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Abstract

The work presented in this thesis concerns studies of stabilising the higher-k phases 
in hafnium oxide film by cerium doping as an oversized tetravalent dopant with the 
aim for potential high-k oxide in future CMOS devices. Ce-doped Hf-oxide films 
were grown on n-type Si(100) substrates from two single source Ce(thd)4 and 
[(MeCp)2 HfMe(OMe)] precursor solutions 0.05M in anhydrous toluene at 300°C 
with Ozone as co-reactant by using Liquid-Injection Atomic Layer Deposition 
(LIALD) technique. The amount of cerium incorporated into the films was found to 
be proportional to the ratio of ALD cycles between two precursors, resulting in 
films with 5%, 8%, 10%, 17% and 34% Ce.

The micro structure studies of Ce-doped Hf-oxides were earned out for films 
annealed between 600° C and 1000° C in air and at 900° C in N2 and vacuum. Results 
obtained from XRD and UV Raman showed that regardless of annealing 
environments, the dominant stabilised phase found in all films adopted a form of 
“metastable tetragonal” resembling closely the fluorite-type cubic phase in pure 
HfOa. Films with 5%, 8% and 17% Ce were also found to contain a varying 
fraction of monoclinic phase. The film with 10% Ce was found to have the highest 
distortion from the cubic structure, especially under vacuum condition. In addition, 
TEM and MEIS analysis indicated that the use of vacumn was mandatory to 
prevent internal oxidation and intermixing between the high-k oxide film and the 
silicon substrate underneath.

Electrical characterisations of films with approximately 10% cerium and annealed 
in vacuum were investigated by using C-V, I-V and C-f measurements. The effect 
of vacuum annealing on these films was demonstrated in substantial improvement 
of frequency dispersion and significant reduction of fixed oxide charges and 
interface states compared to the as-grown examples. Higher leakage current density 
were observed in annealed films and attributed to the leakage pathways induced by 
crystallisation. A permittivity of 34 measured at 100 kHz was found for 23 nm 
thick film annealed at 900° C in 15 minutes. This result showed a good agreement 
with theoretically predicted enhancement of dielectric constant (k~32) by doping 
HfOi with cerium. The highest k-value of 44 was observed for a 15 nm thick film 
annealed at 800°C in 100 minutes. Films with respective thickness 6, 10.5 and 19.5 
nm annealed at 800° C in 10 minutes were found to yield pennittivity in the range 
between 30 and 34, which suggested a good scaling capability.
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Chapter 1 INTRODUCTION

The Field Effect Transistor (FET) has been the centrepiece of the semiconductor 

industry since it was opted for mass-production in the 1950’s. Since then, the 

unprecedented growth and development of many important electronic devices such 

as logic gate, memory unit and integrated circuits (ICs) have been based on the 

foundation of FET. There are a number of different types of FET, but one of the 

most important and popular type is the Metal-Oxide-Semiconductor FET 

(MOSFET). The huge success of the MOSFET has in part been due to the highly 

compatible combination of insulating silicon dioxide (Si02) on top of 

semiconducting silicon (Si). This natural parent-child combination has provided a 

simple yet powerful way to increase the processing speeds of IC devices while 

reduce the fabrication cost over the last 40 years. The shrinkage of individual 

components and the growth in circuit density has happed at an outstanding and yet 

predictable rate, with circuit density doubling approximately every 2 years, this has 

led to the so called Moore’s law [1], The number of transistors on a single chip over 

that last four decades is the best illustration for this law: from just over 2000 

transistors in 1971 up to more than one billion in 2010. This huge increase in the 

number of transistors per unit area would not be possible if it were not for the 

excellent insulating properties of Si02. However, it was predicted about 20 years ago 

that this trend would eventually reach the physical and operational limits imposed by 

the decreasing thickness of the Si02 layer. As the thickness of this insulating layer 

approaches a few atomic layers thick, the leakage current becomes unacceptably 

high and thus, leading to enormous power dissipation and device unreliability As a 

result, the search for alternative materials with higher pennittivity than Si02, the so- 

called high-k dielectrics, began more than 10 years ago and remain an ongoing focal 

point today. The high-k dielectrics can help resolve the aforementioned problems 

with SiCb induced by miniaturisation because they can offer the same capacitance 

storage with a physically thicker insulating layer than Si02 due to their higher 

dielectric constants and hence, reduces the leakage current.
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By employing a high-k dielectric in place of SiC>2, the scaling trend in MOSFETs 

production can be maintained without compromising the performance and cost of 

next-generations devices. Numerous studies, both theoretical and experimental, have 

been devoted to this topic and one of the most fruitful results recently was the 

introduction of Hf-based oxides into 45 mn node processor from Intel in 2007. 

Dubbed as the “first high-k generation” by the company, Hf-based devices have 

solved the problems of transition from SiC^ to high-k dielectric as a current and 

near-term solution to the demand of the market.

To maintain the scalability of devices in the longer-term, higher-k materials will be 

required in addition to solutions to various other issues relating to design and 

production. The International Technology Roadmap for Semiconductors 

(littp://www.itrs.net/T a global organisation created to guide research directions and 

address manufacturing demands in the semiconductor industry, has stated the 

necessity of high-k materials with substantially higher dielectric constants than Hf- 

based in future devices in 5-10 years to come [2].

This pressing demand has motivated numerous focused studies on higher-k 

dielectrics to improve electrical perfonnances compared to Hf02. Various types of 

materials, which potentially offers higher k-values compared to “first generation Hf- 

based dielectric”, have been evaluated and assessed, for example perovskite 

materials such as Ba(Sr)Ti03. Another approach which has also attracted much 

attention is the modification of the microstructures of materials such as HfOi and 

Z1O2 using dopants. The addition of various different elements to these basic oxides 

can be used to alter the crystal structure, which in turn can lead to the enhancement 

of the dielectric constant. It is due to the fact that tetragonal or cubic phases in Hf02 

were proved to yield substantially higher permittivity than either the amorphous 

fonn or monoclinic phase, which is typically the thermodynamically stable phase 

found at room temperatures [3], The pursuit of doped Hf02 materials to increase k- 

value is also the main motivation of the works in this project, with the interest 

focusing on using cerium as a potential dopant, which was investigated among 

various other elements proposed from theoretical studies [4-6].
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In this thesis, cerium-doped hafnium oxide films were grown using the state-of- the- 

art Liquid-injection Atomic Layer Deposition (LIALD). The films were then 

analysed using a variety of techniques to investigate how doping influences the 

crystal structure and electrical characteristics of these materials. The main theme of 

the project is the modification of film microstructures, and is reported as the effect of 

phase stabilisations in Hf02 by adding cerium and its consequence on the dielectric 

constants of selected deposited films. The thesis will be divided into various 

chapters. Chapter 2 provides a literature review which will put the current work into 

context; it covers both the basic operating principles of MOSFET devices and also 

reviews the developments and issues involved with high-k materials as well as phase 

stabilisation. The experimental techniques used in this project are presented in 

chapter 3, which includes descriptions of the operational principles, data acquisition 

and methods of analysis. Chapter 4 is the first of two results chapters, in which the 

experimental results will be presented and discussed. In the first part of chapter 4, the 

main LIALD growth results are presented, the incorporation of cerium into the films 

is also discussed in light of compositional analysis using Medium Energy Ion 

Scattering (MEIS). The chapter also covered individual LIALD growth studies of 

Ce02 and HfCE and the justifications in process conditions to conduct ternary oxide 

film growths based on the “ALD window” match of two single source precursors.

The crystal structures, phase compositions and electrical perfonnances of these films 

are then presented in chapter 5. The effects of doping concentrations and annealing 

conditions on the microstmcture and electrical properties of the films are 

investigated using X-ray Diffraction, UV Raman scattering, Atomic Force 

Microscopy, Ellipsometry, C-V and I-V measurements. Finally, chapter 6 provides a 

summary of the work, highlighting the main conclusions as well as providing some 

recommendations for future research within this particular direction.
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Chapter 2 LITERATURE AND BACKGROUND

2.1 Introduction

The last 50 years have seen the huge development and massive growth of the 

semiconductor industry since it was formed as a viable business in 1960. At the heart 

of this unprecedented success, the Complementary Metal Oxide Semiconductor 

(CMOS) Field Effect Transistor (FET) has been undoubtedly the key player. This 

very “basic” electronic component is the cornerstone of microprocessors and 

memory units amongst many other important applications. The dominance of this 

electronic device is due to its low power consumption and because of its 

performance improvement over 40 years according to Moore’s Law of scaling [1], 

This law predicts that the aerial density of devices on an integrated circuit increases 

exponentially, doubling over a 2-3 year period and the minimum feature size in a 

transistor decreases exponentially each year. This empirical law still holds trae today 

and dictates the development of this industry in the foreseeable future. The 

International Technology Roadmap for Semiconductors (IRTS) maps out the 

technology milestones, projected performances and future demands for research, 

development and production. This online document is revised annually as a guide for 

the whole industry to maintain its healthy position in the market [2].

Until very recently, the huge success of the whole semiconductor industry has been 

mainly relying on one simple system, Si/SiCh. As a semiconductor, Si is just only an 

average quality choice among others. However, it does have the benefit of having a 

high quality oxide form, which can act as an insulator, is easy and cheap to produce 

and is very stable on top of the silicon itself. As an insulator, SiCL possesses many 

excellent properties such as large band gap, good thermal stability, low defect 

concentrations and easy-to-grow by thermal oxidation to name but a few. 

Additionally, this native oxide enables device improvements in terms of speed and 

cost to be achieved quite simply by scaling down the device dimension as proposed 

by Moore’s law.
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Nevertheless, the scaling of S1O2 has now already reached its limit thickness (~2 mn) 

[3] and hence, needs to be replaced to keep the conventional device-scaling scenario 

still practical and economical. The main reasons why the much needed 

replacement(s) of Si02 has been so important is the problem of increasing earner 

leakage as the dielectric layer thickness decreases. Canier leakage occurs due to 

quantum tunnelling and direct leakage and results in increasing power consumption 

and ultimately, failure of the devices. In fact, the search for alternative high-k 

dielectric materials has already been going on for at least last 10 years [4] and 

remains an important research topic within both academic and industrial groups.

This chapter thus will present and discuss many issues involved with such a process 

from literature with a specific concentration on Hf-based materials. Firstly, the basic 

structure of CMOS devices and their operation is discussed as a background for 

particular focus on insulator layer afterwards. The requirements and issues of high-k 

materials are then discussed along with a details review of recent work in this field. 

The concepts behind the stabilisation of crystalline oxide phases using dopants, with 

a particular focus on Ce-doped Hf02, is then discussed, which is central to the work 

that has been earned out here. Finally, the chapter concludes with a discussion about 

the various deposition techniques that can be used for thin film dielectric deposition, 

with a particular focus on atomic layer deposition (ALD).

2.2 MOS device technology

2.2.1 MOSFET: basic structure and function

Firstly, consider the typical structure of a n-type MOSFET as illustrated in Figure 

2-1.
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As can be seen from the diagram, an n-type MOSFET consists of a source and a 

drain which are two highly conductive n-type semiconductor regions. The tenn n- 

type refers to the negative charge of electrons, which are the main type of charge 

carriers flowing between the source and the drain when the device is operated. The 

complementary p-type device uses positively charged holes as carriers instead, but 

for the time being, let us just concentrate on the n-type MOSFET. The source and 

drain regions form p-n junctions with the p-type substrate and as a result, are isolated 

from the substrate by the depletion regions that naturally form. The source and drain 

are separated spatially from each other by the gate region, which is essentially a 

MOS-capacitor structure. Without gate bias, the area under the gate forms another 

depletion region, and as a result, the source and the drain are electrically isolated 

from each other. Together, this effectively creates the source-channel-drain circuit 

that forms a p-n-p junction and hence, inhibits current flowing in either direction 

through the p-type channel. A metal or poly-crystalline Si gate covers the region 

between source and drain .The gate is separated from the semiconductor by the gate 

oxide, typically SiCb.

A MOSFET is ‘‘on” when the inversion layer, i.e. an electrically conductive path, is 

formed along the channel between the source and drain. A voltage (positive in the 

case of an n-type device) applied to the gate creates an electric field and controls the 

flow of electrons from the source to the drain. Firstly, the electric field generated by 

this applied gate voltage concentrates the electrons at the interface between the 

semiconductor and the gate oxide.
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When this electric field is strong enough, a conducting channel is formed due to the 

accumulation of minority charge carriers (electrons in this case), which produces an 

inversion layer. Once this inversion layer has formed, electrons can flow freely 

between the source and the drain. In order to create and maintain this electric field, 

an insulating layer (the gate oxide in this case) is necessary to separate the source, 

the drain and the channel. Thus at a fixed operational voltage, the electric field 

strength in the inversion layer varies proportionately with the dielectric constant of 

the oxide and inversely with the oxide’s thickness. As mentioned before, due to the 

scaling trend, the device dimension has been shrinking continually and hence, so has 

the oxide thickness (SiC>2) to maintain the required capacitance. This, however, has a 

practical limit due to the reduction of the oxide thickness still has to be in the region 

of a few nanometres. Beyond this thickness, quantum effects such as electron 

tunnelling (Fowler-Nordheim) [1] are so severe that they render the device 

unserviceable.

2.2.2 MOS physics

In this section, key physical principles and parameters of MOS devices for both 

MOS-C (MOS Capacitor) and MOSFET operations are explained alongside some 

other issues involved, particularly the effect of device scaling.

2.2.2.1 Accumulation, depletion and inversion

Consider an nMOS capacitor structure formed on a p-type Si substrate and under 

various gate bias conditions as shown in Figure 2-2.

CATE CATE

BACK CO NT A Cl BACK CONTAC1 BACK CO NT A Cl

Accumulation Depletion Inversion

Figure 2-2: Charge distribution in an nMOS with different bias voltages [5].
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Accumulation occurs for when a negative voltage is applied to the gate, the negative 

charge on the gate attracts holes from the substrate to the oxide-semiconductor 

interface. Depletion occurs when the applied voltage becomes positive as the major 

charge carriers (positive holes) in the substrate are repelled away from the interface. 

As this happens, the semiconductor immediately under the gate oxide is depleted of 

mobile earners and a negative charge, which is formed by the ionised acceptor ions, 

is created in this space charge region. Inversion occurs if the applied voltage exceeds 

a critical value, namely the threshold voltage (Vt). In inversion, the electric field 

starts to attract minority charge carries from the bulk of the substrate, towards the 

oxide/semiconductor interface, this charge builds up to form an inversion region.

The voltage separating the accumulation and depletion regime is referred to as the 

flatband voltage, Vfb. The concept of Vt and Vfb will be discussed after the 

definition of Metal-Semiconductor work function (Oms) in the next section.

2.2.2.2 Metal-Semiconductor work function (Oms)

The Metal-Semiconductor work function (Oms) is normally referred in literature 

simply as work function. It is the energy difference required to remove an electron 

from the Fermi level to vacuum for the metal and the semiconductor respectively. To 

illustrate this term visually, an energy band diagram for an nMOS structure is shown 

at thermal equilibrium, (i.e. the Fermi levels of the metal and the semiconductor are 

equivalent) in Figure 2-3. The band structure is shown before and after the contact is 

established to illustrate how the band energies are modified. As can be seen in Figure 

2-3 (b), the band energies of the Si bend towards the semiconductor-oxide interface 

after the contact.
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Figure 2-3: Band diagram of an nMOS structure before (a) and after (b) the contact (at zero gate voltage
applied) [6].

Where: EFm: Metal Fermi level of, Efs: Semiconductor Fermi level, EFj: intrinsic energy

level,

(EFj = (Ec+Ev)/2, Eo Conduction energy level, Ev: Valence energy level, Omand O’n,: metal 

work function before and after contact, x and x’- electron affinity of the semiconductor 

before and after contact, xj: electron affinity of Si02, Voxo: potential drop across the oxide,

Os0: surface potential.

2.2.2.3 Platband voltage (Vfb)

Platband voltage is a term that referred to a value of applied gate voltage that 

inducing no band bending in the semiconductor. At this voltage, there is zero 

potential at the semiconductor/oxide interface, all energy bands become flat 

(flatband condition). Because of the work function difference and possible trapped 

charges in the oxide, the voltage that exists across the oxide layer is not necessarily 

zero in practice. Figure 2-4 shows a band diagram for an nMOS structure at flatband 

voltage.
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Figure 2-4: Energy band diagram for an nMOS capacitor at flatband condition [6].

2.2.2.4 Threshold voltage (Vj)

The threshold voltage (Vj) of a MOSFET is defined as the gate voltage where an 

inversion layer forms at the interface between the oxide and the semiconductor 

substrate. Effectively, this inversion layer will allow current flows between the 

source and the drain under an applied voltage and hence, the device switches on. In a 

MOS structure, this voltage is the specific value required to achieve the threshold 

inversion point. By definition, the threshold inversion point is the condition when the 

surface potential ®s is twice the value of the semiconductor bulk potential (®fp). 

Figure 2-5 presents band diagram of an nMOS structure under threshold conditions. 

For a given semiconductor, oxide and gate material system, the value of Vj is a 

function of the doping of the semiconductor, the oxide thickness and charges. 

Because this value is very important in order to define the operations of the 

MOSFET, i.e. “on" or “off’ state, it is of great concern in device design.
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Figure 2-5: Energy band diagram of an nMOS structure at threshold voltage [6].

VG: threshold voltage, V0x: voltage across the oxide at the threshold inversion point.

2.2.2.S Device scaling

Device scaling has served to increase processing speed while reduce the cost of 

manufacturing. It is done by increasing the number of transistors per unit area, thus 

improving the performance by offering higher device density and device operating 

frequency while reducing power consumption. One key parameter that dictates the 

speed of a MOSFET is the saturated “ON” current, this can be estimated by equation 

2.1 [6]. This equation relates the drive current to the physical parameters of the 

MOSFET as well as its operational parameters as follows.

I * ^nc(yg -VT)2 (Equation 2.1)

Where W: transistor width, L: channel length, p: carrier mobility, C: capacitance density of 

the gate insulator, Vg: gate voltage, VT: threshold voltage.

The capacitance density of the gate insulator can be approximated as:

C = —^ (Equation 2.2)

k: relative permittivity of the oxide, e0: permittivity of vacuum, t: oxide thickness.
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As the device shrinks, to maintain a constant drive current requires either an increase 

in the capacitance of the oxide layer or an increase in the difference between the gate 

voltage and the threshold voltage. However, in practice, the latter case is considered 

as very limited due to electrical problems. To increase the difference between the 

gate voltage and the threshold voltage either requires an increase in gate voltage or a 

decrease in threshold voltage. While a very high gate voltage can result in 

undesirable field effect across the device, a low threshold voltage will eventually 

prevent the device from operating as the difference between on and off states 

becomes negligible. These factors effectively render the option of increasing the 

capacitance as virtually the only practical option. In fact, such approach has been 

favourably utilised in MOS structures with SiCb employed as oxide insulator simply 

by reducing the thickness of the SiCh layer. However, as this thickness approaches 

about 1.5 nm [1, 7], many serious problems occurs. Severely high leakage currents 

due to tunnelling effect were reported [1, 4, 7, 8], which creates serious problem for 

power dissipation, especially in low-power and portable devices. Moreover, this 

issue also accelerates the degradation of the very thin SiOi film and eventually leads 

to electrical breakdown. Therefore, the need for high-k materials to replace SiOa is 

the most practical way to mitigate the limitations of this capacitance increase 

approach. The higher dielectric constant enables thicker dielectric layer to be used 

while still maintaining the desirable value of capacitance. The physically thicker 

layer reduces the problem of tunnelling and other issues confronted with Si02 

scaling. However, simply replacing SiOz by high-k dielectrics is not the entire 

answer to the aforementioned problem. In the following sections, issues involved 

with high-k materials will be discussed, mainly from the material selection 

viewpoint. The integration into the conventional MOSFET structure is also briefly 

explained, which has been so far one of the most challenging issue particularly 

within industrial research in this field.

2.3 High-k dielectric materials

In order to maintain the stringent requirements from the market and its own 

development governed by the Moore’s law, the semiconductor industry has no 

choice but to look for an alternative high-k dielectrics to replace Si02, at least for the 

near and medium- term future.
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It has been proposed [4] that to replace traditional MOS structure which employs 

SiCh as gate dielectric, a new structure has to be developed to accommodate the 

high-k materials used as next-generations gate dielectric. Figure 2-6 shows a gate 

stack which illustrates all of the main components that are required to ensure that the 

high-k dielectrics perform in the desired way.

Si substrate

Gate Electrode

Upper interface 

Gate Dielectric 
Lower interface 

Channel Layer

Figure 2-6: A schematic view of a MOS structure utilising high-k material as gate dielectric[4].

Many issues involved with high-k materials and their influences on gate stacks will 

be outlined in the following sections. The physical principle behind obtaining high 

dielectric constants is firstly discussed as it is the starting point of the whole research 

theme Important considerations that affect the desirable properties of the high-k 

prospects are then outlined. A review of some of the main groups of materials that 

have recently been investigated or emerged as prospective gate dielectrics is also 

given.

2.3.1 Physics of high-k dielectrics

For normal dielectric materials (non-ferroelectric), the overall electric polarization 

can result from a combination of up to four physical components [9]. They are 

electronic, ionic (also known as lattice vibration), orientational and space charge 

polarisation. Figure 2-7 shows the AC frequency response of a dielectric to illustrate 

the contributions of these different mechanisms to the overall polarisation.
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Figure 2-7: The frequency dependence of different polarisations to the dielectric function (Er = E'r r + iE"n 
where E'r is the real part and £"r- imaginary part of the complex dielectric permittivity) with respect to the

CMOS “window” [10].

As Figure 2-7 illustrates, the two attributes of polarisations for any insulating 

materials suitable for CMOS application will be from ionic and electronic 

contributions. Basically, an atom with large atomic radius, such as those with a high 

atomic number, will generate a large electronic polarisation in response to the 

external electric field [4]. However, this contribution is only limited to an extent. It 

has been shown [8] that the electronic contribution to the overall dielectric constant 

is typically less than 16. Moreover, quantum treatment of the electronic polarisability 

[9] shows that the larger this contribution to the material, the smaller the band gap 

will be. This has been experimentally observed by many researchers [1, 8, 11].

The bandgap of the dielectric materials is another important consideration for high-k 

materials research. A large bandgap is desirable to ensure that charge carriers cannot 

get over the potential barrier produced by the dielectric layer. As a result, increasing 

the dielectric permittivity by increasing the electronic contribution is not entirely 

desirable as it results in a reduced bandgap, which leads to carrier leakage. 

Therefore, in order to look for high-k dielectrics, materials with a large contribution 

from ionic (lattice) component have been paid a great attention. This tendency is 

included within the well-known Clausius-Mossoti equation (equation 2.3) [11], 

showing the dependence of the overall dielectric constant on material properties.
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Figure 2-8 presents results of a recent study about the variations of dielectric 

constant against the mean atomic number, <Z>, for rare-earth oxides and other 

neighbouring elements in period 5 and 6 of the periodic table. This trend implies the 

role of molecular volume besides the polarisability, especially in terms of different 

crystal structures for a given oxide.

k =

2 a 1+-47T—
3 v m

* 1 * a (Equation 2.3)

a: polarisability, Vm: molecular volume

V LaAIO

Ta205 (Amor.)
m— • P V

Figure 2-8: Variations of dielectric constants k of various potential oxides as function of mean atomic
number <Z> [11].

Essentially, the enhancement in ionic contribution to the overall dielectric constant 

can be found via two main groups of materials. The first one, namely perovskite 

crystals, consists of materials with ferroelectric property such as (Ba, Sr)Ti03 and 

(Pb, Zr)Ti03. Below the Curie temperature, the Ti atoms in each unit cell of the 

crystal are uniformly displaced in response to an applied electric field and hence, it is 

possible to generate a very high polarisation throughout the material.
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As a result, very high k-value can be achieved, values up to several thousands have 

been reported [1, 4]. In the other group of potential candidates (transitional oxides/ 

rare earth oxides and their aluminates or silicates), the rise in the dielectric constant 

can be achieved by a different approach. Instead of relying on ionic polarisation as in 

the case of perovskites, these materials can generate polarisation by some forms of 

lattice vibrations, hence the name lattice polarisation. This phenomenon can be 

explained by the effect of soft phonons [4]. Atoms with large number of electrons 

can resonate in their bonding structures at low vibrational frequency modes, which 

produce a so-called soft phonon mode. These phonons then make a lattice 

contribution to the overall polarisability, and therefore to the permittivity of the 

material. This trend has been demonstrated mathematically in [1], which paves the 

way for modelling and first-principle calculations for various high-k oxides.

2.3.2 Properties required for high-k gate dielectrics

It has been generally agreed that a high-k gate dielectric has to pass multiple criteria 

to be integrated successfully into modem CMOS devices. Although disparities exist 

among different authors or between academic and industrial approach, essentially the 

group of critical properties can be divided into 3 main classes [7]. Class I refers to 

basic properties as a dielectric, which includes the permittivity and the band gap. 

Class II relates to the processing of the materials and devices, and includes factors 

relating to interface quality and deterioration of the various gate stack layers during 

processing. Class III relates the choice of the dielectric for the overall performance in 

a microelectronic device. Obviously, there are some interdependence and scope for 

compromise especially when the huge cost of past investment and preference to 

maintain the manufacturing flow processes in the semiconductor industry are 

concerned. All of these key demands will be presented in the following sections; 

together these will form a framework to assess any prospect high-k material of 

interest from different perspectives.

2.3.2.1 Dielectric permittivity and band gap/band offset constraint

Because the primary reason behind the search for high-k dielectrics is to replace 

SiCh (k=3.9) to enable future scaling, a high value of dielectric constant is desirable.
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However, for a material to act properly as a gate dielectric, it must also have a 

reasonably large band gap (in consideration with SiCh offering a band gap ~ 9eV). 

Unfortunately, many high-k materials have been shown to have relatively small 

bandgaps; their band gaps are inversely proportional to their dielectric constants. 

Figure 2-9 demonstrates this trend for many different candidates.
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Figure 2-9: Variations of band gaps against dielectric constants for various high-k materials [1].
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As can be seen from this figure, AI2O3 can offer very large band gap but quite small 

k-value while Ti02 can offer quite high k-value but suffer from a small band gap. 

Some other potential oxides, namely Zr02, HfCb and La203 locate somewhat in the 

middle of the trend-line curve. In fact, these oxides have been the most extensively 

investigated candidates to date, probably because they offer the acceptable 

compromise between dielectric constant and band gap.

It has been pointed out that for the near term future, a material with a k-value 

between 25 and 30 is desirable [1]. However, it has to be kept in mind that the choice 

for a value of dielectric constant is also strongly dependent on the structure of the 

gate stack [4, 8]. If, let say a high-k simply replace Si02 in a conventional MOS 

structure, than a medium k-value mentioned above or even slightly lower is 

sufficient for a number of years to come.
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However, if a low-k interlayer needs to be inserted between the gate dielectric and 

the semiconductor substrate reduce the density of interface states that can affect 

device performance, higher k-values may be necessary as demonstrated by 

Eisenbeiser [8]. In fact, very high-k materials attracts a great attention when the 

application of DRAM is concerned rather than the gate dielectric for 

microprocessors. Materials such as SrTiOs or Ta205 [12] were reported to have very 

high-k values, but offer very low band gaps. For gate dielectric application, very 

high-k materials are not desirable not only because of their unacceptable low band 

gaps but also because such very high k-values will create undesirable phenomena in 

device operations, such as short channel effects [1, 8]. Moreover, high-k dielectrics 

based on perovskites are ferroelectric materials, which mean they are very sensitive 

to temperature, operating conditions and material properties.

Besides a reasonable band gap (Eg > 5eV) to ensure the dielectrics function properly, 

it is also noteworthy that the band alignments, i.e. the band offsets for conduction 

and valence bands of the oxide with respect to Si, are of great importance. SiC>2 is 

considered an excellent insulator because aside from a very large band gap it also has 

large band offsets with respect to the silicon [8]. When the thickness of the dielectric 

layer is increased by employing a high-k material, tunnelling leakage will be 

significantly reduced. However, another form of potential leakage can affect the 

function of the device severely, namely thermionic emission current [8]. This 

leakage mechanism can be explained by the injection of electrons to the conduction 

band or holes to the valence band of the insulating layer from the silicon. To prevent 

this, the potential barrier at each band must be over 1 eV in order to inhibit 

conduction by the Schottky emission of electrons or holes into the oxide bands.

In practice, it has been found that the conduction band (CB) offset is typically 

smaller than the valence band (VB) offset [1]. Figure 2-10 shows various calculated 

band offset values for a range of potential high-k materials. The CB offset is one of 

the important criteria used to screen out candidates, especially at the early stage of 

modelling and theoretical calculations from first-principles.
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Figure 2-10: Calculated CB and VB offsets with consideration to Si [1],

23.2.2 Thermodynamic stability

If the high-k film is in direct contact with the silicon substrate, then the interface 

with between the two plays a key role in determining the overall electrical properties 

of the devices. It is also important that this high-k film remains stable in terms of its 

micro structure and unwanted phase transformation during processing and operation. 

Given the fact that most of the potential candidates are transition-metal oxides or 

rare-earth oxides and many of them undergo phase transformations from amorphous 

to polycrystalline forms, this issue is even more complicated and challenging in 

tenns of integrating such prospective materials into current CMOS process flows.

Firstly, consider some possible reactions that can happen between Si and a simple 

oxide. Navrotsky [8] has earned out extensive work on the thermodynamics of 

relevant oxides and considers a wide range of these reactions. These reactions can be 

grouped as follows.

• Substrate oxidation

ySi + AxOy Si02 + xA
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• Formation of silicide or/and silicate

Si + AxOy —> AxSi + Si02 

Si + AxOy —> A + AxSiOy 

Si + AxOy —* AxSiy + AxSiOy

• silicate layer formation, due to a very thin SiOi interlayer either (i) 

intentionally left on the Si substrate to aid the high-k film growth or to 

improve the electrical performance or (ii) oxygen diffusion through the 

dielectric layer during film growth or annealing in an oxidising enviromnent 

or with traces of oxygen via the reaction:

Si + AxOy + O2 (gas) —Si02 + AxOy

that eventually leads to the fonnation of either amorphous or crystalline 

silicate:

Si02 + AxOy —> AxSiOy

• During processing at low oxygen pressures, oxygen deficient dielectric 

oxides may form. These oxides will have different thermodynamic properties 

to the fully oxidised materials. In addition, SiO gas may also form and 

diffuse through the oxide thin film:

Si + AxOy —> AxSiy + SiO (gas)

The reactions mentioned above can happen individually or in succession depending 

on the types of oxides and/or the processing conditions. In contrast to Si02 that can 

be formed easily by thermal oxidation, all the oxides have to be deposited, mostly 

under non-equilibrium conditions. This factor, coupled with the subsequent 

processing steps, many of which involved high temperatures that the material will be 

exposed to during device fabrication, may add more complexities to the control of 

the desired composition and/or phase(s). Main concerns regarding this issue will be 

discussed in tenns of the oxidation of Si substrate and the formation of silicate.

The problem with silicide formation has been much less researched compared to the 

other two and data are scarcely addressed in literature.
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The oxidation of the silicon substrate during high-k film growth or subsequent 

annealing processes is quite a major issue, particularly for oxides such as ZrOz, Hf02 

and CeC>2. The last one is well-known for its high oxygen conductivity and thus is 

used in fuel cell [13, 14]. For transitional metal oxides like ZrC>2 and Hf02, it has 

been reported that they have quite high oxygen diffusivity [1,4]. Although Hf02 and 

to a lesser extent ZrC>2 are considered quite stable in direct contact with silicon [8], 

this potentially high level of oxygen transportation through the films is still a 

concern. Another potential problem has been found with some oxide films, 

particularly those deposited by Atomic Layer Deposition (ALD), is excessive 

oxygen or sometimes, trapped water [1, 8] (as water is the most typical oxidant used 

in ALD). The role of water or other OH-groups to the oxidation of Si is still not 

clear. However, it has been shown that excessive oxygen from the HKh film can be 

responsible for the growth of a Si02 interlayer [15] even when the film was annealed 

in ultra pure N2. For rare-earth (RE) oxides, it is well-known that they are highly 

hygroscopic with La203 being the most hydroscopic [16]. LaaOs also has a high 

affinity with CO2 and at intermediate temperature, can fonn an amorphous by­

product with water vapour, which in turn can be decomposed at higher 

temperatures[8]. It has been speculated about the use of RE oxides in modern CMOS 

devices due to their nature as excellent catalysts though various reported 

experimental data seem to support thermodynamic stability with Si [17]. RE oxides 

can catalytically decompose O2 into atomic oxygen, which may in turn promote 

internal oxidation of the silicon to fomi a SiOx interlayer.

The formation of a silicate layer between the high-k oxide and Si substrate is 

somewhat less serious than the SiOa interlayer. It is due to the fact that to form such 

silicate compounds, most of the potential high-k oxides typically need to react first 

with Si to create an intermediate Si02 layer. Therefore, most of the efforts to 

maintain a sharp interface between high-k oxide and Si substrate have concentrated 

on the inhibition of such SiCh layer or any Si-based components.

A number of solutions have been proposed to prevent silicate formation including 

the using a bander layer sandwiched between the high-k oxide and Si substrate to 

reduce the diffusion of oxygen (see Figure 2-6) or “alloying” the high-k oxide with 

some other element to fonn more stable compounds such as aluminates or oxy-
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nitrides [1]. However, the latter case will reduce the k-value substantially because 

such stable compounds normally have quite lower k-values and hence, are less 

favourable.

2.3.2.3 Film characterisations

Beside its large band gap and band offsets with Si, amorphous Si02 also forms a 

very good interface with Si, resulting in a low interface state density as well as a low 

bulk fixed charge density [1], Moreover, the microstructure of Si02 is very stable 

over a wide range of thermal conditions and operational enviromnents, both in the 

bulk of the film and at the interface with Si. All of these excellent characteristics 

highlight many challenges that exist for next generation high-k materials to 

overcome if they are to replace SiC^. As a result, the understanding and the ability to 

control the microstructure of high-k materials play a major role in detennining and 

optimising the high-k gate stack. Main concerns of film microstructure are 

morphology, interface quality and defects. The influence of these factors will be 

outlined and discussed in this section.

