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Abstract
The presence of the integrin chain ct4 on chronic lymphocytic leukaemia (CLL) cells 
has been identified as an adverse prognostic marker for the disease. Why some CLL 
clones express this integrin chain while others do not is currently unclear. 
Therefore, the initial aim of this thesis was to study the reasons why CLL clones 
have a differential expression of a4 and how this compares to normal B-cell 
subsets. Using FACS analysis, it was shown that the failure to express ot4 in the 
majority of CLL clones is abnormal compared to normal CD19+ B-cell subsets. 
Efforts to relate a4 expression to different activation, differentiation or anergic 
states of the malignant cells all failed to reach significance. At a molecular level, the 
integrin protein was shown to be absent due to a failure to produce mature a4 
mRNA. Analysis of the ct4 gene showed that this loss in transcription was probably 
caused by an epigenetic mechanism involving a reduction in the histone marks 
Fi3K4me3 and acetylated H3 which facilitate transcription initiation. During these 
studies into the a4 integrin chain, a possible oncogenic, truncated form of the 
PRDM1 transcription factor was observed by Western blotting. Further 
experiments, however, proved that the presence of this band in CLL was caused by 
a cross-reaction of the Western blotting antibody with contaminating albumin. The 
induction of PRDM1 following PC-inducing stimuli has never been studied in CLL. 
Following antigen encounter, induction of PRDM1 is known to be a pivotal step in 
B-cell differentiation to plasma cells (PCs), immunoglobulin secretion and 
subsequent antigen clearance. As CLL is thought to be dependent upon antigen for 
development and/or increased cell survival, the failure of CLL cells to induce PRDM1 
in vivo may be central to the development/perpetuation of the malignant clone. 
Upon treatment with PC-inducing stimuli, PRDM1 was variably induced in different 
cases of CLL; some clones were unable to induce the transcription factor while 
others induced relatively large amounts. A lack of PRDM1 expression after 
stimulation was associated with the clone being unable to generate a PC 
transcriptional and morphological phenotype and secrete immunoglobulin in vitro. 
The failure to induce PRDM1 in vitro may be related to the antigen encounter of the 
CLL clone in vivo, as non-responsiveness correlated with the lgVHl-69 gene segment 
usage but not other prognostic markers, PRDM1 was shown to be controlled at the 
level of transcription in CLL cells, but the activity and levels of the known 
transcriptional regulators of PRDM1 both before and after stimulation could not 
distinguish the two PRDM1 response subtypes. Initial chromatin 
immunoprecipitation experiments demonstrated that a failure to produce histone 
marks associated with transcription initiation/elongation on, and the recruitment of 
serine-5 phosphorylated RNA polymerase II to, the prdml gene are not responsible 
for the failure of transcription.
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Chapter 1

GENERAL INTRODUCTION

1.1 OVERVIEW OF INTRODUCTION

This thesis is exclusively concerned with chronic lymphocytic leukaemia 

(CLL), so this Introduction starts with a brief review of the disease.

The aim of the first experimental chapter (Chapter 2) was to establish 

why some CLL clones express the integrin heterodimer a4(3l/ while 

others do not. Consequently, the nature of a4|31, and its role in 

lymphocyte and CLL biology are considered next. Since it turned out 

that a4 expression is controlled at a transcriptional level in a process 

involving histone modifications, brief overviews of the transcriptional 

control of a4 in other cells and mechanisms of epigenetic control in 

transcriptional regulation are also presented.

The work in Chapter 3 arose out of Chapter 2 where the possibility that 

a4 expression is related to the stage of differentiation of the CLL clone 

was investigated. Thus, interleukin-21 (IL-21) was used to induce
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differentiation of a4pos and a4nGg CLL clones and expression of PR- 

domain containing protein 1 (PRDMl) was used as a marker of 

differentiation. Although it turned out that a4 expression is not related 

to differentiation, an apparent lower molecular weight isoform of 

PRDMl was detected. Since it is known that truncated forms of PRDMl 

proteins are important in lymphoma1, the nature of this lower molecular 

weight band was studied. Although, disappointingly, the band proved to 

represent a cross-reaction to albumin, these studies provoked my 

interest in PRDMl and plasma-cell (PC) differentiation in CLL cells-work 

pursued in Chapters 4 and 5. Therefore, the nature and control of 

PRDMl expression and PC differentiation are reviewed in detail.

In Chapter 4, IL-21 and CpG-ODN (deoxyribo[cytidine-phosphate- 

guanosine] motif containing oligodeoxynucleotides) were used to induce 

PRDM1/PC differentiation of CLL cells. Therefore, the biology of these 

stimulants will be considered, along with a summary of previous work 

regarding CLL-ceil differentiation.

Chapter 5 is concerned with two interrelated questions: what 

combinations of activating transcription factors are needed to induce 

PRDMl in CLL? and what is the nature of the differentiation block in 

PRDMl observed in some CLL clones? A major part of this work involved

2



consideration of the control of PRDM1 transcription and expression, and

of the signalling pathways downstream of IL-21 and CpG-ODN receptors. 

These subjects, therefore, are also reviewed.

Chapter 6 highlights the novel findings of the thesis and briefly attempts 

to outline how the current work might be developed in the future.

In the light of this brief overview, the following topics are relevant and 

will be considered in turn:-

An overview of CLL 

The a4pl integrin heterodimer 

Gene transcription regulation 

Epigenetic control of transcription 

PC differentiation 

The transcription factor PRDMl 

IL-21 and PC differentiation 

CpG-ODN and PC differentiation
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1.2 AN OVERVIEW OF CLL

1.2.1 Definition

CLL is a chronic lymphoproliferative disorder characterised by the 

presence in the biood of >5xl09/L CD5+CD23+ light-chain-restricted B 

cells. When such cells are present at lower numbers, the clonal 

expansion is termed a monoclonal B lymphocytosis with a CLL-like 

phenotype2; many such cases never develop CLL.

1.2.2 Clinical aspects

CLL is by far the most common leukaemia of adults with an annual 

incidence of around 3 cases per 100,000 3. The disease is commoner in 

older people and is rare in non-Caucasians. The diagnosis is often made 

by a full blood count performed for entirely routine reasons or for 

investigation of unrelated problems.

The clinical course is highly variable, with some patients remaining 

asymptomatic for prolonged periods. However, in others, the disease 

can be highly progressive and associated with symptoms and the 

development of organomegaly, bone marrow failure and 

immunosuppression. This, in turn, leads to recurrent infections which 

can eventually be fatal. Progression may be associated with changes in
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the cytology; cytogenetics and behaviour of the malignant cells. These

changes are termed transformation and can take the form of either 

prolymphocytic4 or Richter transformations5. The former is associated 

with appearance in the blood or lymph nodes of larger cells termed 

prolymphocytes. In Richter's transformation, the malignant cells take on 

a blastic morphology and the disease comes to resemble diffuse large 13- 

cell lymphoma (DLBCL).

Like other low-grade lymphoproliferative disorders, CLL remains 

incurable. However, introduction in recent years of new agents has 

allowed effective treatment for a proportion of patients6. These newer 

treatments include nucleosides (especially fludaribine) and antibodies 

e.g. anti-CD20/rituximab and anti-CD52/Campath/alemtuzumab. These 

and previous treatments (alkylating agents and steroids) are not curative 

and all patients will eventually progress. Richter's transformation is 

treated as a high-grade lymphoma with combination chemotherapy, and 

this may return the patient to chronic-phase CLL for a variable period. 

Because this thesis is not concerned with therapy, treatment strategies 

will not be discussed further.

5



1.2.3 Prognostic features

Because the disease course is so variable, much effort has, over the 

years, been directed towards identifying methods of predicting clinical 

outcome. The earliest of these were clinical staging systems based on 

the presence or absence of organomegaly and bone marrow 

suppression7'8 while, more recently, a number of laboratory prognostic 

markers have been identified.

Regarding clinical staging, two systems (Rai and Binet) have been widely 

employed and are summarised in Tables 1 and 2. The basic principle is 

that extensive organomegaly and/or bone marrow suppression are 

associated with an adverse prognosis.

Regarding prognostic markers, those that are commonly used are 

summarised in Table 3. In the context of this thesis, IgVn 

(immunoglobulin variable-heavy chain) mutation, IgVn gene segment 

usage, CD38 and CD49d merit special mention since they are relevant to 

the work presented in Chapters 2 (CD49d expression) and 4 (Table 5). 

Each of these prognostic markers will be briefly considered in turn.

IgVn mutation (also see below) is a powerful prognostic indicator at 

presentation and can discriminate between early stage patients who will 

or will not progress9,10. Thus, when lgVH mutation (i.e. deviation from
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Table 1 - Rai system of CLL clinical staging.

Stage Clinical Features
Average 

Survival* (mo)

0 Bone marrow and blood lymphocytosis only. >150
1 Lymphocytosis with enlarged nodes. 101

II
Lymphocytosis with enlarged spleen or liver or
both.

71

III Lymphocytosis with anaemia (Hb less than lOg). 19

IV
Lymphocytosis with thrombocytopenia (platelets 
less than 100,000/mm3).

19

*Taken from the study used to classify the stages

Table 2 - Binet system of CLL clinical staging.

Stage Clinical Features
Average 

Survival* (mo)

A
No anaemia, no thrombocytopenia, less than three 
involved areas (e.g. spleen, liver, lymph nodes).

Same as
Controls

B
No anaemia, no thrombocytopenia, three or more
involved areas.

84

C Anaemia and/or thrombocytopenia. 24
------------------------ ----------------------------------------------------------------------------------------- g-

*Taken from the study used to classify the stages
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Table 3 - Prognostic markers commonly used in CLL.

Prognostic
Marker Type Brief Description Prognosis

Lactate
dehydrogenase

(LDH)
Serum

Considered a marker of 
high tumour burden 
and cell turnover.

Negative correlation 
between serum 
levels and OS11

32 microglobulin Serum

Associates with the 
plasma membrane and 
the a-chain of class 1
MHC.

Negative correlation 
between serum 
levels and OS1213

Chromosome
karyotype Cytogenetics

Trisomy 12

13ql4 deletion
17pl3 deletion 
llq22 deletion

Similar to normal 
karyotype
Good
Very poor
Poor14

p53 Molecular

Tumour suppressor 
gene located on 17p. 
Protects against the 
consequences of DNA 
damage by halting the 
cell cycle or inducing 
apoptosis.

Dysfunctional p53 
confers poor 
prognosis and a poor 
response to 
treatment15

lgVH mutation Molecular

Mutated 
immunoglobulin 
variable-heavy genes 
give a better prognosis

>2% = Good 
<2% = Poor9'10

lgVH gene usage Molecular

lgVH families are 
skewed in CLL and can 
sometimes help to 
predict prognosis 
independently of 
mutational status

lgVH3-21 confers
. 16,17poor prognosis

CD49d Surface
marker

Allows
transendothelial 
migration and entry 
into lymph nodes

Expression confers
. 18,19poor prognosis

CD38 Surface
marker

Expression is 
associated with DM 
cases and CLL-cell 
proliferation

>30% = poor10

Zap70 Intracellular
antigen

Non-receptor tyrosine 
kinase that can be 
expressed in activated
B cells

Expression confers 
poor prognosis20

OS - Overall survival
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germline) is high (>2% = mutated- or M-CLL), the mean duration of 

survival is around 24 years. In contrast, when lgVH mutation is low (<2% 

= unmutated- or UM-CLL), the mean duration of survival is only around 8 

years.

lgVH family usage by CLL cells is skewed as compared with that of normal 

CD5+ B ceils. In particular, lgVHl family genes are expressed more 

frequently, while those of the lgVH3 family are less frequent. 

Furthermore, UM- and M-CLL clones differ in their use of particular IgVn 

gene segments. For example, the use of lgVHl-69 is particularly 

common in UM clones9. Recently, lgVH gene segment usage has been 

identified as a useful tool for prognosis, with CLL clones expressing 

lgVH3-21 having a poor prognosis independently of their mutational 

status17. It is likely that the biased use of particular lgVH genes reflects in 

vivo stimulation/selection by particular (auto)antigens21. This subject 

will be discussed in more detail below under Section 1.2.4.

Surface expression of CD38 is an adverse prognostic factor that 

correlates imperfectly with lack of IgVn mutation10. It is somewhat 

controversial what level of percentage-cell expression should be 

employed as a prognostic marker, but a 30% cut off has become the 

usual parameter10. It is also not entirely clear why high levels of CD38
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should confer an adverse prognosis. CD38 has two major functions. It is 

well known as an enzyme that catalyses the conversion of NAD+ to 

cyclic-ADP-ribose which then acts as an important second messenger in 

calcium homeostasis22. In addition, CD38 can act as a surface receptor 

for PECAM-l (CD31), a molecule known to be involved in adhesion and 

extravasation of a number of leukocyte types23. Furthermore, ligation of 

CD38 with antibodies transduces signals important in cell 

survival/differentiation24. Why these functions of CD38 confer an 

adverse prognosis is not firmly established, but it is probably relevant 

that expression of the molecule is associated with CLL-cell 

proliferation25'26.

Work from this laboratory was the first to show that expression of the 

integrin heterodimer, a4pi (CD49d/CD29 or very late antigen-4, VLA-4), 

by CLL cells is necessary for transendothelial migration and is associated 

with clinical lymphadenopathy27. Subsequently, several studies showed 

that the expression of «4 is an independent adverse prognostic 

indicator18'19. Presumably this is because expression of the a4 allows 

migration into lymph nodes where the CLL cells can receive survival and 

proliferation signals. This means that interfering with the function of 

a4pl might have therapeutic potential in CLL. The nature and control of 

a4 is discussed in further detail in Section 1.3.

10



1.2.4 The nature of CLL cells

The normal counterpart of CLL cells is still unclear. It has long been 

known that CLL cells express CDS - a feature of B-l cells. B-l cells are 

important in innate immunity and produce naturally occurring, 

polyreactive antibodies against foreign and (auto)antigens (see Section 

1.6.1.1). Therefore, the fact that CLL ceils often produce similar 

polyreactive antibodies28 has lent support to the notion that the 

malignant lymphocytes are related to B-l cells.

However, it is also known that CLL cells have been variably activated in 

vivo and that extensive cross-linking of the BCR (B-cell receptor) of 

normal-B cells induces the expression of CDS29'30. It may therefore be 

that the CDS expression of CLL cells is simply a manifestation of cell 

activation rather than an indication that the cell of origin belongs to the 

B-l lineage.

Gene array analysis has shown that CLL cells more closely resemble 

memory B cells than any of the other B-cell subtypes tested, including 

CD5+ B-l cells31. The fact that CLL cells consistently express the memory 

cell marker, CD2732, is in accord with the notion that CLL cells are related 

to normal memory cells.
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In view of these uncertainties, the a4 expression of CLL cells was

compared in Chapter 2 with that of both CD5+ and CD27+ normal PB 

(peripheral blood) B cell subpopulations.

Regarding the phenotype of CLL cells, they express CD23, together with 

CDS and a low density of light-chain-restricted surface Ig 

(immunoglobulin). The CD23 is probably a reflection of the activation of 

CLL cells33. Why only small amounts of surface Ig are detected on the CLL 

cells is still not clear, but the low expression has been related to 

abnormal protein processing and folding34,35 and may be a feature of 

anergy caused by chronic stimulation36. The majority of CLL clones 

express IgM (Ig of isotype M) and IgD, but up to 20% are class switched 

and express IgG or IgA37.

CLL cells express a range of activation/differentiation markers and this 

has been used to support the notion that CLL cells have been activated 

in vivo38. The expression of these markers is considered in Chapter 2 and 

will not be discussed further here.

Although CLL cells are probably stimulated in vivo by a number of factors 

(e.g. adhesive ligands, CD40 ligand, cytokines, etc), there is considerable 

evidence that antigenic stimulation/selection via the BCR is pivotal for 

CLL development. Such evidence includes the fact that IgVn gene family
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usage is strikingly biased in the disease and that the antigen binding site

(CDR3; complementarity determining region 3) is often similar in 

different CLL clones (a phenomenon known as stereotypy, present in 

around 20% of all cases of CLL39}. As there is a suggestion that different 

IgM antibodies from the same heavy-chain CDR3 (HCDR3)-stereotypic 

subset may recognise similar cytoplasmic (auto)antigens28,40, it is 

hypothesised that some clones have been selected by a limited number 

of (auto)antigens or by (auto)antigens with structurally similar 

epitopes41.

In addition to causing cell activation, continuous exposure to low levels 

or low affinity (auto)antigen can also induce anergy42. This is a state in 

which the cells are able to bind antigen, but are functionally 

unresponsive to that antigen. It is known from animal models that 

different types of antigens can induce anergic cells with different 

biochemical and functional features43. However, the inability of BCR- 

cross-linking (BCRxl) to induce a rise in intracellular calcium has been 

employed as a general marker of anergy in CLL44. Also, as a result of 

internalisation, anergic cells frequently express low levels of surface 

IgM43. In the present study, therefore, calcium fluxes in response to 

BCRxl and surface IgM levels were employed to test the hypothesis that 

lack of a4 expression might be related to anergy.
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1.3 THE a4pi INTEGRIN HETERQDIMER

1.3.1 The integrin family of adhesive proteins

Integrins constitute a large family of heterodimeric transmembrane 

proteins, composed of non-covalently associated a and j3 chains. Two, 

a4(3l and al|32 (LFA-1), are of particular relevance to the adhesion and 

migration of B lymphocytes, and have been an interest of this 

Department for a number of years.

Integrins mediate adhesion by binding to either cell-bound ligands or 

ECM (extracellular matrix) proteins. Ligands for a431 are VCAM-l on 

cells and fibronectin in the ECM45. aL(32 binds to a number of ligands, 

especially cellular ICAM-l46. Coordinated adhesion and de-adhesion are 

necessary for cell motility47.

In order to bind their ligand, integrins have to undergo a stimulation- 

induced conformational change (so called inside-out activation), which 

greatly increases the affinity of the receptor for its ligand48. This 

mechanism prevents unwanted adhesion by unstimulated cells. The 

strength of adhesion can also be enhanced by receptor clustering 

(known as avidity regulation).
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Upon ligand binding, the integrins transmit (outside-in activation) signals 

for a number of cellular functions, including shape change and survival48.

1.3.2 Structure

The a4 integrin chain has a molecular weight of around 150kDa, and 

lacks the ligand-binding l-domain present in many a chains. Despite 

lacking the l-domain, the conserved amino acids around where this 

domain would have been inserted in other a-chains are able to mediate 

binding49. In lymphocytes, the a4 chain can be associated with either pi 

or p7, and this is true of CLL cells50. However, a4pi is the main mediator 

of CLL-cell transendothelial migration51.

a4 is also unusual among a-chains in being proteolytically cleaved into 2 

fragments of 70 and SOkDa, which remain associated non-covalently 

with each other and with the p-chain. All three molecular forms can be 

expressed at the cell surface and their relative expression is known to 

vary between different types of leukocytes. It is already established that 

all three molecular weight forms can be found in CLL ceils50 and this was 

confirmed in Chapter 2 when a4pos and a4neg CLL cells were compared 

for a4 protein expression (only data for a4150 shown).
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The structure of the (31-chain has been extensively reviewed elsewhere 

(e.g. Green, U et al52} and, since it is not studied in this thesis, this 

integrin chain will not be considered further here.

1.3.3 Control of expression

When this thesis was begun, nothing was known at about the 

mechanism controlling a4 expression by CLL cells. However, it was 

established in other cell types that surface expression of the integrin 

chain can be controlled by changes in transcription/translation or by 

endocytosis. It was apparent that a range of cell stimuli are able to alter 

surface a4 expression. Such stimuli include TNFa (tumour necrosis 

factor a)53 and IPS (lipopolysaccharide)54. For this reason a considerable, 

but unsuccessful, effort was made (Chapter 2) to relate surface cl4 

positivity/negativity to activation/differentiation.

Regarding possible down-regulation of surface a4 by endocytosis, it is 

known that engagement of the antigen receptor of T cells55 can lead to 

internalisation of a4, with consequent reduction in surface expression of 

the integrin chain. Since CLL cells are thought to have been stimulated 

by their BCR, it seemed possible that a similar process might be 

occurring in these malignant B cells. However, this possibility was
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excluded by showing that ot4neg CLL cells lack a4 protein as well as 

messenger ribonucleic acid (mRNA; Chapter 2).

The fact that a range of stimuli failed to induce a4 expression in a4neg 

clones, prompted consideration of possible epigenetic mechanisms by 

which the a4 gene {ITGA4) might be silenced. It has been shown in 

gastric cancer cells that ITGA4 can be repressed by CpG methylation56. 

This possibility was considered in Chapter 2, and the subject of CpG 

methylation is therefore reviewed in Section 1.5.2.

Histone modification is another epigenetic mechanism by which gene 

transcription can be activated or repressed. There have been studies of 

the transcriptional activators and repressors of ct4 in cell types other 

than CLL57'62. However, although it has been shown that histone 

deacetylase inhibitors alter a4 expression in myeloid and hepatic cells63, 

little or nothing is known about how activators/repressors modify the 

histones associated with ITGA4 gene. Histone marks associated with 

ITGA4 gene form an important part of the investigations described in 

Chapter 2 and therefore the subject of histone post-translational 

modifications (PTMs) is reviewed in Section 1.5.3.
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1.3.4 Function

As mentioned above, there are two important ligands of a4pl - VCAM-1 

and fibronectin - and these have distinct functional effects.

VCAM-1 is expressed by endothelial cells of HEV (high endothelial 

venules) and those of inflamed tissues. After stimulation by chemokines, 

the a4[$l of rolling lymphocytes is able to interact with VCAM-1 and this 

process, together with al_p2 to ICAM-1 binding, causes adhesion to 

endothelium64. Following adhesion, lymphocytes then transmigrate 

along a chemotactic gradient in a process involving al_(32 and a range of 

other molecules65. During this process there is crosstalk between a4pl 

and al_P266. This is particularly important in CLL because the activation of 

aLp2 by chemokine is frequently defective51 and, as a result, aip2 

cannot be activated unless a4pl is expressed and engaged51,67. In 

addition to mediating lymphocyte-to-endothelium interaction, 

engagement of a4pl with VCAM-1 enhances the survival of CLL 

lymphocytes68.

Fibronectin (FN) is an important constituent of the extracellular matrix. 

Cells adhere to, and spread on, FN in a process involving a4pi and other 

components of so-called focal adhesions69. CLL cells variably adhere to
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FN in vitro, but do not actively spread50. In general, adhesion to FN 

transmits signals enhancing cell survival70 and this is true of CLL cells71.

1.4 BRIEF OVERVIEW OF TRANSCRIPTION

This subject is comprehensively reviewed in many textbooks and only 

information relevant to Chapter 5 will be given here.

1.4.1 Overview of mRNA transcription

There are three different RNA polymerases (RP) in eukaryotes, and it is 

RPII that is responsible for protein-encoding mRNA production. mRNA 

transcription relies on the six components of the general transcription 

machinery. These are:- RPII and the five general transcription factors 

known as transcription factor II B (TFIIB), TFIID, -E, -F and -H. Without 

the general transcription factors, RPii alone is unable to recognise a 

promoter and initiate transcription72. Binding of unphosphorylated RPII 

and the general transcription factors (together known as the 

transcription preinitiation complex [PIC]) to the promoter of a specific 

gene is controlled by the so-called mediator complex and by gene- 

specific transcription factors. The mediator complex bridges upstream
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activator molecules with the RPII complex and is made up of more than 

twenty subunits73.

Transcription factors can promote or repress transcription in three 

different ways. They can interact directly with the mediator/RPII 

initiation complex and stabilise or block its binding to DNA. Also, they 

can have histone acetyltransferase (HATs) or histone deacetylase (HDAC) 

activity that allows or denies access to the DNA sequence respectively 

(see Section 1.5.3). Finally, a transcription factor may be able to recruit 

other factors that have one or both of the functions mentioned above.

1.4.2 Regulation of transcription

As has been shown by individual studies of genes, transcription can be 

regulated at many levels, but these processes usually fall into three main 

categories of transcription initiation, transcription elongation and RNA 

stability.

1.4.2.1 Transcription initiation

While it was originally thought that transcription initiation was the main 

regulatory strategy for mRNA transcription, it has more recently come to 

light that >70% of all promoters from active and inactive genes in 

humans have signs of transcription initiation74. After binding of the PIC 

and the mediator complex to the promoter region of the gene, Serine-5
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of the C-terminal domain (CTD) of RPII is phosphorylated (Ser5P) by 

TFIIH. This phosphorylation, in turn, stops mediator binding to the RPII 

complex and allows the start of transcription elongation75. Ser5P of the 

CTD is also required for a number of other processes, including the 

recruitment of the S'-mRNA capping enzyme76 and, in yeast, the Setl 

catalysed methylation of histone 3 lysine 4 (H3K4)77; it has been shown 

that mammalian homologs of Setl may also be recruited in a similar 

way78. Therefore, marks/signs of transcription initiation on the 

transcription start site (TSS) include the presence of histone H3 

acetylation, H3K4 methylation and Ser5P-RPII, and these marks are used 

in Chapter 5.

It is evident that initiation of transcription does not always result in 

production of full length mRNA. After the initiation phase, the RPII has 

the choice to either pause, terminate or elongate.

1.4.2.2 Transcription pausing, elongation and termination

The choice of whether RPII is allowed to cause transcription elongation 

or is made to pause or undergo early transcription termination is 

controlled by positive and negative elongation factors. For example, the 

negative elongation factor, NELF, can function as part of the early 

termination pathway in higher eukaryotes, and this transcription
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repression is overcome by the positive elongation factor complex, P- 

TEFb79 (positive elongation transcription factor b). P-TEFb 

phosphorylates RPII on Ser2 (Ser2P) via its cdk9 subunit, and this mark 

enables RPII to move past the pause/early termination checkpoint. As 

the CTD of RPII is dual phosphorylated on Ser2 and Ser5 at this point, it 

can then act as a docking site for the H3K36 histone methyltransferase 

(HMT) Set2so. Therefore, methylation of F13K36 is often used as a marker 

of transcription elongation and so is employed as such in Chapter 5.

Late transcription termination and polyadenylation of mRNA are tightly 

linked. Ser2P on the CTD acts as a docking site for the polyadenylation 

machinery81,82 and, upon mRNA cleavage at the polyA site, the 

downstream RNA is quickly degraded (known as the 'torpedo' model of 

transcription termination83,84).

1.5 EPIGENETIC CONTROL OF TRANSCRIPTION

1.5.1 Definition

Epigenetics is the study into the control of gene expression by 

mechanisms that do not affect the underlying genetic sequence. Such 

control mechanisms can be maintained through cell division and
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modified by cell stimuli, but they do not require alteration in the genetic 

code of the cell.

