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Abstract

Different strategic environments enforce different rules and incentives to the interacting
entities, and as a result, they need to be analysed through environment-specific models.
For each environment, suitable concepts of stability that capture the required properties
have been defined over the years. For example, an appropriate solution concept in an
evolutionary environment is the Evolutionarily Stable Strategy (ESS); in an environment
modelled as a normal-form game is the Nash Equilibrium (NE); and for some environments
where we require fair division of an object is a Consensus Halving.

In this thesis we study such solution concepts from a computational point of view.
Given a pair of environment and its solution concept, we are interested in answering if
every instance of this environment admits a solution. If the answer is no, we investigate
the computational complexity of deciding the existence of a solution for a given instance.
If the answer is yes, we try to determine the complexity of computing a solution. Most of
the problems we study are intractable. In this case, either we further explore the space of
the problem’s instances to identify in which of them lies the computational hardness, or we
consider a meaningful relaxation of the problem for which we seek an efficient algorithm.

This thesis extends the current state of the art on both computational complexity,
and approximation algorithms of various problems in strategic settings. First, we deal
with an evolutionary setting where we show that for a wide range of symmetric bimatrix
games, deciding ESS existence is intractable. Then, we consider a setting where numerous
entities compete repeatedly over a common resource. We present NEs and further categorize
them in terms of desirable efficiency qualities. Next, we study a network security game.
We characterize the NEs, study their complexity, and measure how effective they are in
securing the network using the Price of Defense notion, analogous to the Price of Anarchy.
After that, we consider an important fair division problem, namely the Consensus Halving
problem. We bound the complexity of computing an exact solution and en route define a
new complexity class which has interesting relations with already existing ones. Finally,
we present a general framework for constructing approximation schemes for problems that
can be written as an Existential Theory of the Reals formula with variables constrained
in a bounded convex set. Using this framework, we provide new quasi-polynomial and
polynomial time approximation schemes for optimisation problems, variations of problems
on normal form games, Consensus Halving, and computational geometry.
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Chapter 1

Introduction

How are choices made? This is a fundamental philosophical question which defines and
differentiates theories about the interaction of living entities. A natural and very popular
assumption in Biology and Economics is that an individual has a sense of what is in her best
interest and tries to achieve it. But what will happen if in an environment of co-existence
everyone acts in a selfish manner? Game Theory models mathematically settings where
selfish entities interact, and tries to derive meaningful answers to that question. Given
some assumptions about this system of interactions, its behaviour can seem chaotic since
conflicting interests constantly change its state without reaching stability, or as we say, a
solution.

Various solution concepts have been defined depending on the system of interaction. In
an evolutionary setting, a population of non-rational and non-intelligent entities compete,
and the solution concept is the Evolutionarily Stable Strategy (ESS); that is a mixture of
actions of the population that cannot be overtaken by any other mixture that intrudes into
it. In a setting with rational (i.e. seeking to maximize their own utility) and intelligent
(i.e. fully aware of the environment and implications of their own actions) entities freely
competing over some finite resource, the solution concept is the well-known Nash Equilib-
rium (NE). For another setting with entities that wish to feel equally treated when a finite
resource is split among them, we desire a Consensus Halving solution.

Given a setting and a solution concept, the natural questions that arises are: Does a
solution exist for every instance? If not, how difficult is it to decide existence?, and if yes,
how difficult is to compute a solution? Both the latter questions translate to well defined
problems in Computer Science and are studied using computational complexity theory. If

1
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the computational problem in hand turns out to be intractable, then two typical courses
of action are the following: (a) Explore the space of the problem’s instances to pinpoint in
which subset the computational hardness lies, or (b) make a meaningful relaxation of the
problem which hopefully admits an efficient algorithm.

In this thesis we study various strategic settings and in each of them we are inter-
ested in extending the results regarding the aforementioned problems. In Part I we deal
with evolutionary games. We are interested in exploring the instances for which deciding
existence of an ESS is intractable. In Part II we study two games between rational and
intelligent entities; one that models competition over time for access to a common resource,
and another that models conflict of forces that try to harm and protect a network. In both
games, we search for NEs and try to measure how efficient they are in terms of quality
and computational complexity. In Part III we consider a setting where an object needs to
be split in a way that seems fair to the interested individuals, and we study the complex-
ity of computing such a solution. Finally, in Part IV we provide a general framework for
constructing approximation schemes for a significantly wide range of computationally hard
problems.

In the following sections of the Introduction we give a brief overview of the strategic
settings and the results of each part of the thesis. The detailed model, related work and
results for each setting are presented in the corresponding chapter.

1.1 Evolutionary Games

In Part I we study the behaviour of an unstructured population of entities that interact
pairwise, by modelling it as a game. The motivation for this kind of games comes from
questions in Biology such as How do attributes of a species evolve over time? Similar
questions gave rise to an entire field of study known as Evolutionary Game Theory in the
early 60’s by Lewontin [94]. Evolutionary settings of structured populations have been
studied towards understanding ESS [90] and also the spread of diseases [95,107,109,128].
For settings of unstructured populations whose solution concept is the ESS, models of
both finite [126] and infinite [104] populations have been studied. The latter has attracted
significantly more attention since it has been shown in [126] to approximate really well the
finite case, and it is significantly easier to analyse. In this thesis only the infinite case is
considered.