It has been argued that amorphous films are superior to a polycrystalline one with 

grain boundaries for a couple of reasons [4, 8]. The main concern with a 

polycrystalline film is the potential leakage currents and possible diffusion paths for 

dopants provided by grain boundaries. In addition, grain size and orientation changes 

throughout a polycrystalline film can cause significant variations in the local 

permittivity, leading to undesirable and unstable properties during processing flows 

and operations. Unfortunately, most of the oxides considered as potential candidates, 

e.g. Hf02, ZrCb or La2C>3, suffer from crystallisations, either during the growth or 

during subsequent processing at elevated temperatures. Moreover, many of them 

show phase separations or alterations even at inteimediate temperature compared to 

the thermal budget found in CMOS annealing (typically 1000° C, 5 seconds) [1, 7, 8], 

The problem is further complicated because in thin film, the kinetics of 

crystallisations can be very different from the kinetics of bulk materials and hence, 

may introduce various non-stoichiometric or metastable compounds co-existing with 

the desired composition and/or phase [18]. However, reports on the leakage currents 

of amorphous and nano crystalline Hf02 [1, 3, 19] indicate that the difference is only
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minor. Therefore, it is still a debatable issue which phase is preferable for these types 

of oxide. The divergence of ideas also has been demonstrated in industrial 

preferences. Whereas companies such as Intel and Freescale choose to pursuit binary 

oxides because of their higher k, Texas Instruments favours lower-k silicates due to 

their easier integration and lower trap densities [1]. Hence, it is important to put the 

use of any potential high-k oxide in the context of the gate stack structure. If a 

barrier layer is used (typically N-based compounds), then the use of pure binary 

oxides should not be a problem and the choice is thus expanded. However, this 

comes at the price of introducing a complicated gate structure and possibly potential 

problems in terms of interface control. If the absolute emphasis is to retain the 

amorphous phase, the choice is limited only to either silicates or aluminates due to 

the fact that SiC>2 and AI2O3 are good glass formers. By “alloying” high-k oxides 

with either Si02 or AI2O3, the resulting compounds can have high crystallisation 

temperatures and will remain amorphous after device processing while still offer 

higher dielectric constants than Si02. Moreover, by adjusting the composition, the k- 

values can be gradually increased because for silicates and aluminates, the dielectric 

constants of the compounds were reportedly to roughly follow the rule of mixture [1, 

4]. Between these two, aluminates seems to be the preferred choice because they 

offers higher permittivities than the silicates [1]. Nevertheless, silicates and 

aluminates still have relatively low k-values compared to their oxide counterparts 

and thus only offer limited scalability.

A crucial objective of any potential high-k gate dielectric is to achieve and maintain 

a sufficiently high-quality interface with the Si channel and ideally, as close as 

possible to that of Si02. Compared to Si02, most high-k oxides reportedly have one 

to two orders of magnitudes higher interface state density [4]. In fact, the quality of 

the interface has been demonstrated empirically to be influenced by bond constraint 

expressed by the term the average number of bonds per atom, Nav. Defect density 

increases proportionally with a corresponding degradation in device performance 

when Nav >3 [4]. Metal oxides with high coordination number such as Ti or Ta are 

thought to create an over-constrained interface with Si while other having less co­

ordination numbers such as Ba or Ca will in contrast, create under-constrained 

interface in their corresponding oxides. Any oxide that can create an over- or under- 

constrained interface with respect to Si is expected to result in a large density of
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defects near the interface, which in turn results in poor electrical properties. 

According also to Wilk et al [4], these bonding constraints are critical to the silicide 

formation in the gate dielectric or even to any M-Si bonding (not necessarily a full 

silicide phase). The unfavourable bonding conditions that are found in any kind of 

silicide bonding will lead to potential leakage current and degradation of electron 

mobility. Therefore, it is desirable to have no metal oxide or silicide phases present 

within the proximity of the channel interface. Robertson has pointed out some key 

advantages of amorphous high-k oxide film as a gate dielectric [1] in terms of 

interface quality. Firstly, it provides the most cost-effective solution and is the most 

compatible with the existing process. In addition, an amorphous oxide can 

significantly reduce the number of interface defects by configuring its interface 

bonding. As previously mentioned in the issue of morphology, it is possible to 

gradually vary the composition of an amorphous oxide without creating a new phase; 

for example as in silicate alloys, or interfacial layers, or when adding nitrogen. 

Additional advantages of using amorphous oxides include the isotropic nature of the 

material which results in uniform permittivity and the absence of grain boundaries, 

which reduces earner scattering. The main disadvantage of amorphous oxides is the 

low-k values of such materials. If the k-value is the first priority, epitaxial oxides 

grown on Si can provide the solution. The main issue with epitaxial oxides currently 

is the films have to be grown by Molecular Beam Epitaxy (MBE) technique. This 

process is quite complicated, costly and not popular in semiconductor industry.

As a result, it turns out that in order to improve the interface quality a buffer layer 

between the dielectric and Si is currently a realistic solution. So far, SiOi interlayers 

a few Angstroms thick are used as buffer layers in high-k gate stacks. This layer is 

beneficial to the use of high-k oxide for two main reasons. Firstly, it can help the 

growth of the high-k oxides by providing nucleation sites, particularly if ALD is 

used and HfCh is the oxide of choice [20]. The Si02 layer also improves the overall 

electrical quality of the Si-oxide interface [1] due to its high quality interface in 

contact with Si. A S1O2 layer also separates the Si channel from die high-k oxide and 

hence, it can reduce the problem with reduction in earner mobility due remote 

scattering. However, this SiC>2 buffer layer also has some disadvantages, of which 

the biggest is the influence on Equivalent Oxide Thickness (EOT).
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EOT is a term used to compare the dielectric performance of the high-k material with 

the performance of Si02. It shows the thickness of Si02 (tsi02) that would be required 

to obtain the same gate capacitance as the one obtained with the physically thicker 

high-k material (thigh-k). If a thin interlayer of Si02 is added to the gate stack, then it 

acts as a second capacitor in series with the high-k layer. Consider a 2-layer MOS 

capacitor comprising of a Si02 layer in series with a high-k film.

The overall capacitance can be described as:

1 = _i---- j. _L— (Equation 2.4)
L L-Si02 Lhigh~k

which will lead to:

CET = tsi0z + thigh-k (Equation 2.5)

Thus, an extra Si02 layer is undesirable as it adds to the overall EOT and hence, 

reduces the scalability. This problem can be somewhat mitigated by (i) using oxides 

with higher k-values (up to a point) to compensate for the loss of EOT caused by the 

Si02 interlayer, (ii) replacing Si02 with some other buffer layers which either have 

higher k-values than Si02 and/or exhibit better barrier. In the first case, it still 

requires extreme care to be able to control the thickness of the intentional Si02 layer. 

As mentioned before, many potential oxides have been reported to have high oxygen 

diffusivity and hence, this behaviour can alter the thickness of this beneficial Si02 in 

interface, particularly during subsequent annealing. In the other cases, they 

complicate further the process of integrating high-k oxides into the gate stack 

because they require the search for alternative buffer layers.

The last issue that has strong influence on the device operation from the 

microstructure viewpoint is the defects from potential high-k oxides. It is well- 

known that most of transitional and RE oxides have a much higher concentrations of 

bulk defects compared to Si02 [7, 8, 17, 20-23], these are mainly oxygen vacancies 

and oxygen interstitials. The main reason why these high-k oxides have high 

concentrations of defects is due to their chemical nature.

26



In contrast to SiC^, all of these oxides are poor glass-formers [1]. Moreover, they 

have relatively higher co-ordination numbers and they are highly ionic. As a result, 

these oxides have larger non-equilibrium defect concentrations than Si02. Although 

they have high heats of fonnation, i.e. the equilibrium defect concentrations should 

be low, the non-equilibrium defect concentration is still high because the oxide 

network is less able to relax easily to rebond and remove defects. That is also the 

reason why oxygen vacancy and oxygen interstitial defects are the two main types 

prevailing in these oxides due to their lower formation energy compared to metal 

defects. These defects can exist either as bulk fixed charges or as surface states at the 

interface with the silicon channel. They were reportedly responsible for creating 

strong electric fields, altering band offsets, contributing to dielectric loss and because 

of their diffusions in an electric field, inducing a phenomenon similar to electrolysis 

[1, 21]. Unstable threshold voltage and low carrier mobility were also attributed to 

these defects [24].

Because these detrimental effects will lead to unstable device operations, the 

concentrations of defects must be minimised and controlled as far as possible. The 

choice of film growth methods can significantly affect the density of defects and 

hence, needs to be evaluated with great care. Other processing factors such as 

substrate preparation, subsequent annealing and gate stack structure also contribute 

to the density of defects. Alteration in the structure of the oxide itself can also help to 

somewhat mitigate the problem, e.g. incorporating La into Hf02 was demonstrated to 

suppress the formation of oxygen vacancy [25].

2.3.2.4 Compatibility with gate electrode

Until very recently, poly-Si has been the industrial choice for the gate electrode on 

top of Si02 in conventional MOS devices. These gates are not actually metals but 

heavily doped n- and p-type poly-Si. They are still a favourable choice though 

because dopant implant conditions can be tuned to create the desired threshold 

voltage Vt for both nMOS and pMOS. In addition, the process integration schemes 

for poly-Si are well established in industry. Poly-Si also has the advantage that it is 

refractory, easily deposited and compatible with Si02.
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However, when the SiOi is replaced by a high-k oxide, the use of poly-Si as gate 

electrode is arguably no longer suitable.

Firstly, materials such as HfCb and ZrOa can react with the poly-Si during the dopant 

implant annealing process resulting in the foimation of silicides [1], which in turn 

leads to earner leakage paths and influenced the functions of the oxides. Diffusion of 

dopants, particularly Boron, from the poly-Si gate through the oxide can also occur 

[1, 4]. Moreover, because poly-Si gates are not real metals, they have a relatively 

low carrier density and hence, add a depletion length of a few Angstroms to the 

Equivalent Capacitance Thickness (ECT) of the gate stack [1]. As a result, it is 

necessary to deploy alternative metal gate electrodes simultaneously with the 

integration of high-k oxides in to the new gate stack stmetures. In fact, research in 

metal gates has also been a very active area in parallel with the field of high-k 

oxides. Some of the main challenges of metal gates are the compatibility with the 

processing and thermal stability with the high-k oxides, hi addition, there is the 

challenge of fine-tuning work functions for nMOS and pMOS separately. Some of 

extensively researched simple metals or alloys reportedly showed promising results 

are Ru, TiN, TaCx and TaN, etc. [1].

2.3.2.5 Manufacturing compatibility and device reliability

From the viewpoint of manufacturing, integration of high-k oxide into the process 

flows requires very strict conformation to the overall design and production of ICs 

and preferable, demands the least change in any subsequent steps. It is mainly due to 

the massive cost and deep know-how in the past for Si semiconductor and still 

seemingly the dominant choice for years to come. In addition, since the gate 

dielectric properties and thickness have a strong impact on the performance of the 

device, these properties must be very well controlled in practical conditions within 

current or expected industrial environment to manufacture large ICs with a high 

yield. Because these properties are typically a function of deposition technique, the 

dielectric must have repeatable, well-controlled properties across a large area wafer 

and also from batch to batch. Moreover, whatever the deposition technique to be 

used, it also needs to be a cost effective process with a high throughput.
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Device reliability is another major issue which demands a lot of works in developing 

and validating new methods in metrology and theoretical investigations. This issue 

involves many different experimental factors such as device lifetime, modes of 

failures for oxide breakdown at operational voltages, etc. [26]. Theoretical studies 

deal with critical questions relating to the performances of high-k oxides that not 

known before to the semiconductor industry community [7], mainly due to the much 

more complex nature of such materials compared to the well-characterised Si02.

2.4 Stabilisation of higher-k phases in HfOi-based dielectrics

Among all high-k oxides investigated as gate dielectric in advanced CMOS devices, 

HfOa and its “twin oxide” Zr02 have attracted the most attentions because of their 

reasonable k-values (k= 15-25), wideband gap (Eg~ 6 eV) and good thermal stability 

on Si. Between these two, Hf02 has been more favourable due to its higher thermal 

stability with Si and better resistance to silicide foimation[l]. In fact, it is Hf-based 

oxide that chosen in the 45 mn node production which Intel introduced in 2007 as 

their preferred high-k gate dielectric. However, according to the latest edition of the 

ITRS published in 2009 [27], the need for a higher-k material (k>30) is mandatory to 

maintain the scalability of devices in near future. In addition, due to the necessity of 

a buffer layer between the Si substrate and high-k oxide, it is also necessary to 

require higher-k values to compensate for the loss in EOT that subjected to 

continuous scaling. As a result, the search for a higher k-value compared to the 

initial requirement (k=20~25) has been started with two main approaches. The first 

one involves some emerging candidates, which are RE-oxides and perovskite oxides 

such as (Sr, BajTiOs. These materials have attracted extensive interest due to their 

potentially high k-values, particularly in the case of perovskites. However, their 

chemical instabilities (in the case of RE oxides such as highly hygroscopic and 

catalytic nature) or difficulties in growth conditions (perovskites require MBE and 

very sensitive in layer compositions) have been so far not fully resolved and hence, 

still a serious technical barrier to overcome. Another class of materials have also 

been considered promising, in fact, is derivatives of pure HfC>2 (ZrC>2). Zhao and 

Vanderbilt predicted theoretically [28] that the high-temperature phases, i.e. cubic or 

tetragonal, of materials such as Hf02 should have significantly higher pennittivity (k 

can be increased up to 70 for tetragonal phase) than the thermodynamically stable
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monoclinic phase (k~16). Following this study, many investigations have been done 

to investigate ways of stabilising these high temperature phases and to assess their 

suitability of CMOS devices as successors of HfOi (see, for example [8, 29-32] 

among many others). Many other experimental studies, mainly involved Hf02 thin 

films doped with RE elements, have shown encouraging electrical results (see 

section 2.4.3 for more details).

Because Hf02 has become the most important high-k oxide available at the current 

time due to its recent adoption into mass-production microelectronics, derivatives of 

this system are desirable for next generation advanced CMOS circuits. This section 

will present an overview of this trend as the main context and motivation for the 

work undertaken within this study. Firstly, the microstructure of Hf02 will be 

outlined, followed by the mechanisms of phase stabilisation by doping with different 

elements. The last part will review some experimental results reported in the 

literature to demonstrate and correlate crystal structure and dielectric property 

relationship with considerations to progressive scaling demands.

2.4.1 HTO2 polymorphs: stable and metastable phases

It has long been known in the ceramics industry that Hf, together with other elements 

such as Ti, Zr, Ce, U, Th and Pu form a variety of binary and multi-component 

oxides based on the fluorite structure of Cap2 [18]. These materials are generally 

refractory and find a wide variety of applications ranging from structural ceramics, 

thermal bander coatings, nuclear’ fuels and nuclear waste ceramics through to solid 

electrolytes for oxide fuel cells, sensors and catalysts. For Hf and Zr binary oxides, 

three stable phases can be formed at the atmospheric pressure depending on 

temperature. The monoclinic phase is the most thermodynamically stable at room 

temperature, while the other two are stable at higher temperatures. Figure 2-11 

schematically shows these three phases and their transformational temperature 

accordingly.
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Figure 2-11: Ball and stick schematic illustrations for (a): cubic, (b): tetragonal and (c): monoclinic 
structures of Hf02 [18]. (The large ball represents O2'; the small one represents Hf44). Monoclinic 

tetragonal (1510°C - 2000°C on heating, 1288°C - 1800°C on cooling), tetragonal cubic at 2700°C [33].

In cubic and tetragonal phases, the cation in the network has a co-ordination number 

of 8 while for the monoclinic phase, it just only has 7. The monoclinic phase is 

considered a distortion of the parent structure while the tetragonal is typically 

described as a distorted cubic with oxygen displacement along the z-axis [33-35]. In 

contrast to other oxides based on large tetravalent cations such as Ce, Th and U (with 

the exception of Ti), the high-temperature phases of HfOi and ZrCb, cannot be 

quenched to retain their forms at room temperature [18, 36]. This can be explained 

by two effects: (i) Zr4+ and Hf4+ have small ionic radii and hence, cannot 

accommodate the co-ordination number of 8 required for tetragonal or cubic phases 

at low temperature [37-39] and (ii) at temperature below the transformation point, 

the monoclinic phase has the lowest interfacial energy and hence, is the most 

thermodynamically stable phase at atmospheric pressure [40]. In addition to the three 

main phases, other orthorhombic phases have also been reported to exist under very 

high pressure and elevated temperature [36]. However, these orthorhombic phases 

are not of particular interest here as it is highly unlikely that these phases could be 

stabilised under any growth conditions and subsequent processing which would be 

compatible with CMOS fabrication.

Besides the thermodynamically stable phases, "metastable phases” in both pure Zr02 

and Hf02 have also been studied [35, 36]. The term “metastable” refers to the fact 

that although these phases are not as stable as the monoclinic phase, they can be 

obtained at temperatures below the standard transformational boundaries. The 

observation of “metastable tetragonal" in Zr02 powder was firstly reported by 

Garvie [40].
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In his work, hypotheses are made about the fonnation of such phase as a function of 

crystallite size and surface energy. Following this study, numerous investigations, 

both experimental and theoretical, have been devoted to this complex yet interesting 

phenomenon of phase transfonnation and phase stabilisations. Much of this has 

focused on applications within the bulk ceramics industry due to importance of these 

oxides as control rod (HfCh) in water-cooled nuclear reactors [36] or electrolyte in 

solid-oxide fuel cell (ZrCh) [35].

One of important observations about the phase transfonnation in Zr02 and Hf02 

alike was the diffusionless nature of such reversible phase transformation, especially 

for the monoclinic <-> tetragonal regime [41]. All of these studies have led to general 

agreement about the conditions required for tetragonal and/or cubic phase to be 

retained in undoped Hf02 and Zr02 and how to study these effects by metastable- 

stable phase diagrams [35]. Essentially, proposed factors involve the critical size of 

crystallites and its interplay with interface or surface energies.. The latter factor is 

particularly important in thin films rather than in bulk materials. A number of studies 

involving ALD of HfC>2 films have illustrated this interdependence by looking at the 

effects of film thickness and growth conditions [42-44]. These studies also 

mentioned the influence of annealing conditions, such as the oxygen partial pressure, 

to the formation and stabilisation of these metastable phases. This factor will be 

discussed in more details in the next part of this section. To visually illustrate this 

complicated relationship, Figure 2-12 demonstrates how the phase variations can be 

obtained by controlling the crystallite size in nanocrystalline Zr02. The equivalent 

film thickness is also shown and illustrates the influence of surface energy (in terms 

of coarsening effect) to phase stabilisation.
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Figure 2-12: Excess enthalpy of nanocrystalline Zr02 against particle size (in log scale) (8] and its 
correspondent phases: amorphous (amorph.), tetragonal (tetr.) and monoclinic (mon.)

2.4.2 Phase stabilisation in Hf02 by doping with other elements in bulk 

ceramics

One of the most effective ways to induce the phase stabilisation in ZrOj and Hf02 is 

to introduce dopant(s) into the matrix of these host oxides [35, 36]. Numerous 

investigations have been done, mainly for Zr02 and to a lesser extent for Hf02, since 

the discovery of toughening transformation in Zr02 in the 1970’s for tetragonal and 

cubic phases at much lower transformation temperatures [36]. Probably the first and 

the most extensively studied system is yttria stabilised zirconia (YSZ), followed by 

other solid solutions with dopants such as Ca, Mg and Ce. Another group of dopants 

which have also been investigated are the RE elements. Thanks to these thorough 

and extensive studies, many important mechanisms effecting phase stabilisation are 

understood. Theoretical insights into the formation of various metastable phases 

have also been advanced in this particular field. Theoretical studies into the 

mechanisms for the formation of these phases within a single system or the 

microscopic interactions between guest and host cations in the network and their 

influences to the ultimate structures of the doped systems have been reported.
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One of the most thorough studies so far in this field involving microstructure 

analysis with a wide range of dopants was earned out by Li et al [37-39] using X-ray 

Absorption Spectroscopy (XAS) for zirconia stabilisations. Another excellent review 

on hafhia and its toughened derivatives was published by Wang et al [36]. Because 

the work on phase stabilisation of hafhia is far less advanced than the work on 

zirconia, it is inevitable to postulate various findings and theories found from Zr02 

studies to Hf02 investigations. Nevertheless, given the nearly identical physical and 

chemical properties between these two “twin oxides”, it is reasonable and necessary 

to do so. As a result, this part will highlight key points in the context of phase 

stabilisations of Hf02 and Zr02 alike based on these aforementioned core papers plus 

important infonnation found in various studies from literature. Many studies 

involved the built-ups or modifications of phase diagrams for various systems, which 

have also the main source of discrepancies and controversies between different 

authors. This factor will also be taken into account when microstructures and phase 

compositions are concerned and arguably, one of the most puzzling issues in this 

interesting area.

In the following sections, two different mechanisms of stabilisations are reviewed^ 

They are based on the addition of trivalent or tetravalent cations respectively, which 

also constitute the majority of elements investigated, into Zr/Hf oxide networks. 

Pentavalent dopants were demonstrated to have a hybrid mechanism for the 

aforementioned cases [39] and hence, can be understood in a similar way. The use of 

divalent cations so far is limited to Ca and Mg only and can be found in [36]. To 

conclude this part, some other important observations reported in “metastable 

phases” for Zr- and Hf-based systems will be briefly illustrated and discussed.

2.4.2.1 Stabilisation based on Oxygen vacancy

The ionic radii of Zr4+ and Hf44" are considered to be too small to accommodate a 

stable 8-fold co-ordination with oxygen in tetragonal and cubic phases (only exist in 

high temperature conditions). A revised phase diagram of Zr02 doped with Y3+ [45] 

showed tetragonal or cubic phase stabilisation and was firstly explained by the role 

of oxygen vacancies created to compensate for charge balance [46].
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This in turn resulted in the co-ordination number of Zr4+ being reduced to around 7.5 

in tetragonal or cubic configuration, which meant that they were more stable because 

they were closer to the strongly favoured co-ordination number of 7 between Zr and 

O. A number of other studies were also conducted with other dopants but the 

mechanism for the role of oxygen vacancy and how the stability of tetragonal/cubic 

phase vary with such factors were not well understood. This was the main 

motivation in the work of Li et at [38] to study the influence of oxygen vacancy in 

aiding the phase stabilisation of ZrC>2 in a systematic way with different bivalent 

cations at various concentrations. One of the main advantages this study had was the 

employment of XAS, a powerful technique with the capability to probe local 

structures. According to the author, XAS provides high resolution in differentiating 

the dopant and host cation networks even at low doping concentrations. It was 

particularly important when the ionic radii of dopants compared to Zr were 

concerned and all previous studies could not provide satisfactory explanations 

regarding this issue. As a result, more understandings about how trivalent cations 

affect the phase stabilisations in Zr02 were developed and validated.

The local micro structure in this study can be summarised as die following key notes:

• Oxygen vacancies created by introducing trivalent cations into Zr02 

networks are responsible for the stabilisation of tetragonal and cubic phases. 

They are also found to be associated with the Zr cations in the case of 

oversized dopants and with two dopant cations in the case of undersized 

dopants.

• Oversized dopants (Y and Gd) form solid solutions adopting the zirconia 

structure, in tenns of both dopant-oxygen bond length and dopant-cation 

distance. These oversized dopants also accommodate 8-fold configuration 

and leave oxygen vacancies for Zr host cations.

• Undersized dopants (Fe and Ga) substitute randomly for Zr ions in the 

network and have very limited solubility in zirconia solid solutions. They 

exist in 6-fold co-ordinations and compete with Zr ions for the oxygen 

vacancies.
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• The tetragonal-tocubic transformation in zirconia solid solutions involves 

distortion of the nearest-neighbour Zr-O shell whereas the tetragonal-to- 

monoclinic transformation requires distortion of both the nearest-neighbour 

Zr-0 shell and the next nearest-neighbour Zr-Zr shell.

These findings lead to some important consequences in tenns of phase stabilisations. 

Firstly, in order to achieve the same stabilising effect, the amount of undersized 

dopants needs to be used much more than their oversized counterparts. The 

undersized dopants also create much more distortion in the host cation network 

compared to the oversized ones. This behaviour is reflected in their much lower 

solubility in Zr cation networks and hence, cubic solid solutions are found to be very 

difficult to form. In terms of tetragonal stabilisation, both types of dopants are found 

to be capable of suppressing monoclinic distortion though similarly to cubic phase, 

the undersized dopants are much less effective. For the oversized dopants, increasing 

the doping levels will result in a decrease of tetragonality, which can be represented 

by the ratio of ZrOy/ZrOg [46], The tetragonal-cubic boundary is determined at the 

concentrations of oversized dopants that yield this ratio equivalent to unity. In cubic 

structure, Zr07 is the elementary structural unit while in tetragonal, it is the ZrOg that 

is the dominant one.

2.4.2.2 Stabilisation based on cation network stabilisers

Besides the extensively researched topic of stabilising high-temperature phases in 

ZrOi using bivalent cations, some other studies were also conducted with tetravalent 

cations such as Ti, Ce and Ge [47-49]. All of these studies demonstrated that by 

alloying ZrOa with the oxides from these elements, tetragonal and/or cubic phases 

could be retained at room temperature with appropriate doping concentmtions. 

However, the mechanism of stabilisation in these systems was not well understood. 

In contrast to the systems doped with bivalent cations, these systems do not create 

oxygen vacancies within the network especially at low doping concentrations and 

hence, the stabilisation cannot be explained by the same mechanism applied for the 

bivalent dopants.
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Therefore, the stabilisation by adding tetravalent cations into Zr02 networks requires 

an alternative explanation. Li et al in their second study using XAS [37] followed 

the same approach used by the previous study of bivalent cations. Ce was used as an 

oversized dopant and Ge as a undersized dopant, these were introduced to Zr02 

matrix are various concentrations to assess their influence on the host network as 

well as the effect on oxygen bonding. At this point, it is also important to recall that 

tetragonal zirconia may be viewed as a layer structure, in which tetragonality is 

attributed to the strong bonding of Zr-Oi (2.10A) within the layers whereas weak 

bonding of Zr-On (2,34 A) between the layers [50]. The main results from Li’s XAS 

work can be summarised as the followings.

• Both the oversized (Ce4+) and undersized (Ge4+) tetravalent dopants have 

significantly different oxygen coordination from that of the host cation (8- 

fold in the case of Ce and 4-fold in the case of Ge). While Ce is found to 

form a random substitutional solid solution with Zr, Ge associates in the 

cation sublattice within ordered domains. For both dopants, the cation-cation 

distance in the network is not affected by alloying.

• Oversized CeOs polyhedra are observed in tetragonal zirconia with a Ce-O 

bond length of 2.30 A, which is longer than the mean Zr-0 distance of the 

host network but shorter than the Ce-O distance in pure Ce02.

• The undersized Ge in zirconia solid solutions is tetrahedrally coordinated 

with O with a Ge-O distance of 1.81 A. This distance longer than the Ge-0 in 

pure Ge02. However, it is shorter than the Zr-Oi bond and hence, is thought 

also stronger.

These differences in microstmctures exert their impact on the stability of tetragonal 

zirconia and are visually illustrated in Figure 2-13. The c/a ratio is depicted as a 

function of tetragonality, i.e. the higher this ratio, the more stable tetragonal structure 

can be formed (c is the length of the unit cell in z-direction and also conventionally 

used as c-axis. For tetragonal structure, a=b*c, and tetragonality in ZrC>2 and Hf02 

alike is defined by anisotropic elongation or contraction mainly along the c-axis).
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Figure 2-13: Schematic view for variation of tetragonality of zirconia solid solutions with Ce and Ge 
dopants. (Numbers indicate atom positions in b direction) [37].

For the oversized tetravalent Ce dopant, the tetragonality decreases when the doping 

concentration increases. It is because of the introduction of Ce4+ ions in sufficient 

amount, which themselves adopt a more symmetric 8-fold coordination of fluorite- 

like structure. Due to their larger size, these ions create the effect of assimilating two 

types of bonding in tetragonal ZrC>2 and hence, destabilise the layer structure. 

However, it is also noteworthy that this effect from oversized tetravalent Ce4+ is less 

than that of the oversized trivalent cations, reflecting in the critical concentrations 

needed to a complete phase from tetragonal to cubic (18% for M2O3 compared to 

70% of CeC^). In addition, for Ce02-Zr02 system, two-phase system of tetragonal- 

cubic can be found between 18% and 70% of Ce doping level at intermediate 

temperatures [48], which is likely one of the main source for controversies found in 

many different studies regarding the tetragonal-cubic transformation boundary and 

some forms of “metastable tetragonal” phases within this doping range. This issue 

will be mentioned in the next part of this section.
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In the case of undersized tetravalent Ge dopant, the opposite trend to the Ce doping 

is observed. The tetragonality of zirconia solid solution increases proportionally with 

the Ge doping concentrations. This is due to the stabilising effect achieved by cation 

ordering. The oxygen overcrowding, which prevents the tetragonal phase of ZrCh 

from being stable, is relieved by the foil development of bifurcated tetrahedral 

bondings for both Zr-O and Ge-O in the layer-like structure. Therefore, the 

tetragonal zirconia solid solutions are found to be much more stable compared to the 

case of Ce doping. However, one noteworthy observation is that no cubic solid 

solution can be obtained using Ge dopants. This can be expanded to all undersized 

tetravalent dopants and can be explained by the absence of oxygen vacancies in these 

systems to aid the ZrOy polyhedron fonnation. In contrast, oversized dopant such as 

Ce can form cubic phase in significant quantity because Ce02 itself is a cubic 

fluorite-type structure. Although no oxygen vacancies are generated by the Ce 

dopant, the cubic structure can be explained by its formation once the percolation 

limit for Ce in the fee lattice (19.8%) is exceeded. Under these conditions, a locally 

“cubic” environment surrounding Ce can be created to form cubic domains, which in 

turn triggers the phase separation into tetragonal and cubic regions. This two-phase 

regime continues until the Zr ions become the minority species and folly surrounded 

by the cubic matrix, which will lead to a cubic-like stmeture. This tendency is also 

thought to be applicable to all other oversized tetravalent dopants.

2A.2.3 Intermediate “metastable tetragonal” phases in Zr- and Hf-based oxides

While the term “metastable phases” in Zr- and Hf-based systems generally refers to 

the high-temperature phases stabilised and retained at room temperature against the 

monoclinic distortion, it can also relate to other intermediate phases exist between 

the two-phase regime in various phase diagrams particularly at low and intermediate 

doping levels. These intermediate tetragonal phases have been detected and 

distinguished from the stable tetragonal/cubic phases as distorted fluorite-type 

structure evolved via diffusionless transformation and termed as t’ and t” 

respectively besides the high-temperature tetragonal phase, t [33, 35, 51, 52] mainly 

in systems doped with trivalent cations. More recently, similar intermediate phases 

were also reported for Ce-doped hafhia [53] and for very thin undoped HfC^ films 

[43].
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Of these two structures, the t” tetragonal form resembles a very similar structure to 

the cubic one, with a c/a ratio equivalent to unity. This similarity between phases has 

been the main cause of many contradictions between various phase diagrams 

constructed prior to this discovery by diffraction techniques, such as X-ray 

Diffractions (XRD) [35], although the existence of these phases had been 

acknowledged for quite a long time. The underlying reason, as has been identified 

[33, 35], was due to the fact that the distortion in these two “metastable tetragonal 

phases” are caused by the oxygen displacement along the c-axis. Thanks mainly to 

the advances of Raman microscopy and its high sensitivity to light element 

displacement, which is not available from XRD, these structures were resolved and 

validated. Figure 2-14 illustrates different phases found in Zr- and Hf-based oxides 

and how oxygen displacement exist in f and t” tetragonal forms. In this schematic 

view, the small solid black circles present Zr (Hf) atoms while the large white circles 

represent oxygen atoms. Displacements along the c-axis involving oxygen atoms are 

indicated by the arrows. The t” tetragonal form and the cubic phase are 

undistinguishable from the crystallographic viewpoint because firstly, they both can 

be characterised by only one unit cell parameter, a; and secondly, light elements such 

as oxygen have a very low X-ray scattering cross section. Only by detection of the 

vibrational mode, which is made possible by technique such as Raman scattering, it 

is possible to differentiate between these similar structures. Neutron diffraction can 

also in principle detect the displacement of the oxygen atoms as its has a much 

higher sensitivity of oxygen scattering factor compared to XRD [53]. However, as 

many Hf-based oxides exhibit high neufron absorption coefficients [36], the use of 

neutron diffraction is quite limited in practice.
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Figure 2-14: Monoclinic (m), tetragonal (f and t") and cubic phases in Zr- and Hf- based oxides [35].

2.4.2.4 Some recent progress in high-k research from Hf-based thin films

The first theoretical study investigating the effect of phase on the permittivity of 

HfC>2 was undertaken by Zhao and Vanderbilt [28] in 2002. This work revealed an 

interesting insight into how it might be possible to obtain significantly higher 

permittivity from HfOi. Their reported k-values were 70, 29 and 16 for tetragonal, 

cubic and monoclinic phase respectively. Following this initial investigation, some 

other first-principle and ab initio studies were also done to further corroborate this 

structure-property relationship [8, 30, 31].
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These studies also confirmed the enhancement of peimittivity in Hf-based oxides by 

stabilising its high-temperature crystal structures although the calculated k-values 

were somewhat different between authors. One significant variation among these 

studies is the discrepancy in dielectric constant for tetragonal phase (k~70) estimated 

by Zhao and Vanderbilt and another result from Rignanese [8] in Ms ab initio study 

about IVB transitional metal oxides and silicates (k~29). The values calculated for 

the cubic phase were however, in reasonable agreement. Despite the difference 

between the predicted values in these two studies, it is clear that a significant 

enhancement should be possible by obtaining and stabilising the tetragonal or cubic 

phase. At the same time, the bandgap of the material should remain virtually 

unchanged or may even be slightly improved [1].

Motivated by these studies and also by the need of higher-k oxides to succeed Hf02 

in next CMOS generations, many experimental studies have been done to investigate 

the feasibility of enhancing k-value in Hf-based thin films. Trials were undertaken 

by doping Hf02 with La [54], Gd, Er, and Dy [29, 55, 56], Ce [57] as well as Sc 

[55], Y [58] and Si [59, 60] typically at low doping levels (typically up to 20%). 

Electrical results such as leakage current, fixed oxide charges, surface density states, 

etc. were quite encouraging though varied between different groups. Some degree of 

variation is inevitable because the differences in growth methods, film thickness, 

annealing conditions, nature of dopants, doping levels, MOS structure, etc. As far as 

the dielectric constants are concerned, these studies however yielded two maximum 

experimental dielectric constants of 28 and 32, except in the study of La-doped HfCb 

which gave a significantly Mgher peimittivity of 38. These values are quite close to 

the value of the cubic or tetragonal Hf02 predicted by Rignanese mentioned 

previously but far lower than the tetragonal k-value estimated by Zhao and 

Vanderbilt. While these results are very promising from the viewpoint of high-k 

applications, there remained some questions about the accurate determination of 

phases in these materials. Most authors relied mainly on the evolutions of XRD 

patterns to argue the crystal structure of their correspondent films as tetragonal or 

cubic, while some others could not deduce the structure unambiguously.

42



As mentioned before, XRD alone is not sufficient to distinguish between the various 

configurations of tetragonal and cubic phases, particularly if the dopant level is low. 

The issue is further complicated by the broadening effect and peak convolution in 

XRD spectra due to small crystallites and the potential co-existence of different 

phases in the films. It is thus remaining a very challenging yet very interesting area 

to conduct more investigations about crystal structures in these Hf-based thin films 

and gain a better understanding about the dielectric constant variations against phase 

composition and/or microstructure alteration. Moreover, doing so can also possibly 

reveal some optimal conditions such as annealing enviromnents and temperatures, 

doping levels required to achieve a specific value of permittivity and other electrical 

properties, etc.

2.5 Deposition techniques for dielectric thin films

The shift to a high-k dielectric material in CMOS production represents a 

fundamental change in processing towards deposited thin dielectric films rather than 

the native oxide that can be grown directly on crystalline silicon. To ensure good 

elechical performance of the resulting devices, the deposited dielectrics must have 

an excellent thickness uniformity and superior interfacial and bulk properties. 

