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Impact on clinical medicine and basic science: 

This study provides proof-of-concept that long-lasting anti-RSV antibodies can be induced in 

adults if viral antigen is delivered without the immunomodulation apparent during live RSV 

infection. The intranasal bacterium-like particle vaccine formulation that we used was well-

tolerated and could potentially be adapted for other respiratory pathogens.
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Abstract

Rationale:

Needle-free intranasal vaccines offer major potential advantages, especially against pathogens 

entering via mucosal surfaces. As yet, there is no effective vaccine against respiratory syncytial 

virus (RSV), a ubiquitous pathogen of global importance that preferentially infects respiratory 

epithelial cells; new strategies are urgently required.

Objectives:

Here, we report the safety and immunogenicity of a novel mucosal RSV F protein vaccine 

linked to an immunostimulatory bacterium-like particle (BLP).

Methods:

In this phase I, randomised, double-blind placebo-controlled trial, 48 healthy volunteers aged 

18-49 years were randomly assigned to receive placebo or SynGEM (low- or high-dose) 

intranasally by prime-boost administration.  The primary outcome was safety and tolerability, 

with secondary objectives assessing virus-specific immunogenicity. 

Measurements and Main Results:

There were no significant differences in adverse events between placebo and vaccinated groups. 

SynGEM induced systemic plasmablast responses and significant, durable increases in RSV-

specific serum antibody in healthy seropositive adults. Volunteers given low-dose SynGEM 

(140 µg F, 2mg BLP) required a boost at day 28 to achieve plateau responses with a maximum 

fold-change of 2.4, whereas high-dose recipients (350 µg F, 5mg BLP) achieved plateau 

responses with a fold-change of 1.5 after first vaccination that remained elevated up to 180 days 

post-vaccination irrespective of further boosting. Palivizumab-like antibodies were consistently 

induced, but F protein site -specific antibodies were not detected and virus-specific nasal IgA 
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responses were heterogeneous, with strongest responses in individuals with lower pre-existing 

antibody levels. 

Conclusions:

SynGEM is thus the first non-replicating intranasal RSV subunit vaccine to induce persistent 

antibody responses in human volunteers.

Abstract word count: 250

Key words: Mucosal, Respiratory, Virus, Clinical Trial, Immunology

At a glance commentary

Scientific Knowledge on the subject:

Respiratory syncytial virus (RSV) is a major global pathogen, especially affecting young 

children and older adults. Studies of natural and experimental infection indicate that mucosal 

antibodies are associated with protection from infection but after RSV infection, these are short-

lived, likely due to viral immunomodulation. Despite the clear advantages of needle-free 

vaccines, the only currently available intranasal vaccine (live attenuated influenza vaccine) is 

known to be ineffective in adults with pre-existing immunity. 

What this study adds to the field:

In this first-in-human phase I randomised controlled trial, SynGEM (a novel subunit intranasal 

vaccine comprising empty bacteria-like particles (BLP) linked with the surface glycoprotein F 

from RSV) is shown to be safe and immunogenic in healthy adults despite high pre-existing 

antibody levels. F protein-BLP rapidly induces RSV-specific systemic and local nasal immune 

responses that are more long-lasting than after natural infection, although antibodies unique to 

prefusion F protein were undetected and fold-changes were modest. SynGEM is therefore the 
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first non-replicating intranasal RSV vaccine to induce persistent local and systemic antibodies 

and the BLP platform has wide potential applications where mucosal immunity is desired.

Commentary word count: 161

This article has an online data supplement, which is accessible from this issue’s table of content 

online at www.atsjournals.org
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Introduction

Needle-free intranasal vaccines have major advantages over parenteral preparations, including 

public acceptability, reduced risk of complications, and, importantly, inducing local immune 

responses directed to the primary site of pathogen entry. However, existing intranasal vaccines 

are exclusively live attenuated agents that have poor efficacy in adults and must be balanced 

between immunogenicity and over-attenuation (1, 2). Subunit intranasal vaccines might offer 

an effective alternative, but none have yet found a place on the market.

Respiratory syncytial virus (RSV) is a major global pathogen especially important in infancy 

and old age. In children <5 years, it causes around 3 million severe cases, mostly in the 

developing world (3, 4). It is also responsible for ~10% of pneumonia admissions in older adults 

with attributable mortality up to 5% (5, 6). Despite the clinical need, no effective RSV vaccine 

yet exists (7). Inadequate understanding of protective immunity against RSV means that 

vaccine development continues to carry major risks, as demonstrated by recent negative phase 

III clinical trials (8). Novel vaccination strategies are therefore urgently required.

Studies in experimentally-infected volunteers indicate that reduced infection risk with RSV is 

most closely associated with mucosal secretory IgA (s-IgA) (9). IgA is actively transported 

across the respiratory epithelium and is therefore found at high levels in both upper and lower 

airways, mediating immune exclusion and sterilizing protection (10). Mucosal vaccine delivery 

may preferentially induce these antibodies. SynGEM is a novel subunit vaccine designed for 

intranasal administration, comprising RSV F protein linked to a peptidoglycan bacterium-like 

particle (BLP) derived from Lactococcus lactis (11). F protein is highly conserved across RSV 

strains (12), and is the target of the licensed protective monoclonal antibody palivizumab, 

making it the preferred antigenic target. Its pre-fusion conformation (pre-F), which 

predominates on infectious virions, displays a distinct antigenic site (site Ø) preferentially 

targeted by the most potent neutralizing antibodies (13). SynGEM therefore incorporates an F 
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protein with mutations to maintain a pre-fusion conformation, while BLP-conjugation enhances 

mucosal stimulation via TLR2-dependent adjuvantation (11). 

Pre-clinical studies using SynGEM showed induction of high levels of both systemic and 

mucosal antibodies (11). We now present the findings of the first-in-human placebo-controlled 

phase I clinical trial of SynGEM (clinicaltrials.gov identifier NCT02958540), the aim of which 

was to assess the safety and tolerability of the vaccine in humans and analyse the levels of 

serum anti-RSV IgG, nasal IgA and B cell responses. 

Methods

Study design

Healthy volunteers were recruited to take part in the double-blind placebo-controlled 

study, MUC-SynGEM-001, according to the inclusion and exclusion criteria in Table E1 

(clinicaltrials.gov identifier NCT02958540). Forty-eight volunteers received either placebo 

(phosphate buffered saline (PBS) + 2.5% glycerol) or SynGEM vaccine administered 

intranasally (125µl per nostril) at a ratio of 1:3. Heat and acid were used to treat non-

recombinant Gram positive Lactococcus lactis, degrading internal proteins and other bacterial 

components to leave particles with bacteria-like shape and size made up of peptidoglycan alone. 

Addition of a Protan tag to the recombinant RSV F protein allowed covalent binding to the 

peptidoglycan shell on mixing to form SynGEM. The vaccine was given at 2 dose levels; a low 

dose, containing 140 µg of F protein and 2mg of BLP, and a high dose containing 350 µg of F 

protein and 5mg of BLP.  These were administered according to a prime-boost schedule with 

the boost vaccination at 28 days post-prime. The sample size of 18 vaccinees at each dose level 

was computed from the binomial distribution to result in a 98% probability of one or more 

adverse events being observed with a true adverse event incidence of 20%, and 84% probability 
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with a true incidence of 10%. Blood and nasal lavage were collected at study visits up to 180 

days after first dosing. Nasal lavage was performed as previously described (9) by introducing 

5mL of normal saline into each nostril using a syringe attached to a nasal olive attachment and 

washing by alternately withdrawing and advancing the plunger of the syringe 10 times while 

maintaining a tight seal with the nostril. The study was overseen by an independent Data Safety 

Monitoring Committee. 

Randomisation and masking

Dose cohort allocation was sequential to the low- and then high-dose group. Participants were 

assigned to receive either SynGEM vaccine or an identical placebo by block randomisation; at 

each dose level, sentinel cohorts were randomised in the ratio of 1:1 in 2 blocks of 2 and 

remaining participants were randomised in the ratio of 4:1 in 8 blocks of 5, via a randomly 

generated sequence using an integer seed in the range 21-2147483649. An unmasked research 

nurse (with no subsequent involvement in participant follow-up) prepared and administered the 

vaccine in a masked syringe with Vaxinator device. Investigators and participants were masked 

to vaccine allocation until 28 days after boost vaccination. Laboratory staff were blinded for all 

time points (including days 120 and 180). Sealed opaque envelopes were provided for 

emergency code break, but none were used.