In Evolutionary Game Theory a game, as defined in the seminal work of Smith and Price
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[104], involves animal species and not only humans, therefore it does not require individual
rationality or intelligence from the involved entities, contrary to a classical game. Surpris-
ingly enough, this interaction between non-rational and non-intelligent entities reduces to a
two-player symmetric game under the classical definition, whose only players are two copies
of Nature that try to reach a symmetric equilibrium. But how does individual rationality
and intelligence emerge out of nothing in this model? The answer is that since in real life
individuals that fit better than others in their environment tend to have more chances of
passing on their genes, nature “picks” them as strategies to be played in this game of life in
a way that seems “intelligent” but it is not. The same mechanism makes Natural Selection
seem an intelligent process even though there is no requirement for intelligence.

A starting point to visualize an evolutionary game of an unstructured population is to be
thought of as an infinitely repeated, multi-player, normal-form game of non-rational players.
This game models the interaction between the members of a particular species, and not
interspecies interaction. Every player plays sequentially against every other player and gets
a payoff prescribed by some payoff matrix A that quantifies her attribute’s fitness against
any other attribute. Since the population is infinite, the game is repeated for infinitely
many rounds. Each player has a single action which is an attribute (e.g. shape, size,
behaviour, etc.) hardwired in her genome and her expected payoff is the average of payoffs
she received over the infinite games played. A reasonable assumption is that the possible
attributes n of the population are finite, thus there are fractions si ≥ 0, i ∈ {1, 2, . . . , n}
of individuals of the same type i, where

∑
i si = 1, and also matrix A is finite n× n. The

whole population’s payoff is then the quantity sTAs, where s = (s1, s2, . . . , sn).
The current state of the species can be captured by the aforementioned s which is a

probability distribution on the action set and is also called a (mixed) strategy. The most
popular solution concept in such evolutionary games is the Evolutionarily Stable Strategy
(ESS), introduced in [104], which captures a notion of stability in biological systems. Sup-
pose that in the current population with strategy s another small population with strategy
t is inserted, resulting in a mix of populations. If the expected payoff of the population
playing strategy s is strictly greater than the expected payoff of the population playing any
strategy t 6= s, when t is played by an arbitrarily small fraction of the total population,
then s is an ESS. In other words, an ESS is a strategy (a mixture of genes in a population)
that cannot be invaded by a small group of any other strategy.

Via a simple algebraic manipulation it can be shown that the constraints for the exis-
tence of an ESS in the aforementioned infinitely repeated game in the infinite population can
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be reduced to the problem of finding a symmetric Nash equilibrium (s, s) in the one-shot,
symmetric, two-player game defined by payoff matrix A with the following extra property:
for any t 6= s, if tTAs = sTAs then sTAt > tTAt. The latter shows that the ESS notion is a
refinement of a strategy in a symmetric Nash equilibrium in two-player symmetric games.
That is, if an ESS is played by both players in a given symmetric game, then this is a Nash
equilibrium. However, contrary to a symmetric Nash equilibrium [113], not all two-player
symmetric games admit an ESS; an example of a game with no ESS is the well-known
Rock-Paper-Scissors game. This fact naturally leads to questions in Computer Science,
such as How hard is it to decide whether a given game possesses an ESS? In Chapter 3 we
study this question and explore the computational complexity of the decision problem for
various instances.

1.2 Games between Rational and Intelligent Entities

In Part II we study two games that involve rational and intelligent players. The first game
proceeds in discrete, unbounded time and the players have to access a common resource as
fast as they can using a given strategy but being free at the same time to deviate from it if
there is a better one. The actions of each player in this game are infinite, therefore the NE
existence theorem of Nash [113] does not apply here. We prove constructively the existence
of a common equilibrium strategy for the players that is also time-efficient. The second is
a finite, one-shot game, played on a network with two conflicting forces; the attackers and
the defender of the network. We are interested in the form of the equilibria in this game,
the complexity of finding one, and the efficiency of the equilibria from the point of view of
the defender.

1.2.1 Strategic Contention Resolution

Consider the case where many selfish users try to access a multi-access channel in discrete
time, and each user chooses a strategy (transmission protocol) that prescribes how to
access the channel. If at some time-step more than one user tries to access it, then no user
is successful and has to try again in the future. If a user at some time-step is successful,
then she no longer participates in the competition. We would like to provide the users with
a protocol, i.e. a prescription of actions for every time-step, that is fair, time-efficient, and
stable. The main question that is raised in this setting is Is there a combination of protocols
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for the users which is fair, time-efficient, and stable?

For example, putting the users in a priority queue and prescribing to them to access the
channel one after the other is optimal in terms of time-efficiency, but it seems unfair from
the perspective of the users last in the queue, since they do not trust the protocol provider
that is not corrupt. Even if the queue is created using randomization, again the same lack
of trust would be justified since the user has no proof of the way her priority number is
produced, therefore she might think that her expected time until success is greater than
that of the other players. As another example consider the case of n ≥ 3 users and a
protocol common to all users that prescribes to each one to attempt access at every time-
step, which results to infinite time until success for everyone. This protocol satisfies the
fairness and stability properties since every user is given the same protocol, and no one can
unilaterally deviate from it and lower her expected time until success, but it is clearly not
time-efficient.

