directive has led to numerous efforts in the integration of various information systems 
towards a holistic, long-term approach of management in the environmental context. Many of 
the current modelling solutions use integrated modelling systems that aim to contain all of the 
required domain components. A number of modelling frameworks have been developed that 
appear to have promising features which could allow the linking of further domain modules 
and swapping of existing ones. In important ongoing projects (e.g. Open-MI) there is strong 

research towards integration and standardisation, however, many of them do not seem to be 

used outside their own development environment, suggesting that in any case they lack 
extensibility or integrability, being possibly closed, vendor tied or having a rigid monolithic 
architecture.

It not easy to draw a line between what can be considered on one side an information system 

or a modelling framework or what can be considered a non-modular software program for 

hydroinformatics. In the review below, the features which brought to include one projects in 
this section are underlined. In general, the projects analysed are about modelling frameworks 
and integrated modelling information systems.
In object oriented programming, by definition, a framework is an object-oriented design. It 

does not have to be implemented in an object-oriented language, though it usually is. Large- 

scale reuse of object-oriented libraries requires frameworks (Linthicum, 1997).

According to Linthicum a framework is a semi-complete application that programmers can 

customize to form complete applications by inheriting from and instantiating classes in the 
framework.

28



To better explain the concept, it is useful to compare them with integrated models particularly 
as it related to our research subject. Modelling frameworks, generally, are open information 

systems that leave the end user the room to chose which models to use, whereas integrated 

models/modelling systems are a group of simulation models that have been combined or just 
linked together in order to represent a specific system or set of systems. The intent of 
integrated models is to provide a new modelling tool, whereas the objective of a framework is 
usually to provide a mechanism, often represented as a system architecture, by which existing 
models can be linked or organised in an effective way.

Some of the most interesting modelling frameworks and integrated modelling systems 

developed in the last few years have been analysed.

Generic Framework
The Generic Framework (Blind et al, 2001) is an open framework for linking models and 
decision supports that have been developed by a large consortium of companies, 

commissioned by RIZA, STOWA, Alterra and RIVM in the Netherlands.

The puipose of the framework is to link all types of models relevant to integrated catchment 
modelling and potentially environmental modelling in general, on a time-step in memory 
basis, which also allows iterations and feedback loops. The types of models include user- 
fimction models (e.g. shipping, drinking water, agricultural costs).
The philosophy employed in building the GF version 0.9 was to focus on generic linkages and 
functional modularity. As a result, the “scientific logic” for automated linkage is not yet 

implemented and many functions are only available in their most simple forms. The intention 

is that future modelling projects will provide the required extensions of (generic) functionality 
within the GF.

A useful categorisation of model domains relevant to HarmonIT was developed within the GF 

project. Here the model domain was studied from three angles in order to gain a generic 

description. The angles (or views) were: physical domains, modelling and simulating 

approaches and; environment for development.

The “modelling and simulating” domain view expressed in the GF is based around the 

concept of model elements and connectors which are combined to form model components.

29



Model components are combined to form model applications. This approach has been 
identified as being applicable for ID, 2D, 3D modelling concepts, for finite element, 
analytical element and random walk solutions.

The “environment for development” domain view simply defines two framework 

components: model programs (computational kernels plus the required data) and generic 
tools. The generic tools are further sub-divided as “in-process” tools (which in general allow a 

number of model programs to communicate e.g. a process chain management tool) and 

“linked” tools (which have no influence on the results calculated, e.g. graphical results 
presentation tool).

Open Modelling System
The Open Modelling System (Goede, 2005) is dedicated to the development of an operational 
modelling system for complex 2D/3D simulation of flow and transport processes, by 
integrating the Delft3D system (Delft) with the SIMONA system (by RIKZ, Netherlands).
The OMS software architecture is a flexible enviromnent developed to accommodate data 
exchange and synchronisation between legacy computational cores. Its main focus is on the 

low-level communication, by way of standardisation of unambiguous defined interfaces, data 

structures, communication protocols and file formats. A major role is being played by a 
standardized input/output library (DelftIO for Delft3D and Couple for Simona).
The Delft Cluster-OMS (DC-OMS) project is based on the same ideas, namely focus on the 

data exchange level. Through a co-operation between WL Delft Hydraulics, GeoDelft 

(geotechnics) and TNO-Bouw (mechanical engineering), the DelftIO library has been 
extended to include data structures and file formats relevant to non-water related civil 
engineering disciplines.
DC-OMS is linked to the Generic Framework and OMS, but additionally includes elements of 
water management such as hydraulic engineering works, modelling dam stresses etc.

Object Modelling System
The Object Modelling System (OMS) is described as a Java-based modelling framework 

consisting of a library of science, control and database components, which facilitates the

30



assembly of selected modelling components into a modelling package suited to the problem, 
data constraints and scale of application (OMS, 2005; Ahuja et al., 2004). OMS is a modelling 

framework that facilitates model development, evaluation and deployment (David et al., 

2004). The concept behind OMS is to create all system and model tools as independent 

reusable components that may be coupled using standardised software interfaces to create an 

application-specific modelling package (Kralisch et al., 2004). Development of OMS began in 

1996 in the Institute for Geography at Friedrich Schiller University, Jena, Germany (Ahuja et 
al., 2004). Since October 2000 development of OMS has continued as an inter-agency project 
supported by the United States Department of Agriculture - Agricultural Research Service 
(USDA-ARS), United States Geological Survey (USGS) and United States Department of 
Agriculture - Natural Resources Conservation Service (USDA-NRCS) (Ahuja et al., 2004). 

The two main types of components in OMS are model components and system components. 

Model components are the building blocks from which models are created within OMS. 

System components are those used to assemble user selected model components to create an 
application specific model, populate the model with suitable data and then execute the model. 

OMS is supported by graphical user interface (GUI) components and utility components 
which include a data dictionaiy, data retrieval and storage, GIS, graphical visualisation and 

statistical analysis (OMS, 2005; Ahuja et al., 2004). OMS uses custom metadata tags to 

support component documentation, testing, proper component integration into a model, 
automatic user interface generation and model execution (David et al., 2004). Tools are 
available in OMS to assist in migrating legacy models either by direct implementation in 

OMS or by means of wrappers. It appears that individual models built from OMS model 

components would be able to be linked.

TIME and the Catchment Modelling Toolkit
The Invisible Modelling Enviromnent (TIME) is described as a modelling and programming 

system for developing, applying and deploying environmental models (Murray et al., 2004). 

TIME has been developed on the Microsoft.Net platform and is a collection of .Net classes, 

libraries and visualisation components for the development of models and model applications. 

The Catchment Modelling Toolkit is a system of environmental modelling software which

31



integrates a new generation of catchment models and modelling support tools (Marston et al., 

2002). The aim of the Catchment Modelling Toolkit is to provide land and water managers, 
researchers and educators with an integrated collection of software tools and components to 
simulate catchment response to management and climate variability, at a range of scales and 
using a variety of approaches (Marston et al., 2002). To achieve this aim a modelling 
framework was required which allowed models to be developed and integrated quickly and 

consistently (Rahman et al., 2003). TIME is an environmental modelling framework 
developed to meet these requirements and is the foundation on which the models, model 
applications and other modelling tools included in the Catchment Modelling Toolkit are built 
(Catchment Modelling Toolkit, 2005). TIME and the Catchment Modelling Toolkit were 
developed by the Cooperative Research Centre for Catchment Hydrology (CRCCH) in 

Australia (Rahman et al., 2003).

The architecture of TIME is divided conceptually into five layers: Kernel, Data, Models, 

Tools, and Visualisation and User Interface. Each layer consists of a family of classes, with 
the classes in the upper layers using services provided by classes in lower layers. Developers 
create models in the Model layer using classes in the Kernel and Data layers. The Tools and 
Visualisation and User Interface layers contain classes that interact with models and provide 
most of the framework functionality, such as user interface generation and model linking. The 

use of TIME custom metadata tags allows models to remain independent of these tools, 

resulting in better model stability (Rahman et al., 2004). TIME makes use of .Net’s 
introspection capabilities for dynamic discoveiy of system properties at runtime (Rahman et 

al, 2003). These system properties include class structure, class fields and methods, and 

custom metadata tags which allow TIME to automate several tasks which facilitate model 

integration and automatic user interface generation (Rahman et al., 2003). TIME seems to 

support the approach of restructuring models into a set of linked modules and does not appear 

to make provision for wrapping or linking to legacy models.

HarmonIT and OpenMI
The Generic Framework and the OMS have been joined by the HarmonIT project (Gijsbers et 
al., 2002), which is largely a result of the Generic Framework. HarmonIT was a 6 million

32



Euro project, funded half by the European Union under the 5th Framework Programme for 

research of the European Union, and half by the project participants, which include major 

water modelling software developers from across Europe. HarmonIT has been strongly 
influenced by its lineage and sharing of technical staff with the Generic Framework project 

resulting in strong similarities of vision and outline design at present. Gijsbers et al. (2002) 

provide a list of issues to be resolved in model linking. This list makes no attempt to separate 

the intrinsic and extrinsic issues —that is, those which have technical solutions and those 

which are part of the essence of modelling and can only be solved on a case by case basis by 

model developers and model integrators. They do however provide a more comprehensive 
overview of the different levels of users of the outputs of the HarmonIT project.
A number of issues which are raised as being of critical importance in this thesis are 

addressed (at least explicitly) by none of the above projects. These include:

• the need to ensure, at the core of current model linking difficulties, that the tool under 
development is a complete application and will not be used as a part of a larger 
system;

• the need to provide scientists and other developers of component process models with 

more appropriate tools than programming languages for experimental model 
development

• the need to provide model developers and integrators at all levels with hierarchical 
tools for managing model complexity.

The Open Modelling Interface (OpenMI) is described as a generic interface allowing models 
simulating different water- related processes to be linked on a temporal and spatial basis, 

allowing simulation of process interactions (Gijsbers, 2003; HarmonIT, 2004a). The objective 

of OpenMI is to simplify the linking of models running in parallel and which operate at 

different spatial and temporal scales by means of direct transfer of data values between 

models without writing to or reading from intermediate text files. OpenMI focuses on 

resolving or improving several complicated model-linking issues, including differences in

33



xlTT'f-

spatial and temporal scales, feedback loops, differences in spatial and temporal concepts 

(distributed vs. lumped, steady state vs. dynamic), different units and naming of variables, and 
distributed computing (Blind and Gregersen, 2004). OpenMI simplifies the linking of models 

from a computer science point of view, allowing modellers to concentrate on the complexities 
of linking models from a hydrological point of view. OpenMI has been developed under the 
European Commission-funded HarmonIT project towards meeting the goals of the European 
Union’s Water Framework Directive. The project partners include three commercial partners 
(DHI - Water & Environment, WL | Delft Hydraulics, HR Wallingford Group) and several 

other partners from research institutes and universities in Europe. The fact that competing 

software vendors have joined forces in creating OpenMI, is a key advantage to achieving the 
objective of setting a standard (Blind and Gregersen, 2004).

Model Application

User interface
.W-rite

This is a 
site-specific 
model (i.e. engine + 
sche matisation/data)

Read

Engine
Write

Input file

Output File

Figure 1.1 : the Architecture of the OpenMI project (Moore et al., 2007).

The architecture for OpenMI is shown in Fig. 1. The most important part of OpenMI is the 
Standard (org.OpenMI.Standard), which consists of a set of interfaces. The standardisation

34



does not concern a piece of software in particular but an overall approach and set of 
procedures, so may be implemented in any object-oriented programming language and related 

computing platform. Any model implementing the relevant interfaces contained in the 
OpenMI Standard is described as being OpenMI compliant and may be linked to any other 

OpenMI compliant model. While OpenMI focuses on data exchange between models at 

runtime, it may also be used to link models to databases and user interfaces (Blind and 
Gregersen, 2004). The HarmonIT project has concentrated on implementing the Standard in 

the C# programming language on the Microsoft .Net computing platform but will also provide 
a Java implementation (HarmonIT, 2004). The other namespaces in the OpenMI architecture 

form the Open Modelling Environment, and provide a set of classes whose purpose is to 
simplify the migration process and to facilitate the linking and running of the OpenMI 
compliant models (HarmonIT, 2002). A default implementation of each interface in the 
Standard has been created to form a group of classes known as the Backbone 
(org.OpenMLBackbone). The org.OpenMI.DevelopmentSupport namespace contains a 
generic set of low-level classes that can be used in the development of an OpenMI modelling 

environment. The org.OpenMI.Utilities namespace contains a set of classes that have been 
created to reduce the amount of re-engineering required to migrate existing model engines and 

software systems to become OpenMI compliant. A primary design objective for OpenMI was 
that the cost, skill and time required to migrate an existing model to the standard should not be 

a deterrent to its use (HarmonIT, 2002). The HarmonIT project recognises that there are many 

legacy models written in programming languages such as FORTRAN. To facilitate the linking 

of legacy models, a group of wrapper classes have been created which allow linking to these 

legacy models, without rewriting these models in an object-oriented programming language to 
meet the OpenMI Standard, and with a minimum of changes to the legacy models themselves. 
These wrapper classes take care of the entire book keeping associated with handling links, 

events, exceptions, buffering and basic spatial and temporal interpolation. For a legacy model 
engine not written in a .Net language or Java to be suitable for wrapping it must be compiled 

to a dynamic link library (DLL) and must be able to separately initialise, perform single time- 

steps, finalise and to be disposed of (HarmonIT, 2004). The org.OpenMI.Configuration 

namespace contains a set of classes created to help developers to administer, configure and

35



deploy coupled OpenMI compliant modelling systems. The org.OpenMI.Tools namespace 

contains user interface components and other classes to facilitate user interaction with 

OpenMI compliant models at configuration and run-time.

One of the most interesting aspects of OpenMI is that it does not concern technical solutions 

chosen but the set up and the governance of the project. The OpenMI is in fact an Association 
of an entirely open international group of organisations and people. As it is stated in its 
website, www.openmi.org, the OpenMI association provides a small core team that supports, 
responds to and is guided by a growing active worldwide user community.
It is a not for profit organisation and therefore depends on the willingness of its members. 

Currently it is funded under the EC LIFE Environment Programme of the European Union. 

Therefore it is evident that the structure that this project took in its evolution from “General 

Framework”, through “Harmon-IT”, until its actual shape is the one of an Open Source 
Community (as it will be defined in other sections of the thesis).

MIKE SHE/SHYLOC
“Systeme Hydrologique Europeen” (SHE) is an integrated catchment model that simulates the 

entire land phase of the hydrological cycle. It was developed by the Danish Hydraulic 
Institute, Sogreah of France and the Institute of Hydrology (CEH).
MIKE SHE (http://www.dhisoftware.com/mikeshe/) is a modelling tool for analysis, planning 
and management of a wide range of water resources and environmental problems related to 
surface water and groundwater. MIKE SHE is an integrated modelling environment with a 

modular structure. Individual components can be used independently and customized to local 

needs, depending on data availability and aims of the given study.
Pre-processing and results presentation tools are included in the MIKE SHE software 
package. MIKE SHE consists of a hydrological surface model and a groundwater flow model, 

based on MODFLOW. MIKE SHE can read in MODFLOW files and a dynamic link to 

MODFLOW is being developed at DHL Typical applications of MIKE SHE include 
investigations of the:

• Use of water

36

http://www.openmi.org
http://www.dhisoftware.com/mikeshe/


• Surface and groundwater interaction

• Change in land use

• Impact of fanning practice

• Wetland protection

• Transport of contaminants

SHYLOC is a procedure to integrate Landsat TM satellite images with ground-based data for 
the determination of surface water storage in ditch networks. The procedure has been 

developed as part of the SHYLOC project to improve hydrological predictions in wetland 
systems, which are characterised by water storage rather than flow.

SWAT

The Soil and Water Assessment Tool (SWAT), produced and supported by the USDA 
Agricultural Research Service is the hydrological model used in the SWAT/GRASS linkage 
(Arnold et al. At http://www.wiz.uni-kassel.de/model_db/mdb/swat.html). SWAT is a 
continuous-time, basin-scale hydrological model capable of complex long-term simulations 
including hydrology, pesticide and nutrient cycling, erosion and sediment transport. The 

SWAT hydrology model is based on the water balance equation. It simulates soil water 

content in relation to daily precipitation, run-off, evapotranspiration and percolation. SWAT 

calculates parameters such as surface run-off, sediment yield and nutrient budgets. A soil 
database is used to obtain information on soil type, texture, depth and hydrological 

classification. In SWAT, soil profiles can be divided into as many as 10 layers. Such 
information is critical to SWAT’s crop growth modelling, sediment yield and runoff and 

water balance calculations. Among the management options that can be investigated are 
irrigation water transfer.

MIKE BASIN
MIKE BASIN is a mathematical representation of the river basin encompassing the 
configuration of the main rivers and their tributaries, the hydrology of the basin in space and 
time, and existing as well as potential major schemes and their various demands of water.

37

http://www.wiz.uni-kassel.de/model_db/mdb/swat.html


MIKE BASIN is a network model in which the rivers and their main tributaries are 

represented by a network of branches and nodes. The branches represent individual stream 

sections while the nodes represent confluences, diversions, locations where certain water 

activities may occur, or important locations where model results are required. The model 

operates on the basis of a digitized river network generated directly on the computer screen in 
ArcView GIS. All information regarding the configuration of the flow simulation network, 

location of water users, reservoirs and intakes and outlets of return flow are also defined by 
on-screen editing.

SMS/WMS/GMS
SMS/WMS/GMS (http://www.scisoft-gms.com/) is a group of models distributed by US 
based Scientific Software Group to simulate watersheds, groundwater and surface water flow 
and quality using well-known core functions such as MODFLOW, the rational method, 
Reynolds equations etc. The core functions are embedded in a large data visualization system. 

The Surface Water Modelling System (SMS) is a comprehensive environment for one-, two-, 
and three-dimensional hydrodynamic modelling. A pre- and post-processor for surface water 
modelling and design, SMS includes 2D finite element, 2D finite difference, and 3D finite 

element modelling tools. Supported models include the USACE-ERDC supported TABS-MD 
(GFGEN, RMA2, RMA4, SED2D-WES, HIVEL2D), ADCIRC, CGWAVE, STWAVE, 
BOUSS2D, M2D, GENESIS, and WABED models. A comprehensive interface has also been 

developed for facilitating the use of the FHWA commissioned analysis package FESWMS. 

The TUFLOW numerical model with powerful flood analysis, wave analysis, and hurricane 
analysis is now supported. SMS also includes a generic model interface, which can be used to 
support models which have not been officially incorporated into the system.
The numeric models supported in SMS compute a variety of information applicable to surface 

water modelling. Primary applications of the models include calculation of water surface 

elevations and flow velocities for shallow water flow problems, for both steady-state or 

dynamic conditions. Additional applications include the modelling of contaminant migration, 
salinity intrusion, sediment transport (scour and deposition), wave energy dispersion, wave 

properties (directions, magnitudes and amplitudes) and others.

38

http://www.scisoft-gms.com/


The Watershed Modelling System (WMS) is a comprehensive graphical modelling 
environment for all phases of watershed hydrology and hydraulics. WMS mcludes powerful 

tools to automate modelling processes such as automated basin delineation, geometric 

parameter calculations, GIS overlay computations (CN, rainfall depth, roughness coefficients, 

etc.), cross-section extraction from terrain data, and many more! With the release of WMS 8, 
the software supports hydrologic modelling with HEC-1 (HEC-HMS), TR-20, TR-55, 
Rational Method, NFF, MODRAT, and HSPF. Hydraulic models supported include HEC- 
RAS and Simplified DAMBREAK. 2D integrated hydrology (including channel hydraulics 
and groundwater interaction) can now be modelled with GSSHA.

The program's modular design enables the user to select modules in custom combinations, 

allowing the user to choose only those hydrologic modelling capabilities that are required. 
Additional WMS modules can be purchased and added at any time. The software will 

dynamically link to these subsequent modules at run time and automatically adding additional 
modelling capability to the software.
GMS is internationally widespread used. It has been proven to be an effective and exciting 

modelling system. GMS provides tools for every phase of a groundwater simulation including 

site characterization, model development, calibration, post-processing, and visualization. 
GMS supports both finite-difference and finite-element models in 2D and 3D including 
MODFLOW 2000, MODPATH, MT3DMS/RT3D, SEAM3D, ART3D, UTCHEM, 
FEMWATER, PEST, UCODE, MODAEM and SEEP2D.
The program's modular design enables the user to select modules in custom combinations, 

allowing the user to choose only those groundwater modelling capabilities that are required. 

Additional GMS modules can be purchased and added at any time. The software will 
dynamically link to these subsequent modules at run time - automatically adding additional 

modelling capability to the software.

InfoWorks (http://www.wallingfordsoftware.com/products/infoworks/)

In the Wallingford Software InfoWorks system the models are hard wired into the system to 
provide a detailed description of the individual model parameters that allows version control 

and audit trails through detailed knowledge of the models. InfoWorks gives a choice of MS

39

http://www.wallingfordsoftware.com/products/infoworks/


Access, MSDE, SQL Server or Oracle master databases. The InfoWorks system contains 
rainfall runoff models, hydraulic models, water quality models, sedimentation models, and 
flow routing models. Different versions of InfoWorks can be used for urban drainage 

modelling, river modelling, and water supply modelling. The system aims to provide a single 
environment that integrates asset planning with detailed modelling. The aim is to provide 

planners and engineers with a predictive tool to assess environmental impact.

BASINS

As stated in the United States Environmental Protection Agency website 
(http://www.epa.gov/waterscience/basins/), BASINS is a multi-purpose environmental 

analysis system that integrates a geographical information system (GIS), national watershed 

data, and state-of-the-art environmental assessment and modelling tools into one convenient 
package. The American approach to IT applied to water basin management is then more 
practice than the European one. More than setting up a common approach to modelling, the 
EPA gives a solution integrating all the different modules needed. To be noticed that from 
version 3.1 to version 4.0 the software package has been completed with a non-proprietary, 

open source, free GIS system. The move towards open source solutions, seeking for more 

flexibility and a widespread use, is also undertaken in this case.
From a technical point of view, the Better Assessment Science Integrating point and Nonpoint 

Sources (BASINS) BASINS was developed by the United States Environmental Protection 
Agency’s (USEPA’s) Office of Water and was first released in 1996, currently we are at 

release 4.0.

The BASINS system is described in its website as a multipurpose environmental analysis 

system designed for use by regional, state and local agencies in the United States of America 
(USA) to perform catchment and water quality-based studies (USEPA, 2001). The package is 
designed to support the estimation of total maximum daily loads (TMDLs) using a catchment- 
based approach including both point and non-point sources for a variety of pollutants, at a 
variety of scales (USEPA, 2001). BASINS is also a decision support system developed to 

facilitate collection and analysis of environmental information interoperating and simulating

40

http://www.epa.gov/waterscience/basins/


environmental systems and providing a framework for the continuous work of practitioners, 

managers and decision makers.
As already mentioned BASINS is a system integrating GIS (open source from version 4.0), 

data analysis and modelling.
Concerning data sources, the BASINS system includes a set of custom databases compiled 

from a wide range of federal sources in the USA including national databases at the USEPA 

and United States Geological Survey (USGS). Simply data are extracted from databases and 
stored in Water Data Management (WDM) and DBF files, a kind of veiy long lasting database 
management system files (http://www.dbase.com/), which may be accessed by BASINS 
models and tools. BASINS used ArcView to provide a customised user interface until version 
3.1 and is now using Mapwindow GIS (http://www.mapwindow.org/) as visualisation layer, 

which is a ready-to-use open source spatial data viewer and tool that can be modified into 
custom applications. The user interface contains all standard and customised on purpose 
Mapwindow menu, button, and toolbar items which access query, spatial analysis, and map 
generation tools. Tools and menus specific to BASINS are accessed through the BASINS 

Extension Manager and include assessment tools, data management utilities, catchment 

characterisation reports, water quality models and catchment hydrology models. BASINS uses 
the GenScn post-processing tool to facilitate the display and interpretation of observed water 

quality and other time series data, and the analysis of model output data. Models to be run 
from BASINS would need to be able to read from and write to the relevant BASINS files in 
WDM and DBF format.
Confirming its integrated approach, BASINS include a series of existing and developed in 
parallel watershed model application models. In particular, currently they are:

• HSPF, Hydrological Simulation Program FORTRAN, 
http://www.aquaterra.com/resources/hspfsupport/index.php,

• SWAT, Soil and Water Assessment Tool, http://swatmodel.tamu.edu,

• QUAL2K, River and Stream Water Quality Model, 
http://www.epa.gov/athens/wwqtsc/html/qual2k.html

41

http://www.dbase.com/
http://www.mapwindow.org/
http://www.aquaterra.com/resources/hspfsupport/index.php
http://swatmodel.tamu.edu
http://www.epa.gov/athens/wwqtsc/html/qual2k.html


• PLOAD models, an ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in 

Watershed and Stormwater Projects

http://www.epa.gov/waterscience/basins/b3docs/PLOAD_v3.pdf)

CUAHSI HIS
Another large USA project, this time with a similar approach to OpenMI project, is the 
CUAHSI (http://www.cuahsi.org/). CUAHSI (Consortium of Universities for the 
Advancement of Hydrologic Science, Inc.) is an organisation representing more than one 

hundred United States universities receiving support from the National Science Foundation to 

develop infrastructure and services for the advancement of hydrologic science and education 
(Tarboton et al., 2007).
CUAHSI is Hydro Information System having as primary objective the integration of the 
USA water information in order to make data widely useful and accessible. This purpose is 

pursued by providing access to the data sources, tools and models supporting the user 

throughout analysis, treatment, visualisation and evaluation of behaviours of hydrologic 
systems. The CUAHSI Hydrologic Information System bases its architecture on distributed 
computing. Its network is constituted of geographically distributed hydrologic data sources 
and models integrated using web seivices. The result is that the system works and acts as one 
integrated platform.
As it happens in Europe, environmental data is collected by a long series of defend 

institutions, at federal level, at state level, by local agencies, by academic scientists as well as 
by consultancy firms and do on. Therefore, linked to this variety of available sources there are 
a series of issues that CUAHSI tries to address (Johnson, 2008):

• Access protocols and data exporting formats can be highly heterogeneous from source 

to source, and when sources are several, handling this variety can be a serious issue. 

Although the internet has improved access to these disparate data sources in terms of 

speed and reliability, standardisation of protocols is still very far to be achieved.

42

http://www.epa.gov/waterscience/basins/b3docs/PLOAD_v3.pdf
http://www.cuahsi.org/


• A particular problem is not related to IT, but the fact that often developers and data 
gatherers in hydroinformatics are not IT specialist but individual researchers or 
practitioners with a strong expertise in hydraulics or water resources management 

related fields. When hydraulics experts publish their data, they do not have the needed 

informatics expertise to provide suited interactive data retrieval systems.

It is to address these issues that the CUAHSI Hydrologic Information System was developed 
providing a series of relevant services, as reported in the website:

• Data discovery — A map-based viewer will display the locations where data collected 

by various entities in one location, including both government-collected and 
university-collected data.

• Data delivery — Through the use of programmatic calls, users will be able to retrieve 
data directly into databases, spreadsheets, and analysis packages using a single syntax 
regardless of data source.

• Data publication — Academic scientists will be able to easily publish data they 

collected so that appears within the common data viewer and responds to the same 
data retrieval calls as government sources.

• Data duration — A HIS Data Centre (HISDAC), will provide a repository for archival 

data. These data can be viewed and delivered using the same mechanisms as described 
above so that their delivery is seamless to the user.

It is important to report here this list of services because, these kinds of services are also a 
basis for the research of this thesis and represent a similar architecture to the one of the 
information system developed in this research.

WATERWARE

WaterWare is a very typical example of a project financed by the public sector consequently 

to the establishment of a new normative, the EU Water Framework directive.

43



As stated in its website, WaterWare (http://www.ess.co.at/WATERWARE/) is an integrated, 

model-based information and decision support system for water resources management. Given 

the complexity of the applicability of the normative, the EU decided to finance a series of 

related projects, trying to increase the level of knowledge needed for integrated management 

of the resource and related availability of software support systems. Therefore WaterWare 

integrates results of the EUREKA projects EU487, and the related cluster of projects of the 
Framework Programme of research financed by the European Union; The EU financed both 
the development of the system and its pilot applications.
Therefore, the information system was developed with the objective of supporting the 
responsible institutions to implement the European Water Framework Directive or similar 

national legislation (http://ec.europa.eu/environment/water/water-framework/). The system 

has been developed through a series of applications to: River Thames in England; Lerma- 
Chapala basin in Mexico; West Bank and Gaza in Palestine; Kelantan River in Malaysia; 
Yangtze River in China. Applications around the Mediterranean with other EU sponsored 

projects include river basins in Cyprus, Turkey, Lebanon, Jordan, Palestine, Egypt, Tunisia 

and Morocco.

Considering the software architecture, WaterWare is very similar to the IS developed in this 
research. The architecture is open and object-oriented with a client-server orientation, web- 
based. WaterWare integrates a series of different components needed for water resources 
management oriented information systems such as databases, GIS, simulation and decision 
support models and analytical tools. The client side is implemented through a graphical user 
interface integrated with a GIS and through hierarchical map layers. On the serves side the 

system relies on object data bases, time series analysis, reporting functions, an embedded 

expert system for estimation, classification and impact assessment tasks, and a hypermedia 
help and explain system.

The system can perform real-time data management, simulation and decision support 

modelling, supporting data storage, forecasting, and reporting, and support for operational 
management that can be provided with a real-time rule-based expert system.

44

http://www.ess.co.at/WATERWARE/
http://ec.europa.eu/environment/water/water-framework/


2.2 Analysis and conclusions

As it is straightforward to appreciate even with a rapid research through the relevant literature, 
there is a veiy long list of projects which could be relevant to this thesis. The quantity, 
complexity and variety of those are extremely important. Therefore it is not possible to carry 

out an exhaustive analysis of the list of those projects. Such an analysis would have been too 

time consuming and out of the scope of this research.
Besides it is important to mention that other projects, not present in the above list, have been 

used, analysed or taken as examples or model to develop pilot applications for this research. 
These other projects have been detailed in the appropriate relevant sections either concerning 

technology analysis or pilot applications.

The criteria to select the above listed projects have been based on the size and the importance 
of the projects and/or of the institution responsible for its development or use. Most of these 
projects come from the public sector, sometimes public/private at the same time, with few 
exceptions. This is because the environmental sector is a public concern on its own nature. 

Although the variety of technology used, the variety of actors involved and the different 
requirement of each project developed, it is possible to extrapolate some general ideas from 

the list and from its analysis.

From the technology point of view:

• technology involved are many and varied,

• data sources are heterogeneous,

• there is an high level of IT knowledge involved but often scientist of this field do not 

have the needed expertise,

• there is a strong tendency towards standardisation and openness.

From the organisational and project management point of view:



• given the integrated management approach to water resources which nowadays is 

often normative, the number of institutions involved is quite high,

• given the public scope of the software developed often the public sector if the 

ftmders/client and final user,

• as it is happening in general in the IT world, always more and more institutions are 

going towards open source and towards defining a community of users and developers,

• even if the water resources management tends to be a niche sector, the availability of 
projects and experiences is important.

In this review we focused on the analysis of projects related to information systems and 
modelling frameworks. Nonetheless even though hydroinformatics has been a topic of active 
research for more than 20 years, it seems that inadequate consideration has been given to 

research on architectural design dedicated to information systems and modelling frameworks 
and to the associated software development (Harvey, Han, 2002). This has changed only in 

the last years, as above showed, under the impulse of the new approach to water management 
(IWRM) and related legislations mentioned in the background paragraph (first chapter).

Even under this new impulse, the focus of research in the field was mainly oriented to 
modelling or to the development of commercial “closed” framework information systems 

hying to embrace as many requirements of IWRM as possible. This often resulted in an 
untargeted increased complexity. This “untargeted increased complexity” could come for 
instance from coupling underground, surface and atmospheric phases of the water cycle when 
maybe not all these functionalities at the same time were needed for all users. This is because 
a closed commercial framework (or information systems) to be as most competitive as 
possible in the market would probably need to be as complete as possible.