Antibody assays

Anti-RSV IgG and IgA antibodies were measured using stabilized pre-fusion or unstabilized F 

protein or Ga (from RSV A) or Gb protein (from RSV B) in ELISA assays as previously 

described (9). Serum plaque reduction neutralization titer (PRNT) assays were performed at 

Viroclinics Biosciences, Rotterdam, The Netherlands, as previously described (14). 
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Palivizumab- and D25-competing antibodies were quantified in serum by competition ELISA. 

See online data supplement for additional detail. 

Antibody-secreting cell quantification

Flow cytometry analysis was performed using heparinized whole blood with anti-CD19 FITC, 

anti-CD27 APC, anti-CD38 PE and anti-CD3/anti-CD20 both on PE-CF594 (BD Biosciences) 

run on a Fortessa flow cytometer (BD Biosciences) and analyzed with FlowJo software. 

Antibody-secreting cells (ASCs) were quantified using enzyme-linked immunospot (ELISpot) 

assays as previously described (15). Spots were counted using an automated ELISpot reader 

(AID), and results expressed as spot forming cells per million PBMCs.

Measurement of antibodies and cytokines in adenotonsillar cell culture supernatants

Adenotonsillar tissues were obtained from a separate cohort of non-vaccinated patients 

undergoing elective tonsillectomy from whom informed consent was obtained (ethics reference 

14/SS/1058). Mononuclear cells (MNC) were isolated from adenotonsillar tissues and cultured, 

as described previously (16). Adenotonsillar MNC were co-cultured with SynGEM BLP-F with 

F-protein concentration at 1µg/mL or 5µg/mL, BLP alone (25µg/mL) and F-Protein alone 

(1µg/mL) or medium. Cell culture supernatants were harvested at day 12 and F protein-specific 

antibodies were measured by ELISA as described previously (17). 

Following stimulation of adenotonsillar MNC for 3 days with the SynGEM BLP-F (5µg/mL), 

culture supernatants were analysed using cytometric bead array for cytokines 

(LEGENDplexTM, Biolegend, UK) following manufacturer’s instructions. T cell responses in 

adenotonsillar MNC were analyzed by Carboxyfluorescein succinimidyl ester (CFSE) 

(Molecular Probes, UK) labelling as previously described (16, 18). 
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Statistical analysis

Data analyses and graphs were produced using the software R and Graphpad Prism. Additional 

details on the statistical analysis is provided in an online data supplement. 

Results 

SynGEM vaccination is generally safe and well tolerated

Seventy-nine individuals were potentially eligible after pre-screening (Figure E1). Of these, 48 

were recruited according to protocol-defined inclusion and exclusion criteria (Table E1).

No significant differences were found in demographics, baseline medical history or physical 

examination among the vaccinated or placebo groups (Table 1). At each dose level, 2 sequential 

sentinel cohorts of two subjects each were recruited initially, “prime”-vaccinated and followed 

up for three days post-dosing. No pre-defined pausing rules (Table 2) were met and recruitment 

was subsequently extended to the remaining twenty subjects in each dose-level group. All pre-

defined study endpoints were adhered to (Table E2). Over the course of the study, no significant 

differences were seen in routine hematology and biochemistry blood tests between vaccinated 

and placebo groups (Table E3). 

Five participants presented with respiratory tract symptoms at their vaccination or follow-up 

visits. On the basis of PCR-confirmed rhinovirus infection, boost vaccination was delayed by 

3 days in 1 participant and withheld in another. Two additional participants described upper 

respiratory tract symptoms leading to delayed boost vaccination by 3 days. One subject was 

diagnosed with influenza A infection shortly after boosting. The severe sore throat reported as 

a serious adverse event (SAE) in this participant was temporally associated with the PCR-

confirmed infection and therefore considered unrelated to the study vaccine. 
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One other SAE was noted, with a participant describing moderate pulsatile tinnitus and mild 

unilateral hearing loss manifesting 16 days after prime vaccination. This was not reported by 

the participant until after they had undergone boost vaccination. The participant was assessed 

by an ENT specialist but no clear aetiology was determined. Due to the timing of onset, the 

SAE was considered possibly related to the vaccine but symptoms persisted unchanged to the 

end of follow-up.

Other adverse events were most commonly local site reactions typical of intranasal 

administration (Tables E5 & E6). These events were all self-limiting and mild to moderate in 

severity. Four subjects in the low dose (22·2%), one in the high dose group (5·.5%) and four in 

the placebo group (33·3%) reported AEs within 1 hour of dosing with no significant differences 

between groups (relative risk compared with placebo RR [95% confidence interval (CI)]: low-

dose 1·0 [0·29-3·39]; high-dose 0·25 [0·03-2·02]; Chi-square test for trend p=0·051)(Table 

E5). During the follow-up period, most participants reported at least one solicited local AE (15 

(83·3%) in the low dose group; 15 (83·3%) in the high dose group; and 10 (83·3%) in the 

placebo group). Again there were no significant differences between the groups (low-dose RR 

1.0 [0.72-1.39]; high-dose RR 1.0 [0.72-1.39]; Chi-square test for trend p>0·99)(Table E6). 

Moderate AEs were recorded for the 3 participants who had concurrent rhinovirus or influenza 

infection. The median duration of post-vaccination symptoms was 1·25 days (range 1-7 days).

Solicited systemic AEs were reported by 16 (88·9%) subjects in the low dose (RR 1·19 [0·82-

1·71]); 13 (72·2%) subjects in the high dose (RR 0·96 [0·.62-1·49]); and 9 (75·0%) subjects in 

the placebo group (Table E5). Again, there were no significant differences between groups and 

no increase in AEs after boost compared with prime (Chi-square test for trend p=0·73). Severe 

solicited systemic AEs were reported only in those with concomitant viral infections. Therefore, 

with the caveat of a single SAE of uncertain aetiology, SynGEM was generally safe and well-

tolerated.
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SynGEM significantly boosts F protein-specific serum IgG

Since the study period overlapped with the local RSV season, natural RSV infection was 

assessed by measuring seroconversion of RSV G-specific IgG levels as well as multiplex 

respiratory viral PCR of nasal lavage if participants attended with suggestive symptoms. No 

RSV infections were detected by PCR but a total of 7 participants seroconverted with G protein-

specific responses during the study period, suggestive of natural infection (Figure E2). 

Measurements from these individuals at time-points after G protein seroconversion were 

excluded from subsequent analysis to avoid over-estimation of antibody titers by infection-

induced immune responses.

F-specific serum IgG titers over the course of the study were measured by ELISA with 

unstabilized F protein as coating antigen. Pre-vaccination, all individuals already had moderate-

to-high levels of anti-F IgG (low-dose geometric mean titer (GMT) [95% confidence interval 

(CI)] 8·1 [7·5-8·7]; high-dose GMT 8·5 [8·1-8·9]; placebo GMT 8·1 [7·6-8·7])(Figure 1). 

There was a trend towards average baseline anti-F IgG being higher in the high-dose group 

(Mann Whitney test, placebo vs. high p=0·2804; placebo vs. low = 0·8841; high vs. low = 

0·2173) (Figure 1A & 1B).

Following vaccination, anti-F IgG titres of both dosing groups increased significantly after the 

first dose; from GMT 8·1 to GMT 8·5 (low-dose, p=0·0005)(Figure 1C & 1D) and GMT 8·5 

to GMT 9·0 (high-dose, p<0·0001)(Figure 1E & 1F). In the low-dose group, this incremented 

further on boost vaccination (GMT 8·5 at day 28 to GMT 8·8 on day 56, p=0·0108). 

Interestingly, anti-F IgG levels continued to increment to GMT 9·8 (p=0·0001) at day 180 

(Figure 1E) after low-dose vaccination. In the high-dose group, peak anti-F IgG levels were 

achieved after a single vaccination with no further statistically significant increase. In both 

dosing groups, serum anti-F IgG titers remained significantly elevated through to the end of the 
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follow-up period (6 months post-“prime”). Despite the significant increases in virus-specific 

serum IgG, maximal fold-changes following vaccination were modest (2.43 at day 120 in the 

low-dose and 1.54 at day 56 in the high-dose group), given the high pre-vaccination titers 

(Figure 1D & 1F). Nevertheless, F-specific antibodies were boosted in both vaccinated groups, 

with serum antibody levels persisting up to 6 months.

