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Abstract 42 

Increasing evidences support a critical role of CD8+ T cell immunity against influenza. 43 

Activation of mucosal CD8+T cells, particularly tissue-resident memory T(TRM) cells 44 

recognizing conserved epitopes would mediate rapid and broad protection. Matrix protein 45 

1(M1) is a well-conserved internal protein. We studied the capacity of Modified Vaccinia 46 

Ankara-vectored vaccine expressing nucleoprotein(NP) and M1(MVA-NP+M1) to activate 47 

M1-specific CD8+ T cell response including TRM cells in nasopharynx-associated lymphoid 48 

tissue(NALT) from children and adults. Following MVA-NP+M1 stimulation, M1 was 49 

abundantly expressed in adenotonsillar epithelial cells and B cells.  MVA-NP+M1 activated 50 

marked IFN-γ-secreting T cell response to M1 peptides. Using tetramer staining, we showed 51 

the vaccine activated a marked increase in M158-66-specific CD8+ T cells in tonsillar 52 

mononuclear cells (MNC) of HLA-matched individuals. We also demonstrated MVA-NP+M1 53 

activated a substantial increase in TRM cells exhibiting effector memory T cell phenotype. 54 

Upon recall antigen recognition, M1-specific T cells rapidly undergo cytotoxic degranulation, 55 

release granzyme B and pro-inflammatory cytokines, leading to target cell killing. 56 

Conclusion: MVA-NP+M1 elicits a substantial M1-specific T cell response including TRM cells 57 

in NALT, demonstrating its strong capacity to expand memory T cell pool exhibiting effector 58 

memory T cell phenotype, therefore offering great potential for rapid and broad protection 59 

against influenza reinfection.  60 

 61 
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Introduction 69 

Influenza still causes widespread morbidity and mortality, despite the available vaccines. 70 

Current influenza vaccines predominantly induce subtype-specific antibodies towards 71 

hemagglutinin (HA). As HA continuously mutates, vaccine composition needs to be updated 72 

every year, and vaccine efficacy varies considerably depending upon how well the vaccine 73 

strains match circulating viruses[1]. There is a need for more effective vaccines that confer 74 

broad immunity against influenza including those with potential to cause pandemics.  75 

Although neutralizing HA-specific antibodies are considered the major protective 76 

responses[2], increasing evidence supports an important role for CD8+ T cell-mediated 77 

immunity. In individuals experimentally infected with influenza, virus-specific cytotoxic T cell 78 

killing reduced virus shedding in absence of specific antibodies[3]. Pre-existing cytotoxic 79 

CD8+ T cells were associated with decreased disease severity in patients infected with 80 

pandemic H1N1 virus[4].  81 

The majority of influenza virus-specific CD8+ T cells recognize epitopes shared among virus 82 

subtypes, including internal antigens nucleoprotein(NP) and matrix protein 1(M1)[5, 6], 83 

which are highly conserved with over 90% homology among different strains[7]. M1 protein 84 

plays a pivotal role in influenza virus replication[8, 9]. Activation of these T cell responses 85 

would mediate a broadly cross-reactive protection[10]. A number of novel T cell-based 86 

influenza vaccines are being developed[11], including Modified Vaccinia Ankara virus 87 

(MVA)-vectored vaccines[12-14]. MVA-NP+M1 is one of the promising vaccine candidates, 88 

showing activation of antigen-specific T cell responses in peripheral blood following 89 

parenteral immunization[15, 16].  90 

Tissue-resident memory T cells(TRM) reside in tissues and provides rapid response against 91 

re-infections at body surfaces[17]. TRM are anatomically positioned to quickly respond to 92 

local infection. Animal models showed TRM made critical contributions to protective immunity 93 

against local challenges which was much more effective than recirculating memory T cells 94 

[18-20]. A vaccine strategy that enables establishment and/or expands mucosal TRM would 95 
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have enormous potential for immediate protection against reinfection, offering more effective 96 

disease control [21].  97 

Since influenza virus infects through nasopharyngeal mucosa, local intranasal vaccine 98 

delivery that activates cross-reactive mucosal T cell immunity including TRM offers an 99 

attractive strategy. Intranasal live attenuated influenza vaccine(LAIV) were shown to induce 100 

local and systemic antibodies and T cell immunity in children[22-24]. Aerosol delivery of a 101 

candidate universal influenza vaccine induced local cellular responses associated with 102 

partial protection against heterosubtypic influenza A in pigs[25]. Intranasal immunization 103 

relies on local nasopharynx-associated lymphoid tissue(NALT) to induce T and B cell 104 

responses. Adenotonsillar tissues are major components of human NALT known to be 105 

important induction sites for immunity against respiratory pathogens[26-28]. 106 

We previously demonstrated cross-reactive memory B cell responses were primed following 107 

2009 pdmH1N1 infection[29] and activation of NP-specific T cell response by  MVA-NP+M1 108 

in human NALT[30]. As M1 contains major immuno-dominant CD8+ T cell epitopes and 109 

HLA-A2 is among the most common HLA alleles(20-30%)[31], we examined HLA-A2 110 

restricted M158-66-specific CD8+ T cell responses in adenotonsillar tissue following MVA-111 

