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Abstract

Classification of Singularities of Functions and Mappings

Via Non Standard Equivalence Relations

Author: Fawaz Alharbi

The thesis is devoted to the classification of simple germs of functions and map-
pings with respect to several new non-standard equivalence relations. They are more
rough than the standard classifications of functions via the group of the diffeomor-
phisms preserving a certain variety or respectively the group of the diffeomorphisms
preserving given projection. The goal is to show some useful applications and various
interesting properties of them.

We obtain the list of all simple “in the sense of Arnold” classes of singularities
of function germs with respect to non standard equivalence relations and discuss
their relation with the singularities of Lagrangian projections with borders. Also,
we describe the bifurcation diagrams and caustics of simple quasi boundary and
quasi corner singularities and algebraic invariants of simple quasi border classes. In
addition, we classify all simple classes with respect to quasi projection of graphs of
germ mappings from the plane to the plane and graphs of parametrized curves in
the plane.



Introduction

The famous results of singularity theory and its applications due to R. Thom, V.I.
Arnold and others are based on the classification of smooth functions and mappings
with respect to the action of the group of diffeomorphisms of the source space (right
equivalence) or the group of diffeomorphisms of the source and the target (left-right
equivalence). This is an example of infinite dimensional Lie group acting on an
infinite dimensional space. The germs of diffeomorphisms act on germs of functions
or on germs of mappings.

The very fruitful idea of V.I. Arnold was to consider so called simple singularities
(the orbits which have a neighborhood intersecting with finitely many other orbits
only). Simple classes have nice algebraic and topological properties. For example, in
the case of functions, they are related to Ay, Dy, and Ej, Weyl group. The complement
to the collection of simple classes has codimension 7 in the space of germs of func-
tions. Starting with 7, some orbits form families depending on modules (continuous
invariants) and are non-simple.

On the other hand, there is a classification of functions and mappings with re-
spect to Thom-Boardman classes 3 "%, These classes are not the orbits of any
group action and they are discrete. No continuous invariants are involved. Thom-
Boardman classes represent germs with given values of some invariants like ranks of
differentials and dimensions of quotient spaces of some ideals generated by deriva-
tives of the mappings. One can say that Thom-Boardman classification is rougher
than the standard right or left right classification since germs from the same standard
orbit belong to the same Thom-Boardman class.

The idea of the present work is to investigate other possible useful examples of
classifications of functions and mappings which are rougher than the standard ones

vi



INTRODUCTION vii

and which are defined by some conditions on jets of functions or mappings.

We consider two settings. In chapters 1-7 we consider equivalence relations which
play an intermediate role between the right action of all diffeomorphisms and the

action of diffeomorphisms which preserve a given hypersurface in the source space
(called border).

Then in chapters 8-11 we consider projections of submanifolds embedded into R™

to the base IR* and introduce special equivalence for them.

So, in chapters 1-7 we consider the space R® with some fixed hypersurface I"
(which can be regular, singular and reducible). The hypersurface will be called a
border. We consider germs of smooth functions on this space and introduce the
following basic definition.

Two function germs are pseudo border equivalent, if there is a diffeomorphism

acting as a change of variables, taking one germ to the other and satisfying the
following condition: if one of these functions has a critical point at the border then
its image (or, respectively, the inverse image) also belongs to the border. After a
natural modification, this equivalence relation behaves well when functions depend
on parameters. The modified definition is called quasi border equivalence.

We use four different examples of borders: smooth border(called boundary), cor-
ner, cusp and cone. The union of two transversal intersecting smooth hypersurfaces
is called a corner. In these cases, we classify discrete (simple) equivalence classes and

describe corresponding bifurcation diagrams and caustics.

In spite of rather artificial nature of the definitions, quasi border singularities
have very natural applications. Their discriminants show the behavior of critical

points of a function (for example, its global extremum) inside and on certain domain
with a border.

Moreover the above mentioned notion of non-standard equivalence relations have
direct application in symplectic geometry. They are used in classifying singularities
of Lagrangian projections with a border [9, 36].

Arnold’s classical boundary singularities of functions depending on 7 parameters

are related to projections of a pair of Lagrangian submanifolds (of dimension ) which



INTRODUCTION viii

have {n — 1)-dimensional regular intersection and are transversal in complementary
directions [3]. Our quasi-equivalence relation (introduced for generating families of
functions) keeps information only about one Lagrangian submanifold of the pair and
about its intersection with the second component. So, it is more adequate model
for applications when we need the precise notion of Lagrangian submanifold with
boundary.

Thus, a pair (L,I') of a Lagrangian submanifold L™ C M = T*R" and an (n —
1)-dimensional isotropic variety I' ¢ L is called a Lagrangian submanifold with a
border. It arises in various singularity theory applications to differential equations
and variational problems [8]. Isotropic submanifolds play the role of the initial data
set with some inequality constraints.

An important example of a Lagrangian submanifold with a regular boundary
or a corner is presented by a set of Hamilton vector field trajectories issued from
an initial set being an isotroﬁic submanifold subset determined by some inequalities.
This construction is needed for various setting in geometry and physics. For example,
given an initial hypersurface H with a boundary H; in Euclidean space, the envelope
of the family of normals to H forms the ordinary caustic and the union of normals to
H at the points of H; forms the second component of the caustic of the projection of
the respective Lagrange submanifold with a boundary. Other motivations to study

singularities of Lagrange projections with boundaries are mentioned in [20].

More complicated borders appear in various applications in physics. For example,
the Lagrangian manifold with a corner is the solution of Hamilton-Jacobi equation
with the initial data embedded into the cotangent bundle of the configuration space
as a manifold with boundary or corner [3].

We show that the singularities of the projection to the base space of Lagrangian
submanifolds with border are closely related to quasi border singularities of functions.
In particular, the list of simple stable classes of these projections is exactly the list
of simple quasi border classes.

So, as an application of our theory we get the classification of simple classes
of Lagrangian projections with boundary or corner. We describe the bifurcation

diagrams and caustics of simple quasi boundary and corner singularities.
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The quasi-border bifurcation diagrams of function germ deformation consist of
two strata. The first one is the ordinary discriminant which corresponds to all critical
points of the deformation. The second stratum is the subset of the first one which
corresponds to the critical points on the border (it satisfies extra equations which
define the border). So the strata have different dimensions. The caustics of quasi
border deformation functions also consist of two strata (or more). The first one is
the ordinary caustic while the other stratum is the projection (to the base of the
reduced deformation) of the subset of the bifurcation diagram which corresponds to

the other stratum(of lower dimension). However, their dimensions are equal.

There are series of papers (e.g. [37, 20, 33]) on the classification of caustics and
Lagrangian projections of different types. Some of our results coincide with the
known ones but our methods are new and universal and worth to be compared with
the other approaches.

Standard classification of singularities of functions up to diffeomorphisms which
preserve a distinguished hypersurface (boundary singularities) is closely related to
singularities of functions invariant under reflection. Similarly, a classification of func-
tions which are invariant under reflections in two transversal hypersurfaces give rise
to the classification of function germs with respect to diffeomorphisms which preserve
the corner (union of two transversal hyperplanes). The list of simple and unimodal
boundary and corner singularities was obtained by Dirk Siersma [29] in 70ths. Later
the unimodal and bimodal corner singularities were listed in [21].

Comparing with standard corner singularities, obtained by Dirk Siersma (his
list starts with unimodal singularity), we see that all Siersma’s singularities become
simple with respect to quasi corner equivalence relation.

The lists of simple quasi boundary and corner classes are clearly organized. Drop-
ping the boundary, or the corner, any simple class belongs to some Aj- right equiv-
alence class. We get the nice algebraic description of all simple classes. In fact, each
simple class corresponds to a pair, consisting of a local algebra of Aj type and an
ideal in it.

In chapters 8-11 we turn to the study of projections of submanifolds.

Recall that the starting point of singularity theory in the middle of the 20th
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century was the classical Whitney theorem stating that generic singularities of a
generic projection of a two-dimensional surface in R® onto a plane are fold or a pleat
[1].

However, choosing the direction of the projection in a special way, one can obtain
non-standard projections of a generic surface. In a more general context, the singu-
larities of projections were studied later by D. Shaffer, V.Arnold [7] and V.Goryunov
(18] as orbits in the space of germs of complete intersections embedded into a given
bundle space of the action of the diffeomorphisms which preserve the bundle structure

6].

The classification of singularities of projections of a two-surface embedded into
RP?3 to a plane was a nice generalization of Whitney theorem. The surface is assumed
to be generic, and centre of projection can vary in RP®. The famous hierarchy of
germs of projections of a surface according to calculations of O.A. Platonova [27], V.
Arnold [7], O.P.Shcherbak [30] is as follows [6]:

P f=u, Py f=a? Py: f=a®+uy,
Py: f=2a%tay? Py f =%+ a1’ Ps: f=a"+ay,
Pr:f=a*+2% + 2y, Py f=a%+ 2%+ ay, Py: [ =2 +ay4,
Py : f = a' + 2%y + ay®, Py f=a+ay,

where,

Pp = P « P « B « K

T T 1
P — Py
T T

P5 e PlO

T
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Some of these classes are non weighted homogeneous however all are simple.
The equivalence here is the diffeomorphism of the domain of the ambient space
containing the germ of the surface and not containing the center of projection. The
diffeomorphism preserves the fibration over the two dimensional plane base of the
projection.

This classification was used later by many authors in various applications in
differential and algebraic geometry [2].

In the 80 th, the singularities of projections of surfaces with boundaries were
studied and classified by J.Bruce, P.Giblin [13] and V.Goryunov [19].

Giblin and Bruce [13] considered the classifications of singularities when a generic
smooth surface in three space with a boundary is projected along a parallel beam
of rays to a plane. The low codimensional normal forms written as projections
(x,9,2) — (y,2) of a graph z = f(x,y) with the boundary z = f(x,y),g(x,y) =0
are as follows:

f=a9=2 f=2*4ay,g9=2 f=2+ay, g=u;
f=2a"+at vy, g=u; f=taf+2’ 9= [=2"+y’z, g=2;
f=a?+2%y+ax®+2t g=a; f=2 g=y+2* f=2% g=y+2%
f=ay+az®+a® g=y£2°

In the paper [38], another idea of a non-standard equivalence relation related to
projections of submanifolds was introduced. Namely two surfaces are called pseudo-
equivalent if there is a diffeomorphism of the domain of the ambient space mapping
one sumanifold onto the other and satisfying the following property: if the projection
ray is tangent to one of the sumanifold at a point then at the image (or at the inverse
image, respectively) of the point the other surface is also tangent to the ray passing
through it.

After a modification of this equivalence to get better properties with respect to
parameter dependence in J. Damon’s sense [16], the following list of generic quasi-
singularities of projections @;, % = 1,...,9, of surfaces embedded in R? is obtained
in [38]:
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1 — Q2 « Q3 «— Qs — Qs
T T
Qs — Q
T
s
T
)

where

Ql:f:a:: Q2:f:m2a QB:f=$3+wy’
Qu: f=2*+ay? Qs : f =12+’ Qs : f =2t +ay,
Qr: f=a'+ 2%y, Qs: f =2"+ay, Qo+ f =2 Ly,

Comparing these relations, Py and P;; merge into the single class Qg, while P;
and Pp merge into (}7. All remaining @ classes coincide with respective P classes
with equal subscripts.

In chapter 9, we give the details of the previous construction and state all re-
sults from [38]. We classify simple classes of quasi projections of surfaces to the
plane embedded in three space. The results in that paper are outlines, so we aslo
give the complete proofs as we will use the new idea and results to develop similar
constructions.

In chapter 10 we introduce similar definition which holds for surfaces with bound-
aries (that is curves embedded into surfaces): additionally we require that the diffeo-
morphisms of the ambient space send boundary to the boundary. Again, we modify
this equivalence to get a better equivalence which behaves regularly when the func-
tion defining the surface depends on extra parameters. The improved equivalence
relation is called quasi projection equivalence. We distinguish two different notions
of quasi projection equivalence of surfaces with boundaries: the strong and weak
equivalences.

Finally, in chapter 11, by similar ideas, we classify simple singularities with re-
spect to quasi projections of parametrized curves v : (R,0) — (R?0) and quasi
projectious of mappings F': (R?,0) — (R?,0).
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Our main results are:

1. Theorems [3.1.6],{4.1.6],[5.1.5],[6.1.4] and [6.1.8] on the classification of sim-
ple quasi corner, quasi cusp, quasi cone, quasi complete flag and quasi non-
complete flag singularities, respectively.

2. Propositions [3.4.2] and [6.2.1] on description of bifurcation diagrams and caus-
tics of quasi corner and quasi complete flags singularities, respectively.

3. Propositions {7.2.1] and [7.2.2] on algebraic invariants of simple quasi border
classes.

4. Theorem [10.2.4] on classification of simple quasi projections of surfaces em-
bedded into three-space with boundaries.

5. Theorem [11.1.2] on classification of quasi projections of graphs of parameter-
ized curve germs F : (R, 0) — (R?,0).

6. Theorems [11.2.2] and [11.2.3] on classification of simple quasi projections of
graphs of germ mappings F' : (R?,0) — (R2,0).

The brief description of the main results is given in the conclusion of the thesis.

We hope that exploring similar non-standard equivalence relations in other set-
tings will help to better understand the geometry beyond standard simple classes in

various singularity theory problems and applications.

The main technique which is used in the classification is the standard Moser’s
homotopy method. Also, we use an adopted version of Arnold’s spectral sequence
method [1]. We prove Lemma 1.3.5 which is valid for smooth C® and is based
on Malgrange preparation theorem. This completes Arnold’s description which was
given for power series only. We apply special criterions and introduce prenormal
forms of function germs to simplify the classification.

The initial approach to the study of such non-standard equivalence relations was
given in papers [36, 38] by Vladimir Zakalyukin.

The results of the thesis were published in {9, 10, 11] and presented at the in-
ternational conference on differential equations and dynamical systems in Suzdal
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(Russia), July 2008, and at the first workshop on singularities in generic geometry
and applications in Valencia (Spain), April 2009.



Chapter 1

Preliminaries

1.1 Basic concepts in singularity theory

In this section we review the standard notations in singularity theory, which we will
use later. :

1.1.1 Germs, jets and ideal of finite codimension

Throughout the thesis we consider C* (or smooth) maps, that is maps which has
derivatives of all orders.

Definition 1.1.1 Two maps f,g : R” — R? are said to be germ equivalent at
a € R™ if a is in the domain of both and there is a neighbourhood U of a such that
the restricitions to U coincide, fyy = gy: that is Va € U, f{x) = g(z).

This relation is an equivalence relation. A map-germ or a function-germ at a
point a is an equivalence class of germ equivalent maps. If )y is such an equivalence
class then any f € x is called a representative of . It will be denoted as [f], and
written as

fla: (R 0) 5 R, or [fla: (R"a) — (R?,b),

where b = f(a). For simplicty we write this as

f:R"a)— R, or [:(R*a)— (R?D),
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Denote by Cy the space of smooth map-germs f : (R®,0) — R?. If p = 1 then we
denote by C, = C7 the space of all smooth functions-germs f : (R”,0) — R, with
local coordinates 2. Also, denote by M, (or M,,) the maximal ideal in the space
C..

Definition 1.1.2 The k-jet space J*(n, p) is the vector space of all polynomial maps
of degree k from R"” to RP.

Definition 1.1.3 Let f € CJ. The k-jet, j5f of f at a point a € R is the Taylor
expansion of f about the point a truncated at degree k.

Definition 1.1.4 Anideal I C C, is of finite codimension if C,/I is a finite dimen-
sional space over R.

This means that there is a finite dimensional real vector subspace V' of C,, such
that C, = V 4 [, so that any germ f € C, has the form f = g+ h where g € V and
hel.

Proposition 1.1.1 (24] An ideal I is of finite codimension if and only if there is
r € N such that M, C I.

1.1.2 The standard Mather groups and tangent spaces

The standard Mather groups which are denoted by R, £, .A,C and K are defined as
follows.

The group R is defined to be the group of germs of diffeomorphisms (R",0) —
(R?,0), £ is the group of germs of diffeomorphisms (R?,0) — (R?,0), and .4 is the
direct product A = R x £. The group C is defined to be the group of germs of
diffeomorphisms (R™ x R?, 0) — (R™ x R?, 0) which project to the identity on R” and
leave locally fixed the subspace R™ x {0}. Thus, if H € C then H takes the form:

'H(:E:y) = (.’L‘,ﬁ(&?,y)), (*)
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where H : (R™ x R?,0) — (R?,0) and A (z,0) = 0 for z € R” near zero. The group
K is obtained by replacing (*) by

H(z,y) = (9(x), H (z,))-

Mather groups acts on CJ naturally. All actions will be given below. We start
with the following.

Definition 1.1.5 Two function germs f,g : (R*,0) — R are right equivalent or
R—equivalent if there is a diffeomorphism germ ¢ : (R",0) — (R™ 0) such that
f=g0¢.

Definition 1.1.6 Two function germs f, g : (R, 0) — R are R* equivalent if there
is a diffeomorphism germ ¢ : (R?,0) — (R™,0) and b € R such that f = go ¢+ b.

Let T'(R",0) be the tangent bundle of the germ (R”,0) and m, : T(R"0) —
(R™, 0) be the natural projection.

Definition 1.1.7 A vector field along a map-germ f is a map v : R® — T(R?,0)
such that to each € R™ it assigns a vector based at f(z) (so v(z) € TyR?).

Such vector fields arise from perturbations of the map f. Let f; be a one pa-
rameter family of maps f; : R® — RP such that fo = f. Then for each z € R”,
let '

Then, v(x) is a vector field along f. Here we identify the tangent space ToRP
with the space R? itself.
Denote by 6(f) the set of vector fields along a map-germ f.

Let 6, denote the module of smooth vector fields on (R?,0) and 6,, denote the
module of smooth vector fields on (R, 0).
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Example: Let wf : 0, — 0(f) and tf : 6, — 6(f) be given as follows: wf(n) =
nofand tf(§) =df o & Then, wf and tf are vector fields along f.

The tangent spaces to the orbits of group actions at a map-germ f are very
important notions in singularity theory. For example, they are used to classify map-
germs. Aslo, they are used to determine the versality of a map-germ. The notion of
versality will be explained below.

Denote by G one of the groups A, R, £, and C.

Let ¢s € G be a smooth curve in the group acting on CJ. Let ¢ be the identity
of the group. Then, the set of all tangent vectors

d(f ) (bs)

ds |,
at f to such curves define the tangent space to C at f. Here f- ¢, is the orbit

under the action of ¢, of a given f € Cj.

Now, for the R-equivalence, let v(s) = f o ¢,. Then a direct calculation shows
that the tangent space to the orbit of the R-equivalence at f takes the form

n af
=1 O

where v; € C,,.
Here, we require that ¢(0) = 0 hence v; € M,. However, if we do not require
that ¢(0) = 0, then we obtain the ideal Jf generated by % over C,.

Definition 1.1.8 The ideal Jf is the extended right tangent space an is denoted by

TRe'f = J.f = tf(@n)

Definition 1.1.9 Two map-germs f, g : (R",0) — (R?,0) are said to be left equiv-
alent (or L-equivalent) if there is a diffeomorphism germ % : (R?,0) — (IR?,0) such
that g =10 f.
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The left tangent space is defined to be

TL.f =wf(Myb,) = {w (f) : w € My} C M0(f).

Remark: The extended left tangent space is T'L..f = wf(8,).

Definition 1.1.10 Two map-germs Fi, Fy : (R",0) — (IR?,0) are called right-left or
A-equivalent if there exist diffeomorphisms ¢ : (R"®,0) — (R",0) and ¢ : (R?,0) —
(R?,0), such that the following diagram commutes:

(R",0) —— (R?,0)

[ l

(R™, 0) B, (R?,0).
Then, the tangent space to A-orbit of f at f is given by the formula:

T = wf(0,) + tF(6,).

Definition 1.1.11 Two map-germs f,g : (R”,0) — (R?,0) are K—equivalent or
contact equivalent if there exists a diffeomorphism ¥ : (R™ x R?, {0,0)) — (R™ x
R?, (0, 0)) of the form (x,y) — (¢(x),¥(x,y}) such that

1. W([y) =Tp and
2 Wy =1,

where ['; denotes the graph of f, so Iy is the graph of the zero map, I'y = R™ x {0}.
More explicitly, these two conditions are equivalent to

1. ¥(z,0) =0,

2. go dlx) = (x, f(2)).
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Remark: If in the previous definition ¢(x) = z, then we say that f and g are
C-equivalent,.

There is an alternative definition for contact equivalence.

Definition 1.1.12 Two map-germs f,g : (R",0) — (R?,0) are K—equivalent or
contact equivalent if there exist a diffeomorphism ¢ : (R®,0) — (R™, 0) and a matrix
M € GL,(C,) such that f o @(x) = M(x)g(z), where f(x) and g(x) are written as
column vectors and M (x)g(x) is the usual product of a matrix times vector.

In the definition above, if ¢ is the identity, then we get the definition of C—equivalence.

If f and g are K—equivalent (or C—equivalent ) then g(z) = 0 < f(p(x)) =0,
so that ©(y~1(0)) = f~1(0). This implies

Proposition 1.1.2 [35] If f and g are K—equivalent then their zero sets are diffeo-
morphic.

The K— tangent space of a map germ f: (R*,0) — (R?,0) takes the form
TK.f = tf(MoB) + L0(f),

where Iy = {f1,..., [} is the ideal generated by the components of f, while the
C— tangent space takes the form:

TC.f = I,0().
The extended K— tangent space is defined to be

TKe.f=tf(B)+ I;6(f).
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1.1.3 Versal deformations
Definition 1.1.13 An s-parameter deformation of a map-germ f; : (R?,0) —
(R?,Q) is a map germ
F:(R* x R%0) — (RF,0)
(x,\) — F(x,\)

such that fo(z) = F(x,0).

Sometimes we write F'(z, \) = Fi(z).

The notion of versal deformation, introduced by G.Tyurina [34, 5], is a very useful
concept in many applications of singularity theory.

For shortness, we consider right equivalence case to discuss the versality concept

and treat by similar method the versality of A and K equivalences.

Let I': (R™ x R?%,0) — (R, 0) be a deformation of a germ f : (R™,0) — (R,0). A
deformation F' is right equivalent to F if

F'{@,\) = F(g(z, A), M),

where g : (R* x R®,0) — (R",0) is a smooth germ with g(z,0) = .

The deformation F¥ is induced from F' if
F'(z,N) = F(z,0(X)),

where ¢ : (R, 0) — (R?,0) is a smooth germ.

The deformation F' of f is said to be R-versal if any deformation F’ of this germ

has a representation in the form

F(z, N) = F(g(z, X),0(X)),  g(2,0) =z,  0)=0. (1.1)
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In the case of A-equivalence relation, we need to replace the relation (1.1) by
F'(w, X) = k(F(g(2, ), (X)), X), 9(@,0) =2, k(y,0)=y @(0)=0.

Here k is a parameter \ depending family of diffeomorphisms of the target space R?,

The K-equivalence of two deformations F' and F” (of one and the same distin-
guished germ f) is defined by the condition

F'(z,\) = M(z, \)F(g(z, A), \).

Here M(z, A) is the germ of invertible matrix M : R™ x R®* — GL(R").

Therefore a deformation F' of a germ f is said to be K-versal if any deformation
of this germ can be written in the form in

Fl(z, N) = M(z, X)F(g(z, X), (X)),

where M is a parameter depending family of smooth mappings of the source space

to the space of non-degenerate (m x m)-matrices whose entries depend on z.

Remark: A versal deformation with least possible number of parameters is

known as a miniversal deformation.

Definition 1.1.14 Let F' be a deformation of f. The initial velocities of I are

the germs

8F(3:,)\1,. .‘,)\l)
OA; A=0 ,

F=

Definition 1.1.15 A deformation /' of the germ f is said to be infinitesimally versal
if its initial velocities together with tangent space to the orbit of f generate the whole
space of variations of f, that is the space of all germs of mappings.

For each type of equivalence this can be specified as follows.
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Theorem 1.1.3 The conditions for the infinitesimal versality of a deformation F
of f: (R™ 0) — (R™0) for right, right-left and contact equivalence consist in the

existence for each map germ « (variation of f) of the representation

m ; l
ofz) = Z (—g—é—) hi(a) + Z e Fy(w) (R-versality;)

i=1 i=1

m " !
afz) = Z (g—i) hi(x) + k(f(z)) + Z:; ¢ Fi(x) (A — versality);
m 8f n ! )
a(z) = Z (g) hi(x) + Y fi@)k(z) + ; i Fy() (K-versality).

Remarks:

1. For all three cases (R- , A- or K-equivalence) a versal deformation is infinites-
imally versal.

2. A deformation F(z,\) of a germ f: (R*,0) — (R,0) (A= (A,...,A) €
(R?,0)) is infinitesimally versal with respect to R-equivalence if the germs %| =0 (i=
1,...,8) generate the local algebra C,/T"R..f of the germ f as a vector space.

For each of the three cases (R- , A- or K-equivalence) we have the following:

Theorem 1.1.4 [1][Versality Theorem,pl51] An infinitesimally versal deformation
18 versal.

1.1.4 Finite determinacy

Finite determinacy is a useful notion in singularity theory when classifying maps.
For example, it allows one to study a smooth function germ by replacing it with a
polynomial which is right equivalent to it.

Definition 1.1.16 We say that f € C}} is k£ — G-determined if any map germ with
j*g = §%f is G-equivalent to f.
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The main theorems on finite determinacy with respect to the equivalences R, £
and A are:

Theorem 1.1.5 (Finite determinacy for right equivalence) [35] Let f € C,,.
If MEFY Cc M2 Jf then f is k — R-determined.

Theorem 1.1.6 (Finite determinacy for left equivalence) [35] If f € C} sat-
isfies MEFIQ(f) C TL.f then it is (2k + 1) — L-determined.

Theorem 1.1.7 (Finite determinacy for right-left equivalence) [35] If f € C}
satisfies METIO(F) ¢ TA.f then it is (2k + 1) — A-determined.

1.1.5 Arnold’s simple classes

We recall well known result on classification of simple germs of functions with respect
to right equivalence, This result will be used later for classification of germs with
respect to the non-standard equivalence relations.

A map f: R™ — RP” has a singularity at a point a if the rank of its differential at
a is not maximal.

Definition 1.1.17 A smooth function f : (R™,0) — R, is called quasi homogeneous
Junction of degree d with exponenis di, ..., d, related to the coordinates x,...,x, if
JNbzy, M) = X f (2, ..., @) for all X\ > 0. The exponents d; are also called
the weights of the variables wx;.

Assume that v = (dy,...,d,) and k = (ki,..., kn). Then, in terms of the Taylor
series Y fxa® of f the quasihomogeneisty condition means that the exponents of the

non-zero terms of the series lie in the hyperplane

L={k:dky+ - +dnkn = d}.
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Definition 1.1.18 The monomial x* is said to have degree d if < v,k >= dik; +
s dnkn =d.

Let f: (R™,0) — (R,0) be a function germ. Then,

Definition 1.1.19 The local gradient algebra corresponding to f is the algebra
Qr=C./Jf o Qp=R[z]]/Jf,

where R[[2]] is the ring of formal power series in the variables @ over R. If the algebra
Qy is of finite dimension, these two algebras coincide. The local multiplicity (or the
Milnor number) gy of the germ f is the dimension of the local gradient algebra Qf

(as a real vector space).

Definition 1.1.20 A germ f : (R®,0) — (R,0) has modality < s with respect to
right equivalence if all germs close to f are R-equivalent to germs from a finite number

of families each of which depends on less or equal than s parameters.

Remark: Singularities of modality 0 are called simple.

Definition 1.1.21 Two function germs said to be stably equivalent if they become
R—equivalent after the addition of quadratic forms in an appropriate number of

extra variables.

Theorem 1.1.8 [1] Simple function-germs f : (R™,0) — (R, 0) are stably R-equivalent
to the following ones:

10 Ag bl 92 k> 1;
2. Dy:a?yxytt k>4
3. Eg:a® £y

4. Br 2% 42y

5. Eg:a®+y°.

Here, (z,y) € R? and n > 2.
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Remarks:

1. In the previous theorem if nn = 1, then a simple germ is stably R— equivalent
to Ay @ bt k> 1.

2. Singularities of different types are not R-equivalent to each other.

3. The subscript in the notations is equal to the Milnor number of the germ.

Let X and Y be singularities, with respect to right equivalence. Then,

Definition 1.1.22 We say that X is adjacent to ¥ (we write X — V) if there exist
a family of germs fy : (R™, 0) — (R, 0), such that f, has type X and f\ has type YV
for A # 0 small enough.

Remarks:
1. X_>YZ>JU'X2M1"

2. Simple R-singularities posses the following adjacencies X, — Y, _y:

A — Ap Dy — Dy Dy — Apy
Eg — Dy E6—9A5 Er — Dg
B, — Ag Es — Dy and Fg— As.
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1.2 Pseudo and quai border equivalence relation:

The non-standard equivalence relation

Consider the space R” = {w = (z,y)}, where z = (21,22,...,%m) € R™ and y =
(V1,925 « -+, Yn—m) € R*™™. Let a hypersurface I be given by the equation h(2) = 0,
where h is a smooth function. We call the hypersurface I' a border.

In our examples I" can be regular or singular (reducible or irreducible). In fact,
we consider the following shapes of I'.

1) The hypersurface is smooth, in which case we set I' = I, = {z; = 0}.

2) The hypersurface is a union of two transversal hypersurfaces, called a corner,in
which case we set I' =I", = {w129 = 0}.

3) The hypersurface is a cusp I' = D¢y, = {22 — 25 = 0 : for some s > 3}.

4) The hypersurface is a cone I' = ', = {z122 — 22 = 0}.

Definition 1.2.1 Two functions fy, f; : R* — R are called pseudo-border equivalent
if there exists a diffeomorphisim 8 : R* — R™ such that f; o @ = fy, and if a critical
point ¢ of the function f, belongs to the border I' then #(c) also belongs to I' and
vice versa, if ¢ is a critical point of f; and belongs to I then #~'(c) also belongs to
r.

Similar definitions can be stated for germs of functions.

We consider germs at the origin of C*° -smooth functions f : (R®,0) — R, with
local coordinates w as above. Denote by C,, the ring of all these germs at the origin
with a unit.

Remarks:

1. In the definition above, the diffeomorphism @ will be called admissible.

2. The general statements below are valid for reasonably good hypersurfaces.
For rigorousness, we assume that the hypersurface I' is a stratified set, and the
stratification satisfies Whitney condition 1. Also, we assume in the definition that if
the critical point ¢ belongs to some stratum / then 6(c) belongs to the same stratum.

3. Pseudo-border equivalence will be also called pseudo-boundary or pseudo-
corner, etc ... for respective type of I'.
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4. Clearly, pseudo border is an equivalence relation: If f; ~ f2 and f; ~ f3 then
fi1 ~ f3. However, this relation is not given by a group action as the set of admissible
diffeomorphisms depends on a function.

5. The ideal I generated by g1, 92, . . ., gr will be denoted as 7 = {91, 92,...,gx}

Definition 1.2.2 [24] Let J be an ideal in C,,, then we define the radical Rad(J)
of the ideal J as the set of all germs in C,, vanishing on common all zero points for

germs in J:
Rad(J) = I(V(J)),
where
V({J)={w=(2,y) : h(w) =0 for any h € J},
and

IV(J))={peCy:pw)=0foral weV(J)}.

Example 1: Consider the ideal J = {(x — y)?} = (x—y)2A(x, y) with (z,y) € R?
and A € Cgy. Then, Rad(J) = {(z — )}. Note that always J C Rad(J).

Sometimes the radical of an ideal behaves badly when the ideal depends on a

parameter.

Example 2: Consider the family of ideals depending on & with a constant ¢ € R
and a variable z € R

Je={(z—-a)(z—(1+e)a)}.

Then,
Jo i e#£0,
{fx —a)} if £=0.

Hence, the dimension of the quotient space C,/Rad(J.) varies with &:

Rad(Je) = {

2 if £+£0,

dim[C,/Rad(J.)] = { L if 0
if £=0.
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Remarks on properties of the radical of an ideal[24]:

In fact, there is another definition of a radical of an ideal I in the space C, of

algebraic or analytic functions:
Rad(I) = {h € C, : k"™ € I for some positive integer n} .

In general, this definition is not equivalent to the previous one for an arbitrary ideal
in the space of smooth functions. However, the definitions coincide foran ideal J
with finitely generated quotient space C,,/J.

Recall that the vector field v preserves the hypersurface T' = {h(z) = 0} if the
Lie derivative L,h belongs to the principal ideal {i(z)}. Vector fields v are tangent
to I The module Sr of all vector fields preserving the hypersurface I' is the Lie
algebra of the group of diffeomorphims preserving I'. The module Sr is called the
stationary algebra of I.

Let 'y = {h(z) = 0} C R™ be a hypersurface with an isolated singular point at
zero, defined by a quasi-homogeneous function &(x) with weights of variables d; and
degree d. Then the following holds:

Lemma 1.2.1 (O.V. Lyasko) [22] The module of tangent vector field Sr is gen-
erated by the Fuler field vy = d1w1% + ot dnwn% and the Homiltonian field
’U@‘j = I‘Lﬂ% — Hj-a%, where H@ = g%

Using the previous Lemma, we deduce the following,

o If Ty = {:Ul = 0} then

a n—1 a
SF!, == {i&'lhlé‘a - Zkza—y-} 3
i=1 '

for arbitrary function germs Ny, k; € C,,. Here z; € R,y € R L.
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o If ', = {2122 = 0} then
] 8 0
T. {-Ll 15:1, + &9 12311,2 +§ ayi} )
for arbitrary function germs hy, hy, ki € C,. Here z = (x1, 22) € R?, y € R™2.

o If the border is a cusp Iy, = {23 — 25 = 0 : for some s > 3} then

T
Schp = {(?1/11 + szhz)a ( hl + 6.1,1 lhz) Z }

for arbitrary function germs hy, hy, k; € C,,. Here z = (11, 2) € R%,y € R*2

o If the border is a cone T'e,, = {®122 — 22 = 0} then

0 0
Sr., = {(-’131711 —z1hy + 2373]73)_8:1: + (wohy 4 @by + 23:317,4)-~ax
1 2

8 28
+ (.L3h1 + woh3 + ~L1h4)5£; -+ ; /\4@-} ,

for arbitrary function germs Ay, ho, hs, hy, ki € C,,. Here x = (1, 22,23) €
R? y € R™3.

Suppose that all function germs in a smooth family f; are pseudo-border equiv-
alent to the function germ fy,i.e. fio6; = f;, t € [0,1] , with respect to a smooth
family 6; : (R®,0) — (R™0) of germs of diffeomorphisms such that 6, = id and
t € [0,1]. Then we obtain the derivative equation:

_Ofe _Ofiy , Ofiy Vv,

n et oy dy

where the vector field v = X 5,% +Y % generates the phase flow 0;.

Denote by Vraa(y,) the set of vector field germs, each component of which belongs
to the radical of the gradient ideal I of the function f,. We have the following
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Proposition 1.2.2 The vector field v generates the family of admissible diffeomor-
phisms 0, as above if and only if

v € Sp - VRad(ft)‘

Proof.  If m is not a critical point of f; then Rad{%} coincides with the space
of all function germs at m so v could be any vector field and therefore there are no
conditions on v. In fact, at least one of derivative is 9Lt # 0, hence J = {2} = C,.

We have assumed that I' is a stratified manifold satisfying Whitney condition 1
(this covers all the cases we need and in all our settings this condition holds). Also,
we assumed that the factor algebra C,,/Rad{ 2%} has finite multiplicity. This implies
that there are finitely many isolated critical points of f;.

Denote by >, = {ma, ..., ms} the set of critical points of f;. Some of m; belong
to I' and others do not.

For simplicity we consider the boundary case only. The other cases can be treated
similarly using the stratification properties. So, we suppose that I' = {w; = 0}. In
this case U € Sr takes the form

- 5, - 0
v = ’w1(1’1('w)8—w- + ; Wi(w)é—w_i’ where w = (wy, Wa, . . ., Wn),
for some smooth functions W;(w).

Let mg € I'NY_, then by definition of pseudo equivalence the trajectory 0;(mg) =
m, lies in T, so the vector field has the form:

0 . 0
v=Wilw) g+ ) Wiw)g -,
=2 v

with Wi(mp) = 0 (and also Wi(m.) = 0 for all ¢). Thus, we have a component
function W; which vanishes at my e 'N Y.

For other examples of borders considered in the thesis the proof is similar. In

the proof we use the following fact: any finite number of vectors tangent to strata
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of the border can be extended to a smooth vector field from the stationary algebra
which is tangent to the border everywhere and coincide with given vectors where
they are attached. Obviously this property holds for corner, cusps and cone shape
borders. In particular, this property implies Whitney 1 condition: the tangent space
to a smaller stratum must be in the limit of the tangent spaces of the larger strata.
However this is not sufficient.

To prove “the only case” it suffices to prove that for given function Wi (w) with
Wi(mo) = 0 there exists a smooth function ®1(w) and y € Rad{Z} so that

I’Vl(w) = 'wld)l('w) +X.

Since the set ), of all critical points of f; is finite then there is a polynomial of
the form

Pi(w) = wila(w) ... Aj1 (w)Aja (w) ... As(w),

where Ay(w) is an afline function Ax(w) in w which vanishes at m; and does not
vanish at other points m; (¢ # k). That is Pj(m;) = 0 and Pj(m;) # Oforj=1,...,s
except for m; = my.

Cousider a linear combination of these polynomials

P= ZAJ-Pj(w)
=1

with coefficients A;, so that P(m;) = Wi(m;). On the other hand
P = Wy (Z Aj HA[(’UJ)) = w1<I>(w).
=1

Now we have that Wj(w) —IP vanishes at each critical point of f;. Hence Wy(w)—
P=yxc¢ Rad{%}. So we get the first component of the vector field as v; =
w; ®{w) + x, where w;P(w) € Sr.

The following proof of the “if” claim is valid for any border. We know that
ft o 6 = [5, then —%fti =3 a%%m such that v = EWi% € Sr + Vraas)- Let
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v € Sp and v2 € Vgaa(s,). Consider the trajectory my; = 0;(mp). At each ¢, we
have v(my) = v1(m) as m, remains critical for f;. Thus, the trajectory 6;(rng) is an
integral line for both vector fields (v; and vp). So consider only v; € Sp. Then, if
mg € I' then a trajectory of mg lies on T

We modify pseudo equivalence relation to have better properties with respect to
parameter dependence, replacing the radical Rad{3%} by the ideal {2} itself in the
definition of pseudo border equivalence.

Denote by V; the ideal of the algebra of germs of vector fields, each component
of which belongs to the gradient ideal [ of the function f;.

Definition 1.2.3 Two functions fo, f; : R® — R are called quasi border equivalent,
if they are pseudo border equivalent and there is a family of function germs f; which
continuously depend on parameter t € [0,1] and a continuous piece-wise smooth
family of diffeomorphisms #; : R* — R" depending on parameter ¢ € [0, 1] such
that: f; 0 0, = fo , 6o = id and the vector field v generated by #; on each segment of
smoothness satisfies the inclusion

v ESr+ Vi,

The diffeomorphisms ¢, generated by the vector field v as well as the vector field
itself will be called admissible for the family f;.

The previous definition implies that the formulas of the quasi border tangent
spaces T'QT'y, to the quasi border orbits at an admissible deformations f; are given

as follows:

o IfI'y = {21 =0} then

n—1
i, = {52 (s + 2a) + 55 2}
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for arbitrary function germs Ay, Ay, ki € C,. Here 27 € R,y € R* L.

e If ', = {& 24y = 0} then

TQC), = {af (q, ht e a aftAZ) Ol ( aha+ 2l 4 5f"32>

8 53] T 8-‘1,2 ox T 82)2
n—2 P
N Z ft }

for arbitrary function germs h;, A;, By, k; € C,. Here x = (1,22) € R? ,
y c Rn—Z‘

e If the border is a cusp I'esp = {23 — 2] = 0 : for some s > 3} then

_ Jof (m, af; . . Ok
roous = {58 (D ank+ Zan+ 2y,
e (@) ury , Ohp | O 2O
+ %( h+ sz fc—|—61B1+52B2 Za Ci.

for arbitrary function germs h,k, A;, B;,C; € C,,. Here 2 = (21,22) € R?,
y c RnffZ.

o If the border is a cone Iy, = {129 — 22 = 0} then

70, = {2 (bt 2ty s oy o, 1 O
0 o Z1 ox Ty %) T3

a 0 0
+ &% (wzhl + Xohe + 22304 + afi Ci+ af; Coy + 5f203>
o a 9 n—3 (9
+ a—i (mshl + zohs + 1Ny + af" D+ 8fZD2 + —fED3> + Z 8:% }

for arbitrary function germs h;, A;, B, C;, E; € C,,. Here 2 = (21,22,%3) €
RZ, Y c RR—S.
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1.3 Basic techniques and prenormal forms

1.3.1 Moser’s homotopy method and spectral sequence

Moser’s homotopy method is the main technique we use to prove quasi border equiv-
alence between two function germs fy and fi;. The idea is as follows: introduce a
family of function germs f; with ¢ € [0, 1], joining fo and f;. We are trying now to
find a family of admissible diffeomorphisms 8; with ¢ € [0, 1], 6p = id and fio0; = fo.

We differentiate this relation with respect to ¢ to get

_Oh N~ Ofey,
ot ow;
where all g—fj and the components of the vector field v = ) Wia%i are evaluated at
0,(w). Therefore 6; is the phase flow of the vector field v. If for a given function
%’} we can find a decomposition in the above form, then the vector field v with
the components W; in the (w,t)-space can be integrated to obtain the family of
diffeomorphisms 8;. Of course, we need to be sure that the germs of diffeomorphisms
are defined on some neighborhood of the base point. This is usually achieved if at
the base point the vector field vanishes.

Recall now some basic results in singularity theory which will be used intensively
in the following sections.

The Malgrange Preparation Theorem and Neakayama Lemma are important tools

to prove some results on prenormal forms. Here we state them.

Theorem 1.3.1 ( Malgrange Preparation Theorem) [24] Let C, be the alge-
bra of germs at the origin of smooth functions in x € R™. Let M be a finitely
generated C,- module and f : (z,0) — (y(x),0) be a germ of a C* mapping from
R™ to R™. If I; is the ideal in C, generated by the components of f and the quo-
tient algebra M /I;M is isomorphic to some finitely generated real vector space, with
generators [g1(x)], ... lge(x)], then M regarded as an C,,)-module is generated by
01, ..,k Here Cy) is the algebra of smooth function germs at the origin composed
with the components of the map f, i.e. Cywy = {h(W1(2),...,ya(2))}, where h is a
smooth function germ at the origin n in variebles Yi,...,Yn.
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Let A be a commutative ring with a unit. Let I C A be an ideal with the
following property: for every o« € I, 1 + « is invertible in A. For example, A = C,,
and [ is any proper ideal of A.

Lemma 1.3.2 (Nakayama Lemma) [13] Let M be a finitely generated A-module
and let N be a submodule of M. Then, the condition

N+I.M=M

implies that N = M.

Lemma 1.3.3 ( Hadamard’s lemma) [13] A smooth function f(x,y) with local
coordinates © = (%1,...,%n) € R and y € R* which vanishes on the coordinate
subspace x = 0 can be wrilten in the form f = o  whi(x,y) for certain smooth

functions h;.

The following property of quasi border multiplicity is needed to prove further
results.

Proposition 1.3.4 If a function germ f has a finite (right) multiplicity for some
border, then f has finite quasi border multiplicity. In other words, the quast border
tangent space has finite codimension over R in the space C, of all germs.

Proof. Let I = {%} be the gradient ideal of f. As f has finite right multiplicity,
its local algebra @ = C, /I = R{py = 1, p1(w), ..., px(w)} for some smooth functions
pi(w) is finitely generated over R.

This means that for any function germ ¢(w), there is a decomposition of the form
n 3f k
pw) = 8_w-Ai(w) + > cips(w),
i=1 v =0

where ¢; are constants and A;(w) are smooth function germs
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Now, for any A4;, we can write

k
A Z af Y + Zﬁmiﬂm-

m=0

This yields

of o
Z 8'l£1 f Yo + Z Z Pm/@ml + Z CiPj.

1,8=1 i=]1 m= 0

Notice that the square of the gradient ideal I? = Z Fur azf Y,; belongs to the
1.8'—

quasi border tangent space T'G);. Therefore, we see that
C/TQ; C Cy/I? =]R{l,pl,...,pk,...,%ps,...,%pa,...},wheres= 0,...,k.
This completes the proof.

Recall that a smooth function f : (R™,0) — R, is called quasi homogeneous
function of degree d with exponents dy,...,d, related to the coordinates xy,..., Ty
if fAB2y,. .., A,) = Af(wq,...,@,) for all A > 0. The exponents d; are also
called the weights of the variables ;.

Let v = (dy,...,dn) and k = (k1,...,k,). Then, in terms of the Taylor series
S™ fak of f the quasihomogeneisty condition means that the exponents of the non-
zero terms of the series lie in the hyperplane

Lo={k:diks+ -+ dukn = d}.

The monomial x¥ is said to have degree d if < v,k >= diky + -+ + dnk,, = d.

The Newton polyhedron I'; of a power series may be defined as the convex hull of
the union of the positive quadrants R} with vertices at the indices of the monomials
belonging to the series with non zero coefficient. The Newton diagram I' is the union
of the compact faces of this polyhedron.
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Let I' be a Newton diagram. Then, each face specifies quasihomogeneity type
v;, in which the degree of the monomials with exponents lying on T'; is equal one:
< k,Vj >=1 [l]

Let us fix a Newton diagram I'. A monomial x¥ is said to have Newton degree
d if d = min; < k,v; >. In other words, the Newton degree of a monomial is the
smallest of its degrees in any of the quasi homogeneous filtrations defined by the
faces of the diagram I'.

The Newton order +y; of a function is the smallest of the Newton degrees of the

monomials that appear in it.

The functions of order at least ; form an ideal S, in the ring C,,. The ideals S,,
yield the Newton filtration in the ring of C,. The sum f; of the terms of Newton
degree y; of a function f of order ~; will be referred to as the principal part of f.