To address all needs of water resources management at the same time is obviously too 

complex. This complexity has resulted into an increasing demand for tools, which integrates 

or/and allows the interaction of software tools and models of different origins, and with 

different purposes. Besides, this increasing complexity makes systems always more difficult

46



to be used influencing performances and costs for human resources training needs even for 

developers or for user specialists.

Consequently the idea of a software toolbox has become constantly more attractive (Wasson 
et al.5 2003). According to this solution, integration and interoperation of different 
components will be organised and tailored in order to adapt the overall system to the final 
application.

Usually different tools based on the same equations and algorithms and with similar data 

formats are customised and to be used for different purposes or area of utilisation. This 

dispersion of efforts could be avoided for instance structuring the tools in two different parts, 
the core containing equations and algorithms (the model) and an external layer that could be 
customised according to its final use to deal with other tools and to be managed by the final 
user (Wasson et al., 2003). These suggestions and experiences are close to many kinds of 
similar problems that it is possible to find in the IT literature.
It may be concluded that similarity can be found among various researchers like Harvey 

(2002) with a dissertation on models structure and models coupling.

47



Focus on 
models

Focus on
closed
frameworks

...... .............
Focus on 
open
frameworks

Ml M2 M
3

M4

M = model 
F = Framework 
| = closed

! = integration

Focus on
open
standards

Figure 2.1: evolution of modelling integration

In figure 2.1, our interpretation of the evolution of modelling integration in modelling 

frameworks (or information systems) is showed. The three phases show a change of focus 
from the models themselves, to the framework, the openness and standardisations which are 
considered in parallel.

Considering the last evolutions, at European level the best examples of this kind of projects 

are HarmonIT and OpenMI, which aim at defining a standard modelling interface and 
environment to simplify the linkage of models related to water resources management.

Even recognising the importance of this kind of works, which are at a higher level of the 

research described in this thesis, both in terms of human and financial resources, we thought it

48



would be useful to give our contribution approaching the problem of software integration in 

IWRM from a similar point of view and bringing additional reflections to the debate.

The definition of an open standard would be a fundamental step in making hydroinformatics 

able to deal with integrated resources management (see OpenMI), but at this early stage of 

research on system integration in hydroinformatics towards IWBM, a thorough work would 
also be needed on the interoperability.
To clarify this difference between standardisation and interoperability it is interesting to cite 
Shirky (2001), who in his work "Interoperability, Not Standards", oriented to informatics in 
general, says that the coupling of standards and interoperability is the default for any widely 

dispersed technology. However, there is one critical period where interoperability is not 
synonymous with standardization, and that is in the earliest phases of work, when it is not 

entirely clear what, if anything, should be standardized and how it should be done.
The way we chose to undertake our research on software interoperability in IWRM is the way 

of openness and standard open technologies. We tried to make use of all already existing open 
standards to try to develop the different components of the system as more interoperable as 
possible. Besides, we tried to build an information system keeping its structure and its 

architecture as most open and open standard based as possible, always giving the right 

important to the quality of the technology or software component and tools used.
On the link between open standards and interoperability it is interesting to know also what a 
once "the closed" standard oriented software multinational, IBM (www.ibm.com), states on 
the subject:

"Open computing standards and platforms mean much more than just helping to reduce 

licensing costs by eliminating the need to buy and manage proprietaiy solutions. Openness 
addresses the need for interoperability and provides for the broadest choice of IT solutions to 

meet business needs. It can also help incorporating technology innovation more seamlessly to 

meet the needs of any IT environment" (www.ibm.com/systems/why/opemiess/).

All these points have been taken into account as the frame and the background for the 
development of this research and have strongly influenced its approach as shown in next 

sections.

49

http://www.ibm.com
http://www.ibm.com/systems/why/opemiess/


CHAPTER III

3 METHODOLOGY AND TECHNOLOGY ANALYSIS

50



3.1 Information System Background

The aim of this chapter is to research into the design of an information system for IWRM 
starting from the design of its architecture/structure and its components, considering 

technological solutions and integration through open source technologies and (if existing) 

open standards. The reason to perform this "integration" exercise, as explained in the previous 

chapter, is to research into the "interoperability" of models and software tools towards the 
integrated management of water resources. Therefore, the architecture of the IS shall be 
designed to integrate the most appropriate, innovative and open technologies for IWBM 
making them able to interoperate.
As discussed in the literature review, a hydroinformatics system for IWRM consists of many 

different components. Since, decision makers and policy implementers need to retrieve, store, 

analyse and present always more and more data, this amount of heterogeneous information 

requires the development, use and interoperation of an increasingly wide variety of tools. 
Whenever, a developer has to design an information systems, the most appropriate tools for 

acquisition, analysis or/and presentation have to be selected on a project basis by considering 

characteristics of the catchment area and the requirements of end users such as decision 
makers. Generally this is not possible with most of the suites and monolithic analysis 

packages presented in previous chapters where tools are fixed, closed, not exchangeable and 
not modifiable. This is the main issue that this technology analysis aims at resolving.
The technology screening process is then followed by the development of consistent 
interfaces between each of the components chosen for the information system. These 
interfaces are not usually provided as a native attribute of the tool. Therefore, at this stage the 

use of standard open technologies helps to a great extent for the work of developers. In fact, 

open source code and projects can be modified, adapted integrated as needed.

The requirements identified in the previous paragraphs (1.2) for the IS are integrability, 

extensibility, portability and open standards based. Recalling that integrability refers to the 

capability of the different components of the IS to work together, extensibility to the degree to 

which the IS can be extended to meet new goals. Portability allows the information system to

51



work in different operating systems and hardware environments while the use of open source 

technologies will help meeting the first three requirements as showed in the next sections. 

Following these requirements and introducing the IS architecture, the information system can 

be seen as a general framework embedding the following common kind of subsystems: 
Databases, Simulation Models and Management Models, GIS, everything connected and 
manageable, in different ways, from the User Interface (UI) level. The GIS intervenes at the 
UI level and at the simulation models and management models level.

This information system shall operate as a platform which can facilitate standard formats for 
data exchange and code sharing. Besides given the variety and quantity of end user 
organisations involved in the management of water resources, other important specific 
requirements of the system are portability, meaning the ability to function in different OS and 

hardware environments, and Web orientation of applications with possible developments 
through distributed computing.

3.2 Modelling environment approach

In informatics, frameworks, also called modelling enviromnents, support modular and 
integrated model development providing the structure where environmental modelling 
modules can be integrated. In general they aim at a dynamic modular approach to information 
systems strongly oriented to modelling. More flexible and complete frameworks allow 

integrating reusable tools for data management, analysis and visualisation.
In informatics, the term framework is also sometimes used for underlying classes and libraries 
(intended as in programming languages). In this case the framework is included in a system 
which uses these software frameworks to support module development, model construction, 
and execution.

We prefer to use the term framework in a broader sense including software tools, its 

architecture as well as modules, modelling tools and its data model.

Frameworks have a series of characteristics and requirements related to their most important 
feature, their architecture. Since frameworks are in fact integrating environment their

52



performances are based on their architecture and linking capabilities as protocols and methods 

of operation.
Environmental sciences related frameworks find their reason to exist facing the integration 

issue in hying to monitor and represent a complicated and dynamic system such as the 
environment itself. For instance, if taking the scientific research approach, individual 

researcher and research groups in specific environmental disciplines, such as ecology and 

hydrology, tailor models’ architecture for their own purposes focusing with a specific 

objective to a particular concern of modelling potential.
This approach to model and modelling framework development, based on ad hoc situations on 
a project basis, even considering just the field of hydromformatics, leads to a large number of 

different approaches to models’ architectures and modelling framework architectures. These 
models have different structures, algorithms, input fields and boundary conditions which are 
not compatible or interoperable. When dealing with complex problems requiring the 
combination of multiple models or even frameworks of models, these are difficult to integrate 
and an important effort in harmonisation is needed.
With the stronger and increasing impact that informatics has now on other scientific 

disciplines, more researchers and practitioners are trained in modern software engineering 

techniques. Besides, more information technology experts have become specialists in other 
fields like in our case environmental science disciplines. This exchange trend between IT and 

environmental science led to the development of standardised approaches to modelling in the 

environmental modelling problem domain.
Models dealing with discrete time and discrete entities can be structured through approaches 

based on object oriented logic, and are consequently managed using appropriate software 
engineering design and development methods.
These new approaches have brought to the development of the concept of environmental 

modelling frameworks with the opportunity to bring together a modelling suites or libraries of 
modules, with architectures designed to well represent basic and natural features of 

environmental problem situations (e.g. Reed et al., 1999). The advantages of using 

frameworks to treat the environmental information of a water catchment include 

standardisation of features such as data manipulation and analysis, interoperation and

53



exchanges between models and data sets, standardisation of structures and coding of modules, 

and integrated visualisation of model outputs.
A range of environmental modelling frameworks exist and have been under development for 

some time in the last 20 years. Beside the examples cited in the literature review chapter 

which are more recent, other interesting projects, many of them already discontinued but in 

anyways contributing to the advancement of the filed include: the Dynamic Integration 

Architecture System (DIAS) (Sydelko et al., 2001), the Interactive Component Modelling 
System (ICMS) (Reed et al., 1999), the Spatial Modelling Environment (SME) (Costanza and 
Voinov, 2004), TIME (Rahman et al., 2004).
It is interesting then to describe in detail an example of modelling framework. Probably the 
most relevant example of implementation and concrete application of a modelling framework 

in the United States is the case of the United States Department of Agriculture as national 

intersection point of all information at basin level. As typical for an institution that worked 
long time at basin level, the USDA's Agricultural Resource Services (ARS) had more than 
100 models for a variety of purposes that had been developed on a case-by-case basis, using 
the technology that was available at the time of development (Gonsalves, 2007). As it 
happened in Europe, when at a certain point the policy focus was re-oriented towards IWRM, 

the USDA's Agricultural Resource Services started facing the integration problem in terms of 

management, performances and financial issues with a disorganised amount of knowledge; 
difficult and expensive to maintain and to adapt to the needs of the new policy. Efforts to edit 
and improve the models making them interoperable on an ad-hoc basis were complicated. The 
result of the reflection USDA's Agricultural Resource Services to address these problems 
were that a new object-modelling system that supported Web-based team communication was 

needed with the series of features such as issue tracking, user access permissions, 

collaborative code and document management. All this system had to take into account the 
need for supporting USDA's existing systems and not losing any of the knowledge that was 

collected during many year of work concerning algorithms, functions, modelling etc. all 

related to water resource management. Besides, one of the major requirements of the system 

was that it had to be easily installed and maintained.

54



Therefore, a modelling framework called OMS (object modelling system) was implemented 

in a platform consisting of an open-source development tools from Sun Microsystems 
(NetBeans, www.netbeans.org) supported by collaborative development and distributed 
computing software such as Intlands CodeBeamer (www.intland.com) and Subversion from 
Collab_net (www.open.collab.net). The system developed allowed ARS to reach the level of 

collaboration fundamental for an institution working with the IWRM policies. In particular the 

system was able to mange up to 300 simultaneous software development projects at the same 
time. More than having just a framework for modelling integration with a step forward they 

developed an integrated development infrastructure allowing OMS developers to collaborate, 
share knowledge and work effectively as a team from different research institutions and/or 

locations.

It is important to highlight that it is not just about developers working on code, there are also 

data analysts and sector experts, as for instance on geospatial processing, fixing the 
parameters of the models based on data sets such as elevation and vegetation layers. Some of 
them are pure scientists who are not trained in coding. The aim of the system is to support all 
of them.
We noticed that one of the first real concrete implementations of the IWRM management 

requirements has been developed using open and cross-platform technologies such as JAVA 

and NetBeans. In fact efforts were made to develop scientific models and migrate to open and 

cross platform technologies as described also in some cases in the literature review.
While the conceptual approach of the OpenMI is the most complete response to integration 

problems that allows existing models and tools to be linked together, approach of the USDA's 

ARS is a practical response to a concrete integration problem that allows a continuous and 

dynamic development focusing more on the content of the scientific models than on the time 
consuming IT side.

Besides, application of theoretical concepts to practise underlines the fact that "closed 
software" (typically commercial software) are per se obviously less oriented towards 
integration. When such an extensive integration exercise as the one needed in the case of 

IWRM is undertaken, it is probably more economical and scientific to develop open source 

software. Also, the degree of ad-hoc solutions needed is so high that it would not be possible

55

http://www.netbeans.org
http://www.intland.com
http://www.open.collab.net


for a single private entity (firm, institution, etc.) to develop software able to encounter all the 

functionalities needed for IWRM. Finally, the degree of standardisation in the actual IT 
market in the field is not enough to easily develop automatic integration of different 

commercial closed solutions.
Another point in favour of this solution is that the OMS was also successfully used for 

applications in Europe in line with the EU Water Framework Directive (Kralisch et al., 2005).

3.3 Software technologies and system architecture

An information system supporting decisions for IWBM encompasses a wide-range of 
software applications with a precise morphology. The core part is constituted by a series of 

analytical models and for the information system to work, these models need to be connected 
to a data layer, typically a database management system. If the data layer can be considered as 
the roots of the tree, the core applications the trunk, towards the higher superficial level the 
branches are represented by the graphical services and spatial analysis models, typically 
defined as Geographic Information Systems. The different software components which fit in 

an overall framework (as previously described) are developed to allow component 

interoperability. This structure allows the information system to become an advanced decision 
system across a wide range of actors (users, managers, etc.) involved in the "life" of the 

catchment area. An oveiview of software components and related technologies typically 
included and needed in a hydroinformatics information system is given in following sections.

3.3.1 Database Management Systems

The Data Base Management System (DBMS) is the foundation of almost every modern 

business information system. Virtually every administrative process in business, science or 
government relies on a data base. A database is a reflection of the world, a reflection governed 

by the beliefs, axioms, and perspectives of the database designers and implementers as well as

56



by the context of the application at hand. As such, a database inherently encapsulates a view 

of what should be modelled and represented, as well as the relationships between the real- 

world and the modelled data entities. The decision on what should be modelled and how such 

a model relates to a real world entity is in the hands of the database designer. This 
characteristic of a somewhat subjective human perspective is likely not to become an obstacle 
if a single coherent database design and implementation process is carried out. In such a 
scenario, the application and the database according to which it was tailored comprise an 

internally consistent reflection of the real world, thus providing a consistent ontology and 

semantics framework. This situation changes radically when attempting to utilise different 
databases that were designed and implemented in several different contexts. While each of 

these databases is internally a consistent reflection of the world, this consistency is not 

maintained between the databases due to a lack of a common agreement on the meaning and 
the representation of data. In such scenarios, semantic heterogeneity is often inevitable.

From the informatics point of view, a data base management system is a veiy complex piece 

of system software. A single DBMS can manage multiple data bases, each one usually 
consisting of many different tables full of data. The DBMS includes mechanisms for 
application programs to store, retrieve and modify this data and also allows users to query it 
interactively to answer specific questions. Specialists, known as Data Base Administrators 
(DBAs) control the operation of the DBMS and are responsible for the creation of new data 

bases and the definition of the table structures used to store data.

In the case of this research the focus is on spatial databases. A spatial database can be defined 
as a collection of spatially referenced data that acts as a model of reality. The concept of GIS 

and spatial databases are strongly related. The actual trend of spatial databases is related to the 

distributed geospatial infrastructure paradigm which continues to emerge as a powerful and 

versatile framework, making spatial database systems more distributed. Moreover, with the 

increased number and availability of spatial databases, the incentive to utilize various different 

data sources is greater than ever. Semantic heterogeneity and its consequential ambiguities are 

therefore almost inevitable.
In particular, addressing water resources management issues, there is a need to focus on 
reliable and adequate environmental data. What is needed is a careful approach to database

57



design that goes through the identification of data requirements. Some of the information 

parameters needed specifically for the water resources management are shown in table 3.1 for 

instance for the case of information systems for water supply and for wastewater 
management.

Acquisition Treatment Delivery Support

Water Flows, 
Water Balances

Operational
records

System flow 
and pressure

Financial
database

Water quality
Reporting
records Water quality

Engineering
records

Water sales
Maintenance
records

System 
inventory and 
maintenance

Administrative
records

Table 3.1: Example of data needed for Information Systems for water resources management.

As shown in table 3.1, parameters of the IS cover a wide array of fields or disciplines related 
to water resources management. A well-designed database for WRM should enable tire water 
manager or the decision-maker to have coherent, clear, and concise information about the 
water sector in general.

In particular, concerning data required for water quantity and quality analysis and 
management in watersheds typically include:

• Climatic factors such as temperature, wind, solar radiation, and rainfall;

• Geomorphic and land-use information such as slopes, drainage density, geology, soils, 
land covers, channel cross-sections, and groundwater depths;

• Hydrologic data that include flows, water levels, depths, and velocities;

58



• Point pollutant loads from point sources such as large industries, cities, and 
wastewater treatment plants that discharge their wastes into surface waters at a specific 

locations;

• Diffuse loads from nonpoint sources that enter surface waters along an entire stretch of 

the river;

• Ecological attributes including an inventory of existing habitats and their condition;

• Water quantity and quality demands over time and space that in some cases can be 
compatible and in other cases conflicting; and

• Information on the institutional framework in which management decisions are to be 

made, such as laws pertaining to the allocation of water to various users and the 

various standards set by public health and environmental agencies.

One important definition that we will look into this research is the difference between 

Relational DBMS and Object DBMS. A Relational database management system maintains a 

set of separate, related files (tables), but combines data elements from the files for queries and 

reports when required. The concept was developed in the early 1970s to accommodate users' 
ad hoc requests for selected data. The most used DBMS now in the market are relational 
database management system, including Oracle, DB2, SQL Server, MySQL, etc.
Alternatively object database management systems are closely aligned with object-oriented 
programming languages and enable the data in the objects to be persistently stored without 

requiring conversion to relational database logic and structures.

3.3.2 Modelling theory

The concept of modelling and models, being central to this work, had already to be 

approached in the previous sections of the thesis, meanwhile this paragraph will be 

complementary and specify some of the concepts already presented.

59



Models are of central importance in many scientific contexts and in particular in 
environmental sciences where highly complex natural phenomena are difficult to be 
monitored and need to be modelled for understanding and representation. In the literature 

review, there is already an extensive list of possible water quality and quantity models that 

can be integrated in an information system for IWBM. Concerning our research, a model can 
refer to many different kinds of tools to be integrated in the information system.

From a theoretical point of view, we can first define the real meaning of what we intend as 
model and modelling and the relationships with the various related software tools. In modern 

logic an abstract model is a theoretical construct that represents something, with a set of 
variables and a set of logical and quantitative relationships between them (Frigg, 2006). 

Khatibi (2002), for instance, argues that “a model is the dataset of a physical system described 

by a particular modelling technique”. This definition, probably veiy similar to the definition 
of algorithm, identifies a model as a mathematical description of a process that together with a 
set of particular parameters fit the description of a particular physical system to represent. On 
the other hand, the modelling technique is just the mathematical description of that process in 
general, its conceptual abstraction.

Researchers studying catchment are used to the difference between formal models of some 

process in general and the application of that model representing a particular natural 
phenomenon. The ability to make this distinction allows modellers to choose some set of 
parameters to fit the general model to a natural system (Harvey, 2002).

In managing catchment, for instance, a formal unit hydrograph model of the excess rainfall- 

runoff transformation represents this natural process as linear, time invariant, and independent 

from spatial distribution of rainfall (Shaw, 1994). To customise the model for the relationship 

between excess rainfall and runoff in a particular catchment, it is necessaiy to provide 
parameters defining the shape of the unit hydrograph.

In principle, as one of the kind of tools required for the information systems, models have to 

fit all general requirements already defined as integrability, extensibility, portability and open 
standards based. Therefore, the real topic of this research is not related to modelling per se but 

more precisely to models integration, which is consequently the central requirement to 

analyse. Given that even a single simple model includes a set of different sub-processes

60



(operations), the distinction between a single model and the point at which a model is the 

result of the integration of two or more models can not be other than subjective. Hence, in 

theory the distinction between models and integrated models seems to be meaningless. As 
presented in several examples in the literature review and in previous chapters, software for 

water resources management and modelling (the correct term would be modelling framework 

or environment) often embed a series of different models towards a certain objective. As it has 

been argued, these software are not designed to be integrated or interoperated with other 
models. Therefore, in this case the definition of the process of integration of different models 
becomes useful.
Moreover, the process of integration of two (or more) of such existing models from the 

hydro informatics point of view is conceptually and practically different from designing and 
implementing a single model embedding two (or more) sub-processes.

To clarify this concept, considering a phenomenon called A happening in a water catchment 
(i.e. rainfall) and a phenomenon called B (i.e. runoff), the phenomenon C (rainfall-runoff) is 
the result of A+B. We can have a software model for A and a separated software model for B, 

integrating the two, we take the output of A and use it as input for B the output of B will be 

the output of A+B = C. In the same way we can have (as it is often the case for rainfall-runoff 
models) a single software model for the phenomenon C. The main difference between the two 

approaches (apart from possible algorithm simplifications) from the IT point of view is the 
work needed to make the output of A compatible as input of B.
In particular, in environmental modelling, given the complexity of the process to be 
represented by the modelling exercise, model development is always at a certain level a model 
integration issue. Besides, integration can not be static. For every particular purpose of the 

information system design, a different combination of models would be required. This can 

happen not only for the purpose of adapting an information system to different water basins, 

but in the framework of different activities for the same basin.
Often in IWBM more than just water quality and quantity models, other kind of 

environmental and socio-economical models are required. Nevertheless the case study 

approached in our research will be specifically water quantity oriented.

61



3.3.3 Geographic data management and information system

Geographic data play an important role in the framework of information systems oriented to 
environmental data management. In the European context, the directive of the European 
Union on Infrastructure for Spatial Information called INSPIRE (INSPIRE Directive 

2007/2/EC), states that: "Community policy on the environment must aim at a high level of 

protection taking into account the diversity of situations in the various regions of the 
Community. Moreover, information, including spatial information, is needed for the 
formulation and implementation of this policy and other Community policies, which must 
integrate environmental protection requirements. In order to bring about such integration, it is 

necessary to establish a measure of coordination between the users and providers of the 
information so that information and knowledge from different sectors can be combined." This 

directive not only highlights the importance of the usefulness of spatial information for 

environmental protection but also defines the spatial information as fundamental. Therefore, 
emphasis has been given for standardisation of data management procedures at European 
level.
On the other side of the Atlantic, in the United States, a Federal Directive (USA, Executive 
Order 12906), with a more concrete approach, requires directly the development of a National 

Spatial Data Infrastructure defined as "the technologies, policies, and people necessary to 

promote sharing of geospatial data throughout all levels of government, the private and non­
profit sectors, and the academic community". With an innovative and open minded approach, 

the directive states that sharing geographic data among all users could produce significant 
savings for data collection and use and enhance decision making. The final goal of all these 

govermnental policy initiatives is harmonising to reduce duplication efforts among agencies 

and institutions by improving quality and reducing costs related to geographic information, to 

make geographic data more accessible to the public and thereby increasing the benefits of 
using available data.

In the private sector, management of geographic data has seen one of the biggest joint 

standardisation initiatives of the software industry, the Open Geospatial Consortium (OGC)

62



(www.openspatial.org). OGC is an international industry consortium of 352 companies, 

government agencies and universities participating in a consensus process to develop publicly 

available interface specifications. It is the most important effort at global level to standardise 

the use of geographic information in the software industiy and in particular the standardisation 

of geographic information system technology (GIS). The OGC uses as definition for GIS the 

definition of the Association for Geographic Information (AGI) glossary (www.agi.org.uk/) 
affirming that a Geographic Information System is "A computer system for capturing, storing, 

checking, integrating, manipulating, analyzing and displaying data related to positions on the 

Earth’s surface".

Citing one of the many existing definitions. Geographic Information Systems are databases 
that have a spatial component to the storage and processing of the data. Hence, they have the 

potential to both store and create map like products. They also offer the potential for 
performing multiple analyses or evaluations of scenarios such as model simulations (Lyon, 
2003). Typically, a Geographical Information System (or Spatial Information System) is used 

for handling different kinds of maps at the same time bringing complete thematic information 

to the end user. These might be represented as several different layers where each layer holds 
data about a particular kind of feature. Each feature is linked to a position on the graphical 

image of a map.
From the IT point of view there are many different ways/technologies to deal with data. In 

general, to define geographical information in a very simple way, it is about data that can be 
stored in one or multiple files, each file containing a set of a reference to a coordinate system. 

The reference is used to define the position for each data entity. Each entity has one or 
multiple features which are also stored, typically as attributes.
When a database of individual files is developed and the combined files may contain 
characteristics or attributes such as, in the case of hydroinfonnatics, water or soil chemical 
sampling monitoring information, ownership, time series information, river locations, 

topography, management procedures, point sources, and any other information that can be 

collected and have a reason to be stored for the analysis, modelling, representation, etc.

63

http://www.openspatial.org
http://www.agi.org.uk/


Each variable or set of variables can be included in a layer. This layer can then communicate 
to the applications, for instance with the kinds of data mentioned above, on the characteristics 

of water resources or watersheds.

Being not just a database with geo-referenced data but a complex information system per se, 
an important capability of GIS is the fact that it can directly be interfaced with models for 
simulation of physical, chemical, and biological processes. The models required should have 
the capability and the need to take spatial and/or multiple file or “layer” data as input to 
computations and to return results also considering the spatial reference. Therefore, GIS can 
potentially be used both with deterministic or complex models based on algorithms simulating 
processes and it can also be interfaced with statistical models. The condition in both cases is 

that data have spatial reference.
In GIS usually layers (fig. 3.1) of heterogeneous data can be structured in a way that it is 
possible to perfonn statistical analysis. In general these data are used for town planning, local 
authority and public utility management, environmental, resource management, engineering, 

business, marketing, and distribution (Maguire et al., 1991).

Spatial data

End User

Attribute data

Graphical User Interface

OPERATING SYSTEM

GRAPHICS SYSTEM

Application Program 
Interface

COMPUTER

DBMS

Figure 3.1: the physical component of a GIS according to AGI, Association for Geographical 

Information (http://www.agi.org.uk/).

According to ESRI (1998) a GIS is a collection of computer hardware, software, and 

geographic data for capturing, managing, analyzing, and displaying all forms of 

geographically referenced information. Besides ESRI states that with a geographic

64

http://www.agi.org.uk/


information system, it is possible to link information (attributes) to location data, such as 
people to addresses, buildings to parcels, or streets within a network. It is then possible “to 
layer” the information to give a better understanding of how it all works together. The 
information can be quickly visualised if right combination of layers are chosen.
Following ESRI definition, a GIS can provide three different ways of supporting the problem­

solving process:

1. The Database View: A GIS can be used as Graphical User Interface for a geographic 
database or geo-database. It is itself an "Information System for Geography".

2. The Map View: A GIS is a series of improved maps and other views that show 
features and feature relationships on the earth's surface. Maps of the underlying 

geographic information can be integrated in different layers and used as "windows into 
the database" to support queries, analysis, and editing of the information.

3. The Model View: A GIS is a set of information tools that derive new geographic 
datasets from existing datasets. These geoprocessing functions take information from 
existing datasets, apply analytic functions, and write results into new derived datasets.

All the three applications of a GIS are fundamental to an information system for IWBM. 

Combining data and applying modelling algorithms, the decision support system will support 
mangers and decision makers.

Concerning the particular scope of our research, GIS are particularly relevant and have a 

rapidly increasing role in the field of hydrology and water resources development (Lyon, 
2003).

A number of GIS applications to water resources and watersheds have been completed over 

the years. Many of these efforts have resulted from the need to address difficult-to-achieve 

project goals. GIS applications are applied due to the variability of the resources over time 
and space, and the number of variables that must be evaluated.
GIS links geographic information (where things are) with descriptive information (what things 
are). Unlike a flat paper map, where "what you see is what you get," a GIS can present many 

layers of different information (Maidment, 2002).

65



GIS also allows for advanced analysis and modelling methods to be implemented in support 

of research efforts. The use of simulations models provides detail on water movement and 

transport of materials. GIS databases and technologies allow for optimization of model 
results. The running of model scenarios supplies detailed information for the development of 

plans, management decisions, and informed leadership. Repetitive processing facilitates 

predictions and forecasting of events. Certain characteristics of and applications in water 

resources research led themselves to GIS databases and GIS analyses. Water flows downhill 

and supplies a directional characteristic to the modelling efforts. The flow can be determined 
by gauging, and the simulations of water discharge and water quality at a gauge can be 
compared with the field measured value at the gauge point.

The history of watershed and water resources research has included many models that utilize 
spatial data. These “traditional” models incorporate data with a spatial basis or the 

components of spatially averaged data. This is because applications have been dictated by 
needs, and models exhibit sensitivity to these variables. The future promises a variety of 
enhanced applications of GIS and allied technologies for water resources and watershed 
research. We will see better integration of data within databases, and the advent of more uses 

of three-dimensional visualization of data. Databases will become available in greater 
numbers and detail, and will be procured through the Internet and the World Wide Web.

The advantage of using GIS for watershed studies has been recognised (Lyon, 2003). It is 

evident that the capabilities of GIS are potentially valuable in a number of efforts. Over time 
the need for information resulted in the development of appropriate algorithms to facilitate the 
utility of GIS and statistical or deterministic models. Traditional modelling and analysis 
preceded the advent of GIS and many efforts are ongoing to join the approaches and optimise 
their capabilities.

3.3.4 Object oriented programming language

Last but not the least, the selection of programming language is a fundamental step to 

undertake for all hydroinformatics research and in this case for the software technologies of an

66



IWBM. Research on programming languages is more than just a part of informatics and can 

be approached as a science on its own in terms of importance in the scientific and business 

world. Consequently the relevant scientific literature is vast and extremely complex. Here we 
expose some of the concepts relevant to our research that have been analysed. The 
programming language can be seen as the element able to glue and communicate all the tools 
and technologies already presented. Besides, as core element, the choice of the programming 

language is influenced by the information system requirements. The general requirements we 
identified earlier are: integrability, extensibility, portability and open standards based. In 

general there are numerous examples in the scientific and technical literature using object 

oriented logic for modelling and information management in environmental sciences. 
Focusing on our research, for the particular case of hydroinformatics, it has been 

demonstrated in a series of case studies, as for instance in Spanou and Chen (2000, 2001 and 
2002), in Maidment (Maidment et al., 2002), etc., that object oriented approaches offer great 
benefit to river water quality and catchment hydrological modelling.

It is also straightforward to support from a conceptual point of view the choice of object 
oriented logic for an information system dedicated to water resources management and 
modelling. We can simply argue that in informatics the comparison between models and 

object logic is quite straightforward. For instance in Java, a class is a blueprint or prototype 
from which objects are created. In object oriented terms, a particular model is an instance (or 
object) of the class of objects known as models. An object is a software bundle of related state 

and behaviour. Software objects are often used to model the real-world objects, giving a more 

direct and easy to understand structure than for instance the procedural programming where 
statements are written in the form of a batch.

In the concrete implementation process of the information systems, this parallelism between 

objects and models demonstrates to be even stronger, as simple "models" can be directly 

implemented as single objects. A set of objects can also be seen as more complex model. In 

terms of object oriented language during a simulation, a running instance of the model 
implementation exists.

This strong conceptual and concrete parallelism between models intended as in environmental 

sciences and objects of in object oriented language justifies on one hand the utilisation of this

67



technologies for water catchment management in our IS and on the other hand the fact that we 
consider at the same level a modelling tool or a modelling application. Particularly interesting 

is the approach of Keogh and Giannini (2005), which explain the object oriented logic 

beginning from a point of view which is particularly relevant to environmental modelling: 
"how we see the world". They argue that the real world is made of objects and objects must be 
represented.