A second ELISA assay using a stabilized pre-F protein (DS-Cav1) was used to test whether 

additional pre-fusion specific antibodies could be detected. Surprisingly, anti-F IgG titers 

measured using the pre-fusion F antigen showed less statistically significant responses (Figure 

E3). The associated fold-changes were also less marked than detection by the post-F assay. 

Thus, measurement of serum anti-F IgG titers by stabilized F and unstabilized F-protein 

ELISAs did not give fully concordant results.

SynGEM preferentially induces non-neutralizing palivizumab-competing antibodies

To further investigate the quality and functionality of the induced antibodies, serum neutralizing 

antibodies against RSV were measured plaque-reduction neutralization titer (PRNT) assay 

(Figure 2A, 2D and 2G). In contrast to the highly significant increases in post-F ELISA-binding 

antibodies, no increment in neutralizing antibodies was detectable. This implied that the 

systemic antibodies induced by SynGEM were preferentially non-neutralizing. To investigate 

this in more detail, competition ELISAs were performed to estimate the contribution of 

palivizumab-competing antibodies, which recognize the site II epitope present on both pre- and 

post-fusion conformations of F (Figure 2B, 2E, 2H), and D25-competing antibodies, which 

bind the site Ø unique to pre-fusion F (Figure 2C, 2F and 2I). As with the total F protein ELISA, 

significant increments in palivizumab-competing antibodies were shown following prime and 
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boost (low-dose GMT 12·7 [12·3-13·1] pre-vaccination to GMT 13·3 [12·8-13·8] at day 56, 

p<0·0001;  high-dose GMT 12·7 [12·3-13·1] to GMT 13·6 [13·1-14·1] at day 56, p<0·0001). 

In contrast, no rises were seen in D25-competing antibodies. Thus, SynGEM primarily induced 

anti-F IgG directed against epitopes common to both pre- and post-fusion F but little site Ø or 

neutralizing antibody. 

Nasal anti-RSV IgA responses demonstrate marked variance following SynGEM vaccination

We hypothesized that intranasal delivery of RSV F protein-BLPs could preferentially induce 

nasal s-IgA and therefore enhance local protection. Using a validated IgA ELISA, we therefore 

analyzed the induction of anti-F s-IgA in nasal lavage samples. Compared to serum anti-F IgG, 

there was greater inter-individual variability in nasal IgA titers and response to vaccination. 

Pre-vaccination, nasal IgA endpoint titers showed a wide range, with the greatest variance seen 

in the low dose group, within which the log2 titer ranged from a minimum of 6·0 to a maximum 

of 14·2. (Figure 3A, 3B, and 3C). Following vaccination, analysis of each group in totality 

showed a significant titer rise in the high-dose group at day 56 post-vaccination (GMT 9·9 at 

day 56 compared with 9·0 pre-vaccination, p=0·009). However, examining the individual 

participant-level data (Figure 3D-3F), it was evident that this masked the wide differences 

between individuals both in magnitude and kinetics. We therefore performed cluster analysis 

of vaccinees according to the timing of their maximal nasal IgA fold-change to further explore 

the diversity of responses. 

By Fisher’s exact test, a significantly higher proportion of individuals in the vaccinated cohorts 

underwent a ≥2-fold rise at any time post-vaccination than in the placebo group (p=0·0236).  

While some changes were seen in the placebo group, these were few and of low magnitude 
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(Figure 3D). In contrast, in the low dose group, 13/18 (72%) demonstrated a >2-fold rise (5 

showing maximal change compared with pre-vaccination at day 28, 4 at day 56, and 4 at day 

120) (Figure 3E). In the high-dose group, 13/18 (72%) also showed an increment (5 changing 

maximally compared with pre-vaccination at day 28, 5 at day 56, and 3 at day 120) (Figure 3F). 

Furthermore, while maximal fold-change in the placebo group was only 8·6, individuals in the 

vaccinated groups displayed strikingly large fold-changes of up to 98-fold increase. The size of 

vaccine responses correlated with lower pre-existing antibody titers (Figure E4), suggesting 

either that pre-existing anti-F IgA impaired the vaccine response or a ceiling of antibody 

production was being reached. Thus, although the small sample size and heterogeneity of 

responses limit interpretation, these data imply that SynGEM does induce RSV-specific 

mucosal IgA in most individuals, sometimes with highly dynamic responses particularly in 

those with low pre-existing F-specific IgA titers.

Intranasal SynGEM vaccination induces dose-dependent divergence in systemic plasmablast 

responses

Systemic vaccines including inactivated influenza and live yellow fever vaccines have been 

consistently shown to stimulate short-lived plasmablasts that correlate with seroconversion 

(19). In contrast, live attenuated intranasal and replication-incompetent viral vectored vaccines 

in adults rarely induce plasmablasts in the blood (20, 21). The plasmablast response to SynGEM 

was therefore investigated using flow cytometry but, due to high background and variance, no 

significant changes were seen (Figure E5). 

To better assess the antigen-specific B cells response to vaccination, B cell ELISpots were then 

performed to quantify IgG- and IgA-producing antibody-secreting cells (ASCs) recognizing 

unstabilized recombinant F protein (Figure 4). Both low- and high-dose SynGEM induced IgG-

producing ASCs in all vaccinated individuals 7 days post-“prime” (low-dose median 135 
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spots/million PBMCs IQR 139; high-dose median 230 spots/million IQR 330). The higher dose 

showed a trend towards larger plasmablast responses. In most individuals, ASCs had 

disappeared by the time of boost vaccination. However, the high-dose group had a significantly 

higher frequency of IgG+ ASCs remaining at the later time-point (high-dose median 5 

spots/million IQR 41; low-dose median 0 spots/million, p=0·0076), suggesting a more 

protracted response. Similar frequencies were seen after boost vaccination (Figure 4G). Thus, 

SynGEM induced systemic IgG+ ASC responses in all vaccinated individuals, with 

significantly increased duration and a trend towards greater frequency responses with the higher 

dose.

At day 7 post-“prime”, IgA+ ASCs were less frequent than IgG+ ASCs following low-dose 

(median 41 IQR 57, p=0·0045) and high-dose vaccination (median 28 IQR 135, p=0·0091) 

(Figure 4). Again, the response to high-dose boost vaccination persisted for longer than low-

dose, with significantly higher frequencies of IgA+ ASCs at day 56 in that group (high-dose 

median 20 spots/million IQR 122; low-dose median 0 spots/million IQR 54; p=0·0048). There 

was no correlation between IgA+ ASC frequencies in blood and changes in nasal F-specific 

IgA titers (Figure 4H). Thus, while the overall IgA+ ASC response in blood was lower than 

IgG+ ASCs, there was some discordance in the different isotypes, suggesting that higher doses 

are more efficacious in boosting prolonged IgA-producing ASC responses.

SynGEM induces F-specific antibody production by tonsillar cells in vitro in a dose-dependent 

manner

To investigate these dose-dependent effects, we tested the capacity of SynGEM to induce 

responses in human nasopharynx-associated lymphoid tissues cultured as previously described 

(16, 18). Recombinant F protein alone or BLP alone did not stimulate significant production of 

F-specific antibodies (Figure 5A-F). However, in adults, culture with SynGEM induced F-
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specific IgG (Figure 5A), IgA (Figure 5B) and IgM (Figure 5C), with the higher SynGEM 

concentration inducing significantly higher titers. As expected in these upper respiratory 

tissues, substantially higher concentrations of IgA were produced at both dose levels (p<0·05). 

Similar results were seen in pediatric samples, suggesting that comparable responses might be 

induced by SynGEM in children (Figure 5D-F). Additionally, antibody induction was 

associated with the significant production of interferon-γ, IL-22 and IL-21 suggesting the 

stimulation of type 1, type 17/22 and T follicular helper cell responses respectively (Figure 5G-

I). Trends towards increased IL-2 production, TNF, IL-17A and IL-10 were also seen, but not 

type 2 cytokines (IL-4, IL-5 and IL-13) (Figure E6). Production of these cytokines was 

associated with proliferation of CD4+ and (to a lesser extent) CD8+ T cells in a dose dependent 

manner (Figure 5J and 5K), suggesting that CD4+ T cells were major contributors to cytokine 

production.

Thus, in vitro data support the clinical observations that SynGEM induces a dose-dependent 

antibody response associated with appropriate T-helper cytokine signalling. While antibodies 

targeting site , that are believed to be the most potent for virus neutralization, were not 

significantly induced, further enhancement of the prolonged vaccine-induced responses seen 

may be achieved by additional alterations in antigen and/or dose.