Assume that Sp O S;;, D --- D 8, D ... is a semi quasi homogeneous filtration
on C, defined by the Newton diagram ([1]|). Let f = fo + fi be a decomposition of
a function germ f into its principal part fy of the fixed lowest degree terms defined
by the diagram and higher terms f, € S, and f; has a finite multiplicity.

Lemma 1.3.5 Suppose that e (w), ex(w), ..., es(w) are quasi homogeneous polyno-
mials of various degrees N + p;, where p; > 0, R-generating the quotient space
Cu/TQfo, where TQ fo is the tangent space to the orbit of fo with respect to quasi
border equivalence.

Suppose that for any term @ € S, \ S5, :

1. There is a quasi admissible vector field W = 3" 152, where

w = (:Ula Loy oo 3 Ty Y1, Y2y - - - >yn.—m)7

1 2

' _ n ) 8f() ‘ _ n 8/{]
£C1=3}1+ZA§)%’ ""mm=$m+zAEM);§a’
i=1 t=1

and

ym—H)-- ;U'n S Cw
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with ¥ = (T1,...,%m) € Sr and Agj)(w) € C,, such that

Z ———u'h + @+ i ciedw),
i=1

where € S, and ¢; € R.

2. Moreover, for any S, and v € S, the expression

@+ZA(’) W

o i 0 oy .
+2Z Jo {Z §8qﬂ+ Z %m

i=m1

.9
E@e) =Y 2%
i=1 "

belongs to Ss,.

S
Then any germ [ is quasi border equivalent to the germ fo+ 3 cie;, where ¢; € R.
i=1

k3
Proof. Consider the family Fy = fy + Z Aiei(w) of functions with parameters

A € R°. Consider a homotopy F;, = fo + tf, -+ z Aie;(w) with ¢ € [0,1]. We will

prove that the homotopy is quasi border ad1mss1b1e The homological equation takes

the form
OF, OF; . ..
_ — iy . 2
5 5w, w; + ;El Asei(w), (1.2)

where W = W;(2, A) 522~ is quasi border admissible and A; = A;(A, ©).

Due to Malgrange preparation theorem, it is enough to solve (1.2) for A =0 (we

show the details below). For A = 0, the homological equation becomes
(B BRN i
f* "*Z(aw% ‘l“ta " w@+A{(O,t>Ci(U)).

Since the quasi degree d(f.) > d(/s), then according to the conditions of the
Lemma, there exists a quasi border admissible vector field wyy = > 'Lbz-(l)a%i and a
function @1 (w) € S5, with d(yq) > d(f.) such that

Zé%wz(1)+Zb( )eZ ) + o1 (w).
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This is equivalent to

Z(% +t8f* )wz(l) + D b ew) +pi(w) - Zt§£ Uy (13)

Since w;(1) is admissible for f, we see that

Wi(1) = Ty) = ffi(l) + Z A(l fO for7 € {l, ces ,m} and 57/;‘(1) € Sr
j=1

7(1)5
and
Wiy = Py fori e {m-+1,...,n}.
Denote by
iy O(fo+1f. ,
Wiy = Tiq) + ZAﬁ()l)——’iO—f——), forie{l,...,m}
and

u')';“'(l) =W = yi(l) fori e {m +1,... ,n}.
So we have that the vector field Wy is admissible for fy + ¢/, and we get using
(1.3):
o) 0 )i
fo= S GR By Y W) ) B (14

where

. iy Ofa 0
1)+ZA§()1)8 }—1—22 fo

FORZE — Ofs .
Z i) "5{,};] T 2 Dy, By, i)
The expression E is exactly the expression F = E(f,,tf.). So by second condition

of the Lemma we see that F(f,,tf.) € Ss,,. Thus, the equation (1.4) implies that

or; ., ~
—fe = 8,—11;%03(1) + Zbgi)ei + ¥,

where @ = @1 — tE(fs, tfs) € Sy
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Now again consider a similar decomposition for @,

~ oF 2 ~
5= 5 i+ S5

where Py € S,, and Yo > deg(@1). Thus, by induction after several steps, we will
have
fo = g—i[wgh) Fifg) + T+ D B+ 6P e B
with the degree of ® being sufficiently large. Since f; has a finite multiplicity then
Jo+tf. also has a finite multiplicity. Hence, for some large power N of the maximal
ideal MY we have that MY ¢ {g—i—} Moreover, we have M2V C {»2—5?}2 = I2,

w

Thus, M2 belongs to the quasi fixed tangent space. So & = S 98 g5, (We shall

6'11)1',
give the details below). Therefore, we see that

or . ., - =,
fo= a_‘u;[wi(l) + W)+ + W+ Z[bgl) +0P . e

Thus, we have shown that the homological equation (1.2) is solvable.

Now consider the family of quasi border equivalent germs F; o ©; = Fj or equiv-
alently I, = Iy 0 ©;1, where

O : (w, A\, 1) = (¢, We(w, A), Ae(N)).

Thus, in particular Fy = Fyo©;*. Consider the restriction of ©7* to the subspace
A = 0. We obtain

fo(w) + fulw) = fo(W(w,0)) + > Ay (0)es(W (w,0)).

The Lemma is proven.
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Lemma 1.3.6 [24] Assume we have smooth functions ®;(w, A) and e;(w). If for
any (w,0) there is a decomposition @(w,0) = 3 &;(w, 0)w;(w) + Y ¢;e;{w), then
for any smooth function w(w, \) there is a decomposition

o(w, ) = > ®i(w, Nii(w, A) + Y 5 (Ae;(w),
with W;(w, 0) = i (w) and ¢;(0) = ¢; and for A close to zero.
Proof. Consider the mapping

M (w, Ay = (P, Ay, o0y As).

By H’Adamard Lemma we have

ew,A) = ow,0)+ Y AHi(w,N)
D D, Mbs(w) + Y cre(w) + > NHi(w, A) — Y Mii(w, Mbs(w)
= 3 @i(w, Nn(w) + > ciei(w) + > A (Hi(w, ) — & (w, ,\) i (w).

This is exactly the form we need to use Malgrange theorem as e; form a basis
for the local algebra @ = C,,»/Z, where Z is the ideal generated by ®; and A; (the
components of the mapping M above). Applying Magrange preparation theorem for
the mapping M, we obtain that for any smooth function (w, A)

p(w, X) =D e;(w)Cy (2i, \).

Therefore, using H’Adamard Lemma we see that

o, ) =3 e;)C3(0,0) + 3 8 (3 es(w)Ciy(w, )

as required.

Remark: In fact, in lemma 1.3.5, we have used Tougeron’s theorem which states
that:
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Theorem 1.3.7 [1] If a function f has finite multiplicity 11, that is the local algebra
A=C,/{Is} =R{d1,...,8,} is of dimension p, then MY C I; for any N > p.

Proof.  Suppose that the local algebra A = C,, /Iy = R{dy,...,d,} is of dimension
L.
Consider the ideal MY = {w{'ws? .. wk} with Sk = N.

Take some monomial Ay, k) = hnv = wit 'w;“? oowkn ) where 3" ki = N. Take a

sequence h; = Nj_1.b; where b; € M.
Denote by [a(w)] = [Cy/If] the class in the factor algebra A and consider the
sequence

[hal, thal, . .. [hn].

So if N > pu, then the classes {h;] are linearly dependent . This means that
aplhp] + o [hpra] + -+ 4 an[hn] = (0]

for some [h,], where a, # 0. Since lip11 = hy.byry with b1 € M, we get

aylhy] {1 + OZH [bpa] + . .. } = [0].

P

This yields that [h,] = [0]. So h, € I;. Hence, hy = h,.B € I;.

Remark: Dropping the condition that f, has finite multiplicity, the proof of
Lemma 1.3.5 implies the existence of similar prenormal form

Jo+ Z)\icz'ei + "Za

for any function fo + fi up to the addition of an error term {ﬁv which belongs to a
sufficiently large power of the maximal ideal.
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1.3.2 Quasi fixed equivalence

In this section we introduce another non-standard equivalence relation. It is “weaker”
than quasi border equivalence. However, it is universal and does not depend on the

border germ.

Consider the space R™ with local coordinates = = (21, @2, ..., %) Let
f+ (R 0) — (R,0) be a function germ defined on the space R™.

Definition 1.3.1 Two functions fo, f1 : R* — R are called pseudo fized equivalent
if there exists a diffeomorphisim 6 : R* — R™ such that fy 00 = fo, and if cis a
critical point of the function fp, then @ fixes the point ¢ (maps it to itself) and vice
versa if ¢ is a critical point of the function f; then ~! also fixes c.

Now assume we have a family f; of function germs which are pseudo fixed equiv-
alent: f; o080 = fo, t € [0,1] with respect to a smooth family ¢; : R* — R" of
diffeomorphisms, then we have the derivative equation:

ofc  0fiy
T

where the vector field v = X 15671 4ot Xn% on R™ generates the phase flow
#; and its components satisfy the conditions:

X’i < C:L‘,t {Rad{% } .

As before we replace Rad{%} by the ideal {%t} itsclf and get the following
definition.

Definition 1.3.2 Two functions fy and f) are called quasi fized equivalent, if they
are pseudo fixed equivalent and there is a family of function germs f; which continu-
ously depends on parameter ¢ € [0, 1] and a continuous piece-wise smooth family of
diffeomorphisms ¢, : R® — R™ depending on parameter ¢ € [0, 1] such that: fio8, = f
and 0y = id and the components of the vector field v satisfy:

1‘;75 S C:u,t {%} .
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Let [ : (R 0) — (R, 0) be a function germ of the form f = fo(z) + f*(z), where
fo is a quadratic form in ¢ and f* € M3. We start with redducing the quadratic

form fo.

Lemma 1.3.8 If fo(2) is a non-degenerate quadmtzc form with a critical point at

the origin then fo(x) is quasi fized equivalent to Z +a?
=1

Proof. The proof is straightforward. However, we give full details as simple example
of application of Moser homotopy method.

n

Take a homotopy F; joining f> and standard quadratic form Z :I:%2 such that
=1

F is a non-degenerate form in @ for any ¢t € [0,1] and F; is of the form F, =

Z i 3(t)x;x5, where Fy = Qg and Fy = fo.
iij—_—l

We now use Moser’s homotopy method and consider the homological equation

8]7,5_(9];1,: = BFt @) BFt 0Ft (n)
ot “axl{i=1 et [T Zau

Note that all ZTI?: are independent linear forms. Therefore, let Z; = g—ff and up to

linear transformation we get the equivalent homological equation

OF " n
_ att =7 {ZLAED} _{_4_’}:”{2'[2/1577,)}
=1 i=1

On the other hand, we have

oF, < o
——t~ Zbﬂ 1T,

,7=1

Thus, given b; ;(t) for any ¢,7 € {1,...,n} one can find easily solutions for the

homological equation. Hence we conclude that the previous homological equation is
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solvable. Thus all F; are quasi fixed equivalent. In particular fo(z) is quasi fixed

n
equivalent to z +a?,

i=1

The previous Lemma implies the following

Theorem 1.3.9 Let f : (R* 0) — (R,0) be a function germ at the origin with a

non-degenerate quadratic form fo(x) then f is quasi fived equivalent to Ziﬁ

i=]

Proof. Lemma 1.3.8 shows that f is quasi fixed equivalent to a germ
G(@) =Y 422 +Qz), where Q(z)€ M2,
i=1

1
Consider the quasi homogeneous part Qa(x, y) = Z +2? being the principal part
i=1
with weights w,, = % for all 4. The tangent space at @) with respect to quasi fixed

equivalence takes the form

107, =52 (S s w20, (32|

=1 i=1

Then for any monomial of degree greater that 1 for example g* = x?a ... ain,
divisible by 22, there is A such that g* = +422 4% with AD = £l 2l € M,.
Similar argument holds for other monomials ¢* = 2;2;4. Now using Lemma (1.3.5)
we see that that the germ

) 09" Og” ) 0Q2 99"

G = AWZL_ZI AW vg_

¢ 8331’ c%z + * Brcl (?IL‘i’
has quasi degree d(®) greater than the quasi degree d(g*). Hence we conclude
that G is quasi fixed equivalent to the germ 3 as required. ]
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1.3.3 Quasi partially z-fixed equivalence

Consider a version of quasi fixed equivalence. This yet another special equivalence
relation happens to be useful in many proofs. It allows us to get a prenormal form
of a function germ with respect to quasi border equivalence. So, we introduce the

following;:

Consider the space R™ = {w = (x,y)}, wheve 2 = (21,22,...,%n) € R™ and
¥ = (Y1,Y2) - Yn—m) € R"™™, Let f: (R* 0) — (IR, 0) be a function germ defined
on the space R™.

Definition 1.3.3 Two functions fy, fi : R™ — R are called pseudo partially x-fized
equivalent if there exists a diffeomorphisim 6 : R — R” such that f; o 0 = f;, and
if ¢ = (xo,¥0) is a critical point of the function fy , then 6 sends ¢ to the point
¢ = (o, Y(0,%0)) and vice versa if ¢ = (zq, o) is a critical point of the function f
then 0! sends ¢ to € = (xo, Y {0, %)). In other words, it is pseudo border equivalence
when the border is the (0,y) coordinate subspace.

Now assume we have a family f; of function germs which are pseudo partially «-
fixed equivalent: fio8; = fy, ¢ € [0, 1] with respect to a smooth family 0; : R* — R
of diffeomorphisms, then we have the derivative equation:

Ofc _0fiy | Ofiy
—— ==X+ =Y
ot~ az” Tyt

where the vector field v = X a%- + Ya% on R™ generates the phase flow ¢; and its
components satisfy the conditions:

: - 0fi
Y e Cm,y,t, X e C;,;‘y,g {Rad{%}} .

As before we replace Rad{2} by the ideal {22} itself and get the following

definition.

Definition 1.3.4 Two function fy and f are called quasi partially 2-fived equivalent
if they are pseudo partially x-fixed equivalent and there is a family of function germs
Jf¢ which continuously depends on parameter ¢ € [0, 1] and a continuous piece-wise
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smooth family of diffeomorphisms 6; : R* — R™ depending on parameter ¢ € [0, 1]
such that:f; o 8, = fy and 6y = id and the components of the vector field v satisfy:

' 0f;
Y €Cuye, X €Cuy {m} .

Remark: Apparently, quasi partially z-fixed equivalence implies quasi border
equivalence, as the quasi border tangent space contains the quasi partially w-fixed
tangent space, provided that the border contains the (0,y)- coordinate subspace.
Hence, all quasi z-fixed partially equivalence properties are valid for quasi border
equivalence. The simple classes for quasi partially z-fixed equivalence (e.g Morse
functions) remain simple for quasi border equivalence.

Lemma 1.3.10 Let f : (R*0) — R be a function germ with an isolated critical
point at the origin. Then, f is quasi fized (or quasi partially z-fized equivalent)
for each t € [0,1] to the function germ g,(w) = f(w) + th(w) with h{w) € {%}2,
provided that the rank of the second differential dg, of g; at the origin is constant.

Proof. At first we claim that if the rank of d2g; is constant then for different ¢ the

gradient ideals I, = %} coincide. In fact, this claim does not depend on the choice

of local coordinates so we Inay assume that the second differential at the origin of f

has diagonal form d%f = Ze,wz, whereg; = +1fori=1,...,7rand g; =0 fori > r.
The second jet of ¢ at the origin takes the form

T s

dggt = Z (eiéijw? +4thi’j(0)é‘i€fwi’w3‘) = Z Dg}wi’wj

i,j=1 t,j=1
where h;;, ¢,7 =1,...,n, are coefficients of the decomposition
7 af af
h{w) = hi
W) = 3 histw) g

7,j:1

of the function £, d;; is the Kronecker symbol, and D(t) = g;0;; + 4dte;gihi ;(0). We
can assume here that f;; = h;;.
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The r X r matrix with entries D(t) at any ¢ is invertible since the rank of d2g, is
r. Reversing signs of some rows of this matrix D we see that the n X n matrix with
the entries D( = 0;; + 4te;hi;(0) for i, 5 =1,... ,'I’ and Dz-,j = ¢; ; otherwise, is also
invertible.

The derivative

89, f  Ohum Of \ Of
ow; 8w1 o, T2 Z (2]“”’"26‘ R OW; + ow; dwy ) Owp

kym=1

implies that {22} C {21}, This derivative can be written as

agt B n 6f _ af
o = ; (8i + dte;h; ;(0) + R; ;) By ; (D R ’9) ow;’

where the functions R;; vanish at the origin. So in some (smaller) neighborhood of
the origin D;; + R;; is invertible. This implies that {2 21 ¢ {&y
Therefore the derivatives 3‘7‘ also form a basis for the gradient ideal /o = {21}

as claimed.
Now the homological equation _J% = 6“ ~V; can be solved for the unknown

functions V; belonging for any t to the gradlent ideal I, since the left hand side
belongs to the square of this ideal. The phase flow of the vector field 3 V; - leaves
all critical points of g; fixed.

In fact, we have proven also the following useful Lemma.

Lemma 1.3.11 If Gi(w) is quasi fized (or quasi partially z-fized ) admissible family
of germs then for any function H(t,w) € {%—fj}Z the family Gy(w) = Gy(w) + H(t,w)
is also admissible and G, is quasi partially fived equivalent to G, for each value of
t provided that the rank of the second differential of Gy + TH is constant for any
t, T €[0,1].
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Lemma 1.3.12 If ®&;(z,y) is an admissible deformation with respect to quasi par-
tially x-fized equivalence(or quasi fived equivalence) and w = (x,y) — (X (), Yi(x,y))
is a family of diffeomorphisms of R™, which preserve the fibration ((x,y),0) — (,0),
then Gi(z,vy) = ©(Xi(2), Yi(z,y)) is also an admissible family.

Proof.  The claim that the deformation ®,(X,Y’) is admissible means that

0B,(X,Y) a<1>t X Y) 094X, Y) 6D,(X, V).,
B D D o {ZAXY —ox [ T2y %

with some smooth functions A;, Y;.

fces ZX N are inverti a0y _ 98X 9%, _ 90 OY
The matrices % and By are invertible and 5t = 3¢5, oy = Y oy Hence,

the decomposition can be written in the form

DX Vo) 5o O Y ) (57 5 x(0), Y,

0P(X (), Y (x, 8%.(X (), Y (z,
( (igli € y))} s ( (ag)“ (,9)) =

Y,

with some smooth functions lN/i, A;. This means that the family G; is admissible. n

Let f: (R™ 0) — R be a function germ with a critical point at the origin. Denote
by f*(y) = f|e=0, the restriction of function f to the y coordinates subspace. Denote
by r* the rank of the second differential d%f* at the origin and set ¢ =n —m — r*

Lemma 1.3. 13 (Stabilization) The function germ f(x,y) is quasi partially x-fized
equivalent to Z +y? + 9(,%), where § € R® and g* € ME. For quasi partially

a-fived equzvalent [ germs, the respective reduced germs g are quasi partially x-fived
equivalent,

Proof.  Since the rank of the second differential (d3/*) is equal r*, then after an

admissible linear transformation the function germ f can be written as:
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n—m m

Zﬂzu + 503 aspas + Qo) + falz,y),

i=1 j=1
with f3 € M3 and @ is a quadratic form in x only.

Let :lj = (yl, Y2, 1‘*) and § = (yw'*+1= SR 'yn*m) € R Then: the previous
form can be written as:

= >y + (w4, 9) + filn, D),
=1

where .
T n *
= Z Qi jYil; + Z'y;(ﬁ(w, y) with $e M2,
i=1 j=1 1=1
and
— n—m 7
F=Qu@)+ > Y by + fo(x,7) with fe M3y
i=r*41 j=1

Now we try to find the family of diffeomorphisms which preserve the fibration
O : (2,y) — (’L YVt 2,9),Y(z, @'))

Take the family

= Zﬂ:yf +tgo(rc,g},@’) +ﬁ(’£:@>

i—1

which joins fi and fo = S, 92 + fo(z,§) with ¢ € [0,1] and f = f,. Here, f;
and fo are unknown. So, we want to solve the homological equation for ¢ and also

for ﬁ simultaneously.

The homological equation takes the form

n—Tn

3ft_5ft Bft ft.
; +Z Ui + > 3

a '~1*+l
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Note here that & = g; = 0 for j =r*+1,...,n — m as they do not depend on t.
Thus the previous equation can be written as:
5ff

~(p+ 2 Z(ﬂ:m 52k

Set w; = +2y; + t%%, i =1,...,r*, which are the known functions. Note that
the matrix (g—’;;’) has the maximal rank at the origin for any value of { . Hence we
can take the new coordinates w; instead of §. Let w = (wq,We, ..., Wy+). Thus the
previous equation takes the form:

_( + szyt

Using H’Adamard Lemma, we can write this as:

szwz (z,w, 7, 1) + oz, 7, t)+ 8ft Z — WY

=1

By taking ¥; = —1; and aa_]} = —¢, we have shown that the homological equation
k3
is solvable. Note that the vector field © = 3 y; is defined in some neighborhood of

i=1
the origin as w;(0) = 0. Hence all f, are quasi equivalent. In particular, the function
germ f; is quasi partially a-fixed equivalent to fo. The last step is to find f. This
can be done using the following relation:

/ bdt = af‘dt_ = o

The second claim can be deduced directly using Lemma 1.3.12 as 6; : (x,y) —
(3, Yt z,9), Y(’c f)) preserves the projection (z,9,¥) — (2,%).

In fact, Lemma 1.3.11 implies the following improved stabilization splitting

Lemma 1.3.14 There is a non-negative integer s < r — r* such that the function



CHAPTER 1. PRELIMINARIES 39

T*+s ~
germ f(x,y) is quasi partially fived equivalent to ., +y? + f(x,¥), where j € R°~*

i=1
and f is a sum of a function germ from M?c,g and a quadratic form in x only. For

quast partially fived equivalent | germs, the respective reduced germs f are quasi
partially fived equivalent.

Proof After the stabilization procedure via Lemma (3.1.1) the quadratic form
n—m

Z +y? 4 2y z a(l)y, otk S0 ae( Yy + go(x) with some coefficients
i=r*--1 i=r* 41

f’) and quadratic form go in @ only. Let some of these coeﬁicients, for example

a - +1 # 0, then summing up the function f with & ( ) for sufficiently small &,

Lemma 1.3.11 yields a new function f which is quasi partially fixed equivalent to f
and has non-zero quadratic term with g2 ;. Therefore the rank of the restriction of
fto x = 0 subspace becomes larger that 7*. Repeating the procedure several times,
if needed, we get the function germ with some larger value of r* and without any

(J ) coefficients. This is exactly the required form.



Chapter 2

Quasi boundary singularites

2.1 The classification of simple classes

Following Arnold [1], we discuss the description of simple classes. A function germ
is called simple if its neighborhood in the space of function germs contains only a
finite number of quasi equivalence classes.

Apparently the quasi border classification of critical points outside the bor-
der T" coincides with the standard right equivalence. Hence the standard classes
Ay, Dy, Eg, E7 and Fg form the list of simple classes in this case. Also by definition
non-critical points are all equivalent wherever they are. So we classify only critical
points.

For a function germ f: (R, 0) — (R, 0), which has a critical point at the origin,
denote by f; its quadratic form. So we assume that [ has the form f = fo + f5 and
fz e M3,

In this chapter the coordinates are as follows: R™ = {(, )}, where
x = (x1,&2,...,4,_;) € R and y € R. We consider germs of C* -smooth
functions f : (R",0) — R, with the boundary I', given by the equation y = 0.

The quasi boundary tangent space to an admissible deformation f; at the origin
takes the form

n-—-1
0 af: 9] 0
TQBft = { 3—:?/12 + 8f (yBl + aft Bs Z aiﬁ ) }

40
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for arbitrary smooth functions A;, By, By and A

For convenience, we rewrite the auxiliary Lemmas of the section 1.3 in chapter 1

and specialise properties of quasi border equivalence for the case of quasi boundary
singularities in the new coordinates.

Let f : (R™,0) — R be a function germ with a critical point at the origin. Denote
by f*(x) = fly=o, the restriction of the function f to the x coordinates subspace.

Denote by r* the rank of the second differential d2f* at the origin and set ¢ =
n—1-—r* Let r be the rank of the second differential d3f and k£ = n — r the
respective corank, then

Lemma 2.1.1 (Stabilization) The function germ f(x,y) is quasi boundary equiva-
lent to 3~ 27+ g(&,y), where & € R® and the restriction g*(%) = g(,0) € M3. For
i=1

quast boundary equivalent f germs, the respective reduced germs g are quasi boundary
equivalent.

Lemma 2.1.2 There is o non-negative integer s < 1 — r* such that the function

™48 ~
germ f(x,y) is quasi boundary equivalent to Y. +a? + f(Z,y), where T € R°~® and
i=1

~

f=ay*+9(Z,y) , here g € M2

m!y

the respective reduced germs fv are quast boundary equivalent.

and a € R. For quasi boundary equivalent f germs,

The main prenormal forms of quasi boundary singularities are given in the fol-
lowing:

Lemma 2.1.3 1. If k = 0, then f is quasi boundary equivalent to Morse function
Bo g + Y .

2. If k=1, then [ is quasi boundary equivalent to either 3 ' +a? + ]v(y) with
e M orto S0 tatray®+ (21, y) with somea # 0,0 € R and | € M3

T,y

3. If k > 2, then f is a non-simple germ.
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Proof. For £k = 0, we have n = r. By Lemma 2.1.2, there is a non-negative
number $ such that ¢ < r —r* = n — r*. We shall consider all possible choices
fors. f s =n—v* thenc—5=n—-1—9*—n-+r* = —1. So this choice is
not possible. Next, if s = n — r* — 1, then ¢ = s. Hence f is quasi boundary
equivalent to the germ F' = Sl ke 4 ay® 4 fly) with a# 0,a € Rand f € M.
By standard boundary equivalence (also, the germ is quasi simple fixed singularity,
hence simple with respect to quasi boundary equivalence), we see that F is quasi
boundary equivalent to 37 ' 442 492 If s = n—* — 2, then c— s = 1. Hence f is
quasi boundary equivalent to the germ G = St 4 ay? + f(wl,y) with a € R
and fe Mg’ml. However, the germ G has total rank equal to n — 1. The total rank
is quasi boundary invariant for equivalent germs. Hence, the choice of s <n—2—r*
is not possible in this case.

For k=1 wehaver =n—1. If s =n —1—r* then ¢ = s. Hence [ is quasi
boundary equivalent to the germ I = S>7 ! a?+g(y) with g € M3 If s = n—2—1*,
then ¢c—s = 1. Thus f is quasi boundary equivalent to G = 2?2—21 +a?+ay®+§(xy, y)
with a # 0,0 € Rand § € M3 . Finally, if s = n—3—7*, then c—s = 2. Thus [ is
quasi equivalent to H = Y77 422 - ay? + Gy, 22, y) with @ # 0,a € R. However,
H has total rank r equal to n — 2. Hence, the choice of s < n— 3 —r* is not possible
in this case.

For k£ > 2, consider first the case k = 2. If s=n— 2 —7*, then ¢ — s = 1. Hence
f is quasi boundary equivalent to the germ Y1) +a? + f(z1,y) with f € M3

T1,U°

If $ =1n—3—17*% then ¢ — s = 2. Hence, f is quasi boundary equivalent to the
germ Yk 4+ ay? + f21,22,y), with @ # 0,0 € R and f € M3, ., The

choice of 8 < n —4 — r* is not compatible with k& = 2. Following the procedures

similar to the case k = 2 we see that for any k& > 2 the function germ f is quasi

n—1 ry

boundary equivalent either to the germ G =3 ;7. | a7 +ay® + f(®1, 22, ..., Th, Y)
or to the germ I = "2 a2 - fay, 2, ..., 241, y) Where f € M3, o ey A0

a #0,a € R. The germs G and F' are non-simple by the following Lemma.

Lemma 2.1.4 The function germs of the form:
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1. F(z,y) = Y, #a? + f@y, %2, ., 2-1,9)
2. Glx,y) = Z;’:klﬂ +a? + ay? + g(w, 2, - - -, Tk, ),

where f € M iy € M o
respect to quast boundary equivalence, for k > 2.

and a # 0,a € R are non simple with

Proof. Consider the function germ ['. Then, the tangent space to the orbit of

quasi equivalence at the germ fat the origin takes the form:

..
Za_f {yBﬁ”B“Zau}

Consider the projection of TQB to the 3-jet space at the origin. The cubic terms
in TQBj depend only on Zi‘_ll gf A;, where A; = apy + Zi-:ll a2, and -ggyBl,
where ag,a;, B; € R. So the projection coincides with the projection of 3-jet of
the tangent space of standard orbit of Arnold boundary equivalence. They form a
subspace of dimension k(k — 1) 4 1. This dimension is less than the M = w
Here, M stands for the dimension of all homogeneous cubic terms of the variables
€1, L9, ..., Tx-1 and y. Hence cubic terms can not belong to finitely many orbits.

n—1

Consider the function germ G(z,y) = > i, £27-+ay® + 321, 22, ..., Tp, y). Let

Gs = St i Era(y+0xk)2+G(a, 22, . . ., T, v) for sufficiently small §. Note that

all ég are in the same orbit and G is in the closure of C~¥5 By stabilization lemima,
n—1

G is quasi boundary equivalent to the germ F o= Soie Ea? gy, @, w1, Y).
The germ F' is non-simple. ]

Lemma 2.1.5 The function germ F(x1,y) = ay® + Fz1,y) with some a 0,0 € R
and f € M3, is quasi boundary equivalent to the germ £y® + ydi(w1) + do(w1),
where ¢1 € M2, and ¢y € M3 .

Proof. By scaling a to &1, the germ F can be written in the form F (z1,y) =
+y* + f(21,y) . Consider the deformations Gg = £y? + yM + A and Gy = 2 +

g(w1,y) + YA + Ay, where g € M3 We deal with y as a variable and z;, A\

T1,Y°



CHAPTER 2. QUASI BOUNDARY SINGULARITES 44

and A; as parameters. Take the homotopy G; = G + tg(x1,y), joining Gy and Gy,
where ¢ € [0,1]. We want to prove that all G; are quasi boundary equivalent as
deformations. So we need to find a family of diffeomorphisms of the form

(I)t : (wl’ Y, /\17 ’\2) = (X(wla /\1: /\2) t)a Y(IL‘l, Y, /\la /\2, t): Al(wh ’\1a ’\2) t)) AE(wh )\1: )\Za t)) ’

such that: Gy o ®; = Gy. The respective homological equation takes the form:

oG, 0G, 0G, 0G! 0G; : ;
—_—— = M = — —_— —'B —B /\
where ); = %’i fori=1,2.
Set By = B3 = A = 0 and solve the homological equation for By, /'\1 and Ae. Let
P = Cq;,y,01,00,¢- Consider the mapping:

H: (wl,y,/\l, /\2,t) = (hl = y%—ijt,hz = T1, 1713 = )\1, h4 = )\2, h5 = t).
Then, P/ITP = {o + oy} where oy, o € R and TP is the ideal generated by the

components of the mapping H. Thus, by Malgrange preparation theorem, we get,

for any P € IP, the following decomposition:

P = 1'1%1(111@1,)\1,)\2;@ + Y Ko (b, 21, My Ao,y B)
hl](] (h], Ty, /\1, )\Q,t) + yI(Q(IIIl, )\1, )\2, t) + I(.'S(wla /\la )\2: t)'

I

Thus the homological equations is solvable by setting B1 = i, A1 = K, and
5\2 = K3. The restriction of ®; to the subspace {A\; = Az = 0} provides a quasi
boundary equivalence of Gy with the family £y? 4+ yA;(21) + Ao(21).

The full classifications of simple quasi boundary singularities is given in the fol-
lowing:



CHAPTER 2. QUASI BOUNDARY SINGULARITES 45

Theorem 2.1.6 [36] A simple quasi boundary singularity class for the boundary
(y = 0) is a class of stabilizations of one of the following germs:

1. By : +a? 4 ¢k, k>2 k,
2. Frm: E(yEah)?+am, 2<k<m k+m—1.

The orbit codimension in the space of germs is shown in the right column.

Remarks:

1. The classes Dy listed in theorem 2.6 in [36] are in fact uni-modal.

2. The germs with corank greater or equal to 2 of f, are non-simple. The germs
of corank 1 which are non-simple belongs to a subset of infinite codimension.

3. The classes By, can be written in the form #(y &= x1)% & 2% and can be included
in the series £}, as Fy .

4. Notice that classes F3 4 and F 4 are pseudo equivalent but not quasi-equivalent.
In fact, the transformation (21, y) — (z1,y+2%) is pseudo equivalence between
y? + af of Fyy type and (y + 22) + 2% which is of Fy4 type. However their
codimensions of quasi-tangent spaces are different, and the classes are not
quasi-equivalent.

Proof of Theorem 2.1.6.

Lemmas 2.1.3 and 2.1.5 show that we need to consider the function germs of the
form 7 = S0 a2 + f(y) and Gy(a, y) = £y? + d1(@1) + b + da(21) to discuss
simple quasi boundary germs. Start with the germ F', then properties of standard
boundary equivalence imply that the germ F' is quasi boundary equivalent to some
class of the simple series of classes By, :  a? +¢*, k> 2.

Now consider the germ G4 and let
Gi(z1,y) = 29> + apyzt + g1 (1) + b2 + 0olzy),

where ay # 0,0, £0 and ¢ € MM, € ML

1 Tl
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We distinguish the following cases:
1) If k > m~—1, then G, is quasi boundary equivalent to the germ éo =y ta’

To prove this, consider the germ Gy = Zy? + bnaT". Assign weights w, = % and

2
Wy, = # The tangent space to the quasi boundary orbit at Go takes the form:

TQBg, = 2y {yBo + yB1} + mbmai" ' C.

There exist solutions for any term g = a,yz’}, where n > k with quasi degree
d{gt) = % + 2 by setting

YLt o B
By=B1=0 and ()= n ﬂ} = gt mtl
mbm] Mbm

Then, the germ %C’l ”a” 2ry?2? ™ has quasi degree equal to 1+ 2(n+1)

is greater than d(gy).

which

Similarly, for any term gi = Bzt where [ > m with quasi degree d(g3) = n%, one
can find solutions for ¢4 by setting:

ﬂbﬂll 181 1— m+1
By=Bi=0 and C; = T = 7
'm»bm-'Ll mbm

The germ %%C’l ;5) 42'~™ has quasi degree equal to 2=™ which is greater than
d(gs) when [ > m.

Thus, by Lemma 1.3.5, we conclude that G, is quasi boundary equivalent to the
germ Gy. Note that there is a solution for the term g5 = b,,27". This means that the
orbit is simple with respect to quasi boundary equivalence. Rescaling b, to %1, we
get the classes: Gp = *y? y* + a with m > 3.

On the other hand, Gy can be written in the form =y2 +2ya7 ! 22"V L om =
+(y 2772 £ 2,

2) If m > k+ 1 and a2 + 4b,, # 0 when m = 2k then G, is quasi boundary
equivalent to the germ éo = +y? 4 ya¥ + 2. To prove this, consider the tangent
space to the quasi orbit at Gy = 42 -+ apyzt + b7



CHAPTER 2. QUASI BOUNDARY SINGULARITES 47

TQBg, = (£2y+ akrz:ll") {yBo + (£2y + a;;:v'f)Bl + (kapyat—t + mbm:c’ln_l)Bz}
+ (kagyzi™! + mba? O,

This space is equivalent to

TQBg, = (+2y + ara?) {yBo + 2By § + (karya = + mbpa?)C,.
1 1

We have mod T'Q)Bg,:

karyai™" + mbnal ™t =0, (2.1)
+y? + apyat =0, (2.2)

and
+2yat + a2 =0. (2.3)

If we multiply the equation (2.1) by x1, we get:
kapyat + mbnaT = 0. (2.4)

If we substitute y2f from the equation (2.3) in the equation (2.4), we get:

02
E{’ifcf" + mbpa = 0. (2.5)

T3

The relation (2.5) yields that 27 = 0 and 2?* = 0. Hence y2§f =0 and y? = 0.
Thus, there exist solutions for any term of the form gf = anya? with n > k or of the
form g5 = B! with { > . In particular, assign weights w, = £, w,, = &. Then, Gy
is semi quasi homogeneous and the germs g} and g5 have quasi degree d(g}) = %—I— 35

and d(g;) = 5, respectively.

Assume that 2k > m (similar argument holds when 2k < m). Then, for any

monomial of the form ¢, we can set Eo = ( and take El and 51 such that

Yt = (£2y + axa)at By + (kagyat= 4 mbna? 1.
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This yields that

anyay = £2y2¥ By + kagyat 10y and arx2* By + mbpaT1Cy = 0.

Hence,
n—k
=~ —Q L = ot CnYTy
Cl = —x%’” m+lBl and B1 = z ka2 ok .
Mbi, £2 — gt

-

The germ ®; = amaf.a By + (£2y + apah) a2 By + (nanya’
degree greater than d(g;) when n > k.

Similarly, for any monomial of the form g = B} for I > m, we can set By =0
and take El and 51 such that

1)61 has quasi

Bzt = (£2y + ar2®) 2t By + (karyat ™! + mbpaH)C.

This gives

l—-m

N 2 o~ ~ By

Ol = :Fk—{l,‘lBl ﬂ,nd Bl = 2k—m 2mbm °
Qg QrTy + kay,

The germ ®y = l,@lrci_lél has quasi degree greater than d(gs) when [ > m.

Thus, Lemma 1.3.5 shows that G is quasi boundary equivalent to the germ Gy.
Rescaling a; and b, to £1, we get the classes: Go : +y? Lyt £ 27 . The classes
can be written in the form G : +y? & 2yab + o & 22 = +(y £ af) £ap .

Note that if m = 2k then G is quasi boundary equivalent to the germ 50 =
+1? 4 yak,

3)If m >k+1, +af + 4b,, = 0 and m = 2k. Then, the germ G; takes the form
G = :l:(y + %%%)2 + ygb'l(:vl) + (,’52(.731) with Q’51 S MI;IH E}Pd (,’52 S M%11»+1 Let ¢, =
+%. The function germ Gy can be reduced to the form Ga = £(y + czaf)? + ¢(z1)
where ¢ € M?*+1, To prove this claim, consider the principal part fo = 4=(y -+ czpat)?

and take the tangent space to the quasi boundary orbit at fo.
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TQBy, = +2(y + cxa}) {yBo £ (y + axzf) B} + [£2kesz 7 (y + )] C.

Then we have mod TQBy,: ¥ + qyz? = 0 and yai~! + ckmf'” ! = 0. This

yields that C,/T'By, = R{l,z1,2%,...}. Assign weights w, = — and wa, = 5.
Let g" = dsy2®, where s > k + 1 with quasi degree d(g*) = — + 5. Then, we
see that ¢* belongs to TBQg, up to higher quasi degree terms. In particular, g* =
y(y + cxt) Bo — yzLi * where By = d*x,l k. Now the germ

d2
P = dyyas Ay = —Ja:fs“’”,

has quasi degree d(®) = § + 257 which is clearly greater than d(g*).

Now normalize ¢; to &1 and let ¢(x1) = eszf + qAb’(m) where ¢, # 0,5 > 2k + 1
and ¢ € M2¥2, Consider the tangent space at fo = £(y & %) + e a8,

TQBz = £2(y £ af) {yBo + £2(y £ %) B, } + [£2kat 7 (y £ 2¥) + se,a37YC.

We have mod TQ% :

vyt =0, (2.6)
yrt £a2* =0, (2.7)

and
2kt (y £ %) + seswit = 0. (2.8)

Multiply the equation (2.8) by w; to get

+2kyat + 2ka? 4 senf = 0. (2.9)

Substitute y=f from the equation (2.7) into the equation (2.9) to get 2] = 0. This
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means that there exist solutions for any term gt = fa! with [ > s.

Assign weights w, = 3 and w,, = 5. Then, gj has quasi degree d(g}) = 5. One
can find solutions for any monomial g} by taking By, By and C such that

ﬂ:Bo - 231 = 0, iiClB(] + 8:13131 + 2kC = 0,

4By + sega O = Bk,

Now comparing the quasi degree of the germ
(]5 = zﬁlxi}_lo:

with d(g}), we conclude that £(y &= z%)? + e,xf + 25(9;1) can be reduced to the form
+(y &+ 2%)? L 28 with s > 2k + 1.

These classes are the only simple classes. Other germs are either adjacent to
non simple classes or have codimension infinity. This completes the proof of the
classification theorem.

2.2 Adjacency of lower codimension classes

The construction of the table of adjacencies is based on Lemmas 2.1.3, 2.1.5 and the
proof of the theorem 2.1.6.

We describe first the adjacency of lower codimension classes for quasi boundary
when the critical points lie on the boundary.

Let f = fo(x1,y) + w(x1,y), where f5 is a quadratic form in y and @, and ¢ €
M3, . If f> is non-degenerate then f is contained in the class By @ &7 4 42,

However, if f is degenerate of corank 1 then f can be written in the form f =
+(a21 + az9)® + @21, 1)

If a; # 0 then f is quasi boundary equivalent to the germ f= +u? + @(y) with

@ e Mg Thus, we get the series of classes By @ +a? = y* with & > 3. Hence, we
obtain the following adjacent classes:
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By «— By « DBy «— By

If @y = 0 and ag # 0 then f is quasi boundary equivalent to a germ of the form
F=£y® + ybi(21) + da(1). Let

: 4
F= 4 +y(en? +egad + .. )+ dgad + i + ...

If ¢ # 0 then we get the class Fyg 1 y? £ af ~ £(y £ af)> £ af.

Note that the class By can be written as g{w1,y) = (a2 +by)? £y 3. Thus,
when a = 0, we get the class f53. This means that the class I3 is adjacent to the
class Bs.

If ¢3 =0, ca # 0 and ¢} # 0, then we distinguish the following:

If ¢) # £1c2, then F is quasi equivalent to the class Fhy : =y? ya? ~ 2y &
@2)? & 21. Thus, the class Fyy is adjacent to the class Fh3. On the other hand, the
class Iy, is adjacent to By as the class By can be written in the form g(z;,y) =
+(az, + by)? £ y* £ 2. Hence, when a = 0 we get the class Fy4. So, we get, up to

this stage , the following table of adjacent classes:

By, «— By < By « By «

T T
Foz « Fyy

If ¢j = &35, then F' is quasi equivalent to a germ of the form F= +(y L a?)+
¢(x1) with ¢ € M3 which is adjacent to the class Fhy. Thus, we get the series of
classes Iy, @ £(y & ¢3) + &7 with m > 5. Hence, we obtain the following adjacent
classes:

F2,4 — Fz"r_:, — Fg,ﬁ — F2’7 — ...

Note that the classes By, : £a3+y™ can be written in the form g(xq, y) = (e +
by)® £y™ £ a7, Hence, when a = 0 then, we obtain the classes Fp,, : (yda?)? £
which adjacent to B,,.
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Ifey=1cy=0, ¢35 0and ¢} # 0, then we obtain the class I3 4 : +y* Fyad -ty ~
+(y? £ 22)? £ x{ which is adjacent to the class Fy 4.

Ifdy = =0¢ =0, c; # 0and ¢ # 0, then we get the class Fz5 which
is adjacent to the class F34. On the the other hand, the class Fy5 has the form
+(y + a2 + bzd) £ 23. Thus, when a = 0, the we obtain the class Fz 5. This means
that the class F3 5 is adjacent to the class Fy5

Ifcy =c;=0=¢; =c¢, =0 and ¢3 # 0 but ¢ # 0, then follow the procedure of
the previous case when ¢ = 0, ¢z 5 0 and ¢ # 0.

Assume now that the second jet of f is zero then f is contained in the non-simple
class S5 : y® + af + ay’zy, where a € R. Clearly,

F273 N 85.

Therefore, the table of adjacencies of low dimension is given as follows:

By « By «— By + By < By «

T T T T

Fz,'a — F2,4 — F2,5 — F2,6 —
T T T T

S F3,4 A F3,5 — Fs,s —

T 1

Now if the critical points lie outside the boundary, then the classes B, are adjacent
to the classes A;_;. In fact, the classes By : &a? & y* can be written in the form
G = *(x1 +y)? £ y*. The germ G is adjacent to the germ G, = (1 + ¢ +y)2 Ly,
for sufliciently small . Note that G¢ has critical points outside the boundary and
quasi boundary equivalent to a germ contained in one of the series of classes Aj_;.
Hence, the full table of the adjacency of lower codimension classes for quasi boundary
singularities is shown in the table.
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Ay «— A «— Ay — Ay «— Ay «— A;

T T T T T
By, « By «— By +« Bs « By «
T T T T
Fog — Foy — By «— Fg
T ] i 1
Sy — F3,4 A Fs,s A Fs,ﬁ —
T T
Remarks:

1. The top row of the table of adjacencies consists of standard right singularities
outside the boundary.
2. Any germ f with corank of f; greater or equal 2 is non-simple. In particular, the
uni-modal (¢ € R) classes Sy : y3 + a3 + ay?z; and Eog: (422 + awims)? + 2t + 2y
are adjacent to I3 and I ¢ respectively.

2.3 Comparison of quasi boundary and standard

boundary singularities

From the definition of pseudo boundary equivalence, standard Arnolds boundary
equivalence (right action of diffeomorphisims preserving the boundary) implies quasi
boundary equivalence. So simple Arnolds boundary classes By : £22 = y*, where
k > 2, Cy: ay+a*, where k > 2 and Fy : £y? + 2° remain simple for quasi
classification, but some classes can merge together.

"The quasi boundary class By : 2% —y? has another equivalent form Cj : 2y (which
represents a single quasi boundary class containing all ordinary C}, boundary classes ).
So all By classes remain non-equivalent but all C} classes become equivalent to Ch.
The classes F},; have equivalent forms £y? & ™. In particular, Fyy : £y + 2°
coincides with Fy the ordinary boundary singularity class Fy. Other I3 classes
contain non-simple ordinary boundary singularities.
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2.4 The caustics and bifurcation diagrams of sim-

ple quasi boundary singularities

The quasi border bifurcation diagram of a function deformation germ F(w, A) de-
pending on parameters \ is the set of points in the base {\} consisting of several
strata. The first stratum W is the projection to the base {A} of the subset Xj in
the total space (w, A) given by the equations: F' = 0 and Z—g = 0. The other strata
W; are projections of subsets in Xy satisfying the extra equations which define the
border h(z) = 0. In other words, the first stratum W is the set of parameters which
correspond to the critical points of the functions F'(-, A} with zero critical value while
W; are the subsets of W, corresponding to critical points on the border.