The fundamental concepts that are related to object oriented programming languages and that 

are strictly related to the history of then* development have been identified by Armstrong 

(2006). In a the research entitled “The Quarks of Object-Oriented Development” she analyses 
nearly 40 years of computing literature in order to find a number of quarks, or fundamental 
concepts, common to the strong majority of object oriented languages and to their definitions . 
They are the following:

• Class, a class defines the abstract characteristics of an object, including the object’s 
characteristics (defined as its attributes, fields or properties) and the object's 
behaviours

• Object, a particular instance of a class.

• Method, an object's capability.

• Message passing, the process by which an object sends data to another object or asks 
the other object to invoke a method. Also known to other programming languages as 
interfacing.

• Inheritance is a feature of a subclass, a more specialised version of a class, which 
inherit attributes and behaviours from their parent classes, and can introduce their 
own.

• Multiple inheritance is the inheritance from more than one parent class, neither of 
these ancestors being an ancestor of the other.

• Encapsulation, which conceals the functional details of a class from objects that send 

messages to it. Encapsulation is achieved by specifying which classes may use the

68



members of an object. The result is that each object exposes to any class a certain 

interface — those members accessible to that class.

• Abstraction, which is simplifying complex reality by modelling classes appropriate to 
the problem, and working at the most appropriate level of inheritance for a given 

aspect of the problem.

• Polymorphism, which allows treating derived class members just like their parent 
class's members. More precisely, Polymorphism in object-oriented programming is the 
ability of objects belonging to different data types to respond to method calls of 
methods of the same name, each one according to an appropriate type-specific 

behaviour.

These concepts are not common to all object oriented programming languages, but most of 
them apply to the major languages as Eiffel, C++, C#, Java (Joyner, 1999).

3.4 Human Interface and the Management of Information

Management of information systems became an overall challenge with the advent of new 
technologies. Being information per se complex to be managed, management of the 
information systems area is even more complex and unpredictable. A great impact on user's 
effectiveness of management of information systems is related with the efficiency of the 
"human - computer interface". According to one of the first definitions in modern computing 

(Shneiderman, 1986), the human - computer interface refers to "the way a person experiences 

the computer, its application programmes, hardware components, output devices and 
functionality. It includes all aspects of the human's experience from the obvious ones of 
screen layout and selection options as well as input and output devices, reliability and 

accessibility."

It is then obvious that technology and software development, nowadays ubiquitous, come with 

the need to increase human user effectiveness of information management. According to 

Barrier (2002), organisations are beginning to understand that information systems are not just

69



a monolithic and static tool that improves efficiency but a dynamic and heterogeneous 

instrument which need to be managed.
After the first phase of development of IT (in terms of innovation management principles), it 
became anti-economic to accept pre-conceived components into information systems without 
analysing their effectiveness, feasibility and efficiency and determining in advance the 

requirements. In fact, given certain characteristic of the software and IS market and of 

organisations' approach to information technologies, it happened and happens often even 

nowadays that end users are adapting their skills and workflow to features of information 
systems. This is true above all for the most sensitive part of the human- computer interface, 
the Graphical User Interface (GUI). This is often the cause for a steep learning curve for the 

end users and consequently the need for a strong effort to adapt and time consuming training 
activities. In the field of IWBM, where many different organisations (Ministries, Agencies, 

utilities, users, etc.) are involved, GUI implies a great challenge regarding data management. 
If we also follow the participative approach, as one of the principle of the IWRM (Dublin, 
1992), at consultation level we should allow the greatest number of people to access the 
information system for the largest number of purposes and in the widest number of contexts. 
In general, the list of queries regarding the physical requirements for human - computer 

interfacing could be infinite. The common solution in designing requires that organisation 

must determine in advance IS features.
The use of human Interface for management of information is particularly relevant to this 
research. West (2000) states that GIS are powerful information management systems 

particularly suitable for decision support and end-user application. However, complexity in 

data accessibility, cartographic principles and analysis do not make them fully user friendly. 
The solution is to address a series of mitigation measures in order to increase and simplify the 

usability of the GIS interface always in line with identified requirements.

70



3.5 Open information technologies

3.5.1 Open source technologies

In the era of information technology, the development of open source has made rapid 

“movement” and playing even greater role day by day, directly and indirectly, a bigger portion 

of the IT market. The 2007 report from IDC, one of the biggest software market analyst 
companies in the world (www.idc.com), affirms that open source is one of the biggest, most 
important trends in software in the last twenty years "and it's only gaining momentum". A 
senior analyst from IDC working on global software research argues that open source is used 
in most of all organizations worldwide and includes hundreds of thousands of projects (Gillen, 
2009). The study, including thousands of developers from 116 countries, found that open 
source is in production in over half of the organizations surveyed and in use in 71 % of them. 

Also, despite the several open source licenses in existence, IDC affirms that only three kinds 
of revenue models work with vendors and in the market: the software revenue model, the 
public collective model and the service broker model. Besides, after the 2009 world economy 
recession, the impact of open source and free software on the market is expected to grow even 

more.

SUN Microsystems (www.sun.com), one of the biggest IT companies promoting open 

standards, focuses the definition of open standards and openness to the impact on the market. 
They argue that the best test for "openness" for a technical standard is its ability to promote 
competing and interoperable implementations. Also supported by SUN is the definition of 
Ghosh (2005) which, in its paper on economic analysis of open standards; affirms that "open 
standards should be defined in terms of a desired economic effect: supporting full competition 

in the marketplace for suppliers of a technology and related products and services". A 

standard can be defined as open only if more than one company (and its partners) can 

implement it freely. In theory, as affirmed by Ghosh, this openness should be able to support 

full competition.

71

http://www.idc.com
http://www.sun.com


To better define, avoid confusion on open standards and foster the true development of open 

standards, SUN created an open standards checklist. This list has a series of pro-competitive 

criteria to address technical, business and legal components of interoperability, with a focus 
on the final product. This check list is an interesting guidance in this quite complex world 
which is located in the border line between private and public interests. In fact, often private 
companies, probably with a shorter term vision, can not afford or do not perceive the real 

interest of open standards, therefore to set up clear boundaries can be veiy useful.

In the SUN check list, two kinds of issues are important at same level in determining a truly 

an open standard technical specification: "how it is created and managed" and "how it can be 
used". From SUN check list for open standards (SUN, 2007):

Creation and Management of an Open Standard

• Its development and management process must be collaborative and democratic:

o Participation must be accessible to all those who wish to participate and can 
meet fair and reasonable criteria imposed by the organization under which it is 
developed and managed.

o The processes must be documented and, through a known method, can be 
changed through input from all participants.

o The process must be based on formal and binding commitments for the 

disclosure and licensing of intellectual property rights.

o Development and management should strive for consensus, and an appeals 

process must be clearly outlined.

o The standard specification must be open to extensive public review at least 

once in its life-cycle, with comments duly discussed and acted upon, if 

required.

72



Use and Licensing of an Open Standard

• The standard must describe an interface, not an implementation, and the industry must 

be capable of creating multiple, competing implementations to the interface described 

in the standard without undue or restrictive constraints. Interfaces include APIs, 
protocols, schemas, data formats and their encoding.

• The standard must not contain any proprietary "hooks" that create a technical or 
economic barriers

• Faithful implementations of the standard must interoperate. Interoperability means 

the ability of a computer program to communicate and exchange information with 
other computer programs and mutually to use the information which has been 
exchanged. This includes the ability to use, convert, or exchange file formats, 
protocols, schemas, interface information or conventions, so as to permit the computer 
program to work with other computer programs and users in all the ways in which they 
are intended to function.

• It must be permissible for anyone to copy, distribute and read the standard for a 
nominal fee, or even no fee. If there is a fee, it must be low enough to not preclude 
widespread use.

• It must be possible for anyone to obtam free (no royalties or fees; also known as 

"royalty free"), worldwide, non-exclusive and perpetual licenses to all essential patent 

claims to make, use and sell products based on the standard. The only exceptions are 

terminations per the reciprocity and defensive suspension terms outlined below. 
Essential patent claims include pending, unpublished patents, published patents, and 
patent applications. The license is only for the exact scope of the standard in question.

o May be conditioned only on reciprocal licenses to any of licensees’ patent 
claims essential to practice that standard (also known as a reciprocity clause) 

o May be terminated as to any licensee who sues the licensor or any other 

licensee for infringement of patent claims essential to practice that standard 
(also known as a "defensive suspension" clause 

o The same licensing terms are available to every potential licensor

73



The licensing terms of an open standards must not preclude implementations of that 

standard under open source licensing terms or restricted licensing terms.

Schmidt & Porter (2001) argued that the Open Source can be successful within communities 

with unresolved software needs, being in this case the scientific community, as one of the 
most important examples. They contend that the market of the “scientific software” is not 
attractive enough, in terms of dimension and potentiality, for the software industiy, which 
could be true in general. Besides considering the fact that the most part of “scientific 
software” is developed in academic projects, which means in general within organization 
supported by public funds, it is understandable that the “closed software” industry is rather 

careful in approaching that market.

The business model of software industiy, essentially based on the “software as a product with 
a price”, is not easily well-matching with the business model of open source software. 

Therefore, with regards to requirements of open standards in the field of Integrated Water 
Basin Management, which is a niche market, probably no private company or other 

organization could provide all of the specialist knowledge required for the variety of software 

tools and technologies that are required for these software development projects.
Concerning the development of open standards in pure hydroinformatics application as in 
water quantity and water quality models, we are still at the beginning of the dedicated research 
but an increasing interest in the last ten years is recognisable.
Even if standard for hydroinformatics do not yet exist, most of the software components 

needed for the information system have already their open standard reference, as for instance 

the Open Geospatial Consortium for geospatial information.
This is why we consider fundamental for our integration exercise to choose and use the best 

existing open standards for the components to be integrated in the IS.

74



3.5.1 Open source development trends and the research community

Officially, the first free and open source project begun with the GNU project (www.gnu.org) 
in the early 80’s. According to von Krogh and Spaetha (2007), from its beginning the open 

source developers’ community has triggered a vast volume of research. They defines a list of 

characteristics that made the phenomenon successful and worth of examination. In particular, 
we are interested on what they argue about the open source developers’ community and the 
innovation process and its similarity with scientific community. Concerning the first, they 

support that open source software developers frequently engage in a dialog on its functioning 
(it also has its own research community). Concerning the innovation process in open source 
software resembles knowledge production in science (in many instances, open source 

software is an output of research processes). Therefore there is a strongest connection in the 

modus operandi between teams of open source developers and scientific research 
communities. The software development virtual team around open source growths in a similar 
way and for similar reasons of the virtual scientific communities, where several researchers 
interested in a particular phenomenon resolve a question or problem sharing their experiences 
and their findings. Talking in particular about the specific subject of hydroinformatics, 

another similarity between the two development paths is that it takes a long time to filter a 

software development project into practice, if it ever breaks through at all (Harvey, 2002). 
This happens not only because the hydroinformatics software market is extremely limited. 
Two other reasons, we can tiy to address, are that software produced by research groups are in 

general closed source and standalone, and unable to be integrated with the systems of general 
use in the industiy. Therefore, obstacles of entiy in the software market are high, so that much 

of this software never succeeds the stage of being experimentation, even if binaries are 

distributed at no cost. This suggests that in hydroinformatics it remains difficult to utilise the 
results of other scientific research projects and often similar models are implemented in 
software programs many times with a great waste of resources.

75

http://www.gnu.org


3.5.2 Open systems and interoperability

The Carnegie Mellon Software Engineering Institute (http://www.sei.cmu.edu/) states that 
Open Systems promise the faster and more economical development of high-quality systems 

that are technologically up-to-date. An open systems approach is important to improve 
acquisition efficiency and system interoperability. In the rapidly changing world of software 

acquisition, open systems continue to grow in importance. There are many definitions of open 

systems. One of the most quoted is from the Open Systems Joint Task Force of the USA 

Department of Defence: "An open system is a system that implements sufficient open 
specifications for interfaces, services, and supporting formats to enable properly engineered 
components to be utilised across a wide range of systems with minimal changes, to 
interoperate with other components on local and remote systems, and to interact with users in 
a style that facilitates portability". From this definition it is possible to see that interoperability 

and open systems are strongly related.
This definition provides a good high-level vision of what open systems are all about. For a 

more operational definition, we can turn to this one.
An open system is a collection of interacting software, hardware, and human components

• designed to satisfy stated needs
• with interface specifications of its components that are

o fully defined 
o available to the public 
o maintained according to group consensus

• in which the implementations of the components conform to the interface 

specifications

For our purpose it could be defined as an open source operating system, typically composed 

of coordinated modular components from a number of sources and not reliant upon any 

proprietary elements. Characteristics of open systems include the exposure of the source code, 

which is thus available for understanding and possible modification and improvement;

76

http://www.sei.cmu.edu/


portability, which allows the system to be used in a variety of enviromnents, and 
interoperability, which allows the system to function with other systems. The interoperability 

in this context could be referred as the ability of the components to work together in the 

system. For large systems, whose evolution is necessarily incremental, component 
interoperability is a key requirement. Openness appears to be a fundamental prerequisite for 
interoperability. Integration and interoperability, with the priorities defined in the IWRM 
policy (Dublin, 1992) and in the European Water Framework Directive (Wasson, 2003 and 

Uslander, 2005), can be included among the most important topics of research in 

hydroinformatics. This is demonstrated by the increasing number of collaborative projects 
being undertaken in many fields of hydroinformatics, one of the most important already 
mentioned is the HarmonIT project financed by the Framework Programme of the European 
Commission (Gijsbers, 2002) which has released its standard, the OpenMI (Gijsbers, 2004). 
This initiative is far for being considered concluded as still much work is needed to get to 

stable standards.
On the other hand, the growing formation of strategic links between otherwise competing 
institutions, as for instance the Open Modelling System (OMS) (Goede, 2005), mentioned in 
the literature review, is another confirmation. The freedom gamed by utilising the open 
standard model, could accelerate the development, supporting a more rapid expansion in the 
market. It is probably complicated to foster this sort of cooperative approach in a competitive 
marketplace, but with the support of the policy makers funding, we reckon that this could be 

achieved.
In conclusion, according to the IWRM approach and principles, water models should work in 
a bigger framework dealing with other components of an infonnation system. Hence an open 

standard for interoperability or integration of hydroinformatics should be dealing with existing 

and stable open standards. Not having still a stable hydroinformatics open standard, our focus 

will be oriented towards interoperability in hydroinformatics of existing open standards and 

related software components for IWBM.

77



CHAPTER IV

4 SYSTEM DESIGN

78



4.1 Summary of the chapter

Following the general analysis of the technologies relevant to this research earned out in the 

previous chapter, this chapter intends to illustrate in detail the choices made in designing the 
structure of the information system and in selecting its different components. After this 
introduction the chapter continues with the description of the information system three-tier 
architecture. Subsequently to the software architecture design, the chapter presents the 
analysis of the “glue” of the components of the structure: the core programming language. 

Finally the following paragraphs focus on the elements to be interconnected that are presented 

and analysed. Particular attention is given to the description of the language used for the data 
management layer and to the management layer itself, defined as the Geo-database.

4.2 Information system design

The development of information technology has a high impact on human activities and 

development. Poor or wrong information are followed by wrong results of the analysis tools, 

which could bring the policy makers to inappropriate policies or the decision makers and the 
managers to natural resources mismanagement. Therefore information management has also 
environmental, governmental and socio-economic aspects. Water resources management is a 
complex problem involving many variables and as a result combinations of many variables 

need to be monitored and interpreted with the right models and procedures. An information 

system has the task to collect, analyse and process existing information and present it to the 
decision-maker level. It is a dynamic set of tools dealing with information and information 

processes. The methodology and technology analysis is approached here considering that 
integrated water basin management asks for integrated analysis needing integrated 

information and modelling systems. The different tools integrated in the information system 

have to interoperate exchanging data through a multithreaded architecture where an instance 

of a linkable component handle data requests. If necessary, components can start their own 

computing process to produce the requested data. As presented in chapter 3, openness and

79



open standard technologies have been the central thread to create the information system, the 
designing of the software architecture has been the structure that supported the development 
towards the objectives of this implementation.

An information system for IWBM results then in a data exchange and analysis environment, 
embedding software components storing, treating and presenting information. In order for 

such a complex collection of models, databases and processors to function both as individual 
components and as part of an integrated framework, an object-oriented architecture with 
simple and well-defined interfaces is required. The procedure followed to transform our 

general idea of integrated water basin management and the deriving requirements in an 
information system has been organised through the following stages:

1. Analysis and identification of current issue in hydroinformatics research for IWRM 
(previous chapters);

2. Analysis of past and ongoing related projects (previous chapters);
3. Analysis of the state of the art of relevant technologies (previous chapters);
4. Design of the software architecture of the information system;

5. Identification of the different categories of components or software tools making part 
of the entire system;

6. Selection of the existing open standard technologies
7. Identification of the software components to be integrated in the system

8. Set up interconnections between the different technologies to be implemented in the 
pilot information system.

9. Testing the pilot through a case study.

The sixth and the seventh points are strictly interdependent and they have been carried out 
together.

80



4.3 System Architecture

Software architecture forms the backbone for building successful software-intensive systems. 
Architecture is fundamental for system's quality attributes such as performance, extensibility 

or reliability. As defined by the Institute of Electrical and Electronics Engineers (IEEE) 

Recommended Practice for Architecture Description of Software-Intensive Systems (IEEE 

standard 1471-2000), architecture is “the fundamental organization of a system embodied in 

its components, their relationships to each other, and to the environment, and the principles 
guiding its design and evolution”. Concerning the process of developing an IS architecture for 
IWBM, even though the need for formalisation of modelling techniques is commonly 
accepted, not much literature is dedicated to the concrete development and standardisation of 
procedures implicated. Conventionally, information systems has been a fairly informal field of 

research approached from several other fields more than directly focused and many methods 

and techniques have been introduced without a formal foundation.
Hence our approach the development of an information system from the IWBM point of view 

consisted of analysing the available hydro informatics literature designing our own 

development process based on the general requirements identified for our system. Uslander 
(2005) affirms that to meet the requirements of an Integrated Water Basin Management 

approach, considering a river basin as reporting unit, an IT Architecture must follow a trans- 

organisational approach. He shows that this approach should be undertaken from the 
organizational, process, data and functional point of view. He conceptualise an IS organised in 
two different levels, a thematic layer where information is treated and a co-operation layer 
where information is exchanged. In order to efficiently master the information flow between 
the thematic layer and the co-operation layer, he suggests that thematic modules, such as 

environmental models, should be extended and directly connected to a content manager 

component in the co-operation layer over an Intranet or the Internet.
Another example of integrated architecture for IWBM is the Danubia project (Barth et ah, 

2004) where thirteen models of meteorology, land surface, water research and social sciences 

are integrated. As the previous one the system is organised in different levels dealing with

81



thematic and communication layers. The implementation language is Java and the network 

communication is realised by Java's RMI technology. One of the most complete information 

systems for IWBM close to our requirements, except for the fact that is not open source based, 
is WaterWare (http://www.ess.co.at/WATERWARE/). WaterWare is an integrated, model- 
based information and decision support system for water resources management. WaterWare 
is implemented in an open source, object-oriented client-server architecture, fully web- 
enabled and Internet based, supporting the integration of databases, GIS, simulation and 

optimization models and analytical tools. WaterWare is designed as a modular system; it can 

integrate a range of information resources. Linked to this data layer are a set of models, which 

can perform scenario analysis, questions for various water quantity and quality issues, as well 

as related engineering, environmental, and economic aspects.
From the analysis of the above mentioned IS and from the other cited in the literature review, 

it is possible to affirm that the main components typically constituting the architecture of 

information systems for IWBM are:

• User interface

• Knowledge and data management

• Simulation engine

• Communication standards and process control

Several aspects of the software architecture, in particular the different software technologies 

chosen, have been analysed in the following paragraphs.

4.3.1 Object oriented architecture for models and components linking

In their early stage of development GIS in hydroinformatics were used to deal with modelling 
of surface water and groundwater (Abbot, 1991). Further extension took place by including 

chemical and bio-chemical modules to monitor and assess water quality. However, most of 
these integrated codes and algorithms were customized for specific simulation engines and

82

http://www.ess.co.at/WATERWARE/


Jmmm
required significant resource efforts and commercial justification to include new/altemative 

engines. Apart from it, they also required significant resources when upgrading model 

software to new versions, as many of the internal links and interfaces will need to be re­

written.

The growing demand for more open systems towards modularity and allowing greater 

flexibility, has been driven partly by the increasing complexity (and cost) of integrated 

modelling systems, but also by increasing acceptance of integrated water management as a 

fundamental approach. In order for such a complex collection of models, databases and 

processors to function both as individual components and as part of an integrated framework, 

an object oriented architecture with simple and well-defined interfaces is required.

A generic object based modelling system described in Havno et al. (2001) is showed below.

River Object Water Quality Object

Muskingum

Kinematic Wave

Diffusion Wave

Dynamic Wave

Infiltration Object

Root zone model

Gravity flow

Richards equatior

Groundwater Object

Linear Reservoir

Finite Difference

Finite Element

Transport

Chemistry

Biology

Ecology Object

Aquatic

Terrestrial

Habitat

Sediment Object

Graded

Cohesive

Morphology

Reservoir Object

Reservoir Control

Optimisation Object

Auto-calibration

On-line

Optimisation

Other COM Objects

The Internet

Databases

MS Office

Figure 4.1: Structure of an Object Oriented Integrated Water Resources Management

System (Havno et al. 2001).

83



Coping with the complexity of the system and depending on how closely the models are 

linked with their architecture, the work of developing such links requires several man/months. 

In addition to the limitation of such links, they can only be used for the specific models. In 

order to address problems associated to model coupling and to form the basis for new 

opportunities, a new architecture for water resource models has to be implemented.

It is obvious that the communication problem resides in the links between the different 
components. The critical point is to find out a way to set up a standard communication 
protocol. When speaking the object oriented language, these standard communication 
protocols can be identified as interfaces, being an interface defined as a set of methods and 
properties that can be accessed by other objects.
The advantage of using this approach is that once an object is implementing a standard 
interface, it will immediately be ready for coupling with any other objects that comply with 
this standard; the same applies at the level of a component. In our case, the communication 
protocol, other than just being a set of properties and methods (interface), will also implement 

a process control. Data interchange will follow a particular and defined path that will allow 
the knowledge base of the system to be accessible not only from the simulation models but for 

all other internal components.

The process control improves the knowledge management capacity of the entire system. The 
information always passes through the component of the system entitled to manage the data. 
This component, being particularly indicated and tailored for this task, will have the 
capabilities to structure the knowledge and to make it widely accessible from inside and 

outside the system (figure 4.2).

84



System

Component 1

Component 2

Component 3

External 
Component 1

External 
Component 2

Knowledge
management
Component

Figure 4.2: Internal and external data interchange paths.

The challenge is to define a standard interface and a communication protocol, which together 
can work as a bridge between the components and the knowledge core of the information 
system.
To improve inter-flexibility the linkage between components will be composed of two levels. 
The level of the interface closest to the component will be a sort of customized interpreter.

In figure 4.3 are shown the two levels of the linkage of the interface between the knowledge 
management component and the other components.

In this case the first level is a standard one, and it is responsible to interact with the 

Knowledge management Component and with the second level. The component’s interpreter 

interacts with the first level and the other components.



I----------------------------------------------------------------------------------------------------------------------------------------------------- 1

2 levels linking interface

Component 2

Second level 1

Second level 2

Component 1

First level 
Standard

Knowledge
management
Component

Figure 4.3: the two levels of the linking interface, the first one is standard, the second one 
customized on eveiy component.

4,3.2 Client - server architecture

A client is defined as a requester of services while the server is known as the provider of 
services. A single machine can be both a client and a server depending on the software 

configuration. The actual client/server model started gaining acceptance in the late 1980s. The 
client/server software architecture is a versatile, message-based and modular infrastructure 
(Bass, 2003). The first kind of software systems developed were not client/server based, but 

rather based on mainframe architecture. With mainframe software architectures, knowledge 

and information are captured within the central host computer. Users interact with the host 
through a terminal, which captures keystrokes and in turn sends that information back to the 
host. Mainframe software architectures are not tied to a hardware platform. User interaction 

can be done using PCs and UNIX workstations. The limitation of mainframe software 

architectures is the lacking of graphical user interfaces support or access to multiple databases 

from geographically dispersed sites. In the last few years, mainframes have been widely used 

as servers in distributed client/server architectures (Edelstein, 94). The original PC networks 

were based on file sharing architectures, where the server downloads files from the shared 
location to the desktop environment. The requested user job is then run (including logic and 

data) in the desktop environment. File sharing architectures work if shared usage is low,

86



update contention is low, and the volume of data to be transferred is low. As a result of the 
limitations of file sharing architectures, the client/server architecture emerged. This approach 

introduced a database server to replace the file server. Using a relational database 
management system (DBMS), user queries could be answered directly. The client/server 
architecture reduced network traffic by providing a query response rather than total file 
transfer. It improves multi-user updating through a GUI front end to a shared database. In 

client/server architectures, Remote Procedure Calls (RPCs) or standard queiy language (SQL) 
statements are typically used to communicate between the client and server (Edelstein, 94).

4.3.3 The N-Tier software architecture

Large monolithic applications are difficult to maintain and enhance, while application built on 
layer are more flexible, easier to assemble, maintain and extend. This is why, in order to meet 
general requhements, the architecture of the IS has to be designed as a multi-layered system, 

starting with a low-level back-bone (e.g. basic and general functionalities for code developers) 
upon which more customised functionality layers are added (following the user type 
hierarchy), until the requirements for a certain user type have been met. The multi-layered 
system technologies most suitable for this kind of information system are the N-Tier 
architecture models, N-Tier meaning "Any Number of Tiers" (layer and tier will be treated 

here as synonymous). The N-tier architecture is a kind of Client/server architecture. It 
provides a model for developers to create a flexible and reusable application by breaking up 

an application into tiers. Developers only have to modify or add a specific layer, rather than 
having to rewrite the entire application over again if they decide to change technologies, scale 

them up or re-customise a certain layer. The N-tier architecture is categorised according to the 

number of layers implemented.
With two tier client/server architectures, the user system interface (upper layer) is usually 

located in the final user's desktop environment and the database management services (base 
layer) are usually found in a more powerful machine server, which can service many clients. It 
is a split between the user system interface environment and the database management server

87



environment. The database management server provides stored procedures, standard triggers 
and in general a set of common procedures in order to reduce client side workload. There are a 

number of software vendors that provide tools to simplify development of applications for the 

two-tier client/server architecture (Edelstein, 94).

The two-tier client/server architecture is a good solution for distributed computing when 

dealing with work groups comprised of a dozen to 100 people interacting on a LAN 
simultaneously. However, it has a number of limitations. When the number of users exceeds 

100, performance begins to deteriorate. This limitation is a result of the server maintaining a 
connection via "keep-alive" messages with each client, even when no work is being done. A 
second limitation of the two-tier architecture is that implementation of processing 

management services using proprietary database procedures restricts flexibility and choice of 

DBMS for applications. Finally, current implementations of the two-tier architecture provide 
limited flexibility in moving (repartitioning) program functionality from one server to another 
without manually regenerating procedural code. (Edelstein, 94).
The three-tier architecture (also referred to as the multi-tier architecture) emerged to overcome 
the limitations of the two-tier architecture. In the three-tier architecture, a middle tier is added 

between the user system interface client enviromnent and the database management server 
environment. There are a variety of ways of implementing this middle tier, such as transaction 
processing monitors, message servers, or application servers. The middle tier can perform 

queuing, application execution, and database staging. For example, if the middle tier provides 

queuing, the client can deliver its request to the middle layer and disengage because the 
middle tier will access the data and return the answer to the client. In addition, the middle 

layer adds scheduling and prioritization for work in progress. The three-tier client/server 

architecture has been shown to improve performance for groups with a large number of users 
(in the thousands) and improves flexibility when compared to the two tier approach. 
Flexibility in partitioning can be a simple as "dragging and dropping" application code 
modules onto different computers in some three-tier architectures. A limitation with three-tier 
architectures is that the development environment is reportedly more difficult to use than the 

visually-oriented development of two-tier applications (Edelstein, 94). Recently, mainframes 

have been used as servers in three-tier architectures (figure 4.4).

88



DATA TIER
Storage

Query and storage optimization 
Performance (indexing, etc...)

DATA ACCESS TIER
Interface with the database

Handles ail data I/O
Made to scale, usually stateless

BUSINESS TIER
Business objects and rules

Data manipulation, analysis and processing 
Data and knowledge managemet

Presentation - GUI End user system
End user interface

Figure 4.4: A typical N-Tier model. Application Architecture. Robert Chartier. 
(http://www.15seconds.com/Issue/011023.htm)

In this example the Data tier is intended to deal with the storage and retrieval of information. 
The data access layer is the location where generic and standard methods interact with data. It 
can implement various methods, for instance, for creating and opening a connection object 
(internal) and for creating and using command object. It can also have some specific storing 

methods, so that it can persist to the Data Tier. This data layer is a reusable interface to 
interact with the database.

The business layer is basically where the brain of the application resides; it contains for 
instance, business rules, data manipulation, modelling tools, etc. This layer normally does not 
have any code to access the database or the like. These tasks are assigned to each 
corresponding layer above or below it.

The business layer provides an interface for the end-user into the framework’s application. It 
works with the results/output of the business tier to handle transformation into something 

usable and readable for the end user. The main features of the N-Tier architecture are the 
following:

• Different layers cany out different tasks;

• The tiers may contain one or more components of the application

89

http://www.15seconds.com/Issue/011023.htm


• The components in one tier can communicate only with the components in the tiers 
above and below

• Different layers or subsystem will be developed separately;

• Interface layers and communication protocols have a fundamental role in the 
framework development;

• Modularity, extensibility, reusability.

4.3.3.1 Client/server approach in IWBM remote modelling

Several approaches and technologies to implement interactive programming and remote 
modelling using Internet are reported in the literature (Linthicum 1996, Sutherland 1997). 
Current developments in Internet are typically focused on an object-oriented implementation 

(Solomatine, 1996) that improves maintenance, security and enables software reuse. 

Depending on where the computational process takes place, at the client or server side, there 
are three client/server architectures on which remote modelling using Internet can be 
implemented:

1. Client oriented approach, where the main computational process goes to client. 

This architecture can be used for distance learning and training purposes and for 

limited hydroinformatics models and modelling systems.
2. Server oriented approach, where hydroinformatics modelling system resides at the 

server side, and the client has controlled access to it (account and password). At 

the client side, usually there are user friendly interfaces for passing the input data 
and displaying the results in the browser.

3. Combined approach, where the main computational process resides at the server 

side, and pre-processing post-processing or some modules go to the client side.

90



4.4 Information system implementing Technologies

Reviewing the literature of frameworks and integrated modelling systems for IWBM, it has 

been possible to categorize the main software tools (components of the system) that the 
information system needs in: data-bases, the core of the system responsible for storing and 

managing the knowledge; Geographic Information Systems, the geospatial data visualization 

and geospatial data management tool; the User Interface tools responsible of the interaction 

between the end user and the system; simulation models and knowledge management tools 

responsible for data process. The last two kinds of components are conceptually different 
from the Hydro informatics point of view but quite similar from the informatics point of view. 
In fact, even if knowledge management tools on the contrary of models do not imply 
simulation, the implementation phase is quite similar. Hence it is reasonable to treat them 
together.

To implement these components in the system we analysed several available software 

solutions. They have been examined on the basis of the technology analysis carried out in 

previous chapters and as implementations of these technologies. In the software solutions 
analysis, the choice to restrict the research only to open source software, more than just a 
general requirement of the IS, has been an inevitability. In fact, in order to integrate different 

software together, we had to customise their input/output interfaces or API, modifying and re­

programming often several classes (in Java almost everything is a class) of the software. 