In Chapter 4 we extend the aforementioned single channel setting to one with n ≥ 1

users and k ≥ 1 channels. We model it as an infinitely repeated game with n players
each of whose individual cost is the expected time until success. The protocols we seek are
anonymous, in order to guarantee fairness. An anonymous protocol does not depend on the
identity of the user, and also is run locally by her. We wish also to find efficient protocols,
meaning that the time until everyone is successful is Θ (n/k) with probability tending to 1
as n/k →∞. The last property we require for our protocols is to be equilibrium protocols.
The equilibrium notion here is the Nash equilibrium [113] and means that no user can
unilaterally deviate from the provided protocol and strictly lower her own expected time
until success.

Our extension of the model to multiple channels is motivated by the trend of the last
roughly sixteen years in the Electrical and Electronics Engineering community to design
multiple-channel medium access protocols (MAC). This deviation from the single channel
MAC protocol aimed in higher throughput and robustness against failure of a channel.
Among our results there are protocols that guarantee these properties even in the setting
with strategic/selfish users.

1.2.2 Connected Subgraph Defense Games

In Chapter 5 we turn to a game between individuals whose actions depend on a graph
structure. We consider a game on a network with k + 1 players: a defender and k ≥ 1
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attackers. Each attacker can choose any node of the network to “infect”. The defender can
choose and “clean” any connected induced subgraph of the network with λ nodes. As usual,
the players are able to choose a probability distribution over their choices. The attackers try
to maximize the infection success, i.e. the expected number of infected nodes, by avoiding
the defender, while the defender tries to minimize the infection success by catching as many
attackers as possible in expectation.

This game models the situation where opposite forces compete over a computer network.
There are many harmful softwares independently attacking a network of n nodes with
limited resources k ≤ n, since maybe the network is vast. A security software is used from
the side of the network to eliminate the threats by putting a “seed” in a computer and from
there spreading it to λ computers in total. The limitation on the size λ ≤ n again may be
due to the fact that the network is vast and the security software only manages to cover
λ nodes before a new set of attackers appears, or it could be because of budget limitation
that does not allow purchase of a global security software.

The main questions that arise in such a setting are: Given available resources λ for the
defender but no knowledge of the graph, what is the worst fraction of the attackers she can
catch if she uses her resources optimally?, and Given available resources λ for the defender,
what are the graphs that maximize the fraction of the attackers she can catch if she uses her
resources optimally? In order to analyse resource optimality in this strategic environment
one has to use tools from Game Theory and constrain the solutions to those that constitute
a Nash equilibrium; no player regrets having chosen her (mixed) strategy that attacks or
defends.

1.3 Fair Division

In Part III we turn from game-theoretic settings to a fair division setting. Fair division
problems such as “cake cutting” [17,18,31], “rent division” [65,79] and “Consensus Halving”
[133] involve selfish agents who want to maximize their own utility. However, contrary to
game-theoretic settings, the agents are not able to deviate on their own. They are given a
way for dividing an object, and they have to obey it. Even though the freedom of the agents
in this setting is removed, the hardness in such problems lies in the fairness notion that
has to be satisfied. In many fair division problems the existence of a solution is guaranteed
via a theorem from algebraic topology such as Brouwer’s fixed point theorem, Sperner’s
lemma, or Kakutani’s fixed point theorem. Therefore, a most interesting question that is
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raised regarding computational complexity is How hard is it to compute a solution that
divides fairly the object?

We deal with the Consensus Halving problem which can be described via the following
example: Suppose there is a land owned 50−50 by the two founding members of a real-estate
company. The company consists of departments each of which has different customers who
desire that land. Therefore each department has set a (in general) different price function
on the land, where the price function determines the price for any area of the land. Now
suppose that the company wants to split into two companies, and wants to do it in a fair
manner, so that the equally co-owned land will produce for both parts the same profit after
it is sold. How can the land be split in two parts such that, no matter how the departments
are allocated in the new companies, the new companies will have the same profit?

More formally, in the Consensus Halving problem an object A represented by [0, 1] is
to be divided into two halves A+ and A−, so that n agents agree that A+ and A− have the
same value, given that each agent has her personal valuation function over A. Provided
that every valuation function of the agents is bounded and continuous over A, this can
always be achieved using at most n cuts, and this fact can be proved via the Borsuk-Ulam
theorem from algebraic topology [133]. The computational problem we study is to compute
a solution to the Consensus Halving problem.

1.4 Approximation Algorithms

In Part IV we study approximation algorithms for various computationally hard problems.
We develop a general framework for constructing approximation schemes for any problem
that can be written down in an ETR formula or even an ETR augmented with expressions
beyond its grammar. ETR stands for the Existential Theory of the Reals which consists of
sentences containing only existentially quantified formulae using the connectives {∧,∨,¬}
over polynomials compared with the operators {<,≤,=,≥, >}. For example, each of the
following is a formula in ETR.

∃x∃y∃z · (x4 · y · z2 = 2) ∃x∃y · ((x2 = y) ∧ (x > y)) ∨ (x < y3)

The class ETR consists of all “yes” instances of ETR sentences, and equivalently contains
every problem that can be reduced in polynomial time to a formula in the existential theory
of the reals (ETR formula). The typical problem in ETR is to decide whether the formula
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is true, that is, whether there exist real values for the variables that satisfy the formula. It
is easy to see that the Boolean satisfiability problem can be formulated as an ETR problem,
therefore NP ⊆ ETR. Also, due to Canny [35] it is known that ETR ⊆ PSPACE and ETR is
suspected to be closer to PSPACE than to NP.