Epigenetic control is not limited to transcriptional regulation but, 

because the ITGA4 and prdml genes were found to be both regulated at 

a transcriptional level, only such mechanisms will be considered here. 

Changing gene transcription by epigenetic mechanisms is fundamentally 

achieved by altering the structure of chromatin. This can be done either 

by modifying DNA through the addition of a methyl group to cytosine 

bases or by PTMs of the histone proteins around which the DNA is 

coiled. Altering the structure of chromatin changes the affinities of both 

activating and repressing transcription factors for their DNA-binding 

sequence and therefore changes a gene's potential for transcription. 

Each of these mechanisms will now be described in more detail.

1.5.2 DNA methvlation

The only known epigenetic modification of DNA in mammals is the 

addition of a methyl group to C5 of cytosine (5-methylcytosine) in CpG 

dinucleotides. In mammals, de novo methylation is produced by the 

DNMT3 (DNA methyltransferase-3) family of enzymes, while 

maintenance methylation (such as that placed on new daughter strands 

after replication) is done by DNMT185. Although the methylation of DNA

23



is a relatively stable epigenetic mark, loss of this modification can occur.

This is brought about either through DNA replication in the absence of 

maintenance DNMTs or can occur as a consequence of deglycosylation 

(either direct or through an initial deamination step) of the cytosine 

base, with subsequent excision and repair mechanisms86.

DNA methylation is estimated to occur at ~70-80% of all CpG motifs in 

mammals, with the majority of 5-methylcytosines lying within repeat 

regions of the DNA87. CpG motifs are also concentrated in clusters (or 

CpG islands) around many gene promoter regions88. These CpG islands 

are often demethylated, but upon methylation can inhibit gene 

transcription either directly by interfering with specific transcription 

factor binding89, or indirectly by recruiting methyl-CpG-binding proteins 

with their associated repressive chromatin remodelling activities90. 

Unlike histone modifications (see below), DNA methylation has only ever 

been linked with repression of gene transcription91. Recent studies have 

shown that loss in expression of both the ITGA456 and prdml92 genes 

can be the result of DNA methylation.

1.5.3 Histone post-translational modifications

In eukaryotes, 147 base pairs (bp) of DNA are wrapped around an 

octamer of histones consisting of two copies of H2A, H2B, H3 and H4 to
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make a nucleosome. Each of these core histones has an amino-terminai

tail that protrudes out of the nucleosome and can be subjected to 

multiple PTMs including acetylation, methyiation, phosphorylation and 

ubiquitination amongst others. These PTMs can target multiple amino 

acids along the histone tails and include lysine and serine residues (see 

Fig. 1.1 for an overview).

Modifications of histone tails are thought to affect chromatin structure 

and therefore transcription in one of two ways. The first is by altering 

the histone tails so that the contact of the histone with the DNA is 

altered. This in turn allows transcription factors and the PIC to access 

their DNA binding sequences and the transcriptome to form and move 

along the DNA strand. Acetylation marks, which are known to favour 

transcription, function in this way93. Thus, the acetylation of lysine (Fig. 

1.2A) removes its positive charge allowing the negatively charged 

backbone of the DNA to become free/loosened from the histone core. 

These types of PTMs occur most commonly over the transcription start 

site, but some acetylation marks can extend throughout the gene 

allowing passage of the transcriptome along the locus. Acetylation is 

catalysed by HATs (e.g. CBP, p300, etc), while removal of this mark is 

performed by HDACs (e.g. HDAC1-11).
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Figure 1.1
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Post-translational modifications of human histones. Modifications 

include acetylation (ac), methylation (me), phosphorylation (ph) and 

ubiquitination (ub). Apart from some exceptions, including 

ubiquitination of the C-terminal tail of histones H2A and H2B plus 

acetylation or methylation of two lysine residues in the globular domain 

of H3, most of the known histone post-translational modifications occur 

in the N-terminal histone tails. Globular domains of the histones are 

represented with coloured ovals. Reproduced from Bhaumik, SR eta/94.
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Figure 1.2
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Acetylation and methylation of lysine residues. Diagram showing the 

change in chemical structure of lysine upon (A) acetylation and (B) 

methylation PTMs. Adapted from Klose, SR et al9s.

The second method by which the modified tails affect chromatin is by 

acting as docking sites for transcriptional activators/repressors or 

chromatin remodelling proteins. Three such marks, which are known to 

act in such a way and that have been well characterized, are 

trimethylation of lysine 27 on histone H3 (H3K27me3), H3K4me3 and
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HSKSGmeS, which are associated respectively with transcription 

repression, transcription initiation and transcription elongation96'98 (see 

Fig. 1.2B for the structure of methylated Lys residues). It must be noted 

here, however, that methylation marks associated with active 

transcription do not appear to facilitate transcription99'100. Instead, 

these marks appear to be used to maintain transcribed chromatin 

templates for proper transcription. HMTs catalyse methylation, while 

demethylation is carried out by histone demethylases (HDM).

Repressive marks are produced and interpreted by the Polycomb group 

(PcG) of genes, while the Trithorax group (TrxG) of genes control 

activating marks. The PcG of genes produces a family of proteins which 

form three known distinct multimeric complexes - PRC1 (Polycomb 

repressive complex 1), PRC2 and PhoRC (pleiohomeotic repressive 

complex). PRC2 contains the SET (Su(var)3-9, Enhancer of Zeste, 

Trithorax) domain containing HMT EZH2 (enhancer of zeste homoiogue 

2), which is known to directly di- and trimethylate H3K2797. Once 

trimethylated, H3K27 can then be recognised by the chromodomain of 

Polycomb, a protein in PRC1 which is associated with the formation of 

heterochromatin and gene silencing97.
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In contrast to the PcG, the TrxG is somewhat more heterogeneous. One

class of the TrxG contain SET domains (MLL1-4 and SET1A/B - forming 

COMPASS-like complexes in humans). A second class forms part of the 

ATP-dependent chromatin remodelling complexes SWI/SNF or NURF. All 

known COMPASS-like complexes have H3K4 methyltransferase activity. 

Trimethylation of H3K4 creates a binding site for CHD1 (via its tandem 

chromodomains) and other proteins; via their PHD (plant homology 

domain), such as BPTF101, ING2102, ING4103, ING5104, RAG2105 and 

TAF3106. Thus, through the presence of the histone mark H3K4me3, 

recruitment of CHD1 and PHD containing proteins brings to the gene 

proteins with functions associated with transcription initiation, further 

histone modification and/or ATP-dependent chromatin remodelling.

H3K36me3 PTMs occur predominately at the 3' end of actively 

transcribed genes. This methylation mark is likely to be the consequence 

of recruitment of HMTs by Ser2/Ser5-phosphorylated RPII as it moves 

along the gene locus during transcription (see Section 1.4.2). Levels of 

this modification are often used as a marker of active transcription 

elongation. Work in yeast suggests that H3K36 is trimethylated in the 

wake of RPII to recruit HDACs and, thus, stop transcription initiation at 

internal sequences of the gene98,107.
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It must be noted here that a single chromatin mark does not always

predict the transcriptional activity of a gene and therefore cannot be 

taken in isolation. As such, the presence of the H3K27me3 mark over 

the TSS of a gene, for example, does not always predict transcriptional 

inactivity, especially when this mark is found alongside activating marks 

such as H3 acetylation (H3Ac) and H3K4me3. Such bivalent domains 

were first noticed in embryonic stem (ES) cells and hypothesised to keep 

the gene repressed, but poised for rapid expression108. Interestingly in 

the context of this thesis, these bivalent marks are seen on the prdml 

gene in ES cells109.

1,6 PLASMA-CELL DIFFERENTIATION

1.6.1 Terminal differentiation of mature B cells

Upon encountering antigen in the peripheral lymphoid tissues, mature B 

cells differentiate further in a process called terminal differentiation. 

These newly antigen-experienced B cells have multiple alternative cell 

fates which are determined by the type and quantity of the antigen 

exposure.
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The different categories of antigen are based on the type of immune 

response they elicit and can be split into three groups: thymus 

dependent (ID), thymus-independent (Tl) type-1 (Tl-l; IPS) and TI-2 

(e.g. [NP]-Ficoll [(4-hydroxy-3“nitrophenyl)-acetyl-Ficoll]). The different 

types of Tl antigens are classified by their ability to induce responses in 

CBA/N mice that carry a Bruton's tyrosine kinase (Btk)-deficiency. Tl-l 

antigens possess epitopes that are recognised by both the BCR and toll­

like receptors (TLRs; see below) and can induce a response in CBA/N 

mice. In contrast, TI-2 antigens are repetitive antigens that strongly 

cross-link and stimulate the BCR, but rely on Btk to induce an immune 

response110. After exposure to stimulating pathogens, B cells can rapidly 

differentiate into IgM secreting short-lived PCs (SLPCs) in response to Tl 

stimulation. Alternatively, B cells can be stimulated by TD antigens to 

move to the follicle where they take longer to differentiate and, in the 

presence of T cells, undergo class switch recombination (CSR) and 

somatic hypermutation (SHM), before finally changing into either long- 

lived PCs (LLPCs) or memory B ceils.

The above processes are dependent upon engagement of the BCR by 

antigen. Flowever, plasmacytoid differentiation can also be induced 

independently of BCR engagement by signals of the innate immune 

system111; these include those derived from pattern recognition
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receptors (PRRs) and from soluble products of other cells of the innate

immune system such as macrophages.

1.6.1.1 Innate immune system

An evolutionarily older pathogen defence mechanism, the innate 

immune system has conserved features found in all classes of 

multicellular plants and animals. The system relies on recognising 

pathogens non-specifically through conserved repeat molecular 

structures termed pathogen-associated molecular patterns (PAMPs). 

Such motifs are recognised by PRRs, whose members include the TLR 

(toll-like receptor) and NLR (nucleotide-binding oligomerization domain 

[NOD]-like receptor) families. The subject of TLRs and their downstream 

effects are considered further in Section 1.9 which pays particular 

attention to TLR9 - the receptor for CpG-ODN - used to stimulate PRDM1 

expression in Chapters 4 and 5.

Because of their resemblance to CLL cells, special mention must be given 

here to CD5+ B-la cells and to the role of their natural antibodies in the 

innate immune system. These types of antibodies are produced at 

controlled levels in the complete absence of antigenic stimuli112'113 and 

provide an immediate response with broad specificity to pathogens; 

these antibodies therefore form an essential part of the humoral

32



immune system114. Positive selection by autoantigen makes the 

development of B-l ceils unique compared to other B cell subsets and 

causes them to make low affinity antibodies which cross-react with a 

wide-range of epitopes115'116. As such, these antibodies not only bind to, 

and assist, clearance of pathogens, but can also recognise antigens 

derived from intracellular components of disrupted host cells117. B-l 

cells are known to respond quickly and strongly to innate immune 

signals, including PAMPs and cytokines, but signals generated via their 

antigen receptor are relatively weak compared with those generated in 

B-2 cells118. These somewhat skewed responses mean they rarely enter 

the germinal centre (GC; see below) and do not produce high affinity 

class-switched antibodies, reducing the risk of autoimmune 

development119.

1.6.1.2 Adaptive immunity

This defense mechanism against pathogens evolved after that of the 

innate system and is only present in jawed vertebrates120. The adaptive 

immune system functions by specifically recognising and clearing TD 

antigen, while generating memory for a faster and stronger response 

against future infections. Although the adaptive immune system is an 

evolutionarily advanced system for the removal of pathogens from the
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host, it still relies on signals from the innate immune system to function

efficiently.

The adaptive immune response involves the specific recognition of 

antigen in the interfollicular zones of lymph nodes and homologous 

areas in the spleen. T cells recognise antigen that has been processed 

and presented to them by antigen-presenting cells in the context of 

major histocompatability class II (MHCll); this stimulates T helper (TH) 

cells to produce cytokines that cause B cells to proliferate and 

differentiate into SLPC which migrate to the medulla of the lymph node. 

In contrast, the Ig component of the BCR recognises, and is stimulated 

by, native unprocessed antigen. Such stimulation has many downstream 

effects including the induction of endocytosis of antigen-bound receptor 

and presentation of processed antigen to cognate T cells in the context 

of MHCll (peptide loaded MHCll, pMHCll). Cognate interaction between 

the B and T cells stimulates both cell types to enter follicles and form 

germinal centres (GCs)121. The activated B cells in the GC expand in the 

dark zone as centroblasts and undergo SHM of their Ig genes. 

Subsequently, the B cells enter the light zone as centrocytes and either 

die, or are selected by antigen on follicular dendritic cells. The selected 

centrocytes can either recycle back to the dark zone or potentially 

undergo further cognate interactions with T cells, undertake Ig heavy
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chain CSR, and then differentiate into either memory or PCs121. The 

precise stimuli that determine these alternative fates are still unclear, 

but prolonged stimulation by CD40 ligand (CD40L/CD154) favours 

memory cell formation122, while IL-2, IL-6, IL-10 and IL-21 promote PC 

differentiation123'125.

After leaving lymph nodes, the PCs migrate to the bone marrow where 

they become long lived and secrete specific Ig. Memory cells, on the 

other hand, circulate and accumulate in the secondary lymphoid organs. 

In summary, then, the GC reaction produces long-lived, high affinity, 

class-switched (usually IgG) antibodies to TD antigens and, through 

memory cells, facilitates a rapid secondary response to re-stimulation by 

that antigen.

Regarding specific TH cell subpopulations, naive Th (ThO) cells specifically 

recognise pMHCll via their cognate T-cell receptor (TCR); this causes 

activation which, in turn, is associated with the production of multiple 

cytokines (IL-2, etc) and the expression of cell-surface antigens (CD69, 

CD154, 0X40, etc). The TH cells then differentiate further to produce 

either TH1, TH2, TH3 (Treg), TH9, TH17 or CXCR5hl T follicular helper (TFH) 

cells. The choice of differentiation to different Th cell subsets is 

influenced by the type of stimuli the cells receive during their initial
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activation. For example, TH2 ceil differentiation is enhanced upon

exposure to IL-4, is characterised by the expression of the transcription 

factor GATA-3, and is associated with the secretion of many cytokines 

including IL-4 and IL-13126. Another subpopulation of Th cells is located in 

follicles and secretes large amounts of IL-21127 - the cytokine extensively 

studied in this thesis. These lymphocytes, termed TFh cells, are 

generated by high affinity TCR-pMHCll interactions plus IL-12128, and 

express the transcriptional repressor Bci-6 (B-cell CLL/lymphoma 6)129. 

Both of these subtypes of Th cells are known to be important in 

regulating CSR and PC differentiation in vivo. IL-21 will be discussed in 

more detail in Section 1.8.

1.6.2 Transcriptional control of PC differentiation

The transcriptional network that is altered by PC-inducing stimuli 

ultimately induces the functional and morphological changes associated 

with terminal differentiation. The transcription factor PRDM1 (also 

called Blimp-1 [B lymphocyte induced maturation protein 1] in mice) is 

induced directly by many stimuli that promote PC formation. PRDM1 is 

both essential and sufficient to induce PC differentiation130, and for this 

reason is thought of as the master transcriptional regulator of this 

process; without PRDM1, no antibody is produced from any B-celi 

subset131. It works as a transcriptional repressor and functions by down-
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regulating many genes that maintain mature B cell identity and repress

antibody secretion. The level of expression of PRDMl appears to 

increase progressively during the later stages of PC development. 

Consequently, piasmablasts have the lowest levels, while the 

transcriptional repressor is most highly expressed in LLPC132 (see below 

and Section 1.7 for more details on PRDMl control and function). Many 

of the transcriptional repressors that inhibit PC differentiation target the 

prdml gene. The transcriptional network (see Fig. 1.3 for an overview) 

that controls PC differentiation is highlighted over the next two sections.

1.6.2.1 Transcriptional repressors of PRDM1 and PC differentiation

There are three known direct repressors of PRDM1 in naive B cells (Pax5, 

Bach2 and Spi-B) and one indirect (MITF). Bcl-6 can also repress PRDM1 

directly and is expressed in activated GC B cells.

The first direct repressor in naive B cells, Pax5 (Paired box protein 5; also 

known as BSAP [B-cell lineage specific activator protein]), can be 

expressed early in lymphoid development and determines 

differentiation along the B-cell pathway133, its expression is maintained 

throughout B-ceil development until plasmacytoid differentiation is 

induced. Pax5 can function as both a transcriptional activator and 

repressor. It is required for the AID (activation-induced cytidine
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Figure 1.3

A Naive 
B cell

1 /T\W
MITF ■ Bcl-6 I Bach2 I Pax5 I Spi-B GC 

B cell

B

Transcriptional network controlling PC differentiation. Transcription 

factors in green are repressors of PC differentiation, those in red are 

highly expressed in PCs, while those in blue are transcription activators 

of PC differentiation. (A) Transcriptional inhibitors of PC differentiation 

in naive and GC B cells. (B) Transcriptional activation of PC 

differentiation. Examples of the stimuli that activate these transcription 

factors are shown in the clear boxes. Adapted from Calame et o/134.
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deaminase) expression135'136 which is needed for the rearrangement of 

the ig genes at the pro-B cell stage of development, as well as for CSR 

and SHM in the GC. It also acts as a transcriptional activator for many 

genes involved in the function of the pre-BCR and BCR, whiie repressing 

a range of genes not associated with the B cell lineage137. In addition to 

silencing these non-lineage-specific genes, Pax5 also inhibits the 

expression of genes involved in PC differentiation, including prc/ml138'139 

and XBP-1 (x-box binding protein 1; see Section 1.6.2.2)140. Pax5 

expression is lost during PC differentiation through direct repression by 

PRDM1141. Thus, Pax5 and PRDM1 share a mutual repression loop, 

where repression by Pax5 must first be overcome to allow the induction 

of PRDM1 which, in turn, feeds back and enforces its own expression 

through the repression of PAX5. How the initial Pax5 repression of the 

prdml gene is lost or overcome by activators is not yet clear. However, 

an initial stage in PC differentiation where Pax5 function is deactivated 

without the need for PRDMl induction could be required for 

differentiation142.

The second direct repressor of PRDM1 in naive B cells is Bach2 (BTB and 

CMC homology 2). This B-cell-specific transcription factor binds to the 

Maf (v-Maf musculoaponeurotic fibrosarcoma oncogene) recognition 

element (MARE) in the TSS of prdml by heterodimerising with the small
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Maf protein, MafK. Bach2 is expressed throughout B-cell development, 

but is lost on terminal differentiation to PCs143; this is probably through 

the loss of Pax5, a known positive regulator of Bach2 expression144.

Finally, Spi-B is the only other known direct repressor of PRDMl in naive 

B cells. This member of the Ets family of proteins is expressed at a 

moderate level in pre-antigen experienced cells, at a high level in 

switched memory B cells, and is lost upon PC differentiation. Compared 

with naive B cells, memory B cells rapidly reduce their expression of Spi- 

B when treated with PC-inducing stimuli. It is thought that this allows 

faster induction of PRDMl during the secondary response to antigen. 

Ectopic expression of Spi-B in B cells, together with chromatin 

immunoprecipitation (Chip) experiments, have identified PRDMl and 

XBP-1 as direct targets of this transcription factor. However, it remains 

unclear whether or not Spi-B is a critical determinant of PRDMl 

expression in v/Vo145.

MITF (Microphthalmia-associated transcription factor) is constitutively 

expressed in naive B cells and is known to repress PRDMl indirectly 

through its repression (by an unknown mechanism) of the prdml 

activator IRF4 (interferon regulatory factor 4; see Section 1.6.2.2).
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B cells that lack MITF spontaneously become activated and start 

secreting antibody146.

Once the naive B cells become activated and move to the secondary 

follicles, the proto-oncogene Bcl-6 is up regulated147 and is required for 

GC formation148. Without Bcl-6, B cells do not undergo SHM and do not 

generate LLPCs, but class-switched igGi memory cells and SLPCs can still 

be produced normally149. Bcl-6 mainly functions as a transcriptional 

repressor and is known to inhibit PRDM1 expression in one of two ways. 

It can interact with the Jun subunit of AP-1 {a transcriptional activator of 

PRDM1; see below) and inhibit its DNA binding150. Alternatively, Bcl-6 

can bind directly to the prdml gene at both intron 5151 and Intron 3152 

and recruit the co-repressor MTA3 (metastasis-associated protein 3), 

thereby inhibiting PRDM1 transcription153. Therefore, it is hypothesised 

that up regulation of Bcl-6 in the GC helps to maintain B-ceil 

proliferation and SHM by providing (in collaboration with Pax5 and 

Bach2) additional repression of the prdml gene and inhibition of 

premature terminal differentiation.

As is the case concerning how the repressive effects of Pax5 on prdml 

are overcome, it is currently unclear how the repressive effect of Bcl-6 

on prdml is lost in the GC. However, there are several known
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mechanisms that could reduce expression or inhibit the function of Bcl-6

in GC B ceils. MARK and PI3K/Akt pathways that are activated through 

BCRxl are both known to reduce Bci-6 expression. MARK causes 

phosphorylation-targeted ubiquitination of Bcl-6 leading to its 

subsequent degradation154, while Akt causes inactivation of the BCL6 

transcriptional activator FoxO155. Although one of the functions of Bcl-6 

is to inhibit AIR expression156 (causing the bypass of some DNA damage 

checkpoints), accumulated genotoxic stress induces ATM which leads to 

phosphorylation and ubiquitination-targeted degradation of Bci-6157. 

Both PRDM1 and IRF4 can bind directly to the BCL6 gene and inhibit its 

transcription ' . STATS (signal transducer and activator of 

transcription 5) activated by IL-2 is also known to repress Bcl-6 

expression in BCL1 cells160. Alongside these mechanisms, acetylation can 

also inhibit the repressive function of Bcl-6 and acetylated Bcl-6 is 

present within B ceils of the GC161; however, the mechanism of Bcl-6 

acetylation has yet to be discovered.

1.6.2.2 Transcriptional activators of PRDM1 and PC-differentiation

Removal of transcriptional repressors does not appear to be all that is 

required for efficient PRDM1 and PC induction162,163; transcriptional 

activators are also essential. These are NF-kB, IRF4 via NFAT, STATS, 

PU.l, AP-1 and IRF5, and each will be discussed in turn.
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NF-kB (nuclear factor K-light-chain-enhancer of activated B cells) is

required for Blimp-1 induction by PRRs, as inhibition of this signalling 

pathway by pharmacological inhibitors abolishes Blimp-1 induction 

induced by IPS in murine primary B cells109. Also, Sendai virus 

stimulation of 313 cells, which normally induces Blimp-1 in these cells, is 

lost upon knockout of two important NF-kB subunits163 (see Section 1.9 

on how NF-kB functions). NF-kB has multiple potential binding sites on 

the PRDM1 gene and has been recently shown to bind directly to the 

blimp-1 gene near the TSS in mice109.

As well as enhancing PRDM1 induction directly, NF-kB can indirectly 

activate PRDM1 by, in collaboration with NFAT (nuclear factor of 

activated T cells)164'166, up-regulating IRF4159. IRF4 can bind to the btimp- 

1 gene167,168 and is highly expressed in PCs. However, current literature 

is contradictory regarding how essential this response factor is for 

Blimp-l/PRDMl induction. Two groups have used conditional IRF4 

knockout mice to highlight the importance of IRF4 in mature B cells. 

They both report that IRF4 is required for efficient AID expression and 

CSR. However, only one of these papers suggest that IRF4 is essential for 

B!imp-1 induction by lps168'169. |RF4 is frequently associated with, and 

functionally regulated by, other proteins170 such as PU.l (purine-rich 

box-1; see below). IRF4 and STAT3 (signal transducer and activator of
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transcription 3) may work in collaboration to induce PRDM1 as it has

been shown that they both bind to similar areas of the blimp-1 gene 

after stimulation with IL-21167 (see Section 1.8).

Activated STAT3 is a strong transcriptional activator of prdml. Mice 

whose B cells lack STATS have defects in differentiation to IgG-secreting 

PCs171, while an over-expressed dominant-negative form of STAT3 in the 

BCL1 cell line causes a block in PRDM1 induction172. Many cytokines that 

strongly induce STAT3 activation, such as IL-6, IL-10 and IL-21, can lead 

to PRDM1 expression.

PU.l is a transcription factor important in B-cell development and is 

expressed at all stages of B-cell maturation173. It binds to the prdml 

promoter and has been shown to enhance PRDM1 induction upon 

stimulation with anti-IgM174.

Activator protein 1 (AP-1) is another transcriptional activator that binds 

to the prdml/blimp-1 genes and enhances transcription in humans and 

mice150'175. AP-1 is a dimeric complex composed of subunits of proteins 

that belong to the Fos, Jun, Maf and ATF sub-families. These proteins 

recognize either TPA (12-0-tetradecanoylphorbol-13-acetate)-response 

elements (TRE; 5'-TGAG/CTCA-3') or cAMP response elements (CRE, 5'- 

TGACGTCA-3')176. Over expression of c-Fos in mice causes enhanced
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induction of Blimp-1177, leading to a reduction in GC size and a decrease 

in memory B-cell commitment178'179. Work on the PRDMl promoter in 

humans has identified two CRE-motifs 5' of the TSS and mutation of 

these sites reduces, but does not abolish, promoter activity150. Also, B 

cells from c-fos-deficient mice that are treated with LPS in vitro do not 

have defective Blimp-1 induction175. Therefore, AP-1 appears to 

enhance PRDMl expression, but may not be essential for its induction.

IRF5 has recently been identified as a direct activator of biimp~l. B cells 

from IRF5 knockout mice have reduced Blimp-1 expression upon LPS 

treatment. Reporter assays highlight the importance of an IRF5 binding 

site S' of the blimp-1 TSS180.

XBP-1 is a transcription factor highly expressed in PCs and its spliced 

form (XBP-1[S]) is required for PC differentiation and antibody 

secretion181. In B cells, PRDMl is known to be required for XBP-1 

induction in response to PC-inducing stimuli; XBP-1 then acts 

downstream of PRDMl in regulating PC differentiation. The unspliced 

form of XBP-1 (XBP-1[U]} mRNA is normally present in B cells and 

negatively regulates the unfolded protein response (DPR)182. Upon 

endoplasmic reticulum (ER) stress, IRE1 (inositol-requiring protein 1) is 

activated and splices XBP-l(U) mRNA to generate XBP-l(S)183. This
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spliced mRNA is then translated and the protein produced acts as a 

positive regulator of the UPR, inducing other factors which lead to an 

increase in cell size, mitochondrial mass, ribosome numbers, lysosome 

content, general protein synthesis and expansion of the HR - creating 

the morphology of a PC184.