Therefore, the design of the information system, according to the general requirements, goes 

towards the development of an object-oriented hydro information system taking into 
consideration the fundamental open technologies and open standards.
Hence, being prohibitive in terms of time, resources and know-how and also out of the scope 
of this research, to develop our own GIS and Database, while referring to the general 
principles exposed above, we have used, adapted and integrated in the system several open 

source projects.

The fundamental technologies and open standards used in the research and implemented in the 

system include:

91



• Java as core programming language;

• Java technologies (JDBC, RMI, etc.) as backbone for the IS structure and 
architecture;

• The Open Geospatial Consortium specifications as standard technology for the GIS 
application;

• The standard Internet technologies (TCP/IP, HTTP, etc.) as conununication support 
over the client/server architecture;

• SQL as information interchange and queiy language to the relational database;

• The relational logic for the database (Relational Database Management Systems);

While referring to the general principles exposed above, and as implementation of the above 
mentioned technologies, we have used, adapted and integrated in the system several open 
source projects and among them the most important:

• OpenMap as geographical information system (http://openmap.bbn.com);

• PostgreSQL + PostGIS (www.postgresql.org) as relational database with spatial 
extensions in the first implementation;

• JPOX (www.jpox.org) and DB40 (www.db4o.com) as improvement of the data 
layer, in the second implementation of the information system, exposed in the next 
chapter of the thesis.

The details of the open technologies and of the open source software chosen and above listed 
are exposed in the following paragraphs of the chapter.

4.4.1 Programming languages analysis

Concerning the use of fundamental characteristics of the core programming language in this 

research, we can assert that our information system intends to deal with incompatibility

92

http://openmap.bbn.com
http://www.postgresql.org
http://www.jpox.org
http://www.db4o.com


between hydroinformatics systems, tools and components in an internet based and 
client/server enviromnent.
In the scientific and technical literature and in the Internet there is a huge amount of analysis 
and benchmarking dedicated to comparison among object oriented programming languages. 

Benchmarking different programming languages is a difficult exercise mostly because 

different languages have been designed for different purposes and in different periods of 

hardware development. This is probably why debates about different programming languages 
remain often inconclusive (Prechelt, 2000). Benchmarking test camiot be exhaustive and relies 
on a heavy amount of variable factors. Even in the framework of the same software project, 

for different kinds of functions or operations, different benchmarking test can be designed. 
Benchmarking tests are often based on quantity related parameters directly influencing 

performance. Following parameters are often considered during benchmarking:

• Level of Object-Orientation

• Static / Dynamic Typing

• Inheritance

• Garbage Collection

• Class Variables / Methods

• Reflection

• Access Control

• Multithreading

• Regular Expressions

• Built-In Security

• Portability

A concise explanation of the list of parameters is given below based on the book "Object- 
Oriented Software Construction" (Meyer, 1997). For an extensive analysis of programming 
languages and their impact on hydroinformatics a thorough research would be needed. The 

languages cited are the ones that are currently used in the market and could be easily adapted

93



to development of this research. These are: Ruby, Eiffel, C, C++, Python, Visual Basic, Perl 
and Java.

Level of Object-Orientation
Object orientation has been widely discussed in paragraph 3.3.4 where basic definitions of 

object oriented languages, logic and technology have been given. Many languages claim to be 
Object-Oriented, while the exact definition of the term is highly variable.

As for instance among the most well known and diffused programming languages Eiffel, 
Smalltalk, and Ruby are all pure Object-Oriented languages, supporting all qualities listed in 
paragraph 3.3.4. Java claims to be a pure Object-Oriented language (SUN, 2010), but by its 
inclusion of "basic" data types that are not objects, fails to meet one of the parameters 
according to many IT experts. Since version 5.0, however, the ’’autoboxing” function enables 

programmers to proceed as if primitive types were instances of their wrapper class 
(www.j ava. sun. com).

C++ is considered to be a multi-paradigm language, of which one paradigm it supports is 

Object-Orientation. Thus, C++ is not (nor does it contend to be) a pure Object-Oriented 
language.

Python is often proclaimed as one of the purest Object Oriented language. Therefore some 

operations are implemented as methods, while others are implemented as global functions. 

Some analysts complain about Python's lack of "private" or "hidden" attributes, which goes 
against the Encapsulation/Information Hiding principle. The Ruby language, on the other 
hand, was created in part as a reaction to Python. The designer of Ruby decided that he 

wanted something "more powerful than Perl, and more Object-Oriented than Python." Visual 

Basic and Perl are both procedural languages having Object-Oriented support added on as the 
languages have matured.

Static / Dynamic Typing

There has always been a strong debate in informatics between the supporters of static and the 

support of dynamic typing in the environment of Object-Oriented specialists. The title of a

94

http://www.j


well known paper by Erik Meijer and Peter Drayton (Meijer, 2004), "Static Typing Where 

Possible, Dynamic Typing When Needed: The End of the Cold War between Programming 

Languages", gives the idea of the complexity of the topic. Supporters of dynamic typing argue 
that it is more flexible and allows for increased productivity. Static typing supporters claim 
that it improves safety, reliability and efficiency of code. It goes beyond the scope of this 
research to analyse in deep performances of the two approaches but it is relevant to the choice 
of the programming language to say that that a statically-typed language requires a very well- 

defined type system in order to be as flexible as the dynamically-typed.

Smalltalk and Ruby are two pure Object-Oriented languages that use dynamic typing. Eiffel is 
a statically-typed language but manages to remain nearly as flexible as its dynamic 
counterparts. C++ also offers generic classes (known as "templates" in the C++ parlance), as 

well as multiple inheritance. Java was seriously hindered by a lack of generic classes which 
have been added in 2004 as part of J2SE 5.0. They allow "a type or method to operate on 

objects of various types while providing compile-time type safety" (http://java.sun.com/). Java 
also allows type casting, but some rudimentary type checks can be made by the compiler, 
making casts in Java somewhat safer than in C++ and other languages.

Inheritance
Inheritance, as defined in 3.3.4, is a cornerstone for object oriented programming. It is the 

ability for a class or object to be defined as an extension or specialization of another class or 
object. Characteristics in object-oriented programming terms are attributes and behaviours of 

a class— that is, the data and methods of a class.

Object-oriented languages in general support class-based inheritance, for some programming 
languages such as SELF and JavaScript the support is oriented to object-based inheritance. 

Just few languages, as for instance Python and Ruby, support both class- and object-based 

inheritance, in which a class can inherit from another class and objects can be modified at run 

time with the features of other objects.
There are three ways to implement inheritance: simple inheritance, multiple inheritance, and 
level inheritance. Each different option enables a class to access attributes and behaviours of 
another class using slightly different techniques. Multiple inheritance for instance is the ability

95

http://java.sun.com/


for a class to inherit from more than one super (or base) class. Java does not support multiple 
inheritance, instead it supports interfaces, which somehow have to operate at the same level of 

multiple inheritance. However, in Java, interfaces are probably conceptually closer to the 

definition of abstract classes. Concerning the different possible uses of inheritance, Bertrand 
Meyer (1997) identified and classified 17 different kinds of inheritance. Despite this richness 

of opportunities, most programming languages allow only some syntactic constructs for 

inheritance. These anyways, are generally enough to take advantage of the usefulness of the 
inheritance. As example of the usefulness of multiple inheritance performances, an application 

object called PersistentGraphics could inherit from two different classes called 

GraphicalObject and PersistentObject, this in order to be used both as graphical object that 
can be showed on the screen in addition to persistence capability that allows the object to be 
stored in a database. In this example, multiple inheritance is described as an essential feature 
of every programming language, because when two or more distinct hierarchies have to be 
merged into one application object the only direct solution would be the multiple inheritance 
itself. But if multiple inheritance is not implemented by quite few languages, as Java, there are 
serious reasons. The most important reason is that multiple inheritance leads to additional 
complexity and complications into the programming language implementing it, such as name 

clashes and ambiguities in the object model.
For instance, the use of multiple inheritance in C++ is not as flexible and performing as one 

would expect from probably one of the most used programming language in the world. On the 
other hand, Eiffel is known for its carefully and thoroughly well-designed support for multiple 

inheritance, as stated in its web site it implements "robust multiple inheritance facilities". 
Multiple inheritance is a conceptual feature of object oriented languages which can be 
implemented in one or more different forms as OO languages can support different forms of 
single inheritance (e.g. implementation and subtype inheritance). C++ and Eiffel support in 

the same way pure implementation inheritance as well as subtype inheritance. These two 
languages being probably more developed as far as inheritance is concerned also implement 

multiple inheritances in both forms.
Java, even though does not implement a pure support for inheritance, supports two different 

inheritance mechanisms. The implements-tool implements a pure subtype (interface)

96



inheritance, the extends-tool provides a combination of implementation and subtype 
inheritance.

Smalltalk implements just a single feature of inheritance: single inheritance of interface and 

single inheritance of implementation. In this case, a class can just only inherit from another 

class inheriting at the same time implementation and interface. Python supports one form of 
inheritance (implementation and subtype) similar to Smalltalk but it can perform multiple 
inheritance increasing its flexibility.

Ruby performs in between the two last languages described. Ruby implements single 
inheritance with an additional feature, it allows classes to implement a chosen number of 

modules. This implementation of inheritance similar but to some extent more limited 
compared to Python.

Garbage collection

Another important feature for programming languages is garbage collection. Garbage 

collection is a technology that allows a language implementation to free memory from unused 
objects freeing programmers from explicitly managing memory allocation for every object 

created. The main issue with garbage collection has always been that the automation needed 

heavy computational resources. Nowadays with increased hardware computational power and 
increased software efficiency, meaning better algorithms and techniques, have decreased 
computational burden increasing garbage collection impact on overall performances.
There are different kinds of possible implementation for garbage collection which can be 

adopted in language implementations. As for instance, reference counting is the simplest 

scheme which can be defined as a form of automatic memory management where each object 

has a pointer to the number of a reference. The reference number to an object increases when 
a reference to it is created, and decreases when a reference is cancelled. When the reference 

count becomes zero the object is automatically deleted. This way the memory where the 
object was stored is freed.

This kind of garbage collection technology cannot handle cycles. As for instance when two or 

more objects refer to each other, they can create a cycle. Tills is the scheme used by Visual 
Basic and Python, even if in the case of Python a solution for cycles handling is implemented.

97



The most common form of garbage collection supported by most language implementations, 
as for instance by Eiffel, Smalltalk, Ruby, and Java, is the "mark and sweep" technology. This 
garbage collection scheme overcomes the limitation of the reference counting scheme, the 

cycle handling. On the other hand the main disadvantage of mark and sweep garbage 

collection is that it is non-detenninistic, this means that the sweep phase, the deletion, is not 
related to timing during the execution of the program.

Another process for garbage collection, known as "mark and sweep" but not as common as the 
other forms that can be found in some implementations of Eiffel, Smalltalk, Ruby, and Java, is 
the generational garbage collection. The generational garbage collector organises objects into 

"generations" based on their existence time. This reduces the time spent in the mark and 
sweep phases.

Concerning garbage collection a particular case is the one C++ which does not implement any 
sort of garbage collection. This is because for reasons of convenience and performance related 
to its development.

Class Variables / Methods
An important feature of object oriented languages is that class variables and methods pertain 

to a class and even if their direct existence is related to the instance of a class, they refer 
exclusively to the class itself. This brings to the fact that at a given point in time only one 
copy of each class variable/method exists even if together with many instances of the same 

class. The same class variable/method is shared by all the instance of that class.

There are different levels of implementation of this concept, as for instance the most advanced 

class variables and methods handling features are perhaps in Smalltalk and Ruby. In these 

languages classes are also objects and moreover they support meta-classes. Less advanced is 
the implementation in Java and C++. They provide "static members" with static variables and 

static methods, which compare class variables and methods but are more limited since they do 
not support inheritance. We are in even less advanced case with Eiffel, which does not 
provide direct support to class variables or methods. The solution comes with the function 

called "once" similar but more limited than in the previous cases. The least developed

98



example is the one of Python where class methods or variables are not at all supported. In this 
case the feature called "module" is an alternative solution.

Reflection
Computational reflection (Ferber, 1989) is the ability to monitor and intervene on the 

computational behaviour of a system through a process called reification. This idea, originated 

in the field of logic, more recently has been recognised as one of the key features in the 
construction of object-oriented systems. Through this technology, systems can keep 
information about itself (meta-information) and reuse this information to influence its future 
behaviour. Operations of the object model can be captured and modified using reflection. 

Object-oriented programming languages in general support reflection even if in quite 

dissimilar ways. Ruby, Smalltalk, and Python support reflection mechanisms with veiy 
powerful and flexible features. Java’s support to reflection is less flexible and dynamic than 
the others, even though it has improved in last versions. C++ does not give full support to 
reflection but it implements a run-time information tracking technique allowing programs to 

determine the type of objects. Eiffel improved in the most recent versions its limited support 
to reflection, including the information tracking for features contained in objects.

Access Control
The access control feature is related to the encapsulation hiding principle of object oriented 
languages. It allows modules implementation to keep hidden behind its public interface. In the 
particular case of hydroinformatics with time series and several kinds of environmental data to 
manage, access control is a very important feature. These are the methods that, for instance, 

could be in charge of connecting to databases for storing, accessing and retrieving 

information. Access control allows the application program interface (API) to connect to the 

database without influencing the client code and without being exposed. API hide database 

related code, such us SQL (not object oriented code), without impact on the software 

architecture.

As for the other features, there are different interpretation and implementation of the access 

control programming capability. Starting from the less developed approach, probably Python

99



which does not provide any level of access control but mstead provides a sort of labelling. 

This means that with that label clients code can anyways use the labelled feature with an 
indicator that is intended to show that the feature should not be used for that since it is not 
meant for this.

Object oriented languages provide usually two levels of access control defined as public and 
protected. Protected features, like variables, are not available outside of the class in which 

they are contained, except in the case of inherited properties like for subclasses. In Smalltalk 
for instance all methods are public and all attributes are protected. Methods are not protected 

in Smalltalk, so Smalltalk programmers use the solution of "private protocol" in the class. 

Visual Basic supports the same two levels of access control with the difference that without 
inheritance in Visual Basic, protected features are completely private.

More developed is the approach of some other languages like Java and C++. They implement 

also a third and even more hidden level of access control called "private". Private features are 
just available in the class in which they are declared, inheritance is not applied and even for 
subclasses features are not available. Ruby also provides these three levels of access control, 
but they work slightly differently. Java provides a very useful feature with a fourth level of 
access control called "package private", making public features just inside a package of 
classes. The most powerful and flexible access control scheme of all analysed languages is 

provided by Eiffel and it is called the selective export. Features are by default public and for 
any of this feature of a certain class it is possible to specify the export clause which lists 
explicitly what other classes may access that feature. The only limitation Eiffel encounters is 

that the definition of "private" as there is in Java and C++ it is not present.

Multithreading
The word multithreading can be translated as many threads of control. Multithreading allows 

single process to access to two or more threads concurrently. Since operating systems support 
for threads has became widespread, the use of multithreading became a common feature. 
Because each thread rans independently, multithreading allows to (SunSoft, 1994):

• improve application responsiveness,

100



• use multiprocessors more efficiently,

• improve program structure,

• use fewer system resources,

• in general improve performance.

Regular Expressions
Programmers can save a lot of coding time by using regular expressions. Regular expressions 

(regex) allow powerful string parsing in much shorter lines of code. Considering the same 

instruction as example, regex are faster to write, easier to debug and maintain than the 

correspondent lines of normal code.
Almost every language has a support for libraries of regular expression. Native support to 
regular expressions has become increasingly important with the development of Perl. This 

integration improves performances and Perl was the initiator of this kind of model. Also 

Python and Java (since Java 4), have included regular expression libraries as part of the 

standard base library distribution.

Built-In Security
Built-m security allows languages to improve their stability. Pieces of code can come from 

different sources and in order for a language to be able to check if the piece of code is trusted 

(such as the hard disk) or not, it has to implement some kind of security capability. For the 

particular case of Java, applets are considered not trusted pieces of code. This is why they 
have limited scope when coming from internet browsers compared to piece of code coming 
from local machines. Almost all the languages under analysis, including Java, Ruby, and Perl 
have by default the built-in security. Other languages delegate this protection to the machine 

operating system.

Portability
Portability has already been described from different angles in this document. Concerning this 

research, Portability, more than just one of the key concepts of high-level programming, is a 

conceptual requirement of hydroinformatics related to integrated water resources

101



management. This is why it needs a deeper analysis. Below of the programming language 

described, the most relevant to portability are listed from Raymond (2003).

Perl Portability
According to Raymond (2003) Perl’s performance concerning portability are good. Certain 
version of Perl implementations offers direct support to portable GUIs across Unix, MacOS 

and Windows. The most important limitation is that Perl scripts works with external libraries 

from CP AN (the Comprehensive Perl Archive Network) which are not available in eveiy Perl 
implementation.

Python Portability
Better than Perl, Python has excellent portability skills. Also several implementations of 

Python come with a toolkit supporting portable GUIs across Unix, MacOS, and Windows. In 
general, being Python an object oriented born language, it has a much richer standard library 

than does Perl and overcomes its main limitation.

C Portability
The core C language is extremely portable. The standard open source compiler is the GNU C 
compiler, which has been ported to UNIX, Windows and classic MacOS, with the limitation 
that the native GUI is not as portable as the core.

Portability of C codes depends strongly on programmer skills and ability. Several books have 

been written on the subject of portable C code, as for instance “The Practice of Programming” 
(Kernighan and Pike, 1999).

C++ Portability
C++ has the same portability issues as C plus, an additional feature related to their open 

source compilers developments which do not get to reach the level of its commercial 

implementations. Besides many open source compilers exist and thus it is difficult to define a 
de-facto standard.

102



Java Portability
Despite the fact that one of the main goals of Java was portability, the motto was “write once, 

run everywhere”, in its early years of development Java portability encountered many 

problems. The difficulties were mostly related to the Abstract Window Toolkit (AWT), Java's 

original platform-independent windowing, graphics, and user-interface widget toolkit, than 
replace with the Swing, widget toolkit developed to provide a more sophisticated set of GUI 

components than the AWT. In general we can affirm that portability fails to be perfect but it is 
still excellent.

Ruby Portability
Ruby is highly portable with its to two main implementations: the de facto standard Ruby 
interpreter, the Matz's Ruby Interpreter or MRI, which is the most widely used, and JRuby, a 
Java-based implementation that runs on the Java Virtual Machine. Both of them have level of 
portability similar to Java itself.

4.4.2 The recommended core programming language: JAVA

In this paragraph after a brief description of main Java features, the reasons for choosing Java 
have been listed and justified.

Java was built by Sun's programmers in 1995, in reply to the incompatibility between various 

systems, hardware and software, and libraries they have to deal with (Sikora, 2003).
There were four primary goals in the creation of the Java language:

• It should be object-oriented.

• It should be independent of the host platform (more or less).

• It should contain language facilities and libraries for networking.

• It should be designed to execute code from remote sources securely.

103



The objective of Java was portability and after the first phase of development in the early 90s 
with the emergence of the Web, Java was propelled to the forefront of computer language 

design to meet the requirements for web portability. While, it was the desire for an 

architecture-neutral programming language that provided the initial spark, it was the Internet 
that ultimately led to Java's large-scale success.

The key considerations were summed up by the Java design team in the following list of 

buzzwords (www.java.sun.com). These represent the usual benefits of programming with the 
Java programming language using its APIs:

• Simple
Java has a concise, cohesive set of features that makes it easy to learn and use.

• Secure
Java provides a secure means of creating Internet applications.

• Portable
Java programs can execute in any environment for which there is a Java run-time system.

• Object-oriented
Java embodies the modern, object-oriented programming philosophy.

• Robust
Java encourages error-free programming by being strictly typed and performing run-time 
checks.

• Robust security architecture
It is possible to deploy fine-grained security control if needed.

• Multithreaded
Java provides integrated support for multithreaded programming. Threads are native in the 

Java platform. Therefore multi-threaded solutions can be implemented with ease.

• Architecture-neutral

Java is not tied to a specific machine or operating system architecture.

• Interpreted

Java supports cross-platform code through the use of Java byte code.

104

http://www.java.sun.com


• High performance
The Java byte code is highly optimized for speed of execution.

• Distributed
Java was designed with the distributed environment of the Internet in mind.

• Dynamic
Java programs cany with them substantial amounts of run-time type information that is

used to verify and resolve accesses to objects at run time,

• Garbage collection
No stray pointer problems,

• Classloading
It is possible to dynamically deploy more code after the device has been deployed,

• Networking
Standard APIs allow easily networking.

A particular mention is needed here in order to differentiate between compiled and inteipreted 
languages. In the early stages of software technology development there was an important 
distinction between "real" compiled programming languages such as C, and simpler, slower 

languages called "script languages" such as Bourne Shell (the default Unix shell of Unix 

Version 7) or Awk (a script language designed for processing text-based data). With 
technology improvement in the '80s and above all in the '90s, performances differences 

decreased and interpreted languages like Java, Lisp, Perl and Python for different reasons 

became important players in the programming language world and started being considered 

general-purpose programming languages and not just useful for a limited range of 
applications. Script languages are often, but not always, interpreted from the source code or 

semi-compiled to bytecode (like Java) at run time. On the other hand compiled languages are 

implemented typically through compilers that generate machine code from source code), and 
not interpreters. Benefits of using scripting languages are the following:

105



Isolation
Scripting languages only works with the Application Program Interfaces needed to actually 

run requested actions. Being at a higher level they do not intervene directly in the device. This 

brings to an improved stability of the critical code which camiot be manipulated by the 
developer. Isolation has a direct impact on other issues related to programming performances 

explained below.

Human Resource Options
An important issue related to the previous one and that is really important when dealing with 
open source software and integrated water resources management concerns human resources. 
IWRM related to water basin management systems with the many different possible uses of 
water holistically managed could foster the intervention and the interaction in the 
development of several possible organisations. Each one of these organisations does not need 

to have developers expert in the critical code but they can focus on content. This brings two 

advantages, more stability for a system subjected to many inputs and interactions and more 
effectiveness for developers specialised on the content. This allows for instance to manage 
development trough content or software development kit (SDK) publicly available as it should 
happen in an open source community. The system manager can let the other responsible 

organisations (i.e. for environmental issue, for energy management and/or other utilities, etc.) 

develop the content for the device they need and work for without having to worry about 
systems stability and security. Developers of the system need just the APIs and the scripting 

language.

Upgradeability
Since scripting languages are interpreted there is a list of advantages linked to an easier code 

management process and networking. Operation like bug fixing, code maintenance are easier 

because could only interest certain modules that can be changed without going through critical 

code. Since, integrated water resources environmental management systems are flexible and 

adapting to continuous changes, additional content needs to be upgraded all the time by

106



different actors. The alternative solution to this approach in hydroinformatics could be to 

develop a general dedicated scripting language, or even a particular scripting language per 

application. On the other hand it is also true that such a language is requested to run a 

complex system having all the features and functionality like that of a full programming 

language.

Java technology as scripting engine
A mature technology like Java has an incontestable series of advantages against customised 

and dedicated scripting languages. Specifications are publicly available from various sources, 
even for not specialised developers it is possible to quickly acquire needed skills since 
available documentation is extensive (books, online resources, tutorials). Therefore 

developers specialised in other fields and even new developers can become productive. All the 

organisations that are going to contribute to the development of the systems or even end user 

developers can have a more efficient economic approach to skills development. Even though 

it is a complex technology and in continuous process for development and improvement, Java 
technology is probably mature enough, tested and deployed toward many kind of purposes 
and industries. It is mature both in terms of implementation as well as APIs. Given the amount 
of developers and the openness of the technology approach there is an enormous quantity of 
code already available and reusable. In fact there is a large community of companies and 
developers specialised in working on the Java platform developing software and information 

systems.
To identify the popularity of programming languages one of the most used references is the 
TIOBE index (www.tiobe.com/tiobe index/index.htm). The ratings are based on the number 

of skilled engineers world-wide, courses and third party vendors. The popular search engines 

Google, MSN, Yahoo!, and YouTube are used to calculate the ratings. According to TIOBE 
Programming Community Index for March 2009, the most used language by developers is 

JAVA, ahead of C and C++.

This gives an important insight also from the commercial point of view, since the high 
dissemination of the technology, multiple vendors and not just SUN provides compliant

107

http://www.tiobe.com/tiobe


implementations of the Java platform for different purposes and resources. The availability of 
development tools, open source and commercial, is important. For instance, for the debugging 

there is a large availability of tools with different features and veiy small need for producing 

ad hoc tools. This allows firms focusing human and financial resources more on the content of 

the development than on the process with important gains in productivity and efficiency.

It is noteworthy to mention that there is a particular distinction between traditional scripting 
and Java. Traditional interpreters do a simple translation from source code into faster code 

that works but still close to the original. Java byte code is someway closer to a real machine 
language because for each line of source code there are several byte code instructions. This is 

related to the concept of just-in-time (JIT) compiler. In the Java programming language and 

environment, a just-in-time (JIT) compiler is a program that turns Java bytecode into 
instructions that can be sent directly to the processor. The bytecode is platform-independent 
code that can be sent to any platform and run on that platform. JIT technology that makes 
interpreted code run at compiled code speed, reduce the main problem of scripting language 
against compiled languages.

Looking also at the other side of the coin related to Java portability, one of the main critics 

that can be moved to Java is that, the main objective, the vision, of the Java platform's, cited 
already several times, Write-Once-Run-Anywhere (WORA), in practice, it is not completely 
acquired (and maybe it cannot be). Several technical and market related reasons causes these 

limitations. This vision remains anyways the strongest features and innovative added value of 
Java.

Besides, Java has a series of characteristics over other scripting languages. Since, Java took 

much of its inspiration from the design of C++ in terms of logic and semantics, Java is a 
complete programming language with well-defined syntax and grammar. Developers can 
work complex logic as expected from any programming language as it is from C++ itself. The 
JAVA platform also comes with a rich set of APIs. The fact that this is one of the biggest 

community of developers and users means that there is a huge availability of support libraries, 

leaving again more time to developers to focus on the content having as baseline a solid 
technology.

108



After highlighting all Java features, and in the previous paragraph comparing it to other 

programming languages, the question that can be raised in order to justify the choice are 

probably: why the Java platform is relevant to this research and to hydroinformatics in general 
and why Java is probably better suited than other available alternatives?

At the level of development of Java, considering interpreted programming language platforms 

with features similar to what above exposed, there is the .NET (to be pronounced as “dot net”) 
Microsoft platform (http://www.microsoft.com/NET/).

The development of the .NET platform started considerably after (considering informatics 
timing) the development of Java platform. This can be considered in itself already a strong 
sign of the impact that the Java platform had on the market: the world market leader software 

company, Microsoft, decided to go for a similar solution as Java, meaning to develop a 

runtime interpreted platform. The main issue related to .NET, as for all other Microsoft 
technologies, is that there is, and probably there will always be, only one vendor for it i.e. 
Microsoft. On the open source side of .NET now there are other actors such as Novell 

(www.novell.com) with the MONO project (www.mono-project.com). Novell, continuing its 
aggressive approach to the open source market, after entering in the Linux world with SUSE 

Linux (www.novell.com/linux/), started this ambitious open source project for .NET. The 

Mono Project is an open development initiative to develop an open source UNIX version of 
the Microsoft .NET platform. Its objective is to enable UNIX developers to build and deploy 
cross-platform .NET applications. In any case, even considering MONO, the choice for the 
.NET related projects is far much limited that the JAVA based one.

In view of the analysis described in previous paragraphs, there is also a series of other 
alternatives for scripting languages like Python, Ruby, etc. These are interesting technologies 

but they have not been chosen because of a series of technological and market related 

concerns (not eveiy concern apply to all of the previous mentioned technologies):

• They are not as mature as the Java platform.

• They lack of a strong community of developers

109

http://www.microsoft.com/NET/
http://www.novell.com
http://www.mono-project.com
http://www.novell.com/linux/


• Some features (e.g. multi-threading, security) may not be as developed as in Java or 
even not implemented.

• They lack of APIs. Standard APIs can be limited or extremely limited, above all if 
compared to the level of development of the Java platform.

• As mentioned Java has the singularity of being interpreted through its bytecode which 

through the Java JIT technology brings to veiy good performances compared to text- 

based interpretation usually much slower.

• Related to the fact that they can have limited developers' community, development 

tools (e.g. debuggers) can be available only if developed on purpose, increasing 
consistently organisational resources required.

• As showed with the TIOBE index (previously mentioned), Java is the most diffused 
languages today, meaning with the most number of available developers. For the law 

of supply and demand, to have developers in other fields of less diffused language it 
would probably require more resources.

Despite the fact that only some of the competing technologies have all the problems above 
mentioned, it is certain that none of them can have all the advantages of the Java platform all 
together. Again, this means that for an organisation choosing another technology, the work to 

fill the gap with JAVA performances would require important investments.

To be honest, it is possible that for very particular applications, JAVA customisation could be 
as important as for another technology and choice would require a deeper analysis and 
probably also important testing. At the end of the day JAVA represents a mature technology 

which has in one package all important features to develop IS for water resources 

management. An investment in a technology has also to be sustainable in the long term. A 
good investment has to be rentable not loosing value too quickly. This means in the case of 

developing information systems for IWRM that the organisation should reuse the majority of 
the existing software components to minimise further developments in case of requirements 

for additional functionalities or in case of changes or upgrading of hardware. In technical

110



terms, this implies to manage cost of components, different hardware scenarios and hardware 
obsolescence.

Therefore in order to minimise costs and improve investment profitability, once again the Java 

platform's WORA (Write Once, Run Anywhere, the JAVA motto) characteristic can be the 
answer. The majority of the code developed, also in terms of modules will be reusable with 

new hardware. Besides, openness of the system will allow an easier development and 
integration of new or updated modules.

So far, Java has been compared to similar interpreted technologies but all these consideration 

on different scripting and interpreted languages are not true when speaking about compiled 
languages, native solution, like C or C++. They can ensure same features as the Java platform 
and there are a lot of developers prepared in C/C++ and Linux (they are second and third in 
the TIOBE index). This implies that there are a lot of development tools available. One of the 
main limitations compared to Java is the fact that they do not implement isolation (as 
previously described), with less security in flexible development. They have less flexibility 

also for upgrading and extensions, as for instance every time the code needs to be upgraded it 
needs also to be recompiled, the same if new hardware is installed then testing procedures are 
to be carried out. Similar issues arise when dealing with maintenance.

In practise, also the Java code has to be ported and retested. The difference is that porting cost 

is reduced because it is limited to the Java platform instead of the entire code base. Besides, 

thanks to the open source community, it is highly probable, if using standard hardware, that 
there can be a fine open source solution already available.

Regarding testing, fortunately with Java there are standard suites that check for a series of 
tests (API conformance, virtual machine behaviour, etc.). These tests are known as the 
Technology Compliance Kits (TCKs). TCK are suite of tests, tools, and documentation that 
provide a standard way of testing an implementation for compliance with a Java technology 

specification. In 2008, Sun made the OpenJDK Community TCK license available, therefore 

the community has the means to certify compatibility. This opens the door to free, compatible 

Java platform (standard edition) implementations also for GNU/Linux distributions. Test tools 
are however somewhat limited in terms of coverage. Sun (www.java.sun.com) and other big

111

http://www.java.sun.com


Java developers provides also more complete solutions that are not free but covering a large 

range of testing options and requirements.

Java and the internet
Java and the Internet saw the light together at the beginning of the '90s. After its creation, the 
relationship between Java and Internet, oriented the evolution of Java itself. Java can be 
defined as a network programming language (Jonoski, 2002). Since the beginning, Java’s 
success is brought by its own particular programming features related to networking, the 

applets. They can be embedded in Web Pages and run in all kind of platform. In fact given the 

heterogeneous spectrum of platform and OS that are used to access the Internet, many Web 

developers began developing Java applets to perform complex Web page graphics operations 
that were previously not possible to be Implemented in a portable way. These programmers 

encountered many early Java problems transporting their applets across Web browsers and 
across OS graphical user interfaces. While the Java Community Process (JCP) considerably 

improved the GUI capabilities of the language, since the early days of Java's release many 

public and private organizations have softly adopted Java to develop platform independent 
server functionalities which are not dependent on the GUI.
Although the applets are still veiy important features, nowadays the real power of Java is in 
the general programming capabilities related to networking represented in its built-in classes, 
such as, socket connections, connections with common getaway interfaces (CCGI), servlets, 

the remote method invocation (RMI), etc. (Jonoski, 2002). Therefore Java is now one of the 

most widely used programming languages for technology integration. This is another reason 

for us to choose Java in order to address interoperability and integration in hydroinformatics. 