Many natural problems have been shown to be ETR-complete, mainly in Computational
Geometry (for a great survey, see [38]), but also in Game Theory regarding constrained
Nash equilibria [25–27,75,125]. In the side of approximation algorithms, Lipton, Markakis
and Mehta [96] derive an algorithm (LMM) which is a quasi-polynomial time approximation
scheme (QPTAS) for the problem of finding an ε-NE (with no additional constraints). The
LMM algorithm is based on proving that if a solution exists to a conjunction of multilinear
inequalities, then there is a proper discrete solution to the conjunction of the ε-relaxed
multilinear inequalities. Since an exact solution to the NE problem can be expressed as
such a conjunction, and because there is always a solution to it, there is always a proper
discrete solution to the conjunction of relaxed inequalities. Since the latter conjunction
corresponds to a solution to ε-NE, it suffices to find a solution to that conjunction. The
properness of the discrete solution means that it is so simple that can be found in quasi-
polynomial time for constant ε.

The aforementioned results regarding NE problems raise the following question: Is there
a broader class of problems to which the sampling technique can be applied? We answer this
in the positive by providing a sampling theorem for ETR in the case where the domain of
the variables can be described by a convex set.

1.5 Thesis Contribution

1.5.1 Evolutionary games

In Chapter 3 we are interested in exploring to what extend the problem of deciding existence
of an ESS is hard. Conitzer [49] showed that this problem is ΣP

2 -complete, while by then
it had been shown that the problem is NP-hard and coNP-hard in [67], and coDP-hard in
[115]. On the other hand, [127] showed that when the payoffs of the game are drawn from
some common distributions, then an ESS of support size 2 exists with high probability.
So the natural question that arises is whether the hard games constructed in [67] become
easy by perturbing (randomly or deterministically) its payoff values. In [108] we answer
this question in the negative. By extending the reduction of [67] we show that the problem
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remains coNP-hard even for arbitrary deterministic perturbations of these values.
En route, we introduce the notion of a robust reduction, for reductions from a problem

to another one that involves a real matrix. If it is shown that a reduction is robust, then
the reduction holds for a wide range of payoff values of the resulting problem. Starting
with the reduction of [67] that shows coNP-harness for the existence of ESS, we construct a
robust reduction and thus prove that there is a large family of symmetric bimatrix games
for which existence of ESS remains coNP-hard to decide. The robustness notion might be
of independent interest and we believe it could prove itself a useful tool towards shedding
light on the instances of game-theoretic problems that are hard for some class.

1.5.2 Games between rational and intelligent entities

1.5.2.1 Strategic contention resolution

In Chapter 4 we try to answer if there exists an anonymous, efficient, equilibrium protocol
for given numbers n ≥ 1 and k ≥ 2 of players and channels respectively. The difficulty in
the analysis and also the results themselves regarding the above question depend heavily
on the information that the players get back from the channel throughout the game. That
is because the techniques for optimizing the expected time until success for each player,
depending on what information she has, can be achieved by reducing to a Markov Chain,
a Markov Decision Process (MDP), or a Partially Observable Markov Decision Process
(POMDP). The solution of each of these three models requires increasing computational
difficulty, with the latter having no method for solution in the current literature. We study
this question in two feedback settings whose analyses correspond to POMDPs and MDPs
respectively: the acknowledgement-based feedback and the ternary feedback.

In the acknowledgement-based feedback the player gets just the information of whether
she had a successful attempt or not, only when she attempts to have access. In the ternary
feedback the user is informed about the number of pending players in each time-step re-
gardless of whether she attempted transmission or not. The only theoretical results on
these feedback settings are for a single transmission channel by Christodoulou et al. [43]
and by Fiat et al. [69].

While for the single-channel case a ternary feedback protocol with the required proper-
ties for n ≥ 1 players has been found in [69], in the acknowledgement-based feedback even
for n = 3 there is no result on the existence of an equilibrium protocol. As it turns out,
in the single-channel case with acknowledgement-based feedback, the analysis for finding
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equilibria (if any) with finite expected time until success per player becomes extremely hard
for n = 3. This is the reason why in [44] the study is restricted to finding an anonymous
protocol that prevents some pathological behaviour, but is not necessarily an equilibrium
protocol. If there are no better characterizations of equilibria than the ones we provide in
Chapter 4, then there are no known techniques to find an equilibrium for more than two
players in the single-channel setting.

Since we wish to have equilibrium protocols for more than two players, we increase
the number of channels in hope of making the proof of equilibrium existence possible and
the search for equilibria easier. In Chapter 4 for the acknowledgement-based feedback and
k ∈ {2, 3} channels we present simple, anonymous equilibrium protocols for specific fixed
number of players. For the ternary feedback and k = 2 channels we extend the result of [69]
on history-independent protocols by finding the unique anonymous, equilibrium protocol
which is also not efficient though.

Finally, for any k ≥ 1 and n ≥ 2k + 1 we present an anonymous, efficient, equi-
librium protocol for both feedback classes. These results extend those of [43] in the
acknowledgement-based feedback that considered only k = 1 and provide a new general
protocol for the ternary feedback. Our results indicate that there is a trade-off between
efficiency and the property of having finite expected time until success for a player. Proving
the existence of a protocol with the latter property for k ≥ 2 remains an open problem.