Discussion 

Previously, we showed that antibodies induced following RSV infection were short-lived and 

hypothesized that viral immunomodulatory mechanisms impaired anti-RSV humoral memory 

responses (9). Here, we have shown that delivering F protein using a non-living subunit 

mucosal vaccine not only induced bursts of plasmablast activity and mucosal IgA but also 

boosted systemic RSV-specific antibodies for at least 6 months. These data suggest that the 
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BLP vaccine platform may permit more potent induction of both systemic and mucosal 

responses than existing intranasal vaccines, including live attenuated influenza vaccine (LAIV) 

(22) and live attenuated RSV vaccine candidates (2, 23). Indeed, adults do not respond to these 

vaccines, presumably due to pre-existing immunity that prevents attenuated virus replication. 

Futhermore, an adenovirus vector expressing F protein recently tested via intranasal 

administration (20) led to minimal boosting compared with intramuscular injection. 

However, immunogenicity data are complicated where pre-existing immunity against vaccine 

antigens exists, such as with RSV in older children and adults (24, 25). Following SynGEM 

vaccination, serum antibody titers increased significantly despite the background of moderate-

to-high levels of pre-existing F-specific antibodies. However, the seropositivity of the 

volunteers limited the size of vaccine responses with serum IgG only reaching a maximum of 

2.43-fold increase (in the low-dose group late after boost vaccination). Furthermore, nasal IgA 

only significantly increased in the high-dose group with a fold-change of 1.87, although low 

pre-existing F-specific IgA titers were more predictive of the strongest response to vaccination, 

with in some cases >90-fold rise. Previous studies of intranasal subunit candidates (against 

diphtheria, tuberculosis, HIV and influenza) suggest that immunogenicity could be greater in 

the absence of high levels of strain-specific immunity. Indeed, an influenza vaccine using a 

similar BLP platform as SynGEM (26) induced significantly higher IgG and IgA levels than 

the inactivated vaccine comparator. Against pathogens where there is no prior immunity, the 

BLP platform may therefore have broad potential.

While intranasal diphtheria toxin adjuvanted with chitosan boosted both serum IgG and IgA 

with no safety issues (27), intranasal vaccines containing an inactive E.coli heat-labile toxin 

have been implicated in causing facial nerve (Bell’s) palsy (28)(29). In our study, a single 

participant complained of pulsatile tinnitus and hearing impairment after vaccination. These 

symptoms were sufficiently mild that the participant did not declare them on direct questioning 
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and only reported them after boost vaccination due to their prolonged nature. No cause could 

be found and they did not worsen after the boost, but an association with the vaccine could not 

be excluded due to the timing of onset. Sudden sensorineural hearing loss is common, affecting 

2-20 per 100,000 individuals each year (30). In most cases, as here, no cause is definitively 

identified, and it therefore remains unclear whether the vaccine was related.

One further unexplained observation is the lack of significant boosting of serum virus 

neutralization despite induction of F protein-binding antibodies. The F protein in SynGEM was 

engineered with stabilizing mutations to maintain the pre-F conformation and pre-clinical 

studies had shown stimulation of neutralizing antibodies in animal models (11). As part of 

product release testing, extensive stability tests were performed that showed stable D25-

binding. It was therefore surprising to find no detectable neutralizing or D25-competing 

antibody responses. This may have been due to the limited overall size of antibody responses 

or suboptimal presentation of the F protein in vivo resulting in relatively little generation of the 

most potent neutralizing antibodies. While this does not preclude a protective role for the non-

neutralizing and palivizumab-like antibodies that were induced, further iterations of SynGEM 

should overcome this limitation. In particular, we anticipate that better induction of site  

antibodies will enhance virus neutralizing responses both systemically and locally with likely 

concomitant increase in efficacy.  

Nevertheless, the intranasal BLP platform used here did lead to prolonged increases in virus-

specific antibodies in blood and mucosa of antigen-experienced adults. Testing of other BLP-

conjugated antigens should further progress this novel and broadly-applicable strategy for 

mucosal vaccination.
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Figure Legends

Figure 1. Intranasal SynGEM induces significant increases in F-specific serum IgG. 

Volunteers were given SynGEM or placebo and serum IgG was measured by ELISA using 

unstabilized F protein as coating antigen at time-points up to 180 days post-“prime”. Titers and 

fold-changes compared to baseline are shown following (A and B) placebo, (C and D) low-

dose and (E and F) high-dose. Geometric means are shown in red. Wilcoxon ranked sign test 

was used to test statistically significant rises compared to pre-vaccination; *** p<0·001; **** 

p<0·0001. Vaccinations are indicated by red triangles.

Figure 2. SynGEM induces palivizumab-like but not pre-fusion F-specific antibodies. 

Participants were given SynGEM or placebo. (A, D and G) Serum neutralizing antibody titers 

were measured by classical plaque-reduction neutralization assay up to 28 days post-boost. 

Palivizumab-like (B, E and H) and D25-like (C, F and I) antibodies were measured by 

competition ELISA assays up to 28 days post-boost. Geometric means are shown in red. 

Wilcoxon ranked sign test was used to test statistically significant rises compared to pre-

vaccination; ** p<0·01; **** p<0·0001. Vaccinations are indicated by red triangles.

Figure 3. Intranasal SynGEM protein induces heterogeneous mucosal IgA responses. 

Subjects were given SynGEM or placebo and nasal wash IgA was measured by ELISA using 

unstabilized F protein as coating antigen at time-points up to 180 days post-“prime”. Individuals 

in the placebo (A), low-dose (B) and high-dose (C) groups were clustered if they displayed a 

>2-fold rise in nasal IgA titers according to the time-point of maximal increase. ** p<0·01. 

Vaccinations are indicated by red triangles.

Page 27 of 57  AJRCCM Articles in Press. Published on 12-February-2019 as 10.1164/rccm.201810-1921OC 

 Copyright © 2019 by the American Thoracic Society 



25

Figure 4. Intranasal SynGEM protein stimulates IgG+ and IgA+ antibody-secreting cells 

in peripheral blood from volunteers administered low or high doses of SynGEM. (A-F) 

Antibody-secreting cells from peripheral blood at time-points up to 28 days post-boost were 

enumerated by B cell ELISpot. Median values are shown in red. * p <0·05; *** p<0·001; **** 

p<0·0001.

Figure 5. SynGEM (BLP-F) stimulation of adenotonsillar cells provokes dose-dependent 

antibody and T cell responses. Tonsil cells from (A-C) adult and (E-F) pediatric donors were 

cultured with SynGEM (BLP-F) containing 5 µg/mL and 1 µg/mL F-protein, BLP alone (25 

µg/mL), F protein alone (1 µg/mL) and medium only. F-specific IgG, IgA and IgM in resulting 

supernatant were measured by ELISA. (G-I) Cytokines were measured in culture supernatant 

by cytometric bead array. Tonsil cells were cultured with SynGEM (BLP-F), BLP alone (25 

µg/mL) or F-Protein alone (1 µg/mL). (J) CD4+ and (K) CD8+ T cell proliferation was then 

measured by analysis of CFSE dilution and expressed as a percentage of dividing cells in the 

CD3+CD4+ or CD3+CD8+ populations. Mann-Whitney U test, and Wilcoxon Signed Rank 

Test were used to test significant differences.
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Tables

Group  Low-dose High-dose Placebo
   (n=18) (n=18) (n=12)
Characteristic    
 Age (years)    
  Mean (SD) 28·6 (7·99) 27·3 (8·37) 28·3 (8·55)
  Median 27·0 23·0 26·5
  Min, Max 20, 49 19, 46 20, 46
 Gender, n (%)    
  Male 11 (61·1) 8 (44·4) 5 (41·7)
  Female 7 (38·9) 10 (55·6) 7 (58·.3)
 Race, n (%)    
  White or Caucasian 12 (66·66) 15 (83·33) 10 (83·33)
  Black British/Black Other 3 (16·66) 1 (5·55) 1 (8·33)
  Asian British/Indian/Asian other 3 (16·66) 2 (11·11) 1 (8·33)
  Mixed  0  0  0
  Other  0  0  0
 Height (cm)    
  Mean (SD) 175·24(8·96) 172·94(10·09) 171·67(9·54)
  Median 174·0 170·5 170·0
 Weight (kg)    
  Mean (SD) 72·40(11·33) 69·48(11·76) 69·51(12·38)
  Median 71·8 71·57 68·8
 BMI (kg/m2)    
  Mean 23·50(2·68) 23·12(2·62) 23·54(3·31)