Clearly, the search for such a perfect technique is not easy because any potential 

method will have its own advantages and disadvantages. Research projects in 

laboratory require a flexible and capable tool to accomplish testing a wide range of 

materials whereas industrial applications dictate a critical balance between financial 

investment, quality control and yields. This section will outline some of the most 

popular deposition techniques particularly suitable for growing dielectric thin films 

and used in both research laboratory and industrial environment. The main focus of 

this section will be on Atomic Layer Deposition (ALD), a derivative of the Chemical 

Vapour Deposition (CVD) family, which is the technique used in the current 

research and has also been adopted for production by many leading companies in 

semiconductor industry. Other competing or alternative techniques will also be 

briefly reviewed.
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2.5.1 Atomic Layer Deposition (ALD)

The development of Atomic Layer Deposition (ALD), originally known as Atomic 

Layer Epitaxy (ALE), is widely accredited to Suntola and Antson from Finland, who 

developed the technique in the 1970s for the commercial production of high-quality, 

large-area flat panel displays based on thin film electroluminescence (TFEL) [61]. 

However, the process was also developed and investigated extensively as early as 

1960s by many former Soviet Union researchers although far less well-known until 

much later [62].

Since then, it has become a very useful and versatile technique for depositing a wide 

range of materials, ranging from elemental metals through to oxides, nitrides and a 

range of other types of compounds [62] for various applications. Recently, 

worldwide interest in ALD has increased due to the driving force of the 

semiconductor industry and its ongoing demand for scaling devices. The demand for 

a method capable of depositing very thin, conformal, atomically flat and highly- 

insulating oxide layers at the nanometre thickness scale, are all met by ALD [61]. 

The so-called high-k oxides, which mostly comprise refractory materials, are not 

easily processed in a controlled manner by thin film deposition techniques other than 

ALD. The reason why ALD is thought of as the most capable technique to be 

employed in high-k thin film application owes much to its characteristics as a very 

distinct method to provide “digitised control” of film thickness.

One of the most important concepts of ALD is its growth cycle. Figure 2-15 and 

Figure 2-16 demonstrate two simplified but typically representative ALD growth 

cycles in two different fashions [63]. They are referred to as chemisorption- 

saturation and reaction-sequence ALD respectively, both rely on the strong chemical 

adsorptions of gaseous precursors, which are in various forms of metal complexes or 

compounds, to the substrate. Another type of adsorption that can also exist is 

physisorption. However, the influence of this in ALD is not very strong for most 

film growths and generally a minor effect. A detailed discussion about the growth 

kinetics, mechanisms and surface chemistry can be found in [62]. For both of these 

aforementioned ALD growth pathways, a purge of inert gas is applied in step 2 and 4 

to remove all excessive precursors and gaseous by-products.
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As each step of the ALD cycle is self limiting, it is possible to accurately control 

film thickness simply by controlling the number of cycles. In theory, each cycle can 

form a full monolayer (ML), however, in practice, only a fraction of ML is produced 

in most processes due to steric hindrance of the precursors on the surface.
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Figure 2-15: Sequence of steps in chemisorption-saturation ALD: (a) Substrate is exposed to the first 
molecular precursor, A/L2; (b) first molecular precursor forms a saturated layer on the substrate; (c) the 

adsorbed layer of the first precursor is exposed to the second precursor, ANi; and (d) the exchange 
reaction between the precursors produces the film and eliminates the by-products [63].
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Figure 2-16: Sequence of steps in reaction-sequence ALD: (a) The surface is activated with AN groups and 
this surface is exposed to ML2 molecules; (b) ML2 molecules react with /17V groups to produce volatile AT. 

by-product molecules and attach ML groups to the/I elements of the surface/1A groups. The reaction self- 
saturates when all the AN groups are converted to AML groups. The AML species cannot further react 

with the exposing ML2 precursor; (c) After removal of excess ML2, the A/L-terminated surface is exposed 
to the second precursor AN2 and (d) AN2 molecules react with the surface ML groups to produce NL 

volatile by-product and attach AN to the surface M atoms. The reaction self-saturates once all surface ML 
groups are converted into MAN that cannot further react with AN2 precursor [63].

One of the most important characteristic of ALD is the self-limitation nature of the 

process. ALD is characterised by two central parameters: steric hindrance of the 

ligands and the number of reactive sites available on the surface [62]. These two 

parameters in turn depend on various factors such as precursor doses, growth 

temperatures, chemical structures of precursors, etc. For a given system of precursors 

including metal-contained reactant and oxidising agent providing that both are used 

at sufficient quantities to cause surface saturation, ALD growth process can be

46



characterised by the growth rate against growth temperature. Figure 2-17 illustrates 

the typical effects of growth temperature on the growth rate that may be observed in 

typical ALD processes. The central part of this graph (region “a”) is referred to as 

the growth window and is the typical region used for deposition as the growth rate 

per cycle is insensitive to temperature [61]. Possible different behaviours of a film 

growth can also be observed during the course of temperature evolution and they are 

also illustrated within this figure.

—ALD window—

Temperature
Figure 2-17: Schematic illustration of ALD processing window with various characteristics responses of 

growth rates against temperatures: (a) ALD processing window with constant growth rate; (b) precursor 
condensation; (c) insufficient reactivity; (d) precursor decomposition and (e) precursor desorption. If the 
deposition rate is dependent on the number of available reactive sites as in (f), actual ALD window cannot 

be observed, i.e. surface-saturation cannot be achieved [61].

As can be seen from the figure above, if an ALD window can be found for a 

particular growth process, the growth rate (typically represented by nm/cycle) should 

be constant. This characteristic of an ALD window implies that it can provide a 

simple and accurate way to achieve the desired thickness regardless of reactant flux 

homogeneity. This is one of the greatest strengths of ALD, besides excellent 

uniformity and confonuity particularly for high aspect ratio structures, compared to 

other deposition methods. However, it is also a limitation for certain applications. 

Because the growth rate of typical ALD processes tends to be rather low compared 

to many other thin film processes, it requires a more time-consuming process to 

achieve a given thickness.
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However, given the fact that the high-k oxide layer is within the order of a few 

nanometres, the advantages offered by ALD still much outweighs its limitation in the 

control of film thickness, particularly in industrial batch processing.

Another important aspect affecting the evolution of ALD technique is the utilisation 

of an increasingly wider range of chemical precursors. Together with the 

development of the ALD hardware, precursor chemistry has played an important role 

in expanding the varieties of materials that can be deposited by ALD. From the 

chemical viewpoint, precursors suitable for high-k oxides can be mainly grouped 

into the following categories: halides, alkoxides, /?-diketonates, cyclopentadienyl- 

type compounds and amido complexes [62-64]. Among many critical requirements 

for a good ALD precursors [61, 64], thermal and chemical stability, sufficient 

volatility and reactivity are the most important factors, especially when the growth 

conditions at low or intermediate temperatures are concerned. Traditionally, these 

properties have been some of the limiting factors in expanding the application 

envelope of thermal ALD due to the constraints imposed by the available and 

suitable chemicals. However, the recent development in precursor chemistry, 

particularly in organometallics, has partly helped remove that banier.

Other recent developments of ALD in tenns of technique improvements are Liquid- 

injection (LI) ALD and Plasma-enhanced (PE) ALD. The LI derivative has been 

developed to overcome the problem with many precursors for thermal ALD: low 

volatility at temperatures below the decomposition thresholds. By dissolving the 

precursors in inert organic solvents such as anhydrous toluene or heptanes and 

transporting the precursors to the reaction chamber in the vapour form of dilute 

precursor solution, LIALD helps to reduce the high temperatures required to 

evaporate pure precursors and hence, more types of precursors can be employed. The 

PE derivative, on the other hand, has been developed to provide a more sufficient 

ALD pathway by providing energetic radicals or ions by means of plasma generation 

to remove ligands or surface activation. Since these radicals or ions can react with 

the surface ligands with minimal to no activation energy banier, PEALD generally 

results in an increased reaction rate and an improved removal of volatile products at 

lower temperatures compared to thennal ALD process.
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2.5.2 Chemical Vapour Deposition (CVD)

Chemical vapour deposition (CVD), like ALD, is the process involving a volatile 

compound of a material to he deposited, with other gaseous reactants, to produce a 

non-volatile solid that deposits atomistically on a suitably placed substrate. 

However, in CVD, both reactants are introduced simultaneously and react on the 

substrate via a thermally assisted reaction. A large variety of films and coatings 

including metals, semiconductors and insulators in either crystalline or amorphous 

form have been investigated by CVD. Compared to several other methods, one of the 

most distinct advantages that CVD offers is a very high growth rate, even at low 

temperature. In addition, other advantages making this technique quite favourable 

include the affordable cost of the equipment and operating expenses, the suitability 

for both batch and semi-continuous operation, and the compatibility with other 

processing steps. Aside from conventional CVD, some other derivatives have been 

developed to improve the performances of the method or for specific application 

such as Metal-organic CVD (MOCVD), Liquid-injection MOCVD, Plasma- 

enhanced CVD and laser-enhanced CVD [65]. hi tenns of processing pressure 

conditions, CVD can be classified into two main groups: atmospheric and low- 

pressure, of which the latter one has been used extensively in thin film deposition for 

semiconductor industry [66].

The basic principle of CVD can be presented by the following primary steps: (i) the 

introduction of precursor(s) into a reaction chamber, (ii) gas phase collisions 

between precursor molecules, (iii) transport of precursors to the substrate, (iv) 

absorption of the precursors onto the substrate, (v) the adatoms migration and film- 

forming chemical reactions on the substrate, (vi) desorption of the adsorbed 

molecules, (vii) surface nucleation, and (viii) desorption of the gaseous by-products 

of the reaction. Depending on the growth temperatures, two main CVD operational 

regimes can be categorised. They are mass-transport limited regime at high 

temperatures and surface-reaction limited regime at low temperatures respectively 

[66]. The role of precursor chemistry hence has a strong influence on the 

development of CVD in a similar way to ALD.
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As mentioned before, one of the main advantages of CVD is the high growth rate. 

However, for applications that require very thin films, this can also be a 

disadvantage. For applications such as dielectric deposition for MOS devices, CVD 

cannot give the level of thickness control required and ALD is highly advantageous 

in this case. Another issue with CVD for application such as CMOS fabrication 

comes from the high demand of uniformity and conformity of ultrathin films, which 

is another drawback compared to ALD.

2.5.3 Molecular Beam Epitaxy (MBE)

Molecular Beam Epitaxy (MBE) is a deposition technique originally designed to 

undertake epitaxial film growth on a crystalline substrate at ultrahigh vacuum (UHV) 

and low temperature. Traditionally, it has been used to grow single crystal films such 

as GaAs and other compounds from group III and V in the periodic tables as well as 

elemental metals [67]. Many of these compounds are important constituents in 

modern microwave electronics and optoelectronics, high speed digital and analogue 

devices and ICs, etc. The main operational principle of MBE involves controlling the 

flux of atomistic beams of ultra-pure metallic sources directed towards a heated 

substrate. The flux of metals on the surface results in deposition of material and if 

the conditions are correct, epitaxial formation of the required material. In solid- 

source MBE, ultra-pure elements such as Ga and As are heated in separate Knudsen 

effusion cells until they begin to slowly sublimate. The gaseous elements then 

condense on the substrate, where they may react with each other to form the single 

crystal film with desired structure, e.g. GaAs. The term ’'beam" means that 

evaporated atoms nearly do not interact with each other or vacuum chamber gases 

until they reach the wafer, due to the long mean free paths of the atoms. Actuation of 

open/close function of the source shutters allows film growth to be controlled at the 

atomic level within a monolayer. This in turn offers the ability to precisely control 

epitaxial film growth and composition, making it a highly attractive technique for 

many academic and industrial scientists.

The main advantage of MBE is the ability to grow very high quality epitaxial 

growths or complicated structures that are virtually impossible to obtain by other 

techniques. MBE also prevails over other techniques in terms of impurities within
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the films due to its high UHV processing conditions and the heterointerfaces can be 

kept to the minimum. MBE also offers highly accurate film compositions and 

complex films can be deposited without the need of complex chemical delivery 

system as typically required by other methods. In terms of process control, it has the 

most advantageous position among all the growth methods because the UHV 

conditions are highly compatible with a wide range of in situ surface analytical 

equipments, which can be either directly attached or connected to the growth 

chamber. These equipments enable the monitoring of the chemical composition and 

physical structure of the so-called epilayers throughout the growth process, thus 

provide excellent control. The main disadvantages of MBE are its relatively slow 

growth rate, complex and expensive equipment due to its high vacuum demand and 

associated components and difficulty to integrate with other techniques at industrial 

production level.

Recently, the use of MBE for high-k oxides has focused on the growth of perovskite 

films for applications in both gate logic structure and DRAM [66]. Given the fact 

that perovskite materials offer very high k-values and the continuously pressing 

demand for higher-k oxides to succeed HfC^ in CMOS devices, MBE may be the 

competing method of choice against ALD in the future, at least at the research level 

in laboratory.

2.5.4 Ion Beam Assisted Deposition

The concept of ion beam assisted deposition (IBAD) relies on energetic ions to 

stimulate the surface reactions of precursor atoms that are generated with an 

electron-beam evaporator and deposited on a substrate. Because the process utilises 

ions as reactant, ion bombardment is the key factor to control the film properties in 

the IBAD process. Regarding the application of high-k oxide films, HfC^ was 

reportedly deposited by this technique in [43] and Zr02 elsewhere [66]. For IBAD 

application of high-k dielectric materials, energetic oxygen ions in a vacuum system 

are used to convert deposited surface metal atoms into metal oxides for thin film 

deposition. The stoichiometric composition of the oxide films can be altered by the 

transport ratio of the metal vapour against the oxygen beam and the ion energy.
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This is a potential advantage of this technique since various stoichiometries of oxide 

films can be created to investigate their impacts on film structures. Another 

advantage that this technique can provide is the ability to fonn complex metal oxides 

without the use of many chemical precursors.
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Chapter 3 EXPERIMENTAL METHODS

3.1 Introduction

Details of main experimental techniques employed in the work of this thesis are 

described in this chapter. Firstly, the growth method of Ce-doped Hf-oxide films is 

presented, including details of precursors and other parameters involved in LIALD 

process. Following the film growth, principal analytical techniques used to 

characterise the films are described, comprising instrumental details and analytical 

procedure. They are XRD, UV Raman, MEIS, AFM, ellipsometry and weight gain 

analysis. Electrical properties of the films are extracted by using C-V, I-C and C-f 

measurements. Because of the thin film nature, some equipments not originally 

designed for thin film characterisation have been optimised in terms of data 

acquisition procedure to improve the quality of data obtained. Alongside with 

instrumental descriptions and setups, methods employed to analyse data are also 

presented with discussions about issues involving during the analysis.

3.2 ALD film growth 

3.2.1 Introduction

As mentioned in the previous chapter, one of the most common techniques currently 

used to deposit thin films for microelectronics applications is Atomic Layer 

Deposition (ALD) (see chapter 2 for details). All the films investigated in this 

research project were deposited by a modified ALD process called Liquid-injection 

ALD. The method was initially developed for Metal-Organic Chemical Vapour 

Deposition (MOCVD) and later adopted for ALD, The main difference between 

conventional ALD and Liquid-injection ALD is the way in which the precursors are 

delivered into reaction chamber. While the former method relies on the thermal 

evaporation of precursors often with the aid of a flowing inert gas, the latter uses 

flash evaporation of precursor solution at point of use.
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The precursors are dissolved in organic solvents and are then sprayed into a heated 

vaporiser as and when required, the precursor and solvent are flash evaporated and 

earned to the reaction chamber by flowing inert gas. Because the precursor is stored 

at room temperature and is only heated as required, it is potentially possible to 

employ a much wider variety of precursors. Precursors which might not be suitable 

for conventional delivery due to poor thermal stability or ones that suffer from low 

vapour pressures can often be used via direct liquid injection delivery. Moreover, 

this technique does not require constant heating of the precursors and hence, 

degradation of precursors is reduced and shelf life increased. A range of materials 

have been successfully deposited by this method [1-4] in our research group and the 

method is attracting significant interest from industry.

The following sections will describe the Aixtron AIX 200FE, which is the reactor 

used to produce all the films by Liquid-injection ALD. Details of growth parameters 

are given and discussed afterwards.

3.2.2 Liquid-injection ALD

3.2.2.1 Aixtron AIX 200FE

The Aixtron AIX 200FE system is a Liquid-injection MOCVD reactor, originally 

designed for deposition of various oxide materials on different types of substrates. 

The system has three independently controlled metal-organic precursor sources with 

Jipelec TriJet® liquid precursor delivery and evaporation system, a horizontal CVD 

quartz reactor with infrared lamp heating and a 2" wafer susceptor mounting stage 

with Gas Foil Rotation® and manual loading. A schematic of the system with its 

main components is shown in Figure 3-1.
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Figure 3-1: Schematic illustration of Aixtron AIX 200 FE system [2].

Precursors are dissolved in inert organic solvent (anhydrous toluene in this research) 

and stored in pressurised (1200 mbar) glass containers connected to the liquid 

injectors by stainless steel tubes. The liquid precursor delivery system comprises 

three separate liquid injectors and hence, enables a maximum of three different 

precursors to be injected individually with preset intervals (for ALD mode) or 

simultaneously (for CVD mode). To ensure that the required precursor is transported 

into and through the vaporiser, each injector tip is constantly supplied with a stream 

of heated Argon carrier gas. Depending on the amount of precursors required for the 

growth process, the injectors can be controlled via an integrated control system, 

which also allows different operating modes of the injectors, i.e. continuous or 

pulsed supply. For the LIALD process, the injectors are always set to operate in the 

pulsed mode. The frequency and opening times of the pulsed injectors are controlled 

by the pulse generators; the signals are amplified and sent to the injectors via the 

CAGE control system. CAGE controls when the signal is actually allowed to pass 

through to the injectors and when it is not, hence allowing control of precursor 

dosing.
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In addition to the MO-precursor sources, co-reactants in the form of water, oxygen 

or ozone are also available on the system. Depending on which one of them is used, 

the supply of this oxidizing agent can be transferred to the reaction chamber via 

vapour (in the case of water) or through gas supply system (in the case of O2). The 

water is supplied by a vapour draw source, controlled by a high-speed Swagelok 

ALD valve. If O3 is required (the case of this research) then O2 will be fed into an O3 

generator and subsequently fed into the reaction chamber.

In order to ensure that the precursors are thoroughly vaporised before entering 

reaction chamber, the vaporiser is fitted with embedded heating cartridges and 

thermocouples in five independent zones. This configuration allows the temperature 

of the vaporiser to be controlled consistently up to maximum 250 °C.

The substrate temperature is controlled by a graphite susceptor, which is heated by a 

set of five infrared lamps and controlled by a thermocouple embedded inside the 

susceptor. The substrate can be rotated via the gas driven mounting stage, which is 

driven by Argon gas, it can improve thickness unifonnity, and particularly for CVD. 

Mass flow controllers (MFCs) are used on all gas supplies to ensure that the reactor 

flow conditions are stable and controllable in a repeatable fashion. An MFC is also 

used to pressurise the precursor containers.

All gases and by-products from the growth process are sucked out of the system by a 

vacuum pump after passing through a water-cooled filter situated at the outlet of the 

reaction chamber, where non-volatile materials will be condensed and separated. To 

maintain the required reactor pressure, a butterfly throttle valve is utilised at the 

pump inlet and controlled by a pressure gauge.

All of the aforementioned features are integrated and controlled by the CAGE 

control software. This software allows the user to set up various operational 

parameters to suit any specific growth recipes as well as control the growth process 

in a programmable fashion.

61



3.2.2.2 Growth method

This section will presents the initial works carried out to characterise each of the 

individual precursors to detennine their ALD growth windows, it also discuss the 

growth of the Ce-doped Hf-oxide. Firstly, all growth parameters used to deposit Ce- 

doped Hf oxide films are presented in Table 3-1 below.

Table 3-1: Summarised growth data for Ce-doped Hf oxide films on Si substrates

Evaporator temperature 
Reactor pressure 
Injection rate 
Solvent
Precursor concentration 
Argon flow
Pulse sequence (precursor/purge/03/puige)
No. of cycles
Ce:EFprecursor ratio’s

160°C 
5 mbar
2.5pl/pulse(4 pulses/cycle)
Toluene
0.05M
200 seem
2/2/0.5/3.5 sec.
15-300
1:2; 1:4; 1:9; 1:12; and 1:19

All these parameters have been chosen after many trials to detennine the optimal 

reactor conditions for the growths from various growth studies earned out in this 

reactor before. Specifically, the chosen temperature was selected as the result of 

initial studies of ALD characteristics from each individual precursor to match the 

optimal growth rate. To create the Ce-doped Hf oxide films, two single sources were 

employed, namely Ce(thd)4 (thd = tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato) 

and [(MeCp)2HfMe(OMe)] (MeCp=CH3C5H4). Initial attempts to grow with the 

Ce(thd)4 with water as a co-reactants in the ALD process failed, however, this was 

not particularly surprising as thd -based compounds are known to be too stable for 

this reaction. As a result, ozone was used instead of water; the use of ozone for this 

particular precursor were also reported in some previous studies involving the 

growth of Ce02 [5, 6].
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In order to find out the suitable temperature for the growth of this binary oxide film, 

ALD studies were conducted for each individual precursor with 300 cycles over a 

range of temperatures. The results are shown in Figure 3-2 to illustrate the growth 

rates of Ce02 and HfCb respectively with ozone used as oxygen source.

0.10 n

0.08 -

>< 0.06 -

2 0.04 -
ALD window match

2 0.02 -

Temperature (*C)

Figure 3-2: ALD growth curves for Ce(thd)4 and [(MeCp)2HfMe(OMe)] with ozone.

The ALD growth curves obtained from each single precursor shown above indicates 

that the ALD window for HfOz is the temperature range from 200 °C to 300 °C 

while in the case of CeCL, the ALD window is not clear. Therefore, the growth 

temperature for the growth of Ce-doped Hf oxide films was chosen at 300 °C to 

maximise the reactivity of Ce(thd)4 within the upper limit of Hf02 ALD regime.

The cerium percentages within different films were controlled by varying the ALD 

cycle ratios between these two precursors as presented in Table 3-1 above. 

Accordingly, the mixed oxide was formed by a growth process essentially following 

nano-laminate style deposition. In other words, several cycles of one process (HfCL 

ALD cycles) were carried out before the second process was introduced (CeCL ALD 

cycles).
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3.2.2.3 Sample preparation for subsequent characterisations

After the films were grown, all of them were stored in sealed boxes to prevent them 

from dusts and moistures. For following heat treatments and subsequent 

characterisations such as XRD, Raman, MEIS, etc. each sample was cut into small 

pieces approximately 1 cm x 1 cm. Before and after characterisations, all pieces from 

different samples were wrapped with optic-grade tissues and kept inside plastic 

boxes or air-tighten bags to avoid scratches and contaminations from the ambient 

environment.

3.3 X-ray Diffraction (XRD)

3.3.1 Introduction
i

X-ray diffraction (XRD) has been used extensively within this research to investigate 

the crystal structures and the phase compositions of the films. The technique 

provides important information about the structural evolutions and phase 

stabilisations following different post-thermal treatments and particularly, the role of 

cerium in stabilising the desirable phase derived from pure HfCb.

3.3.2 Background

After the discovery of X-rays by W.C.Rontgen in 1895 and the first diffraction 

experiment undertaken from a single crystal by Max von Laue in 1912, XRD has 

become a powerful tool in the study of crystallographic structures of different types 

of materials. Initially developed and used extensively in mineralogy, it has been 

successively utilised by many branches of sciences.

The widespread use of this technique relies on a phenomenon called diffraction 

which is an effect observed when electromagnetic waves interact with matters. 

Essentially, there are three different types of possible interactions that can happen 

when a material is exposed to radiations (X-ray in this case). The first one is called 

photoionisation, which is an inelastic scattering process, hi this process, the electrons 

can be released from their bound state with the atoms due to the energy and 

momentum is transferred from the incoming beam.
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Another second inelastic scattering, named the Compton effect, can also take place. 

The energy from the X-ray is transferred to the electrons similar to the 

photoionisation but not liberating electrons from their bindings with the atoms. The 

last process, which is named the Thomson scattering effect, is an elastic scattering. 

In this process, the wavelength of the impinging X-ray remains unchanged in 

contrast to the two scattering processes mentioned above. This is the very scattering 

effect that responsible for the phenomenon of diffraction caused by X-ray radiation.

During the course of the interactions, if the radiation wavelength is on the same scale 

as the interatomic distance in the periodic structures, it gives rise to diffraction 

patterns at specific positions in spaces. The interferences between X-ray and matters 

can either be constructive or destructive. Constructive interference occurs when 

certain geometrical constraints are satisfied, also known as the Bragg condition. This 

principle is schematically shown in Figure 3-3.

AJ+A1=2i/ cos(9O°-0)=2d sin0
Figure 3-3: Basic diffraction geometry by Bragg's law [7].

Consider a set of crystallographic lattice planes comprising of parallel layers of 

atoms separating by a distance d as shown in Figure 3-3. When this structure is 

irradiated by X-rays at an incidents angle of 0, the phase shift of the plane wave for 

two adjacent atoms will be the sum of Aj and A2.
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This sum is equal to 2dsin 0 as a simple trigonometrical calculation is performed. 

For constructive interference of the reflected waves, they must be in phase with the 

incoming ones. In other words, the phase shift has to be a multiple of incident 

wavelength. This is the very condition for a simple diffraction geometry which was 

first formulated by W.H.Bragg and W.L.Bragg in 1919, hence the name Bragg’s 

law:

2d sin 6 = nX (Equation 3.1)

n: integer; d: interplanar spacing (A); A: radiation wavelength (A); 0: diffraction angle (°)

To make use of the diffraction technique to study crystal structures of ordered 

matters, the radiation wavelength used has to be comparable to the magnitude of the 

interplanar spacings. This can be achieved by using various types of metals to 

generate a range of X-rays with different wavelengths depending on the specific 

material under investigation. One of the most popular sources used is Copper, which 

generates an X-ray with wavelength about 1.5418 A. This X-ray source was used 

within this work to study the crystal structures and phase stabilisations of Ce-doped 

Hf oxide films. The diffraction data from all the films were collected by utilising the 

0/20 scan configuration, which essentially detects and plots the intensities against 

incident angles (see section 3.3.3 for more details). By obtaining data from this scan 

configuration, important information such as structure, phase, interplanar spacing, 

crystallite size, .etc can be derived (see section 3.3.4).

In terms of identifying the structures or phases existing in a sample of material, the 

diffraction data is often compared to database data files. Two of the most common 

sources of references are ICDD (International Centre for Diffraction Data) and CSD 

(Cambridge Structural Databases), which cover a wide range of materials and are 

continually updated.

By comparing the obtained diffractograms with available references, unknown 

structures and phases from the investigated material can be revealed. This process, 

however, requires some basic understandings about periodicity existing in any given 

crystalline materials. In crystallographic study, any ordered material can be 

illustrated in 3-D construction by using the well-known Miller index system.
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Any crystalline material comprises of atoms or molecules arranged in many different 

ways called lattice planes. These specific planes are parallel to each other and 

intersect the axes of crystallographic unit cell. The unit cell on its own is not a real 

image of how atoms or molecules are located but rather a mathematical concept to 

illustrate arrays of points, any of which must have exactly the same surroundings in 

the same direction specified. The index of any plane mentioned above involves three 

integers h, k, l which represents the intersection points of the plane h/a, k/b and l/c 

respectively with a chosen unit cell with arbitrary dimensions a, b and c. An 

example for some Miller-indexed planes in a simple cubic unit cell is given in Figure 

3-4.

Figure 3-4: Lattice plane (110) and (111) for a simple cubic structure.

To investigate the crystallographic structures of any given materials, powder 

diffraction is normally carried out to ensure all possible planes can be detected and 

all plane orientations are random. By doing so, crystal structure databases are built 

up and used as standard references.

However, the Ce-doped Hf oxide system under investigations in this work was 

formed in thin film deposited on crystalline silicon substrates. This can lead to some 

difficulties in terms of interpreting the XRD spectra and comparing them with 

powder references. Some common problems include that thin films normally found 

to be polycrystalline with potential preferred orientations, the influence from the 

substrate, small crystallite sizes and the possibility for co-existence of various 

phases, etc. Hence, the interpretation of thin film diffraction data has to be performed 

with all of these factors taken into account to yield reliable results.
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3.3.3 Rigaku Miniflex XRD system

The system used to carry out all of the XRD study in this work was Rigaku Miniflex 

powder diffractometer. The equipment was designed originally to perform XRD 

studies on powder samples. However, it is also capable of doing diffraction studies 

on other types of samples. In the case of thin film samples, the volume of material 

available results in lower signal to noise ratio compared to powder samples. A brief 

description of the equipment main components and their operations will be given in 

the following paragraphs together with system calibration and optimisation for thin 

film data acquisition.

Water-cooled Sample ■Counter

Data output

Angle controlGoniometer

X-ray tube

Water-circulating
pump

High-voltage
generator

Counting controller

ComputerX-ray generator

Figure 3-5: Main components of Rigaku Miniflex [8].

A block diagram illustrating the main components of the system is presented in 

Figure 3-5.At the centre of this system is the goniometer which is used to collect 

diffraction data from the sample. As mentioned before, the scan configuration of this 

system is 0/20, also known as Bragg-Brentano geometry. Therefore, the operation of 

the goniometer is dictated by this mode. A schematic representation of this scan 

mode is shown in Figure 3-6.
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Figure 3-6: 0/20 diffraction in Bragg-Brentano geometry [7).

Essentially, the goniometer rotates the sample to vary the incidence angle of the X- 

rays (0) while at the same time moving the detector to an angle of 20 to collect 

scattered radiation that meets the Bragg condition. For this instrument, the X-ray 

source is kept fixed during the scan while the sample and the detector are 

simultaneously rotated by an angle 0 and 20 respectively. The sample holder of this 

equipment is designed to accommodate either a relatively chunky sample such as a 

metal sheet or a revolving system comprising six circular container. The latter is 

particularly convenient when a large number of samples either in powder or thin film 

forms have to be analysed in succession. It also allows different automated scan 

configurations to be set up in a way that the data of each individual sample is 

recorded.

Another important part of the system is the X-ray tube and its related components. 

The wavelength of the X-rays generated by the tube is dependent on the type of 

target material used. For the current work, a Copper X-ray source with a Nickel filter 

was used to generate X-rays with a wavelength of 1.5418 A. A sketch of a typical 

commercial X-ray tube is given in Figure 3-7.
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Figure 3-7: Schematic of a typical X-ray source [7].

X-rays are emitted when accelerated electrons from the cathode filament strike the 

anode, which is made from high purity metal. The choice of anode materials depends 

on the specific wavelength required by the analysis. Common metals used in anode 

fabrication are Copper, Molybdenum or Chromium to name but a few. The current 

flows between the filament and anode is in the order of a few tens of milliamps. The 

applied acceleration voltage typically varies between 5 kV and 25 kV. When the 

accelerated electrons hit the anode, X-rays are emitted. This is the result of ionisation 

and relaxation process of electrons bound to the atoms of the target material. 

Consequently, different characteristic radiation peaks will be produced such as Ka, 

K(3, La, etc. These peaks, which are indicative of their sequent electron shell 

undergoing the processes of ionisation and relaxation, are embedded in a continuous 

background called Bremsstrahlung (German for braking radiation). For most 

applications, the Ka emission line is of the most importance as it gives the highest 

intensity emission compared to the other emission lines.The appearance of KP is not 

desirable for XRD since it is very close to the Ka line and as a result, severely 

affects the interpretation of diffraction patterns. As a result, the Kp is often 

suppressed using a filter. For the Copper source used here, a Nickel filter is used to 

absorb Kp line.
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To make use of the Koc radiation for diffraction analysis, it is noteworthy to take into 

account of its doublet nature. In fact, Ka is not a single emission line, but is 

composed of two individual ones, namely Koti (A=l,5406 A) and K«2 (\=1.5444 A). 

The existence of the K«2 line only affects the resolution of diffracted patterns at high 

scattering angles and in the case of polycrystalline thin films, is not commonly 

observed [7], Hence, in this work, a typically weighted Ka line with an average 

wavelength 1.5418 A is used.

In order to calibrate the system, a SiCh standard powder sample supplied with the 

equipment is used. The data from this standard sample is compared to a reference 

spectrum also supplied by the manufacturer or compare with other reference data 

available for SiCh powder. Necessary adjustments to the system can be done based 

on regular checks to ensure proper operation and accuracy of acquired data.

In terms of sample setup, the films of interest had to be accommodated within the 

central part of the sample holders by using a form of tacky rubber (“blue tag”) to 

keep them stationary during the scans. In order to ensure the consistency of the 

measurements and minimise the errors during the scans, the flatness of the samples 

was of great importance. A piece of clean glass was used to gently pressed on top of 

the samples to align them at the same height with the holders, which in turn ensured 

the samples were parallel to the bases of the holders.

Because the system was originally designed to undertake powder diffraction study, it 

is necessary to optimise the scan conditions for thin films. For the Rigaku miniflex 

system, most hardware parameters are fixed and it is only the scan speed and data 

sampling method that can be optimised to give optimal signal-to-noise quality. The 

scan step is typically set to the recommended value by the manufacturer as 0.027 

min, which is nearly the smallest value the system can achieve. Therefore, the 

quality of the obtained spectra is strongly influenced by the scan speed. Decreasing 

the scan speed will improve the signal-to-noise ratio of the spectra but only to a 

limited extent, in addition, there is always a compromise between, the signal quality 

and the overall scan duration.
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To establish the optimal scan conditions for the thin film studies carried out in this 

work, initial studies were earned out to investigate the effect of scan speed on signal 

quality.

As the thickness range of the films within this research was between 15 nm to 25 

nm, an initial study with a 20 nm thick HfCb film was earned out to optimise the 

scan speed. The scan speed of the system can be set between 0.017min and 100°/min 

and test scans were run using each of the two scanning modes available, namely 

continuous or fixed time mode. The main difference between them lies in the way 

the goniometer rotates during data acquisition. In continuous mode, the goniometer 

scans at a constant velocity, set by the operator, and the detector and electronics are 

set-up to collect and average the output for fixed periods of time during the scan. In 

contrast, the fixed time (FT) mode works by stepping the goniometer by a user 

defined angle and remains at this position for the required acquisition sampling time 

before stepping to the next angle. In terms of scan duration, the time required to 

complete one specific range of scattering angle is interchangeable between these two 

modes and can be converted from one to another. Therefore, the scan time for this 

initial study was presented in min/deg, which is the way the FT mode is set up. In 

fact, some other previous studies also performed with air annealed Hf02 films 

revealed that the peak positions, the intensities of the peaks and the peak broadening 

were not influenced significantly by the scan speed. This issue is even more 

important in this study due to the fact that the signal-to-noise quality from thin films 

typically quite low and strong interference with the silicon substrate as well as the 

amorphous matrix possibly existed in some cases. To determine the optimal scan 

speed, the standard deviation of the background signal was measured as a function of 

scan speed. A lower standard deviation indicates a better signal-to-noise ratio and 

hence, peak identification and the resolution of the spectra can be improved. A graph 

of scan speed against background standard deviation is shown in Figure 3-8. From 

this, it is clear that both scan modes yielded similar trend. Thus, the scan speed 

chosen for all the concerned films throughout this work was detennined as 0.2°/min 

in continuous mode, which is equivalent to 5 mins/degree as in FT mode shown in 

the graph.
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Figure 3-8: Spectra quality against scan speed for a 20 nm Hf02 Film

3.3.4 Data acquisition and analysis

Because the very nature of the samples was in thin film form, not all the peaks 

expected to appear in any given spectrum would match the reference spectra from 

powder samples. Hence, data analysis was only concentrated in a relatively narrow 

range of scattering angles, i.e. 20 = 20° - 40° only. This range of scattering angle was 

chosen after some preliminary trials in much wider ranges that possible to the 

scanning range available from the equipment to find out possible diffracted patterns 

from the films. Fortunately, most characteristic features of all Hf02-based 

polymorphs are within this range and hence, sufficient information about crystal 

structures and phases can be determined.