NP+M1 stimulation. We show MVA-NP+M1 elicits marked increases in M1-specific CD8+ T 112 

cells including TRM that exhibit rapid degranulation and target cell killing upon recall antigen 113 

recognition.  114 

 115 

Methods 116 

Patients and samples 117 

Tonsillar tissues and peripheral blood samples were obtained from immune-competent 118 

children and adults (age 2-34 years) undergoing tonsillectomy due to upper airway 119 

obstruction. Tissue samples were obtained from Alder Hey Children’s Hospital and Aintree 120 
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University Hospital in Liverpool, UK. Demographic information of studied patients was 121 

summarized in Table 1. Patients who had any known immunodeficiency were excluded. 122 

Grossly inflamed tonsillar tissues were also excluded. Ethical approval was obtained (REC 123 

No: 14/SS/1058) and informed consent was obtained in all cases. 124 

Vaccines and peptides 125 

MVA-NP+M1 is Modified Vaccinia Ankara (MVA) virus expressing NP and M1 from 126 

A/Panama/2007/99 as a fusion protein joined by a seven amino acid linker, from Vaccinia 127 

p7.5 early/late promoter. MVA-wt was non-recombinant MVA used as a vector control. 9-128 

mer conserved peptides of influenza M1 (BEI resources)(Table 2) were reconstituted in 50% 129 

acetonitrile or Dimethyl Sulfoxide(DMSO) following manufacturer’s instruction. 10 or 11 130 

peptides were pooled at a concentration of 0.1 mg/ml per peptide. M158-66(GILGFVFTL)(IBA 131 

GmbH) was reconstituted in DMSO(50%) at final concentration 1 mg/ml.   132 

Fluorescence-labeled antibodies and M1-tetramer 133 

The following fluorescence-labeled antibodies were used in flow-cytometry including those 134 

to HLA-A2, CD19, CD3, CD11c, CD123, CD8, CD69, granzymeB, CD107a, IFNγ, TNF, IL-135 

2, CD20, CD38, CD27, IgD, CCR7, CD45RA- and CD103 (BD Bioscience or Biolegend). 136 

Anti-M1 antibody(abcam) was conjugated with PE using LYNX conjugation(Bio-rad) for 137 

measuring M1 protein expression. HLA-A02*01-GILGFVFTL(M158-66)-PE tetramer(MBL), 138 

termed as “M1-Tm” was used for staining M1-specific CD8+ T cells.  139 

Cell isolation  140 

Tonsillar mononuclear cells (MNC) were isolated using density gradient centrifugation as 141 

described previously[32, 33]. Tonsillar MNC were resuspended in RPMI-1640 containing 142 

HEPES, L-glutamine, 10% heat-inactivated fetal bovine serum(FBS), 100 U/ml penicillin and 143 

100 g/ml streptomycin(Gibco), termed as “complete RPMI medium”. MNC were screened 144 

for HLA-A2 type by flow-cytometry.  145 
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Measurement of M1 expression in tonsillar MNC 146 

Tonsillar MNC were stimulated with either MVA-NP+M1 at 1.0 multiplicity of infection (MOI) 147 

and incubated for 18-20 hours. MNC were stained for epithelial cell markers including pan-148 

cytokeratin and epithelial cellular adhesion molecule(EpCAM), and 149 

CD19/CD4/CD11c/CD123, followed by intracellular staining for M1 expression using anti-150 

M1 antibody. B cell subsets were determined by fluorescence staining and identified as 151 

memory(CD19+CD20+CD38-CD27+IgD-), naïve(CD19+CD20+CD38-IgD+CD27-) and 152 

germinal center(GC) B cells (CD19+CD20+CD38+)[34]. 153 

Cell stimulation for T cell assays 154 

Tonsillar MNC were co-cultured with either MVA-NP+M1 or MVA-wt at 1x105 pfu/ml. Cell 155 

culture in complete RPMI medium was supplemented with 2% autologous human plasma 156 

(aHP). Tonsillar MNC were incubated for 7 days before any further experiments. Non-HLA 157 

typed tonsillar MNC were used for pooled-peptides stimulation and IFN-γ ELISPOT assay, 158 

whereas MNC from HLA-A2+ individuals were used for M1-specific CD8+ T cell response 159 

by tetramer staining.  160 

IFN-γ ELISPOT  161 

At day-7 following culture, MVA-NP+M1-stimulated cells were rested in RPMI for 2 days 162 

followed by IFN-γ ELISPOT assay(eBioscience). ELISPOT plate(Millipore) was coated with 163 

anti-IFN-γ antibody overnight. 2x105 cells stimulated with M1 peptide pools(10 μg/ml per 164 

peptide) were seeded in plate wells. Cells without stimulation were as negative control, and 165 

cells stimulated with SEB (BEIResources) as positive control. The plate was incubated for 166 

24 hours, followed by addition of anti-IFN-γ detection antibody and Avidin-horseradish 167 

peroxidase. Spots were developed by adding 3-amino-9-ethyl carbazole(Sigma) and 168 

counted by EliSpot Reader.  169 
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Detection of M158-66-specific CD8+ T cells and TRM cells 170 