1.6.4 Transcriptional, surface-antigen and morphological features of PC

differentiation

Progression through the different stages of PC differentiation can be 

characterised by levels of the different transcription factors regulating 

terminal B-cell differentiation, by the quantity and type of certain 

specific surface antigens, and by the morphology of the cell. Levels of 

major transcription factors that define the later stages of PC 

differentiation include PRDMlhigh, IRF4high, XBP-l{S)high, Pax5low and Bcl- 

6neg. Table 4 highlights the surface markers expressed by CLL, B-la and 

memory B cells, together with those of plasmablast/SLPC and LLPC. 

These data are accompanied by representative pictures illustrating the 

morphology of CLL lymphocytes, a plasmablast and a bone-marrow- 

derived LLPC.
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Table 4 - Surface markers and morphology of B-cell and PC subsets.

Surface
Marker

B-cell Type Plasma-cell Subtype

CLL B-la Memory SLPC/
Plasmablast

LLPC

CD19 + +++ ++ + -

IgM +/-a +++ ++/-a +/-b -

IgD ++/-a +/-b ++/-a - -

CD45 +/-b + ++ + -

CDS + + - - -

CD23 ++ ++/-b - - -

CD27 + - + ++ +++

CD38 +/-b + +/-b ++ +++

CD138 + - - ++/-b +++

Morphology

aCan be as a result of class switching 

bCan be "+" or

Pictures from www.healthsystem.virginia.edu/internet/hematology/Hesslmages/ 

References185191
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1.7 PRDM1: STRUCTURE. CONTROL AND FUNCTION

1.7.1 Discovery, nomenclature and expression

PRDM1 was initially discovered using cDNA (complementary DNA) 

expression cloning and was called positive regulatory domain 1-binding 

factor 1 (PRDI-BF1) because of its ability to bind the PRDI element in the 

3-/F/V (p-interferon) gene promoter and repress its transcription192. The 

murine homolog was discovered 3 years iater and was called Blimp-1 

because of its function in inducing PC terminal differentiation130'193. The 

PRDl-BFl gene possesses a domain which had previously been 

uncharacterized, but had been seen before in the RIZ (retinoblastoma 

protein-interacting zinc finger) gene. It was therefore named the PR 

domain after these two founding protein members (see Section 1.7.3 for 

details on the function of the PR domain). To date, the family of PR- 

domain containing proteins (given the acronym PRDM) has sixteen 

members including RIZ (PRDM2)194 and, most recently, MEL1 

(MDS1/EVI 1-like 1; PRDM16)195. PRDM1 has functions in controlling 

gene expression in B cells, T cells, macrophages, the sebaceous gland 

and skin epidermis196.
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1.7.2 ordml gene, transcripts and protein domains

In the present study it was found that PRDMl expression is controlled at 

the level of transcription and so only these mechanisms will be discussed 

(although there maybe mechanisms for post-transcriptional regulation 

of PRDMl). The locus of prdml in humans is chromosome 6q21. Figure 

1.4 gives an overview of the prdml gene (NC_000006.11) and of which 

exons encode for the various protein domains (NM_001198.3; 

NPJXmS^)197. Many of the PRDM family members normally have an 

alternative transcript from the same gene, causing the expression of a 

truncated isoform that lacks a functional PR domain. While the full 

length PRDM proteins are tumour suppressors, the over expression of 

the truncated form is associated with many cancers1'198"200. As will be 

discussed in more detail in Chapter 3, a strong lower molecular weight 

band was identified in Western blots of CLL cells probed for PRDM1. This 

prompted a hypothesis that CLL cells might express a 

pathophysiologically important truncated form of PRDM1.

Regarding the nomenclature and function of the different PRDM1 

isoforms, the full length transcript is termed PRDMla, while the N- 

terminally truncated isoform which lacks a functional PR domain is 

called PRDMlp. PRDMlp can still bind DNA but, for unknown reasons.
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Figure 1.4
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Schematic representation of the prdml gene and its transcripts. (A)

shows to scale the introns (lines) and exons (boxes) of the prdml gene. 

The colours in each exon illustrate the protein domains encoded by 

these sequences (see B). Transcription initiation sites are shown for both 

the a and (3 transcripts. (B) illustrates the mature form of both the a 

and (3 forms of PRDM1 mRNA, and the protein domains for which it 

encodes. White regions are untranslated. Adapted from Tunyaplin et 

ol197.
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its ability to suppress target genes is greatly reduced198. Other domains 

in the prdml gene include the Zn2+ finger and the pro-rich (proline-rich) 

domains. The five Zn2+ finger motifs in the C-terminus are used for DNA 

binding, while the pro-rich domain is necessary for many of the protein- 

protein interactions (see Section 1.7.3).

There are multiple TSSs for the PRDMla mRNA which span across 48bp 

of the prdml gene (but all give rise to the same protein). The basal 

promoter has no TATA box but relies on a GC-box which can bind Spl, 

Sp3 and/or EGR-1. Loss of this sequence reduces transcriptional 

efficiency, but the binding of these factor(s) alone to the GC-box is not 

sufficient for RPII binding and transcription initiation in Daudi cells201; 

alteration in expression or activation of additional transcription factors 

(which have already been mentioned in Section 1.6.2) appear to be 

required for this to happen.

The PRDMla transcript is translated into a protein of 825 amino acids in 

length (NP_001189.2) and has a predicted molecular weight of 91,780 

Daltons (Da; although this protein migrates on Western blots at ™100 

kDa). In contrast, the PRDMlp protein is 691 amino acids in length 

(NP_878911.1) and has a predicted molecular weight of 76,840 Da 

(~80kDa on a Western blot).
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1.7.3 PRDM1 function in B cells

As mentioned previously, PRDM1 acts as a transcriptional repressor. It 

binds to the consensus sequence (A/C)AG(T/C)GAAAG(T/C)(G/T) that is 

similar to the binding sites of IRF1 and IRF2202. Unlike PRDM2203, the PR 

domain of PRDM1 does not have any HMT activity to produce repressive 

PTMs of histones. Rather, PRDM1 represses genes by recruiting other 

HMTs and HDACs such as:- the H3K9 methyl transferase, G9a204 (a 

member of the hGroucho complex); the arginine methyl transferase, 

prmtS205; and HDAC1 and HDAC2. G9a and the HDACs are both recruited 

through the pro-rich domain of PRDM1206'207.

Forced expression of PRDM1 in various Burkitt lymphoma lines, both 

directly and indirectly, changes the expression of over 250 genes158. 

These genes broadly fall into three main categories, namely, inhibition of 

proliferation, induction of Ig secretion and the loss of gene expression 

associated with GC activated B cells. Direct and indirect targets of 

PRDMl and their downstream effects are summarised in Fig. 1.5.
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Figure 1.5
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Targets of PRDM1 repression in B cells. Shown are the genes that were 

altered during over expression of PRDM1 in Burkitt's lymphoma cells158. 

Green indicates genes involved in proliferation, blue those that are 

required for Ig secretion and purple genes involved in B-cell phenotype 

and function. Figure reproduced from Martins eto/134.
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1.8 IL-21 AND PC DIFFERENTIATION

1.8.111-21 and its receptor

IL-21 is a member of the type I four-a-helical-bundle of cytokines208. 

Within this family, it is affiliated with cytokines whose receptors require 

association with the shared cytokine receptor y chain, yc; this group 

includes, in addition to IL-21, IL-2, IL-4, IL-7, IL-9 and IL-15. IL-21 is 

produced by activated CD4+ I cells and natural killer (NK) T cells209. 

Within the GC centre, Tfh (CXCR5+ CCR7-) cells are the major producers 

of IL-21210. Th17 cells also produce small amounts IL-21 and can also 

express CXCR5 enabling them to enter B-cell follicles, but their 

contribution to IL-21-induced PC differentiation has not yet been 

considered.

The IL-21 receptor (IL-21R) was initially shown to be expressed on B, T 

and NK cells. Naive B cells can weakly respond to IL-21, but like T cells, B 

cells and CLL cells up-regulate their IL-21R and respond more strongly 

after activation211. The IL-21R is then subsequently down-regulated and 

eventually lost upon differentiation into a PC212.
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1.8.2 IL-21 signalling

Like other cytokine receptors within the same family, the IL-21R signals 

via the Janus kinase (JAK)/STAT pathways. Thus, binding of IL-21 to its 

receptor causes recruitment of JAK1 and JAK3 tyrosine kinases which 

phosphorylate Tyr510 on the IL-21R. This modification provides a 

docking site for STAT proteins which, in turn, become phosphorylated by 

the JAK proteins. IL-21 can induce phosphorylation of STAT1, STAT3, 

STATSa and STATSb. Among these STAT proteins, STAT3 is activated 

most strongly and is the most important for PC differentiation213. Thus, 

STAT3 is phosphorylated on Tyr705 by JAK3 which induces dimerisation 

of the STAT3 monomers, allowing their import into the nucleus and 

binding to DNA. In addition to the JAK/STAT pathway, the RISK and 

MARK pathways have also been shown to be activated by IL-21214.

1.8.3 iL-21 function

IL-21 is known to have important effects on B, T and NK cells. However, 

concerning B ceils, IL-21 is an important regulator of proliferation, 

differentiation and death in both mice and humans215. Its precise effects 

depend on both the differentiation state of the B-cell population being 

studied and on the type of co-stimuli present. Regarding the effects of 

IL-21 in humans, in-vitro treatment of purified naive or memory B cells 

with CD40L, or CD40L and anti-IgM-BCRxl, plus IL-21 induces
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proliferation, CSR, and large amounts of Ig secretion from both 

subtypes; although these effects are greater in memory B ceils. The 

addition of IL-2 to these cultures enhanced the effects of IL-21216. In 

contrast, B cells treated with just anti-IgM-BCRxl and iL-21 were at first 

induced to proliferate, but then underwent apoptosis216.

Regarding PC-associated transcription factors that are altered by IL-21 in 

human B cells, PRDM1 can be modestly up regulated in memory B cells 

when IL-21 is provided alone. This induction is increased in all B-cell 

types by addition of co-stimuli such as CD40L or CD40L plus anti-IgM- 

BCRxl216.

Although it has been reported that IL-21 modestly increases the 

expression of Bcl-6 and Pax5 mRNA by normal PB and cord B cells216, the 

effect of the cytokine on these transcription factors has not been 

studied in memory cells - the probable normal counterpart of CLL cells.

1.8.4 IL-21 and the ordml gene

After IL-21 stimulation, activated STATS is known to be important for 

PRDM1 induction. In mice, IL-21-activated STATS binds, in collaboration 

with IRF4, to a variant of the GAS (y-interferon-activated sequence; 5'- 

TTCnnnTAA-S') motif at the S' end of the blimp-1 gene167. However, this 

specific GAS sequence is not present in the human prdml gene (Fig. 1.6)
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and therefore a different STAT3 binding site (which has yet to be found)

may be important for human PRDMl expression.

1.8.5 11-21 and CLL cells

In addition to inducing the apoptosis of normal B cells under certain 

conditions217'218, IL-21 can induce the apoptosis of a number of other cell 

types including cancer cells219. Such anti-tumour effects can be 

mediated directly or indirectly according to the cancer cel! type. It is 

therefore not surprising that there has been interest in the potential 

therapeutic effects of IL-21 in CLL220. Thus, the cytokine can induce CLL 

cell death both by IL-21R induced STAT1 signals211'221 and IL-21 induced 

granzyme B production222. Surprisingly, though, the effects of IL-21 on 

CLL-cell differentiation have not been studied - hence the work 

presented in Chapter 4.

When it was found that the cytokine induces PRDMl in only ^50% of 

clones, it became important to establish why the other 50% of clones do 

not express PRDMl in response to iL-21±co-stimuli. To investigate this 

question it was decided to test the effect of an alternative 

differentiating signal that primarily acts via fundamentally different 

mechanism(s). CpG-ODN, which acts via TLR9223, was chosen as such a 

stimulus.
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Figure 1.6

MOUSE AAAAAGCAAGCGTGCTTCCAGTAATTTCTGAATCACGAGCTGTAG
HUMAN GCAAAGTTCCCCAACTTCAGGTGTCTTAAGGATTC—ACCTGTGG

★ ★★★ ★ ★★★★ ★★ ★★ ★★★ ★★★★★★

S' blimp-1 GAS sequence in mice and how it compares to the human 

prdml gene. The 3' sequence of the murine blimp-1 gene is overlaid 

with that of the equivalent human sequence. The GAS motif variant (5'- 

TTCnnnTAA-3') is highlighted in yellow with interspecies conserved 

nucleotides indicated by the presence of a star below the letter.

1.9 TLR9. CPG-QDN AND PC DIFFERENTIATION

1.9.1 TLR family

The membrane-spanning TLR family consists of ten members (TLR1-10) 

in humans, and can be split into two separate subtypes that either 

reside on the cell surface or in endosomes. PRRs that are positioned on 

the cell surface give cell-extrinsic innate immune recognition; these 

types of PRR do not require uptake of the PAMPs to induce signalling 

and are usually provided by specialised cells of the immune system such
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as dendritic cells and macrophages. In contrast, PRRs that are 

positioned intracellularly (including NLRs and certain TLRs), provide cell- 

intrinsic innate immune recognition and become essential once the cell 

has been infected, especially by viruses224.

TLRs are variably expressed among cells of the immune system. 

Regarding human B-cell subsets, the literature is currently contradictory 

on whether naive B cells express TLRs and can respond to their ligands. 

However, it is clear that memory B cells (especially lgM+) and CD5+ B-l 

cells express higher levels of certain TLRs (especially TLR6, TLR7, TLR9, 

TLR10) and can respond to their ligands in vitro without co­

stimulation225. Also, it is apparent that addition of co-stimuli, such as 

BCRxl and CD40L, causes all B-cell subsets to enhance their TLR 

expression and respond robustly to such innate stimuli226,227.

1.9.2 CpG-ODN and its receptor, TLR9

Among the TLR ligands, CpG-ODN has been particularly well 

characterized as a potent inducer of terminal B-cell differentiation226. 

Furthermore, unlike murine B cells, whose TLR4 (the receptor for LPS) 

has been much studied, human memory B cells, including CLL, do not 

express TLR4, while TLR9 is highly expressed227,228. Furthermore, CpG- 

ODN is known to induce differentiation of memory B cells226. For this
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reason, CpG-ODN was chosen as an alternative stimulus to induce

PRDM1.

TLR9 is not expressed at the cell surface but, rather, is located in the ER 

from where it is translocated to endolysosomes after internalization of 

CpG-ODN229. Subsequently, ligand binding in the endolysosome induces 

downstream signalling.

1.9.3 TLR9 signalling

After stimulation, TLR9 recruits a number of adapter molecules including 

MyDSS223, which then stimulate a number of pathways, especially those 

involving NF-kB and IRFs230. In the context of the regulation of PC 

differentiation, NF-kB and IRF4 and 5 are known to be important.

Regarding the NF-kB pathway, this has been extensively reviewed231 and 

therefore will only be briefly summarized here. This family of 

transcription factors has 5 subunit members (p50/NF-KBl, p52/NF-KB2, 

p65/RelA, RelB and c-Rel) and, after activation, hetero- or homodimers 

of these subunits translocate to the nucleus and bind specific 

recognition sites in a range of promoters and enhancers. Activation is 

achieved by exposure of their nuclear localization signal (NLS) by 

altering/aboiishing their interaction with the NF-kB inhibitory proteins, 

IkBs {NF-kB inhibitor). There are multiple isoforms of IkB and each have
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their own binding preferences; for example, IxBot predominately 

regulates p65:p50 dimers. TLR9 primarily activates the canonical NF-kB 

signalling pathway which mainly functions around p65:p50 and c-Rel:p50 

heterodimers. Upon CpG-ODN binding, TLR9 can activate the trimeric 

IkB kinase (IKK) complex by recruitment of the TAKl:TABl/2/3 complex. 

IKKs then proceed to serine phosphoryiate IkB, which causes ubiquitin- 

targeted degradation of this inhibitor protein and activation of NF-kB.

The two IRFs that are relevant to this thesis (IRF4 and 5) function rather 

differently. IRFS is constituently expressed in B cells232 and is activated 

directly by the MyDSS-dependent activation of TRAF6. Activation of 

IRFS, by K63-iinked polyubiquitination on K410 and K411, leads to its 

dimerisation, translocation to the nucleus and DNA binding233. In 

contrast, IRF4 expression is normally low in inactivated B cells and is 

induced upon TLR9 stimulation via the NF-kB pathway. Upon induction, 

1RF4 can then bind, in collaboration with other cofactors (such as PU.l), 

to activate or repress gene expression .

Signals from TLR9 in B cells induce expression of activation antigens, cell 

proliferation, production of pro-inflammatory cytokines and 

antibodies225. The latter function is particularly relevant to this thesis, 

and is therefore considered further below.
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1,9.4 TLR9. PC differentiation and the ordml gene

As alluded to above, CpG-ODN alone induces the piasmacytoid 

differentiation of human and murine memory cells in vitro. In contrast, 

naive B cells have little or no TLR9 and do not undergo piasmacytoid 

differentiation in response to CpG-ODN. Interestingly a second, not 

clearly defined, signal is required for piasmacytoid differentiation in vivo

234in mice .

CpG-ODN induces PRDM1 by activating multiple transcription factors 

including NF-kB, IRF4, IRF5 and AP-1. Flowever, the minimum 

combination of factors needed for efficient PRDMl induction in B cells, 

including those of CLL, remains unknown163. The work in Chapter 4 

helps to clarify this issue by showing that NF-kB and an induced 

'neofactor' are necessary for the induction of PRDMl in CLL cells 

following treatment with CpG-ODN.

1.9.5 TLR9 and CLL cells

There have been a substantial number of studies of the functional 

effects of CpG-ODN on CLL cells. Perhaps surprisingly, though, there do 

not seem to have been any papers reporting the effects of the 

oligonucleotide on the piasmacytoid differentiation of CLL cells.
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The functional effects that have been described appear to be clone

dependent and include the induction of apoptosis, cell proliferation, 

increased expression of co-stimulatory molecules and the secretion of a 

range of cytokines235'237. Interestingly, it has recently been shown that 

UM-CLL cells and those from progressive disease more often proliferate 

in response to CpG-ODN than do cells from M-CLL cases with stable 

disease236.

The four experimental chapters of the thesis now follow.
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Chapter 2

CONTROL OF INTEGRIN a4pl 

EXPRESSION IN CLL

2.1 INTRODUCTION

Whether or not the clonal lymphocytes of CLL express the integrin 

heterodimer, a4|31, is important in the disease for a number of inter­

related reasons. First of all, cell-surface expression of a4 by the 

malignant B-cell clone (termed a4pos) is a strong independent adverse 

prognostic indicator in the disease18,19. Secondly, surface a4 is essential 

for CLL cells to be able to undergo the transendothelial migration 

necessary for entry into tissues, including lymph nodes27 and bone 

marrow238. Furthermore, there is a correlation between a4 expression 

and the clinical presence of lymphadenopathy51. Clearly, therefore, a4 

is important for CLL-cell invasion into tissues where the malignant cells 

receive signals for survival and proliferation239,240. This, in turn, results in 

the organomegaly, the impaired haematopoiesis, and the suppressed 

immune function associated with an adverse prognosis and/or advanced
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disease7'8. Consequently, there is the prospect that agents currently 

being developed to inhibit a4 function241 might have therapeutic 

potential in the disease.

It is not known why CLL cells from patients with poor-prognosis disease 

express a4[31, while the malignant cells in good-prognosis patients 

frequently express little or none of this integrin heterodimer. 

Furthermore, studies of the expression of the integrin in other lymphoid 

cell types provide no clear-cut clues. Expression has been linked to cell 

activation and differentiation53'55,242 which, in B-lymphocytes, are in turn 

mediated to a major extent by cytokines and engagement of the B-cell 

antigen receptor (BCR). However, it has been established that antigen 

and cytokines (both important in the biology of CLL38,41'243) affect a4|3l 

expression in different ways according to the lymphocyte subset 

involved and the nature of the antigenic stimulus244 - both uncertain for 

CLL lymphocytes. Therefore, it is not at all predictable from studies of 

other lymphoid-cell types what might be controlling a4 expression in 

these malignant B cells.

The aim of the present study, therefore, was to establish why some CLL 

cells express ot4, while others do not. This question is not only relevant 

to the biology of CLL, but is also important clinically, since understanding
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the mechanisms that regulate a4 expression in CLL might allow down

regulation of a4 in a therapeutically useful manner.
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2.2 METHODS

2.2.1 Mononuclear sample preparation

PB samples were taken from consenting patients who had previously 

been diagnosed with CLL or plasma-ceil leukaemia (PCI) and with 

approval from the Liverpool Research Ethics Committee. The PCL case 

was unusual in having the features of multiple myeloma, but with many 

circulating plasma ceils and plasmablasts as defined by morphology and 

CD138 expression. Normal PB samples were taken from consenting 

colleagues in the laboratory.

Upon arrival, all blood samples were carefully layered on top of 

Lymphoprep (Axis-Shield, Kimbolton, UK) and centrifuged to obtain 

purified mononuclear cells. Mononuclear cells were then washed and 

resuspended in ice-cold RPMI-1640 (Biosera, Ringmer, UK) containing 

10% volume/volume (v/v) PCS (fetal calf serum; Biosera), after which an 

equal volume of ice-cold RPMI-1640 plus 10% v/v PCS and 20% v/v 

DMSO (Dimethyl sulfoxide; Sigma-Aldrich - Laboratory Analysis Ltd, 

Exeter, UK) was gradually added on ice. This final cell suspension was 

then placed in cryotubes (Nuncbrand - Fisher Scientific, Loughborough, 

UK) in ImL aliquots, housed in polystyrene holders and placed into a
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-80°C freezer to freeze gradually before being transferred into liquid

nitrogen for long-term storage.

For most experiments, cells were not purified further and only CLL cases 

with cell counts >50xl09/L were employed to ensure minimal 

contamination by non-malignant cells. For the studies of a4 mRNA 

expression, all samples were purified by depletion of CD3+, CD14+ and 

CD16+ cells; in these preparations, CD19+CD23+ CLL cells were always 

>95% (see Section 2.2.6).

CLL samples were screened for CD49d status using flow cytometry (see 

Section 2.2.4) prior to their use for this chapter.

2.2.2 Cell culture

Cryopreserved cells were thawed rapidly in a 37°C water bath until all 

ice had just melted and then transferred straight onto ice. The ImL cell 

suspension was then very gradually increased to lOmLs using ice-cold 

RPMI-1640 containing 0.5% weight/volume (w/v) BSA (bovine serum 

albumin; Sigma-Aldrich), 2mM L-glutamine, lOOunits/mL penicillin and 

lOOpg/mL streptomycin (Invitrogen, Paisley, UK), from now on referred 

to as culture medium.

Cells were washed to remove any remaining DMSO and the live cell 

numbers were counted using a haemocytometer (Fisher Scientific) and
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0.05% trypan blue (Sigma-Aldrich). If the CLL-cell viability was <85% at 

this stage of the experiment, the sample was excluded from these 

studies. Time zero (TO) samples, if required for the experiment, were 

taken at this point.

Unless stated otherwise, ImL of cells were plated in poly-HEMA (Poly[2- 

hydroxyethyl methacrylate]; Sigma-Aidrich)~coated 24-well plates (Fisher 

Scientific) at a density of 3xl06 cells/mL. Poly-HEMA was used to stop 

cells adhering to the plates, thereby preventing any stimulation related 

to adhesion245. The plated cells were then placed in an 37°C incubator 

(HeraCeli, Fisher Scientific) with 5% CO2 for 1 hour (hr) to allow them to 

warm and 'recover' before any further treatment.

The human Burkitt's lymphoma cell line, Raji, was grown in RPMI-1640, 

2mM L-glutamine, lOOunits/mL penicillin, lOOpg/mL streptomycin and 

10% v/v FCS.

2.2.3 Cell culture stimuli

Stimuli were used at the following final concentrations:- Bryostatin at 

lOnM (Sigma-Aldrich); TNFct at lOnM (Caibiochem - Merck Chemicals 

Ltd, Nottingham, UK); LPS at lOpg/ml (Sigma-Aldrich); F(ab)2 fragment 

of a goat anti-human IgM, FcSn fragment specific antibody at lOpg/mL 

(Jackson ImmunoResearch - Stratech, Soham, UK); type B CpG-ODN 2006
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at 3|ig/mL (InvivoGen - Source BioScience Autogen, Nottingham, UK);

soluble recombinant human CD40L (rhCD40L) at 0.2|ig/mL with the 

enhancer at l|ig/mL (Axxora UK Ltd, Nottingham, UK); IL-4 at 20ng/mL 

(Sigma-Aldrich); and IL-21 at 50ng/mL (Invitrogen Ltd).

The F(ab)2 fragments of an anti-IgM antibody was used for BCRxl after 

confirmation by flow cytometry that the CLL case of interest expressed 

surface IgM (see Section 2.2.4 for flow cytometry methodology). The 

F(ab)2 fragments of anti-IgM antibodies were used to avoid indirect 

stimulation through Fc receptors.

Soluble rhCD40L required pre-incubation with an enhancer molecule 

provided by the manufacturers. rhCD40L and the enhancer were 

incubated together at 37°C for 30minutes (mins) in culture medium prior 

to adding the stimuli to the cells.

2.2.4 Flow cytometry

This was performed using a Becton Dickinson (BD) FACSCalibur machine 

and analysed using BD CellQuest Pro software (BD Biosciences, Oxford, 

UK). Antibodies used were:- PE (phycoerythrin)-conjugated mouse IgGi 

isotype control; PE-conjugated mouse anti-CD49d (PE-anti-CD49d); 

mouse PE-anti-CD5; mouse PE-anti-CD25; mouse PE-anti-CD40; mouse 

PE-anti-CD71; mouse PE-anti-CD79b; FITC (Fluorescein isothiocyanate)-
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conjugated mouse IgGa isotype control; FITC-conjugated mouse anti-

CD22 (FITC-anti-CD22); mouse FITC-anti-CD27; mouse FITC-anti-CD39; 

mouse FITC-anti-CD62L; mouse F!TC-anti-lgD; mouse FITC-anti-IgM; 

PerCP (Peridinin Chlorophyll ProteinJ-conjugated mouse IgGi isotype 

control; PerCP-conjugated mouse anti-CD19 (ail antibodies were isotype 

IgGi from BD Biosciences).

All cells were surface stained (lOpg/ml of antibody) on ice for 20mins at 

a density of lxl07/mL in PBS (phosphate buffered saline) comprised of 

137mM NaCI, 2.7mM KCI, 4.3mM Na2HP04, 1.47mM KH2P04 (pH 7.4) 

supplemented with 0.1% w/v BSA. Cells were washed twice in PBS plus 

0.1% w/v BSA before running through the FACS machine. All 

fluorescence was normalised against the respective conjugated-antibody 

isotype controls.