In order to extract useful information from the diffracted patterns, the raw data 

requires some preliminary processing. For powder samples, this process typically 

involves the following steps: background subtraction to remove broad features that 

are usually associated with amorphous scattering, smoothing, Ka2 stripping to 

remove shoulders on each peak caused by the weak Ka2 emission line of the x-ray 

tube and finally peak searching and profile fittings to allocate unambiguously 

diffracted features [9]. This process was used as a guide to the data interpretation 

within this research.
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Each of these steps can be done either manually or by various computer programmes 

developed for powder diffraction analysis. However, for thin film analysis, this 

process is not easily performed automatically as in the case of powder samples. The 

main reason is that in thin films only a few diffracted features can be detected and 

hence, preventing the profile fittings and structure refinements which normally 

require the whole patterns to be simultaneously analysed and fitted, for instance in 

Rietveld’s method. Therefore, the data analysis for all the films in this work had to 

be done manually and some processing steps previously mentioned would be omitted 

as being explained in the following paragraphs.

The raw data collected from each sample was processed and analysed using Origin 

software, which is a specifically designed for graphical processing and analysis. The 

spectra then would be subjected to background subtraction to eliminate as much as 

possible the contribution of substrate interference and equipment noise. After that 

step, the peaks of interest would be identified. The smoothing and Ka2 stripping 

were omitted in contrast to the powder diffraction data processing. The first reason 

for doing so were due to the fact that the following peak-fitting did not require 

smoothing as the programme would do it during this step. Moreover, as previously 

mentioned, the contribution of Ka2 to the overall resolution in thin film diffraction 

was very little compared to Koti and hence, the average wavelength Ka was used 

instead. After this point, the raw data were ready for the next step, peak-fitting, and 

also the most important one in detennining useful information about the crystal 

structures of the films under investigation.

The peak-fitting offered some peak shapes typically used in XRD data interpretation. 

They are Gauss, Lorentz, Pearson-VII and pseudo-Voigt functions. More details 

about mathematical descriptions and manipulations of those peak shapes can be 

found in [9] and other XRD text books. In this work, all the peak shapes adopted 

Lorentzian distributions mainly because of its simplicity in choosing fitting 

parameters compared to the other two latter functions, which are essentially the 

products of blending the two former functions in different proportions. In addition, 

this function has an advantage over the Gaussian type because it offers a better 

match to the peaks commonly found from thin films, i.e. long tails at the base and
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relatively low intensities. If required, convoluted peaks appeared in films with mixed 

phases, e.g. monoclinic and cubic, could be separated by applying deconvolution 

process from the programme. The results from peak-fittings revealed that the errors 

for peak positions were between 0.02° and 0.05°; Full Widths at Half Maximum 

(FWHMs) were approximately between 0.01 radians and 0.03 radians. These errors 

were very small compared to the values yielded from peaks’ parameters and hence, 

would be neglected in subsequent data analysis.

After the peaks were fitted, some important information about crystal structures 

could be derived, including the interplanar spacings, unit cell and crystallite sizes. 

The d-spacing of the various atomic planes can be calculated using:

d —
2 sin# (Equation 3,2)

d: interplanar spacing (A); A: X-ray wavelength (A); 0: diffraction angle (°)

For a fluorite-type cubic structure such as Ce-doped Hf oxide in this work, the unit 

cell could be represented by one of its side, a. Thus, this parameter could be 

calculated based on the above d-spacing by using a basic relation:

d2 a2 b2

Because the unit cell is a cubic, hence a = b ~ c which gives:

a = dV3 (Equation 3.3)

In the current work, this will be used as a rough approximation as Ce-doped Hf oxide 

is not strictly cubic, it is a metastable tetragonal with very small distortion from its 

fluorite-type parent form. However, as can be seen later from chapter 5, the results 

obtained from this calculation still agreed quite well with the cubic structure from 

pure HfC>2, which confirmed the validity in using this estimation.

The crystallite size contributing to the broadening observed in any diffracted feature 

can be estimated using the well-know Debye-Scherrer equation (Eq. 3.4).
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In fact, the broadening effect from a sharp diffracted line is the sum of small 

crystallite effect with microstrain and instrumental error. However, these latter 

factors are very small and hence, could be neglected from this estimation.

V"}

t = ----- - (Equation 3.4)ficosQ ^ 1 /

x: mean crystallite size (A), K: constant (K=0.9 typically), p: FWHM (radians), X-ray 

wavelength (A), 0: diffraction angle (radians)

3.4 Raman scattering

3.4.1 Introduction

The Raman effect, which was named after the Indian physicist C.V. Raman, has 

become an important tool in detennining vibrations in molecules. Since its discovery 

in 1922, Raman scattering has provided researchers in many fields with a simple yet 

powerful source of information about molecule configurations, chemical structures 

and physical forms of various substances in different matter states. Coupled with 

recent advances in instrumental technology particularly in lasers, it is now widely 

regarded as one of the most important analytical techniques to deal with molecule 

structural investigations.

Within the scope of this work, the use of Raman scattering was necessary due to its 

ability to help tackle some unresolved issues in crystal structure analysis given by 

XRD study. In addition, it also provided a clearer insight into the phase stabilisation 

of Ce-doped Hf oxide films to obtain the desirable high-k phase against the stable 

monoclinic from pure HfCh.

3.4.2 Background

When light interacts with matters, it mainly scatters by Rayleigh scattering, which is 

an elastic scattering process. The scattered photons will have exactly the same 

frequency and wavelength as the incident ones. However, there is also a small 

probability (1 photon in every 106-108) that the incident photon will be scattered with 

a slightly different frequency due to inelastic interactions with the scattering
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molecule. Inelastic scattering occurs when the incident photon interacts with the 

vibrational states of the scattering molecule, this is the basis of the Raman effect.
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Figure 3-9: Various interactions of an incident light with matter [10].

In Figure 3-9, different types of interactions between an incident light with 

frequency vq and matter are illustrated. When molecules with different vibrational 

quantum states vit v 2, v 3 , are exposed to this light, various processes can take place. 

Firstly, the well-known Infra Red (IR) and Near Infra Red (NIR) absorption 

processes can happen if the energy of the incident light is equivalent to the energy 

difference between the ground state and other higher vibrational modes. 

Consequently, IR absorption will take place when light at certain frequencies 

interacts and causes a change in molecular dipoles by vibrational modes. The loss of 

energy from the incident light will match exactly the energy required to excite 

oscillations of atomic bonds in heteronuclear molecules.

Besides absorption, another phenomenon called scattering can also happen. 

Basically, this is the result of interaction between the incident light with the electron 

clouds surrounding the nuclei of the molecules. This sort of interaction will create a 

virtual energy state which is unstable and hence, considered as a short-lived state. If 

only the electrons are involved in this process, the scattered photon will have the 

same energy as the incident one as illustrated in Rayleigh scattering.
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However, if nuclear motion is induced by the interaction, then the result will be a 

shift in energy between the incident and scattered photons, i.e. Raman scattering. 

Raman scattering itself can be subdivided into two processes, namely Stoke 

scattering and anti-Stoke scattering. The main difference between them is the way 

the molecules interact with the incident light. If the molecules absorb energy, then 

the resulting scattered photon will have lower energy than the incident one and 

hence, have a higher wavelength, this is called the Stoke scattering. If on the other 

hand, the molecule imparts energy to the scattered photon, then this is known as anti- 

Stoke scattering. Furthennore, another competing process with Raman scattering but 

with much higher order of magnitudes can concurrently take place, which is known 

as fluorescence. Although both of them happen in the same way, they differ to the 

other fundamentally. In Raman scattering, the effect can take place at any frequency 

and hence, it is not a resonant process. In contrast, fluorescence can only happen 

after a certain resonance lifetime and at specific frequencies. In practice, 

fluorescence often appears strongly in the background of the Raman spectra and is 

undesirable as it interferes strongly or even hinders the Raman features. Therefore, 

great care is required to reduce fluorescence from the background in order to detect 

the actual Raman features.

Within this work, all the Raman spectra were recorded at room temperature in the 

Stoke scattering mode. This is due to the fact that at room temperature, the number 

of low energy states far exceeds the number of higher energy excited states, and 

hence Stoke scattering is stronger than anti-Stoke scattering. Conventionally, the unit 

typically used in Raman spectra recording on the horizontal axis are relative 

wavenumbers (cm-1). These units are used as it is the change (shift) in frequency that 

is of interest rather than the absolute wavelength of the scattered photons.

In order to extract useful information from any given Raman spectrum, it is 

important to understand some basic principles about how a scattering peak appears, 

particularly when the material under investigation is in thin film form. Firstly, the 

incident light, usually from a highly monochromatic laser, has to induce a change in 

electronic polarisability within the molecule by creating some form of atomic 

displacement, which in turn corresponds to some type of vibrational mode. In 

contrast, the activation of any IR vibrational mode requires the change in dipole
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moment induced by the incident light. Therefore, these two techniques are generally 

complimentary to each other when structural information about any given substance 

is of concern. These two different rules also lead to another rule, the so-called mutual 

exclusion rule. This rule essentially states that no IR and Raman band can be 

observed at the same frequency if the molecule under investigation has a centre of 

inversion. Another noteworthy point is besides the active modes due to vibrations of 

individual or groups of atoms and molecules, Raman scattering peaks can also be 

observed for phonons in crystalline materials, which are essentially due to the lattice 

vibrations in solids. Several detailed treatments on the vibrational modes and phonon 

vibrations can be found in many textbooks about vibrational spectroscopy and solid 

state physics. It is also of importance to be able to predict all possible active Raman 

modes for any given substance to interpret the scattering spectrum and find out 

infonnation about its structure or phase evolution. However, this process is very 

complex and requires very complicated treatment using group theory, which is 

beyond the scope of this work. Rather than that, the Raman spectra obtained from 

experiments has been compared with available literature references dealing with Ce- 

doped Hf oxides or some other closely related materials with careful assertions and 

arguments.

3.4.3 Horiba Jobin Yvon Labram HR 800

All Raman spectra obtained from the films in this work were earned out by the 

Labram HR 800 system. The equipment was designed to undertake fast and accurate 

measurements not only for Raman scattering but also photoluminescence study over 

a wide range of laser wavelengths. The system is also equipped with a temperature- 

controlled cell to perform temperature-dependent Raman scattering analysis, which 

is mainly used in organic chemistry analysis and other temperature-sensitive 

substances. In order to give the most flexibility to the users to suit various analytical 

demands, the equipment is supplied with a range of laser choices comprising visible 

laser (red 633mn, green 515nm and blue 488nm), UV 325nm and NIR (768nm) 

lasers as well.

As mentioned earlier, one main serious issue with Raman scattering study is the co­

existence of fluorescence, particularly in the visible range. This is also the problem

79



encountered at first efforts utilising Raman to study the crystal structures and phase 

evolutions of thin films in this project. All available lasers with this Raman system 

were tried but none of them returned any Raman scattering peaks from the films. The 

spectra either only showed background noise (likely fluorescence) in the case of blue 

and green laser or simply feature of silicon substrate (red and NIR lasers). One likely 

explanation for the failure to yield any Raman signals from these lasers might be due 

to their lower photon energies compared to the UV laser and hence, yielded lower 

scattering intensities. This was due to the fact that the Raman scattering intensity of 

any vibrational mode approximately scaled with the fourth power of the laser 

frequency employed. In addition, the employment of UV laser would also help 

reduce a large amount of fluorescence either from the sample or from other 

impurities which normally found on the film’s surface and from the ambient 

environment.

Spectrometer (running 
underneath top optics)

Incoming laser —

Microscope

Sample stage

Figure 3-10: Labram HR 800 layout [11]

The layout of the Labram HR 800 is illustrated in Figure 3-10 for its main 

components. The system comprises four main parts which are the laser, the 

microscope, the spectrometer and the optics. The laser of choice is guided through a 

system of optics and focused onto the sample through a confocal lens, which 

provides the highest spatial resolution with maximum signal throughput. The spatial 

resolution can be achieved in the range between 0.3 and 1 cm1. The optics also carry 

the scattered light back into the spectrometer, which disperses the scattered signal 

into its constituent parts and onto the detector.
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The system adopts a CCD-type (Charge Coupled Devices) detector, which is the 

most common detector used for applications with laser wavelength in the range 

between 200 and 800 nm [10]. hi order to focus the laser to a specific area of the 

sample, an XYZ stage is mounted beneath the microscope system. The height of the 

stage is adjustable to achieve the best focus on the sample. The microscope, besides 

its function to give the desirable optical image magnification (10, 50 and 100 times), 

also serves as a tool to focus the laser onto the sample. For the UV laser, because it 

requires very expensive and higher quality optics, the lens used is rated at 40X 

magnification.

Besides these main components, the system is also equipped with a number of stems 

(push-pull bars) to allow fast switching between different functionalities. Stem 1 

operates the camera beam-splitter, Stem 2 operates switching mirrors for UV-Vis 

and Vis-NIR lasers and Stem 3 operates the switching mirror for microscope and 

fibre entrance. Stem 4 is used when there is a need to switch the mirrors for top or 

side detectors. These stems provide the users a fast and simple way to change the 

configurations of the system to suit their analytical purposes.

For this system, the scattering configuration is performed in the 180 degree (back- 

scattering mode) arrangement. In this configuration, the laser is delivered through 

the lens and the scattered light is also collected back from the same lens. This 

arrangement is very common in the systems which use microscope to collect the 

light. In order to separate the actual Raman signal from scattered laser light, a notch 

filter is employed. The notch filter is designed to absorb a large fraction of the laser 

light without affecting the Raman signal; the bandwidth of the filter is 200 cm'1 

beyond the frequency of the incident laser used. Because for monoclinic and 

tetragonal HfCh-based materials polymorphs, some of their characteristic lines are 

very close to the exciting line of the laser used, i.e. in the region between 50 and 200 
cm 1 beyond the excitation frequency of the laser, the use of such notch filter will 

inevitably lead to some losses of information.

Before measurements are earned out, the system requires calibrations to ensure that 

the spectrometer is set up properly. Firstly, white light is us used to calibrate the zero 

order mode of the spectrometer. This is called “zero calibration”.
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A known Raman peak from a single crystal silicon reference standard, which gives a 

very strong Raman band at 520 cm'1 is then used to complete the calibration process. 

Calibration is repeated at the start of each Raman session as small changes in 

environmental conditions can cause significant drifting. After calibration, the system 

is ready for data acquisition.

In this work, because all the films were deposited on silicon substrate, it was 

necessary to undertake a scan for the native silicon substrate prior to the data 

acquisition of the films. The data from the silicon substrate serves as a background 

reference spectrum, which is very important for data processing. Because the Raman 

scattering is quite a fast and effective process, typically a normal acquisition process 

could be set up using the acquisition time 30 seconds and averaged 4 times, which 

resulted in the whole scan process with duration about 20 minutes for the scattering 

range of interest between 200 and 800 cm'1.

3.4.4 Data interpretation

The raw scattering data obtained from the films were fed into Origin and processed 

in the same way like the XRD data. Similarly to the steps described in the XRD 

section to process raw data, the Raman peaks were also fitted by using Lorentzian 

distribution. Unlike the XRD, the Raman spectra mainly yielded qualitative 

interpretation about the crystal structures and phase evolutions in this work. In fact, 

for bulk materials or even in nanocrystalline forms [12], quantitative information 

about peak shifts, crystallite sizes, phase fiactions, etc. can be derived from 

analysing the Raman spectra of the interested materials.

Some preliminary efforts were performed in order to find out such relationships 

between the Raman peak characteristics and its related crystal or phase information 

but were not successful. The main reason for this failure was film thickness, which 

ranged from 15-25nm in the current work. Previous studies have been earned out on 

either bulk powders or on thick films (in the region of hundreds nanometres or 

microns), where the Raman signal is much higher due to sampling volume. In 

addition, defects in thin films themselves coupled with other mismatches in the 

crystal structures might hinder such typically observed phenomena that commonly
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found in other forms. Besides, the strong inference from the silicon substrate, the 

breakdown of selection rules for distorted fluorite-type structures and small 

crystallite sizes all contributed to this issue. Nevertheless, the peak shapes were still 

fitted quite satisfactorily with good accuracy (the uncertainty for the peak positions 

was in the range between 0.5 and 1.5 cm'1). Hence, by identifying main scattering 

peaks and deconvoluting overlapped ones, the information extracted from studying 

these Raman spectra were still very valuable on their own and when combined with 

results from XRD data, a more thorough insight about the role of cerium to stabilise 

the potential high-k phases of Hf02 polymorphs was achieved.

3.5 Electrical characterisations

3.5.1 Introduction

In order to extract electrical information about Ce-doped Hf oxide films, particularly 

its dielectric constant, electrical measurements were earned out using C-V and I-V 

techniques. These electrical metrologies were developed and used widely in both 

academic research and industrial manufacture as standard tools to characterise 

electronic devices, e.g. CMOS built with SiOa as gate dielectric. Since the efforts of 

looking for alternative materials to replace Si02 has begun, these techniques have 

also been continuously adjusted and modified to stay as the main methods to 

characterise such new materials.

Due to the fact that most potential high-k materials are quite different from Si02 in 

terms of electrical behaviours and performances, various electrical models have been 

developed to address these differences and hence, required very complex 

mathematical treatments and many in-depth electrical expertises. Within the 

electrical characterisations for all the films in this project, only simple MOS-C 

structures are used. Because the main aim of the electrical measurements is to derive 

some basic electrical performances of these films, this stmeture and its related data 

interpretation is deemed sufficient to build up preliminary understanding about this 

potential material.
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3.5.2 MOS Capacitor Fabrication

For I-V and C-V measurements, MOS capacitor structures were fabricated for each 

sample. Firstly, arrays of Gold dots to form the upper metal gate contacts were 

deposited using plasma sputtering of pure gold. The dots were fonned by using a 

shadow mask, which was fabricated by laser drilling. The size of the dot was defined 

approximately equivalent to the size of the hole on the shadow mask, which was 

about 300 pm. Aluminium back contacts were then deposited uniformly over the 

back surface of each sample using vacuum deposition of pure A1 to give Ohmic 

contacts. This back contact was crucially important to reduce large deviations 

afterwards in the C-V curves. Large deviations in C-V and I-V curves were observed 

in some preliminary experiments with films having no back contacts and hence, 

hindering meaningful information that can be extracted.

3.5.3 C-V profiler

The system used to carry out all of the electrical measurements consisted of two 

main components: the Keithley Model 4200 Semiconductor Characterisation System 

(4200-SCS) and 4980A Precision LCR meters. The experimental set up is illustrated 

in Figure 3-11. All of the controlled parameters of the measurements can be either 

input directly from the front panel of the analyser or by an in-house developed 

programme, which also serves the purpose of data acquisition. To aid the positioning 

of the probe on the chosen Gold dot, a microscope coupled with an XY stage is also 

attached to the main system. If excitation of minority carriers is required (normally 

for low frequency C-V), a source of light is available to be used. However, for high 

frequency C-V measurements, the data is taken in the dark only. To maintain a good 

and consistent back contact, samples are held firmly to the chuck station by vacuum, 

which is generated by a vacuum pump connected directly to the chuck station.
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Figure 3-11: C-V test layout (adopted from [13])

The electrical measurements conducted within this work comprise three different 

types of data acquisition. They are I-V, C-V and C-f characterisations. The I-V test 

provides information about the leakage current (A) versus gate voltage (V). The data 

obtained from I-V curves will be used later to convert the leakage versus gate 

voltage to leakage current density versus (A/cm2) electrical field strength (MV/cm), 

which are typically the units used in MOS-C devices metrology. In order to acquire 

the I-V data, a DC bias voltage is applied to the sample and increased in small steps 

(0.1V) to a preset voltage value. The current is recorded simultaneously with the 

voltage applied. The oxide is deemed to be “leaky when the current flowing through 

it reaches a limit, in practice this value is about some mA. The leakage current 

density is an important criterion to evaluate the films in terms of their performances 

and typically quoted at the electrical field strength ± 1 MV/cm. For all samples, at 

least 3 random dots were measured to ensure consistency. The number of measured 

dots per sample was in fact normally between 5 and 10 because some dots could be 

broken down during measurements.

The C-V and C-f are interrelated techniques. However, while the former test 

provides information about how capacitance changes with bias voltage at a fixed 

frequency, the latter reveals how the capacitance changes with varying frequency at 

a fixed bias voltage. To undertake a C-V test, a small AC signal (50mV) is applied to 

the chuck with a probe pick-up at the Gold gate. The frequency is set by the operator 

either at 10 KHz, 100 KHz and 1 MHz (for medium and high frequency C-V 

measurements) or over a wide range between 20 Hz to 2.5 MHz (for a C-f 

characterisations). The DC bias voltage is varied slowly in small step (0.1V) with an 

interval 10 ms between each recorded data point.
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The range of DC bias voltage selected for each sample is normally the range of 

applied voltage detennined from the I-V test done beforehand to ensure that full 

saturation of capacitance can be achieved.

The C-f measurement commonly follows afterwards the C-V test. Typically, the 

lower end of the frequency range was limited to around 10 KHz. The reason for this 

lower limit is that lower frequencies are of little interest for device applications. The 

bias voltage used for C-f measurements was set to the highest voltages from the C-V 

tests. If necessary, one or two more other lower but within close proximity to the 

highest bias voltage can also be measured.

Among these test, the high frequency C-V is the most important as it provides a 

means of calculating the k-value as well as other qualitative infonnation about the 

oxide charges and interface states. Hence, trials and errors are used to obtain the best 

results possible for C-V curves. Variables can be voltage sweeping direction (from 

negative to positive bias voltage and vice versa), voltage step and delay time. In 

theory, the sweeping direction should not affect the C-V curves if the dielectric oxide 

layer is free from defects and relatively thick. However, in reality, this is normally 

not the case due to the effect of charge modulation amongst others. Because all the 

films in this work were deposited on «-type silicon substrates, the sweeping direction 

was from negative to the positive bias voltages to ensure that the films always kept 

under their equilibrium conditions. The bias voltage step and delay time were 

justified after many trials with different sources of dielectric films previously and 

detennined accordingly to yield reliable and reproducible data.

3.5.4 MOS-C modelling and data interpretations

Prior to extracting electrical infonnation from the samples, a simple MOS-C model 

is required. Figure 3-12 shows a simple MOS-C construction that will be used as the 

basis for constructing this model. A Si02 interfacial layer is included in this structure 

as all of the films investigated in this work were deposited on top of the native 

silicon oxide.
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Figure 3-12: MOS-C structure for electrical characterisation

Consider an /t-type silicon substrate; theoretical C-V curves can be illustrated as the 

following Figure 3-13 with different regions responding to the bias voltage applied.

Capacitance

Low frequency

flatband
High frequency

Voltage

accumulationinversion

Figure 3-13: Theoretical C-V curves for an n-type Si substrate

For high frequency C-V measurement, the maximum capacitance obtained from the 

accumulation is used to calculate the dielectric constant of the oxide film. For the 

structure illustrated in Figure 3-12, this can be done using the following relationship:

= ~ “ (Equation 3.5)
^max Lox W

If Cj (capacitance of the interfacial state) is neglected, then Cox is equivalent to Cmax, 

and the dielectric constant can be estimated by using equation 3.6:
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(Equation 3.6)£0* = icr19^*

eox: oxide permittivity (F/cm), Cox: oxide capacitance (pF), toX: oxide thickness (nm), A: gate

area (cm2)

The equation above is normally used when the interfacial layer is very small 

compared to the oxide film. However, in this work, due to the presence of the 

interfacial layer and the low film thicknesses, an alternative method was required, 

namely CET (Capacitance Equivalent Thickness). This method also provided easier 

data manipulation with Excel spreadsheets. Moreover, because the aim of using this 

potential material to replace Si02 in MOS devices, the calculation of CET based on 

SiCh permittivity would give an idea how scaling varied with other operational 

parameters such as bias voltage, frequency, etc.

The maximum capacitance obtained in the accumulation region from a high 

frequency C-V curve is used to estimate the dielectric constant of the films (typically 

at 100 KHz) by using equation 3.7:

^ox = —Sl°q °X (Equation 3.7)
CET-^sio2

CET: Capacitance Equivalent Thickness, tj: interlayer thickness, k,: interlayer permittivity,

ksicm Si02 permittivity

The equation above allows the value of dielectric constant to be calculated if the 

interlayer’s parameters are known, regarding the value of Si02 permittivity (k = 3.9) 

and its CET (in mn), which can be calculated by applying equation 3.8:

CET = io_9 A (Equation 3.8)
Lmax

e: relative permittivity of Si02 (8 = 3.9), Eq: electric constant (e0 = 8.854><10-12 F nf1),

A: gate area (m ), Cmax: maximum capacitance (F).

In this work, from TEM and MEIS studies, the interlayer was determined as Si02 

and its thickness was assumed to be unchanged hence, equation 3.7 yields:
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(Equation 3.9)

In addition to the k-value, other qualitative information can also be revealed by 

studying the shapes of C-V curves. The oxide charges and density of interface states 

can be calculated using complicated electrical modelling and related algorithms [14]. 

However, as stated before, such complicated treatments are beyond the scope of this 

work and hence, only qualitative conclusions derived from the C-V curves alone are 

concerned. The effects of fixed oxide charges and surface states can be illustrated in 

Figure 3-14 for an «-type substrate.

Capacitance
Capacitance

Voltage Voltage

(a) (b)

Figure 3-14: Distortions to an ideal C-V curve with (a): effect from fixed oxide charges and (b): from
surface states with a donor type.

In the case of fixed oxide charges, the C-V curve will be shifted along the x-axis 

depending on the sign of charges but the overall shape of curve remains unchanged 

as illustrated in Figure 3-14a. In this case, the density of oxide charge is independent 

of the bias voltage. By observing the hysteresis of the C-V curves, the effect of 

annealing and doping concentrations on the oxide charge within the film can be 

determined.

The second source of C-V curve stretch out is the surface states, which basically 

belong to the semiconductor substrates and their related trap density. Because the 

occupancy of these traps depends on the bias voltage, the C-V curve is distorted 

asymmetrically as illustrated in Figure 3-14b. The surface states can either be donor- 

type vacancies (positive when empty, neutral when filled) or acceptor-like vacancies
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(neutral when empty, negative when filled). In practice, both fixed oxide charges and 

surface states can coexist in the films resulting in a combined effect on the C-V 

curves. Therefore, by studying the shape of the C-V curves, important infonnation 

can be deduced about the quality of the films and how the growth conditions and 

heat treatments affect them.

3.6 Atomic Force Microscope (AFM)

3.6.1 Introduction

Atomic Force Microscope (AFM) and Scanning Tunneling Microscope (STM) are 

the two most well-known representatives of a collective set of techniques commonly 

known as Scanning Probe Microscopy (SPM). STM was firstly invented by Binnig 

and Rolirer in 1981 and AFM followed in 1985 by the work of Binnig, Quate and 

Gerber. In principle, all of the techniques in this group utilise a sharp probe to 

“image” the surface and to generate topographical infonnation about the sample 

surface at the atomic scale. The high resolution offered by these techniques, coupled 

with the relative ease of sample preparation, has made these techniques very popular 

for surface characterisation of thin films.

Although similar in principle, ATM and STM differ to from each other in the way 

the sample is “imaged” and hence, the choice of use for a particular sample. STM 

utilises a sharp metal tip to probe a conductive surface by using a very small bias 

voltage applied between the tip and the surface in an order of nanometres. This leads 

to a tunnelling effect, which in turn is used to map the electronic states of the surface 

and thus, topography of the surface can be built indirectly from that. In contrast, 

AFM employs a different mechanism to “image” the surface. The topography can be 

directly built by measuring different types of interactive forces via deflection of a 

cantilever when a tip is brought very close to the surface. Depending on the 

applications, the forces of interest can be attractive, repulsive, Van der Waals, 

magnetic, electrostatic, .etc. One distinctive advantage that AFM has over STM is 

that the sample does not need to be conductive. Given the context of this work, 

where all films are insulators, AFM is clearly the method of choice to study the 

surface profiles. It also gives true 3D images with higher resolutions than Scamiing
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Electron Microscopy (SEM) and thus, will be used as the main tool to study the 

surface and topography of all films in this thesis.

3.6.2 Background

In order to “image” the surface, AFM utilises a tip which is scanned over a specified 

area of the sample under investigation. The interaction between the tip and the 

surface is the very underlying principle of this technique. In order to understand how 

this works, a visualisation of interactions that happen when a tip is brought close to 

the surface is illustrated by its force-distant curve in Figure 3-15.

Contact No contact

Contact

0
Distance

Figure 3-15: Force-distant curve in different interactional stages [15].

When the tip is still far away from the sample (between position 1 and 2), effectively 

there is no force observed assuming no electrostatic interaction between the tip and 

the surface. When the tip is brought close enough to the surface (position 2), contact 

can be made by the van der Waals interaction. As the tip keeps moving toward the 

sample, the total force exerted on the cantilever will become repulsive. If the sample 

is then retracted from the tip afterwards, the interactional force is reduced between 

the line connecting position 3 and 4. When the force is below the zero line and 

moving toward position 4, the total force now becomes attractive due to the adhesion 

between the tip and the surface. At position 4, the adhesion will be balanced by the 

load of the cantilever and the tip moves away from the surface, further retracting the 

sample. In practice, the force is set up somewhere between position 3 and 4, ideally 

very close to 4, in order to minimise the contact force.
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The force-distant curve illustrated above is the fundamental principle of AFM 

measurement for the “contact mode”, which is by far the most common type. For 

soft surfaces, i.e. biological or soft materials, another method is used instead namely 

“tapping mode”. In this mode, the cantilever with the tip attached to it is vibrated 

very close to its resonance frequency via the control of a piezo oscillator.

In this way, only sporadic contact between the tip and the sample is stimulated. As a 

result, lateral force can be reduced and hence, scratching of soft surfaces can be 

avoided. Both of these modes can be presented by a similar schematic principle in 
Figure 3-16.
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Figure 3-16: AFM schematic principle (adopted from (15]).

Whichever mode is employed, the deflection of the cantilever is then monitored and 

recorded by means of a complex optical system utilising a laser beam to “sense’" the 

movements of the cantilever.

This process is used to control the force acting on the cantilever through a feedback 

system and when coupled with an imaging system, eventually produces an image of 

the surface.
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3.6.3 Nanoscope III (Digital Instrument)

The equipment used to obtain topographic data of all the films within this work is an 

AFM system manufactured by Digital Instrument, Nanoscope III. A schematic 

representation of main components is presented in Figure 3-17.
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Figure 3-17: Schematic layout of Nanoscope HI system.

The system was designed to perform a range of topographic studies for both STM 

and AFM, depending on the types of materials of interest. In this work, all the films 

were surveyed in AFM contact mode to yield information about their surface profiles 

and roughness. The system could be set up to scan the surfaces in two different 

modes: constant height or constant force. The former mode was employed to study 

the topography of the films as it helps to eliminate thermal drift which can affect 

high resolution imaging.

The “image” or topography of the films can be built up by tracking the deflection of 

the AFM tip cantilever. The motion of the cantilever is monitored and recorded using 

a four sector photodiode. Laser light reflected from the cantilever is directed towards 

the photodiode, which senses the difference signals created by different positions of 

the laser beam. Hence, the deflection of the cantilever can be measured very 

precisely with high resolution. In order to enhance the reflection of the laser, the 

cantilever is normally coated with a highly reflected material such as gold.
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The tip made from SiN and has a very small radius of curvature and high aspect 

ratio, enabling it to trace very fine details from the surfaces. By employing the line- 

by-line scan mode, the force exerted on the tip translates to the defection of the 

cantilever, which in turn is monitored by the laser and the photodiode and 

eventually, images of the films are generated. The built-in software allows converts 

the raw data into a topographical map of the scanned area, which can be displayed as 

a colour map of as a 3D topography.

The surface roughness can be expressed by various mathematical definitions, hi this 

study, the arithmetic average of absolute values was used and is defined by Equation 

3.10:

Ra = 7^=i\yi\ (Equation 3.10)

3.7 Ellipsometry 

3.7.1 Introduction

To monitor the growth process and the influence of annealing on the physical 

properties of the films, thickness is very important. The thickness is not only an 

important metrological parameter but also necessary to extract reliable information 

for subsequent electrical measurements. Moreover, due to a relatively large number 

of samples, the measurement of thickness should be fairly fast and simple to enable 

the data processing and gathering. Ideally, TEM needs to be employed as it gives the 

most accurate physical thickness. However, TEM cross-section sample preparation 

and the measurements themselves are costly and very time-consuming, hence 

limiting its use for characterising large numbers of samples. In comparison, 

ellipsometry is advantageous in terms of its simplicity and speed in order to handle a 

number of films within a short period. In addition, extra information such as 

refractive index of the films can also be determined using ellipsometry. As a result, it 

was used as the main tool to measure the thickness of all films in this study.
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3.7.2 Background

Ellipsometry, like many other optical techniques, utilises light as the main source of 

investigation and analysis. Basically, it relies on one specific properties of light, 

polarisation. Therefore, prior to introducing the principle of ellipsometry, it is 

necessary to briefly discuss polarisation and how this property changes when light 

interacts with matters. The polarisation of light was first discovered by Malus in 

1808 during experiments of the optical behaviours of calcite crystals [16]. Later, 

together with classical theory of electromagnetic waves and the well-known 

treatments by Maxwell on this subject, this property of light has become an 

important tool to study structures of matter. Essentially, polarisation is described as 

an attribute of light by specifying its orientation during the course of travelling in 

space. Since light has been treated as an electromagnetic wave, its propagation is 

characterised by its electric field intensity vector (die induced magnetic vector is 

neglected). This vector in turn can be represented by two main constituents: one is p- 

component (p for parallel) and another is ^-component (s for senkrecht, German for 

perpendicular). Both of these components are perpendicular to each other, and to 

direction of the light’s propagation. The plane created by these two components is 

called the plane of incidence. Depending on the ratio of amplitudes between these 

components and their related phases, three main types of polarisation can be 

observed. They are linear, circular and elliptical polarisation states, which illustrates 

the shape of these two components when being projected on the wave plane. 

Mathematical descriptions of these polarisation states can be found in many 

excellent textbooks on ellipsometry such as [16] among others. One important note 

in these treatments is the use of complex number to describe the state of those 

components. Because light is treated as electromagnetic waves, it is necessary to 

describe them with both amplitude and phase and thus, it is most commonly 

parameterised by using complex number. Let consider a simple case where light is 

directed to and reflected from a flat surface. Assuming that this light is linearly 

polarised, its polarisation state will be changed after reflection from the surface as 

depicted in Figure 3-18.
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Figure 3-18: Principle of ellipsometry (adopted from [15]).

The change in amplitudes of the two components of the light during the course of 

reflection induced by the sample can be described by the complex ratio p and can be 

measured by ellipsometry. This principle is illustrated by the fundamental equation 

of ellipsometry as the following:

P = 7 = tan(i/0
Ts

(Equation 3.11)

rp, rs: amplitudes of p and s components after reflection and normalised to their initial 
values, tanOF): amplitude ratio upon reflection. A: phase difference.