For flow-cytometric analysis of M1-Tm+ CD8+ T cells and their phenotypes in tonsillar tissue, 171 

freshly isolated tonsillar MNC, or MNC following co-incubation with M158-66 peptide for 2 days 172 

(to expand M1-Tm+ cells) were stained with HLA-A02*01-M158-66-PE tetramer. HLA-A02*01 173 

control tetramers including HLA-A02*01-HPV16 E7(-YMLDLQPET) and HLA-A02*01-174 

negative control tetramer (-ALAAAAAAV)(MBL) were used. The specific detection of M1-175 

Tm+ cells in tonsillar MNC was confirmed by positive staining in CD8+ T cells only by M1-176 

Tm tetramer, and negative staining by control tetramers in MNC following M1-peptide 177 

stimulation(data not shown). Tonsillar MNC were also co-cultured with MVA-NP+M1, 178 

followed by analysis of M1-Tm+ cells. For detection of M1-specific TRM, in addition to the 179 

above, MNC were co-stained with anti-CD103, -CD69, -CD45RA and –CCR7 antibodies. 180 

Measurement of T cell proliferation  181 

Tonsillar MNC were labeled with Carboxyfluorescein succinimidyl ester(CFSE, 5M) 182 

(Invitrogen)[35]. CFSE-labeled cells were resuspended in RPMI supplemented with 2%aHP 183 

before stimulation with 1x105 pfu/ml of MVA-NP+M1 for 5 days. Cells were then stained for 184 

CD8 and M1-Tm, followed by flow-cytometry. 185 

Detection of CD107a expression and intracellular cytokines 186 

Following 7-day MVA-NP+M1 stimulation, tonsillar MNC were pulsed with 0.25 g/ml M158-187 

66 peptide and co-cultured with anti-CD107a antibody in the presence of brefeldin A and 188 

monensin(eBioscience). Cells were collected and stained for CD8 and M1-Tm, and 189 

intracellular cytokines followed by flow-cytometry. 190 

Cytotoxic killing assay 191 

Isolated CD8+ T cells following MVA-NP+M1 stimulation were co-cultured with M158-66-192 

pulsed B cells as described previously[36]. Briefly, autologous B cells were isolated from 193 

cryopreserved tonsillar MNC and incubated overnight with 40ng/ml recombinant IFN-γ 194 
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(Peprotech). B cells were then labeled with either 0.02 μM(Tlow) or 0.2 μM (Thigh) of CFSE for 195 

15 min. Tlow were pulsed with 5 μg/ml M158-66 for 45 min. Both Tlow and Thigh were adjusted 196 

to 2x105 cells/ml and mixed at ratio 1:1. For effector cells, isolated CD8+ T cells following 197 

stimulation were adjusted to 4-10x106 cells/ml before 2-fold serial dilutions were made (1:1 198 

to 1:32). CD8+ T cells were then co-cultured at different ratios with mixed Tlow and Thigh cells 199 

for 6 hours. Mixed Tlow and Thigh cells only (without CD8+ T cells) were cultured as negative 200 

control. Cells were harvested and stained with LIVE/DEAD Far red (Invitrogen) for 30 min 201 

before staining for CD8 and M1-Tm.  202 

Flow cytometry 203 

Fluorescence-labeled cells were analyzed using BD FACScalibur with CellQuest or Celesta 204 

with FACS DiVa (BD) and analyzed using FlowJo 8.7 software.  205 

Statistical analysis 206 

For two-group comparisons, based on normality of data, parametric paired-t test, 207 

nonparametric Wilcoxon matched-pairs signed rank test and nonparametric Mann-Whitney 208 

test were performed using GraphPad Prism. p<0.05 was considered as statistically 209 

significant. 210 

 211 

Results 212 

M1 antigen was highly expressed in NALT following MVA-NP+M1 stimulation 213 

To determine whether M1 antigen was expressed in tonsillar cells following MVA-NP+M1 214 

stimulation, we examined M1 expression in tonsillar MNC by intracellular M1 staining. As 215 

shown in Figure 1a and 1b, following stimulation, M1 was abundantly expressed in tonsillar 216 

epithelial cells (Mean±SEM: 34.5±3.2%) and B cells(35.2±7.55%), but only a small number 217 

of T cells(2.3±0.6%). Among B cells, M1 expression was detected in memory(55.8±2.2%), 218 

naïve(48.7±2.5%), and germinal center(GC) B cells(22.7±0.9%) respectively(data not 219 
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shown). Among tonsillar dendritic cells(DC), M1 expression was shown in myeloid 220 

DC(21.2±3.2%) and plasmacytoid DC(22.0±7.1%)(Figure 1b). As a control, no M1 221 

expression was detected in any cell types following MVA vector only stimulation. 222 

MVA-NP+M1 elicited mucosal M1-specific T cell responses. 223 

Having shown abundant M1 expression in tonsillar MNC, we investigated whether MVA-224 

NP+M1 activated M1-specific T cell responses. Following MVA-NP+M1 stimulation, tonsillar 225 