1.5.2.2 Connected subgraph defense games

In Chapter 5 we extend the line of work of Mavronicolas et al. in their seminal paper [100]
on defense games in graphs. We term the type of games we consider Connected Subgraph
Defense (CSD) games. In [100] the defender had the power to defend only two adjacent
nodes of the network, i.e. that work considered only the special case λ = 2. In our model
we have the available resources λ ∈ {1, . . . , n} of the defender as a parameter and study
the behaviour of equilibria depending on that parameter.

We study many questions related to CSD games, all of which regard equilibria. As
a first important step, we precisely characterize the Nash equilibria and defense-optimal
graphs; that is graphs that allow the best defense over all graphs. We provide an LP-based
algorithm that computes an exact equilibrium of any given CSD game, whose running time
is polynomial in

(
n
λ

)
.

We then study tree-graphs, and show a special characterization of defense-optimality
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in such graphs. This characterization is strong enough to provide us with the arguments
to prove a polynomial-time algorithm that decides whether a tree is defense-optimal, and
if it is, to output a defense-optimal Nash equilibrium. On the other hand, we prove that it
is NP-hard to find an optimal strategy if the tree is not defense-optimal.

Following the terminology of [100], we also extend the notion of Price of Defense for
any λ. The Price of Defense is defined as the minimum ratio of the total number of
attackers over the expected number of attackers that the defender catches in equilibrium
over all graphs. This notion is a measure of how bad the equilibria of the CSD game are
over all graphs. Through approximation algorithms that induce upper bounds and graph
constructions that yield lower bounds we conclude that the PoD is roughly 2n/λ meaning
that in the worst equilibrium case over all graphs the expected number of attackers caught
by the defender is kλ/2n, where k is the total number of attackers.

1.5.3 Fair division

In Chapter 6 we are interested in pinning down the complexity of computing an exact
solution to the Consensus Halving problem. Recent work has shown that the approximate
version of this problem is PPA-complete [71,72]. Here we show that the exact version is
much harder (under standard complexity assumptions). In particular, finding a solution
with n agents and n cuts is FIXP-hard, and deciding whether there exists a solution with
fewer than n cuts is ETR-complete. ETR stands for the “Existential Theory of the Reals”
class, which is between NP and PSPACE and suspected to be closer to PSPACE.

In order to capture the precise complexity of the problem we define a new complexity
class, named BU, which captures all problems that can be reduced to solving an instance
of the typical problem of BU, namely Borsuk-Ulam, exactly. The Borsuk-Ulam problem is
a search problem that asks for antipodal points on the surface of an (n + 1)-dimensional
sphere, that are mapped to the same point on Rn via a function represented by polynomial
size algebraic circuits over basis {+, ∗,−,max,min} with rational constants. The existence
of such antipodal points is guaranteed by the Borsuk-Ulam theorem, a well known result
in algebraic topology [133].

Furthermore, we show that FIXP ⊆ BU ⊆ TFETR and that LinearBU = PPA, where
LinearBU is the subclass of BU in which the Borsuk-Ulam instance is specified by a linear
arithmetic circuit. The latter is analogous to the result that LinearFIXP = PPAD by
Etessami and Yannakakis in [66] establishing a surprising relation between the class FIXP
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of exact solutions via Brouwer’s fixed point theorem and the class PPAD of solutions proven
via the parity argument on directed graphs. Our results indicate that BU is indeed a class on
its own, which has more encoding power than FIXP. Such a fact in the computational world
would agree with the mathematical fact that the Borsuk-Ulam theorem implies the fixed-
point theorem of Brouwer [140], the theorem that guarantees the existence of fixed-points
in the typical problem of FIXP.

1.5.4 Approximation algorithms

Finally, in Chapter 7 we provide efficient algorithms that output approximate solutions
to computationally hard problems. We first show that the general ETR problem whose
variables are not constrained in a bounded domain, even if the formula is relaxed by ε, is
ETR-complete. Since the completeness proof heavily relies on the fact that the variables
are not constrained, we consider the general ETR problem whose variables are constrained
in a bounded convex set, namely “constrained ε-ETR”. The main result of Part IV is an
extension of the sampling technique of Lipton-Markakis-Mehta (LMM) [96] which applies
to constrained ε-ETR. This yields an algorithm that, depending on the parameters of the
problem under examination, can be a PTAS or a QPTAS.

In particular, we initiate our set of results by proving a sampling LMM-like theorem for
the existence of ε-close-to-optimal solutions under some objective of a degree-d polynomial
function: the degree of every of this function’s term is exactly d ≥ 1. The proof of LMM has
a bottleneck at d = 1, meaning that it works only for multilinear polynomial functions, but
not for higher than degree-1 functions. Extending this proof is the crucial result which opens
the door for consecutive results that finally lead to our main theorem. These consecutive
results, one by one add a parameter to the solution that affects its quality; and the quality,
in turn, affects the running time of the proposed algorithm that finds the solution. We
make sure in each step that the solution quality remains in desired bounds, so that the
solution of our final theorem, parameterized by all the required parameters, has quality
high enough to yield an algorithm as efficient as possible.