 Median 23·65 23·2 23·56

Table 1. Subject baseline physical and demographic characteristics.
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Applicable to sentinel cohorts
1. Occurrence of any death

2. Occurrence of any serious adverse event, defined as life threatening, requiring hospitalization, resulting in a persistent or 
significant disability/incapacity, a congenital anomaly or birth defect in the offspring of a study participant, or a medically 
important condition that may have jeopardized the subject and may have required medical or surgical intervention to prevent a 
serious outcome

3. Occurrence of any case of severe allergic reaction such as anaphylaxis, generalized urticaria, laryngospasm or bronchospasm

4. One or more subjects experience a severe (non-serious) adverse event, including local, febrile or systemic reactions

Applicable to post-sentinel cohorts

1. Occurrence of any death

2. Occurrence of any serious adverse event other than the result from trauma or accident, regardless of relatedness to study product

3. Occurrence of any case of severe allergic reaction such as anaphylaxis, generalized urticaria, laryngospasm or bronchospasm

4. Two or more subjects recruited up to that point experience a severe (non-serious) adverse event, defined as causing inability to 
perform usual social and functional activities, including local, febrile or systemic reactions, considered at least possibly related 
to the investigational product

5. Three or more subjects recruited up to that point experience a severe (non-serious) adverse event, irrespective of the relationship 
with the investigational product

Table 2. Pausing rules
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Figure 1. Intranasal SynGEM induces significant increases in F-specific serum IgG. 
Volunteers were given SynGEM or placebo and serum IgG was measured by ELISA using unstabilized F 

protein as coating antigen at time-points up to 180 days post-“prime”. Titers and fold-changes compared to 
baseline are shown following (A and B) placebo, (C and D) low-dose and (E and F) high-dose. Geometric 

means are shown in red. Wilcoxon ranked sign test was used to test statistically significant rises compared 
to pre-vaccination; *** p<0·001; **** p<0·0001. Vaccinations are indicated by red triangles. 
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Figure 2. SynGEM induces palivizumab-like but not pre-fusion F-specific antibodies. 
Participants were given SynGEM or placebo. (A, D and G) Serum neutralizing antibody titers were measured 
by classical plaque-reduction neutralization assay up to 28 days post-boost. Palivizumab-like (B, E and H) 

and D25-like (C, F and I) antibodies were measured by competition ELISA assays up to 28 days post-boost. 
Geometric means are shown in red. Wilcoxon ranked sign test was used to test statistically significant rises 

compared to pre-vaccination; ** p<0·01; **** p<0·0001. Vaccinations are indicated by red triangles. 
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Figure 3. Intranasal SynGEM protein induces heterogeneous mucosal IgA responses. 
Subjects were given SynGEM or placebo and nasal wash IgA was measured by ELISA using unstabilized F 
protein as coating antigen at time-points up to 180 days post-“prime”. Individuals in the placebo (A), low-

dose (B) and high-dose (C) groups were clustered if they displayed a >2-fold rise in nasal IgA titers 
according to the time-point of maximal increase. ** p<0·01. Vaccinations are indicated by red triangles. 
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Figure 4. Intranasal SynGEM protein stimulates IgG+ and IgA+ antibody-secreting cells in peripheral blood 
from volunteers administered low or high doses of SynGEM. (A-F) Antibody-secreting cells from peripheral 

blood at time-points up to 28 days post-boost were enumerated by B cell ELISpot. Median values are shown 
in red. * p <0·05; *** p<0·001; **** p<0·0001. 
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Figure 5. SynGEM (BLP-F) stimulation of adenotonsillar cells provokes dose-dependent antibody and T cell 
responses. Tonsil cells from (A-C) adult and (E-F) pediatric donors were cultured with SynGEM (BLP-F) 

containing 5 µg/mL and 1 µg/mL F-protein, BLP alone (25 µg/mL), F protein alone (1 µg/mL) and medium 
only. F-specific IgG, IgA and IgM in resulting supernatant were measured by ELISA. (G-I) Cytokines were 

measured in culture supernatant by cytometric bead array. Tonsil cells were cultured with SynGEM (BLP-F), 
BLP alone (25 µg/mL) or F-Protein alone (1 µg/mL). (J) CD4+ and (K) CD8+ T cell proliferation was then 

measured by analysis of CFSE dilution and expressed as a percentage of dividing cells in the CD3+CD4+ or 
CD3+CD8+ populations. Mann-Whitney U test, and Wilcoxon Signed Rank Test were used to test significant 

differences. 
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Supplementary Methods

Study design

Healthy volunteers were recruited for the randomised double-blind placebo-controlled study, 

according to the inclusion and exclusion criteria in Table E1 (clinicaltrials.gov identifier 

NCT02958540). Enrolment took place between October 2016 and January 2017 with final follow-

up visits in July 2017. Volunteers received either placebo (phosphate buffered saline (PBS) + 2.5% 

glycerol) or SynGEM vaccine administered intranasally. The vaccine was given at 2 dose levels; a 

low dose (140 µg F protein and 2mg BLP) and a high dose (350 µg F protein and 5mg BLP) at day 

0 and day 28. Blood and nasal lavage samples were collected 0, 7, 28, 35 and 56 days post-prime 

vaccination. Intention to treat analysis was performed for primary safety analyses.

Ethics statement 

The phase I study was approved by the UK National Research Ethics Service (reference 

16/SC/0441), overseen by a Data Safety Monitoring Committee and carried out at the Imperial 

Clinical Research Facility (ICRF) at the Hammersmith Hospital. Adenotonsillar tissues were 

obtained from children and adults undergoing tonsillectomy; ethics approval was obtained 

(reference 14/SS/1058) and written informed consent was obtained in all cases. 

Outcomes

The primary endpoint was the safety and tolerability assessed by solicited (local and systemic) and 

unsolicited adverse events (Table E3). Events were graded mild, moderate or severe and 

association with vaccination was recorded. Blood test abnormalities were determined using the 
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FDA Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive 

Vaccine Clinical Trials. Secondary endpoints assessed humoral systemic and mucosal immune 

responses to the vaccine. Exploratory endpoints were defined as the measurement of cellular 

immune responses. 

F and G protein-specific enzyme linked immunoassay (ELISA)

Anti-RSV IgG and IgA antibodies were measured using stabilized pre-fusion or unstabilized F 

protein or Ga (from RSV A) or Gb protein (from RSV B) in ELISA assays as previously described 

(E1). Serum IgG titer was calculated as a midpoint EC50 and s-IgA titers were calculated as 

endpoint titers, defined as the highest titer exhibiting an optical density of ≥10x the background. 

Endpoint titers for the IgA ELISAs were normalized using the ratio of urea in serum and nasal 

lavage measured using the Abcam Urea Assay Kit, the method adapted from the manufacturer’s 

protocol. The dilution factor for normalization was calculated as follows:

Dilution Factor = (Serum urea concentration) / (Nasal Lavage urea concentration). Normalized IgA 

titer=Dilution factors x Nasal s-IgA Titer. 

RSV microneutralization assay

The titer of RSV-neutralizing antibodies was determined in serum by plaque reduction 

neutralization titer (PRNT) assays performed at Viroclinics Biosciences, Rotterdam, The 

Netherlands, as previously described (E2). 

Palivizumab and D25 competing ELISA
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Palivizumab- and D25-competing antibodies were quantified in serum by competition ELISA, with 

furin cleavage site-mutated F protein ectodomain extended with GCN4 trimerization motifs 

(FlysGCN4) as antigen. Briefly, 100 µL/well of solid phase FlysGCN4 was adsorbed to 96-well 

EIA plates (Greiner, UK). Dilutions of serum were prepared in duplicate and mixed with biotin-

labeled epitope-specific antibodies (D25, Mucosis BV and Palivizumab, MedImmune). 

Biotinylation was achieved using an EZ-Link Sulfo-NHS-LC-Biotinylation Kit (Thermo 

Scientific). Plates were then incubated with streptavidin-HRP (Jackson ImmunoResearch), TMB 

(KPL) was added and the colorimetric reaction was stopped by addition of HCl. Absorbance was 

read at 450 nm on a microplate reader. Human RSV antiserum (NR-4021, NR-4022 and NR-4023, 

BEI Resources) and IgG-depleted human serum (SF142-7 and SF505-2, BBI Solutions) were used 

as controls.