MNC were co-incubated with 9-mer M1-peptide pools(Table 2) followed by IFN-γ ELISPOT. 226 

A marked increase in IFN-γ-secreting cells was found in MNC stimulated by MVA-NP+M1, 227 

as compared to that by MVA vector alone(Figure 1c+d, p<0.05). Subsequent flow-cytometry 228 

revealed the increase in IFN-γ-secreting cells following M1-peptides re-stimulation was 229 

predominantly from CD8+ T cells but not from CD4+ T cells(Figure 1e), with a mean increase 230 

of 0.27±0.05% of IFN-γ-secreting cells (% of CD8+ T cells). This suggests MVA-NP+M1 231 

stimulation activates a marked M1-specific T cell response. 232 

To confirm this, we examined M1-specific CD8+ T cell response using HLA-A2-restricted 233 

M158-66-specific tetramer(Tm) staining in HLA-matched individuals(Figure 2a). Frequencies 234 

of M1-Tm+
 cells in freshly isolated MNC were generally low(median 0.10%). MVA-NP+M1 235 

stimulation elicited a marked increase in M1-Tm+
 cells(median 0.37%), compared to that by 236 

MVA vector or medium control (Figure 2b, p<0.001). When MVA-NP+M1 activated M1-Tm+
 237 

cell response was compared among different age groups(Table 1), an age-dependent 238 

increase was shown in M1-Tm+
 cell response. Children<4 years in general showed a 239 

low/modest response, whereas older children and adults demonstrated stronger 240 

responses(Figure 2c).   241 

Further analysis with CFSE cell tracing demonstrated MVA-NP+M1 activated a proliferative 242 

M1-Tm+
 cell response in tonsillar MNC, compared to that by MVA vector only(Figure 2d, 243 

p<0.05).   244 

MVA-NP+M1 elicited M1-specific TRM response  245 
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To determine whether there were M1-specific TRM in NALT and if MVA-NP+M1 activated an 246 

increase in TRM, we studied tonsillar MNC from HLA-matched subjects(age 5-24 years) by 247 

co-staining TRM markers and M1-tetramer.   248 

As frequencies of M1-Tm+ cells in ex vivo tonsillar tissue were low, we used M1-specific 249 

peptide to enrich M1-Tm+ cells in tonsillar MNC (and in PBMC) by co-incubation with M158-250 

66 peptide for 2 days. The phenotypes of expanded M1-Tm+ cells following peptide 251 

stimulation showed no difference to freshly isolated MNC(data not shown). In tonsillar MNC, 252 

there were 25.1±3.2%(mean±SEM) of M1-Tm+ cells expressing CD103+ therefore identified 253 

as M1-specific TRM, and most of them were CD103+CD69+ TRM (Figure 3a+e). There were 254 

also 38.1±3.6% of M1-Tm+ cells expressing CD69 but not CD103 (CD103‾CD69+). Of M1-255 

Tm+ cells in MNC, around 64% were of effector memory T cell phenotype(CD45RA‾CCR7‾) 256 

(Figure 3b+f). Among M1-Tm+ cell subsets, the majority (64.2±8.4%) of CD103+CD69+ TRM 257 

cells were of effector memory T cell phenotype, compared to 42.6±6.1% and 14.4±2.5% 258 

respectively for CD103‾CD69+ and CD103‾CD69‾ subsets (Figure 3i). By contrast, in PBMC 259 

from the same subjects, none of M1-Tm+ cells expressed CD103 (thus non-TRM cells), and 260 

only ~20% were of CD45RA‾CCR7‾ effector memory phenotype, with the majority were of 261 

CD45RA+CCR7‾ phenotype (Figure 3b+f). 262 

Following MVA-NP+M1 stimulation, there was a substantial increase in M1-Tm+ cells (6-18 263 

fold-increase) including both CD103+ and CD103‾ cell subsets, and a large majority (~90%) 264 

expressed CD45RA‾CCR7‾ phenotype(Figure 3c+g+h). Of interest, in CD103+ TRM cells, 265 

there was a marked increase in CD103+CD69‾ subset which accounted for ~75% of 266 

CD103+TRM, whereas ~25% were CD103+CD69+ (Figure 3c+g). This contrasted with freshly 267 

isolated MNC or M1-peptide expanded MNC in which CD103+ cells were primarily 268 

CD103+CD69+. Further, when the memory phenotypes were analyzed, more CD103+CD69‾ 269 

TRM cells(mean: 86.1%) exhibited an effector memory phenotype (CD45RA‾CCR7‾), than 270 