There is a plethora of search problems that can be captured by an ETR formula. Hope-
fully, when this formula is relaxed, a solution to it corresponds to the approximate version
of the initial problem. In Part IV we present problems from a variety of fields as examples
of what our method can do: unconstrained or constrained approximate Nash equilibrium,
Shapley games, approximate Consensus Halving with polynomial valuation functions, op-
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timization problems with polynomial functions, tensor problems, and several problems in
computational geometry. We use our result to create several new PTAS and QPTAS algo-
rithms for the aforementioned problems.
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Chapter 2

Preliminaries

In this chapter we set the notation that will be typically used throughout the thesis. Unless
it is stated otherwise in the respective chapter, the notation established here is followed.
We also provide some basic definitions of Algorithmic Game Theory and Graph Theory
together with some preliminary results from bibliography.

2.1 Sets

Given a set C with cardinality c := |C|, if it is C = {1, 2, . . . , c}, we denote the set also
by [c]. Conversely, if we denote a set by [c], we imply that [c] = {1, 2, . . . , c}. Rn≥0 denotes
the set of non-negative real number vectors (x1, x2, .., xn). We denote the standard (n−1)-
simplex by ∆n :=

{
(x1, x2, .., xn) ∈ Rn≥0 :

∑n
i=1 xi = 1

}
.

2.2 Bimatrix Games

A bimatrix game is a two-player strategic form game Γ = (S1, S2, u1, u2) defined by two
finite sets S1, S2 of pure strategies (also called actions) and utility (or payoff ) functions
u1 : S1 × S2 7→ R and u2 : S1 × S2 7→ R for the row-player and the column-player,
respectively. These payoff functions define payoff matrix AΓ = (ai,j) and BΓ = (bi,j) for
players 1 and 2 respectively, where ai,j = u1(i, j) and bi,j = u2(i, j) for i ∈ S1, j ∈ S2. For
simplicity, assume S1 = [n] and S2 = [m], i.e., pure strategies are identified with integers
i ∈ [n] and j ∈ [m] for each player respectively.

A bimatrix game is called symmetric if S1 = S2 =: S and u1(i, j) = u2(j, i) for all

15
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i, j ∈ S. If we are only concerned with symmetric two-player strategic form games, we
write (S, u1) as shorthand for (S, S, u1, u2), since u2(j, i) = u1(i, j) for all i, j ∈ S. In a
symmetric bimatrix game, the column-player’s payoff matrix is the transpose of the row-
player’s payoff matrix, i.e. BΓ = ATΓ . Note that AΓ is not necessarily symmetric, even if Γ

is a symmetric game.

A (mixed) strategy s = (s(1), ..., s(n))T over some set S (with |S| = n) of pure strategies
is a vector that defines a probability distribution on S and we will denote by s(i) the
probability assigned by strategy s on the pure strategy i ∈ S. Thus, s ∈ ∆n. Strategy
s is called pure if and only if s(i) = 1 for some i ∈ S. In that case we identify s with i.
For brevity, we generally use the term strategy to refer to a mixed strategy s, and indicate
otherwise when the strategy is pure.

Consider the strategies s ∈ ∆n, t ∈ ∆m. The expected payoff function Uk : ∆n ×
∆m 7→ R for player k ∈ 1, 2 is given by Uk(s, t) =

∑
i,j∈S s(i)t(j)uk(i, j), for all strategies

s ∈ ∆n, t ∈ ∆m. Note that when the game is symmetric, then U1(s, t) = sTAΓt and
U2(s, t) = sTATΓ t = tTAΓs.

For player k ∈ {1, 2}, strategy t ∈ ∆n is a best response to s if Uk(t, s) =

maxt′∈∆n Uk(t
′, s). The support supp(s) of s is the set {i ∈ S : s(i) > 0} of pure strategies

which are assigned non-zero probability in s. A pair of strategies (s, t) is a Nash equilib-
rium (NE) for game Γ if s is a best response to t and t is a best response to s. A Nash
equilibrium is guaranteed to exist in every finite bimatrix game [113]. Its formal definition
is the following.

Definition 1 (Nash equilibrium). A strategy profile (s, t) is a Nash equilibrium for the
bimatrix game Γ = (S1, S2, u1, u2) if sTAΓt ≥ s′TAΓt for every s′ ∈ ∆n and sTBΓt ≥
sTBΓt

′ for every t′ ∈ ∆m.

In a finite symmetric bimatrix game a symmetric Nash equilibrium always exists [113].
Its formal definition is the following.

Definition 2 (Symmetric Nash equilibrium). A strategy profile (s, s) is a symmetric Nash
equilibrium for the symmetric bimatrix game Γ = (S, u1) if sTAΓs ≥ s′TAΓs for every
s′ ∈ ∆n.
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2.3 Graph Theory

An undirected graph G is an ordered pair (V,E) consisting of a set V of vertices and a set
E of edges, which consists of unordered pairs of elements of V . We usually denote n := |V |.

Definition 3 (Adjacency matrix). The adjacency matrix of the above undirected graph G
is the n× n matrix AG := (auv), where auv is 1 if (uv) ∈ E, and 0 otherwise.

Definition 4 (Clique). A clique of an undirected graph G is a complete subgraph of G, i.e.
one whose vertices are joined with each other by edges.

The following is a very important theorem by Motzkin and Straus that establishes an
interesting relation between the maximum-size clique in a graph and quadratic optimization
over the simplex.

Theorem 1 ([111]). Let G = (V,E) be an undirected graph with maximum clique size d.
Then maxx∈∆n x

TAGx = d−1
d .

Etessami and Lochbihler used the above theorem to prove the following, more general
result.