Antibody-secreting cell ELISpots

Human antibody-secreting cells (ASCs) were quantified using enzyme-linked immunospot 

(ELISpot) assays as previously described (E3). Spots were counted using an automated ELISpot 

reader (AID), and results expressed as spot forming cells per million PBMCs.

Flow cytometry

Flow cytometry analysis was performed using heparinized whole blood. Cells were stained with 

anti-CD19 FITC, anti-CD27 APC, anti-CD38 PE and anti-CD3/anti-CD20 both on PE-CF594 (BD 

Biosciences). Fixed cells were run on a Fortessa flow cytometer (BD Biosciences) and analyzed 

with FlowJo software. 
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Measurement of antibodies and cytokines in adenotonsillar cell culture supernatants

Mononuclear cells (MNC) were isolated from adenotonsillar tissues and cultured, as described 

previously (E4). Tissues were obtained from children (age 2-10 years) and adults (16-30 years) 

undergoing adenoidectomy and/or tonsillectomy at Liverpool Alder Hey Children’s Hospital and 

Royal Liverpool and Broadgreen University Hospitals. Patients with known immunodeficiency 

and tissue samples with signs of gross inflammation were excluded. Adenotonsillar MNC were co-

cultured with SynGEM BLP-F with F-protein concentration at 1µg/mL or 5µg/mL, BLP alone 

(25µg/mL) and F-Protein alone (1µg/mL) or medium. Cell culture supernatants were harvested at 

day 12 and F protein-specific antibodies were measured by ELISA as described previously (E5). 

Following stimulation of adenotonsillar MNC for 3 days with the SynGEM BLP-F (5µg/mL), 

culture supernatants were analysed using cytometric bead array for cytokines (LEGENDplexTM, 

Biolegend, UK) following manufacturer’s instructions. T cell responses in adenotonsillar MNC 

were analyzed by Carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes, UK) labelling 

as previously described (E4, E6). 

Statistical analysis

Data analyses and graphs were produced using the software R and Graphpad Prism. Non-

parametric data was compared using Mann-Whitney-Wilcoxon tests with Holm’s correction for 

multiple comparisons. Binary response variables were related to continuous explanatory variables 

using logistic regression. Odds ratios (OR) and 95% confidence intervals (CI) of the OR for the 

explanatory variables were calculated. For estimation of serum neutralizing antibody titers, 
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weighted (1/y) four-parameter logistic models were fitted to the plaque counts and the 50% 

neutralizing titer (EC50) was derived from the midpoint of the curve using package ‘drc’. 
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Supplementary Legends

Figure E1 Flowchart summarizing recruitment and vaccination of 48 participants. 

Healthy adult volunteers were enrolled and randomized to receive SynGEM intranasally at low-

dose (n=18), high-dose (n=18) or placebo (n=12).

Figure E2. RSV infection in the study cohort revealed by antibodies against G protein. 

(A) RSV A and (B) RSV B G protein-specific serum antibodies were measured by ELISA at time-

points up to 180 days post-prime. Fold-changes compared with pre-vaccination are shown. A cut-

off of 2-fold increase was defined as sero-conversion.

Figure E3. Intranasal SynGEM induces pre-fusion F protein-specific serum antibodies. 

Volunteers were given SynGEM or placebo and serum IgG was measured by ELISA using pre-

fusion F protein as coating antigen at time-points up to 180 days post-“prime”. Titers and fold-

changes compared to baseline are shown following (A and B) placebo, (C and D) low-dose and (E 

and F) high-dose. Geometric means are shown in red. Wilcoxon ranked sign test was used to test 

statistically significant rises compared to pre-vaccination. * p<0·05; ** p<0·01; *** p<0·001· 

Vaccinations are indicated by red triangles.

Figure E4. The magnitude of sIgA anti-F fold-change at any time-point from both low and 

high-dose groups correlates with lower pre-existing antibody titers. 

Linear regression and Spearman correlation of pre-vaccination antibody titers and maximal 

antibody fold-change compared with baseline from placebo, low- and high-dose groups are shown 

(A-C). Fold-changes compared to baseline are shown following administration of placebo (D), 
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low-dose (E) and high-dose (F). Wilcoxon ranked sign test was used to test statistically significant 

rises compared to pre-vaccination.

Figure E5. Plasmablasts are not significantly increased following SynGEM. 

Whole blood was stained with anti-CD3, CD20, CD19, CD38 and CD27 for analysis by flow 

cytometry. (A) Representative plots are shown from time-points up to 28 days post-boost. Plots are 

gated on CD3-CD19+CD20+/- lymphocytes. (B, C and D) Box and whisker plots show frequencies 

of plasmablasts at each time-point. No significant differences are seen by Wilcoxon ranked sign 

test.

Figure E6. Tonsil cells cultured with SynGEM do not express Th2 cytokines. 

Tonsil cells from healthy donors were cultured with SynGEM. Cytokines were measured in culture 

supernatant by cytometric bead array. Mann-Whitney U test, and Wilcoxon Signed Rank Test was 

used to test significant differences; no significant differences are seen.

Table E1. Eligibility criteria

Table E2. Study endpoints

Table E3. Hematology and biochemistry abnormalities by maximum severity (any visit)

Table E4. Solicited adverse events within 1 hour of dosing

Table E5. Solicited adverse events
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Figure E1 Flowchart summarizing recruitment and vaccination of 48 participants. 
Healthy adult volunteers were enrolled and randomized to receive SynGEM intranasally at low-dose (n=18), 

high-dose (n=18) or placebo (n=12). 
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Figure E2. RSV infection in the study cohort revealed by antibodies against G protein. 
(A) RSV A and (B) RSV B G protein-specific serum antibodies were measured by ELISA at time-points up to 
180 days post-prime. Fold-changes compared with pre-vaccination are shown. A cut-off of 2-fold increase 

was defined as sero-conversion. 
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Figure E3. Intranasal SynGEM induces pre-fusion F protein-specific serum antibodies. Volunteers were given 
SynGEM or placebo and serum IgG was measured by ELISA using pre-fusion F protein as coating antigen at 
time-points up to 180 days post-“prime”. Titers and fold-changes compared to baseline are shown following 

(A and B) placebo, (C and D) low-dose and (E and F) high-dose. Geometric means are shown in red. 
Wilcoxon ranked sign test was used to test statistically significant rises compared to pre-vaccination. * 

p<0·05; ** p<0·01; *** p<0·001· Vaccinations are indicated by red triangles. 
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Figure E4. The magnitude of sIgA anti-F fold-change at any time-point from both low and high-dose groups 
correlates with lower pre-existing antibody titers. 

Linear regression and Spearman correlation of pre-vaccination antibody titers and maximal antibody fold-
change compared with baseline from placebo, low- and high-dose groups are shown (A-C). Fold-changes 
compared to baseline are shown following administration of placebo (D), low-dose (E) and high-dose (F). 

Wilcoxon ranked sign test was used to test statistically significant rises compared to pre-vaccination. 
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Figure E5. Plasmablasts are not significantly increased following SynGEM. 
Whole blood was stained with anti-CD3, CD20, CD19, CD38 and CD27 for analysis by flow cytometry. (A) 

Representative plots are shown from time-points up to 28 days post-boost. Plots are gated on CD3-
CD19+CD20+/- lymphocytes. (B, C and D) Box and whisker plots show frequencies of plasmablasts at each 

time-point. No significant differences are seen by Wilcoxon ranked sign test. 
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Figure E6. Tonsil cells cultured with SynGEM do not express Th2 cytokines. 
Tonsil cells from healthy donors were cultured with SynGEM. Cytokines were measured in culture 

supernatant by cytometric bead array. Mann-Whitney U test, and Wilcoxon Signed Rank Test was used to 
test significant differences; no significant differences are seen. 
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Inclusion criteria

1. Male or female aged 18-49 years inclusive

2. Able to give written informed consent to participate

3. Comprehension of the study requirements, expressed availability for the required study period and ability to attend scheduled 
visits

4. Healthy, as determined by medical history, physical examination, vital signs and clinical judgement

5. Having acceptable laboratory parameters within 28 days before study day, defined as: haemoglobin, Red Blood Cell (RBC) 
count and haematocrit, White Blood Cell (WBC) count, sodium, potassium and total bilirubin within normal laboratory range 
and alanine aminotransferase (ALT)/ aspartate aminotransferase (AST) and serum creatinine ≤1·1x institutional upper limit 
normal (ULN)