Nowadays Java-capable servers dominate the Internet as an established standard for server 

side Internet development. According to the Netcraft, one of the most important Internet 

services analyst consultant, (http://news.netcraft.com/) in January 2009 close to 60% of 

Internet servers used Java-compatible web server software, including Apache 

(www.apache.org), Sun One (www.sun.com), Zeus (www.zeus.com) and Google Web Server

112

http://news.netcraft.com/
http://www.apache.org
http://www.sun.com
http://www.zeus.com


GWS, a customised version of Apache by Google. This percentage attained approximately 
90% when considering that Microsoft's IIS can also be configured to run Java server software 
with third party software. In the remaining 10% there are also many Java-compatible web 
servers, which are not specified by Netcraft.

Java and open source
It is natural that the open source community adopted a community maintained programming 
languages as a suitable implementation tools for open projects. Sun developed the Java 
Community Process (http://jcp.org), as a forum for changing the Java language to meet the 

evolving requirements of the information technology industry. The Java Community Process 

(JCP) includes companies, individuals, and agencies that desire to have input on the growth 

and change of the definition of Java. According to the JCP forum, since its introduction in 

1998 as the open, participative process to develop and revise the Java technology 
specifications, reference implementations, and test suites, JCP program has fostered the 
evolution of the Java platform in cooperation with the international Java developer 
community.
In the last years there has been a big boost for open sourcing the Java platform. In 2006 SUN 
started releasing parts of the JAVA SE platform under the GPLv2 licence (The GNU General 

Public License is a free, "copyleft" license for software and other kinds of works) now the 
GPLv3. In 2008 OpenJDK-based implementations are appearing in Free software repositories 

of major GNU/Linux distributions. There has been a big cultural change on development 

strategies, SUN developers are encouraged to work with free Java developers on a broad 
range of packaging, porting, language and implementation projects. SUN is part of the free 

and open-source Java community now. This is in line with the work of an open scientific 

community that is needed in such complex fields such as integrated water resources 

management. Only through openness, projects can tend to a stronger integration.

Conclusions
Although the fundamental reason that necessitated the development of Java is portability, 

other factors played an important role in shaping the final features of the programming

113

http://jcp.org


language. Many of these factors supported the choice of Java as core language to develop an 

IWRM information system, despite the effort required to apply, convert and structure the 

hydraulic modelling knowledge in Java/object oriented language.

However, all the components of our information system are Java based except the data base 
management layer.

4.4.3 Java Developing Environment: NETBEANS

In order to facilitate programming the needed code for the information system was developed 
using an integrated development environment (IDE) also known as integrated design 
environment. This is a fundamental productivity tool, above all in the case of our information 

system, developed by hydroinformatics researchers and not by Java expert developers. An 

IDE Normally consists of an editor of source code, a compiler and/or an interpreter, an 
automatic builder tool, and possibly a debugger. Sometimes it is integrated with a system 

version control and with one or more tools simplifying the development of the GUI. IDE for 
object oriented programming includes also navigators of classes, analysers of objects and 
other programmers' supporting and exploring tools such as diagrams representing classes’ 
hierarchy, etc.

Although there are also multi-language IDE like Eclipse, NetBeans and Visual Studio, 

generally IDE are oriented to a specific programming language. The most important open 
source JAVA IDE projects are NetBeans (www.netbeans.org) by SUN and Eclipse 
(www.eclipse.org) by IBM.

Eclipse began as an IBM Canada project and it became in 2001 an open source project with an 

open source foundation. Eclipse is a multi-language software development platform 

comprising an IDE and a plug-in system to extend it. It is written primarily in Java and it is 

used to develop applications in this language and, by means of the various plug-ins, in other 
languages such as C/C++, Cobol, Python, Perl, PHP and others.

NetBeans is the most important competitor of Eclipse and it is a SUN based open source 

project. The NetBeans IDE is written entirely in Java using the NetBeans Platform. NetBeans

114

http://www.netbeans.org
http://www.eclipse.org


IDE supports development of all Java application types (Java SE, web, EJB and mobile 

applications) out of the box. Among other features are an Ant-based project system, version 
control and refactoring (www.netbeans.org).

Most important feature of NetBeans is Modularity. All the functions of NetBeans are provided 
by modules. Each module provides a well defined function, such as support for the Java 

language, editing, or support for the CVS versioning system, and SVN. NetBeans contains all 
the modules needed for Java development in a single package. Modules also allow NetBeans 
to be extended. New features, such as support for other programming languages, can be added 
by installing additional modules. For instance, Sun Studio, Sun Java Studio Enterprise, and 
Sun Java Studio Creator from Sun Microsystems are all based on the NetBeans IDE.
The IDE chosen for this research was NetBeans. This choice was made because of its 
modularity and user friendliness. Besides, because its main developer is SUN, the developer 
of Java itself, probably a strong particular attention will be always given to all Java related 
features.

4.4.4 SQL the data management language

SQL stands for Structured Query Language. SQL is an ANSI (American National Standards 
Institute), standard computer language for accessing and manipulating databases. It is the 

standard language for relational database management systems. SQL statements are used to 
retrieve and update data in a database.

Over the last two decades, SQL has grown from its first commercial use into a computer 
product and services market segment worth tens of billions of dollars per year, and SQL 
stands today as the standard computer database language. Literally hundreds of database 
products now support SQL, miming on computer systems from mainframes to personal 

computers and even handheld devices. An official international SQL standard has been 

adopted and expanded twice. Virtually eveiy major enteiprise software product relies on SQL 

for its data management, and SQL is at the core of the database products from Microsoft, 

Oracle, and IBM, the three largest software companies in the world. SQL is also at the heart

115

http://www.netbeans.org


of open-source database products that are helping to fuel the popularity of Linux and the 
open-source movement.

Among the most diffused relational database management systems (RDBMS) in the world 
that use SQL, are: Oracle, Sybase, Microsoft SQL Server, and Access, and among the Open 
Source ones MySQL and PostgreSQL.

There are many different versions of the SQL language, but to be in compliance with the 
ANSI standard, they must support the same major keywords in a similar manner such as 
SELECT, UPDATE, DELETE, INSERT, WHERE, and others, that can be used to accomplish 
almost everything that one needs to do with a database. Most of the SQL database programs 
also have their own proprietary extensions in addition to the SQL standard 
(www. w3 school.org/sql).

A list of general operations that SQL can operate is the following (www.w3school.org/sal):

• SQL can execute queries against a database,

• SQL can retrieve data from a database,

• SQL can insert records in a database,

• SQL can update records in a database,

• SQL can delete records from a database,

• SQL can create new databases,

• SQL can create new tables in a database,

• SQL can create stored procedures in a database,

• SQL can create views in a database,

• SQL can set permissions on tables, procedures, and views.

Java and SQL

The difference between the fundamental logics which are at the basis of JAVA, as object 

oriented programming language, and SQL, as language to deal with relational databases, has 

always been one of the main issues for computer developers. The conceptual difference

116

http://www.w3school.org/sal


between the two logics, called object-relational impedance mismatch, will be explained and 
treated in details later on in this thesis. Different kinds of solutions have been proposed and 
are used in the market and in the open source community.
Therefore, concerning the particular case of JAVA and its integration with SQL has been one 

of the major areas of SQL development over the last five to ten years. Considering the need to 

link the Java language to relational databases, Sun Microsystems introduced Java Database 

Connectivity (JDBC), a standard API, developed by SUN, which allows Java programs to use 
SQL for database access. JDBC is the standard Java technology to RDBMS database 
connectivity. SUN gives a complete and always updated overview of Java database related 

new development, both relational and object oriented, in their related web page 

(http://java.sun.com/javase/technologies/database/). JDBC received a further boost when it 

was adopted as the data access standard within the Java2 Enterprise Edition (J2EE) 

specification, which defines the operating environment provided by all of the leading Internet 
application servers. In addition to its role as a programming language from which databases 
are used, many of the leading database vendors have also announced or implemented Java 
support within their database systems, allowing Java to be used as a language for stored 
procedures and business logic within the database itself. This trend toward integration 

between Java and SQL will ensure the continued importance of SQL in a new era of Java- 
based programming (Groff et al., 2002). This standardised solution addresses only the 
connectivity issue, meaning that it allows a system to interact with a database exchanging 
information. Even though SUN built the bridge for connectivity, the mismatching between the 

two logics remained. How to use the relational database to store object oriented information, 
this remains the main challenge of developers. Two different solutions will be proposed in this 

research. One dealing with the mismatch and the other one eliminating the mismatch with the 

help of object oriented databases.

4.4.5 GIS, JAVA and the Open Geospatial Consortium specifications

117

http://java.sun.com/javase/technologies/database/


In the last 15 years, geographic mformation systems (as defined in paragraph 3.3.3) evolved 

from a highly specialized, technically “impenetrable” discipline into a highly disseminated 

crosscutting technology. GIS included hardware development, mapping, data production, data 
analysis, and complex software integration. At the same time and for this reason, GIS 
technology adapted to its new role becoming almost ubiquitous in several sectors (i.e. 

environment, transport, etc.) interacting with different kinds of hardware, data storage tools, 

and software, therefore with new programming languages. As often happens for new and 
innovative technologies, at the beginning GIS producers and developers did not worked 
towards standardisation and integration keeping the high costs for customisation, 
interoperability and development of new GIS oriented services. With the success of GIS in the 
market, the need for using GIS with JAVA became significant. One of the reasons why this 
link between GIS technologies and JAVA as its developing language has been increasing, 

according to Andrews (2004), can be identified with the increasing need of GIS for 

integrability and interoperability, main features and reason for the development of JAVA 
itself. In fact, as explained in previous chapters, the fundamental concern around this new 
programming language, when it was first released, focused on the interoperability on multiple 

operating system platforms, ability which is called portability.

As the GIS industry stared looking forward also to the World Wide Web in order to provide 
improved based mapping and interactions functionality with spatial distributed computing 

over the Internet, Java appeared also strongly as a practicable and high level option for 
integrating GIS into the Web. Besides, being Java portable also across a range of different off­
line hardware solutions (mobile phones, palmtops, pocket pc, etc...), it responds well to the 
need of a broad variety of hardware used in water resources management.
Java, however, was a free but not open source language, this made it less attractive for pure 

FOSS (Free and Open Source Software) developers (see e.g. 

http://www.gnu.org/philosophy/java-trap.html) until 2006 when the migration of JAVA 

toward the open source world started with the release of part of its code under the open source 
GNU General Public License, GPL2 and then GPL3. In spite of this, while there were other 

truly open source programming languages that can be used to develop GIS technology, the 

power and the features of Java programming language allowed the development of several

118

http://www.gnu.org/philosophy/java-trap.html


GFOSS (Geographic Free and Open Source Software) applications since its beginning, even 

long before 2006. Besides, the growing computing power of modern PCs makes Java 

programs adequate even for large applications. Several Java GFOSS programs are particularly 
interesting; for instance, Deegree (www.deegree.org) is a good map server, fully compliant 
with OGC Web Services specification as well as Clients and security components. For 
desktop mapping and geographical data analysis, gvSIG (www.gvsig.gva.es) is a multilingual, 
open source GIS developed in JAVA that can handle both vector and raster data. Java Unified 
Mapping Platform (http://www.vividsolutions.com/jump) has attractive features. For GRASS 
(C++ based project) users, a Java graphical interface is also available 

(http://www.hydrologis.com/html/jgrass/jgrass_en.html). Several other similar projects can be 

found on the Internet and new ones are continuously developed.

More than just Java GIS development, in the last years, the growing amount of similar 
projects developed, fostered standardisation. An interesting example of the trend to work 
toward standardisation and open source GIS technologies with Java is a project by Vivid 

Solutions, Inc. (Davis and Aquino, 2003). They implemented a robust topology toolkit called 

the JTS Topology Suite (JTS). The JTS, an open source Java project, is an API providing 
spatial object model and fundamental geometric functions. It implements the geometry model 
defined in the Open Geospatial Consortium Simple Features Specification for SQL. JTS 
provides a complete, consistent, robust implementation of fundamental 2D spatial algorithms, 
allowing Java programmers to perform 2D spatial operations such as identifying polygons and 

intersecting shapes.

The development of such standardised tools allows JTS based software to be integrated with 
other standards-based OGC compliant Java GIS projects. Another similar effort toward 
standardisation is Geo Tools (Garnett, 2007), an open source (LGPL) Java code library which 

provides standards compliant methods for the manipulation of geospatial data. The GeoTools 

library implements Open Geospatial Consortium specifications. Geotools is used by a number 

of other open source and commercial projects which building on its API are compatible 

among them.
Community supporting for GIS and Java integration grows every year above all in the open 
source world. This kind of market model has been pushed by the development of standards by

119

http://www.deegree.org
http://www.gvsig.gva.es
http://www.vividsolutions.com/jump
http://www.hydrologis.com/html/jgrass/jgrass_en.html


the OGC helping developers to build applications with a set of predefined rules for 
constructing geospatial applications, and helping them to build on existing open source 
projects. One of the most important examples of this growing community is The Open Source 
Geospatial Foundation, or OSGeo (www.osgeo.org). The OSGeo is a non-for-profit 

organization whose mission is to support and promote the collaborative development of open 

geospatial technologies and data. The foundation provides financial, organizational and legal 

support to the broader open source geospatial community. These kinds of initiative support 

more and more OGC standardisation and the development of the open source market approach 
model for GIS projects. Concerning commercial software projects, also numerous proprietary 

Java GIS packages already exist. Maplnfo Corporation (www.mapinfo.com) started exploring 
the Java GIS world commercializing solution with an IT-standard Java mapping package 
called MapXtreme Java.

The Environmental Systems Research Institute (ESRI), developed a Java oriented solution for 
ArcView IMS (www.esri.com/software/arcview/) with a Java Graphical User Interface. 
Besides, emphasising a stronger interest in Java technologies for GIS, ESRI ported its 
MapObjects platform to a MapObjects Java version. The market's Java-based GIS solutions 

are rapidly evolving from inelegant GUI-focused toolkits to fully functional geospatial 

advanced programming interfaces oriented toward interoperability and integration.
We can conclude that Java technology has entered the GIS world and it is at the core of many 
new projects representing now a key component of GIS integration with the support of OGC 

standards. Besides, Java is benefiting from the trend toward the development of open source 

technology, a marketing approach for development alternative, a major facilitator for open 
source implementation.

Several new open source tools such as JTS, GeoTools, or commercial tools such as the Oracle 
Spatial Java API (www.oracle.com/technology/software/products/spatial/) allow Java 
programmers unfamiliar with GIS technologies to implement in their projects with 
complicated GIS functions in order to store and treat geospatial data. Therefore, the 

development of GIS solutions in Java technology has helped GIS itself in becoming more 

present not just as an improving functionality for the graphical user interface level but as an 

integrated tool of information systems in the IT industiy. These are just some of the examples

120

http://www.osgeo.org
http://www.mapinfo.com
http://www.esri.com/software/arcview/
http://www.oracle.com/technology/software/products/spatial/


of Java (and not only) related projects concerning GIS. In the next section of the thesis a 

deeper analysis, together with a projects’ benchmarking, will expose the reasons which 
brought us to choose a specific project for this research.

OGC standards

The Open Geospatial Consortium, Inc. (OGC) is a non-profit, international, voluntary 
consensus standard organization that is leading the development of standards for geospatial 
and location based services. Through member-driven consensus programs, OGC works with 
government, private industry, and academia to create open and extensible software application 
programming interfaces for geographic information systems and other mainstream 

technologies. Adopted specifications are available for the public’s use at no cost (Nebert, 2007 

Since 1999 the OGC has been researching the feasibility of heterogeneous 'open' GIS systems 
that achieve interoperability and break with a history of proprietary 'closed' GIS technology. 
The mission of OGC is “to deliver spatial interface specifications that are openly available for 
global use”, the specifications aiming to solve the “interoperability problem” in the GIS 

world. These problems come from industry, govermnent and academia and span many topics. 
Once an interoperability problem is identified, the members work together to define 

requirements for a new interface specification or enhancements to an existing OpenGIS 
Specification. Once a specification is approved, it is made publicly available on the OGC 
website, without cost. Specifications are simply engineering documents that describe how the 
OGC membership has agreed to solve an interoperability problem.

An overview of the most commonly used OGC specifications can be found in Vretanos 
(2005) for the Web Feature Service (WFS), in Evans (2006) for the Web Coverage Service 

(WCS), and the Web Map Service (WMS) is described in detail in de la Beaujardiere (2006) 

give an overview of specifications co-maintained by the International Standardization 
Organization (ISO).

In conclusion, in order to comply with the requirements of our information system, we have 

focussed on the choices of open source GIS projects, OGC specifications and Java 
compatibility.

121



4.4.6 The Database/Geo-database

A Geo-database, known as “geographic database”, is a database capable of managing 
geographic data.
As the use of GIS has increased, the concept of water resources data, evolving in water 
resources management, has broadened to include geospatial data describing the water resource 

features of the landscape. This geo-database is build following a new concept, rather than 

simply applying GIS in water resources, it is possible to think that time series data on water 
properties (quality and quantity) and geospatial data on the water environment are both 

information sources that the information system and the end user wants to use.

To strengthen this synergy between geospatial data and temporal water resources information, 

it is fundamental not holding the information in different formats and archiving enviromnents. 
Traditionally, to store geographic information, GIS users have depended upon files. One of 

the most used of this kind of format is probably the ESRI's shapefiles or computer aided 
drafting files such as DGN/DWG. Where DGN is the name used for CAD file formats 
supported by Bentley Systems' MicroStation (www.bentley.com) and Intergraph's Interactive 
Graphics Design System (http://www.intergraph.com/) CAD programs.

The probably most wide diffused is the shapefile format. According to ESRI (1998), 

shapefiles are a simple, non-topo logical format for storing the geometric location and attribute 
information of geographic features. The shapefile format defines the geometry and attributes 
of geographically referenced features in three or more files with specific file extensions. Apart 

from their ease of use and marketing reasons, the file-based GIS data storage methods do not 

provide the performance, security, and accessibility necessary for a GIS to support a wide 

IWRM platform with a high level of heterogeneous integrated end uses. Besides they do not 

provide management systems supporting client/server architecture as instead the typical 

RDBMS.
Geo-databases overcome many of the limitations inherent in file-based GIS data storage 
architectures. Modern enterprise geo-databases offer a number of advantages over traditional 
shapefiles and coverage, including the ability to:

122

http://www.bentley.com
http://www.intergraph.com/


• Support multiple concurrent GIS users and workflows,

• serve GIS data in high demand environments,

• securely store GIS data and protect against unauthorized data access,

• allow long transactions, data versions, and other real-world scenarios,

• store many GIS features in a single, seamless, spatially indexed database,

• enable sophisticated GIS data models, data validation and spatial business rules.

A major benefit of the geo-database is the ability of GIS staff throughout an enterprise to 
centrally store and share geo-spatial data (vectors, rasters, topologies, measures, addresses, 
CAD, etc.). It is supported by the client/server architecture of the RDBMS.
The traditional solution to all this has been to use specialised database systems that use 
proprietaiy spatial indexing, and proprietary interfaces.

4.4.6.1 Linking relational databases with GIS functionalities

A relational database basically consists of a set of interconnected tables, where each table 

stores one sort of data relevant to the application (more on RDBMS and on the difference with 
OO DBMS in the next chapter). More than by RDBMS database developers, the need to 

combine SQL with GIS technologies was firstly determined by the developers of GIS 

applications in order to make their applications and services more powerful and capable of an 
integrated data management.

The organization, which took the task of formally establish and expand GIS standards to 

broader markets making GIS technologies available everywhere, is the Open Geospatial 
Consortium that we already presented. The idea of Geo-database now is combining the power 

of typical relational database management systems (RDBMS) with SQL spatial extensions of 
the Open Geospatial Consortium specifications.

These specifications are used as the baseline for almost all implementations of GIS functions 

within an SQL-based relational database. This standard defines the data types (figure 4.5),

123



operations, input and output format, functions and much more. This is the standard that is 
followed by almost all SQL databases with spatial extensions, including MySQL, ORACLE, 
PostgreSQL + PostgreGIS, etc. (Karlsson, 2003).

( Geometry )

r
[ GeometryCoilectiorTl

( Line ] ^UnearRin^j ^uWUn^tringj |MultlPolygonJ

Figure 4.5: MySQL GIS Data types (abstract types in gray).

The geo-database, in the architecture of our information system, corresponds to the “data 
layer” and to the lowest tier of the N-Tier model. It aims not only to be the knowledge base 
for the information system, but also a structured data model supporting analysis and 

modelling in the whole information system. “Water resources data” includes time series data 
on observations of water resources phenomena, water quantity, rainfall, stream-flow, water 
quality, climate data etc.

Besides, more than being just a storage layer, the RDBMS can be considered as a whole 

information system dedicated to data storage. In fact, the RDBMS has a series of business 

tools and procedures that allow the rest of the information system to deal with it only through 
a series of simple commands with SQL. Moreover, typical RDBMS provide already a set of 

other fundamental functionality, as the client/server architecture support, and organization, 

storage, access, security management and integrity of data and eliminating data redundancy.

124



In conclusion databases are a fundamental piece of the information system that can be 
identified as the data-layer of N-tier architecture and also pieces of software including all the 
necessaiy functionality to data management systems.

4.4.6.2 The Water Basin data model

It has already been pointed out that all the information flowing from one component to 

another component of the information system should always be treated through the knowledge 

management component (the geo-database) of the system. Data are sent to and stored or 
modified in the database and then retrieved by another component of the system. The 
information, other than being only stored or transferred through the database, it is also 
structured according to the water basin data model design and implementation.
It is possible to find in the literature some interesting and relevant hydroinformatics projects 
in which geo-databases implement water catchment data models, as for instance in the 
information systems based on the Arc Hydro model (Maidment, 2002).

Arc Hydro is a data structure that provides the capacity to link hydrologic data to water 

resources modelling and decision making methods. In this way water resource models 
included in the information systems can be more closely integrated with GIS (Maidment, 
2002). A detailed presentation and explanation of the data model will be given in the next 
chapter.

For the moment it is important to underline that the data model implemented in the geo­
database of our information system is a relational oriented representation or adaptation of the 

object oriented data model designed in Arc Hydro to represent the water basin system.

4.4.6.3 The relational model in database management systems

The most popular databases, commercial and open source, currently in use are based on the 

relational model. The relational model was introduced by Codd (1969) and is the logic at the 

basis of relational databases. The software programs which implement relational databases are

125



the relational database management systems (RDBMS). From the early 70’s there have been 
many kinds of different interpretations and implementations of this model. According to 

Codd, in order to be compliant with the relational model, implementations should at a 
minimum respect the following common factors:

• present the data to the user as relations (a presentation in tabular form, i.e. as a 
collection of tables with each table consisting of a set of rows and columns),

• provide relational operators to manipulate the data in tabular form.

Strictly speaking and as defined by Codd (1969), a relational database is a collection of 

relations (commonly called tables). Other items are frequently considered part of the database, 
as they are part of the organisation of the structure of the data and they are also needed to the 
database in order to conform to a set of requirements. These principles are translated by Codd 
in a set of 12 rules that can be defined as a check list or guidelines for relational models 

compliancy and that are listed here with the original name given by Codd (1969, 1990) and 
with comments from Parkhurst (2002):
Rule 1: The Information Rule

All data should be presented to the user in tabular form.

Rule 2: Guaranteed Access Rule
All data should be accessible without ambiguity. This can be accomplished through a 
combination of the table name, primary key, and column name.
Rule 3: Systematic Treatment of Null Values
A field should be allowed to remain empty. This involves the support of a null value which is 

distinct from an empty string or a number with a value of zero. Of course, this cannot apply to 

primary keys. Also, most database implementations support the concept of a nun-null field 
constraint that prevents null values in a specific table column.

Rule 4: Dynamic On-Line Catalog Based on the Relational Model

126



A relational database must provide access to its structure through the same tools that are used 

to access the data. This is usually accomplished by storing the structure definition within 
special system tables.
Rule 5: Comprehensive Data Sublanguage Rule

The database must support at least one clearly defined language that includes functionality for 
data definition, data manipulation, data integrity, and database transaction control. All 

commercial relational databases use forms of the standard SQL (Structured Queiy Language) 
as their supported comprehensive language.
Rule 6: View Updating Rule

Data can be presented to the user in different logical combinations, called views. Each view 

should support the same full range of data manipulation that has a direct access to a table. In 
practice, providing update and delete access to logical views is difficult and is not fully 
supported by any current database.

Rule 7: High-level Insert, Update, and Delete

Data can be retrieved from a relational database in sets constructed of data from multiple rows 
and/or multiple tables.
Rule 8: Physical Data Independence

The user is isolated from the physical method of storing and retrieving information from the 
database. Changes can be made to the underlying architecture (hardware, disk storage 
methods) without affecting how the user accesses it.
Rule 9: Logical Data Independence

How a user views data should not change when the logical structure (tables structure) of the 

database changes. This rule is particularly difficult to satisfy. Most databases rely on strong 
ties between the user view of the data and the actual structure of the underlying tables.
Rule 10: Integrity Independence

The database language (like SQL) should support constraints on user input that maintain 
database integrity. This rule is not fully implemented by most major vendors. At a minimum, 
all databases do preserve two constraints through SQL.
Rule 11: Distribution Independence

127



A user should be totally unaware of whether or not the database is distributed (whether parts 

of the database exist in multiple locations). This is difficult to implement.

Rule 12: Non-subversion Rule

There should be no way to modify the database structure other than through the multiple row 

database language (like SQL). Most databases today support administrative tools that allow 
some direct manipulation of the data structure.

Relational databases, implemented in relational database management systems, have become a 

predominant choice for the storage of information in new databases used for financial records, 

manufacturing and logistical information, personnel data and much more.
Nowadays there is a huge list of different commercial, free and open source RDBMS. 
Concrete implementations of the relational model have oriented the evolution of the concept 
of relational model itself from the one defined by Codd. Therefore, practically the most 
accepted definition of a RDBMS is a product that represents data as collection of rows and 

columns (organised as tables), even though it is not based strictly upon relational theory, 

meaning that they typically implement some but not all of the 12 rules defined by Codd. 
Relational database theory uses a different set of mathematical-based terms, which are 
equivalent, or roughly equivalent, to SQL database terminology, the language used to deal 

with RDBMS:

Relational term SQL equivalent
relation base relvar Table
derived relvar view query result set

tuple Row
attribute Column

Where relvar is a term used by Codd meaning “relation variable”.

In the relational model logic the kinds of relationships to set up between the relational 

elements (the tables) are:

128



• One-to-one: Both tables can have only one record on either side of the relationship. 

Each primary key value relates to only one (or none) record in the related table. Most 

one-to-one relationships are forced by business rules and don't flow naturally from the 

data.

• One-to-many: The primary key table contains only one record that relates to none, one, 
or many records in the related table.

• Many-to-many: Each record in both tables can relate to any number of records (or no 
records) in the other table. Many-to-many relationships require a third table, known as 

an associate or linking table, because relational systems can't directly accommodate 
the relationship.

The concept that will be discussed in next paragraph will oppose the relational model and 
rather discuss the object model which is the main model used in our information system.

4.4.6.4 The object to relational database mapping

Except the knowledge management component (the RDBMS), every component of the 
system, being based on Java, is programmed following the object oriented logic. Therefore the 
data exchange flow between these two components, based on different technologies, is a 
continuous and fundamental task influencing the performances of the whole information 

system. As a matter of fact, object oriented technologies and relational technologies are in 
common use in most organisations, and both are being used together to build complex 

software-based systems. Nevertheless,, the combination between the two technologies, and 

even more between the two logics, is problematic. This “conflictive” integration and 

interoperability is called the “object-relational impedance mismatch” in informatics (Ambler, 
2003).

“Impedance mismatch” is a definition originated from electrical engineering and used in 

system analysis identifying the inadequate or excessive ability of one system to accommodate 

input from another (Ambler, 2006). It is caused from the fact that OO logic is based on

129



software engineering principles that model the objects in the problem domain, while the 
relational model is based on mathematical principles that organize data for efficient storage 
and retrieval (Paterson, 2004), One solution to overcome this problem is the process of 
“mapping” objects to relational databases. Where mapping is meant as the act of determining 
how objects and their relationships are persisted in permanent data storage, in this case 

relational databases (Ambler, 2003).

Basically, the mapping can be simplified as if object oriented classes have to be mapped to 
relational tables and classes’ properties to tables’ columns. Except for very simple databases, 

it is not likely to have a one-to-one mapping of classes to tables as relational databases do not 
natively support inheritance. Since Java is a single inheritance language, the mapping 

techniques we took in account are (Ambler, 2003):

• Map the entire class hierarchy to a single table,

• map each concrete class to its own table,

• map each class to its own table,

• map the classes into a generic table structure.

We choose, both for simplicity and completeness, to map each class to its own table. 
Following this strategy it will be created one table per class, with one column per attributes 
and any other necessaiy information. The use of the primary key and the foreign key is 

fundamental to map accurately relationships between classes. The inheritance relationships 

are simply simulated bringing in every inheriting class all the attributes of the inherited 
classes.

4.4.7 The Graphical User Interface

A graphical user interface (GUI) can be defined as an interface which allows a user to interact 
with a computer based information system. There are several elements in a GUI (i.e. pointers, 

windows, etc.) and devices (i.e. mouse, keyboards, etc.) which allow the user to interact with

130



the different elements of the GUI. The way these are designed and combined influences the 
performance of the GUI in facilitating the interaction between the user and the system.

When designing a GUI, the developer has to take into account the fact that the main objective 
of the users is to have their tasks done as soon as possible spending as small time as they can 

in understanding how the GUI has to be used. The GUI and the information system are the 
mean to accomplish an objective and not the objective in itself. Together with the users, the 

organisations increase their performances when the task is accomplished as quick and as easy 

as possible. Reducing the time that eveiy human resource has to dedicate to a particular task 
and reducing costs for trainings should be the main objective of every GUI.
The organisations responsible for different tasks related to managing a water basin can 
perform better when more GUI developers succeed in reducing time and skills needed for 
using an application. In the case of software which is not going to be used by a vast public, 
such as our information system, the GUI is particularly designed for specialised experts. In 

order to design a GUI, two key points are mentioned by Cooper (2003) which are given 
below:

• “Imagine users as very intelligent but very busy”

• “No matter how friendly your interface is, less of it would be better”

Therefore, even if our information system is dedicated to technical experts (very 
knowledgeable users), simplicity and usability remain always the most important 
requirements.

From the software architecture point of view, the GUI corresponds to the presentation layer. 
Keeping in mind that the information system can be used both for modelling and monitoring 
purposes in IWBM, the views and controllers components of the system often shall work veiy 

closely together. For instance, a controller shall be responsible for updating a particular 

parameter in the model which is displayed by a view. In some cases a single object will 

function as both a controller and a view. Each controller-view pair is associated with only one 

model (simulation or data model); however a particular model can have many view-controller

131



pairs. The GUI will be built in different layers and can be easily extended as a new component 
added to the system. The general requirements of the information system (integrability, 

extensibility, portability and open standards based) remain valid at each level and for every 

component.