2.2.5 Western blotting

Cells were pelleted at SOOrcf for Smins at 4°C and then washed twice in 

ice-cold PBS. Cells were then lysed in clear SDS (sodium dodecyl 

sulphate) lysis buffer containing 1% w/v SDS, 10% v/v glycerol, 5mM 

EDTA and 50mM Iris (pH 6.8); 30pL of this lysis buffer was added per 

106 cells. Lysates were kept on ice and sonicated using a Microson 

ultrasonic cell disrupter and ultrasonic converter (Scientific Laboratory
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Supplies, Nottingham, UK). Lysates were then heated to 95°C for lOmins

to aid in denaturation of the proteins before their concentration was 

determined.

Protein determination was performed using the DC protein assay (Bio- 

Rad, Hemel Hempstead, UK), which is a modified form of the Lowry 

protein determination method246. Absorption was measured at a 

wavelength of 750nm on a spectrophotometer and protein 

concentrations were then calculated for each sample using BSA 

standards of known concentrations.

SDS-polyacrylamide gel electrophoresis (PAGE) samples were prepared 

by taking lOpg of each lysate and making them up to the same volume 

using clear SDS lysis buffer and 4X Laemmli buffer247 containing 4% w/v 

SDS, 40% v/v glycerol, 20% v/v |3-mercaptoethanol, 0.008% w/v 

bromophenol blue and 250mM Iris (pH 6.8). After preparation, the SDS- 

PAGE samples were heated to 95°C to ensure complete denaturation 

and reduction of the proteins before loading onto a polyacrylamide gel.

All SDS-PAGE and transfer experiments were performed using Bio-Rad 

equipment. SDS-PAGE gels were made from 10-12% v/v acrylamide 

(Geneflow Ltd., Fradley, UK), 4X running buffer (1.5M Iris pH 8.8, 0.4% 

w/v SDS), 0.05% w/v APS (ammonium persulphate; Sigma Aldrich) and
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0.001% v/v TEMED (N.N^N^N'-Tetramethylethylenediamine; Sigma-

Aidrich). Stacking gels contained 5% acrylamide, 4X stacking buffer 

(0.5M Tris, 6.8, 0.4% w/v SDS), 0.08% w/v APS and 0.0025% v/v TEMED. 

The electrophoresis buffer contained 25mM Tris, 192mM glycine and 

0.1% w/v SDS. The SDS-PAGE samples and lOpL of kaleidoscope 

Precision Plus protein pre-stained standards (Bio-Rad) were loaded using 

a Hamilton syringe (Hamilton Company; Fisher Scientific) and 30mA was 

applied to each gel using a powerpack.

After running, proteins were transferred from the gel to a PVDF 

immobilon membrane (Millipore, Watford, UK) using 400mA for Ihr. 

The transfer buffer (Geneflow) was pre-cooled to ice-cold temperature 

before use.

Once the proteins were transferred, membranes were blocked for Ihr in 

2% advanced blocking reagent (Amersham Biosciences, Chalfont, UK). 

The blocking reagent was dissolved in Tris-buffered saline with Tween- 

20 (TBS-T) which contains 150mM Tris pH7.4, 50mM NaCI and 0.1% v/v 

Tween-20. Western blotting antibodies were diluted in blocking solution 

and incubated overnight with the membrane at 4°C (Ihr at room 

temperature for anti-p-actin) with gentle agitation. Primary antibodies 

used were:- monoclonal mouse anti-integrin a4 clone 7.2R (R&D
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Systems, Abingdon, UK); monoclonal mouse anti-PRDMl clone 3H2-E8

(Novus Biologicals, Cambridge, UK); monoclonal mouse anti-Pax-5 clone 

24 (BD Biosciences); and monoclonal mouse anti-p-actin clone AC-15 

(Sigma-Aldrich).

Membranes were then washed for 40mins using TBS-T which was 

replaced every lOmins. Horse radish peroxidase (HRP)-conjugated goat 

anti-mouse secondary antibody (Santa Cruz - Insight Biotechnology Ltd., 

Wembley, UK) was diluted (1:5000-1:10000) in blocking buffer and 

incubated with the membrane for Ihr at room temperature.

The membrane was again washed as above. Membrane bound HRP- 

conjugated secondary antibodies were detected with either enhanced 

chemiluminescence (ECL) plus reagent (Millipore) or advanced ECL 

(Amersham Biosciences). Reactive bands were visualised using a LAS- 

1000 chemiluminescence and fluorescent imaging system machine. 

Protein band densitometry was carried out using the AIDA image 

analyser software package (Raytek Scientific Ltd, Sheffield, UK).

2.2.6 CLL-cell purification

CLL cells were purified before polymerase chain reaction (PCR) analysis, 

as previous results from the laboratory had shown that T-cell 

contamination, although relatively small, could have substantial effects
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on such a sensitive technique. Ceils were purified by using the MACS

magnetic bead system (Miltenyi Biotec, Bisley, UK). Cells were stained 

by initially following the flow cytometry protocol for binding of FITC- 

conjugated anti-CD3, -CD14 and -CD16 antibodies (BD Biosciences). Cells 

were then washed in PBS and re-suspended at 108 cells/mL in ice-cold 

degassed PBS containing 0.1% BSA and 2mM EDTA (from now on 

referred to as purification buffer). A 1:5 dilution of MACS anti-FITC 

magnetic beads (Miltenyi Biotec) was then added and kept on ice for 

20mins. Cells were then washed twice and re-suspended in BOpI of 

purification buffer and passed through an MS column. Unbound cells 

(i.e. CLL ceils) were washed through the column with three washes of 

500pL of purification buffer. After purification, CLL cells were >95% 

CD19+CD23+ by flow cytometry.

2.2.7 Reverse transcription

mRNA was extracted from 5xlOsto IxlO7 CLL cells using QIAshredders 

and an RNeasy mini kit (Qiagen Ltd, Crawley, UK). After extraction, the 

quality and quantity of mRNA were assessed using a nanodrop 2000C 

machine (Fisher Scientific). Ipg of mRNA was reverse transcribed to 

cDNA in a 20pL reaction containing 200units of M-MLV reverse 

transcriptase, 4|iL 5X M-MLV reaction buffer, 400pM dNTPs, 25ng/pL 

oiigo(dT)i5 primer and O.SpL Recombinant RNasin Ribonuclease Inhibitor
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(all from Promega UK, Southampton, UK). mRNA was initially heated

with the oligo(dT)i5 primer in 13.5pL of nuclease-free water at 70°C for 5 

mins then placed back on ice. The remaining reagents were then added 

and incubated at 37°C for Ihr, after which the reaction was stopped by 

heating to 70°C for lOmins.

2.2.8 PCR

SOpL reaction contained:- 10pL 5X colourless GoTaq flexi buffer; 3pL 

25mM MgCl2; IpL lOmM dNTPs; 0.2-0.4pM forward and reverse primer 

(Eurofins MWG Operon, London, UK); 0.25pL GoTaq flexi DNA 

polymerase (Promega); and the required amount of template DNA 

(0.25pL cDNA). Reactions were performed in O.SmLthin wall PCR tubes 

on a ThermoHybaid PxE 0.5 machine (Fisher Scientific). Agarose gel 

electrophoresis with TBE (Tris/Borate/EDTA) buffer (Sigma-Aldrich) was 

used to confirm the PCR products were of the correct size. DNA was 

visualised using ethidium bromide (Sigma-Aldrich) and a fluorescent 

image analyser FLA-5000 machine (Fujifilm). ITGA4 bisulphate 

sequencing primers were:- BS1 forward 5'-TCT TAC TAA ACC CAA AAC 

CAT C-3', reverse 5'-AAG GAG AGA GGG AAG AGG A-3'; BS2 forward 5'- 

TCC TCT TCC CTC TCT CCT T-3', reverse S'-GTT GTG GGG GTT TTG GTA 

AA-3'.
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2.2.9 Quantitative PCR (qPCR)

Quantitative polymerase chain reaction (qPCR) was performed using the 

DyNAmo SYBR Green qPCR Kit (New England Biolabs UK Ltd, Hitchin, UK) 

in qPCR 96-well plates with optical strip caps on a MX3005P qPCR 

machine and analysed with MxPro v4.1 software (Agilent Technologies, 

Stockport, UK). 0.25pL of cDNA or 2pL of immunoprecipitated 

chromatin DNA (see Section 2.2.12) was used per qPCR reaction and 

mixed with 0.08-0.4(ilVl of forward and reverse primers, 12.5pL of 2X 

DyNAmo SYBR Green master mix and made up to 25pL total volume 

with nuclease-free water. Each reaction was run in triplicate and 

averaged. Primers were optimised to produce 1 specific product and this 

was confirmed by running on an agarose gel. Primer sequences were:- 

a4 forward B'-TGA GAG CGC GCT GCT TTA CC-31, reverse 5'-GGC ACT CCA 

TAG CAA CCA CC-31; RPII forward 5'- GCT GTT CTT GCT CCT CAC GAT TTC- 

3', reverse 5'-CCA ACA ATG GCT ACC GTT CAC G-3'. Chromatin 

immunoprecipitation (ChIP) primers were:- ITGA4 upstream of TSS 

forward 5'-ATG AGA CTC ACT ACC CAG TTC-3', reverse S'-TTT TCA CGC 

ACC CAC TCA G-3'; ITGA4 downstream of TSS forward 5'-CTC CTC TTC 

CCT CTC TCC TTC-31, reverse 5'-GGT GGG GAA CAT TCA ACA C-3'.
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2.2.10 Intracellular calcium concentrations

CLL cells were thawed and left to recover at lxl07/ml_ for Ihr. They were 

then incubated in the dark for a further 20mins with 4|aM FURA 2-AM 

(Sigma-Aldrich) in culture medium. Cells were washed twice in calcium 

assay buffer (120mlVI NaCl, 4.7mlVl KHjPO^ 1.2mM MgCl2, 1.25mM 

CaCb, lOmM HEPES pH 7.4) and re-suspended in the same buffer at a 

concentration of IxlO7 cells/mL and placed on ice. 2mL of this cell 

suspension was used per analysis and allowed to warm prior to the 

experiment and kept at 37°C during treatment. Cells were stimulated 

using 20pg/ml_ of F(ab)2 anti-IgM antibody and calcium-chelated FURA 2 

was determined by continuous excitation at 340nM (Ca2+ bound) and 

380nM (Free ester) and by measurement of emission at 510nM using a 

Hitachi F-7000 fluorescence spectrophotometer and FL Solutions 

software (Hitachi High-Tech, UK). Fmax (see below) was measured by 

adding a final concentration of 0.5% Triton X-100 to the cell suspension 

and Fmin was determined by adding EDTA to a final concentration of 

2.5mM. Calcium concentrations were then calculated using the 

following formulae:-

[Ca2+] = Kd x
(jR “ Rmin) ^ F2mm
(* max R) X F2 max

Where,
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_ background level for FI - FI 
background level for F2 - F2

background level for Flmax - FI 
max- background level for F2 max - F2

background level for FI min - FI 
imn - background level for F2 min - F2

FI, F2 : Fluorescence intensities of FURA 2 chelated and 
unchelated

Flmax/ F2max: Fluorescence intensities of FURA 2 at maximum calcium 
saturation

Flmin, F2min: Fluorescence intensities of FURA 2 at zero calcium 
concentration

Kd : Dissociation constant of FURA 2 and calcium (i.e. 224)

2.2.11 Bisulphite sequencing

Bisulphite treatment of DNA converts unmethylated cytosines to uracil 

bases, while methylated cytosines cannot be altered. Subsequent 

sequencing after bisulphate treatment can therefore identify 

methylated cytidine nucleotides. The assay was performed using the EZ 

DNA Methylation-Direct Kit (Zymo Research; Cambridge Bio Science, 

Cambridge, UK). IxlO5 CLL cells were proteinase K digested, spun at 

10,000rcf for Smins and then the supernatant added to the CT 

conversion reagent. Samples were heated to 98°C for Smins, 64°C for 

3.5hrs and then finally cooled to 4°C. Converted DNA was then purified
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using the provided spin columns and eluted in lOpL of elution buffer.

IpL of these samples were then amplified using PCR and the bisulphate 

sequencing primers (see Section 2.2.8). PCR amplified products were 

purified by running on an agarose gel, excising the DNA band and then 

extracting the DNA from the agarose using a QIAquick gel extraction kit 

(Qiagen). Purified PCR products were then cloned into the pGEM-T 

vector (Promega) and transformed into Escherichia coli (E. coli) by heat 

shocking at 42°C for 45-50secs. Transformed bacteria were spread onto 

LB/ampicillin/IPTG/X~Gal plates and incubated overnight at 37°C. Four 

white colonies were picked per CLL case, grown in liquid LB (lysogeny 

broth) overnight at 37°C and plasmids extracted using a Zyppy plasmid 

miniprep kit (Zymo Research). Plasmid inserts were sequenced at the 

University of Dundee, UK.

2.2.12 CHIP

107 CLL cells were washed once with room-temperature PBS and then 

fixed in 0.5mL 1% formaldehyde in PBS for lOmins. Fixed cells were then 

washed and re-suspended in 0.5mL cell lysis buffer containing 5mM 

PIPES pH7.4, 85mM KCI, 0.5% v/v NP-40 and protease inhibitor cocktail 

(Calbiochem) and vortexed every 5mins for 15mins. Cells were then 

pelleted, supernatant removed and re-suspended in ChIP buffer 

containing 0.1% w/v SDS, 0.1% v/v sodium deoxycholate, 1% v/v Triton
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X-100, 140mM NaCI, ImM EDTA, 50mM HEPES pH7.9 and protease 

inhibitor cocktail (Calbiochem). DNA was then sheared using 12 cycles 

of ISsecs sonication with a minimum of ISsecs on wet ice between 

sonications. The sonicated suspension was then pelleted at 12,000rcf for 

lOmins at 4°C, and the DNA-containing supernatant removed and kept. 

Satisfactory shearing of DNA was confirmed by agarose gel 

electrophoresis and shown to be of an average of ~500bps prior to 

immunoprecipitation. Sheared DNA from 106 CLL cells (SOpL) was then 

diluted to O.SmLs in Chip buffer (10% aliquot taken for input), followed 

by the addition of 20pL protein A magnetic beads (Millipore) and the 

appropriate immunoprecipitation antibodies (Millipore):- Spg rabbit 

anti-H3K4me3; 5pg rabbit anti-H3Ac (binds to both H3K9 and H3K14 

acetylation); and 4pg rabbit anti-H3K27me3. Immunoprecipitations 

were left on a rotator at 4°C overnight. Beads were then washed for 

lOmins using O.SmLs of the following buffers respectively:- low-salt 

buffer containing 0.1% w/v SDS, 1% v/v Triton X-100, 2mM EDTA, 

ISOmM NaCI, 20mM Tris pHS.l; high salt buffer containing 0.1% w/v 

SDS, 1% v/v Triton X-100, 2mM EDTA, SOOmM NaCI, 20mM Tris pHS.l; 

LiCI buffer containing 250mM LiCI, 1% v/v NP-40, 1% w/v sodium 

deoxycholate, ImM EDTA, lOmM Tris pHS.l; and Tris/EDTA (TE) buffer 

containing lOmM Tris pHS and ImM EDTA. lOOpL of elution buffer
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containing lOOmM sodium bicarbonate, 200mM NaCl, 1% w/v SDS was

then added to both the beads and the input samples. Samples were 

then heated for 2hrs at 65°C, followed by 95°C for lOmins. DNA was 

then purified using a PCR purification kit (Qiagen) and eluted in BOpL in 

the kit elution buffer. qPCR was then performed (see Section 2.2.9).
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2.3 RESULTS

As a first step in establishing why some CLL clones express a4 while 

others do not, it was important to establish whether or not the normal 

lymphoid sub-populations to which CLL cells have been related express 

a4.

2.3.1 a4neg CLL clones differ from their normal B-cell counterparts in

lacking ct4

CLL cells have been related to both CD5+ B cells and CD27+ memory 

cells28'31; the a4 expression of these CD5+ B cell from normal individuals 

has not been reported, and there is only a single report that human 

memory cells in tonsil express a4pl248. Therefore, FACS analysis of 

multiply stained normal PB B cells was performed and demonstrated 

that both CD5+ and CD27+ normal B-cell sub-populations express a4 

(Fig. 2.1A-D).

CLL ceils are thought to be activated as a result of BCR stimulation in vivo 

by (auto)antigen28, and it is known that the a4 integrin can be 

internalised following antigen-receptor stimulation55. It therefore was 

important to determine whether or not CLL clones lacking surface a4 

contain significant amounts of the protein intracellularly. In fact,
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Figure 2.1
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a4 protein expression in normal and CLL B cells. The surface a4 

expression of CD5+ or CD27+ normal B cells was measured by FACS using 

different combinations of directly conjugated antibodies. CD19+ normal 

B cells were first identified in plots of CD19 against FSC (A). After gating 

on this B-cell population, the a4 reactivity of either the CDS (B) or CD27

(C) sub-populations was measured (representative examples of 3 

experiments performed with blood from 3 normal donors are shown).

(D) shows that most, if not all of the cells in both sub-populations, 

expressed a4 at similar intensities (error bars illustrate SEM). (E) shows a 

representative Western blot of a4 protein expression in CLL cells lacking 

or expressing a4 at their cell surface.
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blotting of highly purified CLL cells showed that CLL clones which do not

express surface ct4 contain little or none of this integrin chain (Fig. 2.IE).

It was therefore concluded that a4pos CLL clones resemble their normal 

B-cell counterparts in expressing the integrin, while a4neg CLL clones are 

abnormal in lacking the protein. It was therefore decided to focus on 

why a4neg CLL clones do not express the a4 integrin chain.

2.3.2 a4 expression in CLL is controlled at a transcriptional level

qPCR analysis was employed to measure a4 mRNA levels in highly 

purified (>95% CD19+) a4nee/ as compared with a4pos/ CLL clones. As 

shown in Fig. 2.2A and B, little or no ct4 mRNA was detectable in CLL 

clones lacking a4 protein, whereas the mRNA was readily demonstrated 

in clones that express a4 protein.

Whether or not a4 message can be induced in a4nee CLL clones was 

examined next. To do this, a4 mRNA was measured in a4neg and a4pos 

clones before and after stimulation with the powerful non-physiological 

stimulus bryostatin, a PKC (protein kinase C) activator that has been 

employed therapeutically in CLL249. Such stimulation had no effect on 

a4 message levels in a4neg CLL ceils, but markedly increased ct4 mRNA in 

a4pos clones (Fig. 2.2C and D). As expected, this stimulation with 

bryostatin increased the expression of a4 protein in ct4pos clones, but
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Figure 2.2
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a4 mRNA and protein expression by highly purified CLL cells before 

and after stimulation with bryostatin. In (A) and (B), a4 mRNA 

expression was measured by qPCR and normalised to amounts of RPII 

mRNA detected after similar amplification. (C) and (D) show similar data 

before and after culture for 72 hours in the presence or absence of 

bryostatin. (E) and (F) show a4 protein expression measured by 

Western blot and FACS analysis in similarly cultured cells. These are 

representative examples of experiments involving 3 a4pos and 3 a4nee 

CLL clones.
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had no effect on expression of the integrin in clones lacking the protein

before in vitro stimulation (Fig 2.2E and F).

Taken together, these data indicate that a4 expression is controlled at a 

transcriptional level and suggest that, in a4neg clones, transcription of 

the integrin is not readily induced by non-physiological cell stimulation. 

The latter observation may indicate that transcription of ot4 integrin 

chain is blocked in ot4nee clones.

To support this conclusion, the effect of a range of other 

(patho)physiological stimuli that have been reported to alter a4 

expression in other cell types was examined next.

2.3.3 A ranee of stimuli fail to induce ct4 expression in a4pos and a4neg

CLL clones

The stimuli used to try and alter a4 surface expression were:- TNFa (Fig. 

2.3A}; IPS (Fig. 2.3A); and BCRxl plus co-stimulation with either CpG- 

ODN or soluble CD40L/IL4 (Fig. 2.3B). In fact, none of these stimuli had 

any effect on the level of surface a4 expression by either a4neg or a4pos 

CLL clones. These data support the notion that ct4 expression in CLL is 

not readily altered by cell stimulation in vitro. Furthermore, culture for 

up to 7 days in the absence of exogenous stimulation (cells incubated on 

poly-HEMA-coated plastic to prevent adhesion and in the absence of
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Figure 2.3
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The effects of a range of stimuli on surface a4 expression. In (A), a4neg 

CLL cells were cultured for 48 or 120hrs with and without either LPS or 

TNFa. The effect of these stimuli on surface a4 expression was then 

examined using FACS and compared relative to an untreated a4pos CLL 

sample (2489). (B) shows a similar experiment, but this time the CLL cells 

were cultured for 24, 48 or 72hrs in the presence or absence of either 

BCRxI+CpG-ODN or BCRxl+CD40L+IL-4.
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serum to prevent stimulation by soluble factors) had no effect on a4 

expression. Thus, a4pos clones continued to express similar levels of the 

integrin, while a4nee CLL cells remained negative (n=5 for each type of 

CLL clone; up to 5 days shown in Fig. 2.3A and B). This indicates that a4 

expression is not dependent on in-vivo paracrine effects.

Since ct4 expression in other cell types has been related to 

activation/differentiation, whether or not this might be so in CLL was 

investigated next. Also, the hypothesis that surface levels of ct4 were 

related to anergy (a feature of some CLL cells) was also tested.

2.3.4 The expression of a4 CLL cells is not related to activation, anerev

or differentiation

The expression of a range of antigens that indicate distinct stages of 

activation or differentiation38 was examined by flow cytometry. a4pos 

and a4nee clones did not differ significantly in their expression of any of 

these antigens (Fig. 2.4). Also, similar increases in intracellular calcium 

concentration after BCRxl and comparable levels of surface IgM (as 

measured by flow cytometry) were observed in three a4pos and three 

a4ne8 clones (Fig. 2.4 and 2.5); this suggests that lack of ot4 expression is 

not related to anergy. Furthermore, induction of plasmacytoid 

differentiation after stimulation with IL-21+BCRxl (Fig. 2.6) had no effect
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Figure 2.4
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Surface expression of a range of activation and differentiation antigens

in a4pos and a4neg CLL clones. Both box and whisker plots represent 

FACS results of n=9 CD19+a4pos and n=9 CD19+a4neg CLL clones. The 

data in (A) are given as the percentage positive CLL cells above that of 

the antibody-isotype control. Plot (B) shows the same results but 

represented as the median fluorescence of the clone. Only CD71 neared 

statistical significance, with the percent positive data having a p=0.053 

and median fluorescence a p=0.063 (Mann-Whitney U test). Circles 

represent outliers (>3 standard deviations from the mean).
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Figure 2.5
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Intracellular calcium concentrations following BCRxl in a4pos and a4neg 

CLL clones. Traces of calcium concentrations as measured by FURA 2 in 

three a4pos and a4neg CLL clones. All cases were surface IgM positive and 

F(ab)2 anti-IgM antibody fragments were added to the cells at the time 

indicated by the red arrows.
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Figure 2.6
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The effect of differentiation on the expression of a4 on CLL cells. (A)
Western blot probed for levels of PRDM1 in CLL cells directly ex vivo 
compared with that of Raji (negative control), tonsil-derived B and PCL 
cells (positive controls) - expected molecular weight of PRDMla is 
~100kDa. (B) Western blot showing expression of PRDM1 and Pax5 in 
two CLL clones either at TO or after 5 days culture with or without IL- 
21+BCRxl. (C) illustrates the surface expression of a4 in the two CLL 
clones used in (B) after 5 days with (green) or without (red) IL-21+BCRxl. 
Case 2334 is a bi-modal a4pos clone.
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on the a4 expression of a4neg CLL. In contrast in a4pos clones, surface 

expression of the integrin was reduced after such stimulation - an 

observation compatible with the fact tonsillar PCs express less surface 

a4 than do their B-cell counterparts242 (Fig. 2.6C). For these studies of 

differentiation, Western blotting for two markers was used to detect 

maturation towards PCs - expression of PRDM1 and loss of Pax5 (these 

studies of PRDM1 led to investigations described in subsequent 

chapters).

Taken together, the above observations suggest that levels of a4 in CLL, 

rather than reflecting the activation/differentiation/anergic state of the 

malignant cells, is probably blocked by an unknown mechanism in a4neg 

CLL cells. Regarding the nature of such a block, it has been shown for 

other cell types that CpG methylation of the ITGA4 promoter inhibits 

transcription of the integrin56. It was therefore decided to examine the 

degree of DNA methylation of the ITGA4 promoter in cx4neg, as compared 

with a4pos, CLL clones.
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2.3.5 The S'-untranslated region of the ITGA4 gene contains

comparably low levels of CpG methvlation in both a4neg and a4pos

clones

It has previously been reported that the 725bp fragment around the 

start codon of the ITGA4 gene constitutes a CpG island (Fig. 2.7A) and 

that its degree of methylation controls a.4 expression in gastric tumour 

cells56. Therefore, bisulphite genomic sequencing was used to 

determine the methylation status of this CpG island using the same PCR 

primers employed in this previous study.

As shown in (Fig. 2.7B), comparably low levels of cytosine methylation 

were observed in both a4neg and a4pos. It was therefore concluded that 

the ITGA4 gene in a4neg clones is not silenced by hypermethylation of its 

CpG island.

Since histone modification is another epigenetic mechanism by which 

gene expression can be regulated, it was next hypothesised that 

expression of the ITGA4 gene in CLL might be controlled by this 

mechanism.
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Figure 2.7
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CpG methylation of the ITGA4 gene promoter in CLL (A) shows the 

arrangement of the CpG island in the ITGA4 gene. ATG denotes the 

translation start site, while TSS indicates the transcription start site of 

the gene. The region amplified in the present study is shown between 

two open circles. For (B), the amplified region was subjected to 

bisulphite sequencing, and methylated CpGs are shown as closed circles. 

Cells from 6 CLL cases were studied. In 3, the cells lacked a4, while in 1, 

populations of both a4pos and a4neg were observed; in the remaining 2 

cases, the cells expressed a4.
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2.3.6 The ITGA4 gene in ot4neg CLL clones lacks histone marks associated

with active transcription

Here, 3 histone marks - H3Ac (on K9 and K14 ~ detected using the same 

antibody), H3K4me3 and H3K27me3 - were examined. H3Ac and 

H3K4me3 are generally marks of active transcription and transcription 

initiation, while H3K27me3 is often associated with transcription 

inhibition but, when present together with H3K4me3, can poise genes 

for transcription (see Chapter 1). In a global analysis of active and silent 

gene transcription, it has been shown that peak levels of these marks 

are observed in association with nucleotide sequences within 1-kb up- 

and downstream of the TSS250'251. Therefore, ChlP analysis was used to 

examine the association of these histone marks with the ITGA4 gene. 