6. Body Mass Index (BMI) between 18 and 32, inclusive

7. Women of childbearing potential are to have a negative serum β-human chorionic gonadotropin (β-hCG) pregnancy test at 
screening and a negative urine β-hCG pregnancy test within 24 hours preceding receipt of each dose and agree to practice, if not 
already practicing, highly effective birth control measures from 28 days before the prime vaccination until at least 90 days after 
the boost vaccination. 
For women already practicing highly effective birth control measurements for at least 28 days at screening start, recruitment 
could occur as soon as all screening procedures were completed. The following birth control measures were considered highly 
effective: 
a. Combined (estrogen and progestogen containing) hormonal contraception associated with inhibition of ovulation (oral, 

intravaginal, transdermal), progestogen-only hormonal contraception associated with inhibition of ovulation (oral, 
injectable or implantable), intrauterine device, intrauterine hormone releasing system, bilateral tubal ligation, vasectomized 
partner (if the partner was the sole sexual partner and had received medical assessment of the surgical success)

b. True abstinence: when this was in line with the preferred and usual lifestyle of the subject. Periodic abstinence (e.g., 
calendar, ovulation, symptothermal, post-ovulation methods), declaration of abstinence for the duration of a trial, and 
withdrawal are not acceptable methods of contraception

c. If not heterosexually active at screening, must agree to practice highly effective birth control measures described above if 
they became heterosexually active from that moment onwards until at least 90 days after the boost vaccination 

d. Agree not to donate eggs (ova, oocytes) for the purposes of assisted reproduction from the start of screening onwards until 
at least 90 days after the boost vaccination

8. Women of non-childbearing potential, defined as postmenopausal (>45 years of age with amenorrhea for ≥2 years; for female 
of >45 years of age with amenorrhea for more than 6 months but less than 2 years confirmation of a serum follicle-stimulating 
hormone (FSH) >40 mIU/mL are required to consider them of non-childbearing potential) or surgically sterile (hysterectomy, 
bilateral tubal ligation, or bilateral oophorectomy), were not required to use the birth control methods as described in Inclusion 
Criterion #7

9. A man who has not had a vasectomy with medical assessment of the surgical success and is sexually active with a woman of 
childbearing potential must agree to consistently use a barrier method of birth control, such as condom with spermicidal 
foam/gel/film/cream/suppository. Men also gave to agree not to donate sperm from the first study vaccine administration (Day 
1) until 90 days after the boost vaccination

10. Subjects have to be willing to provide verifiable identification and their National Insurance/Passport number for the purpose of 
The Over-volunteering Prevention System (TOPS) registration

11. Subject has to have a means to be contacted

Exclusion criteria

1. History of acute respiratory disease in the 30 days preceding start of screening or documented infection with RSV in the previous 
3 months

2. Any chronic disease of the nasal cavity such as chronic hypertrophic or atrophic rhinitis, chronic sinusitis, ozena, Wegener’s 
granulomatosis or granulomatosis with polyangiitis.    

3. History of asthma or chronic obstructive pulmonary disease  

4. Presence of significant uncontrolled medical or psychiatric illness (acute or chronic). This includes institution of a new medical 
or surgical treatment, or a significant dose alteration for uncontrolled symptoms or drug toxicity within 3 months of screening

5. Subjects who are positive for hepatitis B surface antigen, hepatitis C antibodies or HIV

6. Pregnant or breastfeeding women or planning to become pregnant while enrolled in the study or within 90 days after the boost 
vaccination

7. Cancer, or treatment for cancer, within 3 years, excluding basal cell carcinoma or squamous cell carcinoma of the skin, which is 
allowed

8. Presence of any medical condition that may be associated with impaired immune responsiveness, including diabetes mellitus

9. Receiving at study start or history of receiving, during the preceding 3-month period, any medications or other treatments that 
may adversely affect the immune system such as allergy injections, immune globulins, interferon, immunomodulators, cytotoxic 
drugs or other drugs known to be frequently associated with significant major organ toxicity, or systemic corticosteroids (oral or 
injectable)

10. Receipt of any intranasal administration of drug or vaccine within the 30 days prior to the first administration of study vaccine 
or plans to receive any intranasal administration of drug or vaccine until the end of study visit  

11. Receipt of live attenuated vaccine within 30 days of first SynGEM® administration or plans to receive within 30 days after the 
last study vaccine administration, and receipt of any other vaccine within 15 days of first SynGEM® administration or plans to 
receive within 15 days after the last study vaccine administration  
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12. Positive history of illicit drug use, of drug or alcohol abuse within the previous 6 months

13. History of anaphylactic type reaction to injected vaccines 

14. History of allergic rhinitis or of allergy to food

15. History of allergy to insect bites, latex, pollens, house dust mites that were considered significant by the Investigator  

16. Treatment with another investigational medicinal product (IMP) within 3 months prior to screening or with more than 2 IMPs 
in the past year  

17. Receipt of blood or blood products 8 weeks prior to vaccination or planned administration during the study period 

18. Loss of ˃ 500 mL blood within 3 months prior to screening

19. Any major neurological disease, including migraine 

20. Any condition that, in the Investigator’s opinion, might interfere with the primary study objectives

21. Acute disease within 72 hours prior to vaccination, defined as the presence of a moderate or severe illness (as determined by the 
Investigator through medical history and physical examination) with or without fever, or a fever >38ºC did not represent an 
absolute exclusion criterion, but an exclusion criterion at that moment in time. Prime vaccination could be re-scheduled as 
deemed necessary by the Investigator

Table E1.
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Primary objective

1. To assess the safety and tolerability of two different doses of SynGEM® ( 140 μg F- protein-
FP/2mg BLPs or 350 μg F-protein-FP/5mg BLPs) administered 28 days apart (Day 1 and Day
29) in healthy adult subjects.

Secondary objectives

1. To assess humoral systemic and mucosal immune responses to F-protein-BLP of the two doses measured by

a. RSV A virus neutralization by plaque reduction neutralization titers (PRNT) assay

b. F specific serum IgG and nasal Secretory IgA (S-IgA) antibody titers by enzyme-linked
immunosorbent assay (ELISA).

Table E2.
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Low 
dose  High dose  Placebo  

Decrease Increase Decrease Increase Decrease Increase

 Parameter

Any 
grade 
(%) 
[grade 3 
or more 
(%)]

Any 
grade 
(%) 
[grade 3 
or more 
(%)]  

Any 
grade 
(%) 
[grade 3 
or more 
(%)]

Any 
grade 
(%) 
[grade 3 
or more 
(%)]  

Any 
grade 
(%) 
[grade 3 
or more 
(%)]

Any 
grade 
(%) 
[grade 3 
or more 
(%)]

Haematology

Haemoglobin 5 (27·8) 0 2 (11·1) 0
2 (16·7) 
[2 (16·7)] 0

White Blood Cells (total) 6 (33·3) 6 (33·3) 4 (22·2) 4 (22·2) 6 (50) 6 (50)

Absolute lymphocytes 2 (11·1) 0 1 (5·6) 0 2 (16·7) 0

Absolute neutrophils 3 (16·7) 0 5 (27·8) 0 3 (25·0) 0

Absolute eosinophils 1 (5·6) 0 0 0 0 0

Biochemistry

Sodium 0 0 0 0 0 0

Potassium 0 0 0 0 0 0

Creatinine 0 0 0 0 0 0

Urea 0 0 0 0 0 0

Alanine aminotransferase 0 1 (5·6) 0 0 0 2 (16·7)

Aspartate 
aminotransferase 0 2 (11·1) 0 1 (5·6) 0 1 (8·3)

Table E3.
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Low 
dose

 High 
dose

 Placebo  Test of 
significance

Post 
prime

Post 
boost

Post 
prime

Post 
boost

Post prime Post boost

(n=18) (n=17) (n=18) (n=18) (n=12) (n=18)

   Any 
grade 
(%) 
[grade 3 
(%)]

Any 
grade 
(%) 
[grade 3 
(%)]

 Any 
grade 
(%) 
[grade 
3 (%)]

Any 
grade 
(%) 
[grade 
3 (%)]

 Any grade (%) 
[grade 3 (%)]

Any grade (%) 
[grade 3 (%)]