In principle, the equation above can only be solved analytically for pure substrate or 

isotropic and homogenous film with indefinite thickness (which is the simplest case) 

to generate information such as refractive index and extinction coefficient. In all 

other cases, a layered model has to be constructed which included each of the 

individual layers in the optical structure. Because ellipsometry actually measures 'P 

and A, direct conversion to yield physical parameters is not possible. An iterative 

routine is therefore required to home in on the unknown parameters within the model 

until the experimental and theoretical values reach agreement.

In most cases, the model requires certain parameters to be fixed before a sensible 

solution can be obtained. The choice of a correct and sensible model is very 

important to the interpretation of ellipsometry data and hence, the physical 

parameters calculated.
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The calculations involved in ellipsometry are very complicated and can be done by 

using either the Jones or the Mueller formalisms employing Stokes vectors and 

matrices [16]. These detailed calculations and related procedures are beyond the 

scope of this study.

Instead, to extract such physical parameters from the films, an Excel-sheet program, 

called Ellipsheets was used together with its customised layer model, which allows 

up to a maximum of a four layer structure to be modelled [17]. The measured values 

T and A from the films can be compared and matched with simulated values 

generated from the model to give the best estimation of the thickness and refractive 

index. In fact, if the films are relatively thick, i.e. more than 10 mn, the ellipsometer 

can give values of thickness and refractive index using its own built-in calculating 

procedures and models. However, for thinner films, the calculations for these 

parameters do not yield sensible results. Hence, regardless of the film thickness to be 

measured, the use of the Ellipsheet spreadsheet combined with measured data for T 

and A have been employed routinely to deduce information about the films.

3.7.3 Auto EL ellipsometer

A Rudolph Research Auto EL ellipsometer has been used throughout this work. It is 

a single-wavelength ellipsometer, which means that it operates only at one specific 

light wavelength and hence, only one pair of VF and A is generated for each 

measurement. Depending on the types of sample, three different choices of 

wavelength can be used: 633, 546 and 405 nm. In this study, all films were measured 

using 633 nm light; this is typically used in the semiconductor industry for 

metrology and inspection.

The configuration of this ellipsometer can be schematically presented in Figure 3-19. 

The main components of this equipment are the Polariser (P), Compensator (C), 

Sample (S) and Analyser (A), hence the name of its configuration PCSA. Both the 

polariser and analyser have the same function as linear polarisers. The compensator 

(also called retarder, in this case is a quarter-wave type) functions as an elliptical 

polariser. Instead of employing a laser as a light source, this equipment uses an
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incandescent light bulb from a lamp. As a result, the specific wavelength used for 

measurement is achieved via means of a wavelength filter before the photodetector.

sample

compensator
(retarder)

analyzer
detector

polarizersource

Figure 3-19: PCSA ellipsometer configuration [16].

Basically, the operational procedure comprises the following steps. Unpolarised light 

from the source passes through the polarizer which can be rotated to any angle, this 

produces linearly polarised light. The light then passes through the compensator 

which changes the linear polarized light into elliptically polarised light. The 

elliptically polarized light is then reflected off the sample and into the analyzer, 

which contains another rotatable polarizer. The shape and orientation of the incident 

elliptically polarized light can be changed by rotating the angle of the polarizer. The 

target is to set this angle so that the elliptically polarized light becomes linearly 

polarized after it is reflected from the sample. The ellipsometer finds this polariser 

angle by iterative steps of the polariser and the analyser until the signal hiting the 

detector is minimised. Thus, this operational mode is named “nulling ellipsometry”. 

The rotation of the incident and reflected polarisers is done automatically by step 

motors in such a way that the polarizer and analyzer angles are found for the “null” 

position. The incident angle is fixed for all measurements and set at 70 degrees.
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Before any measurement can be done, calibration is required to ensure that all the 

moving components of the ellipsometer are correctly set up. The calibration process 

is performed routinely using a standard sample, which is a Si wafer with a Si02 film 

on the top. The thickness and refractive index of this sample is provided by the 

supplier (t = 1100 A, n = 1.455 ~ 1.465). By using a simple two layer model as a 

built-in function from the control console, the check on this sample is performed on 

a daily basis. Due to very high resolution of all the optical components and excellent 

accuracy in measured parameters (polariser or analyser: 0.05° A: 0.05°and T: 0.1°), 

the results from calibration with this standard sample normally fall inside the 

permitted accuracy for a SiCb film (between 3 A to 10 A in thickness and 0.01 in 

refractive index). This ensures that the equipment is properly aligned and set up for 

actual measurements.

3.7.4 Data acquisition and processing

To improve the accuracy of the data acquired as well as check the film’s uniformity, 

normally five measurements randomly chosen throughout the sample were 

performed. The average value of T and A could then be calculated from these five 

pairs of acquired data and then used to compare with the values generated by the 

Ellipsheets spreadsheet model.

As mentioned before, although the ellipsometer can calculate thickness and 

refractive index from the measured values of T and A, it can only do so for relatively 

thick films. For thinner films, the built-in functions were not able to give the value of 

thickness without being given a refractive index. This problem can be be understood 

by plotting T versus A for films with different refractive indices as shown in Figure 

3-20. This diagram was produced using the three layer model in Ellipsheets. Due to 

the lack of experimental data for Ce-doped Hf02 films, the refractive index used was 

taken to be the same as the value reported for HfCb films [18]. To a first 

approximation, it is assumed that low doping levels of cerium would not 

significantly affect the refractive index of HfCb films.
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The model was built with a Si02 interlayer sandwiched between the high-k film and 

the Si substrate (the thickness of this SiCh layer was taken to be 2.1 nm as 

determined for one of the samples by TEM). Another assumption was also made that 

the films were flat and pinhole free (as shown in AFM study).

t = 0 (substrate only)

60
10 12 14 16 18 20 22 24 26

Psi (degrees)

Figure 3-20: T - A plot with various refractive indices. The value of t denotes film’s thickness.

As can be seen from Figure 3-20, for very thin films (t < 5 nm), regardless of 

refractive indices chosen, the value of T changes very little compared to the value of 

A. Quite often, this change falls inside the uncertainty range of the instrumental 

resolution. In other words, the measured values of ¥ and A from the ellipsometer for 

any given film can only generate the value of thickness if the refractive index is 

known beforehand. As a result, for thin films, in order to estimate their thicknesses, 

the value of refractive index has to be input to the layer model in the spreadsheet. In 

this study, a refractive index value of 1.9 was used throughout the data processing 

for thin films and it showed a good agreement between “theoretical” and 

experimental values of T and A.
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For the films with thicknesses of more than 10 nm, the change in VF becomes large 

enough to generate both values of thickness and refractive index for a given pair of 

measured values of 'F and A. It means that by applying the aforementioned layer 

model to the built-in program of the ellipsometer, the values for both refractive index 

and thickness can be generated.

As a result, the values of thickness and refractive index can be obtained 

automatically and later can be compared with the values obtained from the 

spreadsheet for cross-checking in terms of VF and A matching as a figure of merit 

(with the input value of refractive index obtained from ellipsometer served as 

starting point to fine-tuned the alterations in the spreadsheet). After trial and error, it 

has been found that for all the films, their refractive indices changed very little and 

typically having the values between 1.890 and 1.910). To ensure consistency and 

reduce systematic error, an average value of 1.90 was used for all films regardless of 

their thicknesses to obtain the “theoretical” calculations for VF and A. The films’ 

thicknesses determined from this method and based on the aforementioned refractive 

index were found to have the error in the range between 0.05 to 0.2 nm.

Besides the dependence of refractive index on the film thickness, some other sources 

of errors can also contribute to the differences between the experimental and 

“theoretical” values of T and A. They can be the surface roughness, the voids inside 

the films and the uniformity of the films. These issues can mean that the model needs 

to become more complicated to accommodate those contributions. The Si02 

interlayer thickness can also vary slightly between samples deposited from different 

substrates or between the as-grown and vacumn annealed samples. However, based 

on results from TEM, MEIS and AFM, all of these factors can be safely neglected 

from the data processing mentioned above. The good agreement between measured 

and simulated values for T and A from all the films proved that by using that three 

layer model, it was sufficiently reliable to extract the value of film thickness within 

the work of this study.
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3.8 Medium Energy Ion Scattering (MEIS)

3.8.1 Introduction

The chemical compositions of as-grown and selected annealed films in this project 

were acquired and analysed by employing MEIS at Daresbury Laboratory (UK). 

Besides critical data about the compositions of the films such as the amount of 

cerium and hafnium incorporated into the oxides, important information about the 

interface structure between the oxide films and Si substrates were also provided. 

Such results were crucial to understand the growth process, the ability to control 

doping level during the growth and the interactions between deposited films and the 

underneath Si for different annealing conditions.

3.8.2 Introduction

MEIS is a technique utilising ions for die analytical pmpose of surfaces and 

interfaces in the medium energy range (50-300 keV) and belonging to the bigger ion 

scattering method group. This group comprises of conventional high energy 

Rutherford back scattering (RBS) and low energy ion scattering (ISS) [19], The 

differences between MEIS and the other two techniques are mainly due to the range 

of ion energy employed and hence, the mechanism of interaction with matters. 

MEIS differs from ISS in the way that the interaction law of the latter method is 

much more complex and ISS is essentially sensitive only to the top layer because of 

its low energy. Compared to RBS, MEIS is more surface sensitive, and more 

complex instrumentally. As a result, MEIS is a method of choice when information 

about the film surface, bulk film microstructure and interface between film and 

substrate are all required from a single technique.

The main principle of MEIS can be described by considering basic physics of ion 

scattering and two other important experimental configurations: channelling and 

blocking. Firstly, the interactions of ions with solid matters are briefly reviewed. Due 

to the region of ion energy used, it is sufficiently high so that the ion-surface 

interaction law is simple and well characterized, essentially only classical Rutherford 

scattering is involved and sufficiently low so that the surface specificity can be 

optimized. Also due to the high energy, the diffraction and other quantum effects can
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be neglected (the de Broglie wavelength of ions in MEIS is in the order of 10’ A). 

The basic quantities measured in MEIS are the energy and angular distribution of 

backscattered ions. The technique derives elemental specificity from the fact that the 

energy of a backscattered ion is a strongly dependent on the mass of the target 

atom(s). As the ions propagate through the sample, they also will lose smaller 

amounts of energy to the target electrons. Considering energy and momentum 

conservation, the energy loss in the collision can be calculated by knowing scattering 

angle (0S) and the ratios of the ion and target masses (p = m 1/1112)- For an incident 

energy Eq (and exit energy Ei), the fractional energy loss (also known as kinematic 

factor) can be expressed as:

K2 Ei
E0

p cos Gs+^l-p2 sin 9S2 
1+P

(Equation 3.12)

The dependence on target mass makes MEIS ideally suitable for the study of multi­

element systems, providing that these elements are not so close to each other in the 

periodic table. By increasing the incident ion mass, the energy separation between 

different elements becomes larger but at the price of potential damage created by 

ion-induced. This problem can be mitigated by a combination of very low beam dose 

and efficient data collection (multi-detection techniques), or by moving the ion beam 

to fresh spots on the sample and averaging the results.

One important issue in MEIS is the way the beam is configured to propagate through 

the sample, i.e. channelling and blocking. Figure 3-21 presents an example of 

channelling and blocking as ion paths are illustrated. A well collimated beam of ions 

is incident along a high symmetry (channelling) direction of the target (a single 

crystal). Most of the incident ions will propagate in the large channels between the 

nuclei, where they will lose energy quasi-continuously to the electrons in the target. 

These energy losses are not large enough to lead to large angular deviations because 

of the large mismatch of the ion-electron masses. However, a few ions will collide 

with the first atom along a row of target nuclei. The energy loss is such a collision 

may be large enough to create a significant angular deflection. The angular 

distribution of the backscattered ion flux from the atoms in the first layer will be

103



smooth. Due to geometrical distortions in the surface (contractions, reconstructions, 

etc.) or thermal vibrations, there may be a finite collision probability for deeper 

layers also. Ions scattered from the second layer will have their outward paths 

blocked at certain angles by first layer atoms and so on. The variation in scattered 

ion intensity with angle thus relates to the geometrical arrangement of surface atoms. 

As a result, the backscattered ion flux will be reduced in directions corresponding to 

a vector joining two atoms in different layers and that the angular distributions will 

be marked with pronounced blocking dips, which contain direct information about 

the relative position of atoms in the first few layers of the crystal. The experimental 

parameters (the beam energy, the incident direction, etc.) are usually set up such that 

the collision probabilities form a rapidly converging series, i.e. only three or four 

layers contribute. A complete solution of surface structure requires a comparison 

between experiment and simulation for several scattering geometries.

Figure 3-21: Ion paths demonstrate MEIS and the phenomena of channelling and blocking. The widths of 
the arrows indicate the intensity of the ion flux at each point [19].

3.8.3 MEIS facility at Daresbury

The MEIS facility in Daresbury comprises of three main sections: an accelerator, 

which consists of a high voltage supply and accelerating lens (designed to operate at 

energies up to 400 keV), a beam line for transport of the positively charged ion beam 

and a multi-chamber ultra-high vacuum (UHV) experimental end-station [20]. A 

schematic illustration of main components of the system is given in Figure 3-22.
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Figure 3-22: schematic view of MEIS main components [21].

The ion source platform houses a dual ion source, which in turn is generated by duo- 

plasmatron. He+ or H+ ions are initially accelerated with energy about 20 keV from 

the source and then the ions are accelerated again to the required energy with a 

second power supply. Within this work, a flux of He+ ion with energy around 200 

keV was typically employed.

The beam line is pumped to high vacuum and consists of a bending magnet, several 

electrostatic lenses, and steering components. Collimating slits equipped along the 

beam line are employed to create a beam with a divergence of 0.1° and a standard 

spot size of 1mm wide by 0.5 mm height on target. Beam parameters can be 

remotely controlled from a control console nearby, allowing the beam to be focused 

or defocused during the course of an experiment to acquire the optimum conditions. 

The beam current is monitored using a thin wire grid placed in the beam, enabling 

the beam current on target to be known. To ensure a reproducible beam dose on 

target, the beam current is monitored by a current integrator.

The experimental station contains three ultra high vacuum (UHV) chambers: a 

scattering chamber, a preparation chamber and an interconnecting one, together with 

a fast entry vacuum load-lock. Samples are mounted on holders that can be 

transferred from one chamber to the next via transfer arms. The scattering chamber 

houses a goniometer accommodating a sample holder and position the sample into 

the beam. The goniometer can be adjusted in three different ways, namely rotation,
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spin and tilt axes respectively. This allows the position of the beam on the sample 

can be moved so the sample can be aligned to the beam. Each of those movement 

axes can be actuated and adjusted by a step motor via the control console. Figure 

3-23 demonstrates the alignment axes provided by the goniometer. The scattering 

chamber is also equipped with a toroidal sector electrostatic analyser (TEA), which 

is fitted with a two-dimensional position-sensitive detector to allow parallel detection 

of a range of ion emission (scattering) angles and scattered ion energies (see Figure 

3-24). These form one composite unit that can be moved around the goniometer- 

sample system in the plane of the beam. The analyser has a 2T acceptance angle and 

the energy window of the analyser is 2% of the pass energy. The angular resolution 

of the detector is 0.3° and the energy resolution is 3.5E-3.

Rotation

JILT

UP

il

0
z

Figure 3-23: MEIS axes of alignment [22].
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2-D Detector

Figure 3-24: Schematic illustration of the angle-resolving toroidal-sector electrostatic for the ion-energy
analyser and its detector [20].

3.8.4 Experimental set up and data processing

MEIS measurements were taken using the following conditions as standards.

Ion source 

Beam current 

Substrate 

Beam dose 

Energy pass 

Ion incidence angle 

Scattered ion angle 

TEA angle 

TEA range

200 keV He+

~200 nA 

Si n-type (100)

2.5 pC

1.6%

(111) Si crystal angle (channel)

125.3°(100) direction, 70.5 (111) direction

125

27

In this experimental set up, the ions collected at the scattering angle along (100) 

direction (effectively down to about 50 nm from the surface) allow the Ce and Hf 

content of the films to be effectively mass separated, enabling the film composition 

to be estimated. The utilisation of scattering angle along the (111) direction enables 

the heavy ions (Ce and Hf) to be collected as well as the oxygen and silicon signals. 

At this geometry, the silicon from the deeper silicon substrate is suppressed by 

channel “shadowing" and “blocking”. Only silicon atoms from the top few atomic 

layers or any amorphous silicon in the interlayer oxide are evident. As a result, 

information about the interfacial layer can be deduced.
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Data acquisition comprises many scans, of which to detect high energy and surface 

scattering followed by lower energy and deeper scattering. These scans eventually 

create a data tiles, i.e. 2D plots of the yield at each point on the analyser. By 

stepping the pass energy down and joining together the individual tiles, a continuous 

energy spectrum can be produced. The compositions of the films, i.e. Ce/Hf ratio can 

be estimated from the ratio of normalised integrated peak areas with respect to one 

chosen element in the case of 125.3° scattering angle. For instance, the integrated 

peak area of Ce can be normalised with respect to Hf by multiplying its integrated 

area with the ratio of the scattering cross sections, which essentially proportional to 

the square of the atomic number ratio between these two elements (Zce = 58, Znf 

=72) so in this case, this ratio is equivalent to (72/58)2.

For the 70.5“ scattering angle, peaks of Ce and Hf no longer separate like in the case 

of 125.3° scattering angle but merge as a single peak. However, the peaks of Si and 

O are observable in the energy spectrum, enabling the assessment of interlayer as 

previously mentioned. The more detailed insight about the interaction between the 

oxide film and the substrate or the chemical composition of the interfacial layer can 

be revealed by studying the depth profiling (depth scales) [23],The depth scales can 

be converted from energy for any elements by calculating the instantaneous rate of 

inelastic energy loss along the ion path. This numerical method was encoded as a 

computer programme, developed and refined by Dr. Matthew Werner [22] and was 

used to generate the depth scales for some films within this work.

3.9 Weight gain analysis

To monitor the deposition, weight gain measurement provides a quick and simple 

way to obtain information about the deposited mass after each growth and usually is 

the first check performed to ensure that the growth has been successful. Moreover, 

when films with different compositions from two sources of precursors are grown 

and the ALD cycle ratios is known, weight gain measurement also can help estimate 

approximately the growth behaviours. For instance, consider two constituent 

materials with known bulk densities.
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Assuming that the density of the film deposited from each material is similar to the 

respective bulk value, it can be deduced that if the film composition changes, the 

deposited mass will also vary accordingly in a proportional way. Hence, if a sets of 

films with different ALD cycle ratios grown after a number of comparable cycles, 

the weight gain per cycle for each film can be plotted against the ALD cycle ratio to 

Investigate the growth efficiency.

Weight gain analysis was performed by using a Mettler Toledo XS 205 DualRange 

analytical balance. The range offered by this balance is 220/81 g with the deviation 

0.1/0.01 mg respectively. In this study, due to small total weight of the deposited 

film and the silicon wafer (less than 2 g), the latter range was used to maximise the 

accuracy. In order to check the consistency and reduce errors, weight data of a 

reference wafer has been recorded regularly before and after each growth. In 

addition, this record has been used as way to check the stability of the balance. A 

value between 1.36664 g and 1.36667 g was obseived during the period of three 

years, confirming the high reliability of the measured data.

To perform the analysis, weight measurements for the sample were carried out three 

times before and after the growths, resulting in two average values for the sample 

before and after the growth respectively. The difference between these two values is 

the deposited mass after the growth.

3.10 Post-growth heat treatments 

3.10.1 Air & N2 annealing

Films subject to air and N2 annealing were undertaken by using a Carbolite 

horizontal tube furnace (maximum temperature up to 1200 °C). The ramp rate was 

set at 5 °C/min to ensure an even heating process throughout the equipment. After the 

set temperature was reached, it was held at least 2 hours before the samples were 

loaded in to ensure the stability of the system. The samples during the annealing 

were kept inside a ceramic crucible, which has been always kept inside the tube all 

the times (the tube has been kept at 300 °C when not in operation) to avoid
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contaminations. The only difference in terms of system setup between air and N2 

annealing was the requirement of some specific parts of the system, which were not 

used for air annealing. In order to undertake N2 annealing, a gas regulator (IL/min ~ 

1 OL/min) connecting to a N2 bottle (zero grade from BOC) was open to connect to 

one end of the furnace. The regulator was set at 3L/min while the N2 bottle was set at 

1 bar*. Prior to each time the samples were loaded in for N2 annealing, the N2 flow 

was allowed to pass the tube in 15 minutes to prevent humidity and other 

contaminations penetrate the furnace from the ambient enviromnent. Both ends of 

the furnace were equipped with stainless steel and anti-flame material seals.

3.10.2 Vacuum annealing

All the films subject to vacuum annealing were undertaken at MEIS facility, 

Daresbury Laboratory (UK), using the high vacuum chamber (~10's torr) and heating 

devices (up to 1000 °C) within the MEIS system. The annealing temperature could 

be controlled via the adjustment of a current flowing through a high resistance W 

filament mounted at the back of the sample holder. If veiy high temperature (more 

than 900 °C) was required, an electron beam could be focused on the back of the 

sample to provide extra heating.

3.11 TEM

All TEM images in this work were kindly acquired and provided by Dr. Bob Murray 

and Dr. Simon Romani, using the TEM facility at the electron microscopy centre 

(Department of Engineering, University of Liverpool).
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Chapter 4 FILM GROWTH

4.1 Introduction

The studies described in this chapter are concerned with the development of liquid- 

injection ALD (LIALD) for the controlled deposition of Ce-doped Hf02 with a 

varying range of Ce doping levels. Firstly, the ALD growth of Hf02 and Ce02 films 

were investigated separately to establish the growth characteristics of each system. 

From these initial studies, it was possible to establish a suitable temperature for the 

combined oxide growth and make initial predictions about the incorporation rate of 

Ce in the Hf-oxide under various ALD sequences. Once the individual growth 

characteristics were established, the feasibility of growing Ce-doped Hf02 films was 

investigated. MEIS analysis of the films were earned out to detennine the chemical 

composition of the films and the results are used to establish the incorporation 

efficiency of Ce in Hf-oxide. A table of all samples and their details relevant for 

further studies is provided at the end of the chapter to summarise the work within 

this film growth section.

4.2 Growth of HfCh and Ce02 films

This section will present and discuss the studies of each single precursor source to 

grow Hf02 and CeCb in ALD mode and eventually, the combination of these sources 

to create Ce-doped Hf02 films. The characterisation of HfC>2 and CeC>2 growth is 

important to understand the behaviour of each individual process such as growth 

rate, ALD window, the influence of oxidising agent and whether any overlap in ALD 

regimes between these two growth processes can be observed. The last issue is vital 

to establish the parameters that can be used to grow the aimed ternary alloy films.

4.2.1 HfCh growth

4.2.1.1 Cambridge Nanotech reactor

Initially, growth studies of Hf02 were conducted using a modified Cambridge 

Nanotech Savannah SI00 reactor with a home built liquid injection system attached.
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These initial studies were used to study the feasibility of using liquid injection 

precursor delivery instead of conventional heated source delivery methods such as 

vapour draw or bubbling. As a result, the chosen precursor to grow Hf02 was 

HftN(CH3)2]4, which was one of the newly developed type at that time and also 

showed good ALD growth characteristics as demonstrated by Kukli et at [1]. Hence, 

the data collected from LIALD growth of the same precursor could be compared 

directly to the published results from this precursor to evaluate the growth 

characteristics between two techniques.

In the growth study of LIALD, the precursor, Hf];N(CH3)2]4, was dissolved in 

anhydrous toluene to produce a 0.05M solution. The co-reactant used for growing 

HfD2 together with this precursor was water. The thicknesses of all films were 

determined by ellipsometry for both conventional ALD in the work of Kukli and 

LIALD in this work.

Figure 4-1 presents the growth curves of the aforementioned precursor obtained from 

LIALD and from the work of Kukli obtained by conventional ALD. In the case of 

LIALD, growth rates were obtained at temperatures between 200 °C and 350 °C by 

depositing 300 growth cycles. Details about the growth results of conventional ALD 

for this precursor can be found in [ 1 ] together with the extraction of film thicknesses 

and refractive indices.

0.45

Conventional ALD from Kukl at aL

0.15

Figure 4-1: Comparison of growth curves between LIALD and conventional ALD for HflNtCl^h.
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As can be seen from the figure above, in the regime between 200 °C and 275 °C, the 

growth rates of these two techniques show very similar values. However, they begin 

to differ quite markedly beyond 300 °C though still share the same tendency of 

increasing rates at higher temperatures. The exact reason why the growth rate was 

much higher at temperatures beyond 300 °C in LIALD compared to the results from 

conventional growth is still not clearly understood. However, one likely reason was 

the behaviour of the growth beyond 300 °C. As can be seen for both growth curves, 

the growth characteristic was no longer ALD but CVD-type, illustrated by the 

increase in growth rate with increasing temperature. Hence, it could be the CVD 

contributions to the growth rate beyond 300 °C were much higher in this work 

compared to the work of Kukli. Another factor could also contribute to the 

unmatched growth rate from this work compared to the conventional ALD study at 

high temperature was the thermal decomposition of the precursor, which was also 

the cause of the CVD-type growth pattern observed for both studies. Nevertheless, 

this initial study proved that the ALD regime of this precursor for both techniques 

can be achieved in the temperature range quite closely and similarly.

4.2.1.2 Aixtron reactor

The initial plan was to continue the growth work using the modified Cambridge 

Nanotech reactor, however, initial Ce-oxide growth studies using Ce(thd)4 with H2O 

as a co-reactant were unsuccessful. Water is simply not a strong enough oxidising 

agent to react with the (thd) ligands, and as a result, co-reactants such as ozone are 

required with this type of precursor as demonstrated in [2], Unfortunately, our 

Cambridge reactor does not currently have the option of ozone and as a result, 

further growth work moved over to an Aixtron AIX200FE system, which has been 

modified for ALD deposition.

4.2.2 CeOi growth

In order to characterise the growth of Ce02, a solution of 0.05M Ce(thd)4 in 

anhydrous toluene was prepared (thd = tetrakis(2,2,6,6-tetramethyl-3,5- 

heptanedionato)).
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Unlike Hf-precursors, the choice of Ce-precursors is much more limited and as a 

result, Ce(thd)4 was employed because it has been used and well-characterised [2].
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Temperature (deg C)

Figure 4-2: Growth curve of Ce(thd)4 with ozone.

Figure 4-2 shows the ALD growth curve of this Ce-precursor with ozone to 350 °C. 

Similar to the characterisation of Hf-precursor, all films were deposited with 300 

cycles and their thicknesses were measured by ellipsometry. The result above is 

quite comparable to the growth curve obtained by Paivasaari et al in their study 

about ALD Ce02 from Ce(thd)4 [2]. However, an ALD regime was not clearly 

observed from this growth curve as opposed by the narrow ALD “window “ reported 

in the study previously mentioned (175 °C - 250 °C). The growth rate from this 

growth curve was also lower compared to the growth rate observed in the study of 

Paivasaari, possibly because the ozone pulse length used in this study (0.5s) was 

much shorter the chosen pulse length in his study (2.5s). Another noticeable 

observation from this study is the low growth rate of Ce02. This phenomenon can be 

attributed to the fact that Ce(thd)4 is a very stable precursor (just slightly decomposes 

at temperatures beyond 275 °C as shown in [2]).

4.2.3 HfC>2 growth

In addition, to accommodate a more suitable growth conditions that match better 

with the cerium-precursor, another type of Hf-precursor had to be used.
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As a result, the source of Hf-precursor was changed from HfIN(CH3)2]4 to [(MeCp)2 

HfMe(OMe)] (Me = CH3, Cp = C5H4); a relatively new precursor, which could 

provide many improvements compared to previous types [3] and already 

characterised extensively in previous studies within our research group. Hence, the 

growth curve for [(MeCp)2HfMe(OMe)] was performed with ozone instead of water 

to simplify the growth process because Ce(thd)4 was shown to react sufficiently with 

ozone. Similar to the previous Hf-precursor, a solution of 0.05M of this source was 

prepared in anhydrous toluene.
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Figure 4-3: Growth curve of [(MeCp)2 HfMe(OMe)] with ozone.

Figure 4-3 shows the growth rate of the Hf-oxide as a function of temperature 

determined by depositing 300 ALD cycles and measuring film thicknesses using 

ellipsometry. An ALD window for this precursor is observed in the temperature 

range between 200 °C and 300 °C, where the growth rate is essentially independent 

of temperature. This ALD “window” is the temperature range over which growth is 

dominated by self limiting ALD behaviour. At lower temperatures, the growth rate 

starts to fall due to the insufficient reactivity of this precursor while at higher 

temperatures the growth rate increases because of thermal decomposition. The 

overlap of ALD windows of the Ce and Hf precursors will be of central importance 

for growing a ternary alloy film because it dictates the range of growth temperatures 

that can be employed for controllable growth.
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To find out the overlap of ALD regimes between these two precursors, their 

respective growth curves will be plotted together over the same range of 

temperatures as presented in Figure 4-4 below. The dotted box indicates the range of 

temperatures that the ALD window can be assigned for these two precursors.
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Figure 4-4: ALD window overlap for Hf02 and Ce02 growths.

As discussed in previous sections, a true ALD regime is only observed for the 

growth of HflCL over the range of temperatures between 200°C and 300°C. As a 

result, a true ALD window overlap could not be strictly determined for these two 

precursors. However, because the growth rate of Hf02 was much higher than CeCL 

and the aimed doping levels of cerium would not be too high, this non-ideal ALD 

growth behaviour of CeOi was deemed to be practically acceptable. Therefore, in 

order to determine the growth temperature for the ternary oxide films, it was possible 

to choose any temperature within the ALD region of HfC>2. However, due to the fact 

that the growth rate of Ce02 was very low compared to Hf02, the growth 

temperature for the ternary oxide films later was chosen at the highest possible value, 

i.e. 300 °C to ensure the best compromise between the ALD window overlap and the 

growth rate of CeCL.
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4.3 Growth of Ce-doped hafnia

In this section, key details of the LIALD Ce-doped Hf02 growth will be presented 

and analysed to characterise the process. The compositions of samples were 

determined using MEIS analysis to find out the relationship between growth 

parameters and their corresponding cerium incorporations. Initially, all the films 

were grown in two separate batches for different targets. The first batch was grown 

mainly for the purpose of studying phase stabilisation during post growth annealing 

in different environments, followed by a specific interest of electrical 

characterisations in the aimed 10% Ce sample, which was close to the theoretically 

calculated value to give the optimal stabilising effect to the higher-k phases of Hf02 

[4]. Hence, in this batch, a wide range of cerium doping levels, from approximately 

5% to 30% were investigated and consequently subjected to various post-growth 

treatments to characterise the phase stabilisation and evolution in those films. The 

second batch was designed to focus on more detailed investigations of electrical 

properties of Ce-doped HfC>2 films with a very narrow range of concentration around 

10% Ce. Therefore, the growth results of these two batches and their corresponding 

composition analysis will be discussed in parallel to extract important information 

about the growth process and some observed discrepancies between these two 

batches. This section will be concluded with a table of as-grown samples with their 

corresponding infonnation such as compositions and thicknesses.

4.3.1 Growth data

A detailed description of the deposition technique has been presented previously in 

chapter 3. Hence, this section only describes briefly the method used and some key 

parameters involved during the growth process.

CexHfi_x02 films were deposited by LIALD on as-received 7?-type Si (100) 

substrates. The precursors (described in the previous sections) were dissolved in 

anhydrous toluene at a concentration of 0.05M and were injected into the vaporiser 

which was held at 160 °C. Argon gas at a flow rate of 200 seem was used as a earner 

gas to help transfer the precursor vapour to the reaction chamber while the reactor 

pressure was maintained at 5 mbar.
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The growth temperature of 300 °C was chosen as the optimum for matching the 

ALD windows of Ce02 and Hf02, presented above. Ozone was used as a source of 

oxygen and introduced at the inlet of the reactor controlled by a pneumatic valve. 

The cerium incorporation in the films was controlled by changing the ratio of Ce~ 

oxide ALD cycles to the Hf-oxide ALD cycles. Each ALD cycle consist of a four 

step process following a sequence: precursor-dose/purge/Os-dose/purge. Hence the 

growth of a Ce-doped Hf-oxide sample can be described by the following sequence:

nx {i x (Hf-precursor/purge/CVpurge) j x(Ce-precursor/purge/03/purge)}

where i and j are integer numbers of Hf-oxide and Ce-oxide deposition cycles and n 

is the number of times that the sequence is repeated.

From the previous results obtained for each individual precursor, it is possible to 

estimate the expected composition that will be obtained with a given ALD sequence 

based on relative deposition rates. The growth rate of Hf02 is roughly three times 

higher than CeCh, hence a 1:1 ratio should require j to be three times the value of i. 

However, previous studies for various other compound oxide systems from the same 

reactor indicate that this is not always the case. This added complexity may be due to 

interface interactions between one material and the next affecting surface absorption 

or even etching effects. As a result of this potential complexity, the value of j was 

fixed as 1 for all the subsequent film growths as a stalling point. For the first batch, 

the value of i were chosen as 2, 4, 9, 12 and 19, which translated to the Ce/Hf pulse 

ratio as 1/2, 1/4, 1/9, 1/12 and 1/19 respectively. Following initial analysis of the 

composition of these samples, which will be described shortly, the second batch of 

samples were deposited with cycle ratios of 1/7, 1/9 and 1/11. The total number of 

ALD growth super cycles defined by, n, was varied from 30 to 200, with the aim of 

achieving nominal film thicknesses between 3 and 30 nm. The reason for targeting 

films with such a large range of thicknesses is related to the measurement techniques 

used to characterise these films. For example, XRD and Raman require relatively 

thick films towards the higher end of the targeted range, while MEIS requires 

significantly thinner films.
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As films with compositions close to 10% Ce were expected to be of significant 

interest, the films thicknesses in the second batch were designed to cover the whole 

thickness range, i.e. films with increasing thicknesses in relatively even steps.

In order to characterise the growth process of Ce-doped Hf-oxide films by 

alternating the Ce/Hf pulse ratios, weight gain of each sample was measured after 

each growth run. Because of the difference between the bulk densities of Hf02 

(d=9.68 g/cm ) and CeOj (d=7.3 g/cm ), it was expected that the weight gain per 

cycle for each specific sample should vary in relation to the Ce/Hf ratio. Therefore, 

the weight gain per cycle is a low cost tool for evaluating the growth process; by 

understanding the relationship between the input (ALD cycle ratio) and the output 

(mass deposited). Figure 4-5 demonstrates the variation of weight gain per cycle of 

the first batch against the Ce/Hf ALD cycle ratio (represented by the cerium ALD 

cycle fraction, for instance a pulse ratio 1/9 is equivalent to a fraction of 0.1). This 

cerium ALD cycle fraction can be assumed to be equivalent to the theoretical cerium 

concentration incorporated into the film if the difference in growth rate between 

CeCb and Hf02 in temporarily ignored. Samples of pure HfCL and CeCb are also 

included for illustration.
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Figure 4-5: Dependence of weight gain upon theoretical percentage of Ce atomic incorporation.
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As can be seen from the above figure, a linear relationship between the weight gain 

per cycle and the theoretical Ce concentration data can be observed. This implies that 

instead of different growth rates for each constituent, the ternary oxide films still 

showed a tendency to response proportionately to the ALD cycle ratios.