CD103+CD69+ (65.6%) or CD103‾CD69+ (42.2%) TRM subsets(Figure 3j). When PBMC from 271 

the same subjects were analyzed, a marked increase in M1-Tm+ cells was also seen, but 272 

these cells in PBMC were largely CD103‾CD69‾ non-TRM cells (Figure 3c+g).  273 
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MVA-NP+M1 activated M1-specific CD8+ T cells exhibited cytotoxic functions and 274 

killing property.  275 

To determine whether MVA-NP+M1-activated M1-specific CD8+ T cells in tonsillar MNC 276 

were functionally active, we examined the expression of cytotoxic molecules and cytokines 277 

of M1-Tm+
 cells. At day-7 following vaccine stimulation, the M1-Tm+

 cells expressed a high 278 

level of granzyme-B(Figure 4a+b). Tonsillar MNC were subsequently pulsed with M158-66 279 

peptide followed by detection of surface CD107a(marker for degranulation) and cytokine 280 

expression. Both CD107a and IFN-γ expressions were markedly upregulated in M1-Tm+
 281 

cells after M158-66 peptide pulsing(Figure 4c). Kinetics of CD107a and IFN-γ expression were 282 

further studied and a similar pattern was shown for both(Figure 4d+e). Notably, a more rapid 283 

upregulation in expression of CD107a than IFN-γ was seen. At one hour following peptide 284 

pulsing, ~40% of M1-Tm+ cells expressed CD107a, compared to 10% producing IFN-γ( 285 

p<0.05). Both surface CD107a expression and IFN-γ production appeared to peak after 3 286 

hours(Figure 4d+e). IFN-γ and TNF- were abundantly expressed in M1-Tm+
 cells following 287 

peptide pulsing(Figure 4f+g). Figure 4h summarized frequencies of M1-Tm+
 cells expressing 288 

different cytokine profiles, with the most frequently detected M1-Tm+
 cells co-expressing 289 

CD107a with IFN-γ and TNF-(45%). Some M1-Tm+
 cells(3%) were shown to co-express 290 

CD107a and three cytokines IFN-γ, TNF- and IL-2(Figure 4h). 291 

We further investigated whether M1-Tm+
 cells were capable of cytotoxic killing of target cells. 292 

Following MVA-NP+M1 stimulation, isolated CD8+ T cells (as effector T cells:E) were co-293 

cultured with M158-66 peptide-pulsed target B cells(T), followed by measurement of target cell 294 

lysis using flow-cytometry. As demonstrated in Figure 5a, there was a marked decrease in 295 

peptide-pulsed target B cells(Tlow), while no decrease in B cells without peptide-pulsing(Thigh) 296 

following co-culture with effector T cells, indicating M1-specific target cell lysis. In all the 297 

three samples tested, the increase in target cell lysis correlated well with the increase in 298 

effector to target cell (E/T) ratio(Figure 5b).   299 

 300 
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Discussion 301 

Since intranasal vaccination is considered an effective vaccination strategy against 302 

respiratory pathogens[22-24], we investigated the potential of MVA-NP+M1 as a mucosal 303 

vaccine to activate anti-influenza T cell responses in human NALT. We demonstrated MVA-304 

NP+M1 activates a prominent M1-specific cytotoxic T cell response with a marked increase 305 

in M1-specific TRM cells. 306 

Following MVA-NP+M1 stimulation, we showed M1 antigen was highly expressed in both 307 

tonsillar epithelial cells and B cells. This suggest MVA-NP+M1 has the capacity to efficiently 308 

infect tonsillar cryptal epithelium and present M1 antigen. Tonsillar tissue has a reticular 309 

crypt epithelium containing both epithelial and non-epithelial immune cells. An efficient 310 

infection of epithelium by MVA-vectored vaccine would provide a favorable environment for 311 

the vaccine uptake and antigen presentation. Memory B cells, representing a major non-312 

epithelial immune cell subset, were mainly found within intraepithelial areas and have a 313 

strong capacity to present antigen directly to T cells, owing to the constitutive expression of 314 

co-stimulatory molecules[37-39]. The unique anatomical localization of memory B cells in 315 

intraepithelial areas, together with the strong antigen-presenting capacity has been 316 

considered critical for the prompt and robust memory antibody responses[37]. It is therefore 317 

possible that memory B cells are infected by the MVA vaccine virus and efficiently present 318 

the vaccine antigen (e.g. M1) to memory T cells, contributing to activation of memory T cells 319 

in tonsillar MNC. Dendritic cells may also contribute to vaccine uptake and antigen 320 

processing, as a significant proportion of myeloid DC and plasmacytoid DC showed M1 321 

expression consistent with previous report[40]. 322 

With IFN-γ ELISPOT assay, we demonstrated MVA-NP+M1 activated a marked increase in 323 

IFN-γ-secreting CD8+ T cells specific to conserved M1 epitopes. Further, using M158-66-324 

specific tetramer staining, we showed MVA-NP+M1 stimulation elicited a marked increase 325 

in M1-Tm+
 T cells in tonsillar MNC from HLA-matched individuals, particularly in older 326 

children and adults. M158-66-specific CD8+ T cells has been shown previously to protect 327 
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against influenza infection in HLA-A2 transgenic mice[41]. Our results therefore provide 328 

evidence in support of the capacity of MVA-NP+M1 to elicit M1-specific CD8+ T cell 329 

responses with the potential for protection against influenza in human nasopharynx.  330 

Recent research supports a critical role of TRM cells in providing a rapid protection against 331 

influenza. TRM in human lungs were shown to mount a rapid response and kill influenza-332 

infected epithelial cells and contribute to protection[42, 43].  Using M1-tetramer and 333 