The quasi border caustic of a function germ deformation F'(w, X) -+ Ag, which has
an additive constant )y as one of the parameters and satisfies F(O,j\) = (0, is the
subset of points in the reduced deformation base {’X} consisting of several strata.
The first stratum X is the image of the singular points of the first stratum of the
bifurcation diagram W, under the projection my to the reduced base which forgets
Ao. The other strata of the caustics J; are the images mo(W;).

In contrast to pseudo border equivalence we claim (and this is easy to prove
using techniques of section 1.3} that the versality theorem holds for the quasi border

equivalence, the versal deformation of a function germ f with respect to the quasi

m—1
border equivalence can be taken as the deformation F(2,A) = f(z) + > Aii(®)

where A = (Ag,..., Am_1) € (R™,0) and the germs ; at zero form a linear basis
of the local algebra Q = C,,/TQ;, where T'Qy is the quasi border tanget space at
the germ f. The proof of this versality theorem is exactly the same as the standard
proof of the versality for right equivalence. The tangent space to the quasi orbit
is a finitely generated module over the algebra of functions in main variables and
parameters. The complete details based on the application of Malgrange preparation

theorem, can be reproduced following the proof given in the paper [39].

The dimension u of the local algebra Q will be called the quasi border multiplicity.
It is convenient to choose o = 1 and ; vanishing at the base point fori =1,..., (u—
1). The space R™ is the base of the versal deformation, whereas the space R#~! =

(A1,..., Au_1) is the base of the reduced versal deformation.
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Here are some properties of quasi bifurcation diagrams for simple quasi boundary
classes. First note that all the quasi boundary singularities are reduced to Ay sin-
gularity with respect to the standard right equivalence, provided that the border is
forgotten. Hence the first component of the bifurcation diagram of a function germ
deformation F' is a product a generalized swallow tail and R” %, where n stands for
dimension of the base of the versal deformation.

Recall that the versal deformation of the Ay : £a*+1 + 37 4? singularity takes the
form

k-1
F(z,y) = 2" + ny + Z Nt

and the set oF oF
A:{()\Oa‘-':)\k_l) : 5—{;»:0,5-@-:0}

is called generalized swallow tail.

Proposition 2.4.1 The quasi boundary mini-versal deformations of the simple quasi
boundary classes are as follows:

1. By: $a2 + 4% + Ag + Ay,
2. B : e TANE Ef;ol At k>3,
8. Fim : F(y £ ab)? £ 2P + 702 hwdl + E;:& 1y 2<k<m.
Proof. For By classes, consider the tangent space to quasi boundary orbit at
flx1,y) = a2 & oF, where k > 2.
TQB; =z A+ ky* ' {yB +2,C}.

Then, we have mod T'By : « = 0 and y* = 0. Hence, the monomials
Ly, v% . ..,y*! form a basis of the local algebra Q = C.,,/TQBy.

For the Fm classes, let f(z1,y) = £(y £ 2¥)? £ 27*. Then we distinguish the
following cases:
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o If £ > m ~ 1, then f is quasi boundary equivalent to the germ g = &y? 4 a7

Note that g belongs to the class F,,_; . Consider the tangent space to the quasi

boundary orbit at ¢

TQB, = £2y {yBy + 27" ' B, } + 2] 'C.

Thus, mod TQB,: y* =0, and £7*"! = 0. Therefore, the monomials

2 =2 gpop—2
Ly ag, 02775y, g2, . .,y

form a basis of the local algebra Q = C,, ,/TQB,

o If 2k > m >k + 1, then f can take the form fz +y? + yat & 27 Take the

tangent space to the quasi boundary orbit at f

TQBy = [£kyay™ £ maP A + (£2y £af) {yB + 25C} .

Thus, we get the following relations mod T'QB 7

+2y* + yak =0,

1y,
+yzy = F5a,

and
Tkyatt £ mal ! = 0.

If we multiply the last equation by z;, we obtain

+kyzh £ mal = 0.
Substitute ya4 from the equation (2.11) in the equation (2.13) to get:

23:?" Lmal =0.

q:

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The equation (2.14) yields that: 27" = 0 and 22* = 0. Hence, y2¥ = 0 and 3? = 0.

Now, if we substiute £2kyz¥™" = Fma™ ! in the local algebra Q = C,, , /T By, then
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the monomials:

g 2 =2 a2 apopeli—1
1,1/1,.1,1,...,.1;1 sy YL1, YLy« - Yy

form a basis for Q.

o If m > 2k + 1, then consider the tangent space to the orbit at
f =y at) oy

TQB; = [#2kat  (y £ ab) L ma™ A+ 2(y £ af) {yB +25C}.

Then, we obtain the following relations mod TQB; :

+2kyat + 2k £ maTl =0, (2.15)
¥yt =0, (2.16)

and
yat = pa?t, (2.17)

If we multiply the equation (2.15) by w1, we get:

+£2kyat + 2ka? £ ma™ = 0. (2.18)

Substitute y¥ from the equation (2.17) in the equation (2.18), we see that 2™ =

If we substitute y* = Fyat and £2kyat~! = F2k2? F ma™ ! in the local
algebra @ = C,, ,/TQBy, then again the monomials:

m—2 1

e 2 / Ao e k=
1=~L1>“b1:-"7*(’1 VU YL, YU, e Y

form a basis for Q.

Thus the deformation I (1, y) = +(y & a%)2 2 + S70% Aah + Sohma iy is

3=0
a mini versal deformation for the classes F}).
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Remark: Notice that, the deformation H is quasi boundary equivalent to the
deformation

m—2

k-1 k-1
+(y £ 25?2 £ 2y Z ) & 2 Z pyaitE £ e Z At
=0 =0

m
It

1=0
k—1 ) m—2 )
= *(yEaf)+2y+a)d ] Ll + > Al
i=0

=0

2
k=1 ~
On the other hand, adding the terms A = (Z uj;c{) to H does not affect the
7=0

versality of H as g—il u=0- Hence, we get the following alternative form of the versal
deformation of the classes Fy, ,,:

k—1 m—2
Glar,y) =y +a} + ) pal) 227+ Al
7=0 i=0

The formulas of versal deformations listed in proposition 2.4.1 provide the explicit
description of simple bifurcation diagrams and caustics.

Before we give the precise description, we introduce the following.

Definition 2.4.1 The image of the mapping

. kil i
ah 5T Mt

z€R ke Zfi}z i ?
—_
()\,M)ERm;ﬂl=i€1+kz—3 A

[t

is called Morin stable mapping or generalized Whitney umbrella mapping,.

Example: The standard Whitney umbrella is the image of the mapping.
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22
Ve | @24

\ :

A

Proposition 2.4.2 1. The hypersurface component of the bifurcation diagram for
By, series is a product of generalized swallow tail and a line. The second component

is the mazimal smooth submanifold passing through the vertez of the generalized
swallow tail times a line. In particular, the bifurcation diagram of By in (Mg, A )-

plane is a smooth curve and a distinguished point on it. The bifurcation diagram

of By C R? is a cuspidal cylinder and a line in it which is tangent to the ridge.

2. The caustic of singularity By is a union of cylinder over generalized swallow tail
(with one-dimensional generator) and a smooth hypersurface having smooth (k —
3)-dimensional intersection with the first component. In particular, the By caustic
is the union of two tangent lines, for By this is a seimicubic cylinder and a plane
(the configuration is isomorphic to the diseriminant of the standard Cs boundary
singularity). See figures 2.1 and 2.2.

3. The caustic of Fy; singularity is a union of a cylinder over a generalized swal-
low tail of type A, and an image of Morin stable mapping (generalized Whitney
umbrella) being the set of common zeros of two polynomials of degree | and k.
In particular, the caustic of Foq is the union of Whitney umbrella which is the
second component, and a smooth tangent surface which is the coustic of the A,
singularity. See figure 2.3.

Proof.  Start with By singularity. Let F(zy,y,\) = £a? £ y* + ]21 Ay be its
versal deformation. Clearly, the versal deformation with respect to qual:iuequivalence
coincides with the versal deformation with respect to the standard right equivalence
with an extra parameter A\;_;. Thus, the first component of the bifurcation diagram

is a product of generalized swallow tail and a line.

Explicitly, solve simultaneously the equations % =32z =0, %—fj =0and I'=0.

Thus, one of the stratum is parametrized by the mapping:
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. Ao = =k — D)y* + Ay® + 2x3% 4+ -+ + (B — 2) Ap_1yt?

A\ A= FhyF = 2hay — BAgp? — - — (k — DAgp_1yF
P '2 — Ao
P ‘
k1 s

On the other hand, the special case which we preserve via quasi equivalences
occurs when the critical point lies on the boundary. Hence, we can again restrict
ourselves to the zero level set of the function. Thus, to get this stratum, we have
to comsider an extra equation y = 0. The union of these two strata (mind that
they have different dimensions and the second stratum is a subset of the first one)
form the required bifurcation diagram. Thus, the second stratum of the bifurcation
diagram is obtained by restricting the mapping ® to y = 0. This gives the space
A={(0,0,M, A3, ..., A1)}

The critical points of the projection of the first stratum is given by the equation

&2r
8y?

Hession(F) = 0 or equivalently by the equation = 0. Thus, in our case, the

critical points is given by the equation
+h(k — D)y* 2 + 20 + 6y + - + (kb — )k — D M1y® 2 =0
or equivalently, s = F3k(k — )y*~2 — 3Aqy — -+ — 1(k — 1)(k — 2)Ae_1y* 2.

Hence, the critical points of the projection are parametrized by the mapping:

No = 2k — D)(L = LE)F — Agys® + -+ 2k — 2)(3 = F)Aeoayh T\

Yy At = Ek(k — 2)y*t + 3y + -+ (B — D)k — 3) M1y 2
oo | P [ | e TG - DY = Bhey — e = 3= (k= DAyt
: A3
Ak—1 :
A1 /

This gives the ridge of the cylinder over the swallowtail which is clearly tangent
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to the space A.

'The caustic of By consist of two strata. The projection of the ridge along the Ay

axis gives a generalized swallowtail times a line which is parametrized as follows:

A= £k(k - 2)y" " + 30y + - 4 (k= Dk — 3) gyt

1
/\J Ag = :F%k(k' — Dyt —2My — - — %(k — Dk~ 2) Ayt
6 : .3 — Az
Ak :
! Ak-1

This is the first stratum of the caustic. The projection of the second stratum of
the bifurcation diagram along Ag-axis gives the space A = {(0, A2, ..., Aka1)}- the
second stratum of the caustic.

In particular, consider B, singularity. Let F(z1,y, A) = +2% £ 3% + Ao + A1y be
its versal deformation. Thus, one of the stratum of the bifurcation diagram is the
parabola Ay = %/\%. For the other strata, we have to consider an extra equation
y = 0. This gives the origin point in the parameter plane. The union of these
two strata forms the required bifurcation diagram. Note that they have different
dimensions 1 and 0 and the second component is a subset of the first one.

For the class By : uf = y°, consider the versal deformation F'(zy,y,\) = a2 -
y%+ Xo+ Ay + Ay®. Again, the bifurcation diagram consists of two strata. First, we
need to solve simultaneously the equations g—f = 42x =0, %—l; =432+ +20y =0
and /" = 0. Hence, one of the stratum is the cuspidal cylinder which is parametrized
by the mapping:

d . (y, )\2) = ()\0 = :[:2:1/3 -+ )\ng, AL = :F3'ZJ2 - 2)\23}, )\2)

The second stratum is obtained by substituting y = 0 in the previous mapping.
This gives the Ay axis in the parameter space which is tangent to the ridge.

The critical points of the projection (the ridge of the cylinder) are parametrized
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by the mapping;:

6 (y, A2) — (Mo = F9%, A\ = £39°%, N = F3y).

This ridge is tangent to Ay axis. Recall that the total bifurcation diagram is
cuspidal cylinder and a distinguished line in it. If we project this along Ap-axis then
the axis Ao remains a straight line but the ridge of the cylinder gives a curved line
(the parabola: A\; = £3y2, Ay = F3y). Hence, the total caustic of By class is a union
of two tangent lines. The general 3-dimensional sketch of the caustic is shown in the
Figure 2.1,

We pass now to the class By : 22 £ 4% Let F'(a1,y,)) = a2 £ 9% + o + My +
A2y? + Asy® be its miniversal deformation. Thus, the standard stratum is a cylinder

over the standard swallowtail which is parametrized by the mapping:
& (y, )\2, )\3) (/\0 :|:3'l -+ /\z'y + 2)\3J )\1 $4y3 — 2)\23} — 3)\3y2, }\2, )\3)

The second stratum is obtained by substituting y = 0 in the previous mapping.

This gives the A, — A3—plane in the parameter space which is tangent to the ridge.

The ridge of the cylinder is cuspidal cylinder which is parametrized by the map-
ping:

01 (y,As) = (Mo = F3y" — Ag, A = £8y% + 3Asy%, A2 = F6y° — 3Aay).
If we project the ridge along Ag-axis then we get the cuspidal cylinder:
01 (y,A3) = (A1 = £8y® + 3Agy?, Ay = F6y” — 3A3y).

The projection of the second stratum gives the plane \; = 0. The general 3-

dimensional sketch of the caustic is shown in Figure 2.2.

Consider Fj ., singularity. It is clear that F}, ,, is equivalent to the standard A,,_,
singularity with respect to the standard right equivalence . As its versal deformation
takes the form: (y +a%)? £ a7+ 372 Nzl + Z?;& 1927, the first stratum of the
bifurcation diagram of Fj ., classes (and hence the first stratum of the caustic) is a
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product of a generalized swallowtail with R* space.
Consider the alternative versal deformation of the form:

k-1 m—2
Flon,y, A p) = £y b+ Y pal)l? £al + Y hal.
i=0 i=0

Let A = a2 + ZJ O,ujsvjl and B = +a Z’“—z Ay, Then, Fx,y, A\ p) =
+(y+ A)* + B.

Thus, the second stratum of the caustics is given by the equations:

oF 8A 0B oF

81_:!:2( +A)a e =0 ,5—y=:l:2(y+A)=O and y=0.

These equations are equivalent to :

B oF
Pz =0 and c’;‘_y_A_O'

Thus, the second stratum can be given as the image of the following mapping

— Tk k=1 3
o = Faf — 30, My

r €R .

" ' AL = :F'm/bm -1 - :7;;3('3 + 1))\1'_._1(1311
I'= p= (i, gy pi—2) | = M*
N = (o, Aay -, i) "

In fact, I' is the Morin stable mapping (generalized Whitney umbrella).

In particular, consider the particular %3 class. Consider its miniversal deforma-
tion:
Fa,y,A) = 2% + 9% + Xo + Mz + Ay + sy,

The solution of the equations Z‘Z = aF = F' = 0 with respect to the four param-

2

eters gives the first stratum of the bifurcation diagram:

{()\) Ao = 251,? + y2 -+ }\33213/, A = —3z% — )\31}, Ao = —2y — )\3’23} . (219)



CHAPTER 2. QUASI BOUNDARY SINGULARITES 64

Now, we have to calculate the critical values of the mapping:

(2,9, As) = (223 + y% + sy, —32% — Aay, —2y — Aaz, As).

The Jacobi matrix is

6a? + Asy 2y + sz wy

J—= —06x —/\3 -y
-/\3 —2 —
0 0 1

The critical points are determined by the condition rank(J) < 2. This is the
same as having all its three order 2 minors equal to zero. Thus, the critical points
are the set A — 12z = 0. We can use )3 and y to parametrize the caustic. By setting
T o= %-, the critical values are the set:

AS A3 -3\ A3
{()\0,)\1,)\2,)\3)-)\0=@+J +—'l,)\1 144 —)\3'3],/\2 —2'y——1-2-}

Project this along Ag. Then, the first component of the caustic is a smooth
surface:

144 12

To get the second stratum of the bifurcation diagram, set y = 0 in the equation
(2.19). This gives:

4 )\3
{()\1, /\2,/\3) A= 3)‘ — Asl, Ag = —2y — “—}

{()\0, )\1, )\2,/\3) . )\0 = 2:123, )\1 = ——3332,/\2 = —/\33}} .

Thus, the second stratum of the caustic is Whitney Umbrella parametrized as

follows:

{()\1,)\2,/\3) : /\1 = H3ll}2, /\2 = fﬂ/\3.’L‘} .

The smooth surface (the first components) is tangent to Whitney Umbrella along
a smooth curved line parametrized by A; = 7 and Ag = 2 , where A3 € R.

The general sketch of Fy 5 caustics is shown in Figure2.3. ]
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Figure 2.2: The caustics of By.

Figure 2.3: The caustics of F3 3.



Chapter 3

Quasi corner singularites

3.1 The classification of simple classes

In this chapter the coordinates are as follows: R™ = {w = (x,y,2) : 2,y € R,z =
(21,. .., 2n-2) € R"?}. We consider germs of C* -smooth functions f : (R*, 0) — R
of the form f = f, + f* where f; is a quadratic form in w and f* € M3 equipped
with the corner I'; = {xy = 0}.

Recall that the quasi corner tangent space to an admissible deformation f; at the

origin takes the form

0 0 7] ' 5
1aC;, = {5 (am+ e+ L)+ S (hos G P,

n—2
0
N Z Jiy } ,
for arbitrary function germs h;, A;, B;, k; ¢ C,.

If the function germs base point is at a regular point of the cross I', outside
the intersection of the components, then the quasi corner equivalence coincides with
quasi boundary equivalence . Hence, the simple quasi corner classes in this case are
the simple quasi boundary classes: Fy,, : =(y £af)> £, 1<k <m. Mind that

the classes By, are included in Fj,,, as Fy .

The remaining case of the function germ having a critical base point at the

66
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intersection of the components is the main subject of the present chapter.

We now specialise properties of quasi border equivalence for the case of quasi

carner singularities in the new coordinates.

Denote by f*(2) = f|s=y=0, the restriction of function f to the z coordinates
subspace. Denote by 7* the rank of the second differential d2f* at the origin and set
c=1n—2—71"

Lemma 3.1.1 (Stabilization) The function germ f(z,vy, 2) is quasi corner equivalent

to Z +22+g(2,y, 2), where 2 € R® and g* € M2. For quasi corner equivalent germs

I, the respective reduced germs g are quasi corner equivalent.

Lemma 3.1.2 There is a non-negative integer s < 1 — r* such that the function

48 ~
germ f(w,y, z) is quasi corner equivalent to Y. +z?+ f(x,y, Z), where Z € R and
i=1

3
f is a sum of a function germ from M,z and a quadratic form in @ and y only.
For quasi corner equivalent f germs, the respective reduced germs f are guasi corner
equivalent.

Lemmas 3.1.1 and 3.1.2 imply the following preliminary classification result.

Lemma 3.1.3 Let k = n — r be the corank of the second differential d3f at the
origin.

1. If k=0, then f is quasi corner equivalent to +2° +y? + Z +27.

f=

n—2
2. If k =1, then f is quasi corner equivalent to either Z(izf) + f(z,y) with
i=1
7n—2
rank d2 f(L ¥)) =1 or to Z (£23) —Jrf(J.', y,z1) £ a? £+ y? with f(¢ U,21) €
=2
Mi WeEL”

3. If k > 2, then [ is non-simple.
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Proof. If k=0, then n = r. Lemma 3.1.2 yields that there is a non-negative
number s such that ¢ < r —v* = n — ¢*. Consider all possible choices for s. If
s=mn—71"0ors=mn—71"then c—s = —2 or ¢ — s = —1, respectively. So these
choices are not acceptable. Next, if s = n — 7* — 2, then ¢ — s = 0. Hence fis
quasi corner equivalent to the germ [ = S22+ fola,y) + flz, y) where f is a
non-degenerate quadratic form and fe M2 . By quasi fixed equivalence, the germ

.y’

~ n—2
F'is quasi corner equivalent to the simple germ: +a? +y? + 3 422,
i=1

Let k =n—7r = 1. Then, the total rank r = n— 1. Thus, there is s such that s <
r—r* =n—1—r* Take s = n—1—r*. Then ¢—s = n—2—71*—n+1+r* = —1. So this

choice is not possible. Take s = n—2—7r*. Then c—s = n—2—1r*—n+2+7r* = 0. So f

n—2

is quasi corner equivalent to Z(:I:z@2 )+f(a}, y). Note that the total rank r = n—1 and
n-—2 = N

the rank of Z(:l:zf) is n 2. Hence rank d2 f(z,y) = 1. Take s = n—3 —r*. Then,
—
' n—3

¢~ s = 1. Thus, f is quasi corner equivalent to Z(iz?) + [1(@, ¥, 2ng) + fola,y)

=1

where fy € M3, . and fy is & quadratic form in z,y. Note that the rank of
n—3

Z(:i:zf) is n — 3. This means that rank d2 fo(z,y) is 2. Hence, f, can be reduced
=1

to Fa? £ y2

Consider s = 1 —4 —¢*. Then ¢ — s = 2 and f is quasi corner equivalent to

PN

..
(£27) + J1(2, Y, 23, Znz) + fo(2,y) where f1 € M, .., Note again that the
i=1

n—4

rank of Z(:I:zf‘) is n — 4. Hence rank d2fs(x,y) is 3. However, this is not true as
i=1
rank d3 fo(,y) < 2. This is not possible either.
Finally, let £ > 2. Then, Lemma 3.1.2 and similar argument as above shows that

the function germ f is quasi corner equivalent to one of the following germs:

LYt 222 + fale,y) + Fl21, 20, ..., 2, 2,y) , where fp is a non-degenerate
quadratic form and f € M

21922y 00 2T Y or

2. Z?;kz +224 fo(x, y)+f(z1, 22y .0y 261, 2,Y) , where fy is a degenerate quadratic
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form of rank one and f € M., ., . 21 2y O
n—2 ra
3. 3 i Eal +f(z1,2,'2, oy Bk—2,%,Y) , where f € My, oy o by

These reduced germs are non-simple by the following Lemma. 1

Lemma 3.1.4 The function germs of the form:

1. Fi(m,y,2) =307 42 + (2, 2, ... , Zk—2, T, Y) , where fe M.,

22500002l — 2, T,

2. Fy(z,y,2) = Z’Z_Qiz + falz,y) +f(z1,z2, CyZh-1,8,Y) , where fy is a de-
generate quadratic form of rank one and f €M o zi1 2

8. Fy(z,y,2) = S, £27 +f2(7: V) + fz1, 20, .., 2,2, y) , where fa is a non-
degenerate quadratic form and f € M,

21322500092 s T Y

are non simple, if k > 2.

Proof.  Consider the germ Fj. Then, the tangent space to the orbit at }Vtakes the
form:

k=2 o =
R af . of / f
TQCF = ;BZAQ-E—a {B1+QBZ+5‘1 }
0f o 0, OF
M yCr+ o —=Ch + == 2 —=Cs}.

The cubic terms in TQC’~ are obtained from Zi" 12 g: A; (Ai = aox + by +
Zf__lz a;z) 61:1:31 and & 3 JGl (ao, bo, a;, B1,Cy € R) which form a subspace of
dimension k(k—2)+2. This dimension is less than the M = Mﬁl— the dimension

of all homogeneous quadraic term terms in z;, x and .

The function germ Fj can be written in the form Fy(z,y,2) = S 422 +

(azx + by)? + f(zl,zg, oo, 2p-1,%,y). Thus, the germ Fj is adjacent to the germ
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Fo(, 025 1+, 2) = Y02 22 4-(az + b(0zk-1 + 1))+ F (21, 22, . - -, 261, T, y) for sut-
ficiently small §. Stabilization Lemma 3.1.1 yields that Fy(x, 02;_; +y, z) is quasi cor-

~

. -2

ner equivalent to the germ Fy(w,y,2) = > o) | £27 + f(z1,22, ..., 2k—2, ¢, y) where
ry 3 . : ;

JEeEM . . sey Thegerm I is non-simple.

Similarly, the function germ F3 can be written in the form F; = Z?;k2+1 +22 +
@?+y*+ f(z1, 22, - - -, 2k, ¢, y). The germ Fj is adjacent to the germ Fy(dz;+x,y, 2) =
Sy 2 (S +&)2dy?+ [ (21, 29, . . . , 21, %, y) for sufficiently small 8. Stabilization
Lemma shows that F3(d2;+2,y, 2} is quasi corner equivalent to the germ (2, y, 2) =

22+ folw, y)+ (21, 22, - - ., 251, &, ), Where f; is a degenerate quadratic form
of rank 1 and fe M3 . The germ F3 is non-simple.

Lemma 3.1.5 1. Let the function germ f(z,y) with a critical point at the origin
has the quadratic form fo of rank 1. Then [ is quasi corner equivalent to either
H(xy)?+0(y) or up to permutation of v and y to £a?+wxg;(y) + g2(y) where
©,92 € M3 and gy € M2 .

~

2. The germ +a? = y* + f(x,y, z1) which is described in Lemma (8.1.8) is quasi
corner equivalent to the germ £y +ahi(21) +yhe(z1)+hs(z1) with ha, he €
le ,hg € Mﬁl and fE M3

T,Y,21 "

Proof. 1) By an appropriate scaling of the coordinates we can reduce the quadratic
part to either +(z + y)? or +2? (permuting if needed z and y). We treat the two
cases separately.

i. Consider a deformation
H(z,y, ) = (2 +9)? + o(z,y) + A

of functions in & with parameters y and A. We shall prove that these deformations
for any ¢ are quasi corner equivalent. Take a homotopy Hi(x,y, A) = £(x = y)? +
to(x, y) + X between H(z,y, A) and Ho(x,y, A) = (¢ £y)? -+ A, we prove that H; are

all quasi corner equivalent as deformations.
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For Hy(x,y, A) = (z+y)* +to(z, y) + A we seek 8, such that H;o0; = Hy with a
family of admissible diffeomorphisms 0; : (,y, A) = (F(2, ¥, A, 1), Ty, A £), Ay, A, t)).

Th homological equation takes the form

(")Ht aHt 8Ht HH,: + M \
—ofry) = =t = 28 [ , g il ; ’
(e, y) 50 5 (La,—l— 6xb+ By c)+ By (ya + 5 + 8yc>+/\

for smooth functions a, b, ¢, a*, b*, ¢* and .
Y H ¥ 3

We want solve the previous equation for given (x,y, ). Note that § depends on
parametres ¢y and A only. Thus, we should set b* = ¢* = 0 and mind that ¢* € C, .
Now and try to find a, b, a*, ¢ and X where ) = %. Therefore, it is sufficient to solve:

—p(z,y) = [E2(xxy) + t%zg} {:ca + [F2(zxy) + t—]b + [+2(x £ y) + t—a—]c}

+ [E2(xEy)+ tg—;j] {ya*} + A (%)

We shall use Malgrange preparation theorem. Let P = C, ;¢ and consider the
mapping

G:((U,y,/\,t) = (91,g2=93>94»95)

— (2t ) + 122

001, Lea(a ) + 150 (220 1) + 155], A, 1,0)

Let I be the ideal generated by components of the mapping G. That is IP =
g1hy + gaha -+ Ahs + thy + yhs for some hy, ho, 3, ha, hs € P. It follows that P/JIP =
{ev1 + 2z} or equivalently P/IP = {ay + (2{(x -y) + t%;‘)ﬂfg} with ay ,an € R.

Thus by Malgrange preparation theorem we get P = Cg{1,z}. So for any P € P
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we have

0
P = lﬁl (gl) g2, )\7 t) TJ) + [:f:2([l} + 2/) + t'g?g] -52(91) go, A) ta y)
= glA(gla g2, /\a t} y) + 923(91, g2, /\a ty y) + C()‘a ta y) + glA\(gl) ga, /\> ta y)a:
~ ~ 0
+ 92891, 92, M 1 y)w + y[E2(w £ y) + tg—‘;]c(/\, ) + e £ ) + 151D

~ ~ ~ 7]
= g1A+gB+C\ty) +ylE2(x +y) + t%‘g]C()\, ty)+[E2(xLy) + ta—zj]D(t, A)

If we replace ¢ in (*) by P, then the homological equation becomes solvable by
takinga = A, b= B, \ = C, a* = C and ¢ = 0. Note here that w € M3, does not
depend on ¢ and A. So we can assume that D(t, \) = 0.

Thus we have shown that H, is quasi corner equivalent to Hy.

The restriction of 8; to the subspace A = 0 provides a quasi corner equivalence
of Hy with the family Hy + A(y) for some function A.

ii. The proof of the second claim is similar to the previous argument. Consider
the deformations Fy = 2% + Mz + Xy and F = £2? + ¢(x,y) + Az + Ay which
depend on three parameters A, Ay and y, but z is considered as a variable.

We take the family of deformations F; = Fy + tw(x,y) with ¢ € [0, 1] and show
that all F} are quasi corner equivalent as deformations.

Thus, we consider F; o 0; = Fy with
Oy : (*/l">1 ’)‘13 )‘2> t) — (X(a’? Y, /\1, )\2> t), f}(y, /\1, Az, t)’ /"\’l(ya )\1) /\Za t)) KQ(% )‘17 )\2, t))

We solve the homological equation

s OF oF, 0F, . 0F _ ., OF. , OF, o
T = —{7 — i oo * b* & ‘)\ /\
Y e(z,y) o {za+ 8$b+ By © + 3y {va R +——ayc FzAr -+ A,

where \; = %,i = 1,2 and a,b,¢,a*, b* and ¢* are smooth functions. We want to

solve the previous equation for given ¢(z,y). Thus, weset b=c=0"=0*=¢" =0
and try to solve —8Lt = (22 4 ¢22 + \){za} + z; + Ao
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Let P = Cy a0, Consider the mapping

G: (Cl?,’l ,)\1,/\2,t) — (iQ(E +t%—£— + /\1)[1}, )\1,)\2,@/,1;).

Then P/IP = C,/{2?} = {1 + sz} with oy, @z € R. Thus by Malgrange

preparation theorem we get for any P € P

P = 1~h1(g1>/\1) /\Z)yat>+mh2(gl)/\la)\2ay)t)
= 9151(91,)\1, A2, Y, t) +7iz()\1, Az, ¥, t) '*‘33/];3()\1’ A2, U, 1),

where gy = (22 + t%‘f + M)w.

Thus, the previous homological equation is solvable by replacing ¢ by P and
taking a = 751, N = 752 and A = 753.

The restriction of ¢; to the subspace A\; = Ao = 0 provides a quasi corner equiv-
alence of H; with the family =% + wA;(y) + Ay(y) for some functions A; and A,.

2) Take the deformations [y = #22 & y? + Qa(z, ¥, 21) + A + yds + A3 and
Fy = da® £ y* + 2\ + yAs + A3 , where ¢ and y are considered as variables but

21, A1, Az and A3 as parameters.

Construct the homotopy F; = %42 & y% + tQs(w, v, 21) + A + yAg + A3 joining
Iy and F, with ¢ € [0,1]. We shall prove that all F; are quasi corner equivalent. Let
A= (/\la /\2) )\3)

Let us consider F; o 0, = I, where 6, are admissible and takes the form

O : (2,9, 21, \, ) X’(m,uzl,)x,t),?(xﬂ,zl,)\,t),f(zl,/\,t),
Kl(zla/\at)’KZ(zlaA)t)Jx3(ZlaA)t)'

We need now to solve the homological equation

OF 6Ft 8Ft oF; ., 8Ft ,}+8F

oF;
—Q(&, Yy, z1) = a—;{wa+ B+ }+ +—/3 + ——Atwhi+Agy+As,

where A; = %Ati,z' =1,2,3.
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Let P = G,z ,2,¢ and take the mapping:

G:{x,y, 21, A\ t) > ((iZ:v-i—th

S M), (£2y + 129 A2)y, 21, A, t).

Ay

5}
G:(z,y,z1, A t) ((:l:2:1; + t%% + A)w, (£2y + t«;;} - Ao )y, 21, At

09 v +129
(20 + b+ M) (d2y + 5 " )\2)) .

Thus P/IP = C,,/{2% y*} = R{1,2,y}. Here I is the ideal generated by the
components of the mapping G.

Hence, according to Malgrange preparation theorem we get P = Cg{1,2,y}.
Thus for P e P

P = -hrl(glayhzly /\,t)+$H2(g1,gz,Z1,)\, t)) +yH3(91,92,21,)\,t)
= 91—7{41(!/1,9’2, 21, /\a t) + QZE;(QD 92, 21, /\: t) =+ 15}13(Zla Aa t) +
+ yi}(zla)‘at)+93E5(91a92:21>)‘7t)+E(zla)‘)’

where g = (£2z + tg—f + M)z, go = (+2y + t%% + Ao}y and g3 = (F2z -+ t%% +
An)(£2y + 152 + Ng).

Therefore, the homological equation is solvable by setting o = Iq:l, o = ﬁ;, ;\1 =
Hydo=Hy,As=Hy ,B=v=+=A=0and ' = H.

The restriction of 6; to the subspace Ay = Ay = A3 = 0 provides a quasi corner
equivalence of F with the family a2 + y? 4+ xA1(21) + yAa(21) + As(z1) for some
functions Aj, Ay and As.

Theorem 3.1.6 Let f : (R*0) — R be a simple germ with respect to the quasi
corner equivalence. Then the following is true:
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o If fo is a non-degenerate form, then [ is quast corner equivalent to the Morse

n—2
function By : &2 £ y? + 37 422,
i=1

1=

o If fo is a degenerate form of corank 1 then [ is stably quasi corner equivalent

to one of the following simple classes:
1. By itz Ly £y™, m>3, m + 1
2. Frm 2@ Ly*)2Ly™, m>k>2, k+m;
8 Hupmnge : E(w £ 20 £ (y £ 20)? £ 2f, where k>n>m,>2 m-+nt+k—1.
The orbit codimension in the space of germs is shown in the right column.

Remark: Any germ f with corank of fp being greater or equal 2 is non-simple.
Any germ of corank 1 either is simple (and hence is quasi corner equivalent to one
of the germs stated in the theorem} or belongs to a subset of infinite codimenesion
in the space of all germs.

Proof of Theorem 3.1.6.

Lemma. 3.1.4 implies that we need to consider germs of the forms stated in Lemma,
3.1.5 to classify possible simple classes. So start with function germ of the form:
H(z,y) = £(z £ y)* + o(y) with ¢(y) € M3 Assume that w(y) = axy® + G(y),
where ay # 0 and @(y) € MEH. Let Hy(z,y) = (2 +y)> + axy*. Consider the
tangent space of the quasi corner orbit at Hp.

TQCy, = £2(z +y) {zdo + yA1} + [£2(z £ y) + kapy* ] {yBo + 2B} .
We have mod T'QC,
+etyy=0 (3.1)

Also,
+2(w £ y)y + kary* = 0. (3.2)

Multiply the equation (3.2) by y to obtain
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+2(x + y)y + kayy® =0. (3.3)

If we substitute (3.1) in (3.3) then we get y* = 0. This yields the existence of
solutions of the equations for any term ¢* = b,y® with & > k. In particular, one can
find solution for g* by setting Ag = B; = 0 and A; = —By = —22=y*~*. Assign

>
8

weights wy = w, = %. Then, g* has quasi degree d(g*) = §. Note if s > k then
Ay, By € M,,. The germ & = sb,y°By has quasi degree greater than d(g*) when
s > k. Hence, by Lemma (1.3.5), we conclude that H is quasi corner equivalent to
the germ H,. Note that there are solutions for the term ¢* = azy*. Hence the class

is simple. Rescaling a; to 21 we get the classes By, : &=(z £ y)? & y™ with m > 3.
Now consider the germ of the form
Fi(z,y) = £2® + 201 (y) + 02(v), (3.4)
where @1 € M2 and 3 € M3, Let 1(y) = axy* + $1(y) with ax #£ 0,k > 2,31 €
MEFL Let @a(y) = bmy™ + @oy) with by, # 0,m > 3,3, € ML
We distinguish the following cases:

1. If £ > m — 1 then the germ F} is quasi corner equivalent to the germ éo =
+22 4 y™. To prove this claim, consider the tangent space to the quasi corner orbit
at Fp = d=2? + b,,y™ which takes the form:

TQCr, = £22 {wA* +y™'C} +mbpy™ ™ {y A" + 2} .

For any term gi = esaxy® with s > k, set A" = A* = B = 0 and take C =
e,,,ys—m—l-l
e .

For any term 95 = dsy® with s > m, set A* =C = B =0 and take A* = %ﬁys_m.
Note that A* € M, when s > m.

Assign weights w, = § and w, = L. Then, g{ has quasi degree d(g}) = § + <.
Moreover, the germ

by = e y* (Y™ 10 + se,xy®TI0) = (esy® ™ + selay® 1O,
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where C is as above, has quasi degree d(®) greater than d(gi).

Similarly, g3 has quasi degree d(g3) = 2 and the germ

By = sdq1 s~1(,y;1':k) _ Sdg'ys;ll*,
where A* is as above, has quasi degree d(®s) greater than d(g}).

Thus, Lemma 1.3.5 shows that F} is quasi corner equivalent to the germ F, =
+4? + b,y™. Moreover, Iy is simple as there are solutions for the term b,,y™.
Normalize by, to £1 to get the equivalent germ CN}'O = 422+ y™, m > 3. Note that
the germ Gy is quasi corner equivalent to the germ ==a? = 2ay™—1 & y2(m—1 £ ym —
H(x £y L y™,

2. If m > k+1 and Fa? + 4b,, # 0 when m = 2k, then [/ is quasi corner
equivalent to the germ Go = a2 & ay* £+ y™. To prove this claim consider the
tangent space to the quasi corner orbit at Iy = 22 + arzy® + bny™.

TQCR, = (£22 + awy®) {z A" + y* B} + (karey* ™" + mbny™ ") {yﬁ* + xﬁ} .

We have mod T'QC:

+22% + arzy* =0, (3.5)
2yt = q:%yz", (3.6)

and
kazzy® + mbmy™ = 0. (3.7)

If we substitute xy* from the equation (3.6) in the equation {(3.7), we get:
kai o,
F5ry™ + mbny™ =0, (3.8)
The last relation yields that y?* = 0 and y™ = 0. Hence : ay® = 0 and 2®> = 0.

This implies the existence for solutions for any term of the form ¢g; = e,ay® with
s >k and g = djy* with 1 > m.
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In particular, one can set A* = B = 0 and take A* and B such that:

g + g5 = (£2uy* + ary®) B + (karzy® + mbpy™) A*

or, equivalently

g; + 95 = [E20" B + kawy* A7 + [ay® B + mbyy™ A,

Assume that 2k > m (similar argument holds when 2k < m).

~

Thus, the solution for any term ¢i can be found by setting A* = B = 0 and
taking A* and B such that

T Ok

2% —
= mp
Mbm,

y

and

esy* "
ka? N
492 — .__Ly2k m

M

B =

Similarly, one can find solutions for any term g} by setting A* = B =0 and
taking A* and B such that

o E

A* B

—kak ’

and

dlyl—m

= EEzmblﬂ. 2k—m
o T OkY

B

Now assign weights w, = % and wy, = ﬁ Then the germ g7 has quasi degree
d(g1) = 3 + =. The germ

By = esy’ [y B + eay’] + seqwy® T [y A']

has quasi degree greater than d(g}) when s > k.
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On the other hand, g5 has d{g*) = 5. The quasi degree of germ
Py = Ly [y A'),

is greater than d(g3) for [ > m.

Lemma 1.3.5 shows that F is quasi corner equivalent to Fy. If we normalize ay,
and b,, to &1 then we get the equivalent germ Go = %22 & 2y* 4 y™. Note that the
germ Gy is quasi corner equivalent to the germ Za?:2wy? Ly y™ = (wdy*)2£y™.

Note that if m = 2k then similar calculations show that Fj is quasi corner equiv-
alent to the germ Go = 22 + zy*.

3. If m > k+1,m= 2k and Fa? + 4b,, = 0, then the function germ F takes
the form:

1 . ~
Fi(z,y) = (£ iaky'”)Q + z1(y) + Pa(y),

where 1 € M and @ € M. Similar argument to proof of the first
statement of Lemma (3.1.5) ( or using Lemma 1.3.5) shows that F} is quasi corner
equivalent to the germ F = (& y*)? + ¢(y), where ¢ € MEFHL,

Let g’/; = asy® + h(y) where oy # 0,8 > 2k -+ 1 and h € Mgk“. Then, again
similar argument to proof of the first statement in the present theorem proves that
Fis quasi corner equivalent to the germ (x4 y*)? £ y°.

Finally, consider the function germ Fy = ==a? + y* + xhi(z1) + yho{z1) + ha(z1).
Let

By = 4a? 4 y? + amaz™ + w01 (21) + bayzl + ypa(21) + crzf + ws(21),
with an, # 0,m > 2,b, # 0,n > 2,¢;, # 0 and k£ > 3. Suppose that n > m (Up to

the permutation of « and y, if needed) . Then, we distinguish the following cases:

DImmn>k—1,nm>2andk > 3, then, I} is quasi corner equivalent to
the germ Go = 2% £ 32 & 2. To see this, consider the tangent space to the quasi
corner orbit Fy = 42?4 9% + ¢ 28,
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TQC%=xm{xA+yB}im4ﬁﬁ+w§}+k%ﬁ40'

Then, one can find solutions for any term ¢ = a2t with [ > m, by setting:

A=B=A=B=0 and C = —gzlk+l,
k’Ck

Similarly, one can find solutions for any term g5 = Gsy2zf with s > n, by setting:
A=B:A~=§=Oand0::&yzf_k+l.
]\?Ck
Also, for any term g5 = 7,2} with p > k, one can set:

A=B:§=§=Oand0=1t—zf"k+l.
k‘Ck
Assign weights w, = w, = £ adn w,, = % Then, d(g7) = %-!— % and the germ
®; = loywzi71C has quasi degree greater than d(g?). Similarly, d(g}) = L+£ and the
germ ¢y = sf,yz; 'C has quasi degree greater than d(gs). For gs, we have d(g}) = L
and C' € M2 . The germ ¢ = Py~ C has quasi degree greater than d(g3).
Thus by lemma 1.3.5, we see that [y is quasi corner equivalent to the germ Fj.

Rescaling ¢, to &1, we get the classes &2 & y? & 2% which has an alternative form
(w22 4 (y 4 2F )2 4 b

2)Ifk>m+1,n>k—1and Fa? + 4c; # 0 when 2m = k, then the function
germ Fj is quasi corner equivalent to the germ Gy = a2 £ 3% & 227 £ 28, To see

this, consider the tangent space at Fy = +2? & y% + @22 + ¢}

TQCr = (£22+ anz) {xdo + (£22 + an2]") AL + yAs}
+2y {yBo + (£22 + amz) By + yBa} -+ (Manmxz™ ! + ka2t 1)Cy.

Assign weights w, = w, = & and w;, = L. For any term of the form g} = djz2!
with | > m, there are solutions for the homological equation with respect to Iy by
setting Ay = By = B; = By = 0 and taking Ap, A; and C such that
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+A,+ 24, =0, kckz{“l(}’l + afnzZ"‘Al = (), Z = dlzi"m*"l,

where
A= Um 1 Ag + 4CLleA1 +- 'm,umC'l.

Note that Ag, A;,C) € M, .. Now we have the germ

¢ = dizf[wdo + (£20 + amel) A + izl Ay] + (220 + a2 [dizt Ay + lda2l 1O,
1 1 1

For any term of the form ¢ = e,yz$ with s > k — 1, there are solutions for the
homological equation with respect to Fy by setting Ay = By = B, = By = 0 and
taking Ag, 4; and C] such that

e :
amzlAg + 46Lm21A1 ~+ mumCl = 0, :l:Ao - 2A1 = 0, Cl = ﬁ"yzf_k+1.
%
Note that g5 belongs to TQCE, up to higher quasi degree term. That is g§ =
a2, ™Ay + keyziT'Ch. Also, note that and Ay, A;,Cy € M, ... Now we have the
germ $y = se, 25710,

Finally for any term g5 = e;2} for ¢ > k then set As = By = B; = By, = 0 and
take Ag, A; and C; such that such that
€;

mamCy £ 4A) + @21 do =0, 240+ A4;=0, Cy= _‘i‘;c_z;‘—k—l—l.
Ch

Note here also that Ay, Ay, C1M,;,. Now we have the germ @3 = de;zi1Cy.

Comparing the quasi degree of ¢, ®y and ¢3 with the quasi degree of g%, g5 and
93, respectively we conclude that F' is quasi corner equivalent to the germ Fy which
can be written in the form (2 & 27*)? & (y & 25™1)2 & 2% after rescaling a., and ¢,
to £1.

3)Ifk=2m,n>k—1(son>2m—1)and Fa2, +4¢; = 0, then Fy takes the
form

Iy = 2y & (2 + 22 + 21 (1) + byl + yoa(z1) + s(21),

where @ = ®3am, 1 € MT™ 0, € MZ and @3 € M2 Let 3(2)) = .25 +

21 1
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Pa(z1) where s > 2m -+ 1 and @3 € M**'. Consider the germ Fy = £3? & (z +
@z)? + byl + e,25. Then the quasi corner tangent space to the orbit at Fy takes

the form:

TQCH = %2(x+3e) {wdo -+ [£2(x + T As + (£2y + bu2™) Ao}
+ (F2y + bp2){yBo + [F2(x + @2{")| By + (£2y + b,27) Be}
+ [ 2620w T F nbyyel ! + seszi T Cy.

Set A; = B; = 0 and consider the subspace

O = 2¥(£24p+44;) + 228Gz Ay £ 221 Ap & 2am Y]
Y* (=280 + 4By) + y2t nbnCy = dbpzy By % 2 By
+ [4@%23m Ay + b22" By + se.zi1C).

Then any term of the form gi = dyxz2} with [ > m can be obtained from the

subspace ® by setting:

2
Ag = F24A, By=F2B;, Ci= —:%2132,
2s€e dyzi—m
= [p22n s s—2m 1
[b " m 17 Zf ]’ BQ ~A:F4Eim’
a n

where A = 022]"*™ o 228 ;2=2m  Note that if | > m, then Ay, Ay, By, By € M.,

and Cy € M2 . Now the respective germ takes the form:

by = dit[zAg + 2 A + (x4 G2 2 Ay + ldi2t1Cy.