For the second batch, the tendency of weight gains per cycle against the Ce/Hf ALD 

cycle ratios was also expected to behave similarly. However, the data from this batch 

did not correspond to the same trend previously observed in the first one. The set of 

films with the pulse ratio 1/7 showed a much higher value compared to the other two 

sets, which were relatively similar to each other. This odd behaviour, though not 

fully understood, could be explained by the fact that the second batch was 

undertaken about one year after the first one and still employed the same precursor 

stocks. This inevitably would lead to some degree of inconsistencies in terms of the 

precursors’ qualities and their consequent chemical properties even though they were 

stored properly in reasonable conditions. Another possible reason was the 

inconsistent behaviour of the injector, particularly with the one used to inject 

Ce(thd)4 precursor. Figure 4-6 shows the recorded data from the flow meter sensors 

installed at the inlet of the reaction chamber to monitor the liquid injected for 

individual precursor solution.

Figure 4-6: Flow rate records for Ce precursor solution (top images) and Hf precursor solution (bottom
images).
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As can be seen from the flow rate patterns above, while the Hf flow rate was quite 

consistent and similar in all cases, the Ce counterpart showed a significant variation 

both in value and pattern shape. Particularly in the case of sample with the ALD 

cycle ratio 1/7, the cerium flow rate was much higher and was maintained so nearly 

half of the growth time. Because of this irregular behaviour, the Ce incorporations 

for the second batch were thought to be quite different from the first batch.

4.3.2 MEIS analysis for compositions

MEIS was used to investigate the composition of selected films to establish the 

efficiency of cerium incorporation in the films. Three samples from the first batch 

with Ce/Hf ALD cycle ratios of 1/2, 1/4 and 1/9 respectively were initially selected 

for MEIS measurements, these samples were kindly measured at the Daresbury 

MEIS facility by Dr M. Werner et al [5], together with raw data processing. The 

MEIS energy spectra were recorded at a scattering angle of 125.3°to collect ions 

emerging from the (100) direction. This scattering angle was selected to give good 

mass discrimination between the cerium and hafnium, hence allowing these elements 

to be effectively resolved and the atomic composition of the films to be determined.

Figure 4-7 shows the MEIS spectra of the three samples. Although the cerium peaks 

overlapped partially with hafnium peaks, Ce/Hf ratios can still be obtained by 

deconvoluting the peaks. This process in turn was simplified by assuming that the 

ratios of integrated peak areas for each element were similar to their corresponding 

ratios of peak heights. Consequently, the Ce/Hf ratios were calculated using the peak 

heights normalised using “scattering cross-section” factors (see chapter 3 for more 

details of the experimental setups and data analysis). The error in MEIS for 

estimating element concentration was less than 10% [5, 6].
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Figure 4-7: MEIS energy scan for 1:9,1:4 and 1:2 samples with the estimated cerium concentration 10%, 
17% and 34% respectively (125.3’scattering angle) [7].

Another MEIS measurement for the film with 1/12 Ce/Hf ALD cycle ratio was 

performed in another later session yielded the estimated cerium content about 8%. 

The relationship between cerium atomic incorporation (derived from Ce/Hf ALD 

cycle ratios) during the growths and the actual cerium concentrations in the films 

therefore can be plotted (see Figure 4-8) to investigate the growth process from all 

the results mentioned above. This relationship is of crucial importance to understand 

the growth of this ternary oxide in terms of the controllability of the process to reach 

a specific cerium doping level and hence, prove the feasibility of such LIALD 

process to deposit films with required doping concentrations.
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Figure 4-8: Cerium incorporated into films as a function of cerium ALD cycle fraction (15‘ batch)

As can be seen from the above plot, a linear relationship between the cerium atomic 

percentages incorporated and their corresponding cycle fractions injected can be 

observed. This result confirms a proportionate response of the cerium concentrations 

in deposited films with the Ce/Hf ALD cycle ratios, which was also demonstrated 

previously by the weight gain per cycle against pulse ratios. From this relationship, 

the cerium concentration of the last sample of the first batch with the Ce/Hf ratio 

1/19 can be extrapolated to yield a result of approximately 5%.
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Figure 4-9: MEIS energy spectra and estimated cerium concentrations for the films of the second batch
(IIS.?scattering angle).

The composition analysis was also conducted to determine the cerium doping levels 

for the films in the second batch. Their MEIS energy spectra, together with 

corresponding cerium estimated concentrations, are presented in Figure 4-9. As 

mentioned in previous section, the behaviour of the growth in the second batch of 

samples was suggestive of a small discrepancy compared to the first batch as can be 

seen from Figure 4-10. In this figure, cerium concentrations of three samples from 

the second batch are incorporated into the linear relationship observed for the first 

batch to compare growth behaviour between these two batches. While the sample 

with the ALD cycle ratio 1/11 showed a similar cerium concentration to the 1/12 

sample in the first batch, somewhat lower percentages of Ce than expected were 

found for the other two, especially with sample grown with the cycle ratio 1/9. This 

result confirms that the growth of the second batch did not achieve the exact results 

planned. Nevertheless, because the sample with 1/7 pulse ratio was found to contain 

about 10% cerium, it could still be used to investigate the electrical characteristics 

for this specific doping level.
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Figure 4-10: cerium incorporated into films as a function of cerium ALD cycle fraction (2nd batch)

All the growth data of samples from these two batches destined for subsequent 

analysis are tabulated in Table 4-1, with details of sample names, cerium 

concentrations and thicknesses.

Table 4-1: Summarised data for all as-grown samples from two batches. The thicknesses were calculated 
from Ellipsheets (see section 3.7.4 for more details) with a fixed refractive index 1.9 for all films.

Sample Ce/Hf Pulse ratio Cerium % Thickness (nm)
First batch

1329 1/19 5 27.5
1331 1/12 8 18.0
1318 1/9 10 23.0
1320 1/4 17 31.3
1321 1/2 34 24.9

Second batch
1527 1/11 8.5 20.4
1528 1/9 7.5 16.3
1531 1/7 10.5 3.0
1532 1/7 10.5 6.4
1533 1/7 10.5 11.5
1534 1/7 10.5 17.5
1535 1/7 10.5 20.5
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4.4 Summary

In this chapter, the main results related to the growths of Ce-doped Hf02 films are 

presented, together with corresponding composition analysis by MEIS. The LIALD 

process was firstly characterised for two separate single source precursors chosen to 

grow Hf02 and Ce02 respectively. After growth parameters were established from 

these initial studies based on the concept of ALD window overlap, the compound 

oxide was grown subsequently in a wide range of cerium doping levels in two 

separate batches. Growth and MEIS data from the first batch showed that by 

alternating the Hf/Ce cycle ratio, the cerium concentration incorporated into films 

could be controlled in a predictable manner. While these analyses demonstrated a 

controllable and predictable LIALD process in terms of cerium incorporated into the 

films against the Ce/Hf cycle ratios from the first batch, the second batch showed 

some degree of disparity in teims of growth behaviour. As a result, these unexpected 

results inevitably would narrow the aimed investigations initially planned for the 

second batch though subsequent key experiments involved the samples from this 

batch can still be undertaken with considerations to the specific interest of the 10% 

Ce sample.
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Chapter 5 PHASE STABILISATION OF Ce-DOPED

HAFNIA FILMS

5.1 Introduction

As mentioned previously, one of the main interests within the semiconductor 

industry is finding alternative materials to replace Si02 for gate dielectric 

applications. Hf02 and its derivatives have been extensively investigated and are 

now being used in some of latest generations of microprocessors, particularly from 

Intel in their 45 mn node chip production. While Hf02 in its current form will 

probably be used for at least the next couple of technology node generations, 

ongoing research into higher-k dielectrics is still essential to meet future scaling 

requirements By doing so, the rate of device scaling and better performance 

demanded from the market can be maintained satisfactorily. One promising trend, at 

least for near-future applications, among many ways to keep up with the pace from 

production demand, is looking for other Hf02-based systems which can offer good 

dielectric performances similar to Hf02 on its own but with higher k-value. Some 

recent theoretical [1-3] and experimental [4] studies have demonstrated that by 

doping Hf02 with some elements, the higher-k phases (tetragonal or cubic) can be 

stabilised at room temperature. These positive results also provided the main 

motivation for the experimental work of this research and helped build up the 

framework to conduct the studies of various rare earth-doped Hf02 thin films within 

the functional materials research group at the University of Liverpool. Among 

different studies carried out, Ce-doped hafhia has been the focal point of this study 

and hence, all the following results and discussions in this chapter will focus on the 

influence of using cerium as a dopant to improve the dielectric performance of 

hafnium oxide by studies of phase stabilisations in this binary oxide films.

The chapter will be organised as follows. The first four sections will present and 

discuss the results from different annealing environments: air, N2 and vacuum. The 

influences of these post-growth treatments and cerium doping levels to the phase 

stabilisation and crystal structures will be demonstrated via data obtained from XRD,
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UV Raman, AFM, MEIS and TEM. In terms of electrical characterisations, all 

results will be specifically focused on the sample with the aimed 10% cerium.

According to a theoretical first-principle study by Fisher et al.[2], approximately 

10% cerium doping is required to stabilise the tetragonal phase of Hf02 and hence, 

obtain the highest permittivity increase. As a result, the sample with a target 

composition of 10% cerium was specifically selected for full and detailed electrical 

analysis to verify the enhancements of adding cerium to hafnium oxide thin films, 

especially in term of boosting the k-values. In the last section, the effect of film 

thickness to the phase stabilisation and consequent dielectric properties will be 

discussed, also with purposeful considerations to the sample with the target of 

approximately 10% cerium.

5.2 Air annealing study

The effect of the annealing temperature on the crystal structure and the relating 

phases were firstly surveyed in air. Although air annealing is not used for industrial 

processing, it is a practical way of providing an oxygen-rich environment, which 

ensures that films have stoichiometric composition (fully oxidised). It is therefore, a 

good starting point to build up initial knowledge about the crystal structure and 

phase evolution with annealing temperatures in an increasing manner.

In this section, results for phase and crystal structure analysis of all the films 

covering the whole range of cerium doping levels will be presented and discussed. 

The data collected from XRD and UV Raman will be thoroughly analysed firstly for 

the sample with 10% Ce, followed by the other samples to yield important 

information about the phase assignments and the evolutions of crystal structures.

5.2.1 XRD phase analysis

Figure 5-1 shows the evolution of XRD spectra with annealing temperature for the 

10% Ce sample after 15 minutes air annealing between 600°C and 1000 DC. The 

spectrum of the as-grown sample is also shown for comparison. The scan was 

performed in the 2theta angle range between 20° to 40° as the characteristic peaks of
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all three main polymorphs of Hf02, namely monoclinic, tetragonal and cubic, could 

be found between 27°and 33°. From experimental results and literature data, all three 

polymorphs also possess another peak at ~35.5° which is nearly identical for each of 

the phases and hence, is of little use for phase identification.

Another assumption made here is the possibility of orthorhombic phases occurring in 

the films. Because such phases only exist under high pressure conditions, it is very 

unlikely that they could be formed during film growth or subsequent annealing 

processes, which were deemed stress-free and hence, would be excluded from the 

phase investigations.

20 25 30 35 40

2theta angle (degrees)

Figure 5-1: XRD spectra of 10% Ce sample annealed in air for 15 minutes at various temperatures

Except for the as-grown example which was amorphous, all other films showed 

some degree of crystallinity as can be seen from their spectra (Figure 5-1). For this 

10% Ce sample, the dominant feature around 30.5° was consistently observed and 

assigned with the index (111) on the basis of fluorite-type cubic structure as firstly 

reported by Passerini in [5] and later from ICDD card [53-550], both of which shows
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a very close match to the experimental patterns in Figure 5-1 above.The peak at 35.5 

is attributed to the plane (200) from the same cubic structure mentioned above, while 

the narrow features at approximately 33° and 36° are attributed to the silicon 

substrate.

By using a peak-fitting process adopting a Lorentzian-type distribution (more details 

can be found in chapter 3) combining with Bragg's law for diffraction and Debye- 

Scherrer equation for crystallite estimation, a detailed analysis of these films was 

conducted. The results of this analysis are tabulated and shown graphically in Table 

5-1 and Figure 5-2 respectively.

The results from these analyses revealed very small uncertainties providing that all 

other factors affecting the data acquisition from the XRD equipment were 

sufficiently stable, namely the systematic error (goniometer accuracy) within ± 0.0 T. 

However, due to the polycrystalline nature of the films and their relatively small 

crystallites, most spectra contained different degrees of background noise and the 

peaks in general did not have sharp and well-defined shapes as usual in the case of 

powder diffraction. Nevertheless, after following a peak-fitting process, meaningful 

data could still be extracted within acceptable accuracy that the method could offer 

at its best. A snapshot of one peak-fitting result window is shown in Figure 5-3 as an 

illustration for this data processing.

Table 5-1: Detailed peak analysis for (111) plane and its relating crystal structure estimation for 10% Ce 
air annealed sample with reference cubic data from ICDD card [53-550].

Annealing temperature ( t) 600 700 800 900 1000 Reference cubic data
2theta angle (degrees) 30.80 30.65 30.63 30.55 30.51 30.38

d-spadngs (A ) 2.90 2.92 2.92 2.93 2.93 2.9394
Cubic cell (A) 5.03 5.05 5.06 5.07 5.07 5.096(9)

Crystallite size (nm) 11.85 12.98 13.69 14.36 14.46
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Figure 5-2: Plots of (111) peak analysis of (a): 2theta angle, (b): crystallite size and (c): d-spacings against 
annealing temperatures for 10% Ce air annealed series
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Figure 5-3: Illustration of peak-fitting process adopting Lorentzian distribution for 10% Ce sample
annealed in air at 900 *C.
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Figure 5-2a shows the effect of anneal temperature on the peak position of the main 

“cubic” (111) XRD peak. The peak clearly shifts to the left with increasing 

temperature. This peak can be attributed to the high-temperature cubic phase and the 

peak position tends to approach the reference value (Table 5-1) as the annealing 

temperature is increased. It should however, be noted than the reference value quoted 

in Table 5-1 are for pure hafnia and hence, some degree of lattice distortion is to be 

expected when cerium is introduced into the matrix. This distortion is caused by the 
larger size of Ce4+ (111pm) compared to Hf4+ (97pm) [6] and is likely to cause a 

reduction in the d-spacing compared to the ideal CaF2-type cubic.

The effect of phase stabilisation (“cubic” in this case) was clear even at quite low 

annealing temperature. While pure hafnia becomes monoclinic after annealing, the 

Ce-doped hafnia crystallises into the stabilised high temperature cubic phase. In 

terms of d-spacing (Figure 5-2c), which represents the distance between parallel 

planes, the value became larger indicating that the unit cell is increasing in size. All 

of these trends could be graphically demonstrated by a form of a polynomial trend 

line as shown in the aforementioned plots.

In term of crystallite size, a similar bend was observed though with a little 

difference. As the annealing temperature increased, the crystallite size also 

increased but seemed to approach to a maximum value after 900 °C. From the 

viewpoint of crystal growth, this can be understood as an effect of space constraint. 

Because the films are relatively thin, typically 20-30 nm, they are constrained in the 

z-direction and hence, have a limited maximum crystallite size. Moreover, the 

crystallite size is directly dependent on the thermodynamic equilibrium when 

different grains formed and hence, likely reached its maximum size at around 900° C. 

This postulation is supported by the observation of island-growth seen with the AFM 

image in Figure 5-4. While the as-grown sample was quite smooth and showed no 

indication of crystallization, the air annealed one was appreciably rougher, with clear 

differences caused by annealing environment. The increased roughness can be 

attributed to crystallisation of the films following annealing. Complete details about 

AFM studies for different samples in various annealing environments will be 

presented later in section 5.5.
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"(ft?

Figure 5-4: AFM images of 10% Ce as-grown and air annealed samples at 900X1!, 15 minutes .

Following the XRD study of the 10% Ce sample, all the others were also subjected 

to air annealing over the same range of temperatures. Their XRD spectra will be 

presented in the following figures for all samples at each annealing temperatures to 

compare directly the differences in phase composition(s) and their corresponding 

evolutions.

300
c(111)

100- m(111)

2 theta (degrees)

Figure 5-5: XRD spectra of 60CTC air annealed samples.
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Figure 5-6: XRD spectra of 7001 air annealed samples
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Figure 5-7: XRD spectra of 800 XT air annealed samples.
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Figure 5-8: XRD spectra of 900“C air annealed samples.
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Figure 5-9: XRD spectra of 1000XT air annealed samples.
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The main features of the diffraction patterns were assigned as c(lll) and m(lll) 

representing the plane (111) of “cubic” (the high temperature fluorite-type) and 

monoclinic phases respectively. Additionally, a peak whose position is at around 

35.5° consistently appeared in all spectra and labelled as c(200) [5].Therefore, two 

peaks contributing to the cubic phase from all of these XRD results are identical to 

the patterns of the 10% Ce sample mentioned previously. After assessing all of the 

XRD results, some qualitative obseivations can be deduced. Firstly, with the 

exception of the 34% Ce sample, all show signs of being a mixed phase containing 

both monoclinic and cubic phases regardless of the annealing temperatures. For low 

doping concentrations, i.e. 5% and 8%, the monoclinic phase increases substantially 

with annealing temperature, particularly beyond 800° C. This tendency indicates that 

low doping concenfrations have a limited ability to stabilise the high temperature 

“cubic” phase. The stabilisation effect is not strong enough to frilly suppress the 

formation of mono clinic phase. In the case of 17% sample, the cubic phase remains 

dominant although the monoclinic still existed with relatively constant percentage 

except at 1000° C with even more significance. The co-existence of two phases in the 

17% Ce doped samples is somewhat unexpected in light of the predicted results 

obtained previously for the 10% Ce sample, as well as when being compared to the 

other samples. If the analogy between ZrCb and HfCb is assumed then it might be 

due to the solubility of different polymorphs during air annealing at some specific 

temperatures with varying cerium concentrations. For example, at around 17% 

cerium doping level, there would be a phase separation from a tetragonal parent 

phase to monoclinic and cubic at high temperature [7] due to the solubility limit of 

tetragonal phase beyond 17% Ce.

To have a more thorough understanding about the phase stabilisations as well as the 

effect of cerium and annealing temperature to the crystal structure of Ce-doped 

hafiiia films, a detailed analysis of c(lll) peak positions, crystallite sizes and cell 

parameters were performed. All the data is presented in the following tables and 

plotted against either cerium concentrations or temperatures. A peak-fitting process 

similar to the method used with the 10% Ce sample was also employed for the 

sample with 34% Ce because these two samples just only showed a single peak at 

approximately 30.5°.

140



For the other three samples which show a mix of phases, deconvolution of XRD 

peaks was required to extract information about the c(l 11) peak and additionally, the 

fraction of monoclinic phase by using the method proposed by Schmid in [8]. The 

analysis of this monoclinic fraction against cerium concentration and annealing 

temperature will be discussed after the results of the main c(l 11) peak.

Table 5-2 summarises the peak position data for the cubic (111) feature which have 

been extracted from peak-fitting process. As can be seen, a general trend is observed 

between the peak position and annealing temperature. If the reference peak position 

of HfCb is recalled (20C(ni) = 30.38°), differences between the peak positions of any 

given sample and of the reference cubic one (A (20)) against annealing temperatures 

can be plotted as shown in Figure 5-10. It can be seen from this figure that with 

increasing annealing temperatures, the peak positions of all samples consistently 

shift to the left, i.e. towards the position of the high-temperature cubic phase of pure 

HfOi. This tendency indicates that the higher the annealing temperatures, the closer 

the “cubic" form in those films approaches the reference structure of pure Hf02.

0.45 n ♦ 5%
■ 8%
A 10%
• 17%
X 34%

700 800
Temperature ( C)

Figure 5-10: Variations of A (20) against temperatures for air annealed samples. The data points were 
within the experimental accuracy (see section 3.3.4 for more details).
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Table 5-2: Peak positions of c(lll) in 20 degrees of all air annealed samples

Ge(%) Annealing temperature CO
600 700 800 900 lOOO

5 30.72 30.68 30.60 30.50 30.39
S 30.67 30.66 30.52 30.50 3030
10 30.80 30.65 30.63 30.55 30.51
17 30.80 30.62 30.57 30.44 30.47
34 30.70 30.65 30.73 30.57 30.60

With the exception of the 5% Ce sample, which has a c(l 11) peak which approaches 

the high-temperature cubic peak position (20c (m) = 30.38°), all of the other samples 

have XRD peaks that converge towards higher angles. This is believed to be due to 

the low level of cerium doping, which means the distortion that cerium introduces to 

the hafhia matrix is quite modest. As a result, the unit cell could gradually approach 

the cell size of the undoped cubic form. Because the peak position is directly linked 

to the degree of distortion of the “cubic” unit cell, it can be suggested that all of the 

samples, other than the 5% one, has a degree of unit cell distortion retained even at 

high temperatures. This tendency is also supported by the data of unit cell for all 

samples presented in 

Table 5-3 below.

Table 5-3: Crystallite size and cubic unit cell of air annealed films as a function of cerium doping levels
and annealing temperatures.

C*(X) CrystaMte size (nm)

600 700 800 900 1000
5 8.75 8.64 8.11 9.68 8.48
8 12.92 11.04 10.92 10.94 12.78

10 11.85 12.98 13.69 14.36 14.46
17 1024 11.06 10.38 11.70 13.80
34 12.84 11.91 12.84 13.17 14.16

d-spadng(A)

600 700 800 900 1000
5 2.91 2.91 2.92 2.93 2.94
8 2.91 2.92 2.93 2.93 2.93

10 2.90 2.92 2.92 2.93 2.93
17 2.90 2.92 2.92 2.94 2.93
34 2.91 2.92 2.91 2.92 2.92

lattice parameter (A)

600 700 800 900 1000
5 5.04 5.05 5.06 5.08 5.09
8 5.05 5.05 5.07 5.08 5.08
10 5.03 5.05 5.06 5.07 5.07
17 5.03 5.06 5.07 5.09 5.08
34 5.04 5.05 5.04 5.07 5.06
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Hgure 5-11: \ ariations of crystallite sizes against temperatures for air annealed samples. The data points 
were within the experimental accuracy (see section 3.3.4 for more details).

Figure 5-11 depicts graphically the influence of annealing temperature on the 

crystallite size of all samples. It can be seen from the above plot that these samples 

behaved quite differently in response to annealing temperatures. For the 5% Ce 

sample, the crystallite size does not vary significantly with increasing temperature. 

This observation agrees to some extent with the previous observation in Figure 5-10 

for this low doping level. It may be suggested that at such low dopant content, the 

“cubic’ form reaches a limit of crystallite size even at low annealing temperature and 

hence, with increasing annealing temperatures, the growth of “cubic” structure is 

virtually unaffected by thermodynamic driving force. In contrast, a different 

tendency can be observed for all other samples. For the samples with 8%, 17% and 

34% Ce, all of them follow a similar trend though the 8% one seems to be slightly 

different from the other two at low temperatures. The crystallite sizes for these three 

tend to increase in a non-linear fashion with annealing temperature. The crystallite 

sizes fluctuate between the ranges of 600 °C to 800 °C and gradually increase 

afterwards. This observation indicates that for these samples, while at low and 

intermediate annealing temperatures, the growth of “cubic” structures is not strongly 

dependent on the thermodynamic driving force, it is at high temperatures.
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In other words, this behaviour is suggestive of an activation threshold for 

crystallisation in these samples. For the 10% sample, the data shows a linear 

increase in crystallite size with temperature, but appears to saturate as the annealing 

temperature exceeds 900°C. When being directly compared to the 34% Ce sample, 

which also contains only one form of crystal structure, i.e. without the existence of 

monoclinic phase, a dissimilar crystal growth and/or crystallisation can be suggested. 

This can be due to the formation of different types of “metastable tetragonal phases” 

(see chapter 2 for more details) and/or co-existence of various intermediate phases 

resembling the high-temperature cubic phase of Hf02. This issue will be discussed 

more in details in the following section about Raman characterisations of these films.

As mentioned previously, it is also of interest to evaluate the fraction of monoclinic 

phase in the samples containing 5%, 8% and 17% Ce as the monoclinic phase could 

not be fully suppressed by the stabilised “cubic” as in the case of the 10% and 34% 

Ce samples. A noteworthy detail from the aforementioned deconvolution process 

required for peak analysis of these three samples is only a small degree of 

monoclinic phase can be detected visually in some of their XRD spectra. This 

observations holds true for the 17% Ce sample annealed at 600 °C and 700 °C as well 

as for the 8% Ce sample annealed at 600 °C (see Figure 5-5 and Figure 5-6). 

Consequently, it was nearly impossible to fit a meaningful peak during the 

deconvolution process and hence, all of these monoclinic peaks have been omitted. 

Figure 5-12 presents the fraction of monoclinic phase obtained after XRD pattern 

analysis for these three samples as a function of annealing temperature.
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Figure 5-12: Monoclinic fraction against temperatures for air annealed samples

It can be suggested from Figure 5-12 that with increasing annealing temperatures, 

the fractions of monoclinic phase also increase in a seemingly linear fashion for both 

5% and 8% Ce samples. In the case of 17% Ce example, it reveals that the 

monoclinic fraction seems likely to follow the similar trend. However, as stated 

previously, at annealing temperatures beyond 900 °C, a phase separation is likely to 

take place. If this tendency is held true for this 17% Ce sample, a constant fraction of 

monoclinic can co-exist with “cubic” phase and hence, can partly explain the 

seemingly equal values of monoclinic fraction at 900 °C and 1000°C.

5.2.2 Raman phase analysis

Prior to the Raman results and discussions, it may be useful to recall briefly some 

key points regarding crystal structure and phase stabilisation in Hf02-based materials 

and its twin oxide Zr02. Besides three main well-known structures, namely 

monoclinic, tetragonal and cubic, the occurrence of many other “metastable phases”, 

particularly f and f ’ forms, have been proposed and verified by both theoretical and 

experimental approaches (see chapter 2 for more details).
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Some of these “metastable phases”, in fact, exhibit a very similar structure as the 

high-temperature cubic one. Therefore, it is a very important issue to identify the 

true crystal structure as much as possible within these samples. Moreover, it is also a 

matter of great interest because this finding can play a key role in tenns of the k- 

value associating with such phase as predicted in literature [1-3, 9]. For instance, the 

doping level approximately 10% cerium was shown theoretically by Fischer to 

favour a stabilised tetragonal phase in [2], which was predicted by Zhao and 

Vanderbilt to achieve a k- value of 70 [9].

From the previous XRD section, phase determination (mainly concerned with the 

assignment of cubic phase) can be established for all the films annealed in air. 

However, XRD suffers one main drawback for the current task of differentiating 

between the phases of interest here. While XRD is sensitive to the displacement of 

heavy atoms within the structure, it is far less sensitive to lighter elements such as 

oxygen due to the significantly lower scattering cross section. Many of the stabilised 

phases are characterised by a displacement of the oxygen sub lattice along the z-axis 

[10, 11]. Therefore, XRD has limited use for establishing the phase of the films 

without additional results from Raman scattering, which is much more sensitive to 

the oxygen atoms.

The Raman features of the three polymorphs of Zr02 and Hf02 in terms of their 

active modes have been well established for some time [12]. In fact, most of the 

arguments about mode assignments have been around the tetragonal active modes. 

The situation has become further complicated since the discovery of “metastable 

phases” within this fluorite-related structures. As far as doping is concerned, it is not 

surprising to understand that this problem is due to the formations of oxygen 

vacancy, defects and the order-disorder phenomenon. All of them add complexity to 

interpreting the Raman data as selection rules can be broken down within the 

proximity of Brillouin zone, enabling the activations of forbidden vibrational modes.

With all of this knowledge beforehand, the Raman results of this 10% Ce sample 

will be treated as a stalling point to assert and clarify the proposed “cubic” structure 

assigned previously from the XRD study. Spectra of this sample are shown in Figure 

5-13 along with a spectrum of the silicon substrate.
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The scan was performed in the range between 200 cm'1 to 1200 cm'1, of which 

characteristic peaks of various phases can be found [10, 13].

600

500-

400-

300-

200-

100-

Si substrate

Raman shift (cm1)

Figure 5-13: Raman spectrum of 10% Ce sample for (a): film annealed at 700‘C, (b): film annealed at 900
'C, and (c): film annealed at lOOtTC.

The first noticeable observation from the above figure is that the interference from 

the Si substrate was quite strong and thus, impeded the identification of Raman 

peaks from the film. The range most affected is between 450 cm'1 to 550 cm'1 which 

can potentially affect the observation of the expected cubic feature band around 460 
cm 1 [12]. The presence of the film seems to have an enhancement effect on the 

intensity of the Si features and so far, the reason for this is still not clear. It might be 

that the UV laser excites the Si02 layer beneath the films, resulting in resonance 

enhancement of the Raman scattering. The same phenomenon can also be pointed 

out for the features around 1000 cm'1, which is probably some kind of second-order 

mode from the Si substrate itself or from some form of carbon-contained impurity on 

the surface of the specimen.
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The main peak of interest which consistently appeared in all the films is the one 

whose position is around 660-670 cm'1. Another peak which can also belong to these 

films though with a much lower intensity is the one at approximately 260 cm'1. Due 

to its weak signal, its contribution to the crystal structure will be revised and 

discussed in more details when dealing with other samples, which show more 

noticeable evolutions to annealing temperatures and cerium contents.

Using the peak-fitting procedure, it was found that a peak was identified around 664 
cm 1 in all air annealed 10% Ce films and hence, should have a direct link with the 

“cubic” structure assigned from XRD study. Except the film annealed at 700° C, the 

other two show that a degree of asymmetry towards the higher wave-number range 

with their peaks. This phenomenon is depicted in Figure 5-14 and Figure 5-15 for 

samples annealed at 700°C and 1000°C respectively.

Raman shift (cm1)

Figure 5-14: Raman peak-fitting for 10% Ce 700’C air annealed film. The dotted line represents the 
experimental data; the solid line assumes a Lorentzian distribution. The horizontal line represents the

baseline after background subtraction.
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160-

Raman shift (cm ’)

Figure 5-15: Raman peak-fitting for 10% Ce 1000 °C air annealed film. The dotted line represents the 
experimental data; the solid line assumes a Lorentzian distribution. The horizontal line represents the 

baseline after background subtraction. After the deconvolution process, it can be split into 2 other primary
curves as shown in the graph.

The shoulder feature observed for the sample annealed at lOOCTC is also observed for 

the one annealed at 900 °C, which in turns immediately raised the question about the 

occurrence of this asymmetry compared to the one annealed at 700 °C. The 

asymmetry observed can be explained by the presence of a second peak to the right 

of the main peak. If this peak is purely thought as a convolution of the other two 

main peaks, it is probably that besides the main characteristic peak at 664 cm"1, 

another one around 710 cm"1 also exists. According to Yashima et al [10], this peak 

either can belong to a cubic structure or be assigned as a defect-induced tetragonal 

mode. Because no more experimental data from available literature dealing with this 

specific peak could be found and due to its minor importance and contribution to the 

characteristic peak, it is accepted here that the aforementioned hypothesis is true.

Based on the XRD study and the main peak of all films from this Raman 

characterization, it is reasonable to assign this Raman reflection (the peak around 
660-670 cm"1) belonging to a form of “cubic” structure.
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However, none of such characteristic peak of AO2 fluorite-type cubic structure [12] 
around 460 cm'1 occur nor any similar one from stabilised cubic form [14] observed 

when a tetragonal zirconia doped with ceria to form a solid solution. Hence, it seems 

at this stage, this characteristic peak cannot be assigned to a high-temperature cubic 

structure although the unit cell parameters calculated from XRD study still remain 

valid considering the “metastable cubic” configuration. Therefore, based on these 

results, it can be proposed that the crystal structure of 10% Ce sample possibly 

rendering a form of tetragonal configuration mentioned previously. This proposition 

will be revisited and discussed further when other samples are concerned in terms of 

its "tetragonality”. Moreover, the appearance of the aforementioned subordinate 

peak somehow complicates the interpretation of this peak and therefore, creates 

some significant difficulties to gain any better understanding about its evolution. 

Nonetheless, it is still an important finding to having determined the direct 

relationship between the “cubic” peak from XRD study and the characteristic peak 

from the Raman spectra of this specific sample, which can pave the way for further 

insights about the phase evolution and stabilisation analysis. Raman spectra of other 

samples will be presented as follows, together with tabulated data for the previously 

discussed main feature in the case of the 10% Ce sample. The errors in the 

determination of peak position and FWHM were previously mentioned in section 
3.4.4.

Table 5-4: Peak positions (cm1) of all air annealed samples.

Ce% Temperature (*C)
600 700 800 900 1000

5 664 cccooo 669 669 670
8 662 665 667 666 668
10 n/a 663 n/a 662 664
17 657 656 661 661 663
34 659 660 664 667 665
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Table 5-5: FWHM (cm”1) for the main feature of all annealed samples

Ce% Temperature (‘C)
600 700 800 900 1000

5 66.3 68.1 70.4 74.8 69.4
8 48.1 72.2 68.0 64.0 66.0

10 n/a 69.6 n/a 57.0 57.9
17 52.0 50.2 55.2 55.6 58.6
34 69.4 68.5 49.9 54.9 59.5
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Figure 5-16: Raman spectrum of 5% Ce sample at various annealing temperatures.
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Figure 5-17: Raman spectrum of 8% Ce sample at various annealing temperatures
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Figure 5-18: Raman spectrum of 17% Ce sample at various annealing temperatures
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Figure 5-19: Raman spectrum of 34% Ce sample at various annealing temperatures
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The Raman spectra of the air annealed 5% Ce films are shown in Figure 5-16. There 

are 5 main peaks associated with the actual films and these are labelled from 1 to 5 

accordingly. It has already been established that a fraction of this sample is in the 

monoclinic phase; hence it is necessary to assign the monoclinic features of the 

Raman spectra first. It can be done by comparing Raman spectra of films with 

different monoclinic fractions, for instance between pure HfCb (only monoclinic), 

5% Ce (mix of monoclinic and “cubic”) and 10% Ce (only “cubic”). Therefore, a 

pure Hf02 film with similar thickness was annealed at 900° C in air and its Raman 

was recorded as shown in Figure 5-20 below together with its 5% Ce and 10% Ce 

counterparts.

10% Ce

—— 5% Ce

Raman shift (cm*1)

Figure 5-20: Raman spectra of air annealed films at 900 *C

As can be seen from this comparison, the only peak contributed to the spectrum of 

5% sample is the one around 390 cm'1 (peak 2). This is supported by the data given 

in reference [10] which indicates that monoclinic features are at 383 cm*1 and 399 
cm 1 respectively while no peak within this proximity of wavenumber was reported 

either for tetragonal or cubic phase.
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It is quite interesting to note that in this case and for other samples containing a 

fraction of monoclinic such as 8% Ce (Figure 5-17) and 17% Ce one (Figure 5-18), 

this peak is only noticeable in air annealing condition and high temperatures (900° C 

and 1000 °C).The monoclinic film also shows another peak around 253 cm'1, which 

is also very close to another one belonging to the monoclinic phase (255 cm'1) 

reported in [10]. In the case of both Ce-doped Hf -oxide films, their spectra both 

contain a peak appearing approximately at 262 cm'1 (peak 1). This peak, according 

to the peak assignment also from [10], might belong to some fonn of tetragonal 

structures.

The main difference and clearly, the most distinguishable feature between the HfC>2 

film and the other two is the pattern appearing within the wavenumber range from 
600 cm 1 to 800 cm In the case of Hf02, its monoclinic fonn was characterised by 

two blended peaks (after deconvolution and peak-fitting, their positions are 
determined at 630 cm'1 and 668 cm'1 respectively). For the other two samples, while 

the 10% shows a dominant peak at around 662 cm"1, the one with 5% cerium shows 

two additional shoulders (labelled as peak 3 & 5). Based on the phase determined 

from preceding XRD studies and the differences pointed out from this comparison, it 

can be proposed that this very main feature (peak 4), as already pointed out in the 

discussion of 10% sample before, is the main peak of interest and belongs to the 

dominant phase (“cubic”) occurred in all samples.