4.4.8 Application of simulation models

Models are one part of the larger hydroinformatics software system; they are developed like 

separated modules in separated layers. Models implementation will be supported either as 

plug-in components or as predefined composites of these components. Such composites 
should behave identically to basic plug-in components, and in particular should be themselves 

modular. It is possible to define three different kinds of models: data management, data 
analysis and simulation models. The first one shall include the applications that allow the user 

managing and controlling the data layer from the GUI. The second one shall be a package of 

tools allowing the user to cany out analysis on the data, retrieving the data directly through 

the standard interfaces. The third one includes simulation models which need the pre- and 
post- processing of the retrieved and updated data, aligning input and output. It is the case that 
the model engines are written in other languages (C, C++, Fortran, etc.) than the common 
components core language (Java), and the pre- and post- processor work as a wrapping layer 
around the engine providing the information in the right format and translating the model 

results to the system data exchange standard (SQL + Java).

132



CHAPTER V

5 IMPLEMENTATION AND CASE STUDY

133



5.1 Introduction

To test design, architecture and validity of the system a pilot implementation of the 
information system is developed using proposed methodologies and technologies discussed in 
the previous chapters. To validate the system, a case study with some concrete examples is 

conducted for the Upper Mersey (UK) river basin according to requirements presented in 

previous chapters. The research aims to show how the approach followed can embrace a wider 
range of software tools as it can support integrated water basin management. All software 
used to build and implement the information system is open source. The Operating System 
(OS) has been Windows by Microsoft Corporation (www.microsoft.com) and given the 
portability of the core programming language of the IS, Java, both client and server side of the 
information system can be used in eveiy other OS supporting the Java Virtual Machine (e.g. 

MacOS, Linux, Solaris, etc.). In order to test the portability of the system some simplified 

tests has also been carried out for an open source OS, the Linux distribution SUSE 10 
(www.opensuse.org).

Technologies presented in previous chapters are widely available in the open source and in the 

commercial market under several different implementations. They are developed and 
maintained by many different companies, open source communities and projects. Different 

implementations with different features are oriented to different purposes. Performances of the 

single components have a strong influence on the overall performances of the IS.

5.2 Development of the Information system

The definition of the research methodology and of the technology analysis provided a support 

framework to strategically approach the development of the information system.

In previous chapters, all the components to be implemented in the IS have been defined, also 

the implications of their interactions have been studied. Besides, going through the open 

source and open standard existing technologies, we acquired the necessary overview towards 

an appropriate approach to software development.

134

http://www.microsoft.com
http://www.opensuse.org


After designing the information system architecture and following the analysis of the software 

components to be integrated, the following step for the implementation of the system has been 

developed so that all the components can interoperate with each others. This programming 
exercise, which has as result a series of application interfaces, has been possible thanks to the 
fact that all the components chosen are open source and hence freely modifiable. Therefore it 
has been simplified through the use of components based on available standard technologies 
as previously defined. Beside the application interfaces, also the GUI and the simulation 

models have been entirely developed or adapted to the IS. In the quest for the best possible 

results on integration and interoperability, eveiy other component brought into the system has 
been first prepared to be compatible with Java through developing the needed “glue code” 

using and adapting existing API (application progranunes interfaces) or developing new ones. 
Best available standard open technologies have then been adapted toward ad hoc IWBM 
functions; chosen in particular and adapted to the case study.

5.3 Information exchange and data paths

The essential components of IS architecture are shown below (figure 5.1). In the n-Tier model 
(cf. 4.2.3), different layers with different responsibilities accomplish different tasks.

Every layer includes different components and software tools able to process data and others 
able to deal with the adjacent levels acting as interfaces. The process of integrated water 
resources management can be complex and take into consideration several end users and 
organisations. This is why the 3-tier approach can be considered useful in IWRM when 

compared to the two tier approach. In fact, the three tier client/server architecture has been 
used to improve performance for groups with a large number of users and improves flexibility 

when compared to the two tier approach (Helal et al., 2001).

In general, when dealing with a series of different water resources management models that 

have to interoperate, a middle layer used as an applications server, is a strategic support to the 
software infrastructure. Besides, considering the founding principles of the integrated water 

resources management approach, several actors (such as management agencies and

135



organisations) are supposed to make decisions and take actions while considering multiple 

viewpoints and scenarios on how water should be managed. From an infonnatics point of 

view, the 3-tier architecture is defined where a middle tier is added between the user system 

interface in the client side and the database management server environment. This middle tier 

runs as a middleware. Middleware software consists of a set of enabling connectivity services 
that allow multiple processes running on one or more machines to interact across a network. 

When dealing with distributed computing, a middleware is mostly implemented as an 
application server.

During the implementation of this IS, the structure has been made simpler and for the 

prototype of the system, the only layer implemented in the server side is the database server, 
while the others work in the client side. Further development efforts will increase the server 
oriented approach, thereby reducing client software applications and the amount of 
computational work executed in the client machine. In figure 5.1 it is possible to differentiate 
between the present implementation and the possible improvement of the client/server 
architecture towards a purer 3-tier architecture. From a hydromformatics point of view, the 

fundamental piece of work to implement a 3-tier architecture is the structuring and 
implementation of the three different levels, presentation, business and data layer.
In this implementation, the hydroinformatics modelling system will reside at the server side, 

and the client will have controlled access to it (account and password) managed by the 
application server. Also the interface layer will work at the server side. At the client side it 
will integrate a user friendly graphical interface for passing the input data and displaying the 

results to the end user.
It is important to mention that the structure of this information system has been designed as 
Web ready 3-tier architecture. A Web presentation server (the presentation layer), the 
application server (the business layer) and a database server (the data layer) shall all constitute 

the server side of an information system that has at the client side only an Internet Web 
browser (Holz et al., 2004). The only addition in comparison with the 3-tier approach above 

presented is that also the presentation layer should work though a Web server. Having a Web 

GIS as presentation layer would already be a solution.

136



In order to design the business layer in line with the 3-tier approach, in this phase it is 
worthwhile to identify possible solutions for the implementation of the different layers. These 

different solutions imply different scenarios for the architecture with different levels of 
implementation of the distributed computing architecture.

Considering the business layer, in order to manage a series of modelling or management tools 
in a framework of a distributed architecture, the already mentioned solution of implementing 
an application server requires more in-depth studies and developments for scaling up the 
information system. An application server is a component-based piece of software which is 
part of the middle-tier in multi-tier server based architectures. It provides middleware services 

for security and state maintenance, along with data access and persistence needed for 
distributed computing.

The distributed nature of the IWBM management presents particular challenges. When 
dealing with a distributed and integrated information system, managers can easily lose sight of 

the fact that all components are part of the same system and should be treated as such. Besides 

in complex systems, with the need for interoperability of several modelling and management 
tools, application servers become a very important piece of software in the whole system 
architecture.

During the implementation of the IS, what the system really needs to do is to communicate to 
the database server. Therefore, Java technologies are able to work directly with a RDBMS 
through the appropriate technology and interfaces (as showed in the following paragraph). 

Besides the RDBMS have the appropriate features to work also as database server and hence 
Web servers or application servers are not strictly fundamental.

137



CLIENT

GUI
Presentation

tier

Second
Path

Business
tier

Data Access

Present
mplementation

Data tier

SERVER

Data model 
Analysts 
Package

INTERFACE 
SQL* JAVA 

JDBC

INTERFACE 
SQL* JAVA 

JDBC

INTERFACE 
XML* SQL* JAVA

DataBase Simulation 
Model GUI

Water Basin data model

Hydro GeoDataBase

General GUI

Simulation Models

Model Engine, 
Fortran, C, 

Java...

Figure 5.1: the IS architecture and the data paths.

Another solution to implement direct distributed computing in the particular case of JAVA 

technologies is the Java Remote Method Invocation (RMI) 
(http://java.sun.com/products/jdk/rmi/).

138

http://java.sun.com/products/jdk/rmi/


Java-RMI is a Java-specific middleware for distributed computing. Remote Method 
Invocation (RMI) is the object equivalent of Remote Procedure Calls (RPC). While RPC 

allows calling procedures over a network, RMI invokes an object's methods over a network.
In the RMI model, the server defines objects that the client can use remotely. The clients can 

invoke methods of this remote object as if it were a local object running in the same virtual 
machine as the client. RMI hides the underlying mechanism of transporting method arguments 

and return values across the network. In Java-RMI, an argument or return value can be of any 
primitive Java type or any other serializable Java object (java.sun.com).
In our IS, from the user interface application in the client side, the required remote method, 
belonging to a class in the server, will be called; it will execute the necessary routine and send 
back results to client application. Finally the client application will be utilized or simply to 
visualize the received data.

Besides the horizontal organisation and focus of the information, in the structure shown in 
figure 5.1 it is also useful to classify the vertical channelling. In fact, between the fundamental 
layer (the data tier) and the layer on the top (the GUI) it is possible to identify three different 
data paths. Every path treats information with a different analysis and is oriented to a different 
purpose. In the first path, the GIS, encapsulated in the GUI or presentation tier, uses the 

business layer both to retrieve the information from the database in an appropriate way and to 

execute GIS analysis typically required in hydroinformatics, like visual queries and elevation 
models analysis (slope calculation, flow path identification, etc.) This analysis package in the 
first prototype has been only partially implemented. In the second path, the aim is both to 
manage the database and to execute simple and basic analysis on the data model, the level of 
data analysis increases; in the third path, the data are processed at a higher level. Here it is 
necessary to separate the execution in three phases, pre-processing, core engine process and 

post processing. The core engine can be based on other programming language, both 

procedural and object oriented.

139



5.4 Interfaces implementation

In the n-Tier architecture, the interface layer has a central role; its task is to set up the 
communication protocols between the business layer and the knowledge base of the whole 
information system, the data layer. As it has already been argued it is necessaiy to establish a 
set of standard communication channels to allow the different applications of the business 
layer to access the data base, retrieving, modifying and storing the information. The interface 

will be responsible for connecting the Java components of the system with the geo-database. 

The interface will be made of two layers, two APIs (Application Program Interface), one 
dealing with the geo-database, the other with the other Java components of the system. The 

two APIs will be able to communicate between them and will be based on SQL and Java. The 
API communicating directly with the geo-database is the JDBC (Java Database Connectivity) 

driver. It allows Java programs to be comiected to an RDBMS database using standard, 

database independent Java code. It is a pure Java implementation. Call-level interfaces such as 

JDBC are programming interfaces allowing external access to SQL database manipulation and 
update commands. They allow the integration of SQL calls into a general programming 
environment by providing library routines which interface with the database. JDBC API is the 
industry standard for database-independent connectivity between the Java programming 
language and a wide range of databases as for instance MySQL and Postgree SQL, the ones 

used in this research. The JDBC API provides a call-level API for SQL-based database 

access. JDBC technology is also portable following the "Write Once, Run Anywhere" 
capabilities for applications that require access to multiple sources of data.
The JDBC API allows the different layers of the information system to:

• Establish a connection with a database or access any tabular data source,

• send SQL statements,

• process the results.

Concerning its architecture (shown in figure 5.2), The JDBC API contains two principle series 
of interfaces: the upper level, the JDBC API for application writers, and the other level, the

140



im

JDBC driver API for writers. JDBC technology drivers fit into one of four categories. 
Applications and applets can access databases via the JDBC API using pure Java JDBC 
technology-based drivers, as shown in the below figure (Andersen, 2006):

Figure 5.2: The JDBC access scheme.

For every other component of the IS a pure Java API able to communicate with RDBMS 
through the JDBC will be built. For some of the components, the interface will be only 
composed by a single layer, the JDBC. This is either because of the simplicity of the 

component or because our customized applications are built directly to communicate with
JDBC.

5.5 Open Source Database projects comparison and selection

Given the complexity of modem database management systems there would be many 
considerations to take into account when choosing a database platform and not just purely 

technical. As for instance they can include feature completeness, vendor support and 

community support, performance and optimization. An organisation will not invest without 
knowing details about system's requirements and about the application to be built. In the end

141



those requirements may not be easy to identify, and even harder it could be to define them, but 

our experience shows that it is worth to invest time and resources on hard thinking towards 

cost-effective and robust solutions. It could seem obvious but in many projects does not seem 

to be, the design phase needs to be based on solid considerations.

Over the last couple of years, a number of open source databases have been developed 

becoming important alternatives to commercial databases. Projects such as MySQL 
(www.mysql.com) have strongly benefitted from becoming open source experiencing a 
significant market share increase over their biggest and previously unreachable competitors 
such as Oracle and Sybase. In realty MySQL marketing model is quite complex and not just 
open source license based, but its gains from the open source model are incontestable. In fact, 

MySQL offers a mix of open source and commercial licence which can be adapted to B2B 

(business to business) and B2C (business to customer) needs.
Other important competitors of MySQL in the open source database world are PostgreSQL 

(www.postgresql.org), Ingres (www.ingres.com), FireBird (www.firebirdsql.org), etc. A 

complete list of other open source database project would be too long and out of its scope. 
Therefore, this research basically focuses on the two most competitive existing databases such 
as MySQL and PostgreSQL. A brief description of the two database management systems 

with comparison is given below.

PostgreSQL (www.postgresql.org) and PostGIS (postgis.refractions.net)
One of the open source projects chosen to implement the database layer for our research is 
PostgreSQL (http://www.postgresql.org/). It has a spatial extension known as PostGIS 

(http://postgis.refractions.net/). PostgreSQL is an object-relational database management 

system (ORDBMS) based on POSTGRES, Version 4.2, developed by the Computer Science 

Department at the University of California at Berkeley. POSTGRES pioneered many concepts 

that only became available in some commercial database systems much later. PostgreSQL is 

an open-source descendant of this original Berkeley POSTGRES code. It supports SQL92 and 

SQL99 and offers many modern features:

• complex queries;

142

http://www.mysql.com
http://www.postgresql.org
http://www.ingres.com
http://www.firebirdsql.org
http://www.postgresql.org
http://www.postgresql.org/
http://postgis.refractions.net/


• foreign keys;

• triggers;

• views;

• transactional integrity;

• multiversion concurrency control.

Also, PostgreSQL can be extended by the user in many ways, for example by adding new:

• data types;

• functions;

• operators;

• aggregate functions;

• index methods;

• procedural languages.

PostgreSQL works on many different system platforms, including FreeBSD, Linux, Mac OS 
X, NetBSD, Novell NetWare, OpenBSD, OpenSolaris, Symbian, SunOS, and Microsoft 

Windows, a much longer list is available in the web site. Besides, because of the open source 

license (It is released under a BSD-style license, technically BSD licenses represent a family 

of permissive free software licenses.), PostgreSQL can be used, modified, and distributed by 
everyone free of charge for any purpose, be it private, commercial, or academic 
(http://www.postgresql.org/).

Even though PostgreSQL claims to be an object-relational database but for the prototype of 

our information system the object oriented (OO) features are not used. Nevertheless in the 

future developments the OO features of PostgreSQL will be taken into account and probably 
be implemented in the system, being the test of the object oriented technologies applied to a 

relational database one of the research objectives also presented in the last chapter of the 
thesis with the implementation of another OO database management system.

143

http://www.postgresql.org/


A particular mention when using PostgreSQL in GIS enviromnent is to be given to PostGIS 

(http://postgis.refractions.net/). PostGIS is an open source software program that adds support 

for geographic objects to the PostgreSQL. PostGIS gives a strong impulse to PostgreSQL 

performances and features making the combination probably one of the most complete 

solutions available nowadays. PostGIS is a standardised solution since it follows the Simple 
Features for SQL specification from the Open Geospatial Consortium.

In particular, as mentioned in its web site PostGIS includes:

• Geometiy types for points, linestrings, polygons, multipoints, multilinestrings, 
multipolygons and geometiy collections.

• Spatial operators for determining geospatial measurements like area, distance, length 
and perimeter.

• Spatial operators for determining geospatial set operations, like union, difference, 
symmetric difference and buffers (provided by GEOS).

• R-tree spatial indexes for high speed spatial queiying.

• Index selectivity support, to provide high performance query plans for mixed 

spatial/non-spatial queries.

The first version was released in 2001 by Refractions Research under the GNU General 

Public License, and development has continued since then actively. In 2006, PostGIS was 
certified as a compliant Simple Features for SQL database by the Open Geospatial 
Consortium.

MYSQL (www.mysql.com)

MySQL is a relational database management system which, according to its developers, has 

more than 11 million installations. The software runs with a client server architecture 

providing several users to access several databases. MySQL is owned and sponsored by a 

single for-profit firm, the Swedish company MySQL AB, which became recently subsidiary 
of Sun Microsystems. MySQL AB is the owner of the copyright to most of the codebase.

144

http://postgis.refractions.net/
http://www.mysql.com


MySQL is an open source product available under terms of the GNU General Public License. 

Besides, MySQL is also a commercial software sold under a variety of proprietary 
agreements.

In fact, both the MySQL server software and the client libraries are distributed under a dual­
licensing format. Users may choose the GPL, which MySQL has extended with a FLOSS 
License Exception. MySQL popularity is strongly linked to PHP popularity, being PHP an 
open source scripting language designed for producing dynamic web pages. The two together 

are one of the most diffused solutions for web applications. In fact several high-traffic web 
sites (including Flickr, Facebook, Wikipedia, Google (not for searching), Nokia and 
YouTube) use MySQL for its data storage and logging of user data.

Concerning portability, MySQL has strongly developed this aspect working on many different 

system platforms, including FreeBSD, Linux, Mac OS X, NetBSD, Novell NetWare, 
OpenBSD, OpenSolaris, Symbian, SunOS and Microsoft Windows. When integrating 

MySQL in an information system it is also fundamental the availability of Libraries for 
accessing MySQL databases from different components of the system. Libraries are available 

in all major programming languages with language-specific APIs. In addition, an ODBC 

interface called MyODBC (Open Database Connectivity (ODBC) provides a standard 
software API method for using database management systems) allows additional 
programming languages that support the ODBC interface to communicate with a MySQL 
database, such as ASP or ColdFusion. The MySQL server and official libraries are mostly 
implemented in ANSI C/ANSI C++.

Concerning usability and management tools for MySQL databases it is possible to use the 

included command-line tool (commands: mysql and mysqladmin). Also downloadable from 
the MySQL site are GUI administration tools: MySQL Administrator and MySQL Queiy 

Browser. Both of the GUI tools are now included in one package called tools/5.0.html 

MySQL GUI Tools. The user and the developers' community around MySQL is important and 
this is noticeable with the large variety of other tools available in addition to the above- 

mentioned developed by MySQL AB. As for instance there are several other commercial and 

non-commercial tools available. Examples include Navicat Free Lite Edition or SQLyog

145



Community Edition, they are free desktop based GUI tools and phpMyAdmin, a free Web- 
based administration interface implemented in PHP.

Comparison, MySQL vs. PostgreSQL
PostgreSQL and MySQL are probably the most important competitors in the open source 

world of database management systems, and there is a large list of articles, literature and 
websites related to their comparisons and benchmarking.

In the IT world PostgreSQL is the University based project and consequently is seen as the 

innovative and research oriented database, while MySQL is the typical open source project 
result of a commercial marketing strategy.

First thing that influenced our decision is that surprisingly even if MySQL has a much bigger 

market share than PostgreSQL, it is easier to find more PostgreSQL supporters than MySQL 
ones. There is a long list of websites with references of experts supporting PostgreSQL choice 
versus MySQL, as for instance below:

• http ://www. vitavoom.com/postgresql.html

• http://article.gmane.org/gmane.comp.lang.mby.rails/12576

• http://www.sitepomt.com/article/site-mysql-postgresql-1

• http://feedlounge.com/blog/2005/ll/20/switched-to-postgresql/

• http://www.postgresrocks.com/

The main difference behind the philosophy and the approach to market of the two database, 

that confirms what previously said, is clearly that MySQL is more an open source product and 

PostgreSQL is more an open source project. This is maybe confirmed by the new market 
related developments involving MySQL AB (the company owning MySQL) which was 

founded in 1995 and which was recently acquired by Sun Microsystems in 2008 (the owner of 
Java).

Being MySQL and PostgreSQL the two main competitors in the open source market, a choice 

between one of the two is a decision that many must make when approaching open-source

146

http://article.gmane.org/gmane.comp.lang.mby.rails/12576
http://www.sitepomt.com/article/site-mysql-postgresql-1
http://feedlounge.com/blog/2005/ll/20/switched-to-postgresql/
http://www.postgresrocks.com/


relational databases management systems. Both are time-proven solutions that compete 
strongly with proprietary database software. MySQL has long been perceived as the fastest of 

the two but with less features above all when considering innovative features, while 

PostgreSQL was assumed to be a more complete featured often even described as an open- 
source version of Oracle. In 2003, Ian Gilfillan (2003) affirms that the first sticking different 

between the two databases was the slower performances of PostgreSQL, being this justified 

with the fact that PostgreSQL was more focused on features than performances. MySQL has 
been popular among various software projects because of its speed and ease of use, while 
PostgreSQL has been preferred by developers who come from an Oracle or SQL Server 
background.

Over the last years the two developers’ communities worked hard to make those perceptions 

change (i.e. PostgreSQL less solid and MySQL less perfonnant) making become those 
assumptions mostly outdated and incorrect.

MySQL has come a long way in adding advanced functionality while PostgreSQL 
dramatically improved its speed with the last major releases. Many analysts, however, are 

unaware of the convergence and still base their opinions on stereotypes based on MySQL 4.1 
and PostgreSQL 7.4. In fact, as affirmed by Rindal (2007), both MySQL and PostgreSQL 

offer a good engine geared towards the lower to middle end of database systems. PostgreSQL 

has a full list of advanced features that have been stable for longer. As such, it is better suited 
for larger database systems. Over the long run, we expect MySQL to strongly stake a claim in 
the higher-end of the scale. The latest release has implemented a host of advanced features to 
support industry-standard database systems.
Also, the speed comparisons are often referred to tests mainly based on MylSAM and 

PostgreSQL engines. If the comparison was done between the latest versions of InnoDB and 

PostgreSQL, PostgreSQL would be often faster.

147



CTLsSL
5.6 The hydro geo-database

Following our design principles, the information system implements an open source relational 
database, with the spatial extension OGC compliant (geo-database). The geo-database will 
integrate the water basin data model, following the object to relational database mapping 

techniques. We named hydro geo-database the geo-database implementing the water basin 
data model.

The hydro geo-database has been designed with a data model taken from the Arc-hydro data 
model of ESRI (Maidment, 2002) and organised in different subsystem: water quantity 
drainage, channel, hydrography, network, time series, basin DTM. Every subsystem is able to 
deal with water quality and water quantity parameters. The data model has been designed but 

it has not been totally implemented in the prototype. In figure 5.3, the complete overview of 
the Arc-hydro data model, all the features are shown.

Arc Hydro Groundwater Data Model

Figure 5.3: an overview of the Arc-hydro data model (Maidment, 2002)

The general features of the hydro geo-database are:

148



• A general geo-database built conforming to the water basin data model, using a unique 
ID (Maidment, 2002);

• A structured representation of the knowledge about the basm;

• Knowledge base for every kind of component (simulation model, GIS, DSS, 
management tool, etc.) integrated in the system;

• Knowledge base for eveiy kind of external component dealing with the system;

The water basin is modelled through a set of generic objects, the classes (in object oriented 

model), which are represented as tables in the database. In the tables a set of properties are 
defined as columns and eveiy time that a row is created it is like a new object of the class that 
is instantiated. The relationships between classes are mapped for the moment using the 
primary and foreign key.

5.7 Analysis of GIS projects

The GIS is at the same time an end user visualization layer and a data process package able to 

deal with geographic data. It shall be managed directly from its customized GUI and shall 

retrieve the information from the geo-database through the standard interface, the JDBC and 
the GIS API.

According to the design principles of our information system, the GIS tool will be open 

source, OGC specifications compliant and Java based. In recent years, the GIS industry has 
witnessed dramatic growth in the development and adoption of open source technologies. The 
technical GIS community adopted open source technology relatively early, and now 
mainstream GIS and broader IT industries have come on board as open source products have 
matured. Therefore there is an important amount of open source GIS projects available and 

they are extremely powerful and advanced. In order to analyse this large, evolving and 

dynamic list, open source GIS software can be organized in different non exhaustive 

categories, depending on the technology used for its development and also on the objective of 
the development itself (WEB oriented, etc.).

149



As in eveiy field of open source software, among different categories, developers re-integrate 
continuously different projects. This happens also because some of these projects are 

themselves meant to develop libraries oriented to different and particular field of GIS.

The criteria that have been used to proceed with the analysis, benchmarking and selection of 
the GIS project to be integrated in the system are the following:

• System requirements,

• easy integration with the Information System,

• capacity, efficiency and reliability,

• built-in applications,

• interoperability,

• ease and effectiveness of use,

• speed and demand for computing resources,

• costs and need of resources for utilization,

• possible free and/or not free technical support and community of developers.

Concerning sources of Information for open sources GIS, since the speed, the variety, the 
quantity and the complexity of projects that are all the time launched or abandoned, the only 
effective way to find updated information is to collect them from all possible sources on the 
internet. In particular, there is a quite long series of internet repository which monitor 

continuously the world of GFOSS (Geographic Free and Open Source Software). Below a list 
of several of these very useful repositories (Chen et al., 2010).

Specialised GIS Web portals:

• Open Source GIS (http://opensourcegis.org/). This portal for GIS aims to build and 

maintain a large list of Open Source/Free GIS related software projects. In order to be 

able to include a long list of projects, the definition of GIS itself is quite large and 

means to encompass all kind of software or package which deals with spatial data. 

This site is also based on other open source related repository projects such as OSRS ,

150

http://opensourcegis.org/


FreeGIS.org, Metalab Linux Archive, and Fresh Meat.net. A list of over 250 GIS 
related software packages is provided.

• Freegis (http://freegis.org/). This is another repository with the particular interest that 
software, Geodata projects, and all related information are organised according to the 

OS and to the language features. A list of over 300 relevant software is provided.

• OSGeo (http://www.osgeo.org/). This is a website of the Open Source Geospatial 
Foundation that has been created to support and build the highest-quality open source 
geospatial software. The main mission of the foundation and of the website in 
particular is to support and promote the collaborative development of open geospatial 

technologies and data. It also serves a source code repository which acts as a 

centralized location for software developers to which community members can 
contribute with code, funding and other resources, securing in the knowledge that their 
contributions will be maintained for public benefit. A list with several popular 
software packages is given.

• Cascadoss (http://www.cascadoss.eu/en/index.php) is a project funded by the 6th EU 
framework programme for research, and it carried out a very useful benchmarking 

among a list of open source GIS. This benchmarking was based on general 

information, marketing potential, technical potential and economic potential. This 
more than just giving a list of open source GIS, it sets out a series of parameters and it 
proposes a method to analysis GIS potential and performances.

• GISwiki (http://en.giswiki.net/wiki/Category:Software) brought to the GIS world the 
concept of WIKI, meaning a collection of Web pages designed to enable anyone who 
accesses it to contribute or modify content. The main point of having a WIKI for GIS 

projects is to create a collaborative website empowering a community. GISwiki lists 
both commercial and open source software.

General repositories of software projects (mainly open source):

• SourceForge (http://web.sourceforge.com/). This, more than just being a repository for 

all sorts of open source software, is a source code repository which acts as a

151

http://freegis.org/
http://www.osgeo.org/
http://www.cascadoss.eu/en/index.php
http://en.giswiki.net/wiki/Category:Software
http://web.sourceforge.com/


centralized location for software developers to control and manage open source 

software development. It helps to maintain and provide codes for downloads. 

SourceForge.net competes with other providers such as RubyForge, Tigris.org, 

BountySource, BerliOS, JavaForge and GNU Savannah. Since it is a general 

repository, in order to determine the number of GIS related projects a search has been 

earned out in the internal search engine with the GIS keyword, and a list of 240 

projects is given (April 2009).

• Wikipedia, the most well known WIKI (as previously defined) provides also a list of 

GIS software packages (http://en.wikipedia.org/wiki/List_of_GIS_software) and 

comparisons of some packages were given at

(http://en.wikipedia.org/wiki/Comparison_of_GIS_software). It is noted that both 

commercial and open source software have been included.

After an extensive search among the above mentioned references, more than 300 hundreds 

projects relevant to open source GIS were found. The initial selection was based on 

macroscopic criteria such as the fact that the project behind the software was currently active, 

meaning that a new version or at least an update occurred in the last year and that the project 

was mature enough, meaning working for at least 3 years with a series of updates and new 

versions.

The second criteria was the objective of the project, as for instance general puipose Desktop 

GIS applications, web-GIS packages, functions packages which need more development etc. 

A list of 31 open sources GIS software packages has been put together as a serious candidates 

to be considered for the project. The name, version of release, developer and homepage are 

shown in the following table (Chen et al, 2010).

Name Developer Homepage
Apache Batik Apache http ://xmlgraphics. ap ache, org/batik/

DIVA GIS
CIP (International Potato 
Center, Peru)

http://research.cip.cgiar.org/confluence/display
/divagis/Home

Deegree lat/lon, Germany http ://www. deegree. org/
Fmaps Fmaps team http://sourceforge.net/projects/fmaps/

152

http://en.wikipedia.org/wiki/List_of_GIS_software
http://en.wikipedia.org/wiki/Comparison_of_GIS_software
http://research.cip.cgiar.org/confluence/display
http://sourceforge.net/projects/fmaps/


FWTools Private http://fwtools.maptools.org/
GeOxygene GeOxygene Team http:// oxygene-proj ect. sourceforge.net/
GeoServer Geoserver team http://geoserver.org/display/GEOS/Welcome
Generic
Mapping Tools Univ of Hawaii http://gmt.soest.hawaii.edu/

GRASS GIS
GRASS Development
Team http://grass.itc.it/

gvSIG
Iver, Generalitat Valencia, 
Universidad Jaume I http://www.gvsig.gva.es

HidroSIG
University of Colombia, 
Medellin

http://cancerbero.unalmed.edu.co/~hidrosig
/ingles/index.php

ILWIS 52° North 52°North Product page
KOSMO SAIG S.L. http://www.opengis.es/
JTS Topology 
Suite VIVID SOLUTIONS http://www.vividsolutions.com/jts/jtshome.htm
Mapnik BerliOS Developer http: //mapnik. org/
Map Window 
GIS

MapWindow Open Source 
Team http://www.mapwindow.org

mezoGIS Private, frozen now http://www.mezogis.org/
monoGIS MonGIS team http ://www,monogis. org/
NRDB Private http://www.m-db.co.uk/
OpenJUMP OpenJUMP Team www.openjump.org
OpenMap BBN Technologies http: //openmap. bbn. com/
OSSIM OSSIM team http://www.ossim.org/OSSIM/OSSIMHome.html
PostGIS Refractions Research http://postgis.refractions.net/
Quantum GIS QGIS Development Team http://www.qgis.org
SAGA Univ of Goettingen http://www.saga-gis.uni-goettingen.de/

SAMT
Institute of Landscape 
Systems Analysis (ZALF) http: //ww w. zal f. de/home s amt-1 s a/

SavGIS
1RD (Development
Research French Institute) http://www.savgis.org

SharpMap sharpmap team http://www. codeplex.com/SharpMap
TerraView DPI of INPE http://www.dpi.inpe.br/terraview/index.php
Thuban Thuban Team http ://thuban.intevation. org/
uDIg Refractions Research http ://udig.refractions.net

In order to refine this long list another very interesting research was taken into account. This 
was carried out by one of the market leader in open source GIS, Refractions 
(http://www.reffactions.net/). The research tries to define a method for analysis of open source

153

http://fwtools.maptools.org/
http://geoserver.org/display/GEOS/Welcome
http://gmt.soest.hawaii.edu/
http://grass.itc.it/
http://www.gvsig.gva.es
http://cancerbero.unalmed.edu.co/~hidrosig
http://www.opengis.es/
http://www.vividsolutions.com/jts/jtshome.htm
http://www.mapwindow.org
http://www.mezogis.org/
http://www.m-db.co.uk/
http://www.openjump.org
http://www.ossim.org/OSSIM/OSSIMHome.html
http://postgis.refractions.net/
http://www.qgis.org
http://www.saga-gis.uni-goettingen.de/
http://www.savgis.org
http://www
http://www.dpi.inpe.br/terraview/index.php
http://www.reffactions.net/


GIS projects and software. They pointed out a series of reasons for an open source GIS to 
become successful and to be a good candidate to be integrated in an information system 

(Ramsey, 2007). It is interesting to note that criteria are particular to open source and would 

somehow differ from a commercial GIS software development, at list in their prioritisation. 