Corollary 1 ([67]). Let G = (V,E) be an undirected graph with maximum clique size d
and let ` ∈ R≥0. Let Λ` =

{
x ∈ Rn≥0 :

∑n
i=1 xi = `

}
. Then maxx∈Λ` x

TAGx = d−1
d `2.

2.4 Complexity Classes

In the standard Turing machine model, a (computational) problem is defined as a function
f that needs to be computed by a Turing Machine (TM). The input of a problem is the
arguments of function f , and the result of f is the problem’s output. An algorithm for
computing f is a TM which encodes a set of finite instructions whose execution terminates
in finite time. The input to an algorithm is a particular instance of the problem and the
output is the computed function f . Given a problem and an algorithm for it, the (worst-
case running) time of the algorithm is the maximum time over all instances of the problem
needed for the computation of f . When f is Boolean, meaning that its output can only be
a single bit representing the answers “yes” or “no”, the problem is called decision problem.
If f can output a computed value greater than a single bit, the problem is called function
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problem (or search problem). A language corresponding to a decision problem P is the set
containing all bit strings encoding an input of P for which the answer is “yes”.

A complexity class is a set of problems (functions) whose computation can be done by
some algorithm within specific running time. Equivalently, a complexity class of decision
problems can be defined as the set of languages corresponding to the decision problems
of the class. In this section we describe the complexity classes that are mentioned in this
thesis.

PPP. Contains all decision problems for which there are TMs that decide them in time
polynomial in the input size.

NPNPNP. Contains all decision problems for which, any “yes” instance can be verified by a TM
in time polynomial in the input size using a certificate of size polynomial in the input
size. Equivalently, this class contains all decision problems that can be decided in time
polynomial in the input size by a non-deterministic TM.

coNPcoNPcoNP. Contains all decision problems for which, any “no” instance can be verified by a TM
in time polynomial in the input size using a disqualification of size polynomial to the input
size.

DPDPDP. Defined in [118], consists of all languages L where L = L1 ∩ L2 and L1 ∈ NP and
L2 ∈ coNP. DP is a syntactic class, not to be confused with NP ∩ coNP.

coDPcoDPcoDP. Consists of all the complement languages L̄ of L ∈ DP, where L̄ = L̄1 ∪ L̄2 and
L̄1 ∈ coNP and L̄2 ∈ NP. Clearly, NP ⊆ coDP, coNP ⊆ coDP and coDP ⊆ ΣP

2 .

FNPFNPFNP. Called Function NP, this class contains all binary relations R(x, y) for which the
following hold:

• bit string y is at most polynomially larger than bit string x, and

• given x and y, there is a TM that decides whether R(x, y) is a “yes” instance in time
polynomial in the input size.
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Informally, FNP contains all function problems whose corresponding decision problems are
in NP. When the answer to the corresponding decision problem is “yes”, then we require
value y to be the output of the problem in FNP.

TFNPTFNPTFNP. Called Total Function NP, this class was defined in [105], and it is the subclass of FNP
that contains all binary relations R(x, y) of FNP for which, additionally, there is at least one
y for every x that makes R(x, y) a “yes” instance. Informally, TFNP contains all function
problems of FNP which additionally are total, i.e. any instance of their corresponding
decision version is a “yes” instance. Subsets of TFNP have been defined in an attempt to
capture the exact complexity of each individual problem based on the attribute that makes
them total. PPAD and PPA (see below) are such classes that contain problems whose solution
is guaranteed by specific theorems on graphs.

PPADPPADPPAD. Named after the Polynomial Parity Argument in Directed graphs, this class is a
subset of TFNP, and contains all problems whose underlying proof of totality is via the
argument indicated by the class’ name. The argument is that since the sum of all degrees
of a directed graph is even, given an odd-degree vertex, another odd-degree vertex exists.
The typical problem of the class, namely End-of-a-Line, gives an odd-degree vertex and
asks to find another one. If the graph is given explicitely, e.g. by an adjacency matrix,
then an easy polynomial-time algorithm can find the required odd-degree vertex. However,
in this class, what is given as input is two circuits S and P that return for any vertex, its
successor and predecessor in the graph. Then the size of the graph can be exponential in
the input size of the problem.

Formally, the class contains all polynomial-time reducible problems to the End-of-a-

Line problem:

Definition 5 ([50]). Given two circuits S and P , with n input bits and n output bits
each, such that P (0n) = 0n 6= S(0n), find an input x ∈ {0, 1}n such that P (S(x)) 6= x or
S(P (x)) 6= x 6= 0n.

PPAPPAPPA. Named after the Polynomial Parity Argument in undirected graphs, this class is also
a subset of TFNP, and contains all problems whose underlying proof of totality is via the
same argument as the one of PPAD, but for undirected graphs. Clearly, it is PPAD ⊆ PPA ⊆
TFNP ⊆ FNP.
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ETRETRETR. Defined in [125], it is also denoted ∃R. This class is named after the Existential
Theory of the Reals (ETR), which is the set of true sentences of the form

(∃x1, . . . , xn)φ(x1, . . . , xn),

where φ is a quantifier-free (∨,∧,¬)-Boolean formula over the signature (0, 1,+, ∗, <,≤,=),
and the sentence is interpreted over the universe of real numbers. ETR is the corresponding
class of ETR whose typical problem is to decide whether a system of multivariate polynomial
(with rational coefficients) equalities/inequalities over the reals is satisfiable. It is NP ⊆
ETR ⊆ PSPACE due to [35] and the fact that the NP-complete problem satisfiability can
be written in ETR form. ETR can be thought of as the analogue of NP in the Blum-Shub-
Smale model of computation [28].