Similar argument can be carried out for any term of the form g5 = ayz¥ where
k > n or of the form g§ = Bz where k£ > s. Comparing the quasi degrees of the
germs g; and the respective germs ®;, i = 1, 2, 3 with respect to weights w, = w, = %
and w,, = 2171, we conclude that the germ Fj is quasi corner equivalent to the

gorm F = 4y? & (2 & 27)? + y22 + 25, Note that F can be written in the form
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(x££ 2" £ (y = 27)% & 25

A k>n+1>m+1and :{:m“’“ F "b” + ke, # 0 when 2m = 2n = k, then,
the germ [} is quasi corner equivalent to Lhe germ Fy = £ £y? £ 2™ L ya? £ 25
To prove this claim, consider the tangent space to the quasi corner orbit at Fy =
22 92 + am2] + byl + cpzh

TQCR = (22 + ame"){w Ao + (22 4 am2l") AL + (£2y + by27) Az}
+ (2 + b2 ) {yBo + (£22 + am2]") By + (£2y + by27) Ba}
+

(Tamaz™ ™t + bzt 4 ket 1) CL.
Set Ay = B; = 0 and consider the subspace
Q= 2?[£2A0 + 4 A1) + 227" amz1 Ao £ damz1 Ay + manCy]

4"y2[:{:2B0 - 432] + JZ’ll 1[bn21 BO + 4an] B2 -+ nanl]
Hlherb 10y + a2 22 Ay + D227 By)
Thus,the term g7 = e,z is obtained from 2 by choosing Ay, A1, By, Bs and C}
which satisfy the following relations:

2
Ag = F2A,, By=F2B,;, (= q:—lez,

2key,
T i By + a2 i AL+ 0223 By = 0,

and

Mam

:I:Za,mAl BQ = €527 23 ™,

Note that if s > m then Ay, A;, By, B2 € M., and C; € MZ..

Assign weights w, = w, = 3

and w,, = % Then the respective germ takes the

form

By = se,wzy IOy + ez [wdp + (£22 + am2]) A1) + (£22 + am2™)e 2 A;.
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84
By similar argument we can show that any term of the form g5 = d;y2! is obtained
from .

Finally, let g5 = é,2; where s > k. Choose Ay, A1, By, By and C) such that

2
Ao = F24,, By=7F2B, ,Ci= :F?lez, A= ﬁBz
and

2key, ma
~ i,_*_ m Em_l_b2 71]32

Note that if s > m then Ao,Al,BO,BQ € M., and C; € M2, The respective
germ takes the form

réazf = [:F

(1)3 = Ses 101

Comparing the quasi degrees d(®;) with d(gf), ¢ = 1,2, 3, we conclude that F; is
quasi corner equivalent to the germ Fy = 22 & y® & 22 + y2? & zF which can be
written in an alternative form as &=(x £ 27*)? & (y & 27)? + 24

5) If 2 = 2n = k and =7%h

Dom Fl " + ke, = 0, then, the function germ F; can
be written as

a ba,

= +(x + —~2~’1z{”)2 (z £ —z >+ @i (21) + yea(z1) + ws(z1),
where @1, 02 € M7 and 3 € M2 Let G, = £%2, b = =+ and consider

Fy = +(2 + Upnz)? & (4b,,27)2. Then the tangent space at Fy takes the form

TQCr = 2w +inal") {wdo £ 2 +Ena")As £ 2y +5nal") 4o |
2y + B ") {yBo = 20+ Tn") By £ 2y + b') Bo

(2T 2 @ + G2 & 2mbp 2]

+

+ (y + bmzlz)]O
There are 6 relations mod TQCr,:
B2+ Gz =0, w2l +an2i™ =0,

y? + bsz?‘ =0, yz"+ bmzf’” =0,
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(9:+'Eimz{”)(y+'vmz{”) =0 and [:I:Zmﬁmz{”_l(9;+5mz{")i2mgmz1"‘1(y+’5mz{”)] = 0.
These relations yield that Cy,y.,/TQCr = R{l,2,23,...}. This means that

there are solutions for any term of the form gf = e,x2{ or of the form g = dyz*

where s,1 > mn (some terms belong to TQCH, up to terms of higher quasi degree).

In particular, consider gi (similar argument holds for the any term g%) and take
Ag, Ay such that

48 2i™ Ay + g} = 2 (£2A0 + 4A1) + 20,y27 (£ Ao + 4A1) + 4822 Ay — 43,20 A,

Thus we need to set Ay = F=2{™™ and A; = F;A4o. Note that gj € TQCR, up
to the term 44,,2¥™A; of higher quasi degree. Also note that Ao, 4; € M, when
S >m.

Assign weights w, = w, = % and w,, = 217 Then g7 has quasi degree d(g;) =

%— + 5>, Consider the germ

B = esz7[wAo + €2/ A1 = 2(x + a2 [es2; Ay

Comparing the quasi degree d(®) of the respective germs with d(g}), we conclude
that Fy is quasi corner equivalent to a germ of the form Fy = =+(z & 2% 4 (y &
Z™)? + @(z,) where § € M2+,

Let ¢ = G527 + #(21) where s > 2m + 1 and ¢ € M. Consider the germ
Fy = t(z+ 22+ (y £ 27)? + ¢ 25. Then

TQCs = £2(zx2"){vdot2(xk2")A £2(y + 27") Ao}
£ 2y 27") {yBo % 2(x £ 21")B1 £ 2(y £ 2*) Ba}
4+ [E2me (@ £ o) £ 2mel y £ 2) + sz,

Let g5 = ez} where [ > s. Set A, = By = 0 and choose Ay, Ay, By, By and C
such that 9
AO = :F2A1, BO = :F2Bg, A] = Bz, C = %‘ZlBg,



CHAPTER 3. QUASI CORNER SINGULARITES 86

and s
ez ™"

_B2 = ———m7
8 £ 2 p8—2m

Note that Ao, Ay, By, Ba, C € M., . The respective germ is &3 = se;2i 1O,

Comparing the quasi degree d(®3) with d(g5) with respect to weights w, = w, = 1
and w,, = 53—, we see that [y is quasi corner equivalent to the germ +(z £ 2*)? &
(y & 2")? + 24,

These are the only simple classes. Other germs are either adjacent to non-simple
classes or have infinite codimension. This complete the proof of the theorem.

Proposition 3.1.7 The singularities following special cases Frm can be written in
the alternative way as follows:

1. The class Fr_1m 5 quasi corner equivalent to  +x? £ y™, for m > 3.
2. The class Fi 1, is quasi corner equivalent to  =tx? £ xy®, for k > 2.

3. The class Fyp, s quasi corner equivalent to  +a® £ zy* + y™, for
3<k+1l<m<2k—1.

Proof.

This result follows immediately from the proof of the theorem 3.1.6.

Remarks:

1. Stabilization Lemma 3.1.1 yields that for specific small values of ¢ these simple
classes can be written alternatively, for example:

For ¢ = 1, the simple function germs =21 (z £y) £ y*, k > 2, £z (z+y™)+
yv*,m >k > 2, are stably quasi corner equivalent to B; and F,, ;. respectively.

For ¢ = 2, the simple function germ

tox dy? oy & 22y £ 2k

is stably quasi corner equivalent to -
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For ¢ = 3, a simple function germ
tax 2yt 22) Lozl £ay or  Lzmat oy + 22

are stably quasi corner equivalent to M, i and B, respectively.

Any germ with ¢ > 4 is non-simple with respect to quasi corner equivalence.

2. The rank r of the second differential d?f(x,y, z1) is quasi corner equivalence
invariant while the ranks of the second differentials d*f(0,0, 21) and d?f(z,y,0) are
not. For example, the function germs f(z,y,z1) = 2& and g(,y, z1) = 22 — 2% are

quasi corner equivalent. However, rank d3f(0,0, z1) = 0 but rank d2g(0,0,2;) = 1.

3. Notice, that the formulas for quasi corner classes F, B coincide with quasi
boundary classes £, B. However they have larger codimensions since the quasi corner
equivalences preserve the origin and is finer than the quasi boundary one.

3.2 Adjacency of lower codimension classes

The construction of the table of adjacencies is based on the proof of the theorem
3.1.6.

Let f(z,y) = fa(z,y) + @(2,y) where p € M3 and fo is a quadratic form.
If f; is non-degenerate quadratic form, then f is contained in the class By. If f,
is a degenerate quadratic form of rank one, then f can be written in the form
J= =(az + by)® + @(x,y) where § € M3, which is adjacent to the class By. Thus,

ifaz0andb+#0, then, fis contained in the adjacent classes B;, with k& > 3.

By «— By «— By « By «

If a = 0and b # 0, then f is quasi corner equivalent to a germ of the form
F' = 92 + yp1(x) + pa(z) where ¢, € M2 and o3 € M2, Let F(z,y) = +y? +
yleor® +eand + -+t ) Fdga® dgat + R dit L

If d3 # 0, then we get the class Fo3 @ +y? £ a® ~ £(y £ 2?)? + 2°. Note that the
class Bz has an alternative form h(z,y) = *(az + by £ 2%2)? £ 9® £ 2%. Thus, when
a = 0, we obtain the class 3. This means that F,3 is adjacent to the class Bs.
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Next, if d3 = 0, ¢ # 0 and d4 # 0, then we distinguish the following:

If dy # £1c3, then F is contained in the class Fy 4 ¢ ty? £ya? ~ +(y +£22)2 +al.
Hence, the class F, 4 is adjacent to the class F»3. On the other hand, the class Foa
Is adjacent to B, as the class By has the an alternative form h(z,y) = #(azx + by &
22)? £y £ 2. Thus, if @ = 0 we get the class Fo4. Hence, we get, up to now, the
following table of adjacent classes:

Bz<—33‘—134<—35<“

T T
fz,s — -7:2,4

If dy = £3c3, then F' is quasi equivalent to a germ of the form F' = +(y +22)% 4
¢(x) where ¢ € M3 which is adjacent to the class Fy 4. Therefore, we obtain the
series of classes Fo,, @ £(y £ @*)* & o™ with y > 5. Hence, we get the following
adjacent classes:

Fou — Fos — Fog — For

Note that the classes B,, : #22 4 y™ can be written in an alternative form as
h(z,y) = £(ax + by £ ¢*)? £ y™ £ 2™. Thus, if ¢ = 0 then we obtain the classes
Fom + £(y+ x2)2 £ 2™. This means that the classes F3,, are adjacent to the classes
B,, with m > 5.

Suppose now that da = ¢; = 0 and ¢3 # 0 but dy # 0, then F' is contained in the
class Faq : y? £ ya® £yt ~ £(y? £ 2°)? £ 2 which is adjacent to the class Fy 4.

If ey =dy =ds = 0= and c3 # 0 but ds # 0, then we get the class F35 which
is adjacent to the class F34. On the the other hand, the class Fy5 has the form
+(y + a2? + bz®) £ 2% Hence, when a = 0 then we get the class Fip-

Ifcg =ds =dy =ds =0 and ¢ # 0 but dg # 0, then follow the previous
discussion of the case dz = 0, ¢z # 0 and dy # 0.

Therefore, the table of adjacencies of low dimension is as follows:
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32"“63(_84‘—85‘_86““

T T T T
Foz < Fog — Fos — Fop
T T T
Fzg — Fzs5 — Fa¢
T 7

Remarks:

1. In the previous discussion, note that any adjacency between simple classes is

a consequence of the following ones:

fk-l—l,m - Fk,m — Fk,m+1-

2. Similar argument shows that any adjacency of singularities H,,,,x is generated
by the following basic ones:

Hm,n—e—l,k }[m,n,k Hm+1,n,k

!

]—Im,n,k+1

3.3 Comparison of quasi corner and standard cor-

ner singularities

The standard classification of singularities of the standard action on functions of
diffeomorphisms preserving the corner I'; = {2y = 0} was obtained by D.Siersma
and others in [29, 21]for functions on the corner. There are no simple classes and
the classification starts with unimodal singularities. The comparison between these
singularities and quasi corner singularities is given in the following table.
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The unimodal and bimodal The normal form with respect to
corner singularities quasi corner equivalence

+2? 4 azy £y?, a®#4 Bs
2" +y™+ary, a#0 Bs
+(r+y):+ay®, a#0 B;
+(@+y)?+ayt, a#0 By

ta? +avy? £93, a#£0 Foz
+2(x+y)+ 22 +ay?, a#0 B,
t2(rty)+ 22 +ay®, a#0 Bs
tz{zwty) +azt+y? a#0 B,
tzrx+a?yy?+28, a#0 By
2 +zet+y?+azvy, a#0 B,
™tz +zy+azy®, a#£0, m>2 Bt
+y? + £ + axy? + bay®, @ #£4,b#0 Fau
+a™ +ya? 4 ay? + bya®, a#0,n >4 Fau
2+ 2)? + (a+ by)ay™ 2, a#0,n>4 Fon
Y £a? + (a+by)ey®, a,bs£0 Fss
t2t + zr+ £y +ay +byxr, a® #£4,0#0 Ba
t2" +zx +y2? +ay? +byr, a#0,n>4 B,
+(22 +y)? + ze +azy™ +byz, a#0,n>2 B,
2y + 2z +ays® +byx, a,b#0 B

2 ta?+y? +axy +bryz, a®#4,b#0 Hopa
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3.4 The caustics and bifurcation diagrams of sim-

ple quasi corner singularities

We start with the following.

Proposition 3.4.1 The quasi corner mini-versal deformations with parameters \, 3, v
(of the respective dimensions) of the simple quasi corner classes can be chosen in the

following form.:

1. Bs: :i:.’l)g:tyz + Ao + M2+ Ay

m—~1

2. B, : Faky)2Ly™+ e+ Y By, m>3;
=0
k—1 X m—1 .
8 Fim: a2y + Y By m>k>3;
=0 izo
m—1 R n—1 . k-2
b Mo s P S NA E (S By S e,

k>n>m>2,

Proof.

1. For B, class, the quasi corner tangent space to the orbit at f(w,y) = £a? £ y?
is

TQC; = +a{zA +yB} + y{yA + xB}.

Then, 2% = 0,2y = 0 and y? = 0. Thus, clearly 1,z and y form a basis of the
local algebra Q@ = C,,/T'QC}.

2. For B,, classes, let f(x,y) = &(x £ y)? £ y™. Then, the tangent space of the
quasi corner orbit at f takes the form
TQC: = £2(x £ y) {z Ao+ y A} + [£2(w £ y) = my™ ' {yBy + 2B, }.
Thus , we get the following relations mod T'QC}

z(xty) =0, (3.9)
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y(z+y) =0, (3.10)

and
2y(x L y) Emy™ =0,=y™ =0. (3.11)

Thus, if we use the two relations (3.9) and (3.10) in the local algebra Q =
C.,,/TQC; we see that monomials 1,y,y?%, ...,y™ ! form a basis for Q.

3. For F,, classes. Let f(x,y) = +=(z + y*)? & y™ Then, the quasi corner

tangent space to the orbit at f has the form
TQC; = £2(x £ y* ) {wdo + y* A1} + [£2ky" ' (z £ v*) £ my™ {yBo + 281}

Thus, we obtain the following relations mod T'QC):

oyt £ 9% =0 = oyf = 7%, (3.12)
22 ay® =0 = 2% = Fayh, (3.13)
+2kay® + 2ky?* £ my™ =0, (3.14)
and
H2kax?yt + 2kay® T £ may™ !t =0. (3.15)

If we substitute zy* = Fy?* in the equation (3.14), we obtain y™ = 0. Also,
substituting #? = Fay”* in the equation (3.15), we get xy™ ! = 0.

Now we distinguish the following cases:

i) If m < 2k, then we see that y?* = 0 and hence zy* = 0 and 22 = 0. Thus, the
monomials: 1,y,y%,...,y™ Y, 2,2y, 2y%, ..., 2y*! form a basis for the local algebra
Q= C,,/TQC;.

ii) If m > 2k, then use the two relations 2? = Fay* and 2y* = Fy?* in the local
algebra Q. Thus, again the monomials: 1,y,4?,...,y™ L2, zy, 2y?, ..., 2y form
a basis of Q.

k—1 . m—1 )
Thus, the deformation F(z,y) = £(z£y*)? +2 3 My? £y™+ ] By is a mini
=0 i=0
versal deformation with respect to quasi corner equivalence for the classes Fj ...



CHAPTER 3. QUASI CORNER SINGULARITES 93

On the other hand, the deformation F'is quasi corner equivalent to the deforma-
tion

™
I

k=1 k-1 m—1
Hakyh)?£20) My +2) Ayt kg™ 4 > By
k-1 m—1

= 2y k2w tyh) Y Ny £y 4> Bl
=0 i=0
k-1 2
Notice that adding the terms A = + (Z Ayl ) to I does not affect the ver-
=0

sality of F as %H a=0. Hence, we get the following an alternative form of the versal
deformation of the classes JFj, p,:

k—1 m—1
Ga,y) ==@+yF+ > Ay £y™ + > By’
J=0 i=0

For Hpm 1 classes, consider the tangent space to the quasi corner orbit at g(w, ¥, z1) =
+(w £ 2)? & (y + 27)? + 2F.

TQC, = =£2(xEt2]"H{ado+ 27 Ar + (y % 27) Az}
+2(y £ 27){yBo + (v £ 2") Bi + 21 By}
[E2mz (@ 2 2) £ 2ne? (y & 27) &+ ki YC.

Thus, we obtain the following relations mod T'QC/

2t =0 =2 = Fa, (3.16)
et 2" =0 = a2 = F2m (3.17)

v Eyz =0= 9 = Fya}, (3.18)
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Yz £ 227 =0 =y = F2, (3.19)
ay £yt a2l £ =0, (3.20)

and
E2mazl ™t 2m2im T £ 2nya Tt F 2022 k2P =0, (3.21)

If we substitute 227" and y2] using the relations (3.17) and (3.19) respectively in the
equation (3.21), we get 2/ ! =

Now we distinguish the following cases:

i) If 2n > 2m > k , then we see that ©z]* = 0 and y2? = 0. Therefore, we get
2% = 0 and y* = 0. If we use the relations (3.20) and (3.21) in the local algerba
Q = C,,., /TQC; we see that the monomials

m—1 k

. 2 2 n—1 2 c—2
Liz,wey, m2y, ., 20 7 U YR, Y205 o Y2 21, 2 ey 2

form a basis of Q.
ii) If 2n > k and 2m < k, then we see that yz} = 0 and y? = 0. Thus, if we use
the relations (3.16), (3.17), (3.20) and (3.21) in the local algebra Q we see that the

monomials

. ) m—1 2 n—1 2 k-2
L@, @2y, T2y, o T2y U YR YRy - Y2 20, 2 e 2

form a basis of Q.
iif) If £ > 2m + 1,2n 4+ 1, then using the relations (3.16), (3.17), (3.18), (3.19),
(3.20) and (3.21) in the local algerba Q we see that again the monomials
me-1 n—1 k-2

. 2 . 2 2
1,(6,3/21,1721,‘..,11«21 ,y,yzhyzla---)yzl )zlyz17"‘:zl

form & basis of Q.
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Similar arguments as in the previous case, we can take the deformation:

m—1 n—1 k-2
G(z,y,21) = =z £ 2™+ Z N2y + Zﬁjzj)2 + 25+ Z'yizz,
=0 =0 1=0

as a mini-versal deformation for the classes Hp,pn .

The geometrical description of the bifurcation diagrams and caustics of some

simple quasi corner singularities is given in the following:

Proposition 3.4.2 1. The first stratum of the bifurcation diagram (caustic) of
any simple quasi corner singularity is a cylinder over standard bifurcation di-
agram (caustic) of the standard right Ay singularity of function. In particular,
the bifurcation diagram of Bs is a smooth surface with two transversal lines
in it. See Figure 3.1. The first stratum of the bifurcation diagram of Bs is
a product of a cusp and a plane in RY. Two other strata are smooth surfaces
inside the first one. They are tangent to the cuspidal ridge.

2. The caustics of By is a union of a cylinder over a generalized swallow tail
and two smooth hypersurfaces tangent to the first stratum. In particular, the
caustics of Bs consists of three strata which are smooth pairwise tangent surfaces
in 3-space. See Figure 3.2.

3. The caustics of F i a union of a cylinder over a generalized swallow tail, o
smooth hypersurface and a generalized Whitney umbrella multiplied by a line.
In particular, the caustics of Faz3 8 a union of two smooth hypersurfaces in R?

and a Whitney umbrella multiplied by a line.

4. The caustics of Hymn is a union of a cylinder over a generalized swallow tadl

and two generalized Whitney umbrellas of respective dimensions.

Proof.
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respectively. Thus, Wi = {(Mo, Aty A2) @ Ao = £y% A = 0,0 = F2y} and Wy =
{(’\0) /\1) AZ) . /\0 = II:iL'2, /\1 = :FQ{C, /\2 = O}

For Bs class, let F(x,y) = (z+y)*+y* + Xo+ Az + Aoy -+ Azy? be its mini-versal
deformation. Then, clearly that Bs can be reduced to A, singularity with respect to
standard right equivalence. Therefore, the first stratum W, is a product of a cusp
and a plane in {Ag, A1, Ag, Az)-space. Explicitly,

W(] = {()\0, /\1, )\2, /\3) : )\0 = (SL -} y)2 + 2y3 -+ 2)\33}2, /\1 = —-2(22 + y),
A = —2(x +y) — 3y* — 2Asy}-

The ridge of W, satisfies the following

gr 9°F
82 faby
B2F &F
Bydx? Oy?

=0

This gives A3 = —3y. Hence the ridge is the smooth set:

R = {()\0, )\1, /\2, /\3) : /\() = (a:—l—y)2—4y3, )\1 = *-2(23-1—1]), )\2 = —2(a:+y)+3y2, /\3 = —By}.

The strata corresponding to x = 0 and y = 0 are smooth and are given respec-
tively as follows:

W] = {()\0, )\1, )\2, /\3) : )\0 = y2 -+ 2y3 —+ 2)\3y2, )\1 = - s /\2 = -2y — 3:[/2 — 2)\3@}},

VV2 = {(’\0: )\1,)‘27/\3) : )‘0 = 3:2, )\1 = _23"7)\2 = _23’1}

The ridge R intersects the second stratum Wi when © = 0 and A3 = —3y. Hence
their intersection is the smooth line Ly = {(Xo, A1, Ao, A3) : Ao = 92 — 433\ =

=2y, Ay = —2y + 3y?, A3 = —3y}. This means that the ridge is tangent to W, along
the curve L.
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Similarly, the ridge R is tangent to W, along the line Ls = {(Ag, A1, A2) : Ao =
.’L'2, )\1 = —23), /\2 = —2(1:, /\3 = 0}

Now if we project the ridge and the two strata W; and W5 to the space { Ay, Ag, A3),
we get the configuration of the caustic of Bs singularity.

2. Consider the mini-versal deformation F(z,y, A\, p) = (x + y)* + y™ + Iz +
m—1
3 iyt of the singularity B,,. Clearly, B, is reduced to standard A,,_; singularity.
i=0
Hence the first stratum of the caustic is a cylinder over a generalized swallowtail.

For the second stratum, we need to consider the following conditions Z—f = % =

2 = 0. This yields that this is a smooth hypersurfaces, given as follows:
{O py 2y ooy 1) 2 A= =2y, i1 = —2y—my™ "t —2upy~- - — (m— 1) ptm—19™ 2}

Similarly, we see that the third strttum is a smooth hypersurfaes given by :

{(A ay oy ooy flmet) 2 A= =22, iy = —22}.

3. Consider the mini-vesaral deformation of Fj,; classes:
k-1 m—1
Fla,y, ) = (@+3"+ D> M) +u™+ > iy’
i=0 §=0
Then clearly that Fy ., can be reduced to the standard A,,_; singularity. Hence

the first stratum of the caustic is a cylinder over a generalized swallowtail.

Let Qx(y, \) = v* + 2120 Ay and Pu(y, ) = y™ + 327" 4597, Then,
Fz,y, \ ) = (@ + Q1)* -+ Pr,.

The second stratum satisfies 95 = 9 = = 0. That is & = 2(2+Q;) = Q=0

E_ BQ' g apm___aﬂn_
and - = 25k ("L+Qk)+_'"ay = G =
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Thus the second stratum is given as follows:

A= Qo Ay ey Akey 1y B2y e fmet) B A0 = ——y"‘ My =yt == )\k—wk—l
pr = —my™ = Qg — o — (M= D _1y™ 2},

The set A; is the image of the Morin mapping with one extra parameter tim,—i.

The third stratum is the set, satisfying g—i = %—5 =9 = 0. Hence, it is the smooth

hypersurface, given as follows:

{(/\07)\17 S /\k—lilu'l)/-j’z, s ):UJm—l) : )‘0 = —IE}

4. For Hppn i classes, consider its mini-versal deformation

m—1 n—1 k-2
Fe,y, i, i y) = @+ 20+ D N+ (+ 288+ ) 28+ wd
=0 =0 1=0

Then H., 1 is reduced to the standard singularity A,_;. Hence, the first stratum
of the caustic is a cylinder over a generalized swallowtail.

On the boundary {x = 0}, we can use the following transformation:

n—1
?=y+z”+z,ujzj, X=uw, A=\ pn=up =1,
=0

to get the equivalent versal deformation:

m-—1 k-2
F(z,y, 21, A, y) = (@ + 27" + Z Nzl )? oyt kb Z’ygzl.
i=0 1=0

Hence, by similar argument to F,; case, we see that the second and the third

stratum of the caustic are images of the cylinder over the Morin mappings. |



Chapter 4

Quasi cusp singularites

4.1 The classification of simple classes

In this chapter the coordinates are denoted as follows R™ = {w = (x, vy, )}, where
2,y € Rand z = (21,...,2,-2) € R* 2, We consider germs of C* -smooth functions
J (R*,0) — R, with a distinguished cusp Iy, = {2° —y% = 0 : for some s > 3}.
Notice that if s = 2 then hypersurface {2 — y? = 0} is diffeomorphic to the corner

xy = 0.
Recall that the quasi cusp tangent space to an admissible deformation f; takes
the form
of: of of;
= 2uk A
TQCUy, {8.@(I+ +8 1+6A2
ofi (y 1 O | Of: Ok
vk B ;.
+ 8'!;‘ ( =h 4 8 +(9 Bl‘l-a 2 ;GZiCz

for arbitrary function germs h, k, 4;, B;, C; € C,,.
Let f: (R",0) — R be a function germ with a critical point at the origin.

If the base point of the function germ is at the regular point of the border Iy,
outside the cusp point (the origin), then the quasi cusp equivalence coincides with
quasi boundary equivalence. Hence, the list of simple quasi cusp classes in this case

is the same as the list of quasi boundary classes. The remaining case of the function

100
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germ having a critical base point at the cusp component is main object of the current
chapter,

Denote by f*(z) = fle=y=0, the restriction of function f to the z coordinates
subspace. Denote by 7 the rank of the second differential d3 f* at the origin and set
c=n—2—r7r"

We restate the prenormal forms in the new coordinates.

Lemma 4.1.1 (Stabilization) The function germ f(z,y, z) is quasi cusp equivalent
(e

to Y. +27 + g(=,y,2), where £ € R® and g* € M. For quasi cusp equivalent f
i=1

germs, the respective reduced germs g are quasi cusp equivalent.

Lemma 4.1.2 There is a non-negative integer s < r — r* such that the function

r¥+s

germ f(x,y,z) is quasi cusp equivalent to Z +22 + f(J,, Y, 2}, where Z € R°™° and
i=1

f‘N 18 a sum of a function germ from sz'y,-zv and a quadratic form in x and y only.
For quasi cusp equivalent f germs, the respective reduced germs f are quasi cusp

equivalent.
These Lemmas imply the following preliminary classification results.

Lemma 4.1.3 Let m = n — 1 be the corank of the second differential dif at the
origin.

n—2
1. If m =0, then f is quasi cusp equivalent to Y, £22 + fo(x,y) + f(x,y), where

i=1

f2 is non-degenerate quadratic form and f € M3,

n—2
2. If m = 1, then [ is quasi cusp equivalent to either +22) + flz,y) with
%

i=1

n—2

rankd2f(z,y)) = 1 or to Z(ﬂczf) + f@,y,21) £ 2% £ y* with f(x,y,21)) €
=2

M3,

3. If m > 2, then f is non-simple.
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Proof. Lemmas 4.1.2 and 4.1.1 imply that any germ can be reduced to one of the
following germs form:

n—=2

1. Fy = Z (-£22) + f(2, Y, 21, 22, - - -, Zm_2) where f € M i ezt OF
i=m~1
n—2 -

2. Fy = Z(:I:zf) + fa(z,y) + F(x,y, 21,22, . .., 2m_1) Where f € M

and f; is a degenerate quadratic form of rank one.

n—2

3. F3 = Z (:tZQ) + fZ( >y) + f(‘l’ Ys21,22,...,% m) where f S Ma,yzl,22, Em

t=m+1
and f, is a non-degenerate quadratic form.

Thus, the results follow for the first two statements.

Suppose that m > 2. Consider the germ Fj. Then, the tangent space to the

quasi cusp orbit at the germ ftakes the form:

TQCU; = Qi{ij_imzym fA1+af }

oz oz Ay
of [y w1, OF O ’“af
89{ Zh+ sz k+~a~—Bl+aBz +Z

The cubic terms which belongs to TQCUj are obtained from Y7 * ngC’ (S{Z +
g{; #)h and (af 2y + 5 of ST 1Yk, where C; are linear forms and h, k € R. These terms
form a subspace of dlmenslon m(m — 2) + 2 which is less than M = %&
the dimension of all cubic terms in the variables x,y, 21, 23 . . ., Zm—o. Hence all cubic
terms can not belong to finitely many orbits. This means that the germ Fy is non-

simple.

The germ I} can take the form Fy = &(az+by)* + f3(2, v, 21, 22, . . ., Zm—1). Note
that % is adjacent to the germ Fy = F(ax +by + 0zm1)2 + fal@, v, 21, 22, -+, Zm—1)s
for sufficiently small §. Lemma 4.1.1 shows that F, is quasi cusp equivalent to the
germ G = 422, + f(&,y, 21, ..., Zm—g) where f & M it
argument, the germ G is non-simple. Similar argument shows that I3 is adjacent to

By the previous

the germ Fy and the result follows.
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Lemma 4.1.4 Let f : (R%0) — (R) be a function germ with critical point at the
origin. If the quadratic form fy of f has rank 1 then f is quasi cusp equivalent to
either £2° + @(y) where ¢ € M3 or 2y + (2, 1) where € M3 . Moreover, if
8 =3 then &y* -+ p(x,y) is quasi cusp equivalent to +y? + o) where ¢ € M3,

Proof. The function germ f takes the form f = +(az + by)® + f(z,y) where
fe M3 . Consider the quadratic terms @Q = +(ax+by)?. Suppose that a # 0. Take
the homotopy @ = +(ax + tby)® where t € [0,1]. Then the respective homological
equation takes the form:

Foby(ax + thy) = +2a(az + tby){gh + 2yk + (4w + thy) A} = 24b(az + by) {%h
+ s2° 7'k + (az + thy) B}

This is equivalent to:
T2y = ﬁ:Qa{%h + 2yk -+ (ax + thy) A} 2tb{%h + s2° 7k + (ax + thy) B}.

The homological equation is solvable by setting h = B = 0 and taking A, k such
that:
+20°A & 2bsz* *k =0 and = dak - 2athA = F2b,

Thus, all Q; are quasi cusp equivalent. In particular, Q = +(az + by)? is quasi
cup equivalent to Qp = +22.

Now, consider the germ F = +a? + f3(z,y) where f3 € M3

Yy’

Let Fy = +a?.
Then, the quasi cusp tangent space at Fy takes the from

TQCUR, = 22 {gh + 2uk + :cAl} .

Thus, we get mod TQCUr, : 2* = 0 and zy = 0. Hence, C,,/TQCUx = ¢(y).
Lemma 1.3.5 shows that I is quasi cusp equivalent to the germ G = +22 + (y)
with ¢ € M3,
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~

Now, if @ = 0 and b # 0 then f takes the form f = £y + f(z,y).

Suppose that s = 3 and consider the germ f; = 4% The quasi cusp tangent
space to the orbit at fy takes the form

TQCU,, = +2y {%h + 3a%k + yBg} .

Then, we obtain mod TQCUy,: y* = 0 and y2? = 0. Hence, C, ,/TQCUr, = p(z).
Again Lemma 1.3.5 shows that f is quasi cusp equivalent to G' = %2 -+ ¢(x), where
b e M3,

Lemma 4.1.5 The function germ f(a:,y, 21) + 2 & y? where f(x,1 v 2) € MS,

is quasi cusp equivalent to the germ £a® & y? + xhi(21) + yhol(z1) + hg(z1) where
hy, hy € Mﬁl and g € Mgl.

o~

Proof.  Let f = £a? 4 y* + f(z,y,21). Consider the germ fo = 422 + y2. Then,
the quasi cusp tangent space to the orbit at f, takes the form

TQCU,, = +2u {%h + 2yk + A1 + YAy | 2y {gh + 52" k4 2By + yBg} .

Thus, we get mod TQCUy,: 2* = 0, y? = 0 and wy = 0. Hence, Coyu /TQCU, =
wp1(21) + y2(21) + @(21). Lemma (1.3.5) yields that f is quasi cusp equivalent to
G = £2? £ 9® + xhi(21) +yha(21) + ha(z1) where by, hy € M2, and hy € M3,

Theorem 4.1.6 Let f: (R™,0) — R be simple with respect to the quasi cusp equiva-

lence. Then, cither f; is a non-degenerate form and hence f is quasi cusp equivalent

n—2

to Lo @ £a? £y? + Y £22 or fo is a degenerate form of corank 1 and hence f is
i=1

stably quasi cusp equivalent to one of the following simple classes:

1. Ly £22 £ 9%, k>3; k1.

2. My« y? a2, k>3, when s =3; k+2.
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8. My : &y* +2°, when 5 > 4; 5.
4- Nogs: £(w£2])? £ (yL2)?+2),  when s2>3; .
5 Nuog: L2022 (yx28)2 28, k>m>2, when s = 3; m-k+3.

The orbit codimension in the space of germs is shown in the right column.

Remark: The non-simple classes f either have corank of f, greater or equal 2
or belong to a subspace of infinite codimension in C,,.

Proof Theorem 4.1.6

We shall use Lemma 1.3.5 and prove the theorem only for necessary the condition.
That is the homological equation is solvable for ¢ = 0.

Lemmas 4.1.3, 4.1.4 and 4.1.5 shows that all possible simple germs can be ob-
tained from one of the following germs G = £2? + ¢(y) or Gy = +42 -+ ¢(z,y) or
Gy = 2 £ 9% + xhy(21) + yhe(21) + ha(z1).

Consider the germ G1. Let ¢(y) = apy® + @(y) where k > 3 and § € MFEFH,
Consider the germ go = =22 + ay®. Then, the quasi cusp tangent space to the orbit
at Go

TQCU,, = 2z {i—:h + 2k + x A + yk“1A2}+/€akyk—l {gh +s2* 4+ 2B, + yk”le} .

Thus, we get mod TCCUy: 2® = 0, y* = 0, 2y = 0. This means that the
simplified homological equation is solvable for a given germ ary* + $(y). Thus, Gy
is quasi cusp equivalent to the germ +z? + y* with & > 3. Note that the monomials
Ly, 9% ...,y" ! form a basis for the local algebra Q = C,,/TQCUg,.

Suppose that s = 3, then G2 is quasi cusp equivalent to G = £y? + ¢(x) by
Lemma 4.1.4. Similar argument to the previous one shows that & is quasi cusp
equivalent to the germ 42+ 2* where & > 3.

Suppose that s > 4. Then, consider the germ H(z,y) = +1° + p(z,y). Let
p(a,y) = aa® + day® + o’y + dy® + §(w,y) where § € M3 . If a % 0, then H

is quasi cusp equivalent to the germ 4y? + 2®. Again, the proof of this claim is

similar to previous cases. If @ = 0, then consider the quasi homogeneous terms
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Hy = +9? + cya® + ex* with respect to the weights w, = % and w, = -;- The quasi
tangent space to Hy takes the form

TQCUy, = (2cyz + 4ex®) {Z’—:h + 2yk + (2cyz + dex®) Ay + (£2y + c:c2)A2}

+ (£2y + ca?) {%h + 82" 4 (2eyx + dew®) By + (2y + C.’L'2)BQ} :

Then, the terms which belong to Hp and obtained from TQCUp, are X1 =
[(2eya + dea®) 2 + (£2y + ca?) 4] and xp = (F2y + ca?)> B, where h, B, € R. Hence,
x1 and s form a subspace of dimension 2. This means that H is non-simple germ

in this case.
Finally, consider the reduced germ G3 = %% £ 42 + zhy(21) + yha(21) + ha(z1).

For simplicity, consider the the equivalent form

1

1, 9
G=5(w+ M)+ 5

(y+ Hi(2))* + Hy(2).

Let @ = v+ Hi(2) and b = y+ Ha(z). Consider the deformation within functions
in 2z of the form:
1 2, 1 2
Fy = §[IL‘ -+ Hi(z1, )] + 5['9 + Ha(21,0)]" + Ha(z1,1).
Then, the respective homological equation takes the form

—%E = —[20}H1(Zl,t) -+ 2bf]2(21,'lf) + 1—‘[3(.31,?5)] = TQCUF“

where
TRCUr, = a {[a — Hﬂ% +2(b— Hy)k+aA; + bBl}

/
+ b{[b - Ifz]% -+ S(a — Hl)“"“ll\:+aA2 -+ ng}

+
TN
(%))
E
+
=
+
<
[w5)
E
N
<

To solve the homological equation , we need to find functions in TQCUF, of the
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form

¥ =aa(z) +08(z) +v(z) (%),

Thus, let h = ho(z1)+ahi(a, b, z1)+bha(a, b, 21), k = ko(z1)aky(a, b, 21)-+bka(a, b, z1),
and V = Vy(z1) + aVi(a,b, 1) + bVa(a, b, z1). Hence, the quasi cusp tangent space
takes the form:

h 1 ]
a? [% - "S-thq — 2ok + - + A1:| + b [h_o — lffzhz A+ Bzil

T ;
QCUR, 5 3

+ ab [2’6 -+ (s(a - f’fz)snl - 8(—H2)au1) k + Bl + AQ]
/7,0 _ . (9H1 ho ) s—11, 8Hg
+ a [ H, 5 2Hpko + 92, VO} +b {_H:z? +s(—Hy)* ko + Ezl—%
OHs
+ azl %(Zl)

with some smooth functions ho, h, he, ko, k1, ke, Vo, Vi, Va. To get terms in the re-

quired form (*), we always can set

/ 1
Al = — [% — ;I‘Ilhl - 2]‘]2/1’31 + .. ] s

Ay =—[2k+ (s(a— Hp)* ' —s(—Hp)* Nk +...],

I 1
Bz=—[—;9*§H2/12+...:l, and Bl=0

Let Hy = ezl 4+ tH1(21) , Ha = du2? + tHa(z1) and Hs(z) = exz® + tHa(21),
where ¢, # 0,b, # 0, e; # 0 and Hy € M, H, € Mt H; € MEFL,

Consider the germ Fy = (2 + ¢227)? & (y + dp2?)? + 2" with k& > 3.
Thus, we get mod TQCUp, :

1 1
[—ga@zf — Ebdng]hg(zl) =0, (4.1)

[—2ady2? + 5657027V ko(21) = 0, - (4.2)



CHAPTER 4. QUASI CUSP SINGULARITES 108

and
[2¢5az1 + 2dabzy + keyzt V(1) = 0. (4.3)

Clearly, the equations (4.1) and (4.2) yields that az? = 0 and bz? = 0.

Hence, we get that zf = 0. Therefore, we get the series of classes
Noor: (w222 £ (yL2D)?L2F with k> 3, for any s > 3.

However, the classes Mg 4 for s > 4 are adjacent to the classes +y% + aya® + 2
which are non-simple. Hence, the only simple class we get in this case is Ny 3 for
5 > 3 (mind that this class is adjacent to the simple class M3.)

Assume that s = 3. Consider the germ F,, ,, x = (T + ¢ 2®)? + (y + dn2})? + e 2",
Then, we obtain mod TQCUR, :

1 1 .
—gcmaz{” — §bdnz? =0, (4.4)
—2ady, 2} + 3bc2, 2™ = 0, (4.5)
and
amemzy !+ bnd, 2 4 ke =0, (4.6)
The equation (4.4) implies that 2" = M%bz}l. Thus, we obtain
&2
3—bz]" 4 3c2 b2 = 0. (4.7

If we consider the germ F3 33 and suppose that 3% +3c2 = 0, then the left hand
side from the equation (4.7) vanishes. This yields that the germ Fb 33 is non-simple.
Other germs F,, 3 with different values of m and k are discrete set of orbits in the
stratum. However, all these germs F,, 31 are adjacent to the non-simple germ Fo33.
Thus, germs Fp, 2, with m > 2 and & > m are the only simple ones in this case.
Hence, we get the class: N, 2 with m > 2 and k > m. This completes the proof of
the theorem.
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The proof of the theorem yields the following

Proposition 4.1.7 The formulas of quasi cusp versal deformations of the simple

quasi cusp classes are listed as follows:
k=1
1 Ly yf +px+ > Ny', k>3
i=0
k=1
2. My, Fy? 28 + py +yzy + Y at, k> 3.
=0

8. Napg: E(w27)? (yd27)? £20 4+ Ao+ M+ Az + iy + payz1 +7121 +7223.

m—1 . k—1 )
4 Nono + EwE2)? £ (yE2f)? L0 + Z% Az oy S iz, k> m > 2.

i =0



Chapter 5

Quasi cone singularites

5.1 The classification of simple classes

Assume that ', = {2y — 2* = 0} and the local coordinates are R* = {(z,v, z,w)}
where (2,y,2) € R® and w = (w1, ..., Wn-3) € R* 3,

If the function germ base point is at the regular point of the border I',, outside
the singular component, then quasi cone equivalence coincides with quasi boundary
equivalence. Hence, the list of simple quasi cone classes in this case is the same as
the list of quasi boundary classes. In what followed we consider the remaining case
of the function germ having a critical base point at the cone component is given in
the following theorem:.

Let f: (R" 0) — R be a function germ with a critical point at the origin.

Recall that the quasi cone tangent space to an admissible deformation f; takes

the form

TQCO;, = {gﬁt (zhl — 'lez~|—22h3+ ft By + a{j B, + %&Bs)
aft

0 0 0
+ a—‘; (yhl +yhe +2zhy + e —C1 + 6ft Co + aft Cg)

7] %) 2] o a
+ 8_fzt <zh1 +yhs +zhys + %Dl + aft Doy + 8fL D3> + Z ft }

with some arbitrary smooth functions hi, hy, hs, B;, C;, D; and A;.

110
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Denote by f*(w) = f|e=y=r=0, the restriction of function f to the (wy, ws, . .., Wn—3)
coordinates subspace. Denote by 7* the rank of the second differential d2f* at the

origin and set ¢ =n —3 —r*.

We restate the prenormal forms in the new coordinates.

Lemma 5.1.1 (Stabilization) The function germ f(x,y,z,w) is quasi cone equiva-
r*

lent to Y fw?+g(x,y, 2, W), where © € R® and g* € M3. For quasi cone equivalent
i=1

[ germs, the respective reduced germs g are quasi cone equivalent.

Lemma 5.1.2 There is a non-negative integer s < r — r* such that the function
r+s ~

germ f(x,y, z,w) is quasi cone equivalent to >, +w?+ f(x,y, z,W), where W € R°™*

i=1

3

and f~ is a sum of a function germ from ./\/iw,y,z,13

and a quadratic form in x,y and
z only. For quasi cone equivalent f germs, the respective reduced germs f are quasi
cone equivalent.

The main preliminary classification results are the following.

Lemma 5.1.3 Let k = n — r be the corank of the second differential dif at the

origin.

n—3
1. If k=0, then [ is quasi cone equivalent to +a% £ y? + 22 4 3 +w?.

=1
n—3 .
2. If k=1, then [ is quasi cone equivalent to either Z(iw?) + f(z,v, z) with
_ n—3 . =t
vank d3f(x,y,2z) = 2 or to Z(:I:'w?) + fle,y, z,wr) £ 2 £ 4? £ 2% with
=2

~

f(xy Y, z:wl) € Mg

hEwt

3. Ifk > 2, then f is non-simple.

Proof.  Using properties of fixed and partially w-fixed equivalences, the dimension
of the intersection of the kernel subspace of f, with the coordinate subspace x = y =
z = 0 is the only invariant for second order jet. So, Lemmas 5.1.1 and 5.1.2 yield
that f is quasi cone equivalent to one of the following germs:
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n—3

1. Iy = Z (Fw?) + f(z,y, 2, w1, wa, . .., Wy 3) where f S M‘O’,yzwhwz’ iy OF
i=k—2
n—3 -

2. Fy = Z (Fwd)+folz, 1, 2)+F(2, 9, 2, w1, W, . . ., wi—2) where f5 is a quadratic
i=k-1

3
form of rank one and f € M3y 20 ,1m,w_p> OF

7—3

3. I3 = Z(j:w?)—l-fz(x,'t y 2)+ f(2,y, 2, w1, Wa, . .., wy—1) where f; is a quadratic
i=k

form of rank two and f e M3

Tyl y2,W1 W2y 0 W1 ? or

n—3
4, Fy = Z (£w?) + folw,y,2) + f(2,9, 2, W1, wa, ..., w) where fo is a non-
i=k+1
degenerate quadratic form and f € M s

Hence, the first two statements follow.

Now, suppose that &£ > 3. Consider the germ Fj. The quasi cone tangent space
to the orbit at thakes the form:

-3 f 7 -~ ~ i~
442 ) P of
TQCOF = Z 8_f a—i{mhl — xhy + 2zhs + —%Bl + 5532 + %Bg}
+ ;{yill + yho + 220y + gigl + 6f02 gf OB}
+ _{3111 + yhs + xhy + a—fDl + ngz + afD3}'

The cubic terms in the ta,ngent space are obtained from: Zf_f’ :u{ A, (2 gi -+
ya, —I—zaf)h],( zaﬁ +y 3y)hz, (22 ya )hg, and (Qng +:Laf)h4 Note that Als are
linear forms and ha, ho, s, hy € R. Thus, These terms form a subspace of dimension
k(k — 3) + 4 which is less than M = wﬂ—the dimension of all cubic terms in

the variables @, y, z, w1, Wo, . .., w-3. Hence, F} is non-simple.