They are formulated as questions that an analyst should wonder in order to make a reasonable 

choice, these questions are:

• Is the project well documented?

• Is the development team transparent?

• Is the software modular?

• How wide is the development community?

• How wide is the user community?

These can be also seen as an indirect criteria which more than analyse the project itself 

address in depth its sustainability, success and user friendliness. It is a test of the state of 

healthiness of the project.
In the same direction, again very relevant to open source, goes the interesting approach that 
Ramsey (2007) undertakes in order to categorise projects taking into account the open source 

community working around the project, calling it tribe with the reference to the programming 
language/technology used. On the basis of this “tribe” approach, he also makes a classification 

of projects:

• The ‘C’ tribe, mainly consisting of developers working on UMN Mapserver, GRASS, 
GDAL/OGR, OSSIM, Proj4, GEOS, PostGIS, QGIS and MapGuide OS. The ‘C’ tribe 
also includes users of scripting languages that bind easily to C libraries, such as 

Python, Perl and PHP.

• The ‘Java’ tribe, consisting of developers working on GeoTools, uDig, GeoServer, 

JTS, JUMP, OpenMap and DeeGree.

154



• The ‘.Net’ tribe, consisting of developers working on Worldwind, SharpMap, NTS, 
and MapWindow.

There are a series of these above mentioned projects that are used transversally by some of the 

other mentioned communities or at least by more than one. This is for instance the case of the 

geodatabase PostGIS/PostgreSQL thanks also to other interfaces like libpq (C/C++), ODBC, 
NPgSQL (.Net) and JDBC (Java). However, since it is developed in C and uses C-based GIS 
support libraries, PostGIS should be treated as member of the C tribe.
It is also important to note that Mapserver is also used by some Java developers via JNI (Java 
Native Interface) or via the OpenGIS WMS and WPS protocols. C and Java communities 
developed a high degree of linkage in particular with code reuse and libraries linking. There is 

also a mechanism for .Net to reuse both the Java and C code called the .Net “assemblies” 

allowing .NET to wrap C/C++ code and cross compiling of Java code using J#. The J# (J- 
sharp) programming language is a transitional language for Java and Microsoft's Visual J++, 
to use code, and applications on .NET platform. J# can work with Java bytecode and source so 

it can be used to transition applications that use third party libraries even if their original 
source is unavailable.

Another categoiy of projects that cannot be organised around the language communities are 

the web applications. This category includes various toolkits and web services that provide a 
browser-based interface to spatial web services, like mapping servers.
In the shorter list of projects, considering now just the JAVA projects, the programming 
language chosen for our information system, it is possible to affirm that the “Java” world 
includes several independent attempts at “complete unified toolkits” - OpenMap, GeoTools, 

and Deegree. Besides, two of the desktop applications considered, JUMP and gvSIG, have 

independent implementations of core features like data access and rendering, though they do 
use GeoTools library code for some functionality.

Therefore considering our research there is a series of projects which would have been suited. 

The choice of the GIS project to be integrated, at the time of the development, was made 
based on the conceptual belief that the most important general requirement for the information

155



system, integrability, extensibility, can be better attained if the system focuses at the 
maximum possible level modularity of its components.

Hence, more than general performances and features of the short list of projects above cited, 
the focus went to modularity. Among those projects the only one making use of a particular 
concept related to modularity is OpenMap. OpenMap uses the JavaBeans technology 
(www.java.sun.com), which by definition are reusable software programs that can be 

developed and assembled easily to create sophisticated applications. JavaBeans technology is 

based on the JavaBeans specifications. In the next paragraph a thorough analysis of OpenMap 
and JavaBeans concepts and specifications is presented.

5.8 GIS implementation: Open Map and JavaBeans

Based on our previous analysis, the project which resulted as the most suitable for our 

information system is OpenMap. BBN Technologies' OpenMap package is JavaBeans based 
programming toolkit. OpenMap is completely open source and has a Mozilla-style source 
license called Mozzilla Public Licence (MPL), an open source/free software copyright license 
(http://www.mozilla.org/MPL/). If talking about modularity as one of the most important 
requirements for the information system, the concept put forward by JavaBeans 

(http://java.sun.com/javase/teclmologies/desktop/javabeans/) is extremely attractive. By 
definition, JavaBeans are reusable Java software components that can be manipulated visually 
in a builder tool. SUN claims that they are reusable software programs that can be developed 

and assembled easily to create sophisticated applications. The fact that OpenMap structure is 
based on JavaBeans has a direct impact on its development features.

In the case of organisations related to managing water resources (utilities, basin agencies, 

etc.), often, experts are hydroinformatics specialists rather than pure IT specialists. Therefore, 

water engineers have usually limited knowledge of programming. This is why implementing 
information systems with decreasing need for pure programming skills could be veiy useful 
features for those organisations.

156

http://www.java.sun.com
http://www.mozilla.org/MPL/
http://java.sun.com/javase/teclmologies/desktop/javabeans/


According to its developer, using OpenMap, it is possible to quickly build applications and 

applets that can access data from legacy databases and applications in a distributed setting. 

OpenMap provides the means to allow users to visualise and manipulate geospatial 
information (openmap.bbn.com).

At its core, OpenMap is a set of swing components that understand geographic coordinates. A 
Swing is a widget toolkit for Java and part of Java Foundation Classes (JFC), in other words 

they are API for providing graphic. These Swing components help to show map data, and help 
to handle user input events to manipulate that data.
OpenMap has been used by BBN in a number of DARPA and military sponsored programs 
including: ALP (Advanced Logistics Program), Ultra:!: Log, AMP (Analysis of Mobility 
Platform), CoABS (Control of Agent Based Systems), GAMAT (Global Air Mobility 
Advanced Technology), JLACTD (Joint Logistics Advanced Concepts Technology 
Demonstration) and SensIT (from the website http://opemnap.bbn.com/).

BBN has been a member of the OGC (Open GIS Consortium) since 1995. Through this 
membership BBN has been involved in adopting and developing global standards for sharing 

geospatial data. BBN worked also with a number of commercial vendors in the GIS market 
(Bentley Systems, ESRI, Intergraph, Oracle Corporation, MIT and HMD).

The OpenMap architecture (figure 5.4) is a two-tier client/server architecture and therefore 
easy to integrate in our information system.

157

http://opemnap.bbn.com/


Application
Code

Bean API

Layer API

Existing 
Data Sources

| i-zaca
tS

Application 
Data Sources

Figure 5.4: the OpenMap architecture (openmap.bbn.com).

The limitation of the OpenMap package against its use in hydroinformatics and in water 

resources management is that it does not come with already developed water resources 

management related functionalities (hydroinformatics packages). This is not relevant tor our 

research since one of our main objective is to study and to demonstrate the process of 
integration of different components of an information system and OpenMap is a very good 
starting point to develop the visual managing tools. Referring to the overall system structure, 
the integration of OpenMap has been straightforward since it covered the higher level, being 
at the centre of the GUI development.

Database Connectivity

The most important and first task to be carried out is to integrate the GIS into the information 

system and this is achieved by connecting GIS with the data management level. Therefore, 
first part of the development was focused on database connectivity. We developed the 

application program interface (API) able to connect OpenMap to the RDBMS through the 
JDBC. In order to have a more complete picture on the connectivity features of OpenMap and 

to demonstrate that it could also work with different interchangeable RDBMS, we built three 
APIs for two of the most important open source existing RDBMS, MySQLIM, PostgreeSQL

158



plus the commercial market leader, ORACLE™. Since the JDBC are standard APIs and the 
JDBC available for the three RDBMS are quite similar, also our three OpenMap API layers 
are quite similar. In figure 5.5, the structure of the interface between OpenMap and the above 
mentioned three databases are shown. The interface is constituted by two different levels 

which can exchange information directly. Level one is developed during this research, called 

OpenMap API, allows OpenMap to exchange information with the JDBC, the level two is 

available from the open source community i.e. JDBC API which transfers the information 
flow from the OpenMap API to the RDBMS, translating Java commands into SQL.

MySQL

Postgre

ORACLE

MySQL JDBC

ORACLE Layer ORACLE JDBC

OpenMap

OpenMap API JDBC Databases

Figure 5.5: Database connectivity.

This phase involved the creation of ad hoc Java classes and APIs to visualise and then to 
interact with the system knowledge structured (the data model) in the geo-database. The 
package includes methods to establish the interaction between the mouse and the GIS, to have 
the possibility to trigger directly from the Map the required queries to the Database.

The development of the API was done programming a series of Java classes to be included in 
the same package. These classes implement methods which are called from the OpenMap 
GUI and that can effectuate two different kinds of operations:

- retrieve and represent, modify and store different possible types of geometry compatible 
with the databases (points, lines, etc.) as defined in the OGC specifications.

159



- Enquire the database to perform a series of operations (as defined in the OGC specifications) 

and then retrieve and demonstrate the results.

The step following the development of database connections was the development of a series 
of customized tools in the GIS packages useful to deal with water basin management.

5.9 The Graphical User Interface

The graphical user interface is constituted of a series of component developed in Java to work 
in the client side of the IS architecture. Being a Java portable application, the GUI is able to 
work with many different operative system and hardware platforms. This is more a conceptual 
affirmation than a concrete and proved feature, in fact for eveiy different hardware and 

Operative System, the information system would need long testing and debugging before 
becoming operational. This is true not only for the GUI but also for eveiy other component of 

the IS. Being quite simple (without considering the testing phase) to transform a Java tool in a 
Java applet, it will be also possible to make the application working over an Internet browser. 
The GUI can be considered as an extension of the GIS. It completes OpenMap with a series of 
modules allowing typical other automatic functions like presenting data in Charts, etc. The 

GUI is directly linked to the Hydrogeo-database through the JDBC. Even though the data 

exchange is carried out just with the DB, the GUI manages the other components of the 

system with direct calls to their methods. While the data exchange paths respects the process 
control principles we set up, as in a typical OO software the methods’ calls made in a 
component go directly to the other components of the IS entitled to perform the action. With 
the further improvement of the client/server architecture, calls should be addressed through 

the implementation of the RMI. Modularity has been fundamental in the development of the 

IS, more than just OpenMap GIS other projects has been integrated in order to have a more 
complete GUI.

In particular, to develop all the Java classes needed in the GUI for data analysis representation 

we used among other open source projects, Jfreechart (www.jfree.org), which is a powerful

160

http://www.jfree.org


free Java class library for generating charts. This gave to the GUI a series of functionalities 

comparable to a basic spreadsheet processor (such as a simplified version of Microsoft Excel). 

The GUI structure integrating the different projects mentioned can be represented as in figure 
5.6.

JfreeChartOpenMap
GIS

Charts showed 
on the GIS

Figure 5.6: the structure of the GUI showing the open source projects integrated.

JFreeChart is an open source Java chart library allowing developers to display professional 
quality charts in their applications. JFreeChart provides the system and the GUI a set of useful 
features. Its most important features are:

• It supports a wide range of chart types;
• Its design is quite flexible allowing easy extensibility;

• It can be used both in server-side and client-side applications;

• It supports many output types, including Swing components, image files (including 
PNG and JPEG), and vector graphics file formats (including PDF, EPS and SVG);

• It is an open source project distributed under the terms of the GNU Lesser General 

Public Licence (LGPL), which allows its use also in proprietary applications.

In particular it is interesting to notice that Jfreechart supports a series of useful chart types:

• X-Y charts (line, spline and scatter),
• Pie charts,



• Gantt charts,
• Bar charts (horizontal and vertical, stacked and independent),

• Single valued (thermometer, compass, speedometer).

As for the other open source projects integrated in the information system one of the most 
important criteria is the developers’ community. The JFreeChart project was founded in 

Febmary 2000 and nowadays it is used by approximately by 50,000 developers which 
represent an extensive user community.

One other interesting parallel project, extension of JFreeChart, is JWebChart 
(http://jwebchart.sourceforge.net/), a chart servlet that renders JFreeChart generated charts 
using URL.

We can conclude that the GUI has been built with major contributions and extensions from 
two JAVA open source projects, OpenMap and JFreeChart (figures 5.8, 5.9). These two 
projects are completely different and have different objectives but one is completing the other 
and their integration was facilitated by their common programming language, JAVA, and 

their openness. The contribution from the Open Source community for the GUI was 

substantial, and it allowed us to add many powerful features without having the burden to 
focus on heavy programming. Modularity and openness have been once again fundamental in 
the development of this component of the IS.

5.10 Implementation of simulation models

Some basic hydrological simulation models have been developed in Java to test information 
system functionalities and its flexibility. Their development followed the IS architecture 
design and the case study performed by Spanou (2001) “Water quality modelling of the upper 
river Mersey system using an object oriented framework” continuing the hydroinformatics 

research work of Professor Chen research team (Chen, 2002, Leone et al. 2006, etc.). 

Currently two of the tools (regarding flow analysis at gauged river sites) of Spanou work have 
been integrated in the system.

162

http://jwebchart.sourceforge.net/


Moreover some other general packages (statistical, mathematical, etc.) needed as basic 

support component of the IS have been developed at the business layer level. These can be 

useful for supporting basic functionalities of the IS and of other simulation models to be 

implemented in the IS, allowing the developers to continue the research testing extensibility 

and integrability of the system architecture.

5.11 Information System architecture

Finally the whole architecture of the Information System following the n-Tier model, the 

software requirements and the integrated river basin management principles is shown below 

(figure 5.7).
Summarizing the most important open source projects/technologies we integrated in the IS are 

the following:

• The core programming language is Java;

• the query language is the SQL;

• the spatial extensions for the GIS and for the geodatabase are based on the OGC 

specifications,

• the database comiectivity is based on the JDBC driver;

• the software used to develop the geo-database and the data model is PostgreSQL with 

PostGIS as spatial extension;

• for the visualisation layer the OpenMap GIS project has been used as baseline;

• for standard (not directly related to hydraulics) data analysis and visualisation most 

important project implemented in the information system GUI was JFreechart.

163



Simulation Simulation
Engine 1a Engine 1b

_____________ ________**____

n__
Input - Pro- 
processing 

- control

P
Post-*

processing
- Output

J iun Is
Hydro GeoDataBase t9

RDBMS
unique ID

WatorQuantity

WatcrQuality

PosIgreSQL JAVA

PosgtaeSOL
JDBC

CIS
OPEN MAP 

GUI

Simulation 
Model GUI

♦
Interaction 
with the DB

DB
management 

tools GUI

Connector- JDBC --------- 1

GIS Mangomont 
Package -Java-

API
OpenMap ■ PosIgraSQL

GIS Java 
Package

-INTERACTION

Figure 5.7: the IS architecture.

164



u
» a SYSTEM ||®tM 
•-ni Yi tvi

O iIVSTtM T0K3T MOO-
□ SYSTEM T10«8TT*tU 

•■£3 SYSTEM YKYY
t nTMJLC

•a*- mKm m;h» 
♦a j* om

^iJmynkH^d rrm 
Iwwnili 

Lj r>v h r(j
»13m B rnmto 
*• J

•* [3
•■U3wMW_"*_«Yt 
*L3» MMIS fcw 
•►Utt MiM ^
♦C5w %«*2i «»* 
♦*ny,_M2*23>>* 
^a8fe.«va/2ijMw 
•‘CVtjmjjjjioY* 
+anjt9H*JiJ»
* tf tsjUMMJbw
□ TrMrc«*HY nocx
Q TTMTOfURYTMir 

♦■rlvfcYY

-ftwvmu
•MNC

ftWC
»f?JV

iJglJ.__
-•two

‘-♦•wc
«twc
wit*fwe
-w«t
pMifiO
'••me
•mo
•me
•two
-win
,-nwc
-tmo

Hrfrf

Figure 5.8: GUI of IS showing the database manger tool.

Figure 5.9: GUI of IS showing the GIS and the modelling tools.

165



CHAPTER VI

6 APPLICATION OF THE OBJECT ORIENTATION TO THE 

DATA LAYER

166



6.1 Introduction

It has been shown in the previous sections that the object oriented approach allows to develop 

IS for river water quality and catchment hydrological modelling integration. The hydro 
information systems (HIS) developed, is an OO based system with extensions of OpenGIS 

standards and connections to various relational database management systems (RDBMS). 

Such HIS integrates a series of subsystems: GIS, Simulation and Management Models, 
Databases and other external data sources, and a GUI. These different components of hydro 

infonuation systems have been developed with the use of OO logic and technology except for 

the data layer, where RDBMS are still the preferred solution in terms of the reliability of 
performances.
These integrated tools allow users to analyse real-time environmental conditions through 
integrated models, environmental trends and possible development for early warnings 
(flooding, enviromnental hazards, etc.). The increasing complexity of environmental data, 
data structure of data models, amount of information and broadcasting channels (LAN, 

internet, etc.), needs the power of the OO logic to be managed as aheady stated in the 
previous sections of the thesis.

In general, in modern infonuation systems for water resources management data model is 

designed with object oriented logic and is then integrated in the system as persistent layer 

through manual Object-Relational (O-R) mapping with RDBMS. This path has been followed 
(as illustrated in previous chapters) in the first implementation of our information system. The 

main problem we encountered is that the O-R mapping is not standardized and that the 
interface is complicated, also at conceptual level, by the "impedance-mismatch" between the 
domains object model of the application and the relational model of the RDBMS (Ambler, 
2006).

Therefore, the incongmence between the “Relational Logic” of data layers and the “Object 
Logic” of other components of the HIS need to be solved to increase overall performances. 

The obvious solution to solve the impedance mismatch in Information System above

167



described is developing a data layer with object oriented logic. In this chapter, the experience 

of testing two different object oriented solutions for data management will is presented: the 

Java Data Object technology (JDO, Jordan and Russell, 2003) and an Object Database (ODB) 

(Leone and Chen, 2007). Our Java based Hydro Information System (Leone et al., 2006) 

presented in the previous chapter is used as test bed. It is noteworthy to re-affirm that this IS 
has been developed using only open source technologies and software and its evolution will 

follow the same path. Technology solutions and implementation choices aim at making our 
Information System evolve as an alternative to its first and more conventional implementation 
where the IS was interfaced and “manually mapped” with a RDBMS.

6.2 System evolution towards Object Oriented persistence

The definition of persistence with regards to Java technologies, the core programming 

language of the IS, and more in general to OO technologies, is the ability of an application or 
service to shuttle state between a transient objects and some type of data store. In contrast, 
objects which “die” at the end of a process are called transient.

Persistence, also called object durability, is a term often used in conjunction with the issue of 
storing objects in databases.

In order to improve the IS data management capacities, the ultimate goal is to have an OO 
implementation of the logical data model in the data layer, able to make objects persistent, 
directly managed from the IS.

The tests related to the implementation of two different solutions for OO data management 
resolving the O-R impedance-mismatch of the system are presented. In practise, two different 
object oriented data layers are developed with the following functionalities requirements:

• Capacity to manage and store objects;

• Adaptability in the number of objects and storage capacity;

• Working on both sides of client - server architectures;

• Managing complex queries, similar to SQL query capacity level;

• Real-time data management from data sources across the Internet or sensor networks;



Open Source software based;

Ability to integrate existing data sources (stored in RDBMS) with data object model.

6.3 Choice of Persistence Standard

As mentioned, persistence is the ability of data to outlive an instance of a program (Bauer and 
King, 2006). There are several open source technologies available to implement persistence 

standard in Java based Information Systems. Some these technologies, used to implement 00 

persistence in general and Java object persistence in particular, such as Hibernate 
(www.hybernate.com) or JDO (Java Data Object) (Korb, 2004) are designed to provide the 
developer with transparent persistence; the application deals with persistent objects without 
the need for SQL to be embedded in the Java code. These solutions are called transparent 
because the developer does not directly deal (see) the implementation of the data layer. 

Another solution like Container Managed Persistence (CMP) has similar performances for 

EJB (Enterprise Java Beans) containers, but it is not a general persistence facility for the Java 
platform. In all these technologies, the objects are “automatically” mapped to tables of a 
RDBMS by the underlying framework. The developer does not have to deal with time and 
performing consuming RDBMS development tasks but he has to perform time consuming O- 

R mapping operations.
To define the mappings, the developer needs to create descriptors, typically XML files. 

Inheritance and many-to-many relationships augment complexity as these cannot be 
conceptually managed in the relational model. The more complex the data model, the more 

difficult the O-R mapping. Purer solutions, conceptually different from OR mapping, are 

databases based on the object model. An object database management system (ODBMS), is a 

DBMS that supports the modelling and creation of data as objects (www.odbms.org).

There is no official Standard for ODB. The de facto standard is the final release of the last 

Object Database Management Group (ODMG, www.odmg.com), the ODMG 3.0. The 
ODMG Java binding has been now superseded by JDO.
ODB combine the elements of object orientation and OO programming languages with 
database capabilities. They extend the functionality of OO programming languages (e.g., C++,

169

http://www.hybernate.com
http://www.odbms.org
http://www.odmg.com


&k
Smalltalk, Java) to provide fiill-featured database programming capability. The result is a high 

level of congruence between the data model for the application and the data model of the 

database, resulting in less code (25% to 35% less), more natural data structures, and better 

maintainability and reusability (McClure, 1997).

RDBMS

OO I! ODBMS
Table 1

Table4

Class 3

Class 2

Class 1

Object Oriented IS

Class 3

Class 2

Class 1

Class 2

Class 1

Class 3

Figure 6.1: a) O-R Mapping; b) Object DB.

In figure 6.1 a), classes of an OO IS have to be mapped onto RDBMS tables; additional tables 

are needed to represent OO relationships in relational logic. In figure 6.1 b), classes of an OO 
IS are directly stored in an ODB.

6.4 Implementation and Case Study

Two different kinds of technologies, the transparent persistence and the ODBMS, have been 

implemented in the IS data model in order to analyse their performances dealing with 

hydroinformatics data. The data model previously implemented in the IS with relational logic, 

a customized version of the well known ArcHydro from the Centre for Research in Water 

Resources of the University Of Texas (Maidment, 2002), also used by ESRI (www.esri.com)

170

http://www.esri.com


for water resources management applications, will be implemented with OO logic. This data 

model (figure 6.2) is conceived as geographic database, CIS oriented representation of a HIS.

DrainageHydrography Network

TimeSeries

HydrojunctionOWDrainage

DrainageAreaHydropoint

TSTypeTimeSeriesMonito ringPoint

Hydrography

Watershed

OWFeature

Figure 6.2: Partial representation of the data model.

6.4.1 The transparent persistence solution

The transparent persistence solution chosen is the Java Data Object. JDO is the standard for 
persistence of Java objects (Jordan and Russell, 2003), which basically provides two 
important advantages: transparent persistence and runtime database portability across the 

compliant implementations (www.jdocentral.com).
There are several JDO implementations, most of them Open Source. JPOX (www.jpox.org) 

for instance is an Open Source and fully compliant implementation of the JDO 1.0 and 2.0 

specifications.
In the JDO implementations, information is virtually stored in the data model, but physically 
goes through the JDO API to be stored in the RDBMS. Neither the IS, the developer nor the 
user developer have to care about the way the information is managed or the O-R mapping is 

done by the JDO API.
In general, for every JDO implementation as well as for JPOX, there are 6 different phases:

171

http://www.jdocentral.com
http://www.jpox.org


1. Design the domain/model classes;

2. Define their persistence using Meta-Data;

3. Compile the classes, and instrument them (using a JDO enhancer);

4. Generate the database tables where the classes are to be persisted;

5. Write the code to persist objects within the DAO layer;

6. Configure and run the application.

Every time the data model is updated with new classes or just changed, the steps from 2 to 5 

have to be repeated.
In the first step, the data model is normally designed. Then, the developer defines how the 

classes should be persisted, in terms of which fields are persisted and the way they are 

persisted etc. This is performed by writing a Meta-Data persistence definition for each class. 
Here an extract from an XML file of our implementation:

<?xml version—'1.0"?>
<!DOCTYPE jdo PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN" 
,,http://java.sun.com/dtd/jdo_l_0.dtd">
<jdo>
<package name="datamodel.hydro" >

<package name="Hydrography">
<class name-'hydrography" identity-type="datastore" persistence-capable - 
superclass="datamodel.hydro.OWFeature">

<field name="FType" persistence-modifier="persistent">
<extension vendor-name-'jpox" key="length" value-'max 100"/>

</field>

</class>
<classname-'HydroPoint" identity-type-'datastore" persistence-capable-superclass-'hydrography">

<field name="JunctionID" persistence-modifier="persistent">
<extension vendor-name-'jpox" key="length" value="max 100"/>

</field>
</class>
</package>

The inheritance relationship is defined (with the “superclass” descriptor) between the class 

hydrography and the class OWFeature.

172

http://java.sun.com/dtd/jdo_l_0.dtd


The third step makes the classes PersistenceCapable through this Java interface. JPOX and 

other JDO standard implementations provide their own byte-code enhancer for 

instrumenting/enhancing classes. Finally the data model is persistent. Interaction with the 

persistence framework of JDO is performed via a PersistenceManager. This provides methods 
for storing, querying, removing objects, etc.

Now that the data model is persistent, the IS is ready to be developed dealing with the data 

layer. The queiy language to perform all the interactions between the IS and the data model is 
the JDO Queiy Language (JDOQL). JDOQL uses Java syntax, keeping SQL heritage, its 

power and even improving its simplicity as shown in the following examples. In our 
implementation, considering the “Irwelll” monitoring station of the Irwell river :

Example 1, JDOQL request:
• JDOQL

MonitoringPoint.class,“flow>Irwe]l 1 .flow”
• Equivalent SQL 

SELECT MonitoringPoint.*
FROM MonitoringPoint INNER JOIN MonitoringPoint AS Irwelll ON MonitoringPoint. Irwelll = Irwell LID 
WHERE ({MonitoringPoint.flow)>[ Irwelll].[flow]);

Example 2, JDOQL request:

• JDOQL
MonitoringPoint.class,“(flow> Irwelll.flow) && (temp > Irwelll.temp)”

• Equivalent SQL 
SELECT MonitoringPoint.*
FROM ((MonitoringPoint INNER JOIN MonitoringPoint AS Irwelll ON MonitoringPoint.Irwelll= Irwelll .ID) 

INNER JOIN Temperature AS TemperatureMonitoringPoint ON MonitoringPoint.temp = 
TemperatureMonitoringPoint.ID)
INNER JOIN Temperature AS Temperaturelrwelll ON IrwellLtemp = Temperaturelrwcll 1 .ID 
WHERE (((MonitoringPoint.flow)>[Irwelll].[flow]) AND ((ParametersMonitoringPoint.temp)>[ 

Parameterslrwell 1 ]. [temp]));

The above examples allow comparing the two approaches. Going through the code of the 
examples it is clear the “shock” between the two logics, the OO and the relational logic. Being 

obliged to manage RDBMS queries from JAVA the amount of code and requests to be done 

to the system are important. This shows how powerfully can be managed an OO data model 

through very simply queries even for complex environmental data and how ineffective and 

heavy can be the use of the relational SQL in the same case.

173



6.4.2 Object Database solution

The other tested solution to achieve persistence is using an embedded ODB engine in the IS. 

This is the case of Db4o (Carl Rosenberg, www.db4o.com), available commercially and 
through Open Source license (GPL). Db4o has been chosen for applications in embedded 
systems in which zero administration, reliability, and low footprint, high performance, smooth 
synchronisation and easy refactorability are critical features. There are several 

implementations of Db4o in natural sciences, like biotechnologies and geotechnologies and 

for networking, energy and water utilities (www.db4o.com). Db4o allows developers to work 
with persistent data without the distraction of conflicting data models and without the need to 
spend time learning to use a tool such as Hibernate or the JPOX JDO or a complex ODBMS. 
Other similar open source solution for embedded OO database in JAVA has been developed 

in the last years, PERST by MCOBJECTS (http://www.mcobject.com/perst). The two projects 
are at a quite different stage of development, PERST being much younger, with limited 
performance and applicability.

Besides, other different solutions are available for 00 JAVA databases, some of them include 
“not embedded” databases, others are not pure OO, others are at a very early stage of 
development.
Considering that the scope of this part of the research was to test an OO solution, and not to 
perform a complete benchmark exercise of OO JAVA databases, being Dbo4 an acceptable 
solution, we undertook its implementation.

174

http://www.db4o.com
http://www.db4o.com
http://www.mcobject.com/perst


6.4.3 ODBMS implementation

The implementation process for Db4o and its use are quite simple (Edlxch et al., 2006), direct 
and intuitive. The same data model (Maidment, 2002) already implemented with JDO has 
been used. The following steps have been followed:

1. Design the domain classes;

2. Define their persistence definition;

3. Configure the application.

Firstly the data model is normally designed as, for instance, in the previous example (JDO 

implementation). Then, since the objects are directly made persistent and stored, there is no 
need for writing “Meta-Data persistence descriptor” files.
Db4o includes the S.O.D.A. API (Simple Object Database Access, 
http://sourceforge.net/projects/sodaquery/) to provide powerful querying.

This is an example of S.O.D.A. API application that shows the power of this ODB managing 
data with complex structure (as the environmental data):

Query q = db.queryQ;
q.constrain(HydroPoint.class);
q.descend("flow"). constrain(new Float(0.3f)).greaterQ;
ObjectSet result = q.executeQ;

At first glance, this performs a similar query to an SQL query, like “SELECT * FROM 

HydroPoint WHERE flow >0.3

However, the design of the HydroPoint class allows inverse relationships to be created 
between HydroPoint and Hydrography (parent class) objects. A Hydrography class has a 
reference to a list of HydroPoint objects, while each HydroPoint has a reference to a

175

http://sourceforge.net/projects/sodaquery/


Hydrography class. This means that the result of this queiy contains HydroPoint and 
Hydrography objects.

This works because of the inverse relationship designed into the object model. ODB are 
navigational; data are retrieved following the direction of predefined relationships. Given the 

right object relationships, related objects can be retrieved from the object database with veiy 

little programming effort. This is a fundamental feature for modelling and representing 

environmental systems being the OO design logic closer to the “real world” (George, 2003) 

and more adaptable to environmental data structures. Concerning the developer point of view, 
the simplicity of the installation and use, the lack of impedance mismatch between the objects 
and the data model make Db4o quick and flexible to be implemented in the IS.

Application stack - db4o: 
The objects are directly stored 

in the persistence Layer

Application stack - JDO solution: 
The persistence Layer is connected 
through the JDO API to a RDBMS

O/R mappings (JDO

Relational
Database

Persistence Layer

Business Layer
User Interface

Persistence Layer 
fOO Database!

Business Layer
User Interface

Figure 6.3: comparison of the implementation stack for the two solutions.

6.5 Quantitative comparison

To compare quantitatively between the two solutions, we used an Open Source benchmark 
test suite, the PolePosition test (www.polepos.org). This comparison is not meant to give a 

complete overview of the performance differences between Object Databases and O/R 

mapping solution, which is not our aim, but to give an example for the data layer of a hydro

176

http://www.polepos.org


information system for our case study. Hence, customized tests have been built to adapt and to 
implement PolePosition in our IS and in particular in our data model. We run two kind of 

different tests for the two solutions (the JDO and the ODBMS). One test was designed to 

work with the part of the data model dedicated to time series with simple level of inheritance. 
Another comparative test was still designed to work with the same "time series" data but this 
time through the complication of the geo-referenced data of the "monitoring station" class 
with 4 level of inheritance. The first test has been built just to show the performances with 
simple level of inheritance but usually all the data requests of our IS are made as in the second 

test, through several levels of inheritance. The tests run for writing, reading and deleting. Both 
tests show for the solutions transaction performances over 10,000 objects. From table 1 and 2, 
we can see that the first test with the flatter kind of data gives alternating results with anyhow 
not a strong difference between the two solutions. On the other hand the second test shows 

that resolving the O-R mismatch by using an O-R mapper like JDO costs a lot in terms of 
performance when dealing with more level of inheritance and with more structured data as the 
one often used in hydro information systems.