This was done using antibodies specific for these 3 histone modifications 

and amplifying regions both up- and downstream of the ITGA4 TSS using 

qPCR.

Such analysis demonstrated that chromatin precipitated with the anti- 

H3Ac and -H3K4me3 antibodies from a4pos clones contained markedly 

higher levels of specific ITGA4 DNA than did a4neg clones. This was true 

of DNA amplified from regions both up- and downstream of the TSS (Fig. 

2.8). In contrast, ChlP analysis with H3K27me3 antibody demonstrated 

similar levels of associated ITGA4 DNA in both types of clone (Fig. 2.8).
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Figure 2.8
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Histone marks associated with the TSS of the ITGA4 gene in a4pos and 

a4neg CLL clones. Three histone PTMs were studied (AcHB, H3K4me3 and 

H3K27me3) by ChIP analysis using precipitating antibodies specific to 

each mark. In (A), the sequence Ikb upstream of the TSS of the ITGA4 

gene was amplified by qPCR. (B) shows similar studies for the sequence 

Ikb downstream of the ITGA4 TSS. Statistical analysis performed using a 

student's t-test.
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Taken together, these results suggest that ITGA4 transcription in CLL

cells is controlled by histone modification and that ITGA4 transcription in 

a4neg clones is reduced or absent as a result of a lack of histone marks 

permissive for transcription.
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2.4 DISCUSSION

Given that the aim of the present chapter was to establish why a4 is 

expressed in some CLL clones but not others, it was first necessary to 

establish the a4 expression of possible normal counterparts of CLL ceils. 

It is already known that normal B cells have a4 at their cell surface252, 

but there have been no reports concerning whether or not peripheral B- 

cell sub-populations express this integrin chain. Since CLL cells have 

been likened to both CD5+ and CD27+ B cells28'31, FACS analysis of 

multiply stained normal B cells was used to establish the a4 reactivity of 

these two B cell sub-populations. It was found that both CD5+ and 

CD27+ B cells express surface cx4 at levels comparable to those observed 

on a4pos CLL clones. Therefore, a4neg CLL cells differ from their 

theoretical normal counterpart in lacking surface expression of the 

integrin and this prompted investigations into why this might be so.

The transcription of a4 by a4pos and ct4neg CLL clones was examined next, 

and it was found that the transcription is virtually absent in a4nee CLL 

cells. It was therefore concluded that «4 protein expression is 

controlled at a transcriptional level. At the time, this 

observation/conclusion was novel for CLL cells, but has been 

subsequently been demonstrated by others253.
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Why a4 transcription might be reduced in a4neB clones was examined 

next. Since a4 expression has been related to activation/differentiation, 

whether this might be so in CLL cells was examined in a number of ways. 

First, a range of stimuli was shown to have no effect on the a4 

expression on a4ne§ CLL cells. Secondly, culture for up to 7 days in vitro 

had no effect on a4 expression. Thirdly, both a4 subgroups expressed a 

closely similar pattern of surface expression of a range of markers of 

activation/differentiation. This latter point seemed important since it is 

known that different CLL clones differ in their degree of activation38 and 

level of differentiation254. Furthermore, when differentiation was 

induced with IL-21 (see Chapter 4), plasmacytoid differentiation was not 

associated with any change in «4 expression in the a4neg CLL clones. 

Also, lack of a4 expression could not be related to anergy as measured 

by either increased intracellular Ca2+ after BCRxl or surface IgM 

expression.

It was therefore concluded that lack of a4 expression is not a 

consequence of a4neg CLL clones being more or less 

activated/differentiated/anergised than their a4pos counterparts. Also, 

because extensive stimulation failed to induce a4 expression in a4neg 

clones, it seemed likely that transcription is blocked in these cells.
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This prompted consideration of the possibility that epigenetic

mechanisms might be responsible for this block. Since the ITGA4 gene 

can be silenced by DNA methylation in other cell types56, the 

methylation of the CpG island of the ITGA4 gene in CLL was examined 

first. In fact, only low levels of methylation were observed in both a4pos 

and a4neg clones. Since genes can be silenced by histone modification97, 

this negative finding caused us to examine the histone marks associated 

with the a4 promoter in the two types of CLL clone. Chip analysis of two 

histone modifications, H3Ac and H3K4me3, which are associated with 

gene activation and one marker of repression, H3K27me3, was therefore 

performed. This clearly showed that the ITGA4 gene in a4neg clones 

differs from that of the cx4pos clones in having lower levels of the 

activation markers. In contrast, in both types of clone the ITGA4 gene 

was associated with similar levels of H3K27me3. It was therefore 

concluded that a4 expression in CLL is controlled by histone 

modification, and that a4neg clones lack a4 transcription because the 

gene is modified in a manner not permissive for transcription.

Obviously this is only an interim conclusion and immediately raises two 

questions. First, what are the mechanisms controlling the differential 

histone modifications observed in the two types of CLL clones and,
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secondly, why are the histone silencing mechanisms induced in a4neg CLL

cells in vivo?

These questions are considered in more detail in Chapter 6, and 

therefore will be only briefly discussed here. Regarding the mechanisms 

controlling the histone modifications of the ITGA4 gene, it is known that 

in other ceil types the ZEB (zinc finger E-box binding homeobox) 

transcription factors are involved255. There are two isoforms of ZEB and 

they can function either as transcriptional repressors or activators by 

recruiting co-factors, it is not even known whether CLL cells express ZEB 

proteins, and therefore this whole area of research requires further 

investigation.

The answer to the second question regarding why a4 transcription is 

prevented by histone modification in a subpopulation of CLL clones will 

depend on the above proposed studies regarding the mechanism of this 

block. However, the laboratory has preliminary data suggesting that 

induction of cell proliferation causes a4neg clones to start expressing a4, 

presumably as a result of the induction of histone modifications 

permissive of transcription. It is tempting therefore to speculate that 

a4pos CLL cells have more recently been exposed to mitogenic stimuli 

than their a4neg counterparts.
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Chapter 3

PRDMl EXPRESSION IN CLL

3.1 INTRODUCTION

PRDMl is thought to be the major transcription factor controlling the 

terminal maturation of B cells to PCs 130':l3:L. Thus, forced expression of 

PRDMl alone can start a cascade of activation and repression which 

commits mature B cells to PC differentiation, while PRDMl-deficient B- 

cells fail to become PCs.

In Chapter 2, while examining the differentiation state of a4pos CLL cells 

versus those lacking the integrin at their surface, it was observed that 

both types of CLL cell lacked the lOOkDa form of PRDMl but contained a 

strongly positive band at ~70kDa (Fig. 2.6A; mouse monoclonal antibody 

from Novus Biologicals). The Western blots in which this ~70kDa band 

was detected were very clean and the PCL cells used as a positive 

control contained the expected lOOkDa band, together with a similar 

band at ~70kDa.
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It is known that multiple myeloma cells express large amounts of an N-

terminally truncated, 'v80kDa form of PRDM1 (termed PRDMlp) 

produced by an alternative promoter198. Also, an ~70kDa PRDMlp 

isoform has been shown to be functionally important in DLBCL 

treatment200. Furthermore, PRDMlp has significantly impaired 

transcription repressor function on multiple target genes and may be 

pathogenetically important256. Finally, mutations of PRDM1 and other 

members of the PRDM family of transcription repressors have been 

implicated in the generation of DLBCL and other cancers 1'199'257i

For all these reasons, it seemed important to investigate the nature of 

the ~70kDa band in CLL cells.
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3.2 METHODS

All materials and methods were as described for Chapter 2, except 

where specifically outlined below.

3.2.1 Malignant B cells, cell lines and culture

In addition to CLL and PCL cells, PB mononuclear cells (PBMCs) from 

three different mature B-cell malignancies were also employed in this 

chapter. These were:- hairy-cell leukaemia (HCL); marginal-zone 

leukaemia (MZL); and mantle-cell leukaemia (MCL). All patients had a 

high percentage (>90%) of circulating malignant cells. The hairy cells 

(HC) had the diagnostic CDllc+CD25+ CD103+ phenotype. The MZL cells 

were clonal B cells lacking CDS, CD23, and HC markers, while the MCL 

cells were CD5-CD23- light-chain-restricted B cells.

Two additional B-cell lines were employed. These were Namalwa and 

Daudi cells. Both cell types are derived from Burkitt's lymphoma. 

Nalmalwa cells were cultured in RPMI-1640 (modified to contain lOmM 

HEPES, ImM sodium pyruvate, 4.5g/L glucose and 1.5g/L sodium 

bicarbonate), 2mM L-glutamine and 7.5% PCS v/v. Daudi cells were 

grown in RPMI-1640, 2mM L-glutamine, lOOunits/mL penicillin, 

lOOpg/mL streptomycin and 10% PCS v/v.
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3.2.2 Antibodies

The following antibodies were used:- anti-PRDMl antibodies - see 

Section 3.3.3; mouse monoclonal anti-BSA antibody cat# A10-127A 

(Bethyl Laboratories; Cambridge Bioscience, Cambridge, UK); secondary 

HRP-conjugated goat anti-rabbit antibody (Santa Cruz); and secondary 

HRP-conjugated donkey anti-goat antibody (Santa Cruz).

3.2.3 PCR

cDNA was amplified using the following primers:- pan PRDM1 forward 

5'-AGC GAC GAA GCC ATG AAT CTC-3', reverse 5'-TTG AGA TIG CTG GTG 

CTG CTA A-3'; PRDMla forward 5'-GAC TGG GTA GAG ATG AAC GAG-3;, 

reverse 5'-CCT GTT GGC GTT CTT AGG AAC-S'; PRDMlp forward S'-GCC 

CAT TTG CCA TTC ACT GC-3\ reverse 5'-TTC TTT CAC GCT GTA CTC TCT C- 

3'; GAPDH forward 5'-ACC ACA GTC CAT GCC ATC AC-3', reverse 5'-TCC 

ACC ACC CTG TCC CTG TA-3'.

3.2.4 Cell fractionation

3xl06 Daudi cells were lysed in 1% Triton X-100 v/v, lOmM Tris (pH 7.4), 

150mM NaCI plus protease inhibitor cocktail (Calbiochem) for lOmins on 

ice and then centrifuged at 4000rcf for lOmins. The Triton X-100 

insoluble pellet was washed in the same Triton X-100 lysis buffer and 

then lysed in IX Laemmli buffer. The lysed pellet was then sonicated and
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loaded alongside a Daudi whole-cell lysate (WCL). The equivalent of 

5x10s cells from each sample were used for Western blotting.
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3.3 RESULTS

3.3.1 The '''TOkDa band is apparently expressed specifically in CLL

Having observed the ~70kDa band in CLL cells {Fig. 2.6A), it next seemed 

important to determine whether or not expression was specific to this 

malignancy. To this end, cellular extracts from MZL, HCL, MCL, normal 

CD19+ B-ceils and the Raji ceil line were Western blotted with the anti- 

PRDMl antibody produced by Novus Biologicals (clone 3H2-E8); PCL cell 

lysates were included as a positive control. As shown in Fig. 3.1A and B, 

the ~70kDa band was specifically expressed by CLL; the malignant cells 

of MZL, HCL and MCL all lacked this band, as did Raji cells. The 

leukaemic PCs also contained the ~70kDa protein, together with the 

expected lOOkDa full length form of PRDMl and at least 2 other 

proteins of intermediate molecular weight. This very striking Western 

blot suggested that further studies of the ~70kDa protein were 

worthwhile.

The weak ~70kDa band observed in CD19+ purified normal B-cells 

prompted examination of the protein in a range of normal PBMC types.

3.3.2 The ~70kDa band is observed in normal PBMCs

Extracts of purified CD20+ B-cells, CD3+ T-cells and CD14+ monocytes
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Figure 3.1
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and (D) show densitometric quantification of the ~70kDa bands in (A) 

and (C) respectively. Results are expressed as a ratio of the actin loading 

control.
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were subjected to Western blotting and the cell types employed above 

included as positive and negative controls {Fig. 3.1C and D). All three 

normal cell types contained a strong band at ~70kDa. As before, the CLL 

cells possessed the band, while the other chronic leukaemic cells did not 

express the protein. Again, Raji cells lacked the band, while PCL cells 

expressed the full length, intermediate and ''VOkDa forms.

It was therefore concluded that the ~70kDa protein is not confined to 

CLL cells and its presence in normal cells questioned any potential 

importance in the pathogenesis of the disease. It next seemed essential 

to establish whether or not the ~70kDa band really is a truncated form 

of PRDM1.

3.3.3 Western blotting with three different anti-PRDMl antibodies fails

to identify the ~70kDa band as PRDM1

Three different antibodies against the C-terminus of PRDM1 (a rabbit 

polyclonal from Novus Biologicals [NB100-56264], a goat polyclonal from 

Abeam [abl3700] and a different mouse monoclonal, kindly provided by 

Dr Giovanna Roncador258 (clone ROS antibody) were used to probe 

Western blots of CLL, Raji and PCL cell extracts. The rabbit polyclonal 

antibody detected bands at ~70kDa and ~75kDa, but these were also 

present in Raji cells. Re-probing of the same blot with the original Novus

110



Biologicals antibody (clone 3H2-E8) showed that both bands were clearly

different from the original ~70kDa protein demonstrated earlier (Fig. 

3.2A). The goat antibody also gave a negative result, detecting two 

bands lower than the expected molecular weight (Fig. 3.2B); again, both 

these proteins were also expressed in the Raji-cell extract.

When lysates of different cell types were Western blotted and probed 

with the mouse mab (clone ROS) against PRDM1, no ~70kDa protein was 

observed in CLL or the other cell extracts (Fig. 3.2C). A weak band of 

molecular weight >75kDa (marked by an asterisk in Fig. 3.2C) was 

detected in CLL cell lysates. Since this protein was clearly different from 

the ~75kDa molecule detected in PCs (itself different from the ~70kDa 

band detected with the Novus Biologicals antibody), it seemed unlikely 

that it represents the truncated form of PRDM1. Also, this >75kDa 

protein was present in a range of other cell types and was therefore 

unlikely to be pathogeneticaliy important in CLL. Furthermore, a similar 

band detected with the same antibody had been highlighted as being 

non-specific in a previous publication259.

Taken together, these studies using different anti-PRDMl antibodies 

suggested that the ~70kDa molecule detected in CLL cells with the 

Novus Biologicals antibody is not a different isoform of PRDMlp.
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Figure 3.2
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At this stage, it was concluded that CLL cells do not express either

PRDMla or PRDMlp, but it was thought important to confirm this 

conclusion by looking for PRDM1 mRNA in CLL cells.

3.3.4 CLL cells contain little or no PRDM1 mRNA

Initially, PCR was performed using primers designed to detect the 3; 

region of PRDM1 mRNA that encodes for the C-terminal part of PRDM1 

shared by both the a and (3 forms of the protein (refer to Fig. 1.4). Little 

or no PCR product was detected in the CLL lymphocytes, while PCL cells 

contained large amounts of PRDMl mRNA (Fig. 3.3A). The PCL cells also 

contained a smaller PCR product which may correspond to a form of 

PRDMl mRNA that lacks exon 6 (exon 7 of blimp-1197,260). A strong band 

was also detected in HCL cells (although additional loading could be the 

reason for this), while little or no PRDMl mRNA was seen in MZL or MCL 

lymphocytes.

Next, PCR was performed with primers specifically designed to detect 

either the a or (3 forms of PRDMl. For detection of PRDMla, primers to 

amplify exons 1 to 3 were employed, while for PRDM1(3 exons 1(3 to 5 

were amplified (refer to Fig. 1.4). Little or no PRDMla product was 

detected in CLL cells, but was abundantly present in PCL cells (Fig. 3.3A 

and B). Again, HCs contained PRDMla message but this was less
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Figure 3.3
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shared by both a and 3 forms). The lower of the two bands has the size 

expected for the mRNA of PRDM1 that lacks exon 6 (Aexon 6). In the 
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abundant than in PCL cells. Regarding mRNA specific for PRDMlp, CLL

cells contained little or none of the expected 237bp product, while this 

product was abundantly present in PCL cells and HCs (Fig 3.3A and B).

It was therefore concluded that CLL cells contain little or no message for 

either full length PRDMla or the truncated PRDMlp. These results 

support the earlier conclusion that the ~70kDa protein apparently 

specifically expressed by CLL cells is, in fact, not a form of PRDM1.

It next seemed important to attempt to identify the nature of the 

~70kDa band which had been apparently specific for CLL.

3.3.5 "'TOkPa molecule detected by the Novus Biologicals antibody is

albumin

Because previous work in the Department aimed at determining the 

identity of an unknown ~70kDa band in CLL cells had shown that the 

band represented cross-reactivity of the antibody with albumin, it was 

hypothesised that the Novus Biologicals antibody was also cross-reacting 

with this protein.

To test this hypothesis, CLL and PCL cells were thawed in culture 

medium (RPMI) containing no BSA. In this laboratory, 0.5% BSA is 

routinely added to the culture medium to enhance cell survival upon 

thawing and culture. When extracts of cells prepared without BSA were
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submitted to Western blotting with the Novus Biologicals antibody, no 

~70kDa band was detected. However, when BSA was reintroduced into 

the culture medium used during thawing, the band reappeared (Fig. 

3.4A). To confirm this result further, purified albumin Western blotted 

at the same time was detected by the Novus Biologicals antibody and re­

probing of this blot with an anti-albumin antibody detected bands of the 

same size and with the same pattern of expression (Fig. 3.4A).

It was therefore concluded not only that the Novus Biologicals ~70kDa 

molecule is not PRDM1, but that it represents albumin cross-reacting 

with the PRDM1 antibody. A recent publication has highlighted the 

presence and functional importance of a ~70kDa band (detected with 

the Novus Biologicals antibody) thought to be an isoform of PRDMip in 

DLBCL200. In view of the above conclusion, it seemed reasonable to 

postulate that this protein was also albumin rather than PRDMip.

Because much of the previous work examining the ~70kDa form of 

PRDMip was performed with Namalwa and Daudi cell lines200, lysates of 

these cells were next examined by Western blot with the Novus 

Biologicals antibody.
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Figure 3.4
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3.3.6 Albumin and an additional ~70kDa band are detected in

Namalwa and Daudi cell lines when probed with the Novus Biological

anti-PRDMl antibody

When Namalwa and Daudi cells were cultured in the presence of 10% 

FCS and then subjected to Western blotting using the Novus Biologicals 

antibody, two bands were detected at ~70kDa (Fig. 3.4B and C). The 

heavier of these two bands migrated at the same rate as purified 

albumin, which was loaded alongside the cell lysates (Fig. 3.4B}. The 

lighter protein however, was too small to be albumin and could not be 

ruled out as being the ~70kDa form of PRDMip as identified by Liu et 

al200.

As PRDM1 is a transcription factor that is exclusively expressed in the 

nucleus130, the location of the new ~70kDa band was next examined as a 

guide to its specificity; if the new ^OkDa band were to be found only in 

the cytoplasm this would support the conclusion that the band does not 

represent an isoform of PRDM1. Therefore, Daudi cells were lysed in 

Triton X-100 and the insoluble (which is mostly composed of insoluble 

nuclei) fraction subjected to Western blotting alongside a Daudi WCL. As 

expected, both of the ~70kDa bands was found only in the soluble 

fraction while, again as expected, only the lOOkDa and SOkDa isoforms 

of PRDM1 remained in the insoluble fraction (Fig. 3.4C). This indicates
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that the new ~70kDa protein is associated with the 

membrane/cytoplasm outside the nucleus, suggesting that the band is 

unlikely to represent a truncated isoform of the transcription factor.
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3.4 DISCUSSION

The aim of the present chapter was to determine whether or not CLL 

cells express PRDMlp. The work arose from the observation in Chapter 

2 that CLL-cell lysates blotted with an anti-PRDMl antibody, produced 

by Novus Biologicals, contained an apparently specific ~70kDa band. 

Because it is known that PRDM1 can be expressed in truncated forms of 

molecular weight ~70 to ~80kDa198'200, it seemed plausible that this band 

was indeed specific for PRDMlfJ.

When lysates of other cell types were Western blotted and probed with 

the Novus Biologicals antibody, the ~70kDa band was absent from a 

range of B-cell types, but was strongly present in PCs which are known 

to express both PRDMla and PRDMip. This encouraged more extensive 

studies of the ~70kDa molecule in CLL. However, when 3 other anti- 

PRDMl antibodies were tested, they failed to detect the ~70kDa band. 

It was therefore concluded that the band is not PRDMip and this was 

confirmed by the demonstration that CLL cells contain little or no 

message for either PRDMla or PRDMip. Furthermore, the ~70kDa band 

was shown to be albumin since the band disappeared when the ceils 

were thawed and recovered in culture medium lacking BSA. Addition of 

BSA to the thawing medium restored the band and Western blotting
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with an anti-albumin antibody detected a band at the same molecular

weight only in those cells thawed in the presence of albumin. Also, when 

purified albumin was subjected to SDS-PAGE and Western blotted with 

the Novus antibody, strong cross-reactivity was demonstrated. 

Therefore it was concluded that the ~70kDa band is in fact albumin 

cross-reacting with the Novus Biologicals antibody. The albumin is 

presumably either stuck to the surface of the ceils or internalised during 

the thawing and recovery process.

The Novus Biological anti-PRDMl antibody (clone 3H2-E8) showed 

strong cross-reactivity with BSA possibly because of its use as a carrier 

protein during immunisation. Haptens, such as the partial peptide 

sequence of PRDM1 used to raise the Novus Biological anti-PRDMl 

antibody, often fail to raise complete immunogenic responses alone and 

require conjugation to carrier proteins such as BSA. Linking the peptide 

to BSA has the possibility of causing production of antibodies that cross- 

react to this carrier protein.

A publication by Liu et a/200 has shown the presence of PRDMlfJ mRNA 

and protein in DLBCL cells. However, the supposed PRDMip protein 

found in these cells migrated only to ~70kDa on a Western blot and was 

different to that of the original 80kDa form of PRDMip expressed in
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myeloma cells198. Subsequently, concerns have been raised about its 

specificity259. The antibody used to perform the Western blots in the 

work by Liu et al was the same antibody used in my studies (Novus 

Biologicals). Upon finding that this antibody cross reacts with albumin, it 

was hypothesised that Liu et al were also picking up the same non­

specific band and confusing it with a potential PRDM1 isoform. When 

Namalwa and Daudi cell lysates were Western blotted and probed with 

the IMovus Biologicals anti-PRDMl antibody, two bands were detected at 

~70kDa. The top band migrated the same distance as albumin and 

therefore probably is this protein. The lower of the two bands appeared 

to be novel for Namalwa and Daudi cells and could be the protein 

originally described by Liu et al. However, as this lower band was not 

present in the nucleus of the Daudi cells, its identity as an isoform of 

PRDM1 remains in doubt.

Although the work in the present chapter indicates that CLL cells lack 

both PRDMla and (3, it next was of interest to question whether or not 

the protein can be induced in CLL. Because PRDM1 is central to 

plasmacytoid differentiation, this question is of major importance in the 

biology of CLL since the malignant cells resemble activated memory cells 

which do not differentiate further in vivo. It was therefore decided to 

examine PRDMl expression and other features of PC differentiation in
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CLL cells exposed to relevant differentiating stimuli. Because iL-21 had

been used as a differentiating agent in Chapter 2 (Fig. 2.6B) and for a 

number of other reasons described in the Introduction of Chapter 4, 

work was initially focused on the differentiating effects of IL-21.

The next chapter (Chapter 4) therefore examines the effects of this 

cytokine and other stimuli on the differentiation of CLL cells with 

particular reference to PRDM1 expression.
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Chapter 4
THE EFFECT OF IL-21 ON CLL-CELL 

DIFFERENTIATION

4.1 INTRODUCTION

IL-21 is a member of the type I cytokine family whose receptors share a 

common y-chain208. The cytokine has diverse actions on a range of 

immunological cell types, and the results of stimulation depend on the 

cell type and the nature of additional co-stimuli209. Regarding B cells, IL- 

21 is known to be a critical regulator of differentiation and cell death218. 

The precise effects of the cytokine on a particular B-cell type are 

determined by its state of activation and stage of differentiation, and are 

influenced by antigenic stimulation and other co-stimuli215.

There has recently been considerable interest in IL-21 as an anti-cancer 

agent. Such anti-tumour effects can be mediated directly or indirectly 

according to the cancer-cell type ' . In particular, there is currently

interest in the potential therapeutic effects of IL-21 in CLL220. Thus, the
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cytokine can induce CLL-cell death both by IL-21R-induced STAT1 

signals211 and by IL-21-induced granzyme B production222. Interestingly, 

despite the fact that IL-21 is such a potent inducer of the terminal 

differentiation of normal B cells, the effects of IL-21 on CLL-cell 

differentiation have not been examined. This is surprising because the 

failure of CLL cells to undergo PC differentiation is central to the 

pathogenesis of the disease. Thus CLL-cells are now thought to 

resemble memory B-cells generated through chronic stimulation by

0 52 31 3 52(auto)antigen ' ' . For unknown reasons, the cells do not differentiate 

further to PCs and therefore do not produce large amounts of antibodies 

to neutralise and eliminate the putative (auto)antigen.

The aim of this chapter, therefore, was to examine the effects of IL-21 

on CLL-cell differentiation towards PCs. A number of markers of 

plasmacytoid differentiation were examined, but particular emphasis 

was given to the expression of PRDM1 since this transcription factor is 

so central for B-cell differentiation to antibody secreting cells130,142. 

However, expression of IRF4 and Pax5 was also examined because these 

transcription factors are important in completing full PC 

differentiation163. Thus, IRF4 is up-regulated during such differentiation, 

while Pax5 is down-regulated. In addition, Ig secretion, surface markers 

of terminal B-cell differentiation and morphology were used to assess
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plasmacytoid differentiation. Because the actions of IL-21 are

influenced by co-stimuli, the effect of a range of additional relevant co­

stimuli was tested.

It is shown in this chapter that the differentiation of ~50% of CLL clones 

is blocked, probably as a result of failure of these cells to induce PRDMl. 

Possible causes of this block are examined in the next chapter (Chapter 

5).
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4.2 METHODS

Again, only materials and methods not given earlier are considered.

4.2.1 Clinicai material

CLL surface prognostic markers were measured by FACS in both the 

diagnostics laboratory and our laboratory, and this information was 

made available for the present study as shown in Table 5. BCR lgVH 

mutation status and gene segment usage were established post 

diagnosis by methods previously described262. All CLL clones expressed 

surface IgM and their IgVn mutation and gene family usage were known.