Standard argument as before shows the following adjacencies

Fl(—'-Fgé——F3<—-F4.
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This yields that 5, F3 and [y are non-simple.

If k£ =2, then f is quasi cone equivalent to one of the following germs:
n—3

1. H, = Z(iwf) + fol2,y, 2) + f(x,y, z) where f, is a quadratic form of rank
i=1

one and f(z,y,2) € M3, ., or

n—3

2. Hy = Z(ﬂ:w?)—i—fg(:c, Y, z)+f(x, ¥, %, wy) where f; is a quadratic form of rank

=2

two and f(x,y,z,w) € M3, or

n—3

3. Hz = Z(iw?) + folz,y,2) + f(x,y,z,wl,wg) where f5 is a non-degenerate
i=3
quadratic form and f € M3

T,Y,2,w1,we

Again comparing the dimensions of the orbits with their quasi cone tangent space
and constructing adjacencies between them yield that H;, H, and H3 are non-simple.
For example, consider the germ H; and let Hy = ax® +bz® + cy® + dyz? + ey®z be the
lowest quasi homogeneous part with respect to the weights w, = %,'wy = W, = %
Then, the dimension of the subspace which contribute to the quasi homogeneous
part is 3.

Lemma 5.1.4 1. Let f: (R%0) — (R) be a function germ with critical point
at the origin. If the quadratic form fo of f has rank 2 then f is quasi cone
equivalent to either £a® £ y® + ¢1(2) or £(x —y)2 £ 22 + oo(y) or 22 £ 22+
x1(y) + da(y) with o1 € ME, 1 € M2, @3, o € MS.

2. The germ f(x,y, 2, wi) a2 ty? 22 with Flx,y, z,w) € M

equivalent to the germ: ®u? Ly £ 22+ Hy(wy) +yHo(wy) + 2 Hy(wr) + Hy{ws),
with Hl,HQ, H; € M%ul ond Hy € Mﬁll

iS quast cone

Proof.  Let f: (R?0) + (R) be a function germ with critical point at the origin.
Suppose that the quadratic form f, of f has rank 2. Then, f, can be written as

fo(z,y,2) = £L? + L2,
1 2
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where Ly = a;@ + b1y +c12 and Ly = ao® + bay + coz are linearly independent linear
forms. Then, the line {L; = 0, L, = 0} is the kernel subspace of f,. By quasi-fixed
equivalence we can replace L, and L; by their linear combinations Zl and Zg with the
same kernel subspace. Then, the kernel subspace by cone preserving transformation
can be reduced to a fixed normal position. More precisely, up to permutation of x
and y, we distinguish the following cases:

1) if a; # 0 and by # 0, then f; can be reduced to the form f; = 45? + 4% To
proof this claim, take the family f; = E(a1x + t{(b1y + ¢12))? £ (bay + t(agw + c22))?
aq tbl

taz bg
components of identity matrix in the set of non-degenerate matrices. Then, it can

and that the matrix is non-degenerate and belongs to a connected

be proven that the homological equation —% = T'QCOy, within the quadratic form
is solvable for any t.

Now consider the germ F' = %a? + 4% + fy(x,y, z) where f3 € M3 Take the

T,Y,2"

quasi cone tangent space to the orbit at fy = a? + 42

TQCO;, = £2u{zhy —zhs + 22hs + x4 +yAs}
2y {yhy + yhs + 22hs + By +yBs}.

Thus we obtain mod TQCOy,: «? = 0,y> = 0,2y = 0,22z = 0 and yz = 0. Hence,
Ce,y,:/TQCOy, = G(z). Therefore, the germ H = @y (2,y) + 2p2(z,y) belongs to
TQCOy, where 1 € M5 and @, € M2 .

In particular, let o (2,y) = 22K, (2, y) + y2 K (2, y) where Ky, Ky € M,,. Let
walw,y) = w32, y) +y*Ky(w, y) where K3 € M, , and K4 € C,,. Then, the terms
which are divisible by 22 (divisible by y?, respectively) in the germ ¢ can be solved
by setting hy = hy = hg = hy = Ay = By = By = 0 and taking
Ky =224, (hi =hy =hs=ha = Ay = Ay = B; =0, Ky = +2B,, respectively).

Also for the terms which are divisible by x in the germ zp,(x,y) (divisible by
Yy, respectively), one can set iy = fig = fiy = A; = Ay = By = By = 0 and take
hs = i%l(g, (hi=hy=hs=A1=As=By =Dy =0, hy = $4lyK4, respectively).

Now assign weights w, = w, = w, = % Then any term monomial in the germ
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@1(2, ) of the form g7 = ag4:;2* "y’ has the quasi degree d(g}) = 25, The germ

By = (2 + 1)ap4s,j @Y [wAL + (24 Danra 2T T AL+ (24 1) ag 20T Ay,

clearly has quasi degree ®; greater than d(g}).

Similar argument can be carried ou for all terms which belongs to TQCOp,.

Hence, Lemma 1.3.5 shows that that F'is quasi cone equivalent to a germ of the
form I = a? +¢2 + @1 (2) with 3, € M3, In this case, the kernel line {L; = 0, Ly}
is outside the cone.

2) ifa1 74 O,Cz 7’é 0 and bl = Qg = b2 = O(Ol‘ bl = b2 =0 but 5} 74 O, Co 7é 0), then
f2 can be reduced to the form fo = 222 4 2%, In this case, the kernel line is in the

cone.

Now consider the germ F' = £a® + 2° + fy(x,y,2) with f3 € M3 . Take the
tangent space to the orbit at fy = 422 4 22

TQCO;, = £2u{zhy — xhy + 22hs + 2 A; + 2As}
2z {zhy + yhs + xha + 2C1 + 2C3} .

Thus we obtain mod T'QCQOy,: 2? = 0,2z = 0,22 = 0 and yz = 0. Hence,
Coyz /[ TQCOy, = wHi(y) + Hy(y).

Now assign weights w, = w, = w, = 5. Then,comparison of the quasi degrees
d(gi) of gi € TQCOy, with the quasi degrees of the respective germs d(®;) yield
that I is quasi cone equivalent to a germ of the form F = 222 & 22 + 2¢:1 (y) + da(y)

with ¢ € M2 and ¢, € M3,

3) if a1 # 0,b1 # 0,c9 # 0 and ap = by = 0, then f; can be reduced to the form
f; = +(x £ y)?® & 2®. Hence, considering the principal part ﬁ yields that the germ
F = 4(z+y)? 22+ falz, v, 2) with f3 € M, . is quasi cone equivalent to the germ
F= +(wty)?+2%+p (y). The argument to prove this claim is similar to the previous
cases 1) and 2). Notice that the germ F'~ = £(x — )2 & 22 + 1 (y) corresponds to
the case when the kernel subspace of the quadratic form of /= lies inside the cone.

It can be reduced to normal fixed position by cone preserving transformation.
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For the second claim, consider the tangent space to the orbit at fo = a?+y?42%

TQCOfO = 42 {:L‘hl — xhy + 2zhg +xA; + ’yAz -+ ZA3}
:|:2y {yhl -+ 'yhg -+ 22h4 + .'ZIBl 4- 'yBg + ZB3}
+2z {Zhl +yhs +2hs +2C + yCs + 203} .

Thus, we obtain mod TQCOy,: 2 = 0,y = 0,22 = 0,2y = 0,22z = 0 and
yz = 0. Hence, Cy,y..2 [TQCOy, = 2Gy(w1) + yGalwn) + 2Gs(wy) + Galwy).

Similar argument as in Lemma 4.1.5 (by quasi partially z-fixed equivalence) shows
that ' = £22 +y? £+ 22+ f(z,9, 2, w1) is quasi cone equivalent to a germ of the form
F =422 :i:yZ + 22 +$H1 ('wl) +yH2(’UJ1) +ZH3(U}1) + ['14(’(.01) with I‘I}, I'Iz) I'I3 < Mgul

and Hy € M3, .

Theorem 5.1.5 Let f : (R",0) — R be simple with respect to the quasi cone equiva-

lence. Then, either f, is a non-degenerate form and hence f is quasi cone equivalent

n—3
to Py da® £y £ 224 3 fw? or fo is a degenerate form of corank 1 and hence f

i=1

is stably quasi cone equivalent to one of the following simple classes (up to a possible
permutation of x, y coordinates and up to the addition with a quadratic form in some
extra variables):

1. Py da?dy?£2k k> 3; k.
2. Op 22 & (x—y)?+y™, m > 3; m+ 2.
8 Spm: 22+ (zLy*)?Lym, m>k>2 k+m+ 1.
4. Y a2 +y? 2?2 [>3; 41 — 4,
5 Wiy Ta?ty? £ (z+wh)? £ 2, 1>k 3k+1-1

6. Qg E(ztwPP(yFw)? L2220, l>m>2; 3m+l-1.
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7o Vo : E@+wP)? £y? £ (z+wi)£wl, [>n>m; 2m+n-+1— 1.

The orbit codimension in the space of germs is shown in the right column.

Remark: The non-simple classes f either have corank of f; greater or equal 2
or belongs to a subspace of infinite codimension in C,,.

Proof of Theorem 5.1.5

We prove the theorem for the necessary condition (the first condition in Lemma
1.3.5). The second condition is straightforward.

Consider the reduced germs in Lemma, 5.1.4.
1) Consider the germ F' = +ua? & y? + ¢, (2). Suppose that v;(z) = arz® + @1(z)
where ay, # 0,01 € M5 and k > 3. Let I = fo+&,(2) where fo = Fa? £y%+ax 2"

The quasi cone tangent space to the orbit at fy has the form

TQCO;, = =2 {xhy —xhy -+ 2zhs +xA; +yAy + 2" T As}
+2y {yh1 -+ yha + 22hs + 2By + yBy + 2" B3}
+ kar2" " {zhy - yhs + xhy + 20+ yCy + 2571Cs}

Then, we get mod TQCOy,: 2? = 0,yz = 0,yz = 0,y> = 0,22 = 0 and 2" =
0. This implies existence of solutions of the homological equation of the given ;.
Note that the monomial 1,z,2%,...,2%"! form a basis for the local algebra Q =
Coy,./TQCNy,.

The simplified homological equation is solvable for the term azz®. Hence [y is
simple and after rescaling a; to £1, we get the classes 422 + y2 & 2* with k > 3.

2) Consider the germ F = &2 & 2?2 + 2¢1(y) + ¢2(y). Assume that ¢(y) =
ay® + d1(y) and ¢oly) = bmy™ + d2(y) where ap # 0,b,, #,k > 2,m > 3 and
q?l € M{j“, be € MZJ”H. Then, we distinguish the following cases:

i. If K > m—1, then F'is quasi cone equivalent to the germ +z?42?+y™. To prove

this claim, consider the tangent space to the quasi cone orbit at fo = +22+2%+b,y™.
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TQCOys = =2z {xhy — xhy + 2zhy +xA; +y™ 4y + ZAg}
+mbmy™ " {yhy + yhe + 22hy + 2By +y" " By + 2B3 }
422 {zhy + yhs + xhy + 2C) + y™ 10y + 2C5}

Then we get mod TQCNy, : 22 =0,2y™ ' =0,22=0,y™ =0,z =0 and yz = 0.

Thus, the germ 2¢1(y) + ¢2(y) belongs to TQCOy,. Note that, the mono-
mials 1,2,y,4%, ..., v™ Y@, zy, 2y?, ..., xy™ 2% form a basis for the local algebra
Q=0C,,./TQCNy,. Thus, we get the classes £2* &z & y™ which is equivalent to
the form 22 & (z £ y™ )2 £ y™ with m > 3.

ii. If m > k+1 and Fa? +4b,, # 0 when m = 2k, then F is quasi cone equivalent
to the germ =22 £ 2% & xy* £y™. To prove this claim, consider the tangent space to
the quasi cone orbit at fo = %22 & 22 + arzy® + by™.

TQCO;, = (F2z+ awy®) {xhi — zhe + 22hs + (£22 + ary®) A,
+  (karzy" 4 mbyy™ ) As + 245}
+  (karzy®™ ™ 4+ mbpy™ ) {yhy 4 yhe + 22hy + (£22 + ay®) By
+  (kaszy* ™" 4+ mbmy™ 1) By + 2Bs}

+22 {2hy + yhs + hy + (£20 + axy")Cy + (karwy* ™ + mbny™ ")Co + 205} .

Thus, we obtain mod TQCOy,: z* = 0. Also,
+22% + apzy® + karzy® + mbny™ =0 (5.1)

and
F22% — apzy® + kagxy® + mbny™ = 0. (5.2)

The equations (5.1) and (5.2) yield that

kapay® + mbny™ =0, (5.3)

and



CHAPTER 5. QUASI CONE SINGULARITES 119

. 1 .
£220% + apayt =0 = 0? = :Fﬁcakwy’“. (5.4)

Also, we have
(£20 + apy™)? = 42® + dagay® + 2y® = 0. (5.5)

Substitute «? from the equation (5.4) in the equation (5.5) to obtain

%

. . 1
+2apzyt + 0y = 0= 2yt = :Fiakyz’“. (5.6)

Substitute zy* from the equation (5.6) in the equation (5.3) to get ¥** =0 and
y™ = 0. This yields that 2y* = 0 and 2* = 0. Thus, there are solutions for the
homological in the simplified case.

Notice that the germ #2% a2 & 2y* & y™ can be written in the form %22+ (2 +
yk)2 + ,ym_
Also, note that 2z = 0 and yz = 0. Hence, the local algebra Q = C,, ./TQCO

is generated by the monomials 1, z,y, 4%, ...,y™ ! and , zy, ay?, ..., zy*L.

iii. If m = 2k and Faf + 4bm = 0, then I" takes the form F' = +2% &+ (z &
2axy®)? + a1 (y) + da(y) where h(y) € M and ba(y) € M2+ Suppose that
gg(y) = dsy°-+p(y) where s > 2k+1 and ¢ € MEHL Then, F is quasi cone equivalent
to the germ =22 + (@ £ y*)% £ y*. To prove this claim, consider the tangent space to
the quasi cone orbit at fo = £2% & (x + @py*)? + d,y® where @ = $a.

TQCO;, = £2(x+ay®) {whl — xhy + 2zhg + (v + Gpy®) Ay + y° 1 Ag + ZAg}
+ [ E2apky* " (@ + Gey®) + sdey® ] {yhi + yhg + 22hg + (2 + Gry*) By
+ ',ljs_lBQ + ZB;:,} + 22 {Zhl + 'yha + fl,'h4 -+ (’L + &'kyA)Cl + ys“lC’z I 203} .

We have mod TQCOy, : 22 =0, 2y =0 and 2o = 0. Also,

+20% £ Gy £ 20 kay® + 28, ky* + sdyy® =0, (5.7)
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and
F20” F Gpy” £ 20 kay® & 20 ky® + sd,y® = 0. (5.8)

The equations (5.7) and (5.8) yields that

22 Ayt = 0= 2% = —Gayt, (5.9)
and
+2akry" + 262 ky™ + sdyy® = 0. (5.10)
Also, we have
(x + apy™)? = 2 + 2may”® + T2y = 0. (5.11)

Substitute 22 from the equation (5.9) in the equation (5.11) to obtain
oyt + Gy = 0= ayh = —gh. (5.12)

Now substitute zy* from the equation (5.12) in the equation (5.10) to get y° = 0.
If we use the two relations (5.9) and (5.12) in the local algebra A = C,, ./TQCOy,,
we see that the monomials

wr o2 k=1 2 -1
Liz,ay,zy”, . 2y 9%, .00

form a basis for A.

3) Consider the germ I = =£2z? &+ (z £ y)® + po(y). Suppose that a(y) =
esy® + Pa(y) where s > 3, es # 0 and P, € M3*. Take the tangent space to the
quasi cone orbit at fo = 2% + (2 +1y)?+ e,y®. Then, the proof is a special case from
2)-iv when k = 1. Hence, we get the classes +2z? & (2 4 y)? 4= y® where s > 3.

4) Finally, consider the germ F' = 422 :I:yz:bz2+3:ﬁ1(wl)+y§2(11)1)+zﬁ3(wl)+
Hy(wy), where Hy, H,y, Hs € M2 and H, € M.

Following similar methods to the last case in the proof of quasi cusp classification

theorem, consider the equivalent deformations form

Gy = H(z+ Hi(w,0))? £ (y + Hy(w,8)) % (2 + Ha(w, £))? + Ha(w).
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Let A = @+ Hi(w,t), B = y+ Hy(w,t) and C = z + Ha(w,t). Then, the
homological equation takes the form:

e
ot
Consider the subspace T*QCOg, C T'QCOg,

= —2(AH, + BH, + CHs] + Hy = TQCOg,. (%)

T
T*QOOGt = A 11 hgffl + 21[[3]13 + 2915{_1.‘/0 4 %m:l
- awl 6’(1)1
L+ B ]11+712[_12+2H3h4+2%%+af'f4V2
L2 Ow, dw;
+ C |hH; — hsHy — haHy + 28H3V0 + 0H, Ifé}
- Ow Odw,
0H,
+ Ew_lvz)a

for some smooth functions fy (w), ho(wy), ha(wy), hy(wy), Vi(wy, A, B, C) and Vy(w).

Let Hy = apw* + ..., I‘IQ=,6,{LU"11+...,H3=’}’;€’!U{C+... and Hy = quw’ + .. ..
Assume that at least some of the coefficient o, 8., vx and §; are non-zero.

If I -1 < m,n,k, then working for example with the initial coordinates we get
the simple classes a2 & y? 4 22 & w' where [ > 3.

For the sake of simplicity, we describe here only the lowest case like m = 2.
Consider the germ I 223 = £(2 + w?)? £ (y + Bow?)? & (2 + v2w?)? + dswi.
‘T'hen, we obtain mod 1T*QCOp,,, ,
Ssw?AVi(w) =0, dsw; BVa(w) =0, Sw?CVa(w) =0,

303w3 + 4wy A + 40, Bw; + dyyw, = 0.

Multiplying the last relation by w; yields that the deformation AF, + BH, +
CTl3+ Hy is contained in the space T*QCO0Op,,,,. Hence, we obtain the simple class
Toos : I = £(x +wl)? £ (y£w?)? + (2 £ w?)? +w?. Notice here that if we consider
the function I = +2® &+ y? & 2% + Jw?, then we get the same conclusion. That is
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the deformation AH; + BHy + CHs + H, is contained in the space T*QCORy 4,4
Therefore, the simple class 75923 can be reduced further to the form F = +x +y? 4
22w,

Now assume that [ > m,n,k and consider the germ Fy224 = £(x + cewi)? £
(Y + Bow})? & (2 + 1wi)® + dqwi. Then, we obtain mod T*QCOp, ,,., :

A B
Eaz'wz + Eﬁz‘w?‘ + Cyw? =0, (5.13)
—A B
—w? + =Fyw?* = 0, (5.14)
2 2
2Avw* — Clyw® = 0, (5.15)
2Bvw? — Casw? = 0. (5.16)

These relations corresponds to /1, ha, hg and hy. Multiplying the equation (5.14)
by —1 then adding the equations (5.13) we obtain

Acyw? + Cyw? = 0. (5.17)

Adding the equations (5.13) and (5.14) we get
0+ BBw? + Cyw? = 0. (5.18)

We can put the coefficients of the relations (5.15),(5.16),(5.17) and (5.18) in the
following matrix

az 0 2% 0
M= 0 B O 272
T2 Y2 —f2 —wo
Notice that the matrix M of second order terms has 3 rank when agf; + 272 # 0.
Call the set of points in the space of coefficients «y, B2, v2 given by the relations above
and defined by the equation {aefs + 272 = 0} - the dual cone . Consider now the
generic case. That is the points (i, B2, ¥2) with apfs -+ 272 # 0.
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Lemma 5.1.6 The germ G = £(z+awi+... 2y + fowl+... )2 £(z+pwi+
)2+(52 wi-t. .. is simple and is equivalent to the either I' = £a24y?+(z-+w?)?+uw!
or F = +(z+ wl)z + (yFw3)® £22+wi. Here... denotes terms of higher degrees.

Proof.

As the rank of the matrix M is 3, the four relations (5.15),(5.16),(5.17) and (5.18)
yield that the space T*QCOg, contains the second order terms Aw?, Bw? and Cw?.
Moreover, the relations

ASquwiVy =0, BSwiVy =0, CoudVs =0,

and
2(,1{2LU1A + 2ﬁ2 wlB -+ 2’)’20 + 454(1}1 =

give the complete solutions for the respective homological equations. Now if the
point P = {a2,72, B2) lies outside the dual cone, then P can be reduced to (0,0, 1)
which gives the first form. If the point P = (ag, 72, ;) lies inside the dual cone, then
we can reduce P to (0,0, 1) which gives the other forms. The lemma is proven.

Assume now that (e, G2, 72) belongs to to the dual cone a8z + 272 = 0.

Lemma 5.1.7 The linear span of the columns of the matriz M (the images of M D
where D € R? is a column vector) coincides with the tangent plane to the dual cone
at the point (¢, B2, 72).

Proof. Take a curve t +— (g = ws(t), Bz = Ba(t), 12 = 72(t)) lying on the dual cone
2B + 272 = 0. The derivative equation takes the form

Gy + azﬁz + 2v9%9 = 0. (%)

Take for example the column vector D = (1,0,0,0)7. Then MD = (a2, 0,7)? =
(&, Bg, ¥2). The vector M D satisfies the relation (*). This means that the columns
of the matrix M span the tangent plane to the dual cone at (v, F2, ¥2).
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Lemma 5.1.7 implies that the germ G = +(z + apw? + ...)? &+ (y + Bow? +
L2 (2 4w+ )2+ Swi 4 ... is simple and is equivalent to the germ F =
e +wi)? £ y? £ (z+ w?)? L wi.
We sum up our observation geometrically. The classification of the germ G =
a4+ muwlit. P EY+Gwi+. )2 E@+pwit. . )+ dbw! +... with ﬁz,z,u
being the principal part splits into the following classes

+a? P 4 (2 4+ w?)? + 2

t(z twi)? £ (yFwh)? £22 +ul

+(z+wd)? £y + (2 +wd)? L wl
Following similar arguments we arrive increasing orders to the following classes
LY da?+y?+2%2+w wherel > 3;
2. Wiyt 22 2y (z+wh)2£2 1>k
3. Qi @xuwl)? =y FuP)?L£22+uwl, I>m>2;
4 Vipg o E@+wl)? 22+ z+wp)? twl, [>n>m,
which depends on natural values of m,n, k and k.

The theorem is proven.

The proof of the theorem yields the following

Proposition 5.1.8 The formulas of quasi cone versal deformations of the simple

quasi cone classes are listed as follows:
1. 7322 :l:w2iy2iz2+/\0+)\12‘

k—1
2. Py Y L2430 N2, k>3,

=0
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S

k=1
Op: Ha+y)PE2Lyb+pe+y24+ 3 Ay, k> 3.

i=0

. Sk i(L+JA)2iz21y"’+7z+Zuzby + Z Ny, m>k>2

=0 J=

Vi katky?L2? iw1+21w1+2yw1+2zw +Zw1, where 1> 3.

p=0 g=0

Wh, o a?Ey?t(z4wt)? :I:wl—l—z :Lw1+z yw1+z 2w —|—Z wi, wherel > k.
=0 =0 p=0 g=0

-1
Qi t@xw!) £ (yFul)£22 iw1+2ww1+2yw1+2zwl
=0 =0 p=

1-2
Srwi, I>m>2.
q=0

Vgt E{e+wl)? 92 £+ (2 +wP)? £ wb + E awt -+ Z yw! + Z P
=0 =0 p=0

-2

Swi, Il>n>m.

g=0



Chapter 6
Quasi flag singularites

In this short chapter we outline another useful type of similar non standard classifi-
cations. Instead of hypersurfaces we can consider sets of nested smooth submanifolds
called flags. We consider two easiest cases.

Consider the space R” = {w = (x,y,2)}, where & = (21,22,...,%Tn_2) € R*72
and (y,2) € R?. Also, consider the lag R* D> P = {y =0} D B, = {y = 2 = 0}
and call it a complete flag. Let R D P, = {y = z = 0} be a flag defined by a single
stratum. It is called a non-complete flag.

Definition 6.0.1 Two function-germs fy, fi : (R, 0) — R are called pseudo com-
plete flag (pseudo non-complete flag, respectively) equivalent if there exists a diffeo-
morphism © : (R”,0) — (R™,0) such that f; 0 © = fy and if m is a critical point of
fo and it belongs to the flag P, D P, (P, respectively) then ©(mn) also belongs to
the flag P, D Ps (P, respectively) and vice versa.

Remark: Notice that the diffemorphism © does not need to preserve the flag but
need to shift the critical points lying on components of the flag along the components.

Suppose we have a family f; of function germs which are pseudo-equivalent such
that f; 0 ©; = fo,t € [0,1], where ©; : R® s R” is a family of smooth diffeomor-
phisms. Then the derivative equation takes the form:

_Of _Ofiy Ofiy, | Ofi,
T 8::;X+%1 + =72,

126
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and the components of the vector field v = X % + Yg% +Z % satisfy the following
condition: for pseudo complete flag equivalence:

X € Cuyur , Y € {yCoypy + Rad{I}},
Z S {ycw,ﬂ 2t T ZCm,y,z,t -+ Rad{f}},
and for pseudo non-complete flag equivalence:
X €Cuyut » Y €{yCuyoi+2Csy ., + Rad{I}},
Z € {yCopyzs + 2Cuy . + Rad{I}},
where [ = %, %—J;t, %J}}

As usual we need to replace Rad{I} by the ideal /. Hence we get the improved
definition:

Definition 6.0.2 Two function germs fo, fi : (R®,0) — R are called quasi complete
flag (respectively, quasi non-complete flag) equivalent, if they are pseudo complete
flag equivalent (respectively, pseudo non-complete flag) and there is a family f; of
function germs which continuously depends on parameter ¢ € [0, 1] and a continuous
piece-wise smooth family of diffeomorphisms ©; : R — R"™ depending on parameter
t € [0,1] such that f; 0 ©; = fy, Oy = id and:

1. For the complete flag case:

X E Cm,y:z’t’ Y € {ycx’yazvt + I}’ Z S {yc-’b‘,y,Z,t + zc:v,y,z,t + ]}

2. For non-complete flag case:

X S C:v,y,z,t: Y S {ycm,y,z,t + ZCm,y,z,t "l‘ I}, Z < {yCm,y,z,t =+ Zczv,y,z,t + I}

The family ©; will be called admissible for the family f;.
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6.1 The classification of simple quasi flag singu-

larities

The quasi complete flag singularities outside the flag P, D P, coincide with standard
right ones. Hence, the classes Ay, D), and Ej, form the simple quasi complete flag
classes in this case. If the function germ has a critical point on Py — Py, then
the quasi complete flag equivalence coincides with the quasi boundary equivalence.
Hence, the simple quasi boundary classes By, and F},; form the simple quasi complete
flag singularities.

Similarily, the classification of the critical points outside P, with respect to quasi
non-complete flag equivalence coincide with the classes Ay, Dy and Ej.

Thus, in what follows we shall consider the case when the critical point lies in the
intersection of the spaces /% and P, and the case when the critical points lying on
P, to discuss the remaining quasi complete flag singularities and quasi non-complete
flag singularities, respectively.

Let f: (R*,0) = R be a function germ with a critical point at the origin. Recall
that the quasi complete flag tangent space takes the form:

n—2
0 0 0
TQCF; = afA + a;t {yBl—l— afD1+ af }

i=1

of / af
+az{ZBz’|“‘yB3+a—D3+8 },

for arbitrary smooth functions 4;, B; and D;.

The quasi non—complete flag tangent space is given by the formula

n—2
TQNF; = gf

A + = f {yBl +ZB2 -+ ngl + 8fD2}

of f af
+8—z"{y33+234+8—173+8 }7

for arbitrary smooth functions A4;, B; and D;.
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Notice that the quasi corner tangent space with respect to the corner {yz = 0}
is contained in the quasi complete (non-complete) flag tangent space.

Denote by f*(z) = fi,_., , the restriction of the function f to the x coordinates
subspace. Denote by 7* the rank of the second differential dZ f* at the origin and set
c=mn—2-7" Let 7 be the rank of the second differential d2f and k = n — r the
respective corank.

The quasi partially fixed tangent space is contained in the quasi complete (non-
complete) flag tangent space. Hence, we use Lemmas on partially fixed equivalence

to obtain prenomal forms up to quasi complete (non-complete) equivalence.

The following Lemma describes the main prenormal forms of quasi complete and
non-complete flag singularities,

Lemma 6.1.1 1. Ifk =0, then f is quasi complete(non-complete) flag equivalent
n—2
to S a? £y 4 22,
i=1

n—2
2. If k = 1, then f is quast complete(non-complete) flag equivalent to Z a? +

i=]

n—=2
g(y, z), with rank d3g is 1 or to Zz ta?ty’ 22+ g(21,y, 2) whereg € ME, .
i=
3. If k = 2, the [ is quasi complete(non-complete) equivalent to the germ G, =
S ka4 goly, 2) + Gy, @, v, 2) where g, is non-degenerate quadratic form
and g € M2 ..., or Ga = S22 4a? + go(y, 2) + G(w1,y, 2) where g is

degenerate quadratic form of corank one and § € M3, ., or G = Y17 +a?+
g(y, ) where § € M3

Y2’

Proof. The Lemma is proven using Lemmas 1.3.13 and 1.3.14. ]
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We start with classifying quasi complete flag singularities.

Lemma 6.1.2 If k > 2, then f is non-simple with respect to quasi complete flag

equivalence.

Proof. As k > 2, Lemmas 1.3.13 and 1.3.14 yields that f is quasi complete flag
equivalent to one of the following function germs:

1. [ = Zliif+1 +2? + fo(y,2) + f(ml, T2,..., Tk Y, 2) where h is non-degenerate
form, or
2. F. El_k +22 + fuly, 2) + f(:vl,xz, ... y@k_1,Y, 2) where h is degenerate form

of corank 1, or

3. F3=Z? o ta? +f{b1,L2,.. , Lk Q,J,z)whelefEM

X124y U 24Uy 2

Consider the germ F;. The tangent space to the orbit at fis given as follows:

k-2 ~ ~ ~
__ 3f f f af af af oFf

The cubic terms in the tangent space are obtained from Zf_‘f g{iA,, Yo Bf By,

f 5By and ¢ J Ba These subspaces form together a k(k—2)+3-dimensional subspace
Wthh is less than the dimension M = (k—“-)gt”—“l— of all homogeneous cubic terms of
the variables: @1, %2, ..., %s_2,y and 2. Hence, the germ F} is non-simple with respect
to quasi complete flag equivalence.

The germ fy(y, 2) + f in F, can be written as faly, z) + f = +(ay + bz)?
f(w'l,wg, oy h-1,Y,2). The germ Fy is adjacent to the germ G = F(ay + bz +
Szp-1)? + [(21, 22, ..., T, ¥, 2z} for sufficiently small §. By stabilization lemma, G
is quasi complete flag equivalent to the G = +ai | + Ffl@s, @2, ..., X2, , 2). The
germ G is non simple with respect to quasi complete flag equivalence.

The germ [} can take the form Fy = ay? + b2? + f(:cl,wz, oy &y Y, 2). The
germ f; is adjacent to the germ G = a(y + dyax)? + b2? -+ f(:vl,wz, cey Ly Yy Z)
for sufficiently small §;. Stabilization lemma yields that G is quasi complete flag
equivalent to the germ G = +2? + b2? + f(:cl,xz, oy Teo1, Y, 2). 1 we repeat the
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previous argument as before, we see that the germ G is adjacent to the germ of the
form H = +u? a2 | + f(:l;l, L2, ..., Tk—2,Y,2). The germ H is non simple.

Lemma 6.1.3 1. The function germ g(y,z) of corank 1 is quasi complete flag
equivalent to either the germ 2% + 9y(y), where ¥ € Mz or to the germ
+y? 4+ 991 (z) + 2(2), where 9, € M? and 9, € M3,

2. The function germ +y® £ 22+ g(x1,y, 2) € M3 . s quasi complete flag equiv-

alent to the germ: Zy® + 22 4+ yhy (@) + zho(1) + ha(w1) where hy, hy € Mil
and hg € M3 .

Proof.  In fact, the reduction can be done by restricting the quasi flag complete
tangent space to the subspace which coincides with the quasi corner tangent space
with respect to the corner {yz = 0}. Hence, up to permutation between y and
z, the function germ g(y, z) is quasi complete flag equivalent to either G(y,z) =
+(z £y)? + ¥y), where ¥ € M3 or to the germ G = £y? -+ yd(2) - Uo(z) where
¥ € M2 and ¥, € M2,

Now consider the quadratic form Gy = %(z £ y)? of the function germ G(y, z).
Take the family G; = #(z & ty)?, joining G5 and Gy = £22. The homological
equation takes the form:

+2y(z £ty) = £2t(2 L ty){y By + (2 £ty) D1} £ 2(z £ ty){2 By + yBs + (2 + ty) Do}
Equivalently, this can be written as:

Thus, the homological equation can be solved by setting By = By = Dy = Dy =0
and B3 = +1. Hence, all G; are quasi complete flag equivalent. Thus the germ G
can be reduced further to the form G = 22 + ¢, (v).
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Theorem 6.1.4 A simple (with respect to quasi complete flag equivalence) function
germ f . (R*,0) — R with a critical point at the origin is quasi complete flag
equivalent (up to addition with a quadratic form in some extra variables x) to the
germ of one of the classes :

1. By, 22 £k, k>2 k+1,
2. Frm £(y£25)2+y™  m>km>3,k>2 m+ k,
8 Byt £y £ aT)2 £ (zxaP)? L2k, k>n>m m+n+k—1,

and therefore has corank 1 of the second differential. The orbit codimension in the
space of germs is shown in the right column.

Remark: All germs with corank greater or equal 2 of the second differential are

non-simple.
Proof of Theorem 6.1.4

The proof of the theorem is based on restricting the quasi flag complete tangent
space to the quasi corner tangent subspace and Lemma 6.1.3. Thus, we get the

classes:
1. iy, z) = £22 £ y*, k>2,
2. Fy(y,z) = £(y & 2%)% £ ym m>km>3k>2,
3. Fy(y,z,21) = x(y£a™)? £ (z£aP)?+ak, k>n>m.

The quasi complete flag tangent space to orbits at F is

TQCFr,

i

[£2(y & 2*) = my™ | {yB; + [£2(y £ 2") £ my™ 1] B,
[£2k2" "y & 2%)] By} + [H2k2"1(y + 28)] {2D1 + y D,
[£2(y & 2*) £ my™ Dy + [£2k2" "y £ 2%)| Dy} .

or equivalently

TQCFp, = [+2(y & 2*) £ my™ {y By + 2* By} + [£2k2*"(y & 2)]{y B3 + By}
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Notice that the space TQC Fp, coincides with the quasi corner tangent subspace at
Fy. Similarly, the space TQC I'g, coincides with the quasi corner tangent subspace
at the same germ Fj. Thus, the germs F, F; and F3 form the list of simple quasi
complete flag classes.

Proposition 6.1.5 The quasi complete flag miniversal deformations of the simple
classes from the theorem can be chosen in the following form:

1. By : £2%2 &+ y’“ + A1z + Ek_l ﬁiyi,

i=1
2. Frm : 2(y 25+ 5 Nz)2 £ 2m Z;":Bl iz
8. Ml £y £ + 300 At 4+ k(2 £ a? + Sre mgad)? Eak + 07 Bl

Proof.  As the quasi complete flag tangent space to the classes Fy. ,,, and Hip, 1 co-
incides with the quasi corner tangent subspace at the same germs, the result follows.

For the classes By, let F1(y,2) = &2 & y*. Then, the the quasi complete flag
tangent space to the orbit at F, takes the form:

TQCFy = +ky*YyB, + 2By} = 22{2B; + yBy}.

Thus, clearly the monomials 1,z2,y,4? ...,y* ! form a basis for the local algebra

Co/TQCFr,.

We turn now to classifying quasi non-complete flag singularities.

Lemma 6.1.6 1. Ifk =2 and f is quasi non-complete flag equivalent to one of
the following germs,

(a) Fy =300 a2 + go(y, 2) + §(a1, y, 2),where g is a degencrate quadratic
form of corank 1 and g€ M3 or

T2
(b) Fy = Y2422 + go(y, 2) - G(z1,29,y,2) where go is non-degenerate
quadratic form and § € My, 4y 4.z,
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then f is non-simple.

2. If k > 3, then f is non simple.

Proof. Consider the germ £y = Y7242 + go(y, 2) + §(21, 9, 2) with go is a
degenerate quadratic form in y and z and § € M3 . Let G = go(y, 2) +§(z1, 9, 2).
Then, clearly the germ g, can be reduced to 32, up to permutation of y and z. Thus,
The quasi non-complete flag tangent space to the orbit at G = +y2+g(wy, v, 2) takes

the form:

dg dg dg dg
L .99 y+2p
TQN F T, Ay + (£2y + ay) {yBl + 2By + (£2y + By) 3 + 82)84
g ., 0g dg
+ 35 {yc’l + 202 + (29 + ay)Ds + az)D4}

Comparing the dimension of cubic terms in 2 and z in TQN Fg with the dimen-

sion of all homogeneous cubic terms, we see that germ is non-simple.

Let Fy = 302 £a? + g, (y, 2) + §(z1, 22, U, z) with g» is non-degenerate quadratic
forminyand zand g€ M3 . . Set G = go(y, 2) +§(1, 2, ¥, 2). Then, G can be
reduced to the form G = +y?+2%+g(x1, 22,9, 2). The germ G is adjacent to the germ
H (w1, y, z) = £y® £ (2 + 022)? + g3(w1, 2, v, 2), for sufficiently small 8. Stabilization
Lemma yields that the germ H can be reduced to the form: H = ty? a2+ hie, y, 2).

Similar argument as the first part of the proof we see that H is non-simple,

Now, suppose that k > 3. Then, using Lemmas on partially fixed equivalence,
the germ [ is quasi non-complete flag equivalent to one of the following function
germs:

L Fy= Y000 22?2 4 ga(y, 2) + §(@1, %o, - . ., T, y, 2) Where gs is non-degenerate
quadratic form and § € M

3 .
T13T2y0 0y T fe Y27 or

2. Fy = ST 2 402 + 9oy, 2) + (@1, ®ay ..., Tx_1,1, 2) where g, is a degenerate

quadratic form of corank 1 and § € M3

: X ) T
T1,82,5-y Tl — 1, 4,2 0

3. Fy =302 42?4 G, 2, .. s Tx_2,Y, 2) where § € M3

T1,22500 T —2,Y,2°

Consider the germ F3. The tangent space to the orbit at § is given as follows:
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g

TQNF; = Z 89A i+3

oq %)
{1131 + 2B, + gBa + 934}

dy o}

o5 o5 o5
+aZ {ZBE, +yBy+ 8_7JBB + 5237} .

If we compare the dimension of cubic terms in 2y,@s,...%k-2,y and z which
belong to TQN Iy with the dimension of all homogeneous cubic terms, we conclude
that germ is non-simple.

The cubic terms in @4, x5, .. I)k_g, y and z which belong to T'QN I are obtained
from Z:’ 12 gf Ay ayBl’ Yae %p, 2% 5 2B, and ¢ Y ag Bs. These subspaces form together a
k(k — 2} + 4-dimensional subspace which is less than the dimension M = (L—H—M
of all homogeneous cubic terms of the variables: 2y, 2o,...,%r-2,y and 2. I—Ience
cubic terms can not belong to finitely many orbits.

The germ F, can be written in the form I = i(uy+bz)2+f(:ul, Loy ooy Bho1, Yy Z).
The germ F is adjacent to the germ I = :I:(ay+bz+6a;k_1)2—|—f(:c1, Loy ooy Lhe1, Yy 2)
, for sufficiently small §. By stabilization lemma, the germ H is quasi non-complete
flag equivalent to the germ +a2_, + f(21, 2, .. ., Zt—2, ¥, 2) Which is non simple by
the previous argument.

Finally, the germ F} can be reduced to iy = ﬂ:yzzlzzz-i-f(wl, Loy ..oy g, Y, 2). The
germ [ is adjacent to the germ H = +(y + 6xp)? £ 22 + f(wl,wg, ce Ty Y, 2) , Tor
suﬁiciently small §. The germ H is quasi non-complete flag equivalent to the germ
H= A +f('Ll, T2, ...,Tr_1,Y, %). If we repeat the previous argument as before,
we see that the germ Fy is adjacent to the germ +a? +a?_, +f(le, Xoy .oy Tho2, VY, Z)
which is non simple.

Lemma 6.1.7 The germ G = +y? £+ 22 + g(ml,y,z), where g € M3, . is quasi
non-complete flag equivalent to the germ G = +42 4+ 22 + yhy (@) + zho (1) + halay)
where i, hy € M2 and hg € M3,

Proof.  The Lemma is proven by restricting the quasi non-complete flag tangent
space to the quasi corner subspace. I
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Theorem 6.1.8 A simple (with respect to quasi mnon-complete flag equivalence)
Junction f : (R™,0) — R with a critical point at the origin is quasi non-complete
flag equivalent to the germ of one of the classes (up to permutation of y and z, and
stabilization in x),

1g(y,2); g€ Ay +2MNk>1, Dy:2y+yt Lk >4,
Ee:23+y*, Er:2%+ 208, Eg:2®+y5,

2 Hppp t Ry £k (cxa))? £ k>m>n E+m-+4n—1

Remarks:

1. The codimension of the classes y(y,z) is equal to the codimension of the
standard Arnold’s singularities: Az, D), and Ej, plus one.

2. The codimension of the classes H,, ,, . is equal m + &k +n — 1.

Proof of Theorem 6.1.8

Lemmas 6.1.6,6.1.7, 6.1.1 and 6.1.7 yield that we need to consider the germs of
the form G = g(y, 2), with rank djg is 0 or L and Gy = £y?£22+yhi (1) +2ha () +
hs(x1) where hy, hy € Mgl and hs € Mfz.l to discuss simple quasi non-complete flag
singularities.

Let f; : (R?,0) — (R, 0) be a function germ in the variables y and z. The tangent
space to the orbit at the family ﬁ is:
O of , . 0f, | of Ofc 5, 0fi

TQNF]’C; = % {yAl + ZAQ + EJA;} + 5—!}1‘14}—}—% {yB1 + ZBQ + 3351.]33 + EB[_L} .

Notice that TQNF'; coincides with the module {%—’Zj, %’z—‘} over M, .. This module
is the standard tangent space with respect to right equivalence without constants
terms. These terms does not affect on the classification of standard simple classes
but makes difference in calculating the codimensions. Hence we get the simple classes

Ak, Dk, E@, E7, and Eg.

Now consider the reduced germ which is obtained in Lemma 6.1.7. Again, if we
restrict the quasi non-complete flag tangent space to the quasi corner subspace, then



CHAPTER 6. QUASI FLAG SINGULARITES 137

the classes: Hyynp : (y £ 27)? & (2 £ 27)% £ 28, with k > m > n form the simple
quasi non-complete classes in this case. In fact, the quasi non-complete flag tangent
space of the classes H,,,x coincides with the quasi corner tangent subspace. The
theorem is proven.

6.2 The caustics and bifurcation diagrams of sim-

ple quasi complete flag singularities

The bifurcation diagrams of quasi complete flag singularities consists of three strata.
The first stratum is the ordinary one given by the equations: —%’f; = (O and F' = 0. The
second stratum is a subset of the first one which satisfies an extra equation: y = 0.
The third stratum is a subset of the second one and satisfies an extra equation:

z=0.

Similarly, the caustics of simple quasi flag complete singularities consist of three
strata. The first one is the ordinary one. The second and third ones are the projec-
tions to the reduced base of the deformation of the second and third strata of the
bifurcation diagrams described above.

Proposition 6.2.1 e The first stratum of the bifurcation diagram (caustic) of any
simple quasi flag complete singularity is a cylinder over the generalized swallowtasl.

e In particular, the first stratum of the bifurcation diagram of the class +2? & 93
is the product of a cusp and a plane in RY. The second stratum is a smooth surface
inside the first one. The third stratum is a line inside the second stratum. The second
and third strata are tangent to the cuspidal edge.

o The first and second strata of the caustic of the class £2* £ y3 are smooth
tangent surfaces in R® and their intersection is exactly the third component.

o The caustic of £z2 £ y* k > 3 is a union of a cylinder over a generalized
swallowtail and smooth hypersurefaces and (k — 2)-dimensional space. The second
and third strata are tangent to the first one.
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o The caustic of the class &=(y4=2")242™ is a union of a cylinder over a generalized
swallowtail and a generalized Whitney umbrella times a line and a (k + m — 3)-
dimensional space.

e The caustic of the class :(y & 27)? £ (z £ 2%)? L aF is a union of a cylinder
over a generalized swallowtail and a generalized Whitney umbrella and intersection

of two generalized Whitney umbrellas.

Proof.  The proof is based on the proof of describing the bifurcation diagrams and
caustics of simple quasi corner singularities. Mind that, we need to add an extra
equation to one of the strata of the bifurcation diagrams ( or caustics) of simple
quasi complete flag singularities. Thus, the proof for the first five statements are
straightforward.

For the classes Hy, ., consider the miniversal deformation

m—1 n—1 k—2
F=dHy+al+ > \al)? +t(zal + > pial)? b ak+ > Bl
i=0 =0 (=0

We will construct the third stratum of the caustics of F.

Let Pi(y,z,21,A) = y £27 + 3.0 Mo, Paly, 2,1, 10) = 2 & a} + Z;Z& L2
and Q = b + Zf;g Bt Thus, we get the dervatives g—f = 2P (y, z, 1, A) = 0
and g—f = 2P (y, 2,41, 1) = 0. Hence, we obtain g—% = Q(w1,8) = 0. Therefore,
the equations P(0,0, 21, A) = 0, (0,0, 23, 1) = 0 and Q(z;, 3) = 0 define the third
component of the caustic which is an intersection of a cylinder over the generalized
Whitney umbrella Wy = {P(0,0,21,\) = 0, @(fvl,ﬂ) = 0}, and the generalized
Whitney umbrella W, = {£%(0, 0,21, 1) = 0, @(wl,ﬁ) = 0}.