Similar conclusions arise from the standard tests of the benchmark test suite 
(www.polepos.org). Usually the flatter and simpler the data structures, the better are the 
performances with relational databases.

t [time in ms] Write Read Delete
Db4o 809 650 680

JDO/MySQL 2885 121 180

Table 6.1: Results of the test 1 "time series" data.

t [time in ms] Write Read Delete
Db4o 1895 950 4250

JDO/MySQL 15340 3225 9265

Table 6.2: Results of the test 2 "monitoring station" data.

177

http://www.polepos.org


This experience suggests that if the data model is complicated in its object structure, as in 
environmental data structures, and if the quantitative performances are important in the IS to 
be developed, the O-R mapper solutions will have a negative impact on performances. On the 

other hand, if the use of O-R mapping technology can be compensated by reducing the 

hardware, the data model is not complex and the amount of data treated is reduced, O-R 

mapping technology can bring back performances.

6.6 Discussions and Conclusions

The IS for water catchment management are currently developed with OO technology except 

for their data layer where the RDBMS are still the preferred choice. An interesting analogy, 
suggested at the beginning of the work carried out in the sector to include OO logic in data 
layers of information systems (McClure, 1997), is the following: using RDBMS to store OO 
data structures would be the requirement of disassembling a car before storing it in a garage 
each night and then reassembling it before using it each morning. This has a series of clear 
development productivity, runtime performance and maintenance issues, etc. Since the 

increasing complexity of the environmental data, the need to represent them through object 
structures and the O-R impedance mismatch, we tested two solutions to implement OO at data 
layer level: the transparent persistence of JDO technology and a purer OO solution of an 
ODB, Db4o. The transparent persistence of JDO is a bridge through its API towards the data 

layer. Behind the OO data model, implemented in JAVA by the developer, there is a "hidden" 
RDBMS. The developer does not interact with the RDBMS behind the data model and the 

JDO APIs are supported by its power, performances and consistency.
Nonetheless it seems that JDO is worthy to be used for an IS which needs strong reliability, 

which does not have to be upgraded frequently and when the structure of the data and of the 
data model is quite simple. The ODB which we tested is another effective solution. Db4o 
provides a flexible, extensible option for applications that must act quickly to match the 

capabilities of their IS with environmental complex data structures.

The implementation of Db4o in our IS has been quick, intuitive, dnect and the Object 

Oriented developer had not to be familiar with new concepts or procedures. Besides, since

178



time and effort for the implementation are relatively reduced, the IS is more flexible, easier to 
upgrade and maintain. We can conclude that even though currently ODB are still rarely used 

for Hydro Information Systems, our experience has been positive in terms of simplicity, 
adaptability, extensibility and performance.

179



CHAPTER VII

7 CONCLUSION AND FURTHER STUDY



7.1 Conclusion

The main reason behind the work done for this research and this thesis was to tiy to find an 
approach to the development of information systems for water resources management which 

could be adequate to:

• the needs of the water sector re-defined in the last 20 years by the integrated water 

resources management principles then translated in laws such as the EU water 
framework directive,

• the strong rising of new trends in the IT world, such as the Open Source movement, 
which seemed to be particularly adapted to scientific communities and integrated 
management principles,

• consequently, new trends of hydroinformatics switching the focus from “modelling” to 
“integration”.

An interesting work of research on existing relevant projects was earned out. Trends were 
identified and main technology issues were acknowledged. Consequently, as a pre-requisite 

for this research, an analysis on possible approaches and technologies brought to define a list 
of requirements and strategic ideas as baseline for the work. The approach proposed has then 

been tested with the development of Information Systems for water resources management 

with pilot applications. Besides, also “new” (new for the field of hydroinformatics) 
technologies, such as object oriented databases management systems, were studied and 
implemented in the system. This was interested for two reasons, first of all allowed showing 
the interest and the relevance of these technologies to hydroinformatics proposing and testing 
solutions for well-know issues, secondly demonstrated that applying open source technologies 

allows researchers to be at the edge of technological development also with small means.

We summarise research achievements, analysing the IS advantage / complexities both from 

the point of view of the developer and of the end user. The analysis has taken into account 

software architecture issues and technology choices.

The main advantages of the IS are:

181



• Clear separation of user-interface-control and data presentation from application-logic;

• Change in business logic will not need change in other layers;

• The user interface can be used both as web-based application and as desktop 

application;

• Being internet based, the IS supports the distributed computing which is also the 
reason to develop such kind of three layer architecture;

• Easy to manage: if each layer has its own functionality, when something needs to be 

changed it easy to know what to change;

• Easy to reuse: if another application is developed for the same domain, it can be 

integrated in one of the system’s layer;

• Easy to develop: each layer can be developed by separate teams, and focus only on 
their specific problems (it not necessary for the developer to know SQL, ORACLE, 

JAVA, XML, etc. at the same time).

The source of complexity:

• Every data that goes in the system from the user to the database must pass through the 
components of the middle layers, and therefore the response time of the system can be 

slower.

• The developing of the interface layer can be a strong source of complexity.

• It is necessary to establish a standard data exchange format in the whole information 

system, which should be respected in eveiy step between different layers.

Concerning the particular development dedicated to the object oriented database management 

system, the applications of the objects oriented technologies to relational databases with the 

implementation of object-relational database management systems showed that integrating 

different kinds of layers based on the same logic could open opportunities for better 

integration. A thorough work would be needed to test this kind of approach with large amount

182



of data as it is needed in hydroinformatics. It is already known that OODMS do not give yet 
enough guarantees from some points of views such as security, stability, data consistence, etc. 

Those issues are strongly depending on the development of the market (open source and 

commercial) in the field.
Besides, the opportunities of further development can be identified can go over the following 

main points:

• Improvement of the client / server architecture with the distribute computing through 
the implementation of the Java Remote Method Invocation or other suitable 

technologies;

• Increase the integration of the hydro geo-database data model with its representation in 

the GIS visualization layer;
• Improvement of the GIS analysis package which can support all the further modelling 

developments in the system;

• Testing of the OODMS in real working condition with important amount of data and 

different data providers at the same time.

Finally we reckon that is it important to point out that the open source community has been a 
continuous provider of information, inspiration and solutions. It allowed us, even not being 
experienced programmers, to design and to build an ambitious Information System. Hence, 

after this experience, we started considering the open source not only an easy way to “pick 
up” free software solutions, but rather a strategic approach to software development also in 

hydroinformatics.
A particular mention is needed for the improvement of the client-server architecture. First of 
all giving the high-computing requirements of hydroinformatics models, the whole business 
layer must stay in the server side, making a difference between the business layer server and 
the data layer servers. This will reduce the need of important hardware resources in the client 

side and would also consistently limit the amount of data communicated through the network, 

reducing costs and increasing speed.

183



7.2 Further study

Finally, we would like to give a vision for a next stage of development of modelling 

integration for water resources oriented information systems in figure 7.1.

WEB2.0 
interface and 
community 
management

USER COMMUNITY

DEVELOPERS COMMUNITY

WSDL
' Client side- visualisation layer

Server side - middelware

Modeling framework

DoaWEB
SERVICES doq

Server side - distributed 
data layer

Data
providers

Figure 7.1: Information system developed and managed by the community of users.

Many of the concepts shown in figure 7.1 have already been deeply discussed in the previous 
chapters. Therefore only the new concepts of this “vision”, suggestion for further studies, will 
be listed below:

184



• The community approach, very much related to the open source software world, is 
central. The IS can be seen as a support tool for the community of experts and users of 
the water sector to develop and orient their work,

• consequently, the IS is shaped for and by the community of users-developers. Not only 

data (such as time series and models results) are shared through the IS but the 

knowledge which is inside the development of models themselves,

• the modelling framework included in the business layer is a modular Web service 

infrastructure made by input-engine-output modules which can be combined by users- 
developers following their needs and objectives and then plugged to data providers,

• all the heavy-computing work is pushed toward the server side,

• providers of data are distributed and chosen according to users’ needs,

• WSDL, the Web Service Description Language (http://www.w3.org/TR/wsdl) is used 
by the users-developers to manage and make communicating Web services including 
models and other modular Web-services.

This approach for information systems for water resources management built around and by a 

community of users-developers is coherent with new trends of hydroinformatics and of the IT 
world combining the following:

• integrated water resources management principles,

• open source software and development approach,

• research and user community orientation,

• the participatory information sharing, interoperability, user-centered design and 

collaboration principles of the present World Wide Web, known as Web 2.0.

185

http://www.w3.org/TR/wsdl


8 REFERENCES

186



REFERENCES

1 Abbott, Michael B., 1991. Hydroinformatics: Information technology and the aquatic 
enviromnent. Aldershot (UK), Avebury Technical.

2 Abbott, Michael B., 1999. Introducing hydroinformatics. J. Hydro informatics. 
1(1):3-19.

3 Abbott, Michael B., 2007. Applications of Numerical Modelling in
Hydroinformatics. http://www.knowledge-engmeering.org/PDF/Paper-112.pdf

4 Aliuja, L.R., David, O and Ascough, J.C., 2004. Developing natural resource models 
using the object modelling system: Feasibility and challenges. Trans. 2nd Bienn. 
Meeting Int. Environ. Modelling and Software Soc., iEMSs 2004. Osnabriick, 
Germany, 14-17 June 2004.

5 Ambler S. W., 2006. Agile Database Techniques: Effective Strategies for the Agile 
Software Developer, John Wiley & Sons Inc, 480 pp.

6 Ambler, S. W., 2003. The Fundamentals of Mapping Objects to Relational 
Databases, www.agiledata.org. The Object-Relational Impedance Mismatch. 
Publisher, www.agiledata.org

7 Andersen, L., 2006. JDBC™ 4.0 Specification. Sun Microsystems, Inc. 
www.sun.com.

8 Andrews, C., 2004. Java: Why GIS People Should Care. Earth Observation 
Magazme.http://www.eomonline.com/Common/Archives/2004junlul/04junjul_Andr 
ews.html. GITC America, Inc.

9 Armstrong, D.J., 2006. The Quarks of Object-Oriented Development. 
Communications of the ACM — Association for Computing Machinery. ACM 
New York, NY, USA.

10 Barrier, T. (Ed.), 2002. Human Computer Interaction Development and 
Management. Hershey, PA, USA: Idea Group Publishing.

187

http://www.knowledge-engmeering.org/PDF/Paper-112.pdf
http://www.agiledata.org
http://www.agiledata.org
http://www.sun.com
http://www.eomonline.com/Common/Archives/2004junlul/04junjul_Andr


11 Barth, M., Hermicker, R., Kraus, A., Ludwig, M., 2004. DANUBIA: an integrative 
simulation system for global change research in the upper Danube basin. Cybernetics 
and Systems, Volume 35, Numbers 7-8.

12 Bass, L., Clements, P. et al., 2003. Software Architecture in Practice, Second ed. 
Reading, MA, Addison-Wesley.

13 Bauer, C., King, G., 2006. Java Persistence With Hibernate, Manning Publications, 
841 pp.

14 BBN Software, 2004. Open Map. http://opemnap.bbn.com

15 Becker, A., Hattermami, F., 2005. Model-supported Participatory Planning for 
Integrated River Basin Management, Deliverable No. D3/11-13 of Harmoni-CA 
project (European Commission funded research project), http://www.harmoni- 
ca.info/.

16 Blind, M., Gregersen, J.B., 2004. Towards an Open Modelling Interface OpenMI: 
The HarmonIT Project. 2nd Bienn. Meeting of the Int. Environ. Modelling and 
Software Society, iEMSs. Osnabruck, Germany.

17 Blind, M.W., van Adrichem, B., et al, 2001. Generic Framework Water: An open 
modelling system for efficient model linking in integrated water management. 
Euro Sim 2001 congress Shaping Future with Simulation, Delft.

18 Bradbury, D.,2008. Systems management: IBM middleware strategy. 
ComputerW eekly. com,
http://www.computeiweeldy.eom/Articles/2008/l 1/26/233550/Systems- 
management-IBM-middleware-strategy.htm.

19 CATCHMENT MODELLING TOOLKIT, 2005. Catchment modelling toolkit. 
Catchment modelling toolkit. Available on webpage: http://www.toolkit.net.au.

20 Chen, D., 2002. Real-time online hydrological information and modelling system 
using object-oriented approach and relational database for flood defence, in Wu et al. 
(eds.) Flood Defence’2002, USA: Science Press, New York Ltd.

188

http://opemnap.bbn.com
http://www.harmoni-ca.info/
http://www.harmoni-ca.info/
http://www.computeiweeldy.eom/Articles/2008/l
http://www.toolkit.net.au


21 Chen, D., Carmona-Moreno, C.5 Leone, A., Shams, S., 2010. Assessment of Open 
Source GIS Software for Water Resources Management in Developing Countries. J 
of Hydro-Environment Research.

22 Cluckie, I. D., D. Han, et al., 2002. Hydroinformatics 2002. London (UK), IWA 
Publishing.

23 Codd, E.F., 1969. Derivability, Redundancy, and Consistency of Relations Stored in 
Large Data Banks. IBM Research Report, 1969

24 Codd, E.F., 1990. The Relational Model for Database Management (Version 2 ed.). 
Addison Wesley Publishing Company.

25 Cooper, A., Reimann, R., 2003. Face 2.0: The Essentials of Interaction Design. 
Paperback.

26 Costanza, R., Voinov, A., 2004. Landscape Simulation Modeling: A Spatially 
Explicit Dynamic Approach. Springer-Verlag, New York.

27 David, O., Schneider, I.W., 2004. Metadata and modelling frameworks: The object 
modelling system example. Trans. 2nd Bienn. Meeting of the Int. Environ. 
Modelling and Software Soc., iEMSs 2004. Osnabruck, Germany, 14-17 June 2004.

28 Davis, M., Aquino, J., 2003. JTS Topology Suite Technical Specifications. Vivid 
Solutions. www.vividsolutions.com/JTS/JTSHome.htm.

29 De la Beaujardiere, J., 2006. OpenGIS Web Map Server Implementation 
Specification. Version: 1.3.0. http://www.opengeospatial.org/standards/wms

30 INSPIRE Directive 2007/2/EC of the European Parliament and of the Council of the 
European Union, 14 March 2007. "Establishing an Infrastructure for Spatial 
Information in the European Community (INSPIRE)".

31 Dublin Statement on Water and Sustainable Development, 1992. Waterlines, Volume 
10, Number 4. Practical Action Publishing.

32 Edelstein, H., 1994. Unraveling Client/Server Architecture, DBMS 7, 5 (May 1994): 
34(7).

33 Edlich, S., Paterson, J., 2006. The Definitive Guide to db4o, Apress.

189

http://www.vividsolutions.com/JTS/JTSHome.htm
http://www.opengeospatial.org/standards/wms


34

35

36

37

38

39

40

41

42

43

44

ESRi (Environmental Systems Research Institute, Inc.), 1998. “Shapefile Technical 
Description, an ESRI White Paper”.
http://www.esri.com/libraiy/whitepapers/pdfs/shapefile.pdf.

Evans, J.D., 2006. OpenGIS Web Coverage Service (WCS) Implementation 
Specification Version: 1.1.0. http://www.opengeospatial.org/standards/wcs.

Ferber, J., 1989. Computational Reflection in Class-Based Object-Oriented 
Languages. Proc. OOPSLA'89, ACM Sigplan Notices, 24(10): 317-327.

Frigg, R., Hartmann, S., 2006. Models in Science. The Stanford Encyclopaedia of 
Philosophy, http://plato.stanford.edu/entries/models-science/.

Garnett, J., 2007. GeoTools Users Guide.
http://docs.codehaus.org/display/geotdoc/home.
George, J, Batra, D., Valacich, J, Hoffer, J., 2003. Object-Oriented System Analysis 
and Design, Prentice Hall, 528 pp.

Ghosh, R. A., 2005. An Economic Basis for Open Standards. FLOSSPOLS project. 
http://flosspols.org/deliverables.php.

Gijsbers, P., Moore, R. et al., 2002. HarmonIT: Towards OMI, an Open Modelling 
Interface and Environment to harmonise European developments in water related 
simulation software.

Gijsbers, P.J.A. (ed.), 2003. OpenMI - Harmonizing linkages between water related 
models. Presented at Integrated Modelling User Group (IMUG) 2003 — International 
Conference on Application of Integrated Modelling, Tillburg Netherlands. Available 
from: http://www.wrcplc.co.uk/imug/html/imug_2003 .htm

Gijsbers, PJ.A. (ed.), 2004. The OpenMI Architecture - Report A: Scope and 
Organisation, document version: 0.9. www.harmonit.org.

Gilfillan, I., 2003. PostgreSQL vs MySQL: Which is better?. Database Journal,
http://www.databasejoumal.com/features/postgresqFarticle.php/3288951/PostgreSQ
L-vs-MySQL-Which-is-better.htm

190

http://www.esri.com/libraiy/whitepapers/pdfs/shapefile.pdf
http://www.opengeospatial.org/standards/wcs
http://plato.stanford.edu/entries/models-science/
http://docs.codehaus.org/display/geotdoc/home
http://flosspols.org/deliverables.php
http://www.wrcplc.co.uk/imug/html/imug_2003
http://www.harmonit.org
http://www.databasejoumal.com/features/postgresqFarticle.php/3288951/PostgreSQ


45 Gillen, A., 2009. The opportunity for Linux in a new economy. IDC, www.idc.com, 
http://www.linuxfoundation.org/sites/main/files/publications/.

46 Goede, E., 2005. Open Modelling System (OMS).
http://www.wldelft.nl/rnd/intro/topic/2004-oms/index.html. Deltares.

47 Gonsalves. C., 2007. USDA Keeps Up with the Flow. Eweek.
httpV/www.eweek.com/c/a/Linux-and-Open-Source/USDA-Keeps-Up-with-the- 
Flow/.

48 Gregersen, J. B., Blind, M., 2004. Open MI: the essential concepts and their 
Implications for Legacy Software, The International Environmental Modelling and 
Software Society Conference http://www.harmonit.org/index.php.

49 Groff, James R., Weinberg, P,N., 2002. SQL: The Complete Reference. New York, 
McGraw-Hill Professional.

50 GWP (Global Water Partnership) Technical Committee, 2004. Guidance in preparing 
a national IWRM and efficiency plan. Stockolm, Sweden.

51 HARMONIT, 2002. State of the Art Review. Document Version: 9. Hutchings C 
(ed.). Document produced for the HarmonIT project and available to members on 
registration on the HarmonIT website: www.hannonit.org.

52 HARMONIT, 2004. HarmonIT Document Series Part B - Guidelines. Document 
Version: 0.25. Tindall R(ed.) [Internet]. Draft document produced for the HarmonIT 
project and available to members on registration on the HarmonIT website: 
www.harmonit. org.

53 Harvey, D. P., 2002. A generic modelling framework component for
hydroinformatics systems. PhD Thesis, Bristol, University of Bristol.

54 Harvey, H., Han, D., 2002. The relevance of Open Source to Hydroinformatics, 
Journal of Hydroinformatics.

191

http://www.idc.com
http://www.linuxfoundation.org/sites/main/files/publications/
http://www.wldelft.nl/rnd/intro/topic/2004-oms/index.html
http://www.eweek.com/c/a/Linux-and-Open-Source/USDA-Keeps-Up-with-the-Flow/
http://www.eweek.com/c/a/Linux-and-Open-Source/USDA-Keeps-Up-with-the-Flow/
http://www.harmonit.org/index.php
http://www.hannonit.org
http://www.harmonit


55 Havno, K., Sorensen, H.R., Gregersen, J.B., 2001. Integrated water resources 
modelling and object oriented code architecture. Conference on water Resources 
Modelling and Management organised by the Japan academic society of hydraulics, 
Chuo University, Japan.

56 Helal, S., Hammer, J., Zhang, J., Khushraj, A., 2001. A Three-Tier Architecture for 
Ubiquitous Data Access, aiccsa, p. 0177, ACS/IEEE International Conference on 
Computer Systems and Applications (AICCSA'01).

57 Holz, K., Hildebrandt, G., Weber, L., 2004. Concept for a Web-based Information 
System for Flood Management. Journal of Natural Hazards, Volume 38, Issue 1. 
Springer Netherlands.

58 Johnson, L. E., 2008. Geographic Information Systems in Water Resources 
Engineering. University of Colorado, Denver, USA.

59 Jonoski, A., 2002. Hydroinformatics as Sociotechnology: Promoting Individual 
Stakeholder Participation by Using Network Distributed Decision Support Systems. 
ISBN 9054104279. Taylor & Francis.

60 Jordan, D., Russell, C., 2003. Java data objects. Sebastopol, California: O’Reilly.

61 Joyner, I., 1999. Objects Unencapsulated: Java, Eiffel and C++. Prentice Hall.

62 JPOX documentation. JPOX team, http://www.jpox.org/docs/l_l/index.html.

63 Kaiisson, A., 2003. GIS and Spatial Extensions with MySQL, MySQL.org. 
http://dev.mysql.com/tech-resources/articles

64 Keogh, J., Giannini, M. (contributors), 2005. OOP Demystified. McGraw-Hill.

65 Kernighan, B., Pike, R., 1999. The Practice of Programming. ISBN 0-201-61586-X. 
Addison-Wesley.

66 Khatibi, R., C. Whitlow, T. Harrison, A. Akhondi-Asl, and M. Vaughan, 2002. 
Categorising Modelling Techniques to Progress Open Architecture in Flood 
Forecasting Systems. In Cluckie et ah, pages 1609-1614.

192

http://www.jpox.org/docs/l_l/index.html
http://dev.mysql.com/tech-resources/articles


67 Korb, W., 2004. Using JDO for Transparent Persistence. JavaPro,
http://www.ftponline.com/javapro/2004_12/online/wkorb_12_08_04/default.aspx

68 Kralisch, S., Krause, P., David, O., 2004. Using the object modelling system for 
hydrological model development and application. Trans. 2nd Biemi. Meeting Int. 
Environ. Modelling and Software Soc. iEMSs 2004. Osnabruck, Germany, 14-17 
June 2004.

69 Kralisch, S., Krause, P., David, O., 2005. Using the object modelling system for 
hydrological model development and application. Advances in Geosciences, 4, 75- 
81, 2005. European Geosciences Union.

70 Leone, A., Chen, D., 2007. Implementation of an object oriented data model in an 
information system for water catchment management: Java JDO and Db4o Object 
Database. Environmental Modelling & Software, Elsevier.

71 Leone, A., Shams, S. and Chen, D., 2006. An Object-Oriented and OpenGIS 
supported hydro information system (30-HIS) for upper Mersey river basin 
management. Inti. J. River Basin Management Vol. 4, No. 2.

72 Lintliicum, D. S., 1997. Frameworks evolve, ADTmag.com. www.adtmag.com

73 Lyon, J. 2003. GIS for Water Resources and Watershed Management. London, 
Taylor & Francis.

74 Maguire, D. J., Goodchild, M. F. and Rliind, D. W., 1991. Geographical Information 
Systems: Principles and applications. Longman

75 Maidment, D. R. (ed.), 2002. Arc Hydro, GIS for Water Resources. ESRI press.

76 Marston, F., Argent R., Vertessy, R., Cuddy, S., Rahman, J., 2002. The Status of 
Catchment Modelling in Australia. Technical Report No. 02/4. Cooperative Research 
Centre for Catchment Hydrology (CRCCH), Australia. Available from: 
http://www.toolkit.net.au.

77 McClure, S., 1997. Object Database vs. Object-Relational Databases. IDC Bulletin 
#14821E. www.idc.com.

193

http://www.ftponline.com/javapro/2004_12/online/wkorb_12_08_04/default.aspx
http://www.adtmag.com
http://www.toolkit.net.au
http://www.idc.com


78 Meijer, E., Drayton, P., 2004. Static Typing Where Possible, Dynamic Typing When 
Needed: The End of the Cold War between Programming Languages. Microsoft 
Research, Proc. OOPSLA 2004 Workshop on Revival of Dynamic Languages.

79 Meyer, B., 1997. Object-Oriented Software Construction, Second Edition. Prentice 
Hall Professional Technical Reference.

80 Moore, R., Gijsbers, P., Fortune, D., Gregersen, J., Blind, M., 2007. OpenMI
Document Series: Part A - Scope for the OpenMI (version 1.4).
http://www.opemrii.org/reloaded/about/documents-
publications/A_OpenMI_Scope.pdf. Isabella Tindall, Centre for Ecology and 
Hydrology, Wallingford, UK.

81 Murray, N., Perraud, J.M., Rahman, J., Seaton, S., Hotliam, H., Watson F., 2004. 
Introduction to TIME. Workshop notes. Cooperative Research Centre for Catchment 
Hydrology (CRCCH), Australia. Available from: http://www.toolkit.net.au/time.

82 Nebert, D., 2007. OpenGIS catalog services specification, Version 2.0.2. OpenGIS
project document OGC 07-006rl. Open GIS Consortium Inc.,
http://www.opengis.org.

83 OMS, 2005. OMS - Central Collaboration Platform. OMS webpage:
http://oms.ars.usda.gov.

84 Paterson, J., 2004. Simple Object Persistence with the db4o Object Database. 
O'Reilly, http://www.onjava.eom/pub/a/onjava/2004/12/01/db4o.html.

85 Prechelt, L., 2000. An Empirical Comparison of Seven Programming Languages. 
Computing Literature. IEEE Computer Society Press, Los Alamitos, CA, USA

86 Rahman, J.M., Seaton, S. P., and Cuddy, S. M., 2004. Making frameworks more 
useable: using model introspection and metadata to develop model processing tool, 
Environmental Modelling and Software, 19, March, 2004.

87 Rahman, J.M., Seaton, S.P., Perraud, J. M„ Hotham, H., Verrelli, D.I., Coleman, 
J.R., 2003. It’s TIME for a New Environmental Modelling Framework. Proc. Of the 
MODSIM 2003 Int. Congress on Modelling and Simulation: Townsville, Modelling 
and Simulation Society of Australia and New Zealand inc.

194

http://www.opemrii.org/reloaded/about/documents-
http://www.toolkit.net.au/time
http://www.opengis.org
http://oms.ars.usda.gov
http://www.onjava.eom/pub/a/onjava/2004/12/01/db4o.html


88

89

90

91

92

93

94

95

96

97

98

Ramsey, P., 2007. The State of Open Source GIS.
http://www.refractions.net/expertise/whitepapers/opensourcesurvey/survey-open- 
source-2007-12.pdf. Refractions Research Inc.

Raymond, E.S., 2003. The Art of Unix Programming. Addison-Wesley Professional, 
part of the Addison-Wesley Professional Computing Series.

Reed, M., Cuddy, S.M., Rizzoli, A.E., 1999. A framework for modelling multiple 
resource management issues - an open modelling approach. Environmental 
Modelling & Software 14 (1999).

Rindal, C. 2007. MySQL vs. PostgreSQL, white paper. Tometa software. 
http://www.tometasoftware.com/files/MySql-v-PostgreSQL.pdf.

Sclnnidt, D. C., Porter, A., 2001. Leveraging Open-Source Communities to Improve 
the Quality & Performance of Open-Source Software. 1st Workshop on Open Source 
Software, ICSE 2001.

Shaw, E. M., 1994. Hydrology in Practice. Chapman & Hall, London, UK, 3rd 
edition.

Shirky, C., 2001. Interoperability, Not Standards. O'Reilly,
http://www.openp2p.eom/pub/a/p2p/2001/03/15/clay_interop.html

Shneiderman, B., 1986. Designing the User Interface: Strategies for Effective 
Human-Computer Interaction. Addison-Wesley Publishing Company, Reading, 
Massachusetts.

Sikora, Z., 2003. Java: Practical Guide for Programmers. San Francisco, California, 
Oxford: Elsevier.

Solomatine, D., 1996. Object orientation in hydraulic modelling architectures. 
Journal of Computing in Civil Engineering. Vol.10, No.2, April.

Spanou, M., Chen, D., 2000. An Object-Oriented tool for the control of point-source 
pollution in river systems. Environmental Modelling and Software, 15(1), 35-54.

195

http://www.refractions.net/expertise/whitepapers/opensourcesurvey/survey-open-source-2007-12.pdf
http://www.refractions.net/expertise/whitepapers/opensourcesurvey/survey-open-source-2007-12.pdf
http://www.tometasoftware.com/files/MySql-v-PostgreSQL.pdf
http://www.openp2p.eom/pub/a/p2p/2001/03/15/clay_interop.html


99 Spanou, M, Chen, D., 2001. A river water quality simulation system using Object- 
Oriented method for the Upper Mersey River system. J. of hydroinformatics, 3(3), 
173-194.

100 Spanou, M., Chen, D., 2002. Integrated management of Upper Mersey River basin 
using the SMILE Object-Oriented software system. IWA Water Science and 
Technology. 46 (6-7), 105-112.

101 SUN, 2007. SUN check list for Open standards. 
http://www.sun.com/software/standards/definition.xml

102 SUN, 2010. Java Technology for Business Intelligence -- Sun Technology Guide 
Draft 4.0. http://java.sun.com/products/jmi/pres/guide.html

103 SunSoft, 1994. Multithreaded Programming Guide. Sun Microsystems, Inc. 2550 
Garcia Avenue, Mountain View, California.

104 Sutherland, J., 1997. The Java revolution, SunExpert Magazine, January.

105 Sydelko, P. J., Hlohowskyj, I., Majerus, K., Christiansen, J., 2001. An object- 
oriented framework for dynamic ecosystem modeling: application for integrated risk 
assessment. The Science of The Total Environment, Volume 274, Issues 1-3, 2 July 
2001.

106 Tarboton, D., Horsburgh, J., Maidment, D., 2007. CUAHSI Community 
Observations Data Model (ODM) Version 1.0 Design Specifications. 
http://www.cuahsi.org/his/docs/ODM 1 .pdf.

107 Tomicic, B., Yde, L., 1998. Integrated software for an integrated management and 
planning of urban drainage and wastewater systems. Babovic and Larsen (1998).

108 UNEP (United Nations Environmental Program)/MAP/PAP (1999). Conceptual 
Framework and Planning Guidelines for Integrated Coastal Area and River Basin 
Management. Split, Priority Actions Programme.

109 USA, Executive Order 12906, published in the April 13, 1994, edition of the Federal 
Register, Volume 59, Number 71, pp. 17671-17674.

196

http://www.sun.com/software/standards/definition.xml
http://java.sun.com/products/jmi/pres/guide.html
http://www.cuahsi.org/his/docs/ODM


110 USEPA, 2001. BASINS, 2001. Better Assessment Science Integrating Point and 
Nonpoint Sources (Version 3.0). User Manual. Office of Water, United States 
Environmental Protection Agency (USEPA), 401 Mth Street SW, Washington, DC 
20460, USA. http://www.epa.gov/waterscience/basins/bsnsdocs.html.

111 Uslander, T., 2005. Trends of environmental information systems in the context of 
the European Water Framework Directive. Environmental Modelling & Software, 
Volume 20, Issue 12.

112 Von Ki’ogh, G., Spaeth, S., 2007. The open source software phenomenon: 
Characteristics that promote research. The Journal of Strategic Information 
SystemsVolume 16, Issue 3, Pages 236-253.

113 Vretanos, P. A., 2005. OpenGIS Web Feature Service Implementation Specification 
Version: 1.1.0. http://www.opengeospatial.org/standards/wfs

114 Wasson, J. et al., 2003. What kind of water models are needed for the 
implementation of the European Water Framework Directive? Examples from 
France. Inti. J. River Basm Management Vol. 1, No. 2 (2003), pp. 125-135.

115 West, L. A. Jr., 2000. Designing end-user geographic information systems. Journal 
of End User Computing, IGI Publishing, Hershey, PA, USA

197

http://www.epa.gov/waterscience/basins/bsnsdocs.html
http://www.opengeospatial.org/standards/wfs