Buffy coats were ordered and collected from the British Transfusion 

Service, Liverpool. Concentrated buffy coat samples, used for the normal 

B-cell work in this Chapter, were initially diluted 1:2 in RPMI-1640 at 

room temperature, before being placed on lymphoprep as detailed in 

Section 2.2.1.

4.2.2 Normal B-cell purification

Negative purification of B cells was performed using the B-cell isolation 

kit II reagents and provided methodology (Miltenyi Biotec). Cells were 

resuspended in 300[iL of purification buffer prior to being placed into LS 

columns. B cells not bound to beads were then washed out and
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collected by three 3nnL wash steps using purification buffer. Purity of the

B cells was checked after purification and was always >95%.

4.2.3 Stimulants

All reagents were added at the same concentration that had been used 

previously. In addition to these, the following stimuli were used in this 

chapter:- 50nM PMA (Phorboi 12-myristate 13-acetate; Sigma-Aldrich); 

IpM ionomycin (Calbiochem).

4.2.4 Antibodies

Western blotting antibodies used were:- mouse monoclonal anti-PRDMl 

(ROS clone); mouse anti-IRF4 (MBL International; ATI-Atlas Ltd, 

Chichester, UK).

The antibody used for flow cytometry was:- Alexa Fluor 647 conjugated 

mouse anti-CD138 antibody clone B-B4 (AbD Serotec, Oxford, UK).

4.2.5 le secretion

Secreted IgM and IgG were measured by using human IgM or IgG ELISA 

quantification sets respectively (Bethyl Laboratories). CLL cells were 

pelleted and cell culture medium was removed and centrifuged again at 

10,000rcf for 5mins to remove all non-soluble material. The dilutions of
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the cell medium, as well as the primary and secondary ELISA antibodies

were all optimised prior to experimental use.

4.2.6 Morphology

After 5 days culture with and without IL-21+CD40L+BCRxl+IL-2, a large 

number of cells were apoptotic (>60%). Therefore, non-apoptotic cells 

were purified before cytospinning by using the MACS magnetic bead 

system of purification (see Section 2.1.6). FITC-conjugated Annexin V (BD 

Biosciences) was used to stain dead cells and these were pulled out 

using anti-FITC MACS beads (Miltenyi Biotec).

CLL cells (SxlO5 in lOOpL) were cytospun in PBS supplemented with 0.5% 

BSA at SOOrpm for 3mins at the low acceleration setting. Under these 

conditions, the CLL cells are flattened and have an increased diameter as 

compared with cells in suspension. When the diameter of these cells 

was measured using the Nikon ACT-1 v2.63 microscope software, 

greater than 95% had a diameter <18|im. Cells larger than this, but 

lacking a plasmacytoid morphology were scored as prolymphocytes. 

Plasmacytoid cells were identified as having eccentric nuclei, strongly 

basophilic cytoplasm and a well developed pale-staining Golgi area. It 

was noted that a proportion of the plasmacytoid cells were smaller than 

typical PCs; an arbitrary value of <18pm was used to quantitate these.
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4.2.7 Apoptosis assay

3xl05 cells in culture media were incubated with 25nM DiOC6 (3,3'- 

dihexyloxacarbocyanine iodide) for ISmins in a 37°C incubator. Ipig/mL 

PI (propidium iodide) was added to the cells before being placed on ice. 

Cells were then analysed immediately using flow cytometry.
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4.3 RESULTS

4.3.1 1L-21 alone induces incomplete terminal differentiation in a

proportion of CLL clones

Initially, PRDM1 protein expression was used as a marker of 

plasmacytoid differentiation and Western blotting was employed to 

examine whether or not IL-21 induces CLL cells to express this protein. 

PRDM1 was usually either undetectable or present at low levels in CLL 

cells tested either directly ex vivo (Fig. 4.1A) or after culture in the 

absence of IL-21 (Fig. 4.1, 4.2A and Table 5).

In preliminary experiments, IL-21 was found to induce PRDMla 

(lOOkDa) and p (SOkDa) protein isoforms in some CLL clones. This 

induction was maximal at 50ng/mL of the cytokine and after 4 days of 

culture (Fig. 4.IB and C). In other clones, culture for up to 7 days in the 

presence of even high concentrations of IL-21 (200ng/mL) stimulated 

little or no expression of either PRDMl isoform. Table 5 shows the 

qualitative effects of IL-21 (50ng/mL) on PRDMla induction in 66 CLL 

clones from 52 patients. Subsequently, PRDMla induction was 

measured semi-quantitatively in 40 of these CLL clones after culture for 

16hrs in the presence or absence of IL-21 (Fig. 4.2A). As expected, little 

or no PRDMla was expressed in some clones, while in others substantial
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Figure 4.1
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Figure 4.2
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Table 5 - Patients/bleeds studied, their qualitative PRDM1 response to

IL-21 and associated clinical data.

Case

PRDM1 on
IL-21

Treatment

Qualitative
PRDM1

Response

White
Blood
Count
(lOVL)

Clinical Stage Prognostic Markers

VH
Segment

UsageRai Binet
VH Mutation CD38

(%)
CD49d

+ (%) (class)

2522 86 5.21 M 6 1-02

2086 + 253 0.34 UM 3 1-02
2560 - 224 0 UM 98 + 1-18

2256 - 51 I B 0 UM 27 - 1-24
2370 - 60 IV C

0 UM 76
-

1-24
2410 - 70 IV C +/-

1922 - 103 0 A 0.35 UM 25 1-46
LS - 206 IV C 0 UM 1 1-69

2495 - 60 IV C 0 UM 24 + 1-69
2536 - 242 III C 0 UM 96 + 1-69

2419 149 1 B 6.6 M 6 1-69

2456 - 135 0 UM 10 - 1-69

2562 - 124 0 UM 40 1-69
2741 14 0 A 4.05 M 19 1-69

2948 • 114 11 B 0 UM 3 1-69
2099 39 0 A 5.68 M 6 2-05

2270 90 1 A
8.15 M 8 - 2-05

2780 114 0 A

2415 91 0 A
5.84 M 5 - 2-26

2829 116 0 A

GR 90 II B 2.02 M 71 2-70

2053 - 122 1.7 UM 43 3-07

203 I B 8.59 M 3-09

2953 mm 126 IV C 0 UM 98 3-09

2512 * 257 I B 0.27 UM 1 -f 3-15
2997 mm ++ 86 IV C

0.63 UM 4 3-15
3047 mmm ++ 141 IV C

2329 - 21 0 UM 85 3-20
2029 —m ++ 57 0 A

2.8 M 13 3-212269 mm tm 50 0 A

2602 mm 53 0 A

2594 105 3.72 M 97 3-21

2629 ++ 51 5.98 M 5 3-21

2684 — ++ 208 III C 1.39 UM 10 - 3-23

Table continues over page...
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C ase

PRDM1 on
IL-21

Treatment
Q ualitative 

PRDM1 
Response

W h i te
Blood
Count
(lOVL)

Clinical Stage Prognostic Markers
VH

Segment
UsageRai Binet

VH Mutation CD38
(%)

CD49d

+ (%) (class)

1895 -H- 175 IV C
3.38 M 43 - 3-23

2757 Wm 4-4- 84 IV C

2334 M 4-4- 84 0 A 4.7 M 75 3-23

2457 ... 4-4- 283 IV C 2.5 M 3 3-30

2584 4- 34
3.06 M 5 - 3-30

2783 196

2699 67 0.35 UM 13 3-30

2902 mm — 40 0 A 6.9 M 5 3-30

2916 67 IV C 10.5 M 28 3-30

3042 • 175 0 A 8.33 M 0 3-30

2465 20 0 A 6.4 M 3 3-33

ESI 'mm 4- 93 IV C 0 UM 3-48

2045 23

1.35 UM 40 - 3-482147 wm ++ 29

2450 lani ++ 183

2163 . — 4- 39 I B
0.69 UM 88 - 3-48

2593 •— 4-4- 86 IV C

2656 - 142 0.35 UM - 3-48

2950 * mm 4- 150 5.21 M 3-48

2673 - 65 0 A
0.34 UM 9 3-49

2956 4- 266 0 A

2744 29 0 A 6.6 M 1 3-7

3023 68 0 UM 3-7

3041 r 56 6.25 M 0 3-7

2513 35 0 A 6.12 M 3-72

2999 mm 4-4- 119 l B 3.64 M 7 3-73

3032 169 II A 4.17 M 5 3-74

2489 - 377 II B
0 UM 18 4- 4-31

2728 - IV C

2248 mm 4-4- 36 IV C 9.47 M 4-34

2354 4* 165 1 A 4.56 M 2 4- 4-34

2708 66 0 A 4.47 M 6 4-34

Samples next to each other in the same shade (i.e. grey or white) are from the same 
patient but different bleeds.

Mutated cases are highlighted in red.
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amounts of the protein were induced. For subsequent studies

comparing the PRDM1 response of different CLL clones, the top and 

bottom quartiles of cases were taken as representative responders (R) 

and non-responders (NR) respectively (Fig. 4.2A).

As a further measure of plasmacytoid differentiation in the presence of 

IL-21, Ig secretion was compared in R and NR clones. In R clones, 

PRDM1 induction was accompanied by IgM secretion (n=3; Fig. 4.2B), 

but no soluble IgG was detected (n=3; data not shown), in NR clones, 

little or no increase in IgM or IgG secretion was observed after IL-21 

treatment (n=3; Fig. 4.2B and data not shown).

The effect of IL-21 on the expression by CLL cells of other transcription 

factors whose levels are altered during PC differentiation was examined 

next. In particular, IRF4 and Pax5 levels after IL-21 stimulation were 

measured. XBP-1 protein, another transcription factor increased on PC 

differentiation, proved difficult to analyse because the commercial 

antibodies tested (Novus Biologicals cat# NB110-57824 and AnaSpec 

cat# 54578) detected multiple bands both before and after IL-21 

treatment and because different reports have stated different molecular 

weights of the spliced and unspliced forms of this protein263,264.
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Regarding IRF4, usually little or no protein was detectable by Western

blotting in CLL clones examined directly ex vivo, or after culture for 16hrs 

in the absence of IL-21 (n=10; Fig. 4.3A). After such short-term culture in 

the presence of the cytokine, IRF4 levels were modestly increased in 

some clones, regardless of whether or not the cytokine induced PRDM1 

(Fig. 4.3A). After longer culture for 48hrs (Fig. 4.3B) to 7 days (Fig. 4.1C), 

IRF4 levels became variably increased in the absence of IL-21, and the 

cytokine usually repressed this 1RF4 induction. With regard to Pax5, the 

transcription factor was consistently reduced, but still readily 

detectable, in R CLL clones after 7 days culture with IL-21 (Fig. 4.1C and 

Fig. 4.3C). In NR clones in which IL-21 did not induce PRDMl, the 

cytokine had no consistent effect on Pax5 levels (Fig. 4.1C and Fig. 4.3C).

Next, CLL and normal B-cells were compared with regard to their ability 

to produce PRDMl in response to treatment with IL-21 alone. When 

negatively purified B cells (CD19+ >95%) were cultured with the cytokine 

for up to 7 days, PRDMl protein was very weakly induced at 2 and 4 

days; thereafter, PRDMl became undetectable, but viability was low 

(~8%) at this stage (Fig. 4.3D). Similar low levels of PRDMl induction 

were observed in purified CD27+ normal memory B cells after 2 days of 

IL-21 stimulation (Fig. 4.3D). In both types of normal B-cell preparation,
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Figure 4.3

Time (hrs) 0 16 0 16 0 16 0 16 0 16
IL-21 - + - + - + - + - 1

PRDM1 

— IRF4 

mm Actin

2456 2256 LS 2410 2562

NR

Time (hrs) 0 16 0 16 0 16 0 16 0 16
IL-21 - + - +

■ 1! * ■«itf * PRDMl 

IRF4 

— Actin

2602 2629 2086 2334 2783

2629 2699 2757 2489 2456 2495
IL-21 - +

IRF4

Actin
NR

Time (Days) 02024 2 2 2
IL-21 - + - + -+-+ - +

CD27+ NB1 NB2 R NR

PRDMl
Actin

Response Type

PRDMl, IRF4 and Pax5 expression by CLL and normal B cells cultured in 
the presence or absence of IL-21. (A) shows PRDMl and IRF4 expression 
in NR and R clones cultured for 16hrs in the presence or absence of IL-21 
(50ng/mL). In (B), IRF4 levels were measured after a longer period of 
culture (48hrs) in the presence or absence of IL-21 (50ng/mL). For (C), 
Pax5 expression after 7 days' culture with IL-21 (50ng/mL) was 
measured by Western blotting and densitometry. The results are given 
as a percentage of the Pax5 present in UT cells cultured for a similar 
period. The reduction in Pax5 in R clones was significant, while that in 
NR clones was not. (D) presents the results of similar experiments with 
normal CD27+ (memory; n=l) and CD19+ (n=2) normal B (NB) cells; an R 
and an NR CLL clone are included for comparison.
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PRDM1 protein induction by iL-21 alone was markedly less than that

induced in R CLL cells (Fig. 4.3D). Therefore R CLL cells are able to 

produce more PRDMl than normal B cells in response to IL-21 alone.

It was therefore concluded at this stage that, in R clones, IL-21 alone 

induces plasmacytoid differentiation as measured by induction of 

PRDMl and IgM secretion. However, IRF4 was not strongly up-regulated 

and Pax5 was only partially suppressed, suggesting full PC differentiation 

was incomplete. This conclusion was confirmed by FACS analysis of 

surface markers reported to be associated with PC differentiation 

(CD20low, lgDlow, CD27high, CD38high, CD138hish; see Table 4). Thus, culture 

of CLL cells with IL-21 for up to 7 days had no consistent effect on the 

expression of any of these markers (n=6; 3 R). CD138 was expressed at 

low levels in CLL cells tested directly ex vivo (as shown previously by 

Sebestyen et al265) and after culture. However, expression of this surface 

protein did not change after stimulation with IL-21 alone (data not 

shown, refer to IL-21+co-stimuli results below, Fig. 4.5B and C). When 

morphology was assessed after 5 days culture, 6-10% of cells in R 

cultures had plasmacytoid morphology, while no such cells were 

observed when PRDMl was not induced (Fig. 4.4 and Table 6).
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Figure 4.4
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Table 6 - Quantification of CLL-cell morphology at TO and following
treatment with and without either 11-21 or IL-21+co-stimuli

PRDMl
response

Case Treatment
CLL cells
(<18um)

Prolymphocytes
(>18um)

PCS
(<18um)

PCS
{>18um)

R

2334

TO 92 8 0 0
UT 95 5 0 0
IL-21 74 16 10 0
IL-21+co-stimuli 48 19 17 16

2602

TO 91 9 0 0
UT 96 4 0 0
IL-21 88 4 6 2
IL-21+co-stimuli 53 7 28 12

2999

TO 96 4 0 0
UT 89 6 5 0
IL-21 Not enough cells for analysis
IL-21+co-stimuli 31 4 28 37

NR

LS

TO 94 5 1 0
UT 98 2 0 0
IL-21 97 3 0 0
IL-21+co-stimuli 93 3 2 2

2495

TO 93 7 0 0
UT 95 5 0 0
IL-21 95 4 1 0
IL-21+co-stimuli S3 12 3 2

2916

TO 89 11 0 0
UT 95 5 0 0
IL-21 94 6 0 0
IL-21+co-stimuli 77 16 6 1

The morphology of CLL cells cultured for 5 days in the presence or 
absence of IL-21±co-stimuli. TO = appearances before culture; UT = 
appearances after 5 days' culture without additional stimuli; co-stimuli = 
BCRxl, CD40L and IL-2. In the presence of IL-21 alone, 6-10% 
piasmacytoid cells were seen in those clones in which PRDM1 was 
induced. In contrast, few if any clear piasmacytoid cells were observed 
in those clones in which little or no PRDM1 was induced. In the 
presence of IL-21+costimuli, 33-65% of clear-cut plasma cells with 
intensely basophilic cytoplasm were observed. In marked contrast, in 
those clones in which PRDMl was not induced, IL-21+co-stimuli induced 
few such cells (<7%).
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Given that the addition of co-stimuli to IL-21 treatment is known to

enhance PRDM1 expression and differentiation in normal B cells216; it 

next seemed important to determine whether or not these co-stimuli 

increase CLL-cell differentiation in the presence of IL-21.

4.3.2 Co-stimuli enhance the differentiating effect of IL-21 in R CLL

clones, but PRPM1 induction in NR cells is still defective

Co-stimuli that enhance the effect of IL-21 on the plasmacytoid 

differentiation of normal B-cells include CD40L; surface IgM BCRxl and 

IL-2216. The effect of these co-stimuli on the IL-21-induced 

differentiation of CLL cells was therefore examined. Also, the CD40L was 

removed at day 3 since this has been reported to enhance the PC- 

differentiating effect of the co-stimuli122. For comparison, purified 

normal B-cells were stimulated in a similar way.

R CLL cells that up-regulated their PRDM1 in the presence of IL-21 alone 

were studied first. When these CLL clones were cultured for up to 5 

days in the presence of IL-21, together with the above co-stimuli, 

PRDM1 protein expression was always markedly greater than with IL-21 

alone (data not shown). In normal B cells, PRDM1 induction was also 

increased, but usually to a lesser extent than in the R CLL clones 

(Fig.4.5A). Also, PaxS expression was abolished in both CLL and normal
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B cells (Fig. 4.5A). Furthermore, IRF4 expression either remained high or

was variably increased in both these R CLL clones and in normal B cells 

exposed to 11-21 and co-stimuli (Fig. 4.5A). When the morphology of the 

stimulated CLL cells was assessed at 5 days, an average of 46% of cells 

resembled PCs, although around half of these cells were smaller than 

typical bone marrow LLPCs (<18p.m after cytospinning; Fig. 4.4 and Table 

6). However, even though these R CLL cells could be induced to express 

the pattern of transcription factors typical of PCs and resembled them 

morphologically, they lacked the surface markers of such LLPCs. (Fig. 

4.5B and C). Thus, the CLL cells exposed to IL-21 and co-stimuli did not 

increase their expression of CD138, did not up-regulate their CD38, and 

lost CD27. However, their already low surface IgD and CD20 were 

further reduced. Similar stimulation of normal B cells also did not 

induce CD138 (Fig. 4.5B), but approximately 30% of cells expressed a 

CD38hlgh, CD27h'sh, CD20|OW and lgDlow surface phenotype, indicating 

plasmacytoid differentiation (Fig. 4.5C).

Similar co-stimulation of NR CLL clones induced little or no PRDM1 

protein after 5 days' culture (Fig. 4.5A). IRF4 expression remained low 

or undetectable and no consistent surface-marker or morphological 

features of plasmacytoid differentiation were observed (Fig. 4.5A, B and 

C plus Fig. 4.4 and Table 6). Thus, levels of CD20, CD27, CD38 and IgD
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Figure 4.5

A
NB 2334 2684 2495 2522

R NR

B

R4*

CD138

• IgG Control • CD138 UT • CD138 IL-21+Co-stimuli

The phenotype of CLL and normal B cells cultured with IL-21 + co­
stimuli. (A) shows the expression of PRDM1, IRF4 and Pax5 before and 
after 5 days' culture with IL-21+CD40L+BCRxl+IL-2 in 2 R and 2 NR CLL 
clones and one normal B (NB) preparation (B) illustrates the lack of 
change in CD138 surface expression in CLL and NB cells cultured for 5 
days with the stimuli as in (A). (C) (over page) shows CD27, CD38, CD20 
and IgD surface expression in CLL as compared with NB cells, before and 
after treatment as in (A). In the upper left panel, CLL cells were doubly 
stained for CD20 and CD27, while reactivities with isotypic controls are 
shown upper right. In the lower left panel, cells were stained for CD38 
and CD27, while reactivity for CD38 and IgD is displayed lower right. 
These results are representative of the results obtained for 6 CLL cases 
(n=3 R and n=3 NR).
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were not consistently altered and CD138 was not changed (Fig. 4.5B).

However, despite this lack of differentiation, Pax5 was completely lost in 

all these NR CLL clones (Fig. 4.5A).

In conclusion, addition of co-stimuli to IL-21 enhanced the 

differentiating effect of the cytokine as measured by increased PRDMl 

and IRF4 expression, suppression of Pax5 and the induction of 

plasmacytoid morphology. However, the R CLL cells did not differentiate 

fully, while a proportion of normal B cells differentiated further and not 

only expressed PRDMl and IRF4, but also surface markers indicative of 

partial differentiation towards PCs. In contrast, the NR CLL clones were 

still unable to differentiate even in the presence of the co-stimuli. Such 

stimulation did, however, extinguish Pax5 expression, indicating that 

down-regulation of this transcription factor is not defective in CLL. 

Furthermore, since Pax5 is known to repress the prdml gene138'139, this 

finding indicates that the failure of NR clones to express PRDM1 protein 

is not the result of prdml repression by Pax5.

IL-21 has been reported to induce the apoptosis of some CLL 

clones211'221. For this reason, considerable care was taken to measure 

cell survival in most of the experiments described above. This provided
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the opportunity to examine the relationship between apoptosis 

induction and PRDMl expression after IL-21 stimulation.

4.3.3 IL-21 has a variable effect on CLL-cell survival, but this does not

correlate with PRDMl response type

IL-21 had little or no effect on the survival of 39% of clones in which 

viability was measured by FACS analysis of cells stained with Pi and 

DiOC6 (n=36; examined after 48hrs; Fig. 4.6A). The cytokine produced 

marked apoptosis (>20%) in 33% of clones and actually enhanced 

survival by >20% in 28% of cases.

CpG-ODN, a stimulus used in future experiments (see below), 

consistently had a pro-survival effect on CLL cells at the concentration of 

O.Spg/mL (Fig. 4.6B; p=0.037; paired T-test). There was no correlation 

between the ability to induce PRDMl and cell survival in the presence of 

any of the above stimuli (Fig. 4.6A and B; p=0.153 for IL-21, p=1.0 for 

CpG-ODN; Mann-Whitney U test).

Having demonstrated in the previous section that IL-21±co-stimuli is 

unable to induce PRDMl and PC differentiation in some CLL clones, it 

next was important to determine whether or not alternative 

differentiating stimuli acting via different signalling molecules and 

pathways are able to induce expression of PRDMl in NR CLL clones. To
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Figure 4.6

The effect of IL-21 and CpG-ODN on CLL-cell survival in R and NR 

clones. In (A), R and NR CLL cells were treated with and without IL-21 

(50ng/mL) for 48hrs and percentages of viable cells were measured by 

DiOC6 and PI staining. (B) shows similar results for CpG-ODN treatment 

(0.5|ig/mL) for 48hrs.
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do this, the effects of CpG-ODN and PMA+ionomycin on PRDM1

expression were examined.

4.3.4 Both CpG-ODN and PMA plus ionomvcin induce PRDM1 in those

clones that are responsive to 11-21, but have little or no effect on the

transcription factor in NR CLL clones

As shown in Fig. 4.7, CpG-ODN consistently induced PRDM1 in those CLL 

clones in which IL-21 also induced plasmacytoid differentiation; in these 

R clones, CpG-ODN induced a much stronger expression of PRDM1 than 

did IL-21 alone (Fig. 4.7B). However, in NR clones, the TLR9 ligand had 

little or no effect on PRDM1 expression (Fig 4.7A and B). Phorbol esters, 

that activate PKCs, alone or with ionomycin, are reported to be able to 

induce differentiation and Ig secretion in CLL and normal B cells266'267. 

Therefore, PMA, with and without ionomycin, was used to try to induce 

PRDM1 in R and NR clones. It was found that, PMA alone, and more so 

with ionomycin, was able to induce PRDM1 in CLL clones which could 

respond to IL-21, but was still unable to stimulate expression of the 

transcription factor in NR clones (n=3 NR; Fig. 4.7C). it was therefore 

concluded that, in NR CLL clones, multiple stimuli acting via different 

signalling pathways are unable to induce PRDM1. Why this might be so 

is the subject of the next chapter (Chapter 5).

149



Figure 4.7

A

Case ________2562_______  ________ 2593_______

CpG-ODN 0 0.1 0.5 1 3 10 0 0.1 0.5 1 3 10

PRDM1

Actin

NR R

Case

Treatment
2916 2495 2948 2045 2457 2997

UT 21 CpG UT 21 CpG UT 21 CpG UT 21 CpG UT 21 CpG UT 21 CpG
PRDM1

Actin
NR

c Case _______ 2536_______ _______2450
Treatment UT CpG I P PI UT CpG I P PI

NR

w* PRDM1 

Actin

Effect of CpG-ODN and PMA + ionomycin on PRDM1 expression by CLL 

cells. (A) shows the effect of increasing concentrations (pg/mL) of CpG- 

ODN on PRDM1 expression by an NR (2562) and an R (2593) clone. A 

concentration of 0.5pg/mL was used for all subsequent studies. In (B), 

the effect on PRDM1 expression of culture with CpG-ODN (CpG) or IL-21 

for 16hrs is shown for 3 NR and 3 R CLL clones. (C) gives a representative 

example of the effects of CpG-ODN (CpG), ionomycin (I), PMA (P) and 

PMA+ionomycin (PI) on PRDM1 expression by R and NR clones. Cells 

were cultured for 48hrs and similar results were obtained in 2 further R 

and NR clones.
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Next, consideration was given to whether PRDM1 responsiveness is

related to clinical behaviour, prognostic markers, or IgVn segment usage. 

Clinical behaviour was measured in terms of clinical stage at the time of 

study; unfortunately, data for time to first treatment and survival were 

too incomplete for analysis. Prognostic indicators employed were 

surface expression of CD38 and ot4 (CD49d), together with IgVn gene 

mutation. IgVn gene segment usage also seemed important since it 

reflects the nature of the antigenic stimulus thought to be so important 

in the pathogenesis of CLL28.

4.3.5 PRDMl responsiveness is unrelated to the clinical behaviour of

the disease or to prognostic markers, but appears to reflect leVH gene

segment usage

Here, the relationship between the induction of PRDMl by IL-21 and the 

above clinical/prognostic parameters was examined (Table 5). Whether 

or not the cytokine was able to induce PRDMl was assessed by 

densitometric analysis of Western blots in which the levels of the 

transcription factor were measured after culture for 16hrs (using the 

Western blotting chemiluminescence visualising reagent advanced ECL) 

or 48hrs (using the less sensitive visualising reagent ECL plus) in the 

presence or absence of IL-21. The densities of the PRDMl bands in both 

treated and untreated CLL cells were normalised against actin and
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expressed as ratios. A ratio of <1.5 was arbitrarily taken to indicate non­

responsiveness (-), while ratios of >1.5 were considered responsive (+ or 

++; see Table 5).