Chapter 7

Applications and invariants

7.1 Lagrangian projections with a border
We recall some standard notions on Lagrangian singularities [1]. All the standard
materials in this chapter are from [2]. We srart with basic definitions.

Let M be a smooth manifold. At any point p € M, a k-form « is defined to be

an alternating multilinear map

a : T,M x - x T,)M — R,
%

where T, M is the tanget space to M at p.

The wedge (or exterior) product of k—form « and I- form 8 is a (k + I)—form
denoted by A B. If k = [ =1, then a A 8 is the 2-form whose value at a point p is
the alternating bilinear form defined by

(@A B)p(v, ) = (V) By(w) — ctp(w)By(v),

for v,w € T, M.

Assume that @, ws, ...z, are local coordiantes on M, then the k— form ¢ takes
the expression « = >, fidx;. Here I stands for a multi-index (1,4, ...,4;) and
dzy = dxy, Adrg, A+ Nday,.

139
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If f is a O-form, that is a smooth function, then we define df to be the 1—form

. n Bf

Suppose that o = 3", frda; is a k-form and each component f; is a smooth
function, then we defin da to be (k 4+ 1)— form

do =" " dfy Adar.
I

The operation d is called exterior differentaion.

Definition 7.1.1 A symplectic form w on an even dimensional manifold M?™ is a
closed differential 2-form which is non-degenerate (as a skew-symmetric bilinear form
on the tangent space at each point). A manifold M equipped with a symplectic form
is called symplectic.

The non-degeneracy condition means that for all p € M there does not exist
non-zero v € 1, M such that w(v,w) =0 for all w € T, M.

The skew-symmetric means that for all p € M we have w(v, w) = —~w(w,v) for
all v,w € T,M. Recall that in odd dimensions skew-symmetric matrices are not
invertible. Since w is a differential 2-form the skew-symmetric condition implies that
M has even dimension. The closed condition means that the exterior dervivative of
w is identically zero.

Remarks:

1. In the above definition w™ is a volume form . This means that w” = dz; A
dxo N\ -+ A do, is an n-form.

2. If the form w is exact, w = d\, the manifold M is called exact symplectic.

Example 1: The basic model of a symplectic space is the vector space

K =R = {(Ih . -'a(Impl:"‘?pn}

with the form

A=pdg=> pdg, w=d\=dpndg.

i=1
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In these coordinates the form w is constant. The corresponding bilinear form on the
tangent space at a point is given in coordinates (¢, p) by the matrix

Example 2: The cotangent bundle 7*Q with coordinates ¢ in the base @ and p
is its dual coordinates on the fibers of thw projection 7 : T*Q — @ is a symplectic
manifold. Its symplectic structure is w = .| dp; A dg;.

Definition 7.1.2 A diffeomorphism ¢ : M; — M, which sends the symplectic struc-
ture wp on My to the symplectic structure wy on My,
Prwy = wy,

is called a symplectomorphism between (M, w;) and (M, ws). When the manifolds
(M;,w;) coincide, a symplectomorphism preserves the symplectic structure. In par-
ticular, it preserves the volume form w™.

Definition 7.1.3 A submanifold L of a symplectic manifold M is called isotropic if
the symplectic form induces the null form on it. That is wy, = 0.

Example 3: In the basic model example, the plane ¢ = g = const is isotropic,
as w=dA =" dp; A dgo; = 0.

Definition 7.1.4 The isotropic submanifolds of the maximal possible dimension
(equal to n, the half of the dimension of the symplectic manifold) are said to be
Lagrangian.

Example 4: In example 1: The isotropic submanifold is Lagrangian.
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Example 5:. A family of functions F(2;, \) depending on parameters (A, ..., \,)
defines a Lagrangian submanifold L in the cotangent bundle 7*Q (see example 2:)
by standard Hormander formulas for generating families [1] :

oF oF
L=<(A R*xR*:dz e R™, — =0, 0= — ¢,
{ovi e sern ST —0.,- 900
provided that Morse non-degeneracy condition ( the matrix [% a_i%%] is non-

degenerate) holds. The condition guarantees L being a smooth manifold.

Definition 7.1.5 Two family-germs Fi(z, q), = € RF, ¢ € R®, i = 1,2, at the origin
are called R-equivalent if there exists a diffeomorphism 7 : (z, ¢} — (X(z, ¢), ¢) (i.e.
preserving the fibration R® x R” — R") such that Fy = F} o 7.

Definition 7.1.6 Two family-germs F;(z,q), x € R¥, ¢ € R?, i = 1,2, at the origin
are called R -equivalent if there exists a diffeomorphism @ : (z, ¢) — (X(z, q), Q(q))
and a smooth function of parameters ©(g) such that Fy(z, q) = F1(X (2, q), Q(q)) +
©(q).

Definition 7.1.7 The family ®(z,y,q) = F{z,q) £ ¢y? £ ..., £y2 is called a stabi-
lization of £,

Definition 7.1.8 Two family-germs are called stably R-equivalent if they are R-
equivalent to appropriate stabilizations of the same family (in a lower number of
variables).

Lemma 7.1.1 [1] Up to addition of a constant, any two generating families of the

same germ L of a Lagrangian submanifold are stably R-equivalent.

Definition 7.1.9 A fibre bundle 7 : 2" — B" is said to be Lagrangian if the space
E' is equipped with a symplectic form and the fibres are Lagrangian submanifolds.
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Examples6: The cotangent bundle 7 : T*N — N, (p,q) — ¢ is Lagrangian.

Definition 7.1.10 Let v : L — E?" be a Lagrangian embedding and p : E** — B
the fibration. The product p ot : L — B is called a Lagrangian mapping (or
Lagrangian projection).

Definition 7.1.11 The equivalence of Lagrangian mappings is defined up to fibre-
preserving symplectomorphisms of the ambient symplectic space. So a Lagrange
equivalence is a commutative diagram

L -2, g ™ . B

les |e [es

L, -2, g _ ™, B

where 7; and 4, are embeddings , ©, is a symplectomorphism and 01, ©3 are diffeo-
morphisims.
Definition 7.1.12 The set of critical values
Yr={q€B|Fp:(p,q) € L, rankd(p o Y)|(pq < n}
form the caustic of the Lagrangian mapping pot : L — N.

Lemma 7.1.2 [1] Two germs of Lagrangian maps are Lagrangian equivalent if and
only if the germs of their generating families are stably Ry equivalent.

Definition 7.1.13 A Lagrangian mapping is said to be Lagrangian stable if every
nearby Lagrangian is Lagrange equivalent to it.
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Singularities of Lagrangian projections (mappings) are essentially the singularities
of their generating families treated as families of functions depending on parameters
and considered up to right equivalence depending on parameters and addition with
functions in parameters. In particular, the caustic (L) of Lagrangian submanifold
L projection coincides with the stratum of the bifurcation diagram of the generating
family F'(x, q) which is the collection of parameter ¢ values such that the restriction
F(-,¢) has a non-Morse critical point.

Stability of Lagrangian projections with respect to symplectomorphisms preserv-
ing the fibration structure corresponds to the versality of the generating family with
respect to the R.- equivalence group.

A pair (L,1') of a Lagrangian submanifold L* C M and an (n — 1)-dimensional
isotropic variety I' C L is called a Lagrangian submanifold with a border T'.

Projection 7 restricted to L defines the Lagrange mapping p of the pair (L,T.)
The caustic of a Lagrange projection with border is the union of the ordinary caustic
of L (being the set of critical values of p) and the p image of the border T.

The Lagrange projections of two Lagrange submanifolds with borders (L;, T;), i =
1,2 are equivalent if some symplectomorphism of the ambient space M preserves the
m-bundle structure and sends one pair (L;,T;) to the other.

The notions of stability and simplicity of Lagrangian submanifolds with border
with respect to Lagrange equivalence are straightforward.

Locally any Lagrangian submanifold of the cotangent bundle M can be deter-
mined by the generating family of functions F'(w, ¢) in variables w € R™ and param-
eters ¢ (satisfying Morse non-degeneracy conditions) according to standard formulas
which is given in example 5.

Up to a Lagrange equivalence we may assume that in a vicinity of a base point
the tangent space to L has regular projection to the fiber of 7 and the coordinates
p can be taken as coordinates w on the fibers of the source space of the generating
family.

Generating family is defined up to R.. equivalence. So having two Lagrange equiv-

alent pairs (L;, I';) we can choose generating family for one of those in coordinates
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(p,q) and the generating family for the second pair in transformed coordinates ﬁ(p)
so that the projection of I'y to p-coordinate subspace coincide with the projection of
T, to the P(p)— coordinate subspace.

Assume that I'; are borders. Rename the coordinates p by w and ¢ by A. Let
g9(w) = 0 be the equation of the border.

Now we get generating families Fj(w, A) for both submanifolds such that the
critical points of F; with respect to variables w at the set {g(w) = 0} correspond to
the Lagrangian border T';.

Hence, Lagrangian equivalence of pairs (L;,I;), ¢ = 1,2 gives rise to a R,
equivalence of the generating families F} which is a pseudo border equivalence and
addition with a function in parameters.

Moreover the following holds

Proposition 7.1.3 Let (L;, 1), t € [0,1] be a family of equivalent pairs of La-
grangian submanifolds with a border, then the respective generating families are quasi
border equivalent up to addition of functions depending on the parameters.

Proof.  We shall prove the statement when I is the union of two regular components
I, Iy which are mutually transversal in L.

Consider the family of Lagrange equivalences of L;, joining I,; and L,. Construct
a family of respective generating families f;(w, A) of L; which all are R.. equivalent:

Je (@e(w, A), Ae(X) = folw, A) -+ e(A)

and the critical points subsets {g—’;j = 0} correspond to the Lagrangian subman-
ifolds L;.

Notice that the gencrating families are pseudo equivalent since the critical points
on the corner remain on the corner. Differentiating the previous equation by ¢
provides

of of 0
T T aw™t Tt aA

where W = (2,9, Z1, .. . Zn—2).

As 4+ W (N),
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The components (&,7) of the vector field vanish at the critical points lying on
the corner xy = 0. Since the subsets {x = 0, %} and {y =0, %} are regular (due

to Morse non-degeneracy conditions), then by Hadamard lemma:

dfi
Bwi

& =zA(w,\) + Y 2—Bi(w, \),

- OFf ~
§= A, ) + 3 22 Bi(w, )

for some smooth functions A, Z, B;, Ei. This yields that all f; all are quasi corner +
equivalent as required.

This result and the classification of simple quasi border singularities imply the
following theorem

Theorem 7.1.4 1. A germ (L,T") is stable if and only if its arbitrary generat-
ing family is versal with respect to quasi border equivalence and addition with
functions in parameters.

2. Any stable and simple projection of a Lagrangian submanifold with a border is
symplectically equivalent to the projection determined by the generating fam-
ilies which are quasi border reduced-versal deformations of the simple quasi
border classes. In particular, any stoble and simple projection of a Lagrangian
submanifold with a boundary is symplectically equivalent to the projection de-
termined by one of the following generating families which are quasi- R+-versal
deformations of the classes from the theorem 2.1.6.

o By +uf +y% + My
[ Bk : ZL% + yk -+ Zf;ll /\i’yia k=3

o Fipt(y+af)? ol + S0 b + 0 pad,  2<k <l

Proof.  Suppose that the germ (Lg,T'g) is stable. Then for any germ (Z,f) close
(Lo, I'e), there is a Lagrange equivalence.

Assume we have a family (L, [';) of deformations of (L, ['g), with ¢ € [0,1]. Also
assume that there is a family of diffeomorphism &, : T*R™ — T*R"™ which preserve
Lagrange fibration and the sympletic form and maps L¢, 'y to Lg, .
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Consider families depending on ¢ of respective generating families G(w, \) of
L, Ty with t € [0,1] and Gy is a generating family of the pair Ly, I'y. Thus,

Gt (Q'ﬂt(w, )\), At (}\)) = Go('w, /\) -+ \Ilt(/\)

and the critical points subsets {%%£ = 0} correspond to the Lagrangian submani-
folds L;. By proposition 7.1.3, all G; are quasi border + equivalent up to addition of
a function in parameters. This implies , in particular, that Gy is versal with respect
to quasi border equivalence.

By reversing the previous argument we prove the reciprocal claim.

The second part is a consequence of classifying the function germs with respect
to quasi border equivalence. 1

7.2 Algebraic invariants of simple quasi border

classes

We start with a general construction which is useful in various settings of singularity
theory. It is very basic, however we could not find it explicitly in the literature.

Given the germ at the origin of a smooth mapping g : (R™,0) — (R™0), ¢ :
& +— Y(z), consider the local algebra Qu0 = C,/C,{Y1(),...,Y,(2)} being the
factor space of the space of germs at the origin on the source space. It is (up to
isomorphism) invariant under the right-left (and even contact) transformations of
the mapping. It was used by J.Mather [25] in his classical papers to classify nice
dimensions and stable map germs.

The subgroup of right-left diffeomorphisms of the target and source spaces pre-
serving some distinguished subset B C R™ (border) in the source space defines
isomorphisms not only between the local algebras @, but also between the ideals
Ip in the algebras formed by the classes in Q¢ of the germs of functions h(X) which

vanish on 5. The pair (4,0, Ig) will be called local pair for a mapping ¢ and a border
B.
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Apply this construction to the Lagrangian mapping associated to a family of
quasi border singularities.

Given a quasi border orbit of the germ f(w) with the border B, consider its versal
deformation F'(w,\) and the Lagrangian submanifold L given by the generating
family F. Consider also the submanifold

E={(w,)\):?f—é-%—/\—2=0}.

The Lagrangian projection of L is equivalent to the projection of L along w-coordinate

fibers. Let
OF (w, A)

Ow

be its subset corresponding to the boundary.

B={(w,\)eL: =0, weB}CL

Denote by @y, the local pair associated to (Z, E)

Remark: In fact, the definitions imply that Q) g remains the same not only for
different choices of versal deformation F but also for any deformations of f satisfying
Morse non-degeneracy conditions and R, equivalent to each other. The validity of
this claim is implied by the following. In fact what follows , the other definition of
the pair Q) p shows explicitely the claim.

The local pair can be defined equivalently as follows. Take the set of all functions
on given by

OF (w, )\)}
ow 7
Restricting to the set {\ = Ag}, we get the local algebra

AE = Czu,)\/{

8F(w A) OF (w, Ag)

QRro= Ain{)\on} =Cup/{—5— ow

)\ /\0} Cw/{ }

The set of functions § on L which vanish on the border gives rise to the ideal Ip
of the local algebra As;.

The proposition 7.1.3 implies that the local pair is the invariant of the border
orbit.
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Proposition 7.2.1 If f; and fo are quasi border equivalent, then their local pairs
are isomorphic.

Proof. Suppose that fi and f, are quasi border equivalent. Take Fiy(w, ) and
Fy(w, A) as versal deformations (with respect to quasi border equivalence) of f; and
J2, respectively. These deformations are quasi border equivalent. This implies that
the respective Lagrange projections of the two Lagrange submanifolds with borders
(L1,T) and (L2, T'y) (which are determined by the generating families of functions
Fi(w, A) and Fy(w, A), respectively) are equivalent. The previous discussion and
construction yield that the respective local pairs are isomorphic.

The classification of simple quasi border classes has a nice description in terms
of associated local pairs.

Consider the local algebra @4, = C;/{t*} = R{1,t,...,*"1} of the standard A,
singularity which is isomorphic to the algebra of truncated polynomials in ¢ of degree
k ~ 1. All ideals of @, are principle and form a discrete family I, = t°Qa,. Note
that:

Qa, 2L DLD- DI

‘The normal forms of simple classes yield the following

Proposition 7.2.2 The associated local pair of the simple quasi boundary singularity
By, is (Qa,, I1). The associated local pair of the simple quasi boundary singularity
Fyom 18 (Qa,, Ik.) The associated local triple of the simple quasi corner singularity
Hinmi consisting of the local algebra and two ideals corresponding to two sides x =
0, y =0 of the corner is (Qa,, In, I.). Forn =1 we get the triple of Fp ., and for
n=1,m =1 we get the triple of By.

Proof.  Consider the quasi boundary singularity By : a7 4 y**1. Its versal defor-
mation is F(#y,y) = 2 + y**1 + S8 My for k > 1. Firstly, we calculate the local
algebra QF,O:

or oFf
(95171, 3y’

QF:OZCUU’A/{ /\—/\0} g{l,y,yZ,.n,yk~l},
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where A¢ are constants.

Clearly Qpp corresponds to the local algebra @Q4,. The set of elements of the
local algebra Qpo which vanish on the boundary y = 0 is the ideal I; generated by
y. Thus, the associated local pair of the simple quasi boundary singularity Bj, is
Qa,, 11

For the quasi boundary singularity Fi . : (y + 2%)? + 27"*! with m > k > 2.

Consider its versal F' = (y 4+ «%)? + a7 + 37 Aad + E;:é piyal. Let T =

or oF o
{a—m, B A — Xo}. Then, similar argument as above shows that

Qro = {Lay,ad, ...}
which corresponds to @4,,. Notice that in this case we have
y-+af 20 modZ.
It follows that the set of elements which vanish on the boundary satisfies
a* =0 mod T.

This gives the ideal I}, generated by 2%. Hence, the associated local pair of the simple
quasi boundary singularity Fj, ., is Qa,., Jx-
For quasi corner singularities, start with Hmms 1 (@ + 272 + (y + 22)? + 25+

with & >m >n > 2. Let T = {&, %, g%:,/\ — Xo}. Then,

QF.O - Cﬂ:ﬂj,zl,}\/z = Ca:,y,:n/{:l: + Zin) Z/ + z?a z{b} = {13 Zl? Z:%r R} z{c—l}.

The corner 2y = 0 is a union of two transversal boundaries * = 0 and y = 0.

‘The elements of Jro wihch vanish on the boundaries z = 0 and y = 0 satisfy
"= 0modZ and 2= 0modZ,

respectively. They correspond to the ideals I, = {27", 2]*™,..., 25!} and I, =
{2, 27", ... 277"}, Thus, the triple Qa,, I, I, is associated to the simple quasi
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corner singularity Hm,,,; consisting of the local algebra and two ideals corresponding
to two sides @ = 0, y = 0 of the corner.

For the singularity Fp, ;. : (@ 4 y™)* + y**+! with k& > m > 2, notice that Fon ks
can be written in an alternative form (z +y™)% + y* + (21 + y)2. Consider the ideal
T={z+y™y*" n+ y}. It follows that the associated local triple of the simple quasi
corner singularity Fp, ;, is Qa,, Im, 1.

The calculation of the local triple of the By is straightforward.

Remarks:

1. The proposition implies that all these classes are distinct.

2. Notice that all other local gradient algebras of isolated function singularities
have continuous systems of principle ideals. For example Dy- type local algebra,
@b, = Cuy/{2* y?} contains a projective line of ideals of functions being multiples
of a fixed linear term « + By, where o, 8 € R.

3. Recall that the ideal structure of local algebras of simple function singular-
ities A,D,E can be represented by the graph of the shape similar to the standard
Dynkin diagram of the singularity. So the classification of local pairs with simple
Lagrange projections for all Lagrangian boundary pairs is (even for non-simple ones)
straightforward.

4. A homotopy of Lagrange equivalences of stable Lagrange mapping given by
miniversal deformation of an isolated funection singularity with itself induces the iden-
tity isomorphism of the local algebra [37]. This is the consequence of the uniqueness
of the analytic function representation by the class in the local gradient algebra.
Therefore, simple quasi border singularities can occur only for Ag-type local alge-
bras.

5. For simple classes the codimension of quasi corner or quasi boundary singu-
larity is equal to the sum of the dimension of local algebra with the codimensions
of the ideals ,—p and I, in the space of all principle ideals of the local algebra.
We conjecture that the formula remains true for arbitrarily quasi boundary or quasi
corner class.
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7.3  Quasi-contact border equivalence

The contact equivalence is an important tool to classify the singularities of so called

Legendrain mappings. For more details, see for example [1].

Definition 7.3.1 Let fo, fi : R® — R be smooth functions, then the two hyper-
surfaces fo = 0 and f; = 0 in R™ are called pseudo border equivalent if they are

diffeomorphic via a diffeomorphism which maps critical points of the first hypersur-
face belonging to a distinguished border I' to those of the second hypersurface also
in the border I' and vice versa.

The definition implies the existence of a diffeomorphisim 8 : R* — R” and a
smooth function H € C,, such that f; 0@ = Hfy and H(0) # 0, and if a critical
point ¢ of the function f; belongs to the border I' then 6(c) also belongs to I' and
vice versa, if ¢ is a critical point of f; and belongs to I' then #~'(c) also belongs to
['. The functions fo and f; are said to pseudo-contact border equivalent.

Recall that Vg,q(y,) denotes the set of vector field germs, each component of which
belong to the radical of the gradient ideal I of the function f, and V; denotes the
ideal of the algebra of germs of vector fields, each component of which belongs to
the gradient ideal / of the function f;.

Proposition 7.3.1 The tangent space to the pseudo-cntact border orbit f: R* — R
takes the form

[ 8f _
TCPr= fA+ Vi,

where A€ Cy andv =1, 2Ly, e Sp+ VERad(s,) -

i=1 Bwi

Proof.  The proof is the same as proof of proposition 1.2.2. ]

Similar to pseudo border equivalence, we modify pseudo-contact equivalence re-
lation to have better property with respect to parameter dependence replacing the
radical Rad{%} by the ideal {281 jtself in the definition of pseudo-contact border
equivalence.
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Definition 7.3.2 Two functions fy, fi : R® — R are called quasi-contact border
equivalent, if they are pseudo-contact border equivalent and there is a family of
function germs f; which continuously depends on parameter ¢ € [0,1], a continuous
piece-wise smooth family of diffeomorphisms 6; : R* — R™ depending on parameter
¢ € [0,1] and a non-vanishing family H; € C,, such that: H,(f, 06,) = fo , 0y = id,
Hy = 1 and the vector field v generated by 0; on each segment of smoothness satisfies
the inclusion
v € Sr + V.

The previous definition implies that in particular the formula of quasi-contact
boundary tangent space TCQBy, (the boundary is I', = {2; = 0}) to the quasi-
contact boundary orbits at an admissible deformations f; takes the form:

TCQBy, = {on+g—£'(~L1]1+aft >+Zm:aft }:

for arbitrary function germs hy, A, k;, Ag € C,. Here z; € R,y € R,

Similar formulas can be obtained for other borders.

In all our simple quasi border classes from theorems stated before the singulari-
ties are weighted homogeneous (however, the homogeneous coordinates are not the
original coordinates). This fact implies the following

Proposition 7.3.2 The list of simple classes with respect to quasi-contact border

equivalence coincides with the simple quasi border classes.

Proof.  We will prove the proposition for the quasi-contact boundary equivalence
only as the arguments for other cases are similar. We prove that quasi-contact
boundary tangent space of the simple and non-simple classes which are obtained in
Theorem 2.1.6 space coincides with the quasi boundary tangent space of the same
classes.

Recall that the quasi-contact boundary tangent space at the germ fi(R"0) - R
takes the form
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TQCB; = fH + i 8f af

Y,
. A n—1 ~ . ~
where Y = yBy + LB + 3 2L B; and H, X;, Bo, B, B; € C..
i=1
The classes B, and the non-simple classes are quasi homogeneous. Hence, the

tangent spaces of these classes with respect to quasi boundary and quasi-contact
boundary coincides.

For the classes Fy, ,, : G = £y +af)?+af, let w = y£af. Then, G = fw?£a7,
Thus, the derivatives takes the form

oG _ =4+2w and oG _ +2kwx; ™ £ mal L
By Ox

As G is quasi homogeneous in the new coordinates w and x, we see that

woG 1 woG  wx , 0G el
—_— Lm —_ (. 2,‘ .
G = 5 By + 1(im’cl ) 5 3y m( kwai™),

or, equivalently
oG w  ka*. x 0G
= +—)+ =

@(5 m’ " moz

Notice that ¥ = yBo -+ wB) + By(Emal 1 & ZLw’Ll'_l) = wéo -+ af §1 Clearly,

the term (% 7 22t

2"} from G is contained in ¥ and hence the result follows.



Chapter 8

Basics of projections

8.1 Introduction

We start by revising the main definitions.
Let V C R™ be the germ of zeros of smooth maping f : (R*,0) — (R™), n > m.

Definition 8.1.1 [18§]
V is called a complete intersection if codim V = .

Definition 8.1.2 [18]The projection of a submanifold V from a bundle space E
onto the base B is a triple V' — E - B, where the first arrow is the embedding and

second arrow is the projection.

Definition 8.1.3 [18]Two projections V; — E; — B;, i = 1,2 are equivalent if the
following 3 x 2 diagram:

commutes. Here ¢, i and & are diffeomorphisms, %, 2 are embeddings.
Locally a bundle E — B is isomorphic to the trivial bundle
R* xR? — R”: (z,y) — v.

155
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Instead of a submanifold V we can consider more general setting. Let V be a
complete intersection. Recall that this means that V' is diffeomorphic to an analytic
variety. However, the variety V need not to be analytic [18]. The codimension of

the germ V' in E is equal to m and V is given by a system of m analytic equations:
V=A{@y):fi=fa==fu=0}

This system is determined up to multiplication by a germ on E of a non degenerate
m X m matrix M(z,y).

In this case the equivalence of given systems f = 0 and g = 0 of germs of
projections from R™ x R? onto R? | (x,y) — ¥y means that there exists a local
diffeomorphism of the form

h({l}, y) = (X({L‘, 1 )) )/(,y))’
for which h*g = M f.
Let C,,, be the space of germs at zero of C*- function germs in variables « € R®
and y € R?, Let Gy, be the space of germs of C*°- mappings from R™"? to R™,

defining embedding of complete intersections. Denote by O; the equivalence class of
the variety f = 0.

Assume that f; = 0 is l-parameter family of equivalent germs of projections
where f; : R™? — R™ and fy; = f. This implies the existence of a l-parameter
family M;(2,y) of m X m matrices and 1-paramter family of diffeomorphisms ¢, :
R — R™? of the form ¢;(x, y) = (Xi(w,y), Yi(y)) with ¢ € [0, 1] such that

Je=Mfody, (%)

where My = idm, o = (2,9), Xe(z,y) = (X1(t,2,v), ..., Xult,2,9)) and Yi(y) =
(Mt y), ..., Y,(ty)) . If we differentiate (*) with respect to t, we obtain

P
%ft = fwtft o ¢ + M, ( aft ¢t dX aft ¢t_) (%)

where M, = %Mt.
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Let v;(t, Xy, Yy) = £ and (¢, Y;) = %:?- Then , (**) can be written as

d ) n Bf p 8f -
Zl—tft = My f; oy + M, (; 8_;2 o pev;(t, Xz, Yr) + ; WJ‘: o ¢ V;(t, Ye) | .

Suptituting ¢ = 0 gives

d : Of L = Of
‘det = Mof + ; a—xéUz'(% y) + ;Z—_-; B_y;Uj(y)'
Notice that v(0) = 7(0) = 0. Denote by Cx,y{ngl, N 565’:7} the ideal generated
by %,...,gf: over C,, and denote by Cy{%, ...,%f;} the ideal generated by

g_zi’ ceey a%f; over C,. Then, the extended tangent space (or just the tangent space)

T'Oy of the orbit Oy of the projection of f € Cr, is given by the formula:

or . or

ou" By

of of
TO; =M ewlz -, =—1+C
Oy /+C ,y{@w1 8mn}+
where M is m X m-matrix and its entries belongs to C,,,.

Let the map germ F : (R",0) — (RP,0) be given in the local coordinates as
follows:

w= Uy, U, un) o 2= (0 = fi(w), 22 = falu), ..., 2 = fo(u)).
Let I' = {(w,2) : 21 = fi(u), ..., % = fo(w)} C R™ x R? be the graph of the
mapping F'

The classification of map germs with respect to right-left equivalence is equivalent
to the classification of the projection germs I' — R”™ x R? 5 RP. In fact,

Proposition 8.1.1 (26] The tangent space of the orbit of the projection of ', coin-
cides with tangent space of the orbit of right-left equivalence of the respective mapping
S (R™0) — (RP,0); wr— z= f(u).
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Proof.  Let M; be a family of p X p matrices and its entries belong to C,,,. Let £,
be an one parameter family of systems defining the graphs T;:

21— f1 (?,L, t)
Py = :
zp — fp(u,t)
Let @ : (R” x R?,0) — (R™ x R?,0) be a one parameter family of diffeomorphisms

such that ®o = id and has the form (u,z,t) — (Uy{u, 2), Z:(2)), where ¢ ¢ [0, 1].
Consider, the family of equivalent projections:

My.(Py 0 ®y) = Py

If we differentiate this relation with respect to ¢ and then substitute ¢ = 0, we

get:
op 2 = fi(u, 0) el BN Oy (u,z)
—55* t=0 = M : + : : : :
(9 n i3 6 7 3 g

2 — fp(1,0) Upu) ., lud) Un(u, 2)

Z (2)

+ :
Zp(z)

Here, U = %Itzo and M is p X p— matrix

Substitute z = f in the previous formula ,we get the tangent space of the orbit
at f with respect to right-left equivalence:
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P R e R WA
¢ = : : : :
=0 = : : : :
' (1, O fn{u, 3
[ Z()
+ :
Zy(f)

The last formula is the tangent space to the right left orbit at the mapping « — z =
f(u,0) as required.

1
Let ®; : (R™,0) — (R, 0);0 = (U1, ..., ) = Zt = (Z(u), ..., Z™ (u)) be an
one parameter family of diffeomorphisms and ®¢ = id. Let &;* Z (1)( )., 2 (u) —
(7 V), ..., z_(’: (1)) be the inverse image of <I) Let V; = (Z(l) ALY
(

where Z{) = 19—2;—} t=1,...n. Let (a;;) = (azt ) be the matrlx-of the dlﬁerentlal
of ®,. Let £ = (&,...,&) be an arbitrary vector field on R™. Then,

Proposition 8.1.2 2 (@E(E)),, = —[Vo,€&], where [,] is the Lie bracket of vector
fields.

Proof.  We want first to calculate &®;(¢). Note that:

HOEDY (Z 51‘(‘1’{1(30)&:’,1) g_m

i=1 j=

Differentiate the last equation with respect to t to get:

d

=1 m=1

where (G;;) = %(ai,j).

A _ZIZ&(‘I) YZe)) a5 — (Z%;(_ﬁ ()~ o [Z0 o & 1]) a”] %

7

H)
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If we substitute ¢ = 0, in the last equation, we get:

0 (s S + 0% i
57 [ 2E ()]0 = > {Z (éjjui,j - %Zé ))

i=1 L[j=1

0
Ou;

= _-[Mé‘],

e — 0
where Qi = ﬁ(ai,j)imo'

Note here that : ®; o ®;! = id, if we differentiate this relation with respect to ¢,
we get:

(D00)0 071 4 @0 <a%‘1’? =0

ot
Hence,
8(]};1 -1 5(1)15 -1
T —®, "o [(Ft_ o &)
Al hat g 5 _ a0z _ 5 0z az®
50 nOte tla’t ai’j = m(a""y]) - E 611.]' - E&‘; 3t - Buj " .

Remark: We need the detail of the previous two statements as it is necessary in
our further considerations.

8.2 The classifications of singularities of projec-

tions of surfaces

The classification of singularities of projections of a two-surface embedded into
RP? to a plane obtained by V.I.Arnold [7], O.Platonova [27], V.Goryunov [18] and
O.Scherback [30] at the beginning of 80-th was a nice generalization of Whitney the-

orem [1]. The surface is assumed to be generic, and centre of projection can vary in
RP3.

Theorem 8.2.1 [2] For a generic surface, any projection from any point (outside
the surface) is locally equivalent to a projection of one of the 14 surfaces (z = f(x,y))
in the following list at zero by a pencil of lines parallel to the x-axis:
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P:f=x Py f=u?
Ps:f=a2%+ay Py f=a1+zy?
Ps: f=a%+ay? Ps: f=a'4ay

Prof=a*4+2%y+ay, Po:f=2"+tay+ay
Py f=2"tayt, Py f =zt + 2%y + zy®,
Py f=a°+uay.

The hierarchy of germs of projection of a surface according to calculations of O.A.
Platonova, V. Arnold and O.P.Shcherbak are as follows:

P~ P — P — P — P

1 T T
P4 Rl P7 P]_l
T T

P5 «— PlO

T

Py

Later on, meeting the needs of several application in geometry and differential
equations authors considered also projections of submanifolds with boundaries. In
particular, singularities of projections of surfaces with boundaries were studied and
classified by J.Bruce P.Giblin [15], V.Goryunovin [19]in 80-th and F.Tari [32] in 90-
th. They considered the classifications of singularities when a generic surface in three
space with a boundary is projected to a plane along a parallel beam of rays.

Let Cg,y,. be the space of germs at zero of C™- function germs in variables
(x,y,2) € R3 Let C: .. be the space of germs of C*- mappings from R? to R2.
Consider the projection 7 : (&, y, z) — (y, z). Suppose that the surface I' is embedded
in R? and is given by the equation I' = {gi(z,y,2) = 0}. Also, assume that its
boundary is given by the equation B = {g:1(,y, 2) = g2(z,y, 2z) = 0}. Denote by G
31 the germ at zero of the surface I with its boundary B.

2

The classification of the pairs G was considered for example in [19] up to diffeo-

the pair G =

morphisms of R? of the form

h : (LU, Y, Z) = (h'l(w» Y, Z), h2(y: Z), hB(y: Z))
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fibered over R? and the transformations (g1, g2) — (agi, bg1 +¢gs), where a, b, ¢ €
Ca,y,.- More precisly,

Definition 8.2.1 [19]

The projection of two pairs G = 51 ) and I = ( fi )

gz fo
are equivalent if there exists a diffeomorphism of the form

h{z,y, 2) — (h(z, v, 2), ha(y, 2), ha(y, 2))

M:(“ O),
b ¢

where where a, b, c € C,,, with a(0)c(0) # 0 such that G = MF o h.

and a matrix

The tangent space of the orbit of the projection of the pair G is given by the

formula.
g1 g 991 Oq1
— ? Ba dy ? Oz
Te = Capz 992 +Cy,e 992 892 (°
g1, g2, S

Qy? 0z

Remark: We will use similar definition later.

The normal forms of the projection of the pair G = (g1, g2) where g, is a smooth

surface and given as a graph z = f(z,y) ( so g1 = z — f(x,y)) is given as follows
[15, 19]:

; " N e . | i e
f=2,0=5 [=2"+ay,p=0 [f=2"+ay g=2z
f::l:me+x‘1+my, ge=2;, f=Hapi+2%p=u f=x2~|—y3a:, g0 = T,

[ 2 ., 3. o R
f=ay’+a*y+aa® +a!, p=a [f=2" ga=y+2a% [=2% g=y+2%

f=ay+ar® £’ go=yta?



Chapter 9

Quasi projections of hypersurfaces

9.1 Introduction

In this chapter, we classify simple singularities of projections of hypersurfaces up to
a special equivalence relation [38] which is more rough than the standard one which
was discussed in the previous chapter.

We give here the complete proofs of the theorems stated in that paper as some
proofs are outlined there . On the other hand, our methods and results in the next

chapters are based on the constructions and results of the paper.

Consider the trivial bundle R™ x R? — R?; (z,y) = .

Definition 9.1.1 Given a variety V C R™ x R?, a point b € V is called critical if
the fiber through b is not transversal to V' at b. In particular, b can be a singular
point of V.

Definition 9.1.2 Two varieties V; and V, embedded in R® x R? are called pseudo-
equivalent if there is a diffeomorphism 0 : R* x RP — R” x R? such that V; = 0(Va),
the set of critical points of V5 is mapped onto the set of critical points of V1, and the
differential of § at any critical point maps the direction of the projection to that at
the image of the point.

Obviously, this is an equivalence relation. We will denote by Py the equivalence

class of a germ V and call it the pseudo-orbit of V.
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For simplicity, we consider only the case of analytic hypersurface V = {(z,y) :
f(a,y) = 0} given by a single equation f = 0. Also, we assume that the fibers are
one dimensional © € R, n = 1.

Denote by T'P; the tangent space at V = {(z,y) : f(2,y) = 0} (or just at f)
to the orbit Fy. Denote by Rad(.Jy) the ideal consisting of function germs h(z,y)
whose certain power A™ belongs to the ideal J; generated by %—,{ and f. Denote
by IRad(J;) the module over the algebra C,, of function germs g such that the

derivative % € Rad(J¢). Denote by IJ; the integral of the ideal J; consisting of

all function germs % such that 2 € Jy. Cleatly, the functions in C, which do not
depend on 2 are in I.J; for any germ f. Denote by f, the partial derivative of f with

respect to z (i.e f, = %).

In fact below, we replace the algebraic notion of the radical by the geometric one
(similar to the idea which was introduced in chapter 1), assuming that f and g are
diffeomorphic to analytic maps.

Differentiating upon parameter all deformations within the pseudo-orbit of a given
germ f we obtain the tangent space TPy at f to the orbit P .

Proposition 9.1.1 The tangent space TPy of the pseudo orbit Py at f is given by
the formula
n—1
TP = Af + f.X + > £,.Y,
i=1
where A, X € Cy,,, and Y; € TRad(J}).

n—1

Proof.  Lemma 8.1.2 yields that the vector field v = vog% + El vi%, the flow of

which preserves the chosen direction e = ;%, along a trajectory -y of a point satisfies
the relation [v, ¢] = he with some factor h. The decomposition of this relation is

dw) 8 [~ (ow)\ 8\ 0
el = = (3{) pr (Z (a) a) =

i=1

This means that the derivatives with respect to x of the components v; of the
vector field corresponding to the coordinates y;,¢ = 1,...,n — 1, vanish at the points
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of 7. In the analytic case this means that these derivatives belong to the radical of
the ideal defining the critical locus. This proves the proposition.

Unfortunately, this relation does not satisfy the properties of a geometrical sub-
group of equivalences in J. Damon sense [16]( see Example 1: in chapter 1). In
particular, the versality theorem can fail. To avoid this difficulty we use a subspace
of the tangent space, which behaves regularly when the function f depends on extra
parameters. Namely take the following sub-module

n--1

TQp=Af + fX + ) Vi C TPy, (+)
i=1
where 4, X € C,,y and Y, elJ 7, as the set of admissible infinitesimal deformations
of a function. Hence, we introduce the respective notion @y of the class of a quasi

equivalence relation.

Definition 9.1.3 Two hypersurfaces Vi = {f1 = 0}, V2 = {f2 = 0} are called quasi-
equivalent if there is a family of diffeomorphisms 6, : R — R™ continuously and
piece-wise smoothly depending on parameter ¢ € [1,2] and a family /; of continuous
piece-wise smooth non-vanishing functions such that f, = h¢(f206;), 0, is the identity
mapping, iy = 1, and for any ¢ € [1, 2] the components of the vector field V = %09[ !
takes the form:

X e C,, and Y, € {ci(y) —l—/ {ailz, ) fi + %{?bi(w, y))dx},
0 o

where a;,b; € C, . The family of functions f; being the homotopy between f;
and f; is called admissible.

Remarks:

1. It is obvious that the quasi-equivalence of two functions implies their pseudo
equivalence.
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2. The hypersurfaces which are O-equivalent (and belong to one connected com-
ponent of the orbit) are quasi equivalent, since the functions from C,, belong to I.J;
for any f.

3. Similarly to the remarks on page 54, it is easy to see that the versality theorem
holds for the quasi equivalence. As usual, a miniversal deformation of the germ of a
hypersurface V = { f(z,y) = 0} is a family of hypersurfaces determined by a family
of functions that is a sum of an organizing center f(w,y) and a linear combination

of functions whose classes form a basis over R of the quotient space C,,,/T'Qy. .

4. The definitions imply that quasi-equivalent hypersurfaces have diffeomorphic
sets X of critical points. Moreover, the Thom-Boardman-type stratification of the
critical locus ¥ is preserved. Let X; C ¥ be the subset of points s at which the
critical set is tangent to the direction %. In other words, the direction belongs to
the tangent cone to X at s. Define by induction subsets 32; C ¥;__; consisting of points

at which ;% is tangent to ¥;_1. All of them are preserved by the quasi-equivalence.

5. Assuming that the critical distinguished point remains at the origin for any
value of the parameter deformation, we can apply only admissible vector fields which
vanish at the origin. In a number of cases, this allows us to show the jets of quasi-
orbits of some order coincide with the jets of standard O-orbits. For example, if all
components of the singularity germ belong to the cube of the maximal ideal, then
the terms which are in the quasi-orbit but not in the ordinary orbit belong to the
forth power of the maximal ideal. So in this case the 3-jet of the standard orbit
coincide with the 3-jet of quasi-orbit.

9.2 Basic techniques: Spectral sequence method

In what follows, we use mainly Moser homotopy method which was explained in
chapter 1, standard spectral sequence method [1] and sometimes our modification,
given in Lemma 1.3.5 in chapter 1.

We describe the standard technique here briefly.

Assume we have an A-equivalence relation. Here A stands either for right-left

equivalence or some quasi-equivalence described above. Let the space T'A, be the
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tangent space to the orbit at a germ g. Here we consider formal power series. Let
a function g = gq + g1 + ... be the decomposition of g into its quasi-homogeneous
of degrees N, N + 1,.... Then, any power series with the principal part gg can be
reduced to the form go -+ > ¢;e; with respect to A-equivalence relation, where the e;
form the part of a monomial basis of C, ,/TA,, of degrees greater than the degree
of g.

9.3 Prenormal forms of quasi projection classes

In many cases we can find an appropriate prenormal form of a germ.

Consider the trivial bundle R! x R? —s R? : (z,y) ~ y. Consider the tangent
space to the quasi projection orbit at f, given by the formula

n~1

TQ; = Af + fu X+ 1Y, ()

i=1

where 4, X € C,,, and ¥; € IJ;.

Proposition 9.3.1 The module TQ; given by the previous formula can be equiva-
lently written as

n—1
=1
or o
TQs = fCuy+ foCuy+ D fy{l1Js} C TPy, (% = %)

i=1
where Iy J; and I1J; are submodules of functions h(z,y) such that hy(x,y) belongs
to the principal ideal generated only by f or f., respectively.

Proof.  Applying integration by parts, we see that

/fada;=f/'ad:t—/fm </ad:v) dx.
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Thus,
Jra ryie = ¢ [odos [ 1, (b~ [ ae) a
Similarly,
[ e = o= [ fo.da.
Hence,

/(fa+fmb)div=fb+/f(a,—bz)da:.

These formulas provide the required identities. Here @ and b are smooth functions.

Lemma 9.3.2 If &;(,y) is an admissible deformation of functions for quasi projec-
tion and (z,y) — (Xe(x,y), Yi(y)) is a family of diffeomorphisms of R™ that preserve
the fibration (x,y),0 — y,0, then Gi(z,y) = ®: (Xi(2,v), Yi(y)) is also admissible
deformation.

Proof. The fact that the deformation ®,(X,Y") is admissible means that

HB(X,Y) OB(X,Y) . 2 88,(X,Y) _
e (X, Y)D(X, Y, 1) + 52— X + ; — A(Y, 1)
+ [ (v v a o vio ) dx},

with some smooth functions A;, B;, C;, and X.

ix &Y s invertible. 2% 8y . 0Dy 0X 9By _ 0Dy BY Lons
The matrix 5y 18 invertible, %> # 0 and F* = 53 5, 2y = 5V 3y The functions

Y; depend only on y; and ¢. Hence the decomposition can be written in the form:
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OP(X (2,y),Y (v))
ot

= B(X (@), Y) Doy, + 22E WY W) g

oz
5 o8X(0.0) V) { T+ [ (o) 22DV )

+ (X (x,9), Y(1))Cilz, y, t)dz) }

with some smooth functions X , gﬁ, Ei, @ and ]51 This means that the family G; is
admissible.

Lemma 9.3.3 If Gi(x,y) is an admissible family, then for an arbitrary function
H(t,z,y) the family Gy(x,y) = Gi(x,y) + H (%%1)2 is also admissible and G is
quasi equivalent to Gy for each value of t.

Proof. The fact that ét(w, y) is admissible means that:

AT 6‘@&7“ "_18@ = $8§t~ )
TQG’t - GtA(J*) y) + %X(Jﬂy) + ; 83}1’ {Bz(y) + A o1 C”t(J’a y)dm )

with some smooth functions 4, X, B;(y) and Ci.
Note that:

9G: _ 3G, g{{(@)z 0 0°GL0G: _ 0G:

B oz B \ oz 527 9z~ oz a@y).

Also, note that:

0C: _ Gy | 0H _ag) 0°G 0G: _ 0G: | 8Guye 4
by ay oy oz dzdy ox oy | oz WYk
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Hence, T'Q)s, takes the form:

n—1

o i oGy o, G [ “0Gy ., 1
TQg, = GiA(2,y) + 5 X(:L,y)-l-; 0; {B,(y)-l—‘/o %C’z(m,y)dm}.

This space coincides with the tangent space to the orbit at G;. Hence, G, is also
admissible.

Lemma 9.3.4 (Stabilization) If the second derivative f,. # 0, then the germ
J(@,y) is quasi projection equivalent to x* + f(y). For quasi projection equivalent
germs f, the respective reduced germs f are quasi equivalent.

Proof. 'We apply the standard O-equivalence. As f,, # 0, then the germ f, in fact,
is & deformation of A; singularity in 2 and with parameters y. Thus,

fla,y) =2 +ple,y) where  f(x,0) = fo(x) = o*.

The germ f; has a miniversal deformation of the form F(z, \) = @? + \. Hence,
any deformation of fo, can be induced from /" and has the form : f = 22 + A(y).

Now, suppose that fi(x,y) is admissible deformation of functions with %22‘ £ 0,
then f; can be reduced to the form f = 2% + \(y). By lemma (9.3.2), the family

Ai(y) is admissible. Hence all \; are quasi equivalent.

Let V' be a germ of regular hypersurface at a critical point of the projection. Up
to a permutation of indices of y coordinates and up to a multiplication by a non

vanishing factor the equation of V' takes the form

fl@,y) =g(w,9) + 2
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where § = (Y1, .., Un—2), Z = Yn_1 and g € M2 ..

The following lemma relates the tangent space TQy with that of the derivative
f z = G-

Lemma 9.3.5 Let {T'Qs}, be the set of the derivatives with respect to x of germs
Jfrom TQj then

TQy, C{TQs}s CTQy, + fCoy.