CD103/CD69 co-staining, we demonstrated the presence of CD103+ M1-specific CD8+ TRM 334 

cells in tonsillar tissue which were expanded by M1-specific peptide. Among M1-Tm+ cells, 335 

there were both CD103+CD69+ and CD103‾CD69+ TRM
 subsets. Similar to a previous study 336 

on EBV-specific TRM in tonsillar tissue [44], M1-specific CD103+ cells were largely restricted 337 

to CD69+ cells, and a large proportion of these TRM cells were of effector memory T cell 338 

phenotype. It was shown previously that CD103+CD69+ TRM preferentially localized to 339 

tonsillar epithelial surface, whereas CD103‾CD69+ cells largely localized in extrafolicular 340 

regions[44]. Our results therefore support the presence of M1-specific TRM cells in tonsillar 341 

epithelium, derived from memory T cells primed by previous influenza infection. These cells 342 

largely exhibit effector memory T cell phenotype with the ability to mount a fast response to 343 

re-infection.  344 

Following MNA-NP+M1 stimulation, there was an increase in M1-specific TRM (CD103+) as 345 

well as non-TRM cells (CD103‾) in tonsillar MNC. Interestingly, of CD103+ TRM cells, the 346 

majority were CD103+CD69‾ whereas only ~25% were CD103+CD69+ cells which were 347 

predominant in unstimulated tonsillar MNC. It would be interesting to know whether there is 348 

any functional difference between CD103+CD69‾ and CD103+CD69+ subsets in future 349 

studies. The fact that a large majority of CD103+CD69‾ cells exhibited effector memory T cell 350 

phenotype indicates they have the capacity to respond to re-infection rapidly. These results 351 

suggest that MVA-NP+M1, if used as an intranasal vaccine, would be able to elicit a 352 

proliferative response of TRM cells, to expand TRM memory T cell pool in NALT, and offer 353 

rapid protection against influenza infection in the nasopharynx. MVA-NP+M1 most likely acts 354 
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by boosting pre-existing memory CD8+ T cells, but not by inducing de novo M1-specific T 355 

cells, as tonsillar MNC depleted of memory T cells(CD45RO+) failed to show any M1-Tm+ 356 

cells following MVA-NP+M1 stimulation(data not shown). 357 

As a comparison, we also analyzed M1-Tm+ T cells in PBMC, and demonstrated the 358 

absence of TRM (CD103+CD69+) cells in PBMC before and after the vaccine stimulation. This 359 

supports the concept that CD103+ TRM cells are retained in peripheral tissue but not present 360 

in the circulation. Local mucosal vaccination may therefore offer distinctive advantage in 361 

expanding antigen-specific TRM cells in local tissues for rapid protection. 362 

It is generally thought that cytotoxic CD8+ T cells exert their effector activities to limit virus 363 

infection and disease severity[6, 10] through degranulation, cytotoxic molecule release and 364 

pro-inflammatory cytokines[45]. Here we demonstrated that M1-Tm+
 cells activated by MVA-365 

NP+M1 expressed a high level of granzyme B, which were subsequently released upon 366 

recognition of M158-66 peptide, along with rapid upregulation of surface CD107a expression. 367 

In addition, many M1-Tm+
 cells co-expressed CD107a with IFN-γ and TNF-α, suggesting 368 

they produce both cytotoxic effector molecules and inflammatory cytokines upon antigen-369 

specific recognition. IFN-γ and TNF-α are potent pro-inflammatory cytokines and important 370 

in anti-viral activity. In addition to these two cytokines, some of these cells also co-expressed 371 

IL-2, which may exhibit more potent cytotoxic functions [46, 47]. Although CD4+ rather than 372 

CD8+ T cells are the main source of IL-2, a small number of CD8+ T cells can secrete IL-2 373 

after receiving costimulatory signals, providing proliferation and survival signals to 374 

themselves or other cytotoxic T cells[45].  375 

The kinetics of CD107a expression correlated well with that of cytokine (IFN-γ) production 376 

in the M1-Tm+
 cells. The rapid upregulation of surface CD107a expression (i.e. 377 

degranulation) in M1-Tm+ cells upon specific antigen recognition suggests these M1-specific 378 

CD8+ T cells, including TRM, may mount an immediate cytotoxic response against influenza. 379 

Finally, using M1-specific peptide pulsed tonsillar B lymphocytes as target cells for the 380 

effector T cell function, we showed MVA-NP+M1-activated M1-Tm+
 cells possessing marked 381 
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cytotoxic killing activity capable of target cell lysis. 382 

In conclusion, we demonstrate MVA-NP+M1 activated a M1-specific mucosal CD8+ T cell 383 

response including a substantial increase in TRM cells. These M1-specific T cells were 384 

predominantly of effector memory T cell phenotype, exhibiting a high level of cytotoxic 385 

markers and producing pro-inflammatory cytokines leading to specific killing of target cells 386 

upon antigen recognition. Our results suggest this novel vaccine expands M1-specific TRM 387 

cell pool and activates cytotoxic T cell responses to the conserved antigen, therefore offering 388 

great potential as an effective mucosal vaccine for fast and broad protection against re-389 

infection of influenza virus in humans. 390 
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Table 1   Study subjects information  406 

Sample  Average Age (Range) n 

Children Group 1 2.5     (2-3.5) 6 

 Group 2 5.7     (4-9) 12 

Adults  20.6   (16-34) 9 

 407 

Table 2   List of 9-mer peptides of conserved MHC class I binding epitopes from M1 of 408 

influenza A viruses (NR-2667, BEI resources) 409 

Influenza 

proteins 

Pool 

No. 