In fact, PRDM1 responsiveness was not related to clinical stage at the 

time of study, to IgVn mutational status or to CD38 and CD49d surface 

expression. However, regarding lgVH gene segment usage, there was a 

correlation (p=0.017; Fisher's exact test) between lack of PRDM1 

responsiveness and expression of IgVHl-69. Among the eight lgVHl-69 

clones examined, four had stereotypic HCDR3 sequences, but these all 

belonged to different subsets39 (Fig. 4.8). As discussed later, these data 

taken together suggest that the nature of antigenic 

stimulation/selection of the CLL clone influences whether or not CLL 

cells retain the ability to differentiate in vitro. lgVH3 gene family 

expression was frequently associated with PRDMl responsiveness, but 

this association did not quite reach statistical significance (p=0.066; x2 

test). As will be considered further in the Discussion of this chapter, this 

indicates that such clones have probably been stimulated/selected in a 

different way from those expressing lgVHl-69, which are not able to up- 

regulate PRDMl in response to PC-inducing stimuli.
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Figure 4.8

Samples HCDR3 sequences CDR length D J Class

Subset No. 27

V Nl D J

2419 CARGTGDSSGYYYFYW 14 3-22*01 4*02 M

Subset No. 6

V Nl D N2 J

2456 CARGGGYDYIWGSYRSNDAFDIW 21 3-16*02 3*02 M

Subset No. 9

2948 CARS VGITIFGWIRDDYYYGMDVW 23 3-3*01 6*02 M

Subset No. 7

2495 CARDTPNYDFWSGYSRGYYYYYGMDVW 25 3-3*01 6*02 M

2741 CARQFSYESNAYYFFFW 15 3-22*01 4*02 M

2562 CATLLRYFDWPPHYYYYGMDVW 20 3-9*02 6*02 M

LS CARVTPGRVILWSEDYGMDVW 19 2-21*01 6*02 M

2536 CARNYDFWSGYGYW 12 3-3*01 4*02 M

The stereotyped HCDR3 sequences of the lgVHl-69 genes. The HCDR3 

amino acid sequences of the eight NR lgVHl-69 CLL clones are shown, 

together with details of their DH and JH segment usage. Four of the 

clones had stereotyped HCDR3 regions (shown in colour) but these 

belonged to different subsets. The HCDR3 region starts after a cytosine 

(C), and terminates before a tryptophan (W). The amino acids marked in 

blue belong to the lgVH region, the red to Nl, the green to DH, the black 

to N2 and the brown to JH segments.
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4.4 DISCUSSION

The initial aim of this chapter was to examine the effects of IL-21±co- 

stimuli on CLL-cell differentiation. The study was novel because the 

differentiating effect of IL-21 on CLL cells has not been previously 

examined. Also, the effect of differentiating agents on the transcription 

factors that are altered during terminal B-cell maturation has not been 

previously investigated in the disease. Thus, previous work investigating 

the differentiation of CLL ceils has simply used largely non-physiological 

stimuli and only examined ig secretion and morphology as indicators of 

plasmacytoid differentiation266'268'270.

The major findings of the work were that IL-21±co-stimuli induces 

PRDMl, IgM secretion and partial terminal differentiation in around 50% 

of CLL clones, while such stimuli had either a minor or no effect on the 

differentiation of the remaining 50%. Those clones that did differentiate 

in response to stimulation also responded to alternative differentiating 

stimuli in the form of CpG-ODN or PMA+ionomycin. Conversely, the NR 

clones showed little or no PRDMl induction in response to these 

alternative stimuli.

The observation that a proportion of CLL clones are able to differentiate 

partially in response to IL-21±co-stimuli is of interest for three reasons.
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First, it adds to previous work concerning the possible therapeutic 

potential of IL-21 in the disease. The induction of antibody secretion, 

when IL-21 is used in vivo, may facilitate blocking or elimination of 

putative (auto)antigen thought to be important in the BCR-mediated 

stimulation/selection of the malignant cells of CLL. It has been 

previously suggested that IL-21 may have therapeutic potential via the 

induction of the apoptosis of CLL ceils211,220'221. In the present study, no 

consistent killing effect of IL-21 was observed in vitro, but it should be 

noted that the concentration employed (50ng/mL) was lower than that 

(200ng/mL) at which killing was observed in these previous studies.

Secondly, up-regulation of PRDMl with IL-21 alone was greater in R CLL 

than in normal naive and memory B-cells; co-stimulation enhanced 

PRDMl expression in both R CLL and normal B-cells. For this reason, and 

because CLL clones are now thought to have been activated in vivo, it 

seems likely that the greater effect of IL-21 alone on CLL cells is the 

result of the presence in the malignant cells of additional activated 

signalling pathways. The NF-kB pathway is a good candidate since this 

transcription factor is important in PRDMl induction and is known to be 

activated more in CLL cells than unstimulated normal B cells271.
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Thirdly, although IL-21±co-stimuli induced PRDM1, IRF4 and igM

secretion, while being able to down-regulate Pax5, such stimuli were 

insufficient to induce either a full PC surface-marker phenotype or IgG 

secretion. This indicates either that further stimulation is required for 

full PC differentiation or that further differentiation is blocked in CLL. 

Recent work with normal B cells has shown that terminal differentiation 

is a multi-step process requiring multiple and complex stimuli272. It 

therefore seems likely that the stimuli used in the present study were 

insufficient to induce full PC differentiation in either CLL or normal B 

cells. However, the observation that a proportion of normal B cells 

could express some surface-marker characteristics of PCs suggests that 

the expression of some of these surface markers is defective even in CLL 

clones that are able to up-regulate PRDM1. Why this might be so 

remains unclear.

The failure of a range of stimuli to induce PRDM1 or significant PC 

differentiation in approximately 50% of CLL clones is of substantial 

interest and likely to be central to the pathogenesis of this subtype of 

the disease. Thus the failure of differentiation of such clones would 

explain why (auto)antigen does not stimulate the production of a 

neutralising antibody in vivo, with subsequent failure to eliminate the 

pathogenetic antigen. Furthermore, since PRDM1 is absolutely required
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for PC formation131, the present studies indicate that defective up- 

regulation of this transcription factor is responsible for the block in Ig 

secretion found in this subtype of the disease.

A substantial effort was made in this chapter to determine whether or 

not PRDM1 responsiveness is related to well established 

clinical/prognostic parameters, but no such correlations were observed. 

In particular, PRDM1 responsiveness was not related to lgVH mutation, 

the most powerful prognostic indicator in CLL9,10. However, there was a 

relationship between lgVH family usage and the ability of a given clone to 

up-regulate PRDM1. Thus, among the 66 clones studied, 8 expressed the 

lgVHl-69 gene and all were unable to up-regulate their PRDMl in 

response to IL-21. This is a significant correlation (p=0.017) and suggests 

that the nature of (auto)antigenic stimulation in vivo maybe an 

important determinant of whether or not CLL-cell differentiation is 

blocked in vitro. It is not possible to predict epitope binding specificity 

from the Ig gene sequence39. However, it is known that stereotyped 

subsets 7 and 9 (lgVHl-69/DH3-3/JH6 - expressed by CLL cases 2495 and 

2948) can bind strongly to apoptotic cells28,273. Also, the igVHl-69 gene 

frequently encodes for antibodies with rheumatoid factor activity274 

(IgM with anti-IgG specificity275), and the Ig produced by CLL cells often 

has such activity276. However, the antibodies produced by the UIV1 lgVHl-
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69 gene in CLL are frequently poly-reactive28, and it is therefore not 

possible, at present, to predict what specific antigens are stimulating 

PRDM1 non-responsiveness.

It has been shown that CLL clones expressing IgVnS genes have a low 

frequency of HCDR3 stereotypy39, and it was therefore suggested that 

such clones have been selected by superantigens which recognise 

framework sequences outside the HCDR3 region. It is therefore 

tempting to postulate that CLL clones which are able to induce PRDM1 

have often been stimulated in such a way.

There are two major questions to arise out of the work in this chapter. 

First, why do stimulated R clones so readily express PRDM1 in vitro, 

when they do not do so in vivo? Secondly, why is there a block in 

PRDM1 induction in NR clones? The first question is considered in more 

detail in Chapter 6 and will not be discussed further here. The second 

question is the topic of the next experimental chapter, Chapter 5, but 

the data presented in the current chapter provide some clues. Thus, the 

observation that Pax5 could be silenced without PRDM1 expression 

indicates that the failure of these cells to express PRDM1 is not the 

result of a failure to down-regulate this suppressor of PRDM1. 

Furthermore IRF4, a known transcriptional activator of PRDM1, was

158



induced without PRDM1 expression. Therefore, although the present 

work does not provide an explanation for the failure of some CLL clones 

to express PRDM1, it suggests that dysreguiation of either Pax5 or IRF4 

is unlikely to be responsible.

With this in mind, work for Chapter 5 regarding establishing why PRDM1 

is not able to be induced in NR clones was begun.
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Chapter 5
THE NATURE OF THE BLOCK IN 

PRDM1 INDUCTION OBSERVED IN A 

PROPORTION OF CLL CLONES

5.1 INTRODUCTION

One of the major issues raised in the previous chapter was the question 

of why some CLL clones are unable to express PRDM1 and undergo 

plasmacytoid differentiation in response to a range of stimuli. There are 

no previous studies of PRDM1 induction in CLL cells, but there is a 

substantial literature concerning the control of this transcription factor 

during normal B-cell maturation to PCs. Thus, in normal B cells PRDM1 

is controlled at a transcriptional level by a number of transcriptional 

activators and repressors134'163. In the light of this literature, it was likely 

that PRDM1 expression in CLL cells is also regulated at the 

transcriptional level, and this was shown to be so in the first part of this 

chapter. However, it has not been established what combination of
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activators/repressors are essential for normal-B-cell PRDM1 induction, 

let alone for that of CLL cells.

The transcription factors involved in the activation/repression of PRDM1 

in normal B cells are discussed in more detail in the General Introduction 

and the main facts are summarised in Fig. 1.3. In brief, established 

transcriptional activators of PRDM1 are STAT3, NF-kB, IRF4, PU.l, IRF5 

and AP-1. In contrast, the well known transcriptional repressors are 

Pax5, Bci-6, Spi-B and Bach2. Each of these transcription factors is 

activated/induced by different stimuli involving distinct signalling 

pathways. For example, IL-21 induces B-cell differentiation mainly via 

JAK phosphorylation of STAT3213, while CpG-ODN activates a number of 

signalling pathways, including those leading to NF-kB and IRF5 

activation . PMA and ionomycin also stimulate multiple pathways 

including those that lead to IMFAT activation and IRF4 induction. For 

further details, see Section 1.5.2.

The stimuli employed in Chapter 4 were IL-21, BCRxl, CD40L, IL-2, CpG- 

ODN, PMA and ionomycin. Between them, these agents probably 

activate all the signalling pathways known to be required for PRDM1 

induction/relief from repression. Therefore, the fact that these multiple 

stimuli failed to induce PRDM1 in a proportion of CLL clones could be
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explained in a number of ways. First, one or more of the signalling

pathways/activating transcription factors essential for PRDM1 induction 

might be altered/defective in these NR clones. Alternatively, it remains 

possible that the prdml gene is silenced by a transcriptional repressor(s) 

and/or by other mechanisms including DNA methylation92 and histone 

modification. Whatever the underlying reason for the failure of NR 

clones to induce PRDM1, it seemed reasonable to postulate that the 

same shared mechanism might be responsible for the inability of the 

above stimuli to induce PRDMl/pIasmacytoid differentiation in the 

majority of NR CLL clones.

After showing that the failure to induce PRDMl occurs at the level of 

transcription, the aims of the present chapter, therefore, were to 

characterise the transcriptional activators/repressors required for 

PRDM1 induction in R CLL cells, and to establish why PRDM1 

transcription is not activated in NR clones.
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5.2 METHODS

Once again, only Materials and Methods new to this thesis will be 

described.

5.2.1 Inhibitors

The cell-culture inhibitors used during this chapter were:- NFAT inhibitor 

cyclosporin A at lOOnM; NF-kB inhibitor Bayll-7082 at 0.5-2pM; and 

STATS inhibitor Vlll at 20-100pM (ail from Calbiochem).

5.2.2 PCR

The prdml bisulphite sequencing primers were:- prdml BS1 forward 5'- 

TTT TTG TAT TTG GGG ATT TGA GTT GAG-3', reverse 5'-AAC TTC CCC TCC 

CTA CTT AAA ATT TCC-31; prdml BS2 forward 5'-AGT GGT TAA GGA AAT 

TTT AAG TAG G-3', reverse 5'-ACA AAT ATC CAA CAT CTA AAA AAA ATC- 

3'.

5.2.3 qPCR

PRDM1 mRNA primers were the same as in Chapter 3. TNFot mRNA 

primers were:- forward 5'-CCA TGA GCA CTG AAA GCA TGA TCC-3', 

reverse 5'-TGG TTA TCT CTC AGC TCC ACG C-31. IkBoc mRNA primers 

were:- forward 5'-AGC TCA CCG AGG ACG GGG AC-31, reverse 5'-TCC
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ACG ATG CCC AGG TAG CCA-3'. Spi-B mRNA primers were:- forward 5'-

CTC CTC CAA GCA CAA GGA AC-31, reverse 5'-GGA CGC CCT ITT TCT ICC 

AG-3'.

The prdml Chip primers were:- IkBcx promoter forward 5'-CTC TTT TTC 

TGG TCT GAC TGG C-37, reverse 5'-GCG CCC TAT AAA CGC TGG-3'; prdml 

NF-kB binding site forward 5'-TTG AGG TTA AGT GCC TTC AAA GG-3'# 

reverse 5'-TGG CCT CTC CGC AAC ACT G-3'; prdml TSS forward 5'-CTC 

AGC CTG GCG GGG GAC-3', reverse 5'-CCT TAC CAA GGT CGT ACC CAC 

ACG-31; prdml +14kbp forward 5'-GGG CTA TAA AAG CAT CAG GAC-3’, 

reverse 5'-GAG GGA AAA GAA CTG CCA C-31.

5.2.4 IL-21R quantification

Surface expression of the IL-21R on CLL cells was measured using a two- 

layer flow cytometry method. Binding of each layer was performed in 

the same buffer, for the same amount of time, and at the same antibody 

concentrations as described in Section 2.2.4. Cells were washed in the 

antibody-binding buffer after each staining step. The primary antibody 

was a goat polyclonal anti-IL-21R IgG (cat# AF991; R&D systems). The 

secondary antibody was a donkey anti-goat conjugated to Aiexa fluor 

555 (Invitrogen Ltd).
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5.2.5 Western blotting

Additional primary antibodies used in this chapter were:- rabbit 

polyclonal anti-STAT3 clone C-20 (Santa Cruz); mouse monoclonal anti- 

pSTATS clone B-7 (Santa Cruz); rabbit polyclonal anti-PU.l cat# 2266 

(Cell Signalling; New England Biolabs); rabbit polyclonal anti-Bcl-6 cat# 

4242 (Cell Signalling); goat polyclonal anti-Bach2 clone E-16 (Santa Cruz); 

and mouse monoclonal anti-Tcl-1 clone 1-21 (Biolegend UK Ltd., 

Cambridge, UK).

5.2.6 NF-kB activation

NF-kB activity was measured using the TransAM NF-kB p50 and p65 

ELISA kits (Active Motif, Rixensart, Belgium) and a modified nuclear 

extraction method. CLL nuclear pellets were obtained by lysing 107 CLL 

cells for Smins on ice in PBS pF17.4 containing 0.5% v/v NP-40, 2mM 

EDTA and a protease inhibitor cocktail (Calbiochem), followed by 

centrifugation at 500rcf. 2pg of nuclear lysate was added to each ELISA 

well and each sample was assayed in duplicate.

5.2.7 CHIP

Immunoprecipitating antibodies used were:- mouse anti-p65; mouse 

anti-K36me3; and mouse anti-Ser5P-RPii (ail from Abeam).
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5.3 RESULTS

5.3.1 In NR CLL clones both IL-21 and CpG-ODN fail to induce

transcription of ordml

NR clones were cultured with and without IL-21 stimulation for 24 hours, 

and PRDM1 mRNA induction compared with that in R CLL cells treated in 

a similar way. For these studies, responsiveness was defined as in 

Chapter 4.

Using a semi-quantitative PCR method, it was found that basal levels of 

PRDM1 mRNA were low or undetectable in NR clones and that IL-21 

induced only a very small increase in transcription (Fig. 5.1A). Before 

stimulation, R clones also contained only low levels of PRDM1 mRNA 

but, after exposure to IL-21 for 24hrs, there was a large increase of this 

message (Fig. 5.1A).

Similar studies, this time using a qPCR method and measuring PRDM1 

mRNA induction at multiple time points after stimulation with IL- 

21+CD40L or CpG-ODN, confirmed the lack of transcription of PRDM1 in 

NR clones (Fig.5.IB and C). It was also noticed that, after exposure to 

CpG-ODN the induction of PRDM1 mRNA occurred only after 4 hours, 

while PRDM1 was induced immediately after IL-21+CD40L stimulation. 

However, the delay in PRDM1 induction by CpG-ODN was not shared by
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Figure 5.1
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The induction of PRDM1 by IL-21 or CpG-ODN in NR and R CLL clones.

(A) shows RT-PCR analysis of PRDMla mRNA expression after culture for 

24hrs with and without IL-21. GAPDH was used as a loading control. 

Protein levels after 48hrs are shown for comparison. In (B) and (C), the 

kinetics of induction of PRDMla mRNA as measured by qPCR after 

treatment with CpG-ODN or IL-21+CD40L are shown respectively. (D) 

and (E) give similar studies of the kinetics of mRNA induction after CpG- 

ODN treatment for IxBa and BCL2A1 respectively - two genes well 

known to be transcribed early after stimulation of the NF-kB pathway. 

All mRNA levels are expressed relative to GAPDH mRNA.
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other genes which are directly activated by NF-kB (IkBoi and BCL2A1; Fig.

5.ID and E).

Taken together these results show that PRDM1 protein expression in 

CLL cells is controlled at a transcriptional level. They also indicate that 

all the factors required to induce PRDM1 in CLL cells are immediately 

present after IL-21+CD40L stimulation, while CpG-ODN requires the 

neosynthesis of an additional factor.

Because the precise combination of transcription factors needed for 

PRDM1 induction remains unknown163, it next seemed important to 

establish what factors are important for this process in CLL cells. IL-21 is 

known to induce transcription of PRDM1 primarily through STATS, so 

this activator of transcription was examined first. IL-21 acts on specific 

receptors which then cause tyrosine phosphorylation of STATS, leading 

to its dimerisation and translocation to the nucleus where it activates 

PRDM1167. In contrast, CpG-ODN-induced signalling from TLR9 has not 

been shown to directly involve activation of STATS230. However, since 

there was a delay in the induction of PRDM1 mRNA following CpG-ODN 

treatment (see above), it seemed plausible that a neofactor might be 

activating STATS and that this is required for PRDM1 transcription.

168



Therefore; STATS activation and its requirement for PRDM1 induction in

response to IL-21 and CpG-ODN were compared in R and NR clones.

5.3.2 STATS activation is intact in R and NR CLL clones and is required

for the induction of PRPM1 by IL-21, but not bv CpG-ODN

To examine whether or not receptor levels might be influencing 

induction of PRDMl by IL-21; IL-21R levels were measured by a two- 

layer FACS method. Expression was similar in R versus NR clones 

(Fig.5.2A) tested directly ex vivo, and receptor expression remained 

constant in 4/5 cases for up to 24hrs with and without IL-21 (Fig. 5.2A). 

One R clone (2450) did increase its 1L-21R levels by ~30% within the first 

two hrs of culture. However; all CLL clones expressed IL-21R and levels 

in a different R clone remained very similar to that of the 3 NR clones 

studied. Therefore; the differences in the expression of PRDMl in 

response to IL-21 in R and NR clones could not be attributed to 

differential expression of the IL-21R.

IL-21 induces PRDMl transcription primarily via phosphorylation of 

STAT3 on Tyr705163. Therefore Western blotting with an anti-Tyr705- 

STAT3 antibody was employed to measure STAT3 activation after 

exposure to the cytokine. For all clones tested (n=7); iL-21 induced the 

tyrosine phosphorylation of STAT3; and both R {n=3} and NR (n=4)
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Figure 5.2
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CLL clones had comparable levels of phosphorylation after exposure to

the cytokine for 20mins {Fig. 5.2B). Furthermore, in R CLL, an inhibitor of 

the dimerisation of STATS stopped PRDM1 induction on exposure to IL- 

21 (Fig. 5.2C).

Upon treatment with CpG-ODN, STATS was shown to be tyrosine 

phosphorylated only after 4 hours {Fig. 5.2D). This phosphorylation was 

shown to rely on protein neosynthesis, as it was blocked by the 

translational inhibitor cycloheximide (Fig. 5.2D). However, in contrast to 

its effect on IL-21 stimulation, the same STATS inhibitor had little or no 

effect on CpG-ODN-induced PRDM1 (Fig. 5.2C).

Taken together these results indicate that, in CLL cells, STATS signalling 

is required for the induction of PRDM1 by IL-21 and that signalling 

between the receptor and STATS is intact in these cells, regardless of 

whether or not the cytokine induces PRDM1 expression. In contrast, the 

induction of PRDM1 by CpG-ODN was shown not to require STATS 

phosphorylation and the neofactor involved is not dependent on 

stimulation of the STATS pathway.

As alluded to above, the running hypothesis was that a shared 

mechanism is responsible for the failure of a range of stimuli to induce 

PRDM1 expression in NR CLL clones. Therefore, since STATS was shown
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not to be required for PRDM1 induction by CpG-ODN, it was decided at

this stage not to investigate STAT3 further. Rather, it next seemed 

important to examine the function of other transcription factors known 

to be involved in the induction of PRDM1.

Since NF-kB activation is important in the induction of PRDM1 in normal 

B cells109'163, this transcription factor and its activation were examined 

next.

5.3.3 NF-kB activation is intact In both R and NR CLL clones

IMF-kB is known to be constitutively activated in CLL cells271, so it is 

possible that this activation contributed to the effects observed in the 

presence of IL-21 alone. To examine the importance of constitutive and 

induced NF-kB activation for PRD1VI1 induction in CLL cells, R clones were 

cultured with iL-21 or CpG-ODN in the presence or absence of the NF-kB 

inhibitor, Bayll-7082 (Fig. 5.3A). The inhibition of NF-kB activity greatly 

reduced induction of PRDM1 by both CpG-ODN and IL-21 stimulation in 

the two R clones tested. It was therefore concluded that NF-kB 

contributes to the induction of PRDM1 not only by CpG-ODN, but also by 

IL-21 alone. Furthermore, taken together with the STAT3 results, these 

findings indicate that the induction of PRDMl by IL-21 requires both 

STATS and NF-kB activation. In contrast, the induction of PRDMl by
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Figure 5.3

IL-21 CpG IL-21 CpG
Bayll(pM) 0 0 0.5 12012 0012012

2334 2450

PRDM1

Actin

IL-21

IL-21R -----► STAT3 -

NF-kB

prdml

CpG-ODN

neofactor ^
< A

TLR9 —► NF-kB ^

prdml

UT CpG

p50

p65

‘ *
!.* *

i.
X

5 ll

? /
•'i

I*
!•

i.
i

1 **

R

NR

*p<0.02
**p<0.04

The role of NF-kB in the induction of PRDM1 by both IL-21 and CpG- 
ODN. (A) shows the effect of an NF-kB inhibitor (Bayll-7082; prevents 
IkBcx phosphorylation and degradation, thereby preventing the release 
of NF-kB from inhibition) on the induction of PRDM1 by IL-21 or CpG- 
ODN in R clones. (B) gives a diagrammatic representation of how IL-21 
and CpG differ in how they induce PRDM1. Since it remains unclear 
whether the neofactor is induced by NF-kB or by some other 
mechanism, this uncertainty is represented by broken arrows. In (C), 
active nuclear p50 and p65/RelA were measured in R and NR clones 
before and after treatment with CpG for the indicated times (n=3 for 
each type of clone; statistical significance was assessed using a Mann- 
Whitney U test).
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CpG-ODN requires NF-kB and an additional neofactor, which

demonstrably does not require STAT3 activation (see Fig. 5.3B).

Having established the need for NF-kB in PRDMl induction by both 

stimuli, it next was important to establish whether or not the activation 

of this transcription factor is impaired in NR clones. By using the 

TransAM NF-kB ELISA method (that measures only functionally active 

nuclear NF-kB), both basal and CpG-ODN-induced p65/RelA and p50 NF- 

kB subunit activities were measured (Fig. 5.3C). These subunits of NF-kB 

are thought to be important in the activation of the prdml gene through 

binding to a conserved NF-kB binding motif close to the TSS109. Similar 

levels of activated nuclear p65/RelA were demonstrated in both R and 

NR CLL clones, whether analysed unstimulated or after exposure to CpG- 

ODN for 2 or 20hrs. It was therefore concluded that the p65/RelA is 

activated and translocated to the nucleus in both R and NR clones.

Interestingly, unstimulated p50 activity was significantly higher in R 

clones than NR clones at all three time points (Fig. 5.3C). However, the 

p50 subunit was still basally activated in NR clones and the fold 

induction of p50 activity after CpG-ODN stimulation was similar between 

response types (Fig. 5.3C). Consequently, it seemed unlikely that the 

lower activity of the p50 subunit in NR CLL clones was responsible for
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the failure to induce PRDM1. Also, other NF-kB responsive genes (Fig.

5.1C and D; IkBcx and BCL2A1) were readily induced in NR clones. Taken 

together, these data indicate that impaired NF-kB activation is not 

responsible for the absence of PRDM1 induction in NR clones.

Although NF-kB activation was shown to be intact in both R and NR 

clones following TLR9 stimulation, it remained possible that binding of 

the transcription factor to the prdml promoter was somehow impaired 

in NR clones. Therefore, attempts were made to analyse such binding 

by ChIP. For this analysis, the DNA encoding for an NF-kB binding site 

upstream of the TSS was amplified by qPCR after ChiP using an antibody 

against the transcriptional-activating p65 subunit of NF-kB. Flowever, 

repeated attempts to perform ChiP analysis with the anti-p65 antibody 

could not demonstrate binding to the prdml gene in either type of CLL 

done even after CpG-ODN stimulation (see Appendix for figure). In 

contrast, the positive control gene, IkBcx, could readily be precipitated 

using the anti-p65 antibody. It is difficult to know how to interpret these 

findings since it has been shown in mice that p65 binding to the 

conserved NF-xB-binding motif of the blimp-1 gene is critical to up- 

regulation of transcription of the gene in response to TLR signalling109.
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Having taken the work concerning NF-kB activation as far as practicable,

attention was next turned to the other activators/repressors of PRDM1, 

starting with NFAT/IRF4 and PU.l.