Remark. Restrict the germs from the modules, mentioned in the statement of
this lemma, to the hypersurface V' (that is make the substitution y,_; = —g{x,7)).
We get the nature inclusions of these tangent spaces into the modules over the algebra

of functions in 2 and ¥ related to the projections of hypersurfaces in R*1:
TQ,, C {TQg}. CTQy, + 9Cyy.

Proof. A function germ h(z,y) € T'Qy if it admits a decomposition

h= fa+ f.b+ ﬁ};jfyi (@ + /0 fme@-dw) €

with some smooth functions a,b € C,y and ¢; € Cy, i = 1,...,n — 1. The
differentiation of the equation (*) with respect to z yields

n—2 z n—2
ho = faz+ fat+ fabo + fasb + ) fou, (ci + / fa,-eid:v> + 3 futati faln1,
i=1 0 i=1
or equivalently
n-—-2 n—2 2
he = (Yno1+9)a+F(En 1 +a+bo+ Y fre) +Tb+Y Ty, (@ Yn-1) + ] aeidm) ,
i=1 =1 0

where § = g,. The factors y,—1 + ¢,7, and ¢, are independent functions; hence

the right hand side of the last decomposition represents an arbitrary function from
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TQs+ fCy,y. Setting yn—1 = —g(2,¥), we get the required inclusions in the space of
germs in x, ¥y and consequently in the space of germs in x,y. Note that, Hadamard
Lemma yields that ¢ (7, g) = «(Y,0) +9¢: (¥, g). Let V = ¢g¢i(y, g), then % = %%.g%.

1

Corollary 9.3.6 Assume that the germ § is quasi projection simple in the space of
projections of hypersurfaces in R™~1. In other words, a neighborhood of § consists of
finitely many quasi-orbits. Then f is quasi-simple.

Proof.  Indeed, a neighborhood of a regular germ f is the space of primitives of
functions close to §. Due to the left inclusion of the lemma, an admissible deformation

of the derivatives produces an admissible deformation of the primitives. ]

Assign some positive weights g, ¢, ..., @,y to the variables @, y1, ..., Yn-1.

Definition 9.3.1 A system of weights «; is called adopted if the derivative of any
weighted homogeneous germ f of degree d along any vector field that preserve the
direction % and vanish at a distinguished point has degree > d

Lemma 9.3.7 Let f;,0 be an admissible deformation of function germs. Let the
basic points be at the origin for any t. Let « be an adopted system of weights. Then
the non zero terms of [; of the lowest a-degree are equivalent with respect to the
standard projection.

Proof.  Take the lowest order terms of f;. The order does not depend on ¢. Take
the lowest order terms in the decomposition

n—1

h= af+fmb+2fyi (Ci+/mfz6id$> 3 (%).
=1 0

Notice that the integral terms that do not belong to the tangent space of the quasi

equivalence can not enter because of higher degree. Hence the weighted homogeneous
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lowest order terms on the right-hand side of (*) belong to the O-tangent space, which
proves the lemma.

Corollary 9.3.8 Under the conditions of Lemma 9.8.7, assume that w-lowest part
fo of f is “ parabolic,” that is the space of weighted homogeneous deformations of fo
contains a continuous family of O-orbits. Then, f is not quasi simple.

9.4 Classification of simple classes

The classification of simple classes in low dimensions is given in the following theo-

rems.

Theorem 9.4.1 Ifn = 2 the list of simple classes is the same as for standard O-
group of foliation preserving diffeomorphisms of the plane acting on the germs of

curves.

Ap: f=a" 4y k=0,1,...
Bi.:f=a%yk, Cy:f=azy+2*, k=23,...,

F4:f=x3+y2.

Proof of Theorem 9.4.1

We start with O-classifications. We will use the spectral sequence method. Let
fx,y) = arx + agy + bia? + bewy + bay? + . ... Then, we distinguish the following
cases:

o If %(0) # 0, then consider the principal part fy = @. Clearly, f is equivalent
to fo = 2 as the tangent space coincides with the space of all germs. Note that the
germ f can be written as equivalent to Ag: g =2 +v.

o If %(0) =0 but %(O) # 0, then consider the principal part fy = y. The tangent
space contains all germs which divisible by y. Hence, the germ [ is equivalent to
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~

J =y + o), with ¢ € M2. Suppose that, p(z) = apz® + a2t + ..., with
wy, # 0 and k > 2. Consider the germ fc. = y -+ aa®. Then, the tangent space to the
orbit at ﬁ) is

TQj = (y + axz®)a(z,y) + 2" b2, y) + c(y).

Hence, [ after normalization ay is equivalent to Ay_; : g(z,y) =y -+ k> 2

eIf 5 of (0) Bf =(0and & amg 2£(0) # 0, then Lemma (9.3.4) yields that f is equivalent

to f = ﬁ + ‘P(J) with o(y) € My, Let w(y) = Biy® + Bpray™ + ... with f # 0
and k& > 2. Consider the principal part fo = 2% + Byy*. Then, the tangent space to

the orbit at fg is

1Qs, = (¢ + Bey*)az, y) + xb(x,y) + v* ' e(y).

Hence, fis equivalent to , after normalization 8, By : g =x? £y* k> 2.

o If ‘9f 30 =35 = g—ié(@) 0 but amay(o) # 0, then consider the principal part
fo=2ay. The tangent space to the orbit at fy takes the form:

TQy, = zyA(x,y) +yB(w,y) + zD(y).

Hence, [ is equivalent to [ = wy + w(x) with p(x) € M2, Let p(x) = apa® +
g™ 4. with ay # 0 and k > 3. Consider the main part fy = zy + cpa®. The
tangent space to the orbit at f has the form

TQj, = (zy + axa™)a(@, y) + (y + kawd®)b(x, y) + 2c(y).

k-1 O

If we substitute mod T'Qj: y = —kapa"" in 2y + arz® = 0, we get: x
Hence, 2y = 0 and y = 0. Thus, after normalization §;, the germ f is equlvalent to

Cy: g=uayxa* k>3

o If af(O) = 54; = 315(0) = Cr,a:a’;,(()) = 0, but aZf( 0) # 0, then consider the
principal part fo = y?. The quotient space Clz,y]/TQ}, is generated by yhi(z) and
ha(x). Hence, f is equivalent to f =y 2 yhy(x) +ho(w) with by € M2 and hy € M2,
Let hy = aga® + aga® + ... and ho = ba® + byt + . ...
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Suppose that by # 0 and consider the main part fo = 9% +-bgz®. Then, the tangent
space to the orbit at ftakes the form:

TQz, = (v° + as2°) A(,y) + 2” B(w,) + yC(y).

We have mod TQj,: 2>B = 0. Hence, y* = 0. Thus, The quotient space C[z, y]/TQj,
is generated by 1,z,y and 2y. Hence, the germ f is equivalent, after normalization
as, to Fy : g = y? + 23

Other germs are adjacent either to the class G with zero 2-jet or to the class
Fs:  f(z,y) =v* +y(a22? +asx® +...) + bazt +bsz® + .. ..

In the first case consider the 3-jet which is the lowest quasi homogeneous part
f3 = a1a® + aoa?y + dzxy? + Gqy®. Then, the tangent space with respect to the
standard O-projection at f3 takes the form:

TQy, = faA(w,y) + (Bt + 2daxy + asy®) B(w, y) + (Gew® + 2a3zy + 3a4y%)C(y).
or equivalently,
TQ, = (38122 + 2892y + asy®) B(, 1) + (G22® + 2832y + 384y%)C (),

as f3 is quasi homogeneous.

The cubic terms are obtained from the tangent space if B= &033‘{-60’!/ and C = Coly
where &g, 50, ¢p € R. Hence, the the dimension of the subgroup of linear transforma-
tions with an eigenvector along the x-axis which is generated by B and C is 3 which
is less than the dimension 4 of the 3-jets of the functions from the class G. Hence,
the class & is non-simple with respect to the standard O-equivalence equivalence.
By lemma, 9.3.7, the class G remains non-simple with respect to quasi projection
equivalence as the lowest quasi homogeneous part is non-simple with respect to the
standard O-equivalence.

In the second case, consider the lowest quasi homogeneous part: fy = y?+asz’y+

baz?, with quasi degree 1 with respect of weight of 2 being * and weight of y being
&4
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%. Then, the tangent space at fy takes the form:

TQy, = (2azzy + 4ba2°) Bz, y) + (2y + a227)C(y).

The quasi homogeneous part is obtained from the tangent space if B = qpx and
C = oy where g, By € R. Hence, the the dimension of the subgroup of the linear
transformations with an eigenvectors % and 5% which is generated by B and C is 2
which is less than the dimension 3 of the quasi homogeneous part fy of the functions
from the class I's. Hence, the class [ is non-simple with respect to the standard O-
projection equivalence. Sc, Lemma 9.3.7 yields that the class GG remains non-simple
with respect to quasi projection equivalence as the lowest quasi homogeneous part
is non-simple with respect to the standard O-equivalence.

Thus, the classes Ag_1, By, Cr and Fj are the only simple quasi projection classes.

The theorem is proven.

Theorem 9.4.2 Forn = 3 the list of simple quasi projection of regular hypersurfaces
stngularities consists of

Zk:f:-m"“+y1x+y2, k>0,

B f=2+yratuys, k>2
Cr: f=a" + 2%+, k>2
ﬁ4:f=a;4+yfsc+y2.

The list of simple quasi projections of singular hypersurfaces is as follows:
b Di Bf, s=6,7,8: f =2+ g(y1, o)
where ¢ is one of the standard simple A, D, E function germ in y;
A3 =2 a4 5

AP f = be bt 42, k> 2
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Proof of Theorem 9.4.2

e In the case of regular hypersurfaces, the result follows from Lemmas 9.3.2,
9.3.5 and 9.3.7. Thus, the integration of simple classes of Theorem 9.4.1 gives simple
classes for n = 3.

Ap i f=a" v yw+y, k>0,

ék:f=w3+yfw—i-yz, k> 2,
Co: f=a"" + 2Py +ys, k>2,
F4:f=w4—{—yf$+y2.

These classes are nonequivalent due to multiplicity reasons. The remaining classes
after differentiation contain the germs of functions in the plane that either have zero
2-jets or have degree > 1 with respect to adopted weights 3 and 1 for z and y,
respectively. Lemmas 9.3.5, 9.3.7 and the proof of the previous theorem yields that
these classes are non-simple in this case.

For singular hypersurfaces, we start with the O-classifications, using Lemma 9.3.2,

we distinguish the following cases:

e If a germ f is a deformation of A; singularity in 2 with parameters y; and
Y2, then Lemma 9.3.4 yields that f is O-equivalent to the germ: f = 22 -+ 9(y1, y2).
Hence, we need to classify the germs g(y1,¥2). The tangent space to the orbit at g
coincides with the tangent space with respect to standard right equivalence. Thus,
the germ g belongs to one of the classes Ay, Dy, or E, s = 6,7,8. Thus, the following
classes

Ai) DZ: E:) §= 67 7:8 : f = 352 +g(y1>y2)

where g is one of the standard simple Az, Dy, E, function germ in (yi,y2); remain
simple with respect to quasi equivalence.

All other germs are adjacent to the nonsimple class

Jio 1 7=y} + s +ayiy:, with 40 +27 £ 0.
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The class is quasi homogeneous with respect to the adopted weights 2 for y; and
1 for y,. By lemma 9.3.7, the class Jyy remains nonsimple with respect to quasi

equivalence.

e If a germ f is a deformation of Ay singularity in 2 with parameters y; and
Y2. That is f(z,y1,¥2) = @ + {2, y1,2) and f(2,0,0) = fo(z) = 23. Then, the
germ fo(x) has a miniversal deformation ®(z, A\, A1) = 23 + A\w + ;. Hence, any
deformation is induced from & and has the form:

2

f(x’yla y2) = 2 + M (y1, ¥2)2 + ha(y1,32) with hy € My, and hy € MG, .

Let hi(y1,y2) = a1y1 + a2y2 + blyf + bay1ye + ba‘yé{2 + ..

Up to permutations between y; and ys, suppose that a; # 0, then f can be

reduced to the form f = 2% + Gy + /Nl(yl,yg) where § € M2 Assume that

y1,y2°
h(y1, y2) = cry+caynyatesya+. .. and ez # 0. Consider the main quasi homogeneous

o~

part: fo = 2%+ @yy1x + c3y2. Then, the tangent space at fNO takes the form:
TQ; = (@*+aunz+esys) A, yr, ¥2)+BL*+81y1) B(x, y1, o) +2C (Y1, Y2)+y2D (U1, Ya)-

Then, we obtain mod TQy, :

Y = —x°, 9.1
Y1 ar (9.1)

This relation yields that

Cl‘,yl.yz/TQ}B = Cfv,yz/T*qu & R{la $2}7

where T*Qy, = (—22% + csy2) Az, yo) + 2C (a2, y) + y2 D(22, y2).
Thus, after normalization of a; and c3, f becomes equivalent to the germ F; =
22 4y + 2.

Next, suppose that a; = a2 = 0 and hy is non-degenerate function, then f can be

reduced to the form: f = 3+ xH(y1, y2) + yi +y3 where H € M2 .

main quasi homogeneous part: ]n”;) =2 4 ckrcyf + yf + y2 where k£ > 2. The tangent

Consider the

space at fNO contains all deformation of the form xH:(y,y2). To prove this claim,
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consider the tangent space at ﬁ)

TQ; = (@ + eyl + 42 + 45) Az, 4, y2) + (3% + cxy) B2, Y1, ¥2)
+ (2n + kerzyt™C (y1, y2) + y2D (Y1, v2).

Let A = cpy¥ and B = y? + y3. Then the the function fo = 2%+ Az -+ B is quasi

homogeneous with respect to weights w, = %, A= % and B = 1. Thus, we can write

f(; = %w% + %A:c 4+ B. Thus, we obtain mod TQ%

Multiplying the equation (9.2) by = we get
2 9
§A5E + Bz =0. (9.3)

Substituting 2? = =2y} in the equation (9.3) we obtain

—2c0 .
Sk A+ By = 0. (9.4)
Also, we have
w[kery '] + 2y, = 0, (9.5)
and
yp = 0. (9.6)

Now all terms in £H,(y1, y2) belong to T'Q , using the relations (9.2), (9.4), (9.5)
and (9.6). Hence, we conclude that f is equivalent f = 23 + 2y¥ + y® + y3.

Other germs are adjacent to a germ of the form:

f=az® + by + cypays + dyd + oy, v2)
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of quasi degree > 1 with respect to the weights of z and y, being % and y; being %
Let fo = au® + byix + cyryz + dys. Then, the tangent space at fo takes the form:

TQj, = (3az® + byr) B(x, y1, y2) + (b + cy2)C (Y1, y2) + (cy1 + 3dy2) D (w1, v2).

The terms of fy are obtained from if B = Bz, C = ay; and D = vy, where
B,a,v € R. Hence the dimension of the subgroup of the linear transformation gen-
erated by B, C' and D is 3 which is less than the dimension of the quasi homogeneous
part fp. Thus, the germ fis non-simple with respect to the standard O-equivalence.
Lemma 9.3.7 yields that the germ fis also non-simple with respect to quasi equiva-
lence.

® The deformation of Az (or of Ay, & > 3) are adjacent to

J=a"+y2® -+ yox + (Y1, 12) with ¢ € M2

Yi.y2°

Consider the lowest quasi homogeneous part ¢ = az? + byy2? + cypr + dy? with
respect to the weights w, = 7, w,, = § and w,, = 3. Take the tangent space at g:

TQ, = (4a2® + 2by1z + cy2) B(2, y1,y2) + (b2® + 2dy1)C (1, yo) + 2D(y1, o).

‘The dimension of the subgroup of the linear transformation generated by B = 3z,
C = ay, and D = vy, where 3,a,7 € R is 3 which is less than the dimension of
g. Thus, the germ f is non-simple with respect to the standard O-equivalence. By
Lemma, (9.3.7), we conclude that the germ f is also non-simple with respect to quasi
equivalence. This finishes the proof of the theorem.

9.5 Quasi vf projection

In [36], another example of non-stanard equivalence in the projection theory was
introduced. It is called pseudo and quasi vf equivalences.

Let v be a non-singular field in the space where a function or a complete inter-
section is defined.
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Definition 9.5.1 T'wo functions f; : R™ — R, ¢ = 1, 2 are called pseudo v f -equivalent
if there is a diffeomorphism © : R® — R"™ such that f, = f; o © and if 7 is a critical
point of f5 then the linear part of © at m maps the direction of the vector field v to
the direction of v at the image ©(m).

Denote by Pv; the equivalence class of a germ f and call it the pseudo-vf-orbit
of f.
This equivalence takes an intermediate place between the standard right-equivalence

and the right action of fibration preserving diffeomorphisms 6 : R® — R, f,v = hv,
for some non-zero factor h: R® — R.

One of the possible applications of v f singularities is the classification of vertical
vector fields on Lagrangian submanifolds. The setting is as follows: Critical points
of a function depending on parameters define Lagrangian submanifold. Vector field
defines the flow of right-equivalences, which defines a family of Lagrange equivalences
(without changing parameters). Therefore vectors of the vector fields evaluated at the
critical points of the function define a vector field on Lagrange manifold which is along
the fibers of Lagrange projection to the base (parameter space). The singularities of
these vector fields are of interest in variational problems with constraints.

We shall consider the simplest case of non-singular vector field v = a% where
z € R,R® = {(x,y)} and y € R™*. Notice that the diffeomorphisims ¢ which

preserve the fibration 7 : (z,y) +— y takes the form 6 : (z,y) — (X(x, 1), Y (y)).
Denote by Jy the ideal generated by the derivatives of the function f.

Differentiating upon parameter all deformations within the pseudo-v f-orbit of a
given germ f, we obtain the tangent space TPuy at f to the orbit Puvy.

Proposition 9.5.1 The tangent space T'Pvy is given by the formula
. 721
TPus = X+ [V,

i==1

where X € C,,, and Y; € TRad(Jy).
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Proof. The proof is similar to the proof of proposition 9.1.1.

As in the previous construction of quasi projection to get better properties with

respect to parameter dependence, take the following sub-module

-1

TQus = f.X + > f,,Yi € TPuy, (%)

i=1

where X € C,,, and Y; € I Ja, as the set of admissible infinitesimal deformations of
a function, and introduce the respective notion Quy of the class of quasi equivalence
relation which is finer than the pseudo-equivalence class.

Definition 9.5.2 Two functions fi, fo : (R™,0) — R are called quasi-vf-equivalent
if there is a family of function germs f; which continuously depends on parameters
t & [1,2] and a continuous piece-wise smooth family of diffeomorphisms 6, : R* — R”
depends on parameters ¢ € [1,2], such that: fio6, = fi, §, = id and the components
of the vector field generated by @ are of the form:

* (af, = 8,
X 1] VaY; i o\ _"'t"i':" T p,
€C,y Vi G{C(y)+/0 (@xau y)+;ayjb,a(c,y))d%}

where a;, bi’j S Ca:,y and ¢; € Cy.

The classification of simple quasi vf projection is given as follows.

Theorem 9.5.2 The simple quasi vf projection classes of function germs are given
by the following list:
1. AO . f =T,

2. A,DE : f = 2%+ f(y), where f(y)— is a standard simple singularity class
Ak: Dka Ek;

g. 02:f:wyliy%”':tyi—li
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4. Fon :f=:t:3iy%---:‘:yfl_1.

Remarks:

1. The fencing non simple classes are F' : z* + az®y2 £ 92 =92, and O :
xy +ays £ Y3 Evag

2. The adjacency of the classes of low codimension in the plane (z,y) € R? is
shown in the table:

Ay ;{2 — gg —
1 N
Cy «— F,»y <« F

3. The contact quasi vf projection classification coincides with the right one.

This is because all classes given in the theorem are weighted homogeneous.

Proof of Theorem 9.5.2

If the function germ f is non-singular then we obtain z £ 92 ... & y2_,. Suppose
that the germ f is singular and consider the two jet of f, restricted to the subspace
y = 0. If J2(f) contains cz? then the function is quasi vf-equivalent to the germ
F = +2%4¢(y). Two functions of these type are quasi v f- equivalent if the respective
germs g(y) are right equivalent. If J?(f) contains zg(y) term (where g(y) is linear
in y) then the function germ is quasi vf-equivalent to G = xy;, + ¢g(y) where g €
M?fz,...,y”-l' The germ G is quasi v f-equivalent to the simple germ F= oy sk
y2_,. Finally, the function germ f with zero two jet and has the form f = aa®-+g(y)
is quasi v f-equivalent to the simple germ a3+ y#--.+y2 ;. Other germs are adjacent

to non-simple classes with respect to quasi v f-equivalence relation.



Chapter 10

Quasi projection with boundaries

10.1 Introduction

In this chapter, we classify simple singularities of projections to a plane of surfaces
embedded into three-space and equipped with a boundary. We will use two special
equivalence relations which are more rough than the standard one and similar to
quasi projection of hypersurfaces. They are called quasi strong and quasi weak

equivalence relations. We shall classify the simple quasi strong singularities only.

Consider the space R = {(2,y) : ® € R,y € R*'} and the trivial bundle
structure defined by the projection (, y) + y. So the fibres here are one-dimensional.

Again for simplicity, we will consider the analytic case. So, let V = {(x,y) :
f(z,y) = 0} be an analytic hypersurface given by a single equation. Let B =
{(z,y) : f(z,y) = g(z,y) = 0} be its distinguished boundary which is subvariety in
V' of codimension 1. Then, the pair (V, B) is called a hypersurface with boundary.
Denote by G = (f, g) the pair of the equations which define the hypersurface V with
the boundary B.

184
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n

:

x \
/ Y2
Figure 10.1: Strong quasi projection with boundary .

10.2 The strong equivalence relation

Definition 10.2.1 Two hypersurfaces with boundaries Gy = ( h ) and Gy =

5
Ja
92
such that:

are called pseudo-strong equivalent if there is a diffeomorphism 4 : R® — R”

¢
1. Gy = MGs 00, where M = ( Z ), where a,b, c € C,, with a(0)c(0) # 0.
c

2. The set of critical points of the projection of V; is mapped by € onto the set of
critical points of the projection of V.

3. The differential of @ at any critical point maps the direction of the projection
to that of the image of the point.

Remark: We call this equivalence strong because we preserve the direction at
all critical points of the projection.

Differentiating all deformations within the pseudo-strong-orbit of a given pair
G = ( f with respect to a parameter, we get the tangent space TPSy =

9
( TPS,

to the pseudo-strong-orbit PSg at the pair G.
TP Sg ) P g el P
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Proposition 10.2.1 The tangent space T PSg is given by the formula

. n—1 .

ThSe = ( TPS
g

. n—1 .
JfB+gC+ g.X + 3 g9,V
i=1

where A, B,C, X € C,,,Y; € IRad(.J}).

Proof. The proof is similar to the proof of proposition 9.1.1.

Again, this equivalence relation does not satisfy the properties of a geometrical
subgroup of equivalences in the Damon sense [16]. So, as before we use a subspace of
T PS¢ that behaves regularly when the pair G depends on extra parameters. Namely,
take the submodule

. n—1 .
A4 £X+ S f Ve
T S f . Yitt
TQSe = ( QSf ) - T | ©TPSe,
TQs, FB4gC+ 6. X + Y g9,V
i=1

where 4, B,C, X € Cyy,Y; € IJy.

Definition 10.2.2 Two hypersurfaces with boundaries G; = ( h ) and G =
4

G2
R™ — R"™ continuously and piecewise smoothly depending on parameter ¢ € [1,2]

Mt=(at 0>’
bt Ct

where a¢, by, ¢ € Cpyur a:(0)ce(0) # 0 , Mz = I and 6, = id and a family of pairs
Ji
Gt

( fo ) , are called QS-equivalent if there exists a family of diffeomorphisms §; :

and a family of matrices

G = , with ¢ € [1,2], such that: For any t € [1,2] we have G, = MGs 0 6,
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and the vector field V = (X , Y;) generated by & is of the following form: Xe C.y
and Y; € [ Jy,.

~

We start with the case of the regular hypersurface V = {(z,y,2) € R®: f(x,9,2) =
f(z,y) + 2 = 0}. Let the boundary be B = {(z,y,2) € R®: f(z,y,2) = g(x,y,2) =
0} and the natural projection be (z,¥, 2) — (y,z). The classification of QS- simple
classes is carried out in the following order. At first, we classify the surfaces with
respect to quasi projection equivalence. Hence, we get the simple classes listed in
the theorem 9.4.2. Secondly, we classify the boundary B for each class obtained in
the first step. This means that we need to calculate the stationary algebra of the
admissible vector fields

w=il g 0

dx "oy "0z
the flow of which provides a quasi equivalence of the surface V' with itself. Then, we
classify the orbits of its action on the equations g(z,y) = 0 of the boundary modulo

the equation of the surface.

Definition 10.2.3 The vector field W is called stationary with respect to quasi
projection of the surface V, if the diffeomorphism generated by W preserves the
surface V' and the direction of projection at the critical pints of the projection.

The stationary vector field W which is tangent to V satisfies
H(z,y,z)(f (2, y) + 2) + fo + fyg + 2 = 0, (10.1)

for some function /. Its components &, ¢ and % satisfy: & € C.yand g,z € 1J;. It

follows that the components ¢y and # have the forms

§=%02)+ [ (@0 + (e ) + Lle oty A da,  (102)
z:%m@+/ﬂﬂ&w+@%m%a+ﬁmwmm%@m@ (10.3)

0
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for some smooth functions Yy, Zo, hs,i = 1,...,4.

Denote by W = #(z,y, —f(@,9) & + y(z,y, —-f(ac,y))a% the projection of the
vector field W to the x,y coordinate plane. Denote its components by X,Y.

Differentiation of (10.1) with respect to & provides the proof of the following:

Lemma 10.2.2 Vector field W is stationary if and only if W is tangent to the
critical point locus, that is,

A, y) fe + foaX + fuyY =0,

for some function A, and the component Y has the form

Y =Yi(y) + / ful w)h(e, y)dz, (10.4)
0

with some smooth functions Y7, h.

Proof. Differentiate (10.1) with respect to z and get

(Ho + hs + fyh1)(f(@,9) + 2) + folbe + H + ha + fyha) + fool + fay = 0.

The relation (10.2) and integration by parts imply
@
§ = Yalw,2) + @9 2 o,) + 2+ [ Fulha =T (2,9,2)
0

with some smooth function f. Restricting the last formulas to the surface V' we get
the required relations. Note that for the second relation, we get:

§ = Yoly, — f, 1) + / Folha = Tor (2,9, — f () o
0

H’Adamard Lemma yields that Y5(y, — f(x, y) can be written as follows: Yo{y, —f(z,y)) =
Yo(y, 0)+fYi(y, f). The second summand belongs to [ foN{z,y)dz as a%(le(y, )=
%( FYi(y, f).fe, due to the chain rule.
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Obviously the converse is also true.

n
Lemma 10.2.2 implies the following;:
Lemma 10.2.3 The stationary algebra is given by the following formulas:
1. For Ay: f = et fyr 42, k>0,
X = [#S(y) + E(z,y)2* — M(z,y)(y +2¥)] ; 10.5)

Y = yS(y) + gale® + (k + Dyl Bz, y) + 107y + ) B (2, ),
where S(y), E(z,y), M(z,y) are arbitrary function germs and 4& = E,.
2. For By: f=1a® ayb+2, k=2

.k k
X = 58(y) + 5B y)y* e’ - N(z,y)(2" +y");

. 1 q 1
Y =yS(y) -+ -z—w(w2 + 3y*)E(z, y) + 50 (@* + Y5 By (2, y),

where S(y), E(x,y), M (x,y) are arbitrary functions and %%— =E,.

3. For Cy: = et ety 42, k> 2,

X =

1 :
o) + N(@* + zy) + 2°Q(z, ) + 2 Qu (2, v);
Y = yS(y)+a22"+(k+1)2y]Q(z, y) -2 [42*+ (k+3)2y]Qu (@, y)+2° (2 +2y) Qual, 1),
where S(y), Q{z,y), M(x,y) are arbitrary functions and %—f = Qu, ‘?;T‘;f = Qua-
4. For Fy: f=a'+y%x+ 7,
Y 2 3 2 2 2
X = =2N(2,y)(y" +2°) + 525(y) + g yE, y);

. 1 1
Y =yS(y) + gw(wg + 4y E(x,y) + ng(ws + ) EL(w,y),

where S(y), B(x,y), M(x,y) are arbitrary functions.
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Proof.

1. In the case of Ay : = E:l_wfwk“ + 2y, k > 2, the derivative equation takes the
form:

A, y)(y + 25) + ke 49 = 0,
where § = So(y) + [(y + 2*)a(w,y)dz.
0
By integration by parts, the last formula can be written as

7= So(y) + (2" +y)ab — *E, (10.6)

with some functions E(x, ), So(y) and [ adz = b, f kabbde = o E.

0
Setting « =y = 0 we get Sp(0) = 0. Hence Sp(y) = yS(y) for a smooth function
S(y). Hence, the derivative equation can be written in the form

Ak +y) + ka* L + yS(y) — 2*1E =0,
where A = A 4+ xb. This formula can be rewritten as:

aF U kd + 2A — & E] + y[S(y) + Z] =0.

This yields to the existence of a smooth function M(xz,y) such that

ki +2A —22E = — My, (10.7)

and
S(y) + A= Mzt (10.8)

If we substitute A , from the equation (10.8), into the equation (10.7), we get:
-1 o1 1,
&= TM(y+;L' )+ EwS’(y) + paE

it
Now differentiating the relation [ ka*bdz = 2*™*E with respect to z gives b =
0

Elp 4 1y F.. Hence, if we substitute b in the equation (10.6), we obtain
k k )
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1,
¥ =yS(y) + £l + (k+ ylE + %"”2(:!/ +a¥) B,

as required.

2. In the case of §k f= %3}3 + y*2,k > 2, the derivative equation takes the

form:

A(@® 4+ y*) 4 2w + kyt g =0,

where § = So(y) + [ (¢? + y*)a(x, y)dz. By integration by parts, the § component
0

of the stationary algebra can be written as follows:
¥ = So(y) -+ (@® +y*)ab(z,y) — 2°E(x,y), (10.9)

with some functions b(z,y) and E(z,y) and [ adz = b, f2m2b(x, y)de = 23 K.
0

Thus the stationary algebra can be written as:

A(2? + ) + 2w + ky* ™ (So(y) + (2% + yF)ab(e, y) — P Bz, y)) =
or equivalently
A@® +y*) + 2z + kyF ! (Soly) — 2 E(w, y)) =0,
where A = A+ ab(x,y). This formula can be rewritten as:

2alt + 5 Lo - K2, VLB 4+ yF g A + kSo(y)] =

2
This tells us that there exists a smooth function M (x,y) such that:

k
&+ Az 5 Yy = MyFt (10.10)

and
YA+ kSy(y) = —2x M. (10.11)
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If we set © = y = 0 in the equation (10.11), we see that So(0) = 0. This means
that So(y) = yS(y). Thus we can write the the equation (10.11) as:

Y [AJJr lcS(y)] +22M =0,
which is equivalent to the existence of a smooth function N(z,y) such that:
A+ kS(y) = 22N,

and

M = —yN.

Substituting A and M in the equation (10.10) gives the & component of the
stationary algebra as follows:

i= —N(a?+y*) + gzz:S(y) + gy"“lsz.

€T
If we differentiate [ 22°b(z,y)dz = 2°F with respect z, we get: b = 3E + 1E,,
o
where % = F,. Thus:
, 1 y 1 .
4§ = ySo(y) + Ew(rcz + 3N E + gzcz(w2 +y")E,.
3. For the singularity C : f = et 4+ Loy, k > 2, the derivative equation
has the form:
A"+ 2y) 4+ (kat + )& + 2p = 0,

T
where § = So(y) -+ [(2* +2y)a(z, y)dz. By integration by parts, the § component
4]

can be written as

J = Soly) + (@ + ey)zb(e, y) — / (k" 4 y)ab(z, y)da,
0
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where zb = fow adz. Integration by parts again gives
g = So(y) + («* 4 ay)ab — (kz*~! 4 ) B + o*H1Q,

with smooth functions E(z,y) and Q(z,y) and the relations fa:bdx = 2?F and
0

[ k(k — Da*Edz = 2F1Q.
0
Thus the stationary algebra takes the form:
A(® + zy) + (k2" +9)d + 2[Soly) + (2" + ay)ab — (ke + y)a?E + 2" Q) = 0.
Equivalently, this formula can be written as:
A@@* + zy) + 2(ka* " +y) -+ 2 [Soly) — (k2™ + )2’ E + 2*H1Q] =0,

with A = A + 22b. We get the following equivalent formula

k—1
k

1o -
@+ ced)(ka*" +y) +2 Ay + Soly) — &*(ka*™" + y)E + 2*H1Q| = 0.

Hence, there is a smooth function M (z,y) such that:

1

kwif = aM, (10.12)

@+
and

1~
STy Soly) = ket 4 Y F 4+ 2 Q= —(kat 4 y) M. (10.13)

If we set & = y = 0 in the equation (10.13), then we get So(0) = 0. Hence So(y) =
yS(y). Thus

— 1 ~
Y %——A +8(y) —2*E+ M| + 2" [—ka®E + 22Q + kM| = 0.

This implies to the existence of a smooth function N(z,y) such that:
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k—1~
WA + S(y) — «*E + M = "N,
and

—ka?E + 2*Q + kM = —yN.

If we substitute A and M from the last two equations in (10.12), we get:

—1 . 1 1
b= ——N(z" Q.
T - (x —|—a:y)+k_1 k_la:@

Now, we want to write the components of the vector field in terms of @ only.
T

S(y) +2°F —

Diflerentiate [ zbdz = 2*>E with respect to z, we obtain : b = 2F + 2F,. Similarly,
0

T
differentiate [ k(k — 1)z*Edz = 2*+1Q with respect to 2, we obtain:
0

k+1 1
+ where @:Qw.

E= =% o 1y %@ Bz

Differentiate £ = k(k;‘_ll)Q + k(kl_nchw with respect to x, we get:

By = [k +2 her _0PQ,
a:_m[( +2)Qu + 3Qua],  Where Q= — 5%

Hence, the function b can be written as:

1 .
b= gy 2k + D@+ (b + 4)2Q. +2°Qua]

Substitute the functions £ and b in the formulas of & and 3, we get:

—~ . 1 1 1
P Nlx* + 1 . 23 .
&= ( +Ly)+k_1m8+k(k_l),L Q + k(lﬂ_l)ub Qs
and
§ = 9wt 2t + (L)) @ T [+ (h+8) 0] Qat o (¢ 29) Qe
k(k—1) k(k —1) TTk(k-1) h

For simplicity, set ,:TllN = N and k(k;-l)Q = é Hence we get:
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Rk 1 3 2
T = N(.’U}” + ay) + E-:—I“ICSO + LUBQ =+ -7"4Q:u1

and

g = yS(y) + 222" + (k+ Day)Q + 224" + (k + 3)zy) Qs + 232" + 1) Que.

4. For the singularity ﬁ4 1 f= 41334 + %z, we have:
A{2® + ) + 34%E + 2yy = 0,
where 3 = So(y) + sz(wa + y?)a(zx, y)dz. The ¢ component can be represented as
y =5y + (2 +y")ab(z,y) - 2*E,
with an arbitrary function germ E, 2b = [’ adz and IBbe(x,y)da: =74F.

Thus, the stationary algebra takes the form:

A2 +y7) + 3228 + 2y [So(y) + (2 + y®)ab — 2*E] = 0.
This is equivalent to
A® + o) + 3% + 2y[So(y) — 2*E] = 0,

where A = A + 2yzb, or equivalently

. 1~ 2 ~
32%(% + gAx — gmzyE] + 2y[So(y) + %Ay] =0.

This leads to the existence of a smooth function M (z,y), such that:

1~ 2
T+ gAa; - gmzyE = yM (10.14)

and 1
So(y) + §Zy = —32°M. (10.15)
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If we set © =y = 0, in the equation (10.15), we get Sp(0) = 0. Thus Sp(y) = yS(y).
Hence, we have:

1 ~
yIS() + 5 4] + 3*M = 0.

This means that there is a smooth function N(z,y), such that: S(y) —I—%Z = 32°N
and M = —yN. Substitute A and M from the last two equations in (10.14), we get:

. 2 2
&= —2N(y® +2°) + 3T8(y) + §x2yE,

Now, differentiate [ 3z3bdz = z*E with respect to z, we get: b = $E + Lk,
0

Thus ¢ component becomes:

. 1 1
v =yS(y) + gx(:c?’ + 4y E + §x2(m3 + 9y E,.

The classification of simple quasi strong classes is given in the following theorem.

Theorem 10.2.4 The list of simple quasi projections of reqular surfaces with bound-
aries in three space consists of the following normal forms of the projections (x,y, z)
(y, z) of the germs at the origin of the graphs V of the functions z = flx,y) and the
boundaries g(x,y) = 0:

1. For A, : f = k—hﬁ“ +yx, k > 0, the boundaries are the Arnold’s simple
boundary (with respect to the w = 0 boundary classes of curves g(w,x) = 0, where
the coordinate w = y + a* vanish at the critical set of the projection of the surface:
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r —w+a —w+2d — . o« wtah?
T T 1
2+ w? — w42 — - 2wtz e zw+ ok
T )
22+ wd — a® +w?
T
22 tw! — 22+ wd — — 22 - "

2. For §k:f= %:1;3—1-;1,"“&:, k>3,

o Ik is odd
z+y —e+y? — ... — x+yt?
T
y+a? —y

o If k is even

x4ty —x+yt — ... — z+ys!
|
Y+t ey
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3. ForCy: f = a4 2%y, k> 2,

z+y —ax+y? — ... —xtyr...
T
y+at e .. — y + ah 2

4. And for ﬁl : [ =2+ y?x, there are only four simple classes

4y —y+a? —y+ad
T

r

Remarks:

1. For §2 , there are no simple boundary classes. So if the surface can be
modified, then simple pairs correspond only to Avk classes.

2. Notice that, in the A, case using u = y-+2* instead of y reduces the stationary
algebra to the algebra of the vector fields with the components:

. 1 1 y
U= (,Lk:; E + E:czEm +S5 - Ma;"1> )
and % as in (10.5). This is a subalgebra of vector fields tangent to the boundary
u = 0. So to get the simple classes list we need to consider the splitting of standard

boundary orbits into quasi-boundary ones.

Proof of Theorem 10.2.4

Knowing the stationary algebra the respective classifications are obtained by
standard Arnold’s spectral sequence method together with appropriate preliminary
transformations.

We shall deal with semiquasi homogeneous function germs of the form g = go+39,
with the principal quasi homogeneous part gy and § is a function germ of higher
quasi degree, having the form

9(x,y) = a12 + agy + biz® + by + bay® + .. ..
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We consider successively all possible main quasi homogeneous parts of g ordered by
increasing weights.

The quasi tangent space to the orbit at ¢ takes the form:

dg . , 09+
TRS, = gC(x, - =Y
Q g 9 (L7y)+an+8yl)

where C is an arbitrary function. The components of stationary algebra (X,Y")
are described in Lemma 10.2.3.

The A L case:

1) If a; # 0, then we may suppose that the main principal part is g = . Thus,

M(x,y) .

1 1
TQS5, = 2A(2,9) + L0 Bz, ) + oS(y) — 2y +2%).

We obtain mod TQ)Sg: @ = 0 and y + 2* = 0. The last equation is equivalent to
y = 0. So, the local algebra C, ,/T'QS,, is generated by the unit only. Hence, any
function germ with the principal part go = x is equivalent to § = x.

2) If a; = 0 and ay # 0, then let gy = y. Thus,

1, 1, .
TQSy = yAlz,y) +yS) + 72 [2* + (k + V)y] E(z,y) + Emz(x’" +9) Ey(, ).

We have mod TQSy,: y = 0 and 2"+ = 0. Hence, any function with principal
part go = y can be reduced to the form

Exy+)\2:n2+)\3m3—l—---+,\kx’*.

Now, we may suppose that the principal part of the function germ Gis gy = y+\a*
where 2 <4 < k and A; # 0 is the lowest non-zero element. Then,
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~ o [~M 1 1
TQS;, = (y+ M)Az, y) + (ENa®) M(y + 2F) + Za?E(w, y) + )

k k
1, 1
+ yS(y) + Ew(w’“ + (k+ V) E(x,y) + sz(w’“ + ) Ee(, y).

Thus, we obtain mod T'QS3,:

v =—-\T, (10.16)
%WE + (%x'““ + k—me)E + (%x""’“z + %m?y)Erc =0, (10.17)

and "
(v + %:{:’i)S(y) =0. (10.18)

If we substitute y from the equation (10.16) into the equation (10.17), we get:

i (BADAY 1 Lok Aiano _
(2= G o, L] (Lo i) g, a0

If \; # 1 when ¢ = &, then the equation (10.19) yields that 2°*! = 0 and 2**! = 0.
By multiplying the equation (10.16) by y then by  we see that 2y = 0 and y* =0,

respectively.

If i # k , then the equations (10.16) and (10.18) yield that «* = 0 and y =0 .
Thus, we conclude that § is equivalent to y + 2%, 2 <1 < k.

Note that if ¢ = & then § is non-simple. Also, note that y + z* ~ y + z* + 2. Set
w =y + =* where the coordinate w vanish at the critical set of the projection of the
surface, then the class y -+ 2% + 2* is right equivalent to the class w + .

Thus, up to this stage, we get the following adjacencies:

Te—wtale— . — w4+t
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3) If a1 = ap = 0 but by # 0, then we may consider go = #*. Thus

-—lVf(a}, y)

TQS, = 2? Az, y) + 2 I

1
(y +2*) + %sz(w, ORS<CIOIE

Thus, we get mod TQS,,, % = 0 and 2y = 0. Hence, the local algebra C,,, /TQS,, =
H(y). It follows that g is equivalent to § = z? + h(y) where h € M2,

Now consider §o = z2- B:y* where i > 2 and B; # 0 is the lowest non-zero element
of the function h. Then

; Mx, 1 . 1 1
TOS, = (2 + By A, y)+ 2 [ W0y 4 24) 4 1aB(w,0) + EmS(y)]

; 1 y .
+ Byt [yS(y) + Ea:(:c]” + (k+ Dy)E(z,y) + %xz(m‘“ + ) Ey (2, y)} .

We have mod TQ S5,

2 =By (1020
oy + 2 = 0, (10.21)
2 SR A 53 ; :
o %;_xy*—l(w'» +(k+1y)| B+ ?—gw%z‘l(w" +y)E. =0, (10.22)
and 9
7a%8(y) +ify'S(y) = 0. (10.23)

The equation (10.21) can be written as
zy+a22-2t =0 (10.24)

If we substitute 2* from the equation (10.20) into the equation (10.24) we get
xy(l — By '2"?) = 0. This yields that zy = 0. Note that if k£ = 4 + 1, then we
require that §; # 1. However, ¢ > 2. Hence, we get that 2 =0 and y*™ = 0.

If i # £, then the equations (10.20) and (10.23) yield that 22 =0 and y* = 0.
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Hence, § is equivalent to 2% &= y¢,7 > 2. Note that if k = 2, then ¢ = 1 but ¢ > 2.

Notice also that 2% & y* =~ 22 4 (y + 2*)*. Set w = y + «*, then right equivalence
reduces the germ 22 & (y -+ 2*) to 22 4 w?.

The adjacencies of the classes in this case as follows:
wa?—a?tw? 2?4l — o Luwn. .

4) If a1 = ap = by = 0 but by # 0, then we may consider g = wy. Thus,

105, = ey +y | LEL 4 ) 4 1B(w0) + 05 0)

I [yS(y) + Lalat + (k- Dy)E(w,9) + 1(2 + 1) Bul, y)] .

Thus, We obtain mod TQS,,: xy = 0,y* = 0 and 2**2? = 0. Hence, ¢ is equivalent
to § = 2y + caa® + - - + gttt

Now we may suppose that go = 2y + a,;x* where 3 <4 < k -+ 1 and ¢ 5 0 is the

lowest non-zero term. Then,

M(z,y)

TQSs, = (zy+aa)A(z,y) + (y+icia'™) | =25y + ") + %sz(m,y) + %mS(’y)

1 : 1
+ x |yS(y) + Ew(a:" +(k+ 1)y E + Eaf“’(az“ +9) B (z,9) | -

We have mod T'Q)Ss,:

Y = —ou, (10.25)

1 - 1 . .
[Eaﬁ(y + it + sz(:c" + (k 4+ D)) E + %fc‘q’(:c" +)E, =0, (10.26)

y? + yaf + oy’ 4+ dogat il = 0, (10.27)
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and kit 1
=y + T'—%J;‘]S( ) =0. (10.28)
If we substitute zy from the equation (10.25) into the equation (10.26), we get:
(t—k— 2oy ETR R ST 1 k3 Q4 iu9 —
gt b B | 2ok - S = (10.29)

The relation (10.29) yields that 2**! =0, if { # k+ 1(and «; # 1 when i = k+1).
If we multiply the equation (10.25) by x and then by y, we get 2%y = 0 and zy? = 0,
respectively.

Substitute xy from the equation (10.25) into the equation (10.27) to get:

Y+ (i — Dyt —o2a¥ 2 =0, (10.30)

The relation (10.30) yields that y2 = 0 as z***~! = 0 and 2%~% = 0. Now if
¢ # k =+ 1, then the equations (10.25) and (10.30) yield that zy = 0 and z¢ = 0.
Hence, § is equivalent to 2y + 2* where 3 < 4 < k+ 1. Note that 2y + z* can be
written in the form ww + 2, where w = y + ¢**+1,

Also, note that if ¢ = k + 1, then xy 4 «;2? is non-simple.