Peptide 

No. 

Amino acid sequences (9) HLA restriction 

M1 1 1 29-EDVFAGKNT-37 HLA-A*03 

2 31-VFAGKNTDL-39 HLA-A*2402, HLA-B*08 

3 37-TDLEALMEW-45 HLA-A*01 

4 49-RPILSPLTK-57 HLA-A*03 

5 51-ILSPLTKGI-59 HLA-A*0201 

6 56-TKGILGFVF-64 HLA-A*02 

7 58-GILGFVFTL-66 HLA-A*02, HLA-A*2402 

8 60-LGFVFTLTV-68 HLA-A*02 

9 66-LTVPSERGL-74 HLA-A*02 

10 68-VPSERGLQR-76 HLA-A*02 

2 11 71-ERGLQRRRF-79 HLA-A*02 

12 75-QRRRFVQNA-83 HLA-A*02 

13 76-RRRFVQNAL-84 HLA-A*02 

14 122-GALASCMGL-130 HLA-B*35 

15 123-ALASCMGLI-131 HLA-B*35 

16 124-LASCMGLIY-132 HLA-B*35 

17 126-SCMGLIYNR-134 HLA-B*35 

18 177-NRMVLASTT-185 HLA-A*0301, HLA-A*11 

19 179-MVLASTTAK-187 HLA-A*0301, HLA-A*11 

20 180-VLASTTAKA-188 HLA-A*0301, HLA-A*11 

21 181-LASTTAKAM-189 HLA-A*0301, HLA-A*11 

 410 
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Figure legends 411 

Figure 1.   Expression of M1 in tonsillar MNC following MVA-NP+M1 stimulation, and T cell 412 

responses to conserved M1 peptides. M1 protein expression was examined in tonsillar MNC 413 

following either MVA-NP+M1 or MVA-wt stimulation for 18 hours. a) Representative flow cytometric 414 

histograms showed the expression of M1 protein in tonsillar epithelial cells and B cells following 415 

stimulation by MVA-NP+M1 (red line) as compared to MVA-wt (black line). b) Bar charts 416 

demonstrated the percentages of M1 expression in epithelial cells, B cells, plasmacytoid dendritic 417 

cells (pDC), myeloid dendritic cells (mDC) and  T cells following MVA-NP+M1 stimulation as 418 

compared to MVA-wt (n=3, Means and SEMs are shown). Following MVA-NP+M1 stimulation and 419 

cell resting, the frequency of IFN-γ-secreting T cells upon restimulation by conserved M1 peptide 420 

pools were enumerated by IFN-γ-ELISPOT assay. c) Representative figures showed spots (as 421 

implied to IFN-γ-secreting cells) in MVA-NP+M1-stimulated as compared to MVA-wt-stimulated MNC 422 

before and after restimulation by M1 peptide pools. d) Comparison of frequency of IFN-γ-spot-forming 423 

cells (SFC/million) between MVA-NP+M1 and MVA-wt-stimulated MNC against M1 peptide pools 424 

(n=7, * p<0.05, Wilcoxon signed rank test). SFC frequency as indicated was obtained by subtracting 425 

background SFC from cells without peptide restimulation. e) Representative dot plots showed a 426 

higher frequency of IFN-γ-producing CD8+ T cells than CD4+ T cells following restimulation by M1 427 

peptide pools in MVA-NP+M1-stimulated MNC (one of 3 representative samples was shown). 428 

Figure 2.   M158-66-specific CD8+ T cells activated by MVA-NP+M1. M158-66–specific CD8+ T cells 429 

(M1-Tm+) were determined using M1 tetramer staining in HLA-A2+ subjects after 7-day culture of 430 

tonsillar MNC with MVA-NP+M1, MVA-wt or medium control. a) Gating strategy for analysis of M1-431 

Tm+ cells. b) MVA-NP+M1 activated an increase of M1-Tm+ cells in children (black open circle) and 432 

adults (red open circle) compared to MVA-wt (Wilcoxon signed rank test, n=27, ***p<0.001). c) 433 

Comparison of the frequency of M1-Tm+ cells among different age groups (* p<0.05, **p<0.01) 434 

(medians with interquartile ranges are shown). d) Gating on M1-Tm+ cells, representative histogram 435 

showed M1-Tm+ cell proliferation was activated by MVA-NP+M1 (blue line) as compared to MVA-wt 436 

control (grey shaded). e) Proliferation of M1-Tm+ cells (%CFSE low)  following stimulation of tonsillar 437 

MNC by MVA-NP+M1 as compared to MVA-wt control (n=3, *p<0.05, Wilcoxon signed rank test). 438 