5.3.4 The failure to induce PRDM1 in NR clones is not the result of

defective NFAT/IRF4 function or of absent PU.l expression

The transcription factor, NFAT, is activated by dephosphorylation via the 

phosphatase, calcineurin277. After activation, NFAT is translocated to the 

nucleus where it promotes IRF4 induction164 166 and this factor, in turn, 

binds to the PRDM1 gene and promotes the induction of PRDMl in 

certain settings167'168.

To determine whether or not NFAT is required for the induction of 

PRDMl in CLL cells, R clones were cultured with CpG-ODN or IL-21 in the 

presence of cyclosporin A (CsA). The inhibition of calcineurin by CsA 

prevents the activation and nuclear translocation of NFAT. As expected, 

pre-incubation of CLL cells with CsA reduced IRF4 expression after 

treatment with and without IL-21 or CpG-ODN (Figure 5.4A and B). 

However, the inhibition of NFAT had a variable effect on the induction of 

PRDMl by IL-21; in one R CLL clone expression was enhanced, while in a 

different R clone slightly reduced levels were observed (Fig. 5.4A). In 

contrast, treatment with CsA consistently had no effect on CpG-ODN-
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Figure 5.4
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the effect of the calcineurin inhibitor, cyclosporin A (CsA) on PRDM1 

expression by two R CLL clones stimulated with IL-21 is shown. Cells 

were preincubated for 2 days with CsA (200nM) to reduce IRF4 

expression, before culture for a further 2 days in the presence of the 

cytokine. In (B), two R clones were preincubated for Ihr in the presence 

of CsA before culture for 48hrs with CsA + CpG-ODN. For (C), the effects 
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(PI) on the induction of PRDM1 and IRF4 were examined after 2 days' 

culture.
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induced PRDM1 (Fig.5.4B). Also, in NR clones, IRF4 was induced by PMA

plus ionomycin (but not by either agent alone), but PRDM1 was not (Fig. 

5.4C). It was therefore concluded that calcineurin/NFAT/IRF4 

activation/expression is not essential for PRDM1 induction in R clones by 

both stimuli, and that a defect in this pathway is therefore unlikely to be 

the cause of the block in NR clones.

Since PU.l is known to be required for efficient PRDM1 induction174 and 

to be variably transcribed in CLL278, the levels of this transcription factor 

were measured in R and NR CLL clones by Western blotting. In fact, the 

protein was expressed at comparably high levels (Fig. 5.4D) in both types 

of clone. It was therefore concluded that differential expression of PU.l 

is not responsible for the failure of some clones to induce PRDM1.

We next considered IRF5 and AP-1, the other transcriptional activators 

known to be involved in the induction of PRDMl163.

5.3.5 The absence of PRDM1 induction in NR CLL clones is unlikely to

be the result of defective function of either IRF5 or AP-1

IRF5 is activated by TLR stimulation and, in addition to activating 

PRDMl, is essential for transcription of the genes encoding pro- 

inflammatory cytokines, such as TNFa279. It has recently been shown 

that IRF5 can be mutated in some CLL cells in a way that affects its ability
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to bind to DNA and activate gene expression280. Therefore, the 

transcription of the TNFa gene was used as a functional readout of IRF5 

activity in R and NR CLL clones after CpG-ODN stimulation.

In fact, although CpG-ODN induced more TNFa mRNA in the 3 R clones 

studied, all 4 NR clones could transcribe this factor (Fig. 5.5A). It was 

therefore concluded that impaired IRF5 function is unlikely to be 

responsible for the failure to up-regulate PRDMl expression in NR 

clones.

Regarding AP-1, it has been reported that, although the transcription 

factor can potentiate PRDMl transcription150,175, knockout of c-fos (an 

essential component of AP-1) does not abrogate PRDMl expression . 

For this reason, it seemed unlikely that the failure of NR clones to induce 

any PRDMl could be attributed to altered activation of AP-1. 

Nevertheless, in view of the current interest in the AP-1 repressor, Tcl-1, 

as a pathogenetic factor in CLL281, it seemed reasonable to consider the 

possibility that high levels of Tcl-1 might be indirectly inhibiting prdml 

transcription in NR CLL cells. However, Tcl-1 levels, although variable, 

were similar in R and NR clones (Fig. 5.5B). It was therefore decided not 

to investigate AP-1 further.

179



Figure 5.5
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IRF5 function and Tcl-1 expression in R and NR clones. In (A), the

induction of TNFa mRNA was employed as a surrogate of IRF5 action. R 

and NR clones were cultured with CpG-ODN for up to 8hrs and TNFa 

mRNA was measured by qPCR and expressed as a ratio to the control 

mRNA, GAPDH. In (B), expression of Tcl-1 protein was measured by 

Western blotting in R and NR clones directly after thawing.
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It was next hypothesised that the prdml gene might be repressed in

those CLL clones which do not express PRDM1 mRNA and protein in 

response to multiple stimuli.

5.3.6 Failure to induce PRDM1 in NR clones is not attributable to the

differential expression of repressors of PRDMl

Four transcription factors are known to suppress prdml directly; these 

are Pax5, Bcl-6, Bach2 and Spi-B134. As shown in Fig. 5.6A, Pax5 levels 

were similar in R and NR CLL clones directly ex vivo. Furthermore, IL-21 

plus co-stimuli caused the progressive loss of Pax5, without PRDM1 

induction in NR CLL clones (see Fig. 4.5A from earlier), it was therefore 

concluded that Pax5 is unlikely to be responsible for any putative 

differential repression of the prdml gene in NR versus R CLL clones.

CLL cells are reported to express Bcl-6 protein at very low levels 

detectable by Western blotting282, but not demonstrable by immuno- 

histochemistry283. This was confirmed here, since the advanced ECL 

reagent and long exposure times were necessary to demonstrate small 

amounts of the protein in Western blots; however, when the protein 

was demonstrable, similar amounts of protein were observed in R versus 

NR clones (Fig. 5.6B). It therefore seemed unlikely that this transcription 

factor is involved in any putative prdml repression. Regarding Bach2,
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Figure 5.6
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band is probably a truncated isoform of the transcription factor284. In (B) 
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Western blotting. For (D), Spi-B mRNA levels were quantified by qPCR 

(n=3 R and 4 NR clones) and analysed relative to levels of a GAPDH 

mRNA control.
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little or no expression was detected by Western blotting in 6 (3 R and 3

NR) of 8 CLL clones examined, while a clear band was detectable in 2/8 

clones (1 R and 1 NR) and the Namalwa cell line positive control (Fig. 

5.6C). Surprisingly, when levels of Spi-B mRNA were measured (as a 

specific antibody could not be found), higher levels of mRNA were found 

in R clones than NR clones (Fig. 5.6D), although this result failed to reach 

significance (p=0.08). It therefore also seemed unlikely that repression 

by either Bach2 or Spi-B could be responsible for the failure to induce 

PRDM1 in NR clones.

Levels of Pax5, Bcl-6 and Bach2 repressors were also measured after 

48hr stimulation with CpG. Furthermore, Spi-B mRNA levels were 

measured at multiple time points over the first 14hrs after CpG-ODN 

treatment. Bcl-6 and Bach2 levels were largely unchanged in both R and 

NR clones (Fig. 5.7A). CpG-ODN actually increased both Pax5 and Spi-B 

expression, but these increases were similar in NR and R clones (Fig. 

5.7A and B). It was therefore concluded that differential expression of 

known repressors of PRDM1 transcription is not causing repression of 

the gene in the NR CLL clones.

Although it remained possible that differential binding of similarly 

expressed activators/repressors might explain why some clones can
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Figure 5.7
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The levels of the transcriptional repressors of prdml in R and NR 

clones after treatment with CpG-ODN. In (A), CLL cells were treated 

with and without CpG-ODN for 48hrs, and levels of Bcl-6, Bach2 and 

PaxS were measured by Western blotting. (B) shows levels of Spi-B 

mRNA in 3 R and 4 NR clones over the first 14hrs of culture with CpG- 

ODN relative to levels of GAPDH mRNA.
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transcribe the prdml gene while others cannot, it was decided that

possible silencing by DNA methylation would be examined next. This 

seemed a reasonable approach since the methodology was already set 

up from Chapter 2 and since it has very recently been reported that the 

prdml gene can be regulated by CpG methylation in NK cell lines and 

primary tumours; furthermore a DNA methyltransferase inhibitor was 

able to induce PRDM1 mRNA in these cells92.

5.3.7 The PRDM1 gene is not methylated in either R or NR CLL clones

To test the hypothesis that PRDM1 is repressed in CLL cells by 

methylation, CLL cells were treated with the methyltransferase inhibitor 

5-azacytidine for 2 days, and then the ability to induce PRDM1 by CpG- 

ODN stimulation was measured by qPCR. To enhance the effects of 5- 

azacytidine and to prevent apoptosis of the CLL cells during culture with 

high concentrations (50pM) of the methyltransferase inhibitor (data not 

shown), CD40L and IL-4 were added to the cell culture medium. This T- 

cell stimulus has been shown to induce survival and mitosis of CLL 

cells285, the latter of which enables incorporation of non-methylated 

cytosines in the DNA of the daughter cells286. As shown in Fig. 5.8A, pre­

treatment with 5-azacytidine was unable to cause CpG-ODN-stimulated 

induction of PRDM1 mRNA in NR cases, even at the high concentration 

of SOpM.
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Figure 5.8
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CpG methylation of the prdml gene in R and NR CLL clones. For (A), CLL
cells were cultured for 48hrs with or without lOpM 5-azacytidine alone 
or 50|iM 5-azacytidine in the presence of soluble CD40L and IL-4. After 
such culture, cells were washed and re-cultured for a further 24hrs in 
the presence of CpG-ODN, after which PRDM1 mRNA was measured by 
qPCR and made relative to GAPDH mRNA. (B) shows the layout of the 
prdml gene in the region around the TSS (black arrow). The 41 CpG 
motifs analysed are shown in red, while the green and blue arrows 
indicate the location of the two primer pairs used to amplify the region 
for sequencing prdml after bisulphite treatment.
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In an R CLL clone, treated in a similar way and used for comparison, 

PRDM1 induction was actually reduced in response to CpG-ODN after 5- 

azacytidine pre-treatment (Fig.5.8A).

As repression of DNA methylation by 5-azacytidine affects the 

expression of many genes, including potentially those involved in 

PRDM1 repression, the alternative approach of direct bisulphite 

sequencing of the prdml gene was employed. Primers were designed to 

determine the sequence and hence methylation status of the TSS of the 

prdml gene, where methylation has been shown to correlate with the 

repression of the prdml gene in NK cell lines and primary tumour cells92. 

Using this method, it was shown that the prdml gene was completely 

unmethylated in this region (Fig. 5.8B; 0/41 methylated CpG motifs in 

n=3 IMR). It was therefore concluded that CpG methylation is not 

responsible for PRDMl repression in NR CLL cells.

Since gene silencing can occur not only as a result of DNA methylation 

but also as a consequence of histone PTM, this latter possibility was 

examined next.
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5.3.8 After stimulation, the ordml promoter in both R and NR CLL

clones is associated with comparable levels of histone H3 chromatin

marks and Ser5P-RPII

The levels of histone marks associated with the prdml TSS were 

measured by ChIP before and after stimulation with CpG-ODN. Three 

histone PTMs were examined:- H3Ac, H3K4me3 and H3K36me3 using 

specific immunoprecipitating antibodies. H3Ac and H3K4me3 are both 

associated with transcription initiation, while H3K36me3 is associated 

with transcription elongation. Alongside these histone modifications, 

Ser5P-RPII was also used as an additional sign for the presence of 

transcription initiation at the TSS (see Sections 1.4 and 1.5).

At TO, variable levels of the two histone transcription initiation marks, 

H3Ac and H3K4me3, were detected in association with prdml in both R 

and NR clones (Fig. 5.9A, B and C). At the time at which PRDM1 mRNA 

was being maximally induced after CpG-ODN treatment (refer to Fig. 

5.IB and the legend for Fig. 5.9), the levels of these histone marks 

usually increased, unless comparatively high before stimulation, and 

were similar in both R and NR clones.

Unexpectedly, before stimulation the level of the histone mark 

H3K36me3 was high at the TSS of prdml and was similar between

188



Figure 5.9
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before and after CpG-ODN treatment in R and NR clones. (A), (B), and 

(D), show results for anti-HBAc, anti-H3K4me3 and anti-Ser5P-RPII ChIP 

experiments respectively. qPCR analysis of the immunoprecipitated DNA 
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chart are isotype controls, while black bars are the specific 
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response types (Fig. 5.9C). However, as would be expected for a mark

produced by transcription elongation, the levels of this mark were 

consistently higher IBkbp downstream. After CpG-ODN treatment, the 

H3K36me3 mark surprisingly decreased similarly at both sites in the 

majority of clones (Fig. 5.9C).

As predicted from the histone transcription initiation marks, high levels 

of Ser5P-RPII were also associated with the prdml TSS and were again 

found to be similar in both types of CLL clone (Fig. 5.9D). It was 

therefore concluded that the inability to detect PRDM1 mRNA (and 

protein) in NR clones is the result of an abnormality downstream of 

transcription initiation and elongation. As discussed later, a failure in 

transcription termination, mRNA maturation, or the over expression of a 

microRNA (miR) might account for such findings.
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5.4 DISCUSSION

The aim of the work presented in this chapter was to establish why 

PRDM1 cannot be expressed in some CLL clones, even after stimulation 

with potent differentiating agents.

It is known that prdml is controlled by a number of transcriptional 

activators and repressors in normal B cells. It is therefore not surprising 

that the present work clearly demonstrated that prdml is also 

controlled at a transcriptional level in CLL. Thus, those clones that were 

able to undergo plasmacytoid differentiation after stimulation produced 

large amounts of PRDM1 mRNA, while those unable to undergo such 

differentiation were unable to transcribe the gene.

Although a substantial amount is known about the activators/repressors 

and the signals leading to their activation/expression134,163, it is not 

known what precise combination of factors is needed for the induction 

of PRDM1 in normal B cells; nothing is known about the transcriptional 

regulation of prdml in CLL. The present work demonstrated that the 

induction of PRDM1 in CLL cells by IL-21 requires both STAT3 and NF-kB 

activation. In contrast, induction of the gene by CpG-ODN was shown to 

be dependent on activation by NF-kB and an additional unidentified 

neofactor. This factor is not STAT3 since CpG-ODN induction of PRDMl
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was shown to be independent of this transcription factor, interestingly,

the kinetics of transcription of prdml in response to the two stimuli 

were different. Thus, the effect of il-21+CD40L was immediate, while 

that of CpG-ODN was variably delayed, presumably because 

neosynthesis of the unidentified co-factor is required. These 

observations are novel and of interest because they define the minimal 

requirements for the induction of PRDM1 in CLL cells by physiologically 

relevant stimuli. Also, although it is known that the effect of TLR 

stimulation on prdml in normal B ceils is dependent on NF-kB, it has not 

been previously shown that this transcription factor is also required for 

IL-21 activation of the gene. Furthermore, the present findings 

concerning the kinetics of induction of PRDM1 mRNA in B cells are novel 

since it has not been previously recognised that IL-21 and CpG-ODN 

induce PRDM1 transcription with such different kinetics.

Since all NR CLL clones failed to transcribe prdml in response to 1L- 

21±co-stimuli, CpG-ODN or non-physiologicai stimuli (e.g. PMA), it next 

seemed reasonable to hypothesize that a shared mechanism is 

responsible. Having shown that STAT3 activation by IL-21 is not defective 

in NR clones, the NF-kB pathway was examined next. This seemed 

especially important since NF-kB was shown to be required for PRDM1 

induction by both IL-21 and CpG-ODN. In fact, using an ELISA method
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measuring activated NF-kB subunits in the nucleus, it was shown that

the p50 and p65 subunits were translocated to the nucleus in both R and 

NR clones. Significantly more translocated p50 subunit was detected in R 

clones before and after stimulation with CpG-ODN, but levels of the 

activating p65 subunit in the nucleus were not significantly different in R 

and NR clones, either before or after TLR9 stimulation. Also, CpG-ODN 

stimulation could induce other NF-KB-dependent genes (IkBoi and 

BCL2A1) to a similar extent in both R and NR cells. It was therefore 

concluded that defective activation or nuclear translocation of NF-kB are 

unlikely to be responsible for the absence of PRDM1 induction in NR 

clones. It remained possible that binding of NF-kB specifically to the 

prdml gene is defective in NR clones, and an attempt was made to 

investigate this possibility using ChIP and antibodies specific for p65. 

Unfortunately, however, these attempts were inconclusive since no 

binding of p65 to prdml could be demonstrated in R or NR clones, either 

before or after CpG-ODN stimulation.

Having shown that defective STAT3 and NF-kB signalling are unlikely to 

be responsible for the defective PRDM1 induction in NR clones, it was 

next necessary to examine the other known activators/repressors of the 

gene. Here, the hypothesis was that differential expression of such 

activators/repressors might be responsible for the lack of PRDM1
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induction in NR clones. In fact, it was found that basal and induced levels

of IRF4, PU.l, PaxS, Bach2, BCL6 and Spi-B were all similar in NR and R 

CLL cells. Furthermore, factors that require activation to enter the 

nucleus and affect transcription (NFAT, IRF5 and AP-1} are unlikely to be 

defective/responsible in NR clones. Thus, IRF4 (a downstream target of 

NFAT) was readily induced by PMA+ionomycin in R and NR clones. Also, 

CsA inhibition of NFAT activation by calcineurin was not required for 

PRDM1 induction in R clones by CpG-ODN, while requirement for IL-21- 

induced PRDMl was variable. IRF5 is required for TNFa transcription279, 

but this necrosis factor was induced by CpG-ODN in both R and NR 

clones, suggesting that 1RF5 is functional in both subgroups. Regarding 

AP-1, it is known that PRDMl induction is enhanced, but not dependent 

on this transcription factor150,175. Nevertheless, since AP-1 is repressed 

by Tcl-1, an important pathogenetic factor in CLL281, Tci-1 levels were 

measured in NR and R clones, but found to be similar. Taken together, 

these findings suggest that differential expression/activation of these 

regulatory transcription factors is unlikely to be responsible for the 

absence of PRDMl induction in NR clones. It remains possible that, 

when activators/repressors are expressed, the loss of binding of an 

activator to, or altered displacement of a repressor from, the prdml 

gene might be causing the lack of PRDM1 induction in NR clones. These
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scenarios were indirectly examined in the work discussed below relating

to histone modifications associated with the prdml gene.

The possibility that, in NR clones, the prdml gene was being silenced by 

an epigenetic mechanism was considered next. Although there is a 

precedent for prdml silencing by DNA methylation92, this was found 

conclusively not to be so in NR CLL.

Histone marks of transcriptional activation were therefore examined. 

Surprisingly, the presence of all the histone marks tested (H3Ac, 

H3K4me3 and H3K36me3) and binding of activated RPII on the prdml 

gene were similar in NR and R clones after CpG-ODN stimulation. These 

results indicate that the initiation and elongation phases of PRDM1 

mRNA production are intact in NR CLL clones. It therefore seems that 

NR clones might have a defect in the termination or processing phases 

of PRDM1 mRNA synthesis, or that post-transcriptional degradation of 

the mRNA is occurring in these cells. These mechanisms are discussed 

further in the next chapter concerning Conclusions and Future Work.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This thesis has three major novel conclusions:-

1. a4neg CLL clones are abnormal in being unable to recruit the 

cofactors necessary for initiation of transcription of the ITGA4 

gene. The cause of this abnormality is not clear, but absence of 

expression is not related to activation, differentiation or anergy.

2. The differentiation of around fifty percent of CLL clones is 

blocked in vitro probably as a result of the cells being unable to 

induce PRDM1.

3. In these NR clones, the production of mature PRDM1 mRNA is, 

for unknown reasons, blocked at a post-initiation phase of 

transcription.

Regarding the first conclusion, the studies of histone marks revealed 

that, in a4pos CLL clones, the ITGA4 TSS was associated with high levels 

of H3Ac and H3K4me3 - two marks of active transcription. In contrast, in 

a4neg clones, these two marks were virtually absent from the ITGA4 

gene. This indicates that, in a4neg clones, the mechanism recruiting HATs
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is inoperative or the levels of HDACs on the TSS are too high. As a

consequence, the transcription PIC is not recruited, and transcription 

does not take place. The challenge now will be to establish why this 

might be so.

It is known from other cell types that ITGA4 is controlled by the 

transcription factors ZEB1 and ZEB257. ZEB1 usually, but not always, 

functions as an activator by recruiting HATs p300 and P/CAF255. In 

contrast, ZEB2 usually acts as a repressor by recruiting the cofactor CtBP 

which, in turn, can recruit HDACs287. It will therefore be necessary to 

establish which isoform of the ZEBs is expressed by CLL cells and 

determine whether the protein is functioning as an activator or 

repressor. Since normal B cells have been reported to express ZEB2 but 

not ZEB1288, it might be expected that CLL cells will contain only ZEB2 

and that this transcription factor will be repressing ITGA4 transcription. 

If this turns out to be so it will then be necessary to establish why such 

repression is not overcome in a4ne§ CLL clones. In other cell types, ZEB2 

inhibition is overcome by Myb proteins57 and the simplest hypothesis, 

therefore, might be that a4neg clones lack Myb for some reason. Since 

Myb expression is related to cell cycle289, it maybe that ct4pos clones 

express Myb because they are at different stages of cell cycle (e.g. Gj vs 

Go).
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The work for Conclusion 2 is largely complete and a paper for

publication will be prepared in the near future. It is currently unclear if 

the failure to induce PRDM1 in NR CLL clones causes the block in Ig 

secretion and plasma cell differentiation in these cells. However, 

evidence from knockout and ectopic expression experiments of PRDM1 

in murine B cells130'131 (see Section 1.6.2) strongly implicate this to be 

the case. Ectopic expression of PRDM1 in NR clones will need to be 

performed to definitively prove this hypothesis.

One of the main questions arising out of the work in Chapter 2 is why do 

R clones not induce PRDM1 and undergo plasmacytoid differentiation in 

vivo? Here, there are number of possibilities. For example, the 

continuous exposure in vivo to particular (auto)antigens might maintain 

anergy and thereby prevent plasmacytoid differentiation43; when 

cultured in vitro, this constant antigenic exposure might be lost and the 

ability to undergo differentiation would therefore be restored (see 

below). It is also possible that stimuli arising from the microenvironment 

might prevent the induction of PRDM1, or that IL-21 is absent from 

lymph nodes as a result of defective TH cell function290.

To take forward the work in Chapter 5, it will be necessary to consider 

why, despite the presence on the prdml gene of Ser5-RPII binding and
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the histone marks associated with transcription initiation, little or no

mature PRDMl mRNA is detectable after stimulation of NR clones. The 

presence of the PTM, H3K36me3, downstream of the TSS of prdml 

would implicate that RPII is proceeding into elongation in NR clones, but 

this is not fully conclusive. Additional experiments need to be performed 

to prove whether elongation is occurring. These experiments would 

involve measurement of PRDM1 pre-mRNA levels after stimulation and 

the quantification of the levels of Ser2-RPII binding downstream of the 

prdml TSS.

The work in this thesis contributes to the knowledge of CLL pathobiology 

in multiple ways. It is currently unclear why some clones express a4 

integrin and why others do not. The finding in this thesis that all normal 

CD19+ peripheral biood B cells express the integrin by FACS analysis 

suggests two hypotheses. Firstly, the majority of CLL clones that do not 

express a4 could have lost the integrin after becoming malignant, during 

the expansion of the clone. Consequently, the failure to lose a4 and 

therefore become abnormal causes the disease to have a poorer 

prognosis. Alternatively, a4 may be lost at a pre-mature B cell stage 

during the development of the CLL-cell of origin, and then due to a lack 

of transcription initiation histone marks and subsequent epigenetic
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inheritance, fail to re-express the integrin. However, why ct4 is lost only

in a subset of CLL is stiii unclear.

Regarding PRDM1, the capability of CLL cells to induce this transcription 

factor has never been studied. This is surprising given the requirement 

for PRDM1 in terminal differentiation of antigen-activated B cells. CLL 

cells are believed to be antigen-activated B cells that are given pro­

survival and proliferative signals but do not progress and differentiate. 

Without the capability to induce PRDM1, the CLL clone would be 

blocked at a stage of differentiation that may lead to perpetual antigen- 

induced BCR activation. PRDM1 has recently been identified as a 

tumour-suppressor gene whose loss causes the development of 

lymphomas in mice291,292. With the knockout of PRDM1 in B cells and, 

combined with a constitutively active NF-kB pathway in these cells 

(which is also present in CLL cells), mice develop DLBCL-like 

diseases291,292. It is therefore tempting to hypothesise that a block in 

PRDM1 combined with ceil survival and proliferative signals received 

from in vivo (auto)antigens/microenvironments may facilitate the 

development of CLL. The block in terminal differentiation of a large 

percentage of activated B cell-like DLBCL cases occurs as a result of 

mutations in the prdml gene which can cause either a reduction in 

expression or loss of function of the protein257,292. However, mutation
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seems an unlikely reason for repression of PRDM1 In the majority of NR

CLL clones as these cells, unlike DLBCL, cannot induce/express PRDM1 

mRNA. Repression of PRDM1 in CLL cells is therefore more likely to be 

occurring via alternative mechanisms. One such mechanism may be a 

caused by the development of an anergic-like state in CLL cells. Anergy, 

as described in Section 1.2.4, is a naturally occurring cellular response to 

chronic stimulation usually induced by auto-antigens43. As CLL cells have 

many hallmarks of anergic cells44'293, it could be hypothesised that CLL 

are a form of anergic-like B cells that are inhibited to induce PRDM1 and 

secrete immunoglobulin but remains able to receive and respond to 

survival and proliferative signals. Inducing PRDM1 expression and 

altering the stage of differentiation of CLL cells in vivo may therefore 

provide a novel therapy for the disease.
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Appendix

The failure to detect p65 binding to the TSS of prdml using ChIP
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The figure shows a representative p65 ChIP experiment involving two NR 

clones and one R clone. Cells were stimulated with CpG-ODN for the 

times indicated, and cells were prepared for ChIP as is described in 

Section 2.2.12. Data are presented as fold enrichment in DNA 

immunoprecipitated with the p65 antibody over that by the isotype 

control. Consistent binding of p65 to the IkBcc gene could be 

demonstrated, but little, if any, to that of prdml could be detected.
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