Having assigned peak 2 the monoclinic phase, only four peaks (1, 3, 4 and 5) remain 

of interest for further investigation. The assignments for peak 3 and 5 are pretty 

difficult because of some reasons. It is due to the very nature of thin films in this 

study (between 20-30 nm), i.e. low signal-to-noise and the fact that some different 

polymorphs from these Ce-doped Hf oxides likely co-exist as demonstrated in 

various studies before, e.g. [10, 11, 14-16]. In the case of peak 3, due to its close 

proximity to another possible peak from the monoclinic phase, it is very difficult to 

sufficiently distinguish them. Another obstacle is the broadening effect of the main 

feature (peak 4), which has been observed in many similar Raman studies, for 

instance in [14], Therefore, it can be considered a kind of defect-induced band rather 

than a peak except possibly in some cases presented later.
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In the case of peak 5, though it is better separated from the main feature (peak 4) and 

hence can be sufficiently fitted with higher degree of confidence, a survey from 

literature did not return any likely feature at that position (around 740 cm'1). 

Therefore, it remains unclear that this feature is likely a peak or just a defect-induced 

band, hi a study of Ytria-doped hafnia [11], a very similar feature at that range of 

wavenumber is assigned as defect-induced band. Thus it can be reasonable to assign 

this peak in the same way, i.e. a defect-induced feature, which is considered as a 

feature of a defect or disorder arising from air annealing condition.

Fortunately, of all the concerned features which can correlate to any significant 

insights about the phase stabilisation, peak 1 and 4 are the most important ones due 

to the fact that they represent the vibrations of two different bonds between Hf-On 

and Hf-Oi respectively if an analogy between Zr02 and Hf02 is assumed. In this 

context, peak 1 corresponds to the stretching mode of Hf-On while peak 4 depicts 

the one of Hf-Oi [14]. Based on the viewpoint of tetragonal Zr02, which has been 

normally considered as a layer structure [17], it can be also similarly applied to this 

scenario with Hf02 (see chapter 2 for more details). Thus in this picture, 

tetragonality of a doped-Hf02 system with oversized cation (CeM in this study) is 

attributed to the strong bonding of Hf-Oi within the layers (shorter bond-length) and 

the weak bonding of Hf-On between the layers (longer bond-length). In order to 

demonstrate the tetragonality (c/a ratio) and the influence of Ce4+ cation to the 

crystal structure of Hf02, a schematic adopted from [17] will be presented in Figure 

5-21 below. In this figure, Zr-Oi and Zr-On bonds are illustrated to give a 

visualisation of these different characteristic cation-oxygen links within tetragonal 

structure as a distorted fluorite-type cubic configuration.
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Figure 5-21: A schematic illustration how tetragonality (c/a ratio) of ZrO^ varies with oversized dopant 
(cerium) and undersized dopant (Germanium). The numbers indicate the position of atoms in ^-direction

(perpendicular to the paper plane).

A graphical demonstration of six vibrational modes of tetragonal Zr02 [ 18] and their 

corresponding peak positions is shown in Figure 5-22. While for the peak 

assignment for the band at 265 cm'1 (Eg (2)) is generally agreed between researchers, 

there have been some disparities in the assignment of other bands. In a more recent 

study about Raman vibrational modes of tetragonal zirconia [19], Naumenko et al 

proposed a different band assignment of which the band at 645 cm'1 was assigned as 

Aig instead of Big (1). Because the tetragonal phase is considered as a distorted 

fluorite-type cubic and its different metastable configurations thought only due to the 

oxygen displacement along c-axis [10, 15, 16], it may be more reasonable to assign 

the band at 645 cm'1 (peak 4 in this study) as Aig as mentioned above rather than Big 

(1). So, based on these discussions, it is now available to assign peak 1 as Eg (2) 

mode which involves both Hf and O atoms movement (in ^-direction) and peak 4 as 

Aig mode which only Oxygen displaced along the c-direction.
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Figure 5-22: Six normal Raman active modes of tetragonal Zr02

As can be seen from Figure 5-16 for 5% Ce sample and other Raman spectra of other 

different doping levels, peak 1 is relatively small compared to peak 4 and just only 

appears at high annealing temperatures, i.e. beyond 800° C. This observation can be 

explained regarding the nature of this mode. This active mode, Eg (2), involves 

movements from both Hf and O atoms which in turn require a degree of disorders 

and oscillations within the material matrix. Thus this sort of stretching mode might 

appear more likely at higher annealing temperatures. Although this mode did not 

appear consistently in all samples at different annealing temperatures, it is still a 

good evidence to indicate that some form of tetragonal structures does exist in all 

films.
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After the assignments for all peaks, the main interest and focus therefore remain on 

peak 4, which was the main feature in all films. An attempt was firstly tried to see if 

any linear relationship between the crystallite sizes determined from XRD study and 

FWHMs of this peak (see Table 5-5) could be observed as reported in [20] for 

nanomaterials. However, as the result turned out, no such relationship or any similar 

one could be observed. It might be due the complexity of phases within thin films, 

small crystallites or poor signal-to-noise ratio. However, in terms of phase evolution 

and its implication about the effect of using cerium on the stabilisation of phases in 

Hf02, the analysis of the peak position still gave many meaningful insights of these 

issues. In order to illustrate how this main peak position (after deconvolution) varies 

with annealing temperature and cerium concentrations, the data in Table 5-4 is 

plotted in Figure 5-23 and Figure 5-24 respectively.
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Figure 5-23: Variations of Raman peak position against temperatures for air annealed samples. The top 
trend-lines is for 5% Ce sample, the bottom one is for 34% Ce one. The errors in the determination of 

peak position were previously mentioned in section 3.4.4.

As can be seen from the figure above, all samples show quite a similar trend. The 

peak position shift towards higher wavenumber value as temperature increased 

regardless of cerium contents. This tendency means that with higher temperature, the 

crystal structure will render a higher tetragonality (Cf/af ratio) as being similarly 

observed in [14].
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In fact, this observation agrees with the previous XRD study about the unit cell 

parameter if one considers the pseudo-flourite cubic cell (af = aV2) proposed by 

Teufer [21] in his study about crystal structure of tetragonal Z1O2. According to the 

XRD study previously conducted, the unit cell of this “cubic” structure will increase 

as temperature increases. From the viewpoint of XRD alone, it either means that (i): 

the high-temperature cubic cell expands or (ii): some other forms of tetragonal or its 

metastable structures have the expansion on both the a- and c- directions as pointed 

out in [14]. Based on the results illustrated in Figure 5-23, it is sufficiently 

reasonable to conclude that for air annealed samples, the crystal structures of all 

films adopt a form of tetragonal or metastable derivatives and their tetragonality 

slightly increases with annealing temperature regardless of cerium concentrations.

♦ 600 B700 A 800 X900 X900inN2 #900 in vacuum +1000

Q- 660

Cerium (%)

Figure 5-24: Variations of Raman peak position against cerium concentrations. The trend-line is added to
guide the eye only.

The influence of cerium on the phase stabilisation of HfCb films is revealed in Figure 

5-24. It was reportedly demonstrated that with increasing amount of dopants, such as 
Ce4+ [14] or V3+ [10, 11, 15], the intensity ratio of two peaks W/tao in the case of 

cerium doping or I480/I640 in the case of Ytrium doping would dictate the ratio of 

tetragonal to cubic transition. Such a tendency cannot be observed in any Raman 

spectra of all the samples because of some reasons. Firstly, the strong interference 

from the silicon substrate with its large peak at around 520 cm’1 prevents the clear 

observation of Raman signals from the film at around 500 cm'1.
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This impedes the observation of the characteristic feature of tetragonal phase as in 

[11]. Another reason is the broadening of peak 4 on its own, which was also 

observed in many previous studies of the tetragonal-cubic phase transition in ZrCb or 

Hf02 (see [10, 11, 14]for instance). This broadening phenomenon was generally 

explained by the disorder, created by substitutional dopant atoms introduced into the 

films, that normally observed in solid solution [14]. In addition, the broadening of 

this peak, together with the shift towards lower frequency, was related to the 

decrease in tetragonality when the amount of oversized doping cation (Ce+4) is 

increased. This results in a shift of the peak towards low wavenumber value at 620 
cm'1 [14] when a specific cerium content was reached (21% ). This observation also 

meant that at that specific cerium concentration, the tetragonal-cubic transition was 

complete and the stable phase at that cerium doping level would be cubic [14]. 

Although such features at around 500 cm’1 or 610 cm'1 are not possible to be 

detected in any Raman spectra of these air annealed samples, the decrease in 

frequency of peak 4 as cerium concentrations increases can be observed as shown in 

Figure 5-24. In the range between 5% and 17% cerium, the frequency of this peak 

depicts a linear shift towards lower wavenumber at any given temperature. This 

trend is in good agreement with the result from [14] and other studies related to 

phase stabilisation of Zr02 and HfCb mentioned before. A more detailed assessment 

of this plot also reveals that the slope of the trend-lines decreases with increasing 

temperature. This means that the influence of cerium is more significant at lower 

annealing temperatures and became lesser at higher temperature.

What is irregular from this trend mentioned above is the result obtained from 34% 

Ce sample. As pointed out previously, a stable cubic configuration should be reached 

for samples with more than 21% cerium doping level. As a result, it is expected that 

the frequency of the main peak should shift towards 610 cm"1. However, this is not 

observed for the 34% sample at any given annealing temperature. Instead, the 

frequency of this peak increases again. This phenomenon can be partly explained if 

the solubility limit of Ce02 in Zr02 is taken into account and the same behaviour is 

assumed for Hf02.
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The solubility limit of Ce02 in Zr02 was reported to be about 18% [7, 22] for 

temperatures below 140(7 C thus if the amount of cerium exceeds this limit, then it is 

likely that cubic Zr02 solid solution will co-exist with a form of metastable 

tetragonal (f), a product of diffusionless transformation of tetragonal phase [14]. If a 

similar process also occurs in Ce-doped hafnia, then it is likely that the 34% Ce 

sample will behave in the same manner. As a result, it is likely one of the reasons 

why the variation of tetragonality in this sample does not follow the same trend as 

the others.

5.2.3 Summary

The phase composition and crystal structure analysis for air annealed samples over 

the range between 600 °C and 1000 °C were conducted to investigate the influence of 

cerium to the stabilisation of the higher k-value phases in hafnia. The results 

established from XRD study confirm that by introducing cerium to hafnia, high 

temperature phase found in pure Hf02 can be stabilised regardless of annealing 

temperatures for 10% and 34% doping concentration, while a mix of “cubic” and 

monoclinic can be observed for the samples with 5%, 8% and 17 % Ce and the 

fraction of monoclinic in these samples shows a dependence upon annealing 

temperatures. In addition, crystal structure of this stabilised phase and its 

corresponding crystallite sizes can also be deduced from this study with the reference 

to the high temperature cubic structure found in pure Hf02. The results from the 

Raman study, however, reveal that the stabilised phase existing in these samples are 

more likely a form of “metastable tetragonal” or mixed phases of tetragonal and its 

metastable forms. Although the tetragonality of these phases is not frilly resolved due 

to the limited resolutions from Raman spectra of those films, it can be suggested that 

this stabilised phase resembles the stable cubic phase in pure Hf02 very closely, 

particularly for the films annealed at high temperatures (with the exception of 34% 

Ce sample). Therefore, for convenience, the crystallographic assignment for this 

characteristic stabilised phase in all samples is still kept on the basis of the high 

temperature cubic phase from pure Hf02, i.e. c(l 11).
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5.3 N2 annealing at 900°C

In this section, XRD and UV Raman results for phase and crystal structure analysis 

of all the samples annealed in N2 with duration of 15 minutes at 900 °C will be 

presented and discussed. This is followed by that is the electrical characterisation of 

the 10% Ce sample to investigate the dielectric properties of the N2 annealed films in 

terms of dielectric constant and leakage current. The electrical data analysis of this 

10% Ce sample will be supplemented by a TEM image to give necessary 

information about the interfacial layer and its thickness, which are important 

parameters to understand the behaviour of the electrical behaviours from this sample.

5.3.1 Phase analysis

Similar to the study of air annealing, all samples were subjected to XRD and Raman 

investigations. Firstly, the XRD results are presented in Figure 5-25 and Table 5-6 as 

follows.

2theta (degrees)

Figure 5-25: XRD spectra of all samples annealed in N2 for 15 minutes.
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Table 5-6: summarised XRD data analysis for all N2 annealed samples

5%Ce 8%Ce 10% Ce 17% Ce 34% Ce
c(lll) peak position (degrees)

30.52 30.47 3037 3030 30.60
c(lll)unit cell (A)

5.07 5.08 5.07 5.08 5.06
crystallite sizes (nm)

9.81 1136 13.40 1235 10.93

Compared to the data obtained for air annealed samples at 900°C (see Table 5-2 and 

Table 5-3), the results from all N2 annealed samples for the stabilised phase of 

interest show a high degree of similarity. Therefore, it is reasonable to conclude from 

the XRD results that the effect of N2 annealing is quite similar to air at 900 °C for all 

samples. However, a closer assessment of the diffraction patterns of 5%, 8% and 

17% Ce samples reveal that the fraction of monoclinic in these films decreases 

compared to the air annealed samples. This indicates that in N2 annealing, 

monoclinic phase is less favourable than air annealing for these specific cerium 

concentrations. This observation will be revisited and discussed in more details in 

section 5.4.

Based on the findings about the phase assignment from the Raman study for air 

annealed samples, it is of interest to compare the response of samples with 5%, 10% 

and 34 % Ce. While the first one represents the lowest range of doping level and 

shows a significant amount of monoclinic phase, the other two only show a single 

phase from their XRD patterns. However, as illustrated previously, the sample with 

34% Ce may differ with the 10% Ce one in tenns of their tetragonalites due to the 

difference of solubility of tetragonal phase regarding cerium concentration. Figure 

5-26 shows the Raman spectra for these three samples after annealing in N2 for 15 

minutes.
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Figure 5-26: Raman spectra for N2 annealed samples

Compared to previous Raman spectra for each sample annealed in air at the same 

temperature, the results illustrated in Figure 5-26 also show a degree of similarity, 

which agrees with the same observation made from the comparison of XRD studies 

mentioned above. As a result, it can be concluded that in N2, the influence of cerium 

to all samples annealed at 900 °C is pretty much the same as in air in terms of phase 

evolution and crystal structure (with the exception of decreasing monoclinic 

fractions in three samples with 5%, 8% and 17% Ce).

5.3.2 Electrical characterisation of 10% Ce sample

As Ce-doped Hf oxide films are of interest for replacement for SiCh in CMOS 

devices, it is important to consider the electrical characterisations of the films. 

Because of the specific interest on the sample with approximately 10% Ce, all the 

electrical characterisations within this study will focus only on this doping 

concentration, firstly with the N2 annealed films in 15 minutes.
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In order to conduct electrical characterisations of these films, simple MOS capacitor 

structures were fabricated resulting in a (Au/Ceo.i-Hf0.9 02J Si/Al) structure. Au 

contacts with a diameter of 300 pm were deposited on the films by sputtering and a 

blanket A1 backside contact was deposited by vacuum evaporation. Capacitance- 

Voltage (C-V), Current-Voltage (I-V) and Capacitance-Frequency (C-f) responses 

over a range of frequency from 20 Hz to 2 MHz with different DC voltage bias were 

measured for each MOS-C structure. Their correspondent dielectric constants (k- 

values) and leakage current density were consequently extracted using calculations 

derived from references [23, 24] (see chapter 3 for detailed descriptions of these 

measurements).

Before discussing the electrical data, it is necessary to know the thicknesses of the 

films before and after N2 annealing and their corresponding interfacial layers 

because these parameters are the primary factors in detennining the k-value from the 

C-V curve. From a TEM image for the as-grown 10% Ce sample (see vacuum 

annealing section), the Si02 interfacial layer thickness is determined approximately 

2,1 nm, which is slightly thicker than the native SiC>2 found on as-received Si 

substrate prior to the growth (1.8~2.0 nm). Ellipsometry measurement for this as- 

grown film gives a value of 23 nm (with the interlayer taken into account by 

applying the 2-layer model, see chapter 3 for more details). Therefore, in order to 

determine the thickness of the film after annealing, the interlayer thickness needs to 

be determined beforehand. Figure 5-27 shows a TEM image taken for the annealed 

film, revealing the interfacial layer between the film and the Si substrate. From this 

image, a thickness approximately 3.7 nm of the interfacial layer is revealed while the 

film thickness after annealing is estimated about 20 mn. This value, in turn, is in 

good agreement with the result given by the ellipsometry. Therefore, it can be 

reasonably assumed that for further electrical data analysis of other films, the film 

thickness can be based mainly on the input data of thickness measurement from 

ellipsometry.
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In contrast to the hypothesis that annealing in N2 will not alter the interlayer, this 

TEM study shows a considerable increase in the interfacial layer thickness. This 

increase is surprising due to the fact that ideally, within an inert environment such as 

N2, there should be no source of oxygen that might diffuse through the film and 

oxidise the substrate. The most likely explanation is oxygen ingress into the furnace 

during annealing either due to oxygen impurities in the nitrogen or insufficient seals. 

Moreover, because the annealing was performed in a tube furnace, it was also very 

likely that oxygen could be introduced during the course of sample 

loading/unloading.

Ce-Hf02

20 nm

Figure 5-27: TEM image of a 10% Ce thick sample (about 23 nm) after N2 annealing at 9001C/15 minutes

The increase in the thickness of the interfacial silicon oxide is highly undesirable for 

high-k applications; hence the use of N2 as an annealing environment for any 

subsequent meaningful electrical measurements will be excluded for the rest of this 

research. As will be demonstrated later in the vacuum annealing section, in order to 

maintain the prevention of mixing up/diffusion of elements to other layers and 

undesired oxidation, vacuum is mandatory to undertake the post-growth treatment to 

satisfy these requirements.
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After the thickness of the film and the interlayer had been established by TEM and 

ellipsometry for both as-grown and annealed films, interpretation of the C-V curve 

can take place to yield their dielectric constants besides many other important 

information about the electrical properties from those films. Figure 5-28 shows the 

C-V curves for both as-grown and N2 annealed 10% Ce samples at three different 

frequencies: 10 kHz, 100 kHz and 1 MHz respectively. The arrows indicate the 

direction of the ramped bias voltage during the measurements. The dielectric 

constant was calculated from C-V curves at 100 KHz as commonly used to extract 

this information from dielectric thin films [4].
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Figure 5-28: C-V curves for 10%Ce sample (a): as-grmvn and (b): N2 annealed in 15 minutes

Firstly, as can be seen from Figure 5-28 (a), the C-V curves of the as-grown example 

show a very high degree of hysteresis and frequency dispersion, especially at the 

lower frequency. The frequency dispersion at lower frequency, which is the 

characteristic response of insulating oxide film on n-type Si substrate, can be 

attributed to the response of the dielectric film in the inversion regime. However, as 

this kind of response is normally only found at low and intermediate frequency (10 

kHz in this study) hence, the clear reason for that phenomenon is still not 

understood. Another noticeable observation is that at all frequencies tested, none of 

C-V curves for the as-deposited samples show full accumulation region saturation. 

From the shapes of these plots, it is revealed that the curve itself showing a degree of 

both fixed oxide charge and density of interface (surface) states (see [23] for more 

details).
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The fixed oxide charge contributes to the shift of the curve to the right, i.e. towards 

positive bias voltage, which means that some forms of negative charges existing 

inside the as-grown films. The origin and formation of these negative charges have 

been proposed in [25] as a form of oxygen vacancy. Besides these negative charges, 

another type of charge, namely interface (surface) states, can also be found from the 

C-V plot as it introduces a non-parallel stretch-out towards the positive bias voltage. 

Based on that behaviour, this kind of trap can be assigned to an “acceptor like” state, 

which means it remains neutral when empty and becomes negative when filled, A 

detailed study of oxygen vacancies in transitional and rare-earth metal oxides [26] 

offers an excellent study about the neutral oxygen vacancy that may occur within 

different oxide surfaces. However, it is noteworthy to point out that in this study, the 

high-k oxide films were grown on top of native Si02 layer. Therefore, the effect of 

interface (surface) states, which is primarily thought of the intrinsic property of the 

semiconductor substrate [23, 24], might be far more complicated compared to the 

interpretation of such phenomenon when dealing with conventional Si02 MOS 

structure.

The effect of N2 annealing on the electrical responses of this sample is illustrated in 

Figure 5-28(b). Improvements are apparent in terms of hysteresis, frequency 

dispersion, reductions in fixed charges and density of interface (surface) states. For 

instance, the hysteresis has been significantly reduced and hence, indicating a 

reduction in fixed oxide charge and some reduction in interface. However, in terms 

of dielectric constant, the N2 annealed film shows a very close result (k~28) to the 

as-deposited sample (k~29) at 100 kHz. Not only the k-value measured at this 

specific frequency, both films also show a nearly identical behaviour over the range 

of tested frequency, i.e. between 10 kHz and 2MHz. Plots of k-f relationship are 

presented in Figure 5-29 (a) for both films over the frequency range mentioned 

above, with the k-value measured and calculated at the highest bias voltage on the 

accumulation regime from the C-V curves.
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Figure 5-29: (a) Permittivity against frequency and (b): Leakage current density against electric field 
strength for 10 % Ce sample (the frequency and the leakage current density are presented in log scale)

The effect of annealing on the leakage current density against electric field strength 

is examined and presented in Figure 5-29 (b). It was thought that the as-grown 

sample should possess much better leakage current density versus any types of 

annealed ones due to its amorphous nature [27]. However, in the case of N2 

annealing, the opposite result was observed, with the leakage clearly decreasing after 

treatment. This reduction in leakage can be attributed to the increase in the thickness 

of the Si02 interfacial layer. This amorphous layer acts as a secondary insulating 

layer, to prevent carriers that may have leaked through the high-k layer from 

reaching the silicon beneath. Therefore, although the N2 annealed film has a 

crystallite structure, it still shows a much lower leakage current density compared to 

the amorphous as-deposited samples. The value for the leakage current density at 

±lMV/cm of the as-grown film is between 1.45E-06 ~ 1.6E-06 A/cm2, while it is 

approximately 9.0E-08 A/cm2 for the N2 annealed sample.

5.3.3 Summary

Phase evolution and crystal structure analysis were perfonned for all samples 

annealed in N2 at 900 °C in 15 minutes. The results obtained from XRD and Raman 

show that the influence of N2 on all samples is quite similar to air annealing at the 

same temperature, except a decrease in monoclinic fraction is observed for samples 

with 5%, 8% and 17% Ce. However, a TEM study revealed that annealing in N2 

resulting in an increase of the interlayer between the oxide film and the silicon 

substrate.
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Tills finding effectively excludes the option of investigating the electrical properties 

for subsequent characterisations of other samples. Lastly, electrical characterisations 

were undertaken for the sample with 10% Ce. Although the k-value was found quite 

similar for both as-grown and annealed films, the as-deposited film suffers from 

severe hysteresis and a combination of fixed charges and interface states. The 

annealed film, on the other hand, shows significant improvements on these issues. 

Contrary to the presumption about the superiority of as-grown film over annealed 

example on the leakage current density, it was found that the annealed film 

exhibiting a lower value compared to the as-deposited one. The reason is likely 

attributed to the thicker interfacial layer found from the annealed film.

5.4 Vacuum annealing

Similar to the previous studies in air and N2, the same routine of phase evolution and 

crystal structure analysis for all annealed films were also performed in vacuum at 

900 °C. However, aside from the phase analysis for all samples, the electrical 

characterisations of sample with approximately 10% Ce was extended further 

compared to the case of N2. Besides the vacuum annealed 10% Ce sample at 900 °C, 

another series of films with similar Ce concentration were subjected to different 

annealing periods at 800 °C to investigate the influence of annealing duration to the 

crystallite sizes and/or unit cell of the films, which in turn were expected to show 

some effects to the dielectric properties. The results will comprise XRD and TEM 

alongside electrical data including C-V, I-V and k-f measurements.

5.4.1 Influence of annealing at 900°C in 15 minutes

5.4.1.1 Phase analysis

Firstly, XRD spectra of all samples are presented in Figure 5-30 and the results from 

the peak analysis is shown in Table 5-7. An assessment of Raman spectra for all 

samples gives quite similar results to air and N2 annealed ones before, hence they 

will not be shown here. Unfortunately, due to the extensive use of the 10% Ce 

sample, it was not available to obtain a Raman spectrum from it. Therefore, the 

phase evolution and crystal structure analysis will be focused only on the XRD data.
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Figure 5-30: XRD spectra of all samples annealed in vacuum for 15 minutes

Table 5-7: summarised XRD data analysis for all vacuum annealed samples

5%Ce | 896Ce 1096 Ce 1796Ce 3496 Ce
c(lll)peak position (degrees)

30.42 30.40 30.68 3035 3036
c(lll)iinitcell(A)

5.09 5.09 5.05 5.10 5.10
crystallite sizes (nm)

12.15 10.50 9.06 11.28 1239

The first noticeable observation is the response of the 10% Ce sample compared to 

all the others in terms of c(l 11) peak position. It can be depicted clearly by the shift 

of this peak further away from the reference cubic value, while all the other samples’ 

peaks show a similar position. As a result, the d-spacing and its “cubic” cell are 

slight smaller when compared to the others also to the air and N2 annealed values 

obtained before for this sample. The same tendency can also be observed for this 

sample’s crystallite size.
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The large deviation from the reference cubic unit cell may indicate that the “cubic” 

structure for this 10% Ce film having the most distorted configuration. In other 

words, it may have the largest tetragonality if it adopts some forms of “metastable 

tetragonal”, i.e. t’ or t”. All of those results also suggest that in vacuum, at 10% 

doping level, Ce-doped hafhia system shows a quite different response towards the 

crystallization and some prohibitions may be induced to the crystal growth, i.e. the 

crystallite size, as being reported in various literature references (see chapter 2 for 

more details about phase stabilisation mechanism in Hf-oxides).

For the other samples, another interesting observation is the absence of monoclinic 

phase at 8% Ce, while samples with 5% and 17% still show the existence of 

monoclinic phase. This observation, coupled with the behaviour from the 10% Ce 

sample, may suggest that the influence of vacuum annealing on the phase evolution 

of Ce-doped Hf-oxide films is quite different with air or N2 annealing, especially 

when the tetragonality of the crystal structure is concerned in the proximity of 10% 

Ce concentration. This issue will be discussed in more details in section 5.4 when the 

comparisons are made for all annealing environments.

5.4.1.2 Electrical characterisations of 10% Ce sample

In a similar maimer to the elechical characterisations for the N2 annealed film, the 

vacuum annealed one for this sample was prepared using the same procedure and 

MOS structure to record its C-V, I-V and k-f plots. As mentioned previously in the 

case of N2 annealing, knowledge of the interlayer thickness before and after 

annealing is crucial to extract useful information from the C-V curve. Therefore, 

TEM was performed to reveal the influence of vacuum annealing to this 10% Ce 

sample. Figure 5-31 shows the TEM image for as-deposited and vacuum annealed 

films. As can be seen from this TEM image, the interfacial layer is nearly identical 

for both as-grown and annealed films. This indicates that vacuum annealing did not 

introduce any substrate oxidation or interaction from the high-k oxide film on top. 

As a result, the thickness of this interlayer (~2.1 nm) remained unchanged after 

vacuum annealing. Moreover, this TEM image also shows that the interlayer after 

vacuum annealing remained amorphous; hence it can be determined to be a Si02 

layer.
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This conclusion, therefore, will be assumed for any further vacuum annealing 

samples destined later for electrical characterisations.

The thickness measurements by ellipsometry for this sample reveal that the film did 

not change its thickness vacuum annealing, i.e. ~23 nm for both as-grown and 

annealed films. This data is supported by a MEIS study for as-deposited and vacuum 

annealed 10% Ce sample, which is shown in section 5.5.

Firstly, C-V curves for both as-deposited and annealed films will be shown in below. 

The arrows indicate the direction of the bias voltage applied during the 

measurements.
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Figure 5-32: C-V curves for 10%Ce sample (a): as-grown and (b): vacuum annealed in 15 minutes
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As can be seen from Figure 5-32 (b), the vacuum annealed one shows superior 

frequency dispersion as well as huge improvement in hysteresis compared to the 

as-grown film. The shape of the C-V curves of the vacuum annealed film, regardless 

of frequency, also show a nearly identical path for both the sweeping directions. The 

gap between these two paths is very narrow (approximately 0.07V), which indicates 

a very small amount of fixed charges inside the film. Moreover, these two paths are 

nearly parallel to each other, which means the interface states was much reduced 

after annealing. Recall the C-V curves of the N2 annealed film from the same sample 

in Figure 5-28 (b), it can be concluded that the film annealed in vacuum shows a 

much better quality. In terms of dielectric constant, a calculation for the C-V curve at 

100 kHz in the accumulation regime yields a value of 34. This result is in very good 

agreement with the theoretical prediction for a stabilised tetragonal phase in Ce- 

doped Hf02 (k ~32) from Fischer in [2]. This is further supporting evidence 

suggesting that the phase existing in this 10% Ce vacuum annealed sample very 

likely adopting a kind of tetragonal phase.

Plots of k-f relationship are presented in Figure 5-33 (a) for both films over the 

frequency range between 10kHz and 2 MHz, with the k-value measured and 

calculated at the highest bias voltage on the accumulation regime from the C-V 

curves. The leakage current density against electric field strength is shown in Figure 

5-33 (b).
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Figure 5-33: (a) Permittivity against frequency and (b): Leakage current density against electric field 
strength for 10 % Ce sample (the frequency and the leakage current density are presented in log scale)
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As can be seen from Figure 5-33 (a), the vacuum annealed film shows a significantly 

higher k-value over this range of frequency, particularly between 10 kHz and 100 

kHz. This behaviour is also quite different to the response of the N2 annealed one 

presented previously in Figure 5-29 (b), which can lead to the postulation that the 

crystal structure from the vacuum annealed film is different to the N2 annealed one. 

The difference may lie on the ionic polarisation that contributes to the overall 

permittivity at this intermediate frequency range as well as the soft phonon 

associating with the vibrations of the crystal lattice.

In terms of the leakage current density, values of 9.9E-06 ~ 2.2E-05 A/cm2 are found 

at ±1 MV/cm from Figure 5-33 (b) for vacuum annealed film. They are about one 

order of magnitude higher compared to the values of the as-grown film. The high 

leakage obseived for the vacuum annealed film can be attributed to the 

crystallisation of the film which provides more leakage pathways through grain 

boundaries. An increase in the surface roughness can also partly contribute to this 

behaviour of the vacuum annealed film (see section 5.5 for details about the AFM 

study).

5.4.2 Influence of annealing duration at 800 °C to the electrical properties

In this section, effect of different annealing durations to the crystal structures, 

crystallite sizes and their corresponding dielectric responses is presented for the 

vacuum annealed films from sample 1534 (see chapter 4 for more details). This 

sample is found to contain approximately 10.5 % Ce, hence this study also gives 

additional details about the electrical responses of the 10% Ce vacuum annealed at 

900 °C in 15 minutes discussed above. The reason about a drop from 900 °C to 800 

C for this 1534 sample was mainly because this could provide more manoeuvrability 

in terms of annealing duration, i.e. the time setup for each annealed film could be 

varied in a wide range of durations between 1 minute and 100 minutes. Hence, the 

crystal structure and its crystallite size were allowed to expectedly develop in 

observable change.

Firstly, XRD results are presented in Figure 5-34 below, followed by tabulated data 

for c(l 11) peak analysis in Table 5-8.
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Figure 5-34: XRD spectra of 1534 sample annealed at 800 °C with various durations.

Table 5-8: Summarised data for c(lll) peak analysis of 800’C vacuum annealed 1534 sample.

Duration (mins) 2 theta (degs) Crystallite size (nm) d-spadngs(A) Unit cell (A))
1 30.62 8.49 2.92 5.06
5 30.67 10.04 2.91 5.05
10 3038 9.11 2.94 5.10
50 30.59 9.45 2.92 5.06
100 30.49 8.69 2.93 5.08

As can be seen from these XRD data, no obvious relationship about the influence of 

annealing duration on the unit cell of “cubic’’ phase and its corresponding crystallite 

size can be deduced. However, it seems that the effect of vacuum annealing at this 

temperature is quite drastic at short durations, for instance between 5 and 10 

minutes, resulting in a significant change in the position of c(lll) peak between 

these two. Hence, it is expected that there is a large difference in terms of electrical 

properties between these two films.
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Based on the previous electrical study of the 10% Ce vacuum annealed sample at 

900° C in 15 minutes, the electrical properties of the film annealed in 5 minutes is 

expected to be comparable because of their high similarity in crystal structure.

The electrical characterisations for all films from this vacuum annealed sample will 

be shown in the following figures, together with summarised key results extracted 

from these C-V and I-V curves presented in Table 5-9.

Table 5-9: Summarised data for electrical measurements from vacuumed annealed 1534 sample at 800'C
in different durations

Annealing 
duration (mins)

Annealed film 
thickness (nm) k (100 kHz) J (A/cm2) at -1 

MV/cm
J (A/cm2) at 1 

MV/cm
AV hysteresis at 

midgap

1 17.0 25 2.12E-05 5.07E-Q3 0.5
S 15.0 38 4.48E-05 3.69E-03 0.2
10 16.0 23 4.09E-O4 1.29E-03 0.8
50 14.0 21 7.76E-OS 1.55E-Q3 0.3
100 15.0 44 2.81E-04 6.51E-03 0.2

OC 04

06 OB

ftwr«ncy(Hz)

Figure 5-35: (a): C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1534 vacuum annealed sample at 8001, 1 minute.
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(c)

Figure 5-36: (a): C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1534 vacuum annealed sample at 800 °C, 5 minutes.

Figure 5-37: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1534 vacuum annealed sample at 800 °C, 10 minutes.
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Figure 5-38: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1534 vacuum annealed sample at 800 °C, 50 minutes.
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Figure 5-39: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1534 vacuum annealed sample at 800 °C, 100 minutes.
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As can be seen from Table 5-9, among all the films in this annealing study, the ones 

with the duration of 5 and 100 minutes yield the best performance in terms of 

dielectric constant (k~ 38 and 44 respectively). The amount of fixed oxide charge, 

which is directly proportional to the degree of hysteresis from the C-V plot, also 

shows the same tendency with the results of k-values. The shapes of all the C-V 

curves from all films show that the amount of interface states should be quite low, as 

indicated by the nearly parallel paths from both sweeping directions. As mentioned 

in the XRD data analysis for all of these films, the film with the duration of 5 

minutes was expected to give a permittivity similar to the previous 10% Ce vacuum 

annealed sample at 900 °C, 15 minutes. An even much higher value obtained from 

the film with the duration of 100 minutes is quite surprising though. In terms of 

leakage current density, all films show quite similar behaviours, especially at the 

regime of positive electric field strength. All samples show very similar frequency 

dispersion as can be seen from their k-f plots (with the exception of the one with the 

duration of 100 minutes, which illustrates a steeper gradient).