Figure 3. MVA-NP+M1 activated M1-specific TRM response in tonsillar MNC. 439 

Representative dotplots (gated on M1–Tm+ CD8+ T cells only) demonstrating the presence 440 

of pre-existing M158-66–specific TRM (CD103+CD69+) in M1-peptide expanded tonsillar MNC 441 

and PBMC (a) and substantially increased numbers of  both CD103+ and CD103‾ M1–Tm+ 442 

cells following MVA-NP+M1 stimulation at day 7, particularly the increase in CD103+CD69‾ 443 

subset in tonsillar MNC(c). This contrasted with the findings in PBMC showing the absence 444 

of CD103+CD69+ TRM cells in both M1-peptide expanded(a+e) and MVA-NP+M1-stimulated 445 

PBMC (c+g). Memory phenotypes of M1–Tm+ cells were examined using CCR7 & CD45RA 446 

markers in tonsillar MNC compared to PBMC (b+f:M1-peptide-expanded and d+h:MVA-447 

NP+M1-stimulated). TRM and Non-TRM subsets (e & g) and their memory phenotypes (f & h) 448 
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of M1–Tm+ cells in tonsillar MNC and PBMC following M1-peptide and MVA-NP+M1 449 

stimulation were summarized (e-h).  M1-Tm+ cell memory phenotypes in different TRM and 450 

Non-TRM subsets in tonsillar MNC following M1-peptide (i) or MVA-NP+M1 stimulation (j) 451 

were compared (*p<0.05, **p<0.01 compared to CD103‾CD69‾ non-TRM cells, n=5). 452 

 453 
Figure 2.   Cytotoxic molecule and pro-inflammatory cytokine expression profiles of M1 454 

specific CD8+ T cells.  Tonsillar MNC were stimulated by MVA-NP+M1 for 7 days followed by 455 

detection of M1-Tm+ cells and expression of cytotoxic molecules. Tonsillar MNC were subsequently 456 

pulsed with M158-66 peptide for 6 hours followed by detection of surface CD107a and intracellular 457 

cytokines. (a & b) MVA-NP+M1 activated M1-Tm+ cells expressing high level of granzyme B as 458 

compared to MVA-wt alone (a: representative plots; b: n=8, *p<0.05). c). Following M1 peptide 459 

pulsing, both surface CD107a and intracellular IFN-γ were highly expressed in M1-Tm+ as compared 460 

to the low level in M1-Tm- cells (n=8 and 13 respectively, ****p<0.0001). d) Representative dot plots 461 

and e) the kinetics curves showed the co-expression of surface CD107a and intracellular IFN-γ in 462 

M1-Tm+ cells following peptide pulsing. At 1 hour, the percentages of CD107a+ cells were significantly 463 

higher than those of IFN-γ+ cells (n=4, *p<0.05, paired-t test). Means and SEMs were shown at each 464 

time point. (f & g) Representative dot plots showed the high level of expression of IFN-γ (f) and TNF-465 

 (g) in MVA-NP+M1 activated M1-Tm+ cells. (h) Pie and bar charts demonstrated a functional profile 466 

of M1-Tm+ cells in MVA-NP+M1 activated tonsillar MNC following by 6-hour re-stimulation with a 467 

M158-66 peptide, showing the co-expression of CD107a and 3 cytokines, IFN-γ, TNF- and IL-2 (one 468 

of 2 representative samples was shown). 469 

 470 

Figure 5.   Specific killing capacity of M158-66-specific CD8+ T cells.  Isolated CD8+ T cells following 471 

MVA-NP+M1 stimulation were co-cultured at different ratios with autologous B cells labeled with low 472 

(Tlow) and high CFSE intensities (Thigh). Tlow were either pulsed with M158-66 or without pulsing, while 473 

Thigh were without pulsing. a) Representative dotplots and histogram demonstrating the decrease in 474 

target cells (Tlow) following M1-peptide pulsing (green gate or middle peak), as compared to non-475 

pulsing controls (grey shaded), indicating M1-specific target cell killing. b) Correlations between % of 476 

M1-specific target cell lysis and effector to target cells (E/T) ratio in three subjects were shown. E 477 

refers to effector number of M1-Tm+ cells of isolated CD8+ T cells, whereas T refers to number of 478 

target Tlow cells. The proportion of M1-Tm+ cells in the total isolated CD8+ T cells ranged from 1 to 479 

4%. 480 

 481 
Supplemental figure 1. Gating strategy for M1 expression in tonsillar MNC. M1 protein 482 

expression was examined in different cell populations of tonsillar MNC following MVA-NP+M1 483 

stimulation for 18 hours. Tonsillar MNC were stained for CD19+ B cells and CD3+ T cells (a to b), 484 

followed by analysis of M1-expression in B and T cells (e). Non-B and Non-T (CD19-CD3-) cells were 485 

further separated into CD11c+ myeloid dendritic cells(mDC) and CD123+ plasmacytoid dendritic 486 

cells(pDC) (c), and cytokeratin+EpCAM+ epithelial cells (d). M1 expression in mDC, pDC and 487 

epithelial cells was analyzed and shown in f, g and h respectively. 488 
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