Local

Epistaxis 0 0 0 0 0 0 ns

Facial 
discomfort

0 0 0 0 2 (16·7) 0 ns

Facial 
numbness

0 0 0 1 (5·6) 0 0 ns

Facial swelling 0 0 0 0 0 0 ns

Lacrimation 0 0 0 0 0 0 ns

Loss of smell 0 0 0 0 2 (16·7) 0 ns

Nasal 
discomfort

1 (5·6) 0 0 0 1 (8·3) 0 ns

Nasal pain 0 0 0 0 0 0 ns

Red eyes 0 0 0 0 0 0 ns

Rhinorrhea 3 (16·7) 2 (11·8) 1 (5·6) 0 0 1 (8·3) ns

Sneezing 1 (5·6) 0 0 0 0 0 ns

Sore throat 1 (5·6) 0 0 0 0 0 ns

Stuffy nose 3 (16·7) 1 (5·9) 0 0 1 (8·3) 1 (8·3) ns

Systemic

Arthralgia 0 0 0 0 0 0 ns

Chills 0 1 (5·9) 0 0 0 0 ns

Fatigue 2 (11·1) 2 (11·8) 0 0 3 (25) 1 (8·3) ns

Feeling 
feverish

2 (11·1) 0 0 0 0 0 ns

Itching 0 0 0 0 0 0 ns

Headache 0 1 (5·9) 0 0 1 (8·3) 1 (8·3) ns

Malaise 1 (5·6) 0 0 0 0 0 ns

Myalgia 0 0 0 0 0 0 ns

Nausea 0 0 0 0 0 1 (8·3) ns

Rash 0 0 0 0 0 0 ns

Vomiting 0 0 0 0 0 0 ns

Table E4.
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Low dose      High dose      Placebo      

Post prime   Post boost   Post prime   Post boost   Post prime   Post boost   

(n=18)   (n=17)   (n=18)   (n=18)   (n=12)   (n=12)   

 

Any grade 
(%) [grade 3 
(%)]

Median 
TTO 
(IQR)
(days)

Median 
duration 
(IQR)
(days)

Any grade 
(%) [grade 3 
(%)]

Median 
TTO 
(IQR)
(days)

Median 
duration 
(IQR)
(days)

Any grade 
(%) [grade 3 
(%)]

Median 
TTO 
(IQR)
(days)

Median 
duration 
(IQR)
(days)

Any grade 
(%) [grade 3 
(%)]

Median 
TTO 
(IQR)
(days)

Median 
duration 
(IQR)
(days)

Any grade 
(%) [grade 3 
(%)]

Median 
TTO 
(IQR)
(days)

Median 
duration 
(IQR)
(days)

Any grade 
(%) [grade 3 
(%)]

Median 
TTO 
(IQR)
(days)

Median 
duration 
(IQR)
(days)

Local

Epistaxis 0 (0) 0 0 2 (11·1) 2·5 (1) 1 (0) 0 2 (16·7) 2 (2) 1 (0)

Facial discomfort 0 0 0 1 (5·6) 1 (0) 6 (0) 2 (16·7) 1 (0) 1 (0) 1 (8·3) 1 (0) 1 (0)

Facial numbness 0 0 1 (5·6) 1 (0) 1 (0) 1 (5·6) 1 (0) 5 (0) 0 0

Facial swelling 1 (5·6) 2 (0) 1 (0) 0 1 (5·6) 3 (0) 1 (0) 1 (5·6) 1 (0) 1 (0) 0 0

Lacrimation 1 (5·6) 1 (0) 1 (0) 1 (5·9) 7 (0) 1 (0) 1 (5·6) 2 (0) 3 (0) 1 1 (8·3) 1 (0) 1 (0) 0

Loss of smell 3 (16·7) 2 (1.0) 3 (2) 4 (23·5)
4·5 
(4·5) 1·5 (1·5) 1 (5·6) 1 (0) 7 (0) 0 3 (25) 1 (0) 1 (4) 0

Nasal discomfort 3 (16·7) 1 (2) 1 (2) 3 (17·6) 5 (6) 1 (2) 3 (16·7) 1 (1) 2 (1) 2 (11·1) 1 (0) 3 (2) 3 (25) 1 (0) 2 (2) 1 (8·3) 1 (0) 1 (0)

Nasal pain 1 (5·6) 4 (0) 1 (0) 0 1 (5·6) 1 (0) 2 (0) 2 (11·1) 4·5 (1) 1 (0) 1 (8·3) 1 (0) 1 (0) 0

Red eyes 0 1 (5·9) 7 (0) 1 (0) 0 1 (5·6) 3 (0) 1 (0) 0 0

Rhinorrhea 8 (44) 1 (1) 2·5 (2) 5 (29·4) 5 (4) 1 (2) 6 (33·3) 1 (3) 1·5 (1) 4 (22·2) 1 (1) 3 (3) 3 (25) 1 (0) 2 (5) 3 (25) 3 (3) 4 (4)

Sneezing 6 (33·3) 1·5 (4) 2 (1) 2 (11·8) 3 (4) 1 (0) 1 (5·6) 2 (0) 1 (0) 3 (16·7) 1 (2) 3 (2) 2 (16·7) 1·5 (1) 1 (0) 2 (16·7) 3·5 (1) 1·5 (1)

Sore throat 2 (11·1) 1 (0) 1 (0)
1 (5·9) 
[1(5·9)] 6 (0) 2 (0) 5 (27·8) 1 (1) 3 (1) 3 (16·7) 6 (3) 2 (1) 3 (25) 1 (3) 2 (2) 5 (41·7) 3 (1) 4 (3)

Stuffy nose 8 (44·4) 1 (0·5) 2·5 (2·5) 5 (29·4) 1 (4) 1 (1) 6 (33·3) 2 (1) 1·5 (3) 4 (22·2) 2 (2) 2 (2) 4 (33·3) 1 (1) 3 (4·5) 7 (58·3) 1 (2) 1 (3)

Systemic

Arthralgia 1 (5·6) 1 (0) 2 (0) 2 (11·8) 5 (2) 1 (0) 1 (5·6) 2 (0) 1 (0) 0 0 0

Chills 0 2 (11·8) 4 (6) 1 (0) 1 (5·6) 4 (0) 1 (0) 1 (5·6) 4 (0) 1 (0) 0 1 (8·3) 7 (0) 1 (0)

Fatigue
9 (50) 
[1 (5·6)] 1 (0) 2 (2) 7 (41·2) 1 (2) 1 (1)

6 (33·3) 
[1(5·6)] 1 (1) 1·5 (1) 6 (33·3) 1·5 (2) 2 (3) 7 (58·3) 1 (2) 2 (2) 5 (41·7) 1 (0) 1 (1)

Feeling feverish 3 (16·7) 1 (0) 2 (3) 1 (5·9) 6 (0) 2 (0) 1 (5·6) 1 (0) 1 (0) 1 (5·6) 3 (0) 1 (0) 1 (8·3) 1 (0) 1 (0) 1 (8·3) 5 (0) 1 (0)

Itching 1 (5·6) 4 (0) 2 (0) 0 1 (5·6) 4 (0) 1 (0) 1 (5·6) 3 (0) 1 (0) 0 0

Headache 8 (44·4) 1·5 (2) 1·5 (1) 4 (23·5) 2 (3·5) 1 (0·5) 8 (44·4) 1·5 (4·5) 1 (1) 8 (44·4) 2·5 (3·5) 1 (1) 4 (33·3) 1 (0·5) 1·5 (1·5) 3 (25) 1 (6) 1 (3)

Malaise
2 (11·1) 
[1 (5·6)] 2 (2) 2 (2)

2 (11·8) 
[1(5·9)] 4·5 (3) 1·5 (1) 2 (11·1) 1 (0) 3·5 (5) 0 1 (8·3) 1 (0) 2 (0) 1 (8·3) 6 (0) 2 (0)

Myalgia 5 (27·8) 1 (1) 2 (1) 3 (17·6) 5 (2) 2 (2) 0 2 (11·1) 1·5 (1) 1 (0) 2 (16·7) 2 (2) 1·5 (1) 1 (8·3) 1 (0) 1 (0)

Nausea 1 (5·6) 3 (0) 1 (0) 1 (5·9) 6 (0) 2 (0) 1 (5·6) 2 (0) 1 (0) 1 (5·6) 1 (0) 1 (0) 0 1 (8·3) 1 (0) 1 (0)

Rash 1 (5·6)
4·0 (4·0-
4·0)

3·0 (3·0-
3·0) 0 1 (5·6) 4 (0) 1 (0) 1 (5·6) 3 (0) 1 (0) 0 0

Vomiting 0 0 0 0 0 0

Table E5.
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