Initially, it was presumed that within a very narrow range of thickness, the electrical 

performance of those films would be dictated by the annealing durations, i.e. the 

variations from crystal structure parameter should have a clear effect on electrical 

properties. However, as the results of this study turn out, no such clear and sensible 

relationship can be observed. The reason for this phenomenon remained unknown 

though the homogeneity across the original 1534 sample, which was subsequently 

cut into smaller pieces to conduct various annealing durations, might be a 

questionable factor, as can be seen from different annealed film thickness.

5.4.3 Summary

Crystal structure and phase analysis were conducted for all samples with various 

cerium concentrations. The results from this analysis reveal that all except for the 

sample with 5% and 17% Ce still retaining a fraction of monoclinic, all the others 

show only a stabilised single phase, which is likely a distorted cubic structure or a 

form of “metastable tetragonal”. Particularly, the 10% Ce sample shows the most 

distorted structure from the reference high temperature cubic phase, suggesting the 

influence of vacuum annealing on this sample is the most significant.
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The analysis from the crystal structure and phase evolution suggests that the sample 

with 10% Ce will have a higher-k value due to its likely high tetragonality. This 

deduction is confirmed with the results obtained from electrical characterisations for 

this 10% Ce annealed at 900 °C in 15 minutes, yielding a k-value of 34. Besides an 

enhancement in dielectric constant, vacuum annealing is also found to improve other 

electrical properties of 10% Ce sample such as low amount of both fixed charges and 

interface states compared the as-grown one. However, the leakage current density is 

found to increase after annealing. This behaviour is attributed to the crystallisation of 

the film after annealing, enabling leakage pathways compared to the amorphous as- 

grown film.

Another set of films with approximately 10% Ce was also subjected to annealing at 

800 °C with various durations to investigate the effect of crystal structure and 

crystallite size variation to the electrical properties. The results, however, are 

seemingly suggestive of no such clear relationship as being assumed. Of all the films 

subjected to this study, the films with duration 5 and 100 minutes show the best 

dielectric performances, resulting in k-values of 38 and 44 respectively. They also 

show the lowest amount of fixed charges compared to other films. These findings are 

indicative of some interesting yet unclear influences of the annealing duration to the 

associating phases in those two films and hence, resulting in quite high k-values.

5.5 Discussion about the influence of annealing environments on phase 

stabilisation and microstructure of Ce-doped hafnia films

In this section, the influence of different annealing environments to the phase 

stabilisation and microstructures of all annealed films at 900°C in 15 minutes over 

the whole range of cerium doping level will be discussed. The discussion will focus 

on the results from phase and crystal structure (XRD), film microstructure (MEIS) 

and surface roughness (AFM).

5.5.1 Phase and crystal structure analysis

Firstly, the XRD results for all samples with consideration to crystallite sizes and 

unit cell will be presented in Figure 5-40 and Figure 5-41 below.
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Figure 5-40: Variation of crystallite size against cerium concentration for different annealing 
environments at 900 *C, 15 minutes.
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Figure 5-41: Variation of “cubic" unit cell against cerium concentration for different annealing
environments at 900‘C, 15 minutes.
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In terms of crystallite size, Figure 5-40 shows that while films annealed in air and N2 

show a degree of similarity, the ones annealed in vacuum present a very different 

trend. It is quite interesting though that the positions of the maximum (in the case of 

air and N2 annealing) and the minimum (in the case of vacuum annealing) of those 

curves coincidentally appeared at 10% cerium concentration.

When the unit cell parameter on the basis of a cubic fluorite-type is concerned, all 

annealing environments consistently show similar trend though for vacuum 

annealing, it is much more profound and again, all minimum of these curves 

appearing at 10% of cerium doping level (see Figure 5-41). If the data for the 10% 

sample is temporarily excluded, then the remaining data follows quite ordinary 

curves. However, the 10% sample data cannot simply be ignored as it systematically 

and consistently deviates from the other sample data regardless of annealing 

conditions. It can well be that the films with doping at around 10% cerium possess 

some very unique crystallographic characteristics and thus, quite distinct from the 

others. As discussed previously in separate annealing section, it is very likely that at 

this doping level, the tetragonality of the stabilised phase is much higher compared 

to other concentrations. The “cubic” structure of 10% sample possibly evolved to 

some kind of distortions more substantially under oxygen-poor condition, e.g. 

vacuum and hence, its tetragonality would be higher than the others. Given the 

known observations about the stability of tetragonal phase in Zr02 for oversized 

tetravalent dopant (cerium in this case) from Li et al in [17] and the theoretical study 

of Fischer for stabilised tetragonal of Ce-doped Hf02 in [2], it can be postulated that 

in vacuum, sample with 10% Ce achieved the highest degree of tetragonality while 

the other samples seemed to adopt a less-distoited cubic phase.

For samples with 5%, 8% and 17% Ce, another concern related to the influence of 

annealing environments is their monoclinic fraction. Figure 5-42 presents the 

mono clinic fraction for these 3 samples in different annealing conditions.
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Figure 5-42: Monoclinic fraction for 5%, 8% and 17% annealed samples at 900*C, 15 minutes.

As can be seen from Figure 5-42, while the influence of annealing conditions on 5% 

Ce sample is virtually insignificant, other two samples consistently show a decrease 

in monoclinic fraction. This behaviour confirms the effect of cerium in suppressing 

monoclinic phase in annealed films (with the exception of 5% Ce doping, which is 

deemed too low to be effective). The existence of the monoclinic phase in 17% Ce 

sample was already explained in the section of air annealing, which can be likely 

attributed to a phase separation due to solubility limit of tetragonal phase around 

18% Ce. In the case of vacuum annealed 8% Ce sample, the monoclinic is not 

detected from its XRD spectrum. The reason why an abrupt change in terms of 

monoclinic suppression observed for this sample is still not clearly understood. It can 

be hypothesised that under the condition of poor-oxygen condition such as vacuum, 

Ce-doped hafhia around 8% concentration possibly crystallise into a much more 

favourable structure of some sort of tetragonal rather than monoclinic. The true 

reason demands a more thorough and detailed investigation though.

5.5.2 Film microstructure analysis

Besides the effect of annealing environments to the phase and crystal structure, it is 

also of important to understand their effects to the film microstructure such as the 

interaction of the film with the Si substrate and the interfacial layer in-between.
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In chapter 4, MEIS data were presented for the chemical composition analysis of 

selected films. Here, some other MEIS data are shown to investigate the 

aforementioned issues for annealed films in N2 and vacuum.

Firstly, the influence of vacuum annealing to the film microstructure is assessed for 

the 10% Ce sample. Figure 5-43 shows MEIS energy scan for this sample before 

and after vacuum annealing at 70.5° scattering angle, followed by a depth scale plots 

for two different scattering angles in Figure 5-44. The use of this 70.5“scattering 

angle was because information about interfacial layer and light element (oxygen) 

only available from this scattering configuration. The other scattering angle (125.3°) 

on the other hand was to make peak separation for heavy elements (Hf and Ce) 

possible.

Ce/Hf

as-grown.

900°C, vacuum —

Energy (keV)

Figure 5-43: MEIS energy scan of as-grown and vacuum annealed 10% Ce sample (TO.S’ scattering angle)

As can be seen from Figure 5-43, the two plots of as-grown and 900°C vacuum 

annealed films show nearly identical profiles, especially in terms of the positions and 

intensities of Si and O peaks. In other words, the films virtually remained chemically 

unchanged before and after vacuum annealing. However, a small change in the film 

thickness, corresponding to densification of the film is seen for the annealed sample 

as a slight reduction in the height and width of Hf/Ce peak shape.
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Figure 5-44: Depth profile analysis of 10% Ce sample before and after vacuum annealing

Figure 5-44 shows detailed depth profile analysis from the 10% Ce sample after 

having been normalized and scaled up (in the case of cerium profile) for easier 

comparison and matching. It is quite clear from this set of data that the film thickness 

reduction is quite small yet detectable. The internal oxidation of the Si02 interfacial 

can also be observed though somewhat negligible, which is supported by the TEM 

study for this sample (see Figure 5-31).In the case of 125.3° scattering angle, it is 

also possible to resolve a little degree of migration of cerium into the Si02 interfacial 

layer. This observation complicates the determination of the interfacial layer 

composition which was initially assumed to be Si02. Nevertheless, it can be 

proposed that although the interfacial layer probably might not be purely SiCh, this 

inhomogeneity is very small and therefore, can be neglected. In the case of N2 

annealing, substrate oxidation and/or interaction was observed by the TEM image for 

the 10% Ce sample (see Figure 5-27). MEIS data were also collected for two other 

samples with 17% and 34% Ce, also at two different scattering angles.
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Figure 5-45: MEIS energy scan of as-grown and N2 annealed 17% Ce sample (125.3 scattering angle)
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Figure 5-46: MEIS energy scan of as-grow n and N2 annealed 34% Ce sample (125 J"scattering angle)

188



From Figure 5-45 and Figure 5-46 above, the effects of N2 annealing on the films are 

quite apparent in terms of increasing amount of silicon appearing in the films, 

illustrating by significant increase in Si peak width from both figures. With this 

scattering configuration, the oxygen feature cannot be readily resolved from silicon. 

However, the combining intensities of these two peaks before and after annealing 

regarding the drop of hafnium peak intensities and widths, i.e. the films becoming 

denser as observed in the case of 10% Ce sample vacuum annealed, while the cerium 

peak intensities virtually remains unchanged suggesting that there was possibly an 

intermixing of cerium to the interfacial layer. In other words, the interfacial layer in 

both these films got thicker and its chemical might not be SiOz anymore as in the 

case of vacuum annealing. In order to understand the effect to the interfacial layer 

more clearly, another MEIS energy scan was performed with 70.5 'scattering 

configuration for 17% Ce sample. The spectra is shown in Figure 5-47 and followed 

by a depth profile analysis in Figure 5-48.
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Figure 5-47: MEIS energy scan of as-grown and N2 annealed 17% Ce sample (70.5° scattering angle)
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Figure 5-48: Depth-profile analysis for as-grown and N2 annealed 17% Ce sample

As can be seen in Figure 5-47, after N2 annealing, the combining peak of (Hf+Ce) 

drops slightly in term of intensity and gets somewhat narrower, which is the result of 

the densification after annealing. In contrast, the opposite trend is seen in the case of 

silicon and Oxygen peaks, which indicates there is a substantial growth of Si02 

interfacial layer after the film was annealed. This tendency is supported in Figure 

5-48 by comparing the depth-profile analysis before and after annealing in N2, 

illustrated by the reduction in (Hf+Ce) peak width while a profound increase both in 

intensity and relative yield are observed for silicon and Oxygen profiles. In short, 

these results together with the aforementioned TEM data for N2 annealed 10% Ce 

sample confirm the phenomenon of interfacial layer built-up in N2 annealed samples.

5.5.3 Surface roughness analysis

To investigate the effect of different annealing conditions and cerium concentrations 

to the surface roughness of the films, AFM was employed to study the morphology 

of the films. AFM images of all samples are presented in the following figures, 

followed by a summarized set of arithmetic surface roughness (Ra) tabulated in 

Table 5-10.
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Figure 5-49: AFM images of 5% Ce sample under different annealing conditions at 900 *C, 15 minutes.
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Figure 5-50: AFM images of 8% Ce sample under different annealing conditions at 900 *C, 15 minutes.
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Figure 5-51: AFM images of 10% Ce sample under different annealing conditions at 900’C, 15 minutes.

Figure 5-52: AFM images of 17% Ce sample under different annealing conditions at 900*C, 15 minutes.
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Figure 5-53: AFM images of 34% Ce sample under different annealing conditions at 900 "C, 15 minutes.

Table 5-10: Summary of surface roughness measurements from all samples under different annealing
conditions at OOOTC, 15 minutes.

Surface roughness Ra (nm)
Cerium content Asqrown Air annealed N2 annealed Vacuum annealed

5% 0.491 0.561 0.728 0.926
8% 0.275 0.369 0.416 0.482
10% 0.378 0.482 0.669 n/a
17% 0.484 0.545 0.578 0.888
34% 0.512 0.513 0.578 0.656

The AFM images above from all samples indicate that the films are smooth and pin 

hole free after annealing. The roughness is found to be significantly smaller than the 

overall thickness of the actual film, which means that annealed films are quite 

smooth. As can be seen from Table 5-10, a consistent trend is observed for each of 

the different cerium concentrations, the surface roughness is lowest for air-annealed 

films and highest for vacuum-annealed ones. In terms of surface topography, large 

"islands'* are seen for the air-annealed samples, while columnar structures are 

observed for the vacuum-annealed ones. In all cases, the N2-annealed examples show 

a trend somewhere in between these two other annealing environments.
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From these observations, it is reasonable to hypothesise that tire surface roughness is 

inversely proportional to the oxygen partial pressure within the annealing 

environment. This hypothesis is supported by XRD data presented previously about 

the influence of annealing enviromnents on the crystallite sizes. One likely reason 

for this phenomenon is due to possible different crystallisation pathways involved 

during the transitions of the films from amorphous state to poly crystalline structures.

5.6 Effect of film thickness to electrical properties

The dependence of dielectric constant on film thickness was reported in [28] for 

AI2O3 and stimulated for materials with very high-k values such as (Ba,Sr)Ti03 in 

[29]. Some recent studies also confirm such dependence for epitaxial SrTiOs [30] or 

epitaxial ZrC>2 [31]. From these studies, a common observation was found that when 

the film thickness decreases, the dielectric constant also decreases from its “bulk” 

value though with different trends. The reason for this behaviour in thin film was 

explained either because of the film quality degradation with decreasing thickness 

[28] or an intrinsic effect due to the presence of a film surface without taking into 

account film quality change [29] among other hypotheses. Whatever the true and 

dominant reasons for this phenomenon, it is important to realise about such existing 

effect to the film’s peimittivity. As discussed previously in chapter 2, scalability is 

one of the key factors to assess any high-k materials. In contrast to SiC>2 which is an 

amorphous material and hence has an unchanged permittivity, most of the potential 

high-k oxides investigated so far are crystalline ones, including the Ce-doped hafiiia 

in this research. It is well-known that when the thickness changes, the crystal 

structure, phase stability and other related properties will also change (see also 

chapter 2 for examples of pure Zr02). This, in turn, will have a direct effect to the 

dielectric constant, which is strongly dependent on the crystal structure and phase 

composition of such crystalline materials. As a result, in order to maintain a good 

scaling demand, it is of great concern to understand the behaviour of any high-k 

material at different physical thickness.
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In an attempt to find out if such a strong dependence of pennittivity on thickness 

exists with these Ce-doped hafhia films, a set of samples containing approximately 

10.5 % Ce with various thicknesses (see chapter 4 for more details) were subjected 

to vacuum annealing at 800 °C in 10 minutes. XRD analysis and electrical 

characterisations were carried out to investigate whether any influence of film 

thickness on dielectric constant could be observed and if any, to which extent it 

might affect to the potential scalability of the film.

5.6.1 Phase and crystal structure analysis

Figure 5-54 shows the XRD spectra of three vacuum annealed 10.5% Ce samples, 

followed by a summarised peak analysis in Table 5-11. Because the other two films 

are quite thin (thickness below 10 nm); their XRD spectra and related crystal 

analysis are not available.

Figure 5-54: XRD spectra of vacuum annealed 10.5% cerium films (800 °C, 10 minutes) with varying
thicknesses.
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Table 5-11: Summarised crystal structure analysis for vacuum annealed samples at 800 “C, 10 minutes
together with their respective thickness.

Sample Thickness (nm) 2theta (degs) Crvstallite size (nm) d-spacings (A) Unit cell (A)
1531 2.5 n/a n/a n/a n/a
1532 6.0 n/a n/a n/a n/a
1533 10.5 30.38 6.87 2.94 5.10
1534 16.0 30.38 9.11 2.94 5.10
1535 19.5 30.76 7.15 2.91 5.03

As can be seen from the figure and table above, sample 1533 and 1534 show that 

their phases are identical with the reference cubic data while sample 1535 depicts a 

high distortion from that structure. Accordingly, the unit cell of sample 1535 is much 

smaller compared to the other two. In terms of crystalline size, sample 1533 and 

1535 are quite similar while sample 1534 shows a higher value.

The XRD results obtained for these three samples are quite interesting and may be 

suggestive of some hidden details about the phase evolution. Because the difference 

in thickness between sample 1533 and 1534 is quite large, it is thought that they 

should have some distinguishable features in terms of their structures. An effort to 

find out whether any such difference can be observed thus is expectedly to appear in 

their Raman spectra. Figure 5-55 shows Raman spectra for these 3 samples (after 

background subtraction). As can be seen from these Raman spectra, these three 

samples in fact have quite different main feature related to their “cubic phase” within 

the wavenumber range between 600 cm"1 and 700 cm"1 (see section 5.2 for detailed 

discussion). After deconvolution process, it is revealed that this main feature from 

these 3 samples is a product of merging from two subordinate peaks at 

approximately 620 cm"1 and 665 cm'1 respectively but with different proportions. 

While sample 1533 has the highest contribution from the peak at 665 cm"1, sample 

1533 has the highest fraction of the peak at 620 cm"1 and sample 1534 stays in- 

between these two extremes. As mentioned in section 5.2, the peak at 665 cm"1 can 

be assigned to tire vibrational mode of tetragonal and the one at 620 cm'1 was 

assigned as vibrational mode of stabilised cubic form according to Kim et al [14].
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Figure 5-55: Raman spectra for vacuum annealed samples at 800 *C, 10 minutes.

Therefore, based on these Raman spectra in Figure 5-55, it can be concluded that 

while the dominant phase in sample 1535 is some fonn of tetragonal, the main phase 

existing within sample 1533 is very likely a cubic structure. Sample 1534 adopts a 

mix of these two phases although its XRD diffraction pattern is identical to the one 

from sample 1533.

5.6.2 Electrical characterisations

The electrical characterisations for this set of films were carried out in the same 

procedure described previously for other samples. The results for all films from 

this vacuum annealed sample will be shown in the following figures, together with 

summarised key results extracted from these C-V and I-V curves presented in Table 

5-12.
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Table 5-12: Summarised data for electrical measurements from different vacuum annealed samples at
800 °C in 10 minutes.

Sample Thickness (nm) k(100KHz) J (A/cm2) at -1 MV/cm J(A/cm2) at 1 MV/cm AV hysteresis at midgap
1531 23 43 236E-05 230E-03 0.05
1532 6.0 33 1.18E-03 334E-03 03
1533 10.5 34 639E-05 434E-05 0.6
1534 16.0 23 4.09E-04 139E-03 0.8
1535 19.5 30 2.81E-04 6.51E-03 03
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Figure 5-56: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1531 vacuum annealed sample at 800*C, 10 minute.

198



Ci
pi

el
tin

e*
 (F

)

tt t ttyTTIf - -VC

M 04

Ft«qMM<cy(Hz)

Figure 5-57: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1532 vacuum annealed sample at 800‘C, 10 minute.
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Figure 5-58: C-V curves, (b): k-f plot and (c): leakage current density against electric Field strength for 
1533 vacuum annealed sample at 800'C, 10 minute.
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Figure 5-59: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1534 vacuum annealed sample at 800‘C, 10 minute.
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Figure 5-60: C-V curves, (b): k-f plot and (c): leakage current density against electric field strength for 
1535 vacuum annealed sample at 800*C, 10 minute.
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As can be seen from the electiical data presented in all the C-V plots above, for 

sample 1531, 1532 and 1533, they show varying degrees of frequency dispersion at 

10 kHz. The reason for that behaviour remains a subject of further investigation 

though it might be that at such small thickness range, the films might behave 

differently from their thicker counterparts. This is also supported by the fact that 

none of these samples show clear saturation in the accumulation regime, especially 

at 10 and 100 kHz.

Except sample 1531 which shows a very low k-value likely due to the fact that it is 

extremely thin, all the other samples (with the exception of sample 1534) show quite 

a stable dielectric constant and in very good agreement with the values obtained 

from the electrical characterisation of previous vacuum annealed samples in section 

5.4. It is still not clear why a drop in permittivity observed for this specific thickness 

However, as discussed previously about the Raman spectra of 3 thickest samples, a 

possible explanation can be deduced if the phase composition of this sample is 

concerned. Given the fact that the other two next to this sample mainly just contain a 

single phase, it can be proposed that the mix of phases in this 1534 sample might 

have some adverse effects to the overall pennittivity of the film and hence, cause this 

unexpected drop. However, the overall trend for all samples suggests that in terms of 

scalability, it is reasonable to expect a stable dielectric constant from this 10.5% Ce- 

doped Hf-oxide sample between quite a good range of physical thickness (6.0 nm ~ 

23 nm).

In tenns of leakage current density and fixed oxide charges, the data obtained from 

electrical measurement do not seem to suggest any sensible relationship between the 

physical thicknesses of the films and their corresponding electrical properties. 

Hence, there is no clear conclusion can be derived for the dependence of these 

parameters upon film thickness.
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5.7 Chapter summary

Results of phase stabilisation and crystal structure analysis of samples covering the 

Ce doping range between 5% and 34% are presented for three different annealing 

environments: air, N2 and vacuum. The effect of cerium in stabilising the higher-k 

phase in hafnia is confinned by the study of XRD and Raman data for annealed films 

at 900 °C in 15 minutes. Of all samples, the films with 10% and 34% Ce are found to 

contain a single stabilised phase regardless of annealing enviromnents or 

temperatures. On the other hand, samples with 5%, 8% and 17% are found to adopt a 

mix of monoclinic and the stabilised phase. The proportion of the monoclinic phase 

for each of those samples is dependent on the annealing environments and cerium 

doping levels. Detennination of the stabilised phase in annealed samples based on 

the combination of XRD and Raman analysis suggests that the crystal structure 

adopts some form of “metastable tetragonal”, although this structure resembles very 

closely to the high temperature cubic phase of pure HfC>2. Of all cerium 

concentrations, the sample with 10% Ce is demonstrated to have the most distinct 

structure compared to the others, particularly under vacuum annealing condition. In 

tenns of annealing environments, film microstructure and surface roughness are also 

found strongly dependent on the partial oxygen pressure within annealing conditions. 

Results from MEIS and TEM demonstrates that only films annealed in vacuum show 

no or little interactions with the silicon substrate whereas films annealed in N2 show 

significant intermixing and internal oxidation with the substrate, resulting in 

substantial interfacial increase. The influence of annealing enviromnents on film 

roughness is found to be highest for vacuum annealed samples and lowest for air 

annealed ones, with N2 annealed examples somewhere in the middle.

Electrical characterisations were firstly earned out to investigate the dielectric 

behaviour of films containing approximately 10% Ce. N2 and vacuum annealed films 

were measured to investigate the dependence of their electrical properties on the 

annealing conditions at 900 °C in 15 minutes. Results from this study reveal that both 

annealed samples show significant improvements in tenns of fixed oxide charges 

and interface states compared to the as-grown example.
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However, while the vacuum annealed film shows an enhancement in permittivity 

(k~34) compared to the as-deposited one (k~29) at 100 kHz, the N2 annealed film 

does not show any improvement. The dielectric constant for the vacuum annealed 

film is found to be in good agreement with a theoretical value predicted for stabilised 

tetragonal Ce-doped Hf02 with a similar cerium doping dose. The leakage current 

density in vacuum annealed film is found to be higher than the as-grown one and is 

attributed to the leakage pathways induced by the crystallisation. On the other hand, 

the N2 annealed film show a lower leakage current density compared to the as- 

deposited example and can be explained by the fact that a thicker interlayer is 

observed after N2 annealing. Following these results, another set of vacuum annealed 

films at 800 °C from a sample with approximately 10.5% Ce was measured 

electrically to investigate the effect of annealing duration between 1 and 100 minutes 

to the electrical properties. The results from this study show that some of these films 

demonstrating quite good dielectric performance. Film annealed for 5 minutes was 

found to yield a dielectric constant about 38 while the one annealed for 100 minutes 

even showed a higher k-value of 44. The exact reason why these two show superior 

pennittivity compared to other films annealed in different durations is still not clear 

as the phase and crystal structure analysis for this set of films seemingly do not hint 

any clear explanation.

A set of 10.5% Ce films with varying thickness (2.5 mn~19.5 mn) was also 

subjected to vacuum annealing at 800 °C in 10 minutes to study the effect of physical 

film thickness to the dielectric properties. Except for the thinnest film and another 

one with the thickness 16 nm, all other three samples show comparable pennittivity 

(30~34), which is in the range of predicted k-value from the preceding electrical 

characterisations of 10% Ce vacuum annealed sample. Phase analysis from XRD and 

Raman from three thickest films is suggestive of an effect from the dominant 

stabilised phase, which is likely responsible for a drop in pennittivity from the 

sample 16 mn thick. The overall results from this study indicates a good scaling 

potential for this Ce-doped hafhia vacuum annealed films with approximately 10.5% 

Ce over a range of investigated thickness, which is also a promising proposition to 

the use of this high-k oxide when the scalability is concerned.
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Chapter 6 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORKS

6.1 Summary of key results and main conclusions

The studies presented in this thesis are mainly concerned with issues relating to 

stabilising the higher-k phases in hafnia film by cerium doping as a potential high-k 

oxide in future CMOS devices. The focus is on (i): feasibility of the growth of Ce- 

doped Hf-oxide films with varying cerium concentrations by using the state-of-the- 

art LIALD technique and (ii): phase and crystal structure analysis of annealed films 

at various temperatures and annealing environments over a wide range of cerium 

doping levels. In addition, specific considerations are concentrated on the electrical 

characterisations of films with approximately 10% Ce annealed in vacuum condition.

The study of the LIALD growth and its associated parameters, succeeding the 

separate studies of each individual precursor source with co-reactant as ozone, 

revealed that the cerium doping dose for this ternary oxide film could be controlled 

and altered by varying the ratio of cerium ALD cycle against hafnium ones, which 

was illustrated by MEIS data analysis. Altering the ALD cycle ratio between these 

two precursors as 1/2, 1/4, 1/9, 1/12 and 1/19 resulted in the cerium incorporation 

into the films as 34%, 17%, 10%, 8% and 5% respectively. A linear relationship 

between the ALD cycle ratio and cerium concentrations within the films was clearly 

observed. This linear relationship is indicative of the ALD nature of the growth 

process for this ternary oxide system though the growth of Ce02 was demonstrated 

not a strict ALD process on its own. Another set of samples were grown with a much 

narrower range of cerium concentrations targeting compositions close to 10% with 

the purpose of carrying out more detailed investigations of electrical properties of 

these materials. The ALD cycle ratio for the second set was set as 1/11, 1/9 and 1/7 

respectively. However, MEIS composition analysis from this set showed that only 

one of them (1/11) reached the expected concentration predicted from the linear 

relationship observed in the first set of samples. The other two showed some 

deviations from their expected cerium contents. The cerium contents were found to 

be 7.5% and 10.5% for the sample with ALD cycle ratio 1/9 and 1/7 respectively.
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Nevertheless, the sample with the ALD cycle ratio 1/7 was shown to contain 

approximately 10.5% Ce, which was close to the target composition and hence 

useful for detailed electrical measurements for films subjected to varying annealing 

parameters and films with different thicknesses. The technique was proven capable 

of growing such films in a quite controllable manner though some inevitably 

unexpected deviations existed from batch to batch. However, this was very likely 

due to some problems associated with the reactor behaviour rather than the LIALD 

growth process.

Results of phase stabilisation and crystal structure analysis of samples covering the 

Ce doping range between 5% and 34% were established for three different annealing 

environments: air, N2 and vacuum. The annealing study was initially earned out in 

air over a wide range of temperatures from 600 °C to 1000°C. Phase analysis 

conducted for air annealed films confirmed the effect of cerium as a stabiliser and its 

interplay with annealing temperature. Based on the XRD and Raman analysis of 

these air annealed samples, the stabilised phases existing in different films were 

shown being slightly different with various degrees of distortion from a reference 

high temperature cubic phase. This distortion was demonstrated to be dependent on 

both cerium doping levels and annealing temperatures. It can be concluded from this 

air annealing study that the stabilised phase found in all samples adopted some form 

of “metastable tetragonal” rather than the reference cubic structure though 

indistinguishable from XRD results.

The influence of cerium on higher-k phase stabilisation in haftiia was then 

specifically focused on annealed films at 900 “C in 15 minutes under different 

annealing environments. The reason this annealing condition was chosen for N2 and 

vacuum study because they provided a comparable condition to the typical annealing 

step in CMOS flow process. Therefore, films annealed in vacuum and N2 could be 

subjected to subsequent electrical tests. Of all samples, the films with 10% and 34% 

Ce were found to contain a single stabilised phase similar to the one identified in 

previous air annealing study, regardless of annealing environments or temperatures. 

On the other hand, samples with 5%, 8% and 17% were discovered to adopt a mix of 

monoclinic and the stabilised phase.
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It was found that the fraction of monoclinic in these three samples decreased in a 

descending order of air, N2 and vacuum (with the exception of 5% sample, which 

showed an equivalent fraction for air and vacuum). Determination of the stabilised 

phase in annealed samples based on the combination of XRD and Raman analysis 

suggested that the crystal structure adopted some form of “metastable tetragonal”, 

although this structure resembled very closely to the high temperature cubic phase of 

pure Hf02. The tetragonality of the stabilised phase(s) could not be accurately 

detennined due to the nature of thin films, which gave poor signal-to-noise ratio in 

XRD and Raman spectra. Of all cerium concentrations, the sample with 10% Ce 

gave the most distinct structure compared to the others, particularly under vacuum 

annealing condition. This behaviour of the 10% Ce sample was in good agreement 

with theoretical prediction about the stabilised tetragonal phase in Ce-doped HTO2 

with doping level about 12.5%. All of these results could be drawn to some 

important conclusions as follows. Firstly, the effect of cerium was shown to be 

dependent on the annealing enviromnents in terms of suppressing monoclinic phase 

at low doping levels with vacuum annealing being demonstrated to be the most 

effective. Beyond 10% Ce concentration, the influence of annealing enviromnents 

was shown to be on die distortion of the stabilised phase, which was illustrated in the 

case of 10% and 34% samples. For sample with 17%, a monoclinic phase always 

existed regardless of annealing conditions. This irregular* behaviour was attributed to 

the solubility limit of tetragonal phase, resulting in a phase separation to cubic and 

monoclinic for doping level around 17% Ce. Of all samples, the one with 10% Ce 

was found to be the most distorted structure from the fluorite-type cubic phase, 

especially in vacuum. In other words, this behaviour of 10% Ce supported the 

theoretical simulation about stabilising tetragonal phase in HfOi by doping with 

cerium mentioned above.

In terms of annealing enviromnents, film microstructure and surface roughness were 

also found to be strongly dependent on the partial oxygen pressure within annealing 

conditions. Results from MEIS and TEM demonsfrated that only films annealed in 

vacuum showed no or little interactions with the silicon substrate.
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On the other hand, films annealed in N2 showed significant intermixing and internal 

oxidation with the substrate, resulting in substantial interfacial increase (2.1 nm 

interfacial layer thickness for both as-grown and vacuum annealed, 3.7 nm thickness 

for N2 annealed 10% Ce sample). The influence of annealing enviromnents on film 

roughness was found to be highest for vacuum annealed samples and lowest for air 

annealed ones, with N2 annealed examples somewhere in the middle.

Electrical characterisations were firstly earned out to investigate the dielectric 

behaviours of films containing approximately 10% Ce. N2 and vacuum annealed 

films at 900 °C in 15 minutes were measured to investigate the effect of phase 

stabilisation on their corresponding dielectric properties. Results from this study 

revealed that both annealed samples showed significant improvements in terms of 

fixed oxide charges and interface states compared to the as-grown example. 

Calculations of dielectric constants for these films were performed by using a simple 

2-layer MOS model comprising the high-k oxide and the interlayer. However, only 

the vacuum annealed film showed an enhancement in permittivity (k~34) compared 

to the as-deposited one (k~29) at 100 kHz. The N2 annealed film did not yield any 

improvement. The pennittivity measured for the vacuum annealed film was found to 

be in good agreement with a theoretical value predicted for stabilised tetragonal Ce- 

doped HfC>2 with similar cerium doping level. The leakage current density in vacuum 

annealed film was observed to be higher than the as-grown one. This phenomenon 

was attributed to the leakage pathways induced by the crystallisation after annealing. 

On the other hand, the N2 annealed film showed a lower leakage current density 

compared to the as-deposited example and could be explained by the fact that a 

thicker interlayer was formed after N2 annealing. Following these results, another set 

of vacuum annealed films at 800° C from a sample with approximately 10.5% Ce was 

measured electrically to investigate the effect of annealing duration between 1 and 

100 minutes on the dielectric responses. The results from this set showed that some 

of these films demonsfrating quite good dielectric performance though an overall 

trend was not clearly depicted. The calculations of dielectric constant for these films 

were performed by using the similar model described previously.
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A surprisingly high k-value of 44 was found for sample annealed in 100 minutes, 

followed by another one of 38 for sample annealed in 5 minutes. Another set of 

10.5% Ce films with varying thickness (2.5 nm~19.5 nm) was also subjected to 

vacuum annealing at 800 °C for 10 minutes to study the effect of physical film 

thickness to the dielectric properties due to the importance of scalability demand and 

the dependence of dielectric constant on film thickness. Except the thinnest film and 

another one with the thickness 16 nm, all other three samples with thickness 6.0 nm, 

10.5 nm and 19.5 nm respectively showed similar permittivity to the preceding 

electrical characterisations for the 10% Ce vacuum annealed sample. Phase analysis 

from XRD and Raman from three thickest films in this set showed that all of these 

samples contained two phases but with different proportions. These two phases were 

identified as stabilised cubic and some form of tetragonal. The sample 10.5 nm thick 

was found to contain mostly of stabilised cubic phase with a minor fraction of 

tetragonal while the sample 19.5 mn thick showed an opposite trend. The sample 

16.0 mn was shown to contain an equivalent fraction of both phases. This phase 

composition of sample 16.0 nm was thus likely responsible for an irregular result 

encountered from the permittivity calculation. In the case of the thimiest sample, 

very low k-value could be attributed to a very small thickness which could result in 

an abrupt change in dielectric performance. Nonetheless, it could be reasonably 

assumed that for this 10.5% Ce vacuum annealed sample, a good scaling capability 

was achievable.

6.2 Recommendations for future works

It is clear from the results and conclusions above that significant work can still be 

earned out in several areas. Firstly, there is scope for improving the understanding of 

phase stabilisation, the assignment and identification of such phase(s). More 

improved and more detailed of XRD spectra can be made possible by employing an 

X-ray source of shorter wavelength and/or utilisation of Grazing Incidence XRD. 

While the former can provide better peak separation especially at high 2theta angles, 

the latter can help reveal the crystal structure of very thin films. Because a high-k 

oxide film is subjected to continuous scaling, the crystal structure of thin film is 

important to understand and optimise the dielectric performance.
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Similar improvements can also be achievable by utilising a lower wavelength UV 

laser, a by-pass filter capable of recording Raman shift right after the laser excitation 

wavelength and the use of polarised laser to suppress the strong interference from the 

silicon substrate. The use of polarised laser is particularly helpful to monitor separate 

vibrational modes of interest. Also within this scope, more experiments can be 

earned out over a wider range of annealing temperatures in vacuum and possibly Ni 

(or any equivalent inert gas), providing that the annealing system is also improved. 

Because the dielectric properties for any film at a given thickness and doping level is 

strongly dependent on the post-growth treatment, a wider range of annealing 

temperatures can give many further insights about the crystallisation and 

consequently, its influence on dielectric characteristics. It also helps optimise the 

annealing conditions required to achieve the highest possible k-value for a specific 

doping concentration and film thickness, which i

211