The family F, = az* + w? + 2 + 2y yields to the following adjacency

2?2 +w? — zw + 2%

On the other hand, the family G}, = bw + 2w + a* gives the following adjacency

w+xt e zw+2af, where 3<i<k-—1
5) If ay = ag = by = by = 0 but b3 # 0, then we may consider go = y?. Thus,

L2k +y) Bule,y) -

1,
TQSy = ¥* Az, y)+2y |yS(y) + Em’(w" + (k+ Ly) Bz, y) + ¢

We have mod TQSg,: y* =0 and y2*+! = 0. Hence, g is equivalent to

T=0"+ Boyz® + -+ Buyz® + h(z), h € M2,
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Now suppose that § =y + Byz? + - + ogya® + ua +... , where 2< 5 < k ,
7 > 3. Assume that a3 # 0 and consider gy = y? + az2®. Then, the tangent space at

do is

1 1
TQS;, = (y* + st A(x, y) + 3aza? M—(:]:—’“T’Q(y + :ck) + E:L'?E(:L', y) + EQ:S(y)}

1
+ v |ySy) + Ew(mk + (k+ 1)y)E + %2:2(3;’“ + y)Em(m,y)J :

Then, we obtain mod T'Q)Sy, :

Y2 + gz =0, (10.31)
ya? + 2% =, (10.32)
4 1, E+1 1,
—F 4 (Zyaktt + —j_—yza‘:)E + (Syak*? 4 l3}2:L‘2)Em =0, (10.33)
k k k k k
and
1
72°S(y) +y°8(y) = 0. (10.34)

If we substitute y? from the equation (10.31) and yz? from the equation (10.32)
into the equation, we get 2* = 0 for k > 2 and 23 = 0 for k = 1. Hence, 3® = 0 and
yz? = 0. However, the equations (10.31) and (10.34) yield that 42 = 0 and 2% = 0.
Thus, we conclude that 7 is equivalent to G = ¢? + 23, Right equivalence yields that
G can be reduced to the form w? + 2®, where w = y + 2*.

Notice that the family F, = azw + w? + 23 provides the adjacency zw -+ «3 «—
2% +w? On the other hand, the family

Py = (wcost + wsint)® + (—asint + wcost)?

gives the the adjacency 22 + w® «— a3 + w2,

Consider now the quasi homogeneous function H = y? + Byyw? + cax? with respect

weights w, = 41 and wy, = £. Then, comparing the dimension of H with the dimension
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of the quasi homogeneous functions of quasi degree 1 with respect weights, given
above, in the tangent space at H yields that ¢ is non-simple.

The Ek case:

Let g(z,y) = a1x + agy + byx? + boxy + bsy® + .. ..
1) If vy 5 0 and ag 5 0, then we may consider gg = « + ay. Thus,

TQS, = (x+ay)A+ {N(w2 + y*) + ng(y) + ngyksz}
1 s .
+ a {yS(y) + Q—w(wz + 3yME + %wz(wz + y")Ex} :

Then, we obtain mod T'QS,,:

T = —ay, (10.35)
22 +yf =0, (10.36)
and
k
—in(y) +ayS(y) =0. (10.37)

If we substitute « from the equation (10.35) into the equation (10.36), we see
that y> = 0. Hence, 2y =0 and 22 = 0.

If k # 2, then the equations (10.35) and (10.37) yield that x = 0 and y =
Hence, we conclude that: g is equivalent to z + y.

If k =2, then g = 2 + ay.
2) If a; # 0 and ag = 0, then we may suppose that gy = 2. Then

TQSg = xA+ N(@* +¢*) + gws(y) + ngyk‘lE.

We have mod Ty,: =0 and y* = 0. Hence g is equivalent to § = & + apy? +

aay® + -+ o1yt
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Now suppose that §o = = + oy, with a; # 0 is the lowest non-zero term and
2 <i<k—1. Then,
i L k o k1
TQS; = (v+ay)A+ N +y*) + '2-33S(y)+§1' Yyl
L 1 . 1 .
+ dogy! {yS(y) + Ew(wz + 34" E + 551;2(:!:2 + y’")Em} :

Thus, we get mod TQS5;:

T = -y, (10.38)
2 +yF =0, (10.39)
and
k .
§xS(y) + 0,y S(y) = 0. (10.40)

If we substitute x from the equation (10.38) into the equation (10.39), we get
y¥ =0 and y* = 0. Hence 2 = 0 and xy* = 0. Also, if k # 2, then the equations
(10.38) and (10.40) yield that z = 0 and y* = 0. Hence, 7 is equivalent to z + 3
where 2 < ¢ < k— 1 and k 5 2. Thus, we get the following adjacencies

sty —wty?e— o —a oyl
If k = 2¢, then we obtain the following adjacencies
CHy—zH+yde o —ptyiL
3) If a; = 0 and ay # 0, then we may suppose that go = y.

1 1 y
TQS, =yA+yS(y) + gw(:vz + 3y E + E:ﬂz(wg + " E,.

Then clearly,: v = 0 and 23 = 0 mod TQS,, . Hence, gy is equivalent to § =
y + ax?. Now consider the tangent space to the orbit g,
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k o5 .
TRS; = (y+az®)A-+ 20z {N(m2 +y*) + g:cS(y) + Emzyh‘lE}
1 ) 1 3
+ {yS(y) + 53:(:(:2 +3yME + é-a:z(azz + y;”)Em} .

Then, we obtain mod TQS;:

y = —az? (10.41)
2%+ ayt =0, (10.42)

and
akz®S(y) +yS(y) = 0. (10.43)

If we substitute y from the equation (10.41) into the equation (10.42), then we
see that 2° = 0. Hence, 2y = 0 and y? = 0. The equations (10.41) and (10.43) yield
that 22 = 0 and y = 0. Hence the class § is simple and g is equivalent to y + 2.

4) If @y = a = 0, then similar calculation as before shows that any function
g(z,y) with first jet J(g) being zero is non-simple.

The ék case:
Let g(x,y) = a2 + agy + bya? + ...

1) If a; # 0, then we may suppose that gy = 2. Thus,

TQSgo = 2A(2,y) + Nz, y)(a* + 2y) +

1 ~ N
—75) +2°Qxy) + 21 Qu (2, y).

Clearly C,,/T'QSg, = C,. Therefore, the germ g is equivalent to § = = + h(y),
where h € M,,.

Now, assume that h = c,,y™ + i(y) where h € M7+ and ¢, # 0 is the lowest
degree monomial in A. Consider gy = 2 + ¢,,y™. Thus,
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. 1
TQRS;, = (z+cny™A(z,y) + (2" + 2y)N(z,y) + P 28 (y) + P Q(z,y) + 2'Q,
+ eny™  {uS(y) + 2228 + (B + Day]Q(x, y) + 2°[42* + (k + 3)zy]Qu(z, y)
+ (@ + 2y)Qeale, )}

Thus, we obtain mod T'QSg,:

T = —cay™, (10.44)
2" +ay =0, (10.45)

and )
P 1:vS(y) + meny™S(y) = 0. (10.46)

Substitute = from the equation (10.44) into the equation (10.45), then we get:

(—em)y™ — coy™ = 0. (10.47)
We distinguish, the following cases:

i.If m # 1 and £ # 2, then T'QS5, contains y*™ and y™*+!. Multiply the equation
(10.44) by y and then by z, we see that TQS;, contains also 2y and 2, respectively.

ii. If m = 1and k = 2, then y? belongs to TQSy, if ¢, # 1. Hence, TQS;,
contains also zy and 2.

The equations (10.44) and (10.46) yield that, TQSj5, contains y™ and , if k 5 2
and m # 1. Hence, the germ 7 is equivalent to 2 -+ y™. If k=2 and m = 1, then §
is equivalent to the non simple germ z + ay?.

2) If a; = 0 but gy # 0, then we may suppose that gy = y. Thus,
TQS,y = yA(@, y)+yS(y)+a[22"+(k+1)2y]Q(z, y)+2?[4a* +(k+3) 2y] Qo+ (2" +21) Que.

Hence, we obtain mod TQSy,: y = 0 and 2 = 0. Therefore, the germ g is
equivalent to § = y + as2? 4+ o323 + - - - + az®.
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Now, consider §y = ¥+ a;z*, with o; # 0 the lowest non-zero term and 2 <7 < k.
Thus,

1
oS0) + Q) + 140,

+ yS) + 222" + (b + DaylQ(x, v) + 2?42 + (k + 3)2y]Qe + 23(2" + 21) Qua.

TQS% = (y+aia’)Ale,y) + o™ {(w" +ay)N(z,y) +

We have mod T'QS53,:

¥ = —ou2, (10.48)

(iaixi-i—Q + 2$k+1 + (k + 1.)332‘3}) Q+(iaiw’i+3 + 4xk+2 4 <k + 3)m3y) Qx+($k+3_€_$4y)me = O,
(10.49)
and

’iOli

k—1

#'S(y) +yS(y) = 0. (10.50)

If we substitute y from the equation (10.48) in the equation (10.50), then we see
that 2" = 0 and 22 =0 and ¢; # 1 when i = k — 1. Hence, 2’y =0 and y* = 0.

If i # k — 1, then the equations (10.48) and (10.50) yield that y = 0 and a* = 0.
Multiply the equation (10.48) by « and then substitute y from the equation (10.50)
in the new relation, we see that 2" =0, if 1 £ k — 1.

Therefore, we conclude that § is equivalent to y + 2* where 2 <4 < k — 2. The

adjacencies between the classes is given as follows:

T4y — x+yr = .. — x+y"...
i

y+at o L — y+ ah?
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The E case:
Let g(@,y) = a1x + azy + . ..

1) If a1 # 0 and ay # 0, then we may consider gy = & + ay. Thus,

2 2
TQS,w = (v+ay)A+ N(@®+9%) + ng(y) + §x2yE

1
+ « {yS’(y) + gm(wS + 4y E + %$2($3 + yQ)Em} .

Hence, we obtain mod TQS,,:

= —ay, (10.51)
#*S(y) + y2S(y) = 0, (10.52)

and .
-z +ay=0. (10.53)

3
If we substitute « from the equation (10.51) into the equation (10.52) we see that
y?> =0 and 2% = 0. This yields that 2y = 0 and 22 = 0. Now, the equations (10.51)
and (10.53) yield that x = 0 and y = 0. Hence, after normalization « we conclude
that g is equivalent to & + y.

2) If ay = 0 but gy # 0, then we may suppose that go = x. Thus,

2 2
Ty = A+ N@° +y°) + 325(y) + -?;nyE.

Clearly, the tangent space contains x and y?. Hence, g is equivalent to .

3) If a; = 0 but a2 # 0, then we may suppose that g = 3. Thus,
L3 2 1 o3, .2
TQSg =yA+yS(y) + (@ + 4y ) B+ 22”(2” + y°) Ea.

We have mode TQS,: y = 0 and 2! = 0. Hence, g is equivalent to § =
Y -+ onx? + agad.

Now, consider o = y + a;?, where a; # 0, 1 = 2, 3. Then,
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TQS; = (y+ ')A, y) +ica’! {N(m, y){(@® + %) + g:cS(y) + ga:QyE(a:,y)}
+ {yS(y) + %x(af + 4y E(z,y) + %3;2(&:3 + y?) By (, y)} ‘
If we substiute y = —a;2* in the local algebra C,,,/TQS;,, we see that
Coy/TQSs & C,/TQS5, = R{1,z,2"*}

where
= L il )R 3 2,2 2 i =20y
TQRS;, = iouT N(z)(z® + o’2%) + ng(:v )+ — E(z)

o - 1 L
+ {yS(:c*) + 5:1:(:)33 + dy*)E(x) + gmz (2® + 4a?2®) B, (z)

Hence, g is equivalent to y + z¢.

4) If the function has zero first jet Jl(g), then similar calculations as in the

previous cases show that ¢ is non-simple.

‘Thus, the complete list of simple classes is described in the following diagram

T4y — y+a? — y+2t
T

£

10.3 The weak equivalence relation

Even more rough equivalence relation which may help to understand some invariants
of the singularities of quasi-projections with boundaries is defined in this section.
However we outline here only the details of the definition, no classification results

are given.
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Definition 10.3.1 Two hypersurfaces with boundariesG; = ( h ) and Gy =

g1
fa

92
R” such that:

are called pseudo-weak equivalent if there exists a diffeomorphism 6 : R® —

1. G1 = MGy 00, where M = ( Z 0

), where a, b, c € C,,, with a(0)c(0) # 0.
c

2. The differential of # preserves the direction of the projection only at boundary

points which are also critical points of the projection of V;.

Remarks:

1. We call this equivalence weak because we preserve the direction at critical
points of the projection which belongs to the boundary only.

2. Denote by G = ( / ) the pair which define the the variety V with the bound-
g
ary B.
3. Denote by Ji the ideal generated by f, g and gé .

4. Denote by Rad(Js) the ideal consisting of function germs h(z, y) whose certain
power h™ belongs to the ideal Jg.

5. Denote by I Rad(.J) the module of function germs g such that g:% € Rad(Ja).

6. Denote by IJ; the integral of the ideal Jg; it consists of all functions germs h
such that ah € Jg. To be explicit

IJg ={A+/ (fB+ gC + %D)d:c:/l €C,,B,C,DeC,,}.
0 o

Proposition 10.3.1 The tangent space TPWy is given by the formula

TPw. — [ TPWs JA+ X+ 300 1fJ,Y
G = n
TPW, B+ 9C + . X + 30 g,V
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()

VT

Figure 10.2: Weak Quasi Projection with boundary .
where A, B,C, X € Cuys Y, € TRad(Jg).

Proof.  The proof is similar to the proof of proposition 9.1.1. 1

The improved definition is given as follows:

Definition 10.3.2 Two hypersurfaces with boundaries G, = ( h ) and Gy =
0

( f2 ) are called QW-equivalent if there exists a family of diffeomorphisms 8, :
g2

R™ — R™ continuously and piecewise smoothly depending on parameter ¢ € [1, 2]

Mt:(at O))
bt Cy

where a¢, bs, ¢ € Cqyyy a4(0)et(0) % 0 My = I, and 6, = id and a family of pairs
G — i

9t
and the vector field V = (X,V;) generated by 6, is of the following form: X € C.y
and Y; € IJg,.

and a family of matrices

, with ¢ € [1,2], such that: For any ¢ € [1,2] we have G, = M;Gy 0 0,



Chapter 11

Quasi projection of graphs of

mappings

In this chapter we classify simple classes of quasi projection of graphs of two different

type of mappings. The idea is similar to the one discussed in chapter 9.

11.1 Quasi projection of graphs of parametrized

plane curve germs

Assume that (C,0) C R? is a germ of a curve in the plane. There are two ap-
proaches: either consider its defining equation f = 0 where f : (R?0) — R or its
parameterization v : (R,0) — (R*0);¢t — (y = a(t),z = B(t)). Standard Arnold
singularities Ay, Dy, Fg;5 = 6,7,8 describe the simple classifications of the curves
S =0[1]. JW.Bruce, T.J, Gaffney [14], L.Rudolph [28] and V. Arnold [4] con-
sidered the classifications of simple singularities of parameterization curves up to A
equivalence relation [14, 4].

We will consider a parameterized curve  : (R,0) — (R? 0);# — (y = a(t), z =
B(t)). Consider its graph Q = {(¢,y,2) : y = «(t), z = 8(t)} C R x R2. Consider the
projection 7 : (£,y, z) + (y, 2).

Definition 11.1.1 Two graphs ;i = 1,2 corresponding to the parameterized

curves ¥ : t = (y = o4(t),z = Bi(t)) are called pseudo equivalent, if there ex-

214
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ists a diffeomorphism © : (R x R?,0) — (R x R?,0) such that ©(2;) = Q, and the
differential of © preserve the direction of the projection 7 at the critical points of
the projection.

Let Pq be an equivalence class of the germ 2 and call it a pseudo orbit of . If

we differentiate all deformations of {2 upon a parameter, we get the tangent space
TP,.

Proposition 11.1.1 The tangent space of the orbit Pq at 7 is given as follows:

TP, = ot +1 L,
( A Z

where the components Y and Z satisfy

oY oz dalt) 9Bt
B B eRad{y a(t), z — B(1), gi), gi)},

and A € C;.

Proof.  Let the vector field V = T -+ Y a 5t Z ~ be phase flow generated by the
diffeomorphism © : (t,y,2) > (T, Y Z) Then @ preserve the direction 2 = along a
trajectory if the following is satisfied: [V, Z] = ¢ with some factor ¢. This gives
‘98’: = 0 and 3‘ = 0. From the definition we want this properties hold only at the

critical points of the projection. This means that:

oy a7 dalt) @
S eRad{ — alt), 2 — B(2), git),%‘f)}.

Remark: Integrating by parts gives :

I, = /0 - ) AWt = (y — ) /0 Aty /0 i %{ /0 " A)dt.

Restricting to the curve by substituting y = a(t) gives
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b B~
I —-/(; t—a—t—Adt,

with tA = jg’ A(t)dt . Similarly we can deduce that:

M, = /0 ‘(e p)BuL,

vields that:

t 8ﬂ~
I, = — Bdt
9 A tat dt,

where B € C;.

As usual the radical behaves badly when the ideal depends on parameters. So
the previous definitions can be improved by replacing the radical by the ideal itself.

Definition 11.1.2 Two graphs €;,4 = 1, 2 of the parameterized curves 7; : ¢ +— (y =
i,z = [%),1 = 1,2 are called quasi equivalent if there exists a family of parameterized
curves Qe = {(t,9,2) : ¥y = a,, 2 = B.} which continuously depends on parameters
¢ € [1,2] and a family of diffeomorphisms O, : (t,y,2) + (T, Yz, Z:) continuously
and piecewise smooth depending on parameter ¢ € [1,2] such that ©.(Q;) = Q.
where ©; = id and the components Y and Z of the vector feld generated by O,
satisfy the following:

Y. 87,  [Dee(t) 9B(1)
ot’ ot ot ot )

The classification of simple quasi projection classes is given in the following the-
oremni.

Theorem 11.1.2 Any simple projection of a graph of parametrized curve v : ¢ —
(ce(t), B(1)), with respect to quasi equivalence is equivalent to the graph of the curve
¥ it (kt5,0) for some k > 1. The remaining germs form a subset of infinite
codimension in the space of germs.
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Proof of Theorem 11.1.2

Let v :t = (a(t) = apth + ap1t™ + .., B(E) = bst® + bypat™ 4 .. ).
Up to permutation between « and 3, suppose that k& < s (if k£ = s, then by left

transformation, v can be reduced to the form
Tt (@) = @t + Gaat™ L B(E) = 0ot F bttt L)

with [ < s.)
By right equivalence -y can be reduced to the form:

it (a(t) = £t8, Bi(E) = bet® + beyrt*H +..).

Take the family, ve : ¢ > (@e(t) = £t¥, (Be(t) = €(bst® + borst* +...)), with
¢ € [0,1]. Then, the respective homological equation is

0 B ktk-1A . Y
bst® + ot 40 ]\ e(sbyt™ 4 (54 Dbgyrt® + ... )A z )

Note here that:

t
Y =Y(«, B) + / [:l:kt’“‘lBl + e(sbsts_l + (s+ 1)bs+1t5B2)] dt.
0
Hence:

Y =Y(a,B) +t*Cy + e(bst + ... )Ch.

Similarly, we see that:

Z = Z(ae, B) + t*Cs + e(bst® + ... )Cy.,

for some functions A, C;, Cy, C; and Cy € C;.
Thus, the homological equation is solvable for ¢ = 0 by setting : A = Cy = C, =
Cy=Y(ae,Be) = Z(cte, Be) = 0 and Cy = bt* ¥ + by tst15 .. ..
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For € € (0,1], by setting: A=C) =Cy = C3 = Y(a.,Be) = Z(ae, Bc) = 0 and

bs + bsat + . ..
Cy = ——= :
€(bs + bsyrt +...)

The theorem is proven.

Remark: We get the same results if the direction of the projection is preserved
on the whole space curve. In this case:

)t—'

oY 9z _ [ dalt)
ot

oy 86(t)
5t Bl Bt '

Thus, similarly to the proof of the previous theorem we see that:

£
Z = / [:I:kthl =+ E(.S‘bsts + (S + 1)b3+1t5+1>} dt
0

Hence:
Z = Z(ae, B) + " By + e(bst* ™ + ... ) Bs.
Similarly:
Y =Y (e, Be) + 5 By + e(bot*™ + .. ) By
for some functions A, By, By, By and By € C;. Therefore, the homological equation

is solvable for ¢ = 0 by setting: A = By = By = By = Y(a, ) = Z(t, f.) = 0 and
By = byt %1 4 b, 157151 Note her that s > k + 1.

For € € (0,1}, set: Z(a, B.) = aofc and A = By = By = By = B, = Y(cte, Be) =
0. Hence, the homological equation is solvable by taking: ao € R such that age = 1.
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11.2 Quasi projections of graph mappings germs
F: (R?0) — (R?0)

Consider a germ of C*-smooth mapping F' : (R%0) — (R%0); (u,v) — (2 =
fu,v),w = g(u,v)). Let T = {(u,v,z,w) : 2 = f(u,v),w = g(u,v)} € R? x R? be
the graph of the mapping F' and consider the projection 7 : (u, v, z, w) — (z,w).

Definition 11.2.1 Two projections of graphs I';,4 = 1,2 which correspond to the
mappings F; : (R?0) — (R%0); (u,v) = (2 = filu,v),w = gi(u,v)), ¢ = 1,2 are
called quasi equivalent if there exists a diffeomorphism @ : (R? x R?) — (R? x R?),
such that ®(I';) = I'; and the differential of ® preserve the direction of the projection
only at the points which lie on the graph.

Remark: The difference between standard A— classification of mappings and
quasi classification of mappings is in the multiple points sets. Assume that two points
my and 1y on the graph lie on the same fibre and therefore they are mapped to the
same image. Then, this property persist for the A— equivalent mappings. However,
this is not the case for fmasi projection equivalence as the points m; and my might
be mapped to different fibres and hence they are mapped to different images. The
quasi equivalence only preserves the direction field of the projection at all points of
the graph.

Some possible applications are pointed out in the conclusion chapter.

Denote by Qr the equivalence class of a germ [' and call it a pseudo orbit of T'.
If we differentiate all deformations of I" upon a parameter, we get the tangent space

TCr.

Proposition 11.2.1 The tangent space TQr is given by the formula

of of I 1 ) 0 .
i — du v i VA w
o (— ->(v>+(o> +(1)
dg 07 of

0% of B
5@:—&1%+615£ and E—alav

where
9,

+/818v)
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oW of aW_ af
G R A L A

for arbitrary smooth functions o, B and U,V € Cy,.
Proof. Let
B, : R - RY (w, v, 2, w) = (Uplu, v, 2, w), Vi(u, v, 2, ), Ze(w, v, 2, w), Wilu, v, 2, 0))

be a family of diffeomorphisms. Let a; = 2 and ap = 2 be the basis of vector space
R?. Then the family of differentials ®} preserve the directions of the projection if
the following relations are satisfied:

<I>§(a1) = /\1(t)a1 + /\2(15)(1,2,

and

@Z‘(ag) == )\3(1&)&1 + Az}(t)a&-

Differentiate these relations with respect to ¢ and substitute ¢ = 0, we get (re-
spectively):

WV, a1} = Xlal + thbza

and
V,a0] = X1003 + X4a2.

Here V = U g - - V o =+ Z -+ W ‘9 . These relations are equivalent to (respec-
tively):

U 8 OV o 876 OW 8 N .
B (B_U% Y oude T auae T W%) = A1y + Azaz,
and . ' . |
U & v ao oazao W o ~ -
. (55755 TR T P a—m;) = sty + Mz,

9% _ W _ 97 _ 8w __
Hence we see that: 35 = 5 = 5= = 5= =0.
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From the definition, this means that these derivatives belong to the radical of the
set defining the graph I". This means that

oz oW 8z oW
o’ B’ Bv du € Rad{z — f(u,v),w — g(u,v)}.

Notice that Rad {z — f(u,v),w — g(u,v)} = {z — f{u,v),w — g(u,v)}.
Let 62 = (z — fla+ (w—g)B3, with &, 8 € Cyp z -

By H'Adamard Lemma we can always write

Z = Zo(u,v) + (z— flan+ (w —g)B1 +¥ where € {z— fiw—g}® (x).

Differentiation (*) with respect to « then 1estuctmg to the surface by setting

z = f(u,v) and w = g(u,v) gives ?—Z- = %i" — aua — ——ﬁl On the other hand, we
haye %ﬁ- = 0. Hence, we obtain %l = ggal + ggﬂl. Similar arguments yield that
87y

8zy _ Of 8y
e = o0 + 5o

The same conclusions hold for W.

The classification of simple quasi projection classes is given in the following the-
orems.

Theorem 11.2.2 If the mapping F : (R?,0) — (R?,0) is of corank 1 and the graph
of f is simple with respect to quasi projection then the projection of the graph of F
is quasi equivalent to the graph of one of the following mappings: G : (R?0) —
(R?,0); (u,v) + (g,v) where g is listed as follows:

Avig=v"*"" 4w k>0,
Biig=v"+ufv; k>2
Cp:g=v"*"40v%u; k>2

Fy:g=v*+u2.
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Remark: Notice that this list coincides with the list in theorem 9.4.2 of simple

quasi projections singularities of regular surfaces embedded into three space.

Proof of Theorem 11.2.2.

It is enough to notice that the tangent space at I with respect to quasi projec-
tion along two dimensional fibre coincide with tangent space with respect to quasi
projection along one dimensional fibre.

By standard right equivalence one can reduce the mapping F' : (u, v) — (z =
f(u,v),w = g(u,v)) to the form F : (u,v) = (2 = f*(u,v), w = v).

Consider the deformations F; : (u,v) — (2 = f;(u,v),w = v) of the mapping F.
Then, the tangent space at F; with quasi projection along two dimensional fibre is
given as follows:

—S5\ _{ halz— F () + ha(w —v) . Yiay¥ip N Z
0 ha(z = fi(w,v)) + ha(w — v) -B W)’
where hy, N, ha, by € Cyp,. and A (similarly W) takes the forms:

%%=al(z—fé"(u,v))%-az(w—v) and %f_:03(Z~f¢*(%7}))+a4(W—”)'

By integration by parts, this is equivalent to:

Z:/ w%Al(u,‘u,w,z)du+C’1(z,w)—l—al(u,‘u,w,z)(z—fg"(u,'U))+ﬁ1(u,'1),w,z)(w—v),
’ (11.1)
and

7 =12 A5(u, v, 2, w) + Calz, w) + aa(u, v, w, 2)(z — ff(w,v)) + Ba(u, v, w, 2){(w — v).
(11.2)
Restrict the equation (11.2) to w = v and differentiate it with respect to « to get:
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A ~ ~ ;o
Tu = v Ao (u, v, 2) + &au, v, 2)(z — fi{u,v) (u, v, 2). (11.3)
Similarly, restrict the equation (11.1) to w = v and differentiate it with respect
to u to get:
0Z  Ofr ~ . . [~
= ua—'ZAg(u, v, 2) + Ois(u, v, 2)(2 — fi(u,v)) + %ﬁ:}(u, v, 2). (11.4)

The equation 11.4 is equivalent to:

%g %f Aa(u, v, 2) + s (4,9, 2) (2 — ff (1,0). (11.5)

The intersection of the relations 11.4 and 11.6 yields that:

%g B %%ZL"(“’ v, 2) + (v, 2)(z = f(u, ). (11.6)

Restrict the last equation to z = f to get:

0Z _ df; ~
a—u - —BEAf,(’LL,’l),Z). (117)

Similar argument shows that:

oW 8 I~
=t R 11.
Tu " By Bs (1, v, 2). (11.8)
Now the second row of the homological equation after restricting z = f and
W = v gives:

B=W.
Thus the first row of the homological equation takes the form:

aff _ off ft
_5_? - _"t—A( ) % )

where 2 — Y% By(u, v, 2) and oz . Ef‘—A5(u v, 2).
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The last tangent space coincides with the tangent space of the quasi-projection of
the regular surfaces z — f; = 0 to (z,v = w)-plane. Hence the list of simple classes in
this case is the same list of the simple quasi-projection classifications of the regular
surfaces 2 — f¥ = 0 to (2, w)-plane in this case which was considered before. The

theorem is proven.

Moreover,

Theorem 11.2.3 If the mapping F : (R?,0) — (R2,0) is of corank 2, and the
progection of the graph is simple with respect to quasi projection. Then, the projection
of the graph of F' is quasi projection equivalent to the graph of the following mappings:

G (u,v) — (u? £ 02, u).

Proof of Theorem 11.2.3.

The table of adjacencies of the second jets of the mapping F : (u,v) > (z =
f(u,v),w = g(u,v)) up to right-left equivalence of corank 2 is given as follows:

I (u? £ 0% w) — I : (uwo,0?) — 11T - (u? £0%,0) « V : (u?,0) «— IV : (0,0).
Consider separately these cases.
The case (I):

Let I : (u,v) — (2 = w* £ 02 + f*(u,v),w = w + ¢*(u, v)) where f*,g* € M3

u,v*

By standard right equivalence, one can reduce I to the form:
F(u,v) = (2= %), w = + g(u,v)) where §e M,
Take the deformation:

Fii(u,v) = (2= u? £ 0%, 0 = wo + t§(u,v)), where te0,1].

We want to show that all F} are quasi equivalent.
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The homological equation takes the form:

0 B 2uh + 208 + Z
—g(u,v) (v+ t%)A + (u+ t%)B W

% ?XZE at, ( -I-t@)
ou’ Ou Y ou’ |’
0z oW 07
%, —87 & {'U, (’ll.+ t%)} .

Consider the first row of the homological equation and solve it for A and B.
Thus, we have

where

A+ 2B+ Z=0.

Solve this equation first at ¢ = 0. In this case Z (and W) takes the form:

Z = hy(u) + ha(v) + w20 gy, v) + ha(u® + v2, wv), (11.9)

where hy € M3, hy € M3 by € C,, and hy € Cj,. Note that if sy € M3, then
ha C hy(u) + ho(v) + w*v*hs(u, v). Hence, the equation (11.9) takes the form;

2uA + 208 + ha(u) + ha(v) + ©*v*hs(u, v) -+ ag + ayuv + ag(u? £ %) =0,

or equivalently,

u[2A + Ty () + wv?hs(u, v) + a1v + agu] + v[2B + 77:2('1)) =+ asv] + ap = 0.
where ; € M2 Ty € M2 and ag, a1, a2 € R,
This yields that:
A=vC(u,v) + ’l;;(u) + uv®hy(u, v) + arv + agu, B = —uC(u,v) + Ez(’U) =+ ayo,

and a¢ = 0.
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Thus, the second row of the homological equation takes the form:

—g(u,v) = vA+uB + W,

where A and B as above and W takes the form:
W = hy(u) + ho(v) + w20?hs(u, V) + Go + G1uv + Ga(u? £+ v?),

Here il] c M;O’L, }\IQ c Mg,;la (S Cu,'u and ag, G1, a2 € R.
Hence, clearly the homological equation is solvable at ¢t = 0. In fact similar

arguments solve the homological equation for any ¢ € [0, 1].

The case (II) is non-simple. Suppose that H : (u,v) — (uv, % + g(u,v)) with
9 € M3, Assume that g, with ¢ € [0,1] consists of quasi-equivalent projections.
Then the homological equation takes the form:

0 B vA+uB n Z
— o (2u+ %A+ (&) B W

Solving the following relations for Z

5p = aw + B1(u + o) md = a1u+,61%

we see that Z = C (uv, % + ge(u,v)). Similarly, we get W = Cs(uv, y; + ge(u, v)).
Notice that H'Adamard Lemma, leads that

u2

5 + g¢(u, v)).

i 2 2
Z = C1(0,0) + wwP(uv, u? + g.(u,v)) + (u? + g(u, v)) Py (uw,
Solve the first row of the homological equation for A and B. We get

A=uK(u,v) —uP, —vip, and B = —vK — %Pg,

for arbitrary function K € M,,.
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Let § = % + o4v® be the lowest quasi homogenous part of g;. Computations
shows that the second row of the tangent space does not contain the term vy, This

means that the mapping H is non-simple with respect to quasi projection.

The case (III) is also is non-simple as it is adjacent to the case (II). However,
we give detailed arguments with different approach. In fact, let F': (u,v) — (2 =
u? £ 0%, w = g) where ¢ € M2 . Consider the third jet of the mapping F. Let
J3(9) = a1u® + aguv® + agu®v + agv®. The homological equation takes the form:

0 3 uA+vB N Z
—I9) )\ A+ 2R W)’

8z 8w 3 8z aw 2 ) 22 3
where 52, 5 € {¢?, 3014® + aguv? + 203u%v} and 5 50 € {v?, 209uv? + agu®v + 3a40°}.

Let Z = cud + czu v + csuv® + c4v®. Then, @ = 3e1u? + 2couv + 302, On the
other hand, we have 2 a_ = vay + (3a;u® + asur? + 203u?v)ag. Comparing the last
two equations, we see that : 3¢y = ay, ap = ¢y = ¢3 = 0.

Similarly, $Z = cyu? + 2c5uv + 3¢40%. On the other hand, we have ‘aﬁ = 020 +
(2a2uv® + azu®v + 3a4v°)B,. Comparing the last two equations, we see that :

3ea=01,0=0=c=

Thus, Z = &ud + 08, Similarly, W = &us + ¢40°. Hence, the first row of the

homological equations becomes:

uA+vB -+ ’51153 + ’52’03 =(,

If we solve the previous equation for A and B, we get:

A=wvd(u,v) —&u® and B=—ud(u,v)—&n? where dc Cuu

"The cubic terms in the second row of the tangent space are obtained from:

C'if'“’(sz),ud0 _0J%y)

udo and Gu® 4+, where d, € R,
ou ov
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which form a subspace of dimension 3. Hence, cubic terms can not belong to finitely
many orbit.

Other cases are adjacent to the non-simple case (III). The theorem is proven.



Chapter 12
Conclusion

Here we recall the main results of the thesis with some final comments.

In chapters 2-6 we have classified simple singularities with respect to quasi border
and quasi flag equivalences. There are much more simple classes than for the standard

equivalence.
The classification theorems of simple classes are the following

Theorem: A simple quasi boundary singularity class on the boundary (y = 0)
is a class of a stabilizations of one of the following germs:

1. By : 22 4 y*, k>2 k;

2. Fim : £(y £ af)? £a, 2<k<m k+m—1.

Theorem: Let the germ f : (R*,0) — R, be simple with respect to the quasi
corner equivalence. Then the following is true:
e If /5 is a non-degenerate form, then f is quasi corner equivalent to Morse func-

n—2
tion By : £a? £y + T 422,
=1

)

o If f is degenerate form of corank 1 then / is stably quasi corner equivalent to

one of the following simple classes:

L Bp:®(xLty)?+y™, m>3, m+ 1;

229
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2. Frm @ y®)22y™, m>k>2, k+m;

3 Hmmp + (£ 27)2 £ (y £ 27)2 & 28, where k>n>m,>2 m+n+k— 1.

Theorem: Let f: (R",0) — R, be simple with respect to the quasi cusp equiv-

alence. Then, elthel J2 is a non-degenerate form and f is quasi cusp equivalent to
Lo kx? £9% 4+ Z +27 or fy is degenerate form of corank 1 and f is stably quasi

cusp equivalent to one of the following simple classes:

1. Ly &a? £k, k>3 k+1.
2. My ¢ dy? ok, k > 3, when s = 3; k2.
3. My 9%+ 28, when s > 4; 5.

4. Nopg: (w222 (y£22)2 +23, when s> 3; 7.

5 Nmap: 22 (y+2)2 428 k>m>2, when s = 3; m-+k+ 3.

Theorem: Let f: (R™, 0) — R, be simple with respect to the quasi cone equiva~

lence. Then, either f; is a non—degenelate form and hence f is quasi cone equivalent

to Po i ka? 4 9% 4 22 + Z tw? or f, is degenerate form of corank 1 and hence fis
=

stably quasi cone equivalent to one of the following simple classes (up to a possible

permutation of x, y coordinates and up to the addition with a quadratic form in

some extra variables):

1. Py La?dy? 425 k > 3; k.
2. Op i £22 (2 —y)? £9y™, m > 3; m+ 2.
3. Spym £ 2% (wEyh)? g™, m>k>2; k+m+ 1.
4. Y 22 £y £ 2+ 0 >3 4] —

5. Wigt 2?32+ (2 +wh)? + 2, >k k41— 1.

6. Qi E(etwPE(yFwr)2 4224w, Il>m>2; 3rn+1—1.
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T Vit @+l i+ (z+ud)?+wt, [>n>m; 2m4+-n+1—1.

Theorem: A simple (with respect to quasi complete flag equivalence) function
germ f : (R™,0) — R with a critical point at the origin is quasi complete flag
equivalent (up to addition with a quadratic form in some extra variables x) either
to the germ of one of the classes :

1. By @ 42? & 4", k>2 k+1,

20 Frm : £(y & 2F) £y™ m>km>3%k>2 m+ k,

3 Hunp : (y£27)P £(z ka2 2k, k>n>m m+n+k—1,
and therefore has corank 1 of the second differential.

Theorem: A simple (with respect to quasi non-complete flag equivalence)
function f : (R, 0) — R with a critical point at the origin is quasi non-complete
flag equivalent to the germ of one of the classes (up to permutation y and z, and
stabilization in z),

Log(y,z); g€ Ay +2MNk>1, Dy:22y+y*lik >4,
Bo: 22 +yt, Er:2842y®, Eg:z8+ 9,

2. Hppp t Hy £27)2 £ (2 £ a?)? 22k, k> m > n.

In all theorem, the orbit codimension in the space of germs is shown in the right
column.

The main application of these classes is the classification of simple and stable
projections of Lagrangian submanifolds with borders. Explictly,

Theorem: A germ L,I' is stable if and only if its arbitrary generating fam-
ily is versal with respect to quasi border equivalence and addition with functions
in parameters. Any stable and simple projection of Lagrangian submanifold with
a border is symplectically equivalent to the projection determined by the generat-
ing families which are quasi border reduced-versal deformations of the simple quasi
border classes.
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Also, we have found algebraic invariant of the border orbit in terms of local pairs
consists of local algebra and ideal in it.

Proposition: If f and f, are quasi border equivalent, then their local pairs are
isomorphic.

The classification of simple quasi border singularities has nice description in terms
of associated local pairs. In particular, the normal forms of simple classes yield the

following

Proposition: The associated local pair of the simple quasi boundary singularity
By, is Qa,, I1. The associated local pair of the simple quasi boundary singularity Fp,
is Ay, Im. The associated local triple of the simple quast corner singularity M,
consisting of the local algebra and two ideals corresponding to two sides z = 0, y=0
of the corner is Qa,, In, I,. For n = 1 we get the triple of Fmpyand forn =1,m=1
we get the triple of By.

In contrast to the standard classes, quasi bifurcation diagrams and caustics for
simple classes consist of several components. The formulas of versal deformations
provide the explicit description of the bifurcation diagrams and caustics of quasi
boundary, quasi corner and quasi complete flag singularities. They are described as
follows.

Proposition:

1. The bifurcation diagram of By in (A, \y)-plane is a smooth curve and a distin-
guished point on it. The bifurcation diagram of B; C R®is a cuspidal cylinder and
a line in it which is tangent to the ridge. In general, the hypersurface component
of the bifurcation diagram for By series is a product of generalized swallow tail
and a line. The second component is the maximal smooth submanifold passing
through the vertex of the generalized swallow tail times a line.

2. The Bs caustic is the union of two tangent lines, for B, this is a seimicubic cylinder
and a plane (the configuration is isomorphic to the discriminant of the standard
C3 boundary singularity).

3. The caustic of Fy 5 is the union of Whitney umbrella which is the second compo-

nent, and a smooth tangent surface which is the caustic of the Ay singularity.
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4. The caustic of singularity By is a union of cylinder over generalized swallow tail

(with one-dimensional generator) and a smooth hypersurface having smooth k— 8-

dimensional intersection with the first component.

5. The caustic of F}; singularity is a union of a cylinder over a generalized swal-

low tail of type A; and an image of Morin stable mapping (generalized Whitney

umbrella) being the set of common zeros of two polynomials of degree [ and k.

Proposition:

1.

"The bifurcation diagram of B, is a smooth surfaces with two transversal lines
in it . The first component of the bifurcation diagram of Bs is a product of a
cusp and a plane in RY. Two other components are smooth surfaces inside the
first one. They are tangent to the cuspidal ridge.

All three components of the caustic of Bs are smooth pairwise tangent surfaces
in 3-space.

. The caustic of By is a union of a cylinder over a generalized swallow tail and

two smooth hypersurfaces tangent to the first component.

The caustic of Fy,,, is a union of a cylinder over a generalized swallow tail, a
smooth hypersurface and a generalized Whitney umbrella, multiplied by & line.
In particular, the caustics of 3 is union of two smooth hypersurface in R*
and Whitney umbrella multiplied by a line.

The caustic of Hj ., is a union of a cylinder over a generalized swallow tail

and two generalized Whitney umbrellas of respective dimensions.

Proposition:

1.

"The first component of the bifurcation diagram (caustics) of any simple quasi
flag complete singularity is a cylinder over the generalized swallowtail.

. In particular, the first component of the bifurcation diagram of the class =22 -+

y® is product of a cusp and a plane in R, The second component is a smooth
surface inside the first one. The third component is a line inside the second
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component. The second and third components are tangent to the cuspidal
edge.

3. The first and second components of the class +2z% 4- %® are smooth tangent
surfaces in R? and their intersection is exactly.

4. The caustics of 2% - y* k > 3 is a union of a cylinder over a generalized
swallowtail and smooth hypersurafaces and k — 2-dimnestional space. The
second and third components are tangent to the first one.

5. The caustics of the class &(y & 2¥)? & 2™ is a union of a cylinder over a
generalized swallowtail and a generalized Whitney umbrella times a line and a
(k +m — 3)- dimensional space.

6. The caustics of the class £(y£ux*)? & (z£a)2+a% is a union of a cylinder over
a generalized swallowtail and a generalized Whitney umbrella and intersection
of two generalized Whitney umbrellas.

Besides being wavefronts and caustics of Lagrange submanifold projections with
borders, these objects appear as bifurcation diagrams of function depending on pa-

rameters in various problems with inequality constraints.

The further study of similar non-standard equivalence relation and its comparison
with standard one will give extra information on the nature of singularity classes in
various optimization problems and problems in variations theory with constraints,

on the adjacencies of respective singularity classes and on their invariants

In chapters 9-11, we have dealt with a different equivalence relation in projectionn
theory. It is non-standard relation and called quasi projection. The pseudo and
quasi equivalences of two hypersurafes implies the existences of diffeomorphis which
transfer one hypersuraces to the other one and also posses the following properties:
it preserves the tangency of the vector field or preserve the direction of the vector
belonging to the hypersurafes.

In addition to the equivalence relation which was described in [38], we have
introduced and classified two different types in this diecrion.
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Firstly, we classified simple singularities of projections to a plane of surfaces
embedded into three-space and equipped with a boundary. The classification result
is stated in the following theorem:

Theorem: The list of simple quasi projections of regular surfaces with bound-
aries in three space consists of the following normal forms of the projections (z,y, z) —
(¥, %) of the germs at the origin of the graphs V of the functions z = f(z,y) and the
boundaries g(x,y) = 0:

1. For Ek  f = ,h%lw""'l +yx, k >0, the boundaries are the Arnold’s simple
boundary (with respect to the w = 0 boundary classes of curves g(w, ) = 0, where
the coordinate w = y + 2* vanish at the critical set of the projection of the surface:

r = wHa? — wtad — w + k-
T T T
2?2 tuw? — zw+ad — Tw -+ 2kl aw 4 gkt
T T
2+ wd — 2t w?
1
? tuwt — B Fud . — a? wn

2. For Ek:f=%£c3+ykm, k>3,

o If k£ is odd
r+y = w+y? o~ — x4yt
T
y+at ey
o If k is even
Tty — x+yt o~ ... — xys!

T
y+at e~y
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3. For Cp: f = et a2ty k> 2

t+y xR o~ — x+yt...
T
y+at e .. — y+ k2

4. And for F, : [ = 2* + y?x, there are only four simple classes

r+y eyt — y+ad
T

x

Finally, we classified simple classes of quasi projection of graphs of two different
type of mappings:

1. Quasi projections of graphs of parameterized plane curve germs.

Theorem: Any simple projection of a graph of parametrized curve v : ¢ —
(a(t), B(t)), with respect to quasi equivalence is equivalent to the graph of the curve
¥ : t = (&¢%,0) for some &k > 1. The remaining germs form a subset of infinite
codimension in the space of germs.

2. Quasi projections of graph mappings germs I : (R?%,0) — (R?,0).

Theorem: If the mapping F' : (R2,0) — (R?,0) is of corank 1 and the graph
of f is simple with respect to quasi projection then the projection of the graph of
F'is quasi equivalent to the graph of one of the following mappings: G': (R? 0) —
(R?,0); (u,v) ~ (u, g) where g is listed as follows:

Apig=v""fup, k> 0,
ﬁk cg =0 +ufu; k> 2,
Cy: g = vht +v'u; k> 2,

Fy:g=v*4 vl
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If the mapping F' : (R?0) — (R?%,0) is of corank 2, and the projection of the
graph is simple with respect to quasi projection. Then, the projection of the graph
of I is quasi projection equivalent to the graph of of the following mappings:

G : (u,v) — (u? £0% w).

One of the interesting application for quasi projection equivalence relation is used
in partial differential equations (PDE) with boundary value problems.

Consider the characteristics method solving the simplest Cauchy problem for
first order linear PDE: ¥ ai(:z:)gfi- = 0, where u(2) is unknown function with x € R"
and a;(x) are given functions. The problem includes the boundary hypersurface
S C R” and the boundary values U] ¢ = Up. Generically the characteristic vector
field v = “i?s% is tangent to S at some points which are called characteristic. Qutside
the set K of characteristic points , the problem has a unique local solution. So the
geometry of the set K is essential feature of the problem. If we rectify the vector
field getting say 6%{’ then the problem to classify K is exactly to find critical points
of the projection of S along parallel rays.

Our pseudo (or quasi) equivalence preserves critical locus and is even better than
the standard one. The main difference with standard one is that the pseudo (or
quasi) equivalence does not preserve the sets of points in the same fibre (multiple
singular points on one fibre can go to different fibres).

Similarly in many other complicated PDE boundary value problems, mainly in
continuum mechanics, the generalisation of Neumann boundary condition is used.
The derivative of the unknown function is taken along a given vector field ( for
Neumann this is normals to the boundary surface). Again, the locus of the points on
the surface where the vector field is not transversal to the surface is of importance.

"The further research which goes beyond the present thesis might be related to the
interesting question on the topology of the bifurcation diagrams of the given classes
and to the applications of our classification of projections to the above mentioned
boundary value problems.
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