FETR, TFETRFETR, TFETRFETR, TFETR. We define FETR and TFETR in a way analogous to that of FNP and TFNP. In
FETR are all function problems whose corresponding decision problem is in ETR. When the
answer to the corresponding decision problem is “yes” for some input x, then in the function
problem we require as output the computed function y. In TFETR are all function problems
of FETR, which additionally are total, meaning that any instance of their corresponding
decision version is a “yes” instance. Just like TFNP, we believe that TFETR contains subclasses
which are characterized by the theorem of existence that guarantees a solution in the
problems of each class. Such classes are FIXP (see below) which seems to be an analogue
of PPAD, and a new class we define in Chapter 6, called BU, which seems to be an analogue
of PPA, but so far lacks a complete problem.

FIXPFIXPFIXP. Defined in [66], this class captures search problems that can be cast as Fixed
Point computation problems for functions represented by polynomial size algebraic circuits
(straight line programs) over basis {+, ∗,−, /,max,min} with rational constants. The typ-
ical problem of FIXP is, given a function F as described above whose domain is compact
convex and mapped to itself, to compute a fixed-point, i.e. a point for which F (x) = x.
The existence of such a point is guaranteed by Brouwer’s fixed-point theorem [34]. It has
been shown in [66] that the linear subclass of FIXP, called LinearFIXP, in which the ∗ of
the basis is replaced by multiplication with a rational constant (and therefore the input
circuit is linear), coincides with PPAD.
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For a more detailed presentation of the landscape of complexity classes, the reader is referred
to the excellent books [13,119]
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Evolutionary Games
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Chapter 3

Evolutionarily Stable Strategies in
Infinite Populations

The concept of an evolutionarily stable strategy (ESS) is a refinement of Nash equilibrium
in 2-player symmetric games introduced by Smith and Price [104], in order to explain
behaviours of living entities to which nature has converged through evolution. The existence
of ESSs in a finite 2-player symmetric game is not guaranteed, a fact that gives rise to the
computational problem of deciding whether a game possesses an ESS. The problem has
been shown to be ΣP

2 -complete by Conitzer [49], following the preceding important works
by Nisan [115] and by Etessami and Lochbihler [67]. The latter, among other results,
proved that deciding the existence of an ESS is both NP-hard and coNP-hard. In this work
we introduce a reduction robustness notion and we show that deciding the existence of an
ESS remains coNP-hard for a wide range of games even if we arbitrarily perturb within
some intervals the payoff values of the game under consideration.

On the other hand, Hart and Rinott [127] showed that when the payoffs of the game
are drawn from some common distributions, then an ESS of support size 2 exists with high
probability. So the natural question that arises is whether the hard games constructed
in [67] become easy by perturbing (randomly or deterministically) its payoff values. We
answer this question in the negative. By generalizing the reduction of the latter work we
show that the problem remains coNP-hard even for arbitrary deterministic perturbations of
these values.

The results of this chapter have been published in the Proceedings of the 10th Inter-
national Conference on Algorithms and Complexity (CIAC 2017) [108] (co-authored with

23
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Spirakis).

3.1 Overview

3.1.1 Concepts of evolutionary games and stable strategies

Evolutionary game theory has proven itself to be invaluable when it comes to analysing
complex natural phenomena. A first attempt to apply game theoretic tools to evolution
was made by Lewontin [94] who saw the evolution of genetic mechanisms as a game played
between a species and nature. He argued that a species would adopt the “maximin” strat-
egy, i.e. the strategy which gives it the best chance of survival if nature does its worst.
Subsequently, his ideas where improved by the seminal work of Smith and Price in [104]
and Smith in [134] where the study of natural selection’s processes through game theory
was triggered. They proposed a game-theoretic model in order to decide the outcome of
groups consisting of living individuals, conflicting in a specific environment.

The key insight of evolutionary game theory is that a set of behaviours depends on the
interaction among multiple individuals in a population, and the prosperity of any one of
these individuals depends on that interaction of its own behaviour with that of the others.
An evolutionarily stable strategy (ESS) is defined as follows: An infinite population consists
of two types of infinite groups with the same set of pure strategies; the incumbents, that
play the (mixed) strategy s and the mutants, that play the (mixed) strategy t 6= s. The
ratio of mutants over the total population is ε. A pair of members of the total population is
picked uniformly at random to play a finite symmetric bimatrix game Γ with payoff matrix
AΓ. Strategy s is an ESS if for every t 6= s there exists a constant ratio εt of mutants
over the total population, such that, if ε < εt the expected payoff of an incumbent versus
a mutant is strictly greater than the expected payoff of a mutant versus a mutant. For
convenience, we say that “s is an ESS of the game Γ”.

The concept of ESS tries to capture the resistance of a population against invaders. This
concept has been studied in two main categories: infinite, and finite population groups. The
former was the one where this Nash equilibrium refinement was first defined and presented
by Smith and Price [104]. The latter was studied by Schaffer [126] who showed that the
finite population case is a generalization of the infinite population case. The current work
deals with the infinite population case which can be mathematically modelled in an easier
way, and in addition, its results may provide useful insight for the finite population case.
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3.1.1.1 A useful example

In order for the reader to conceive the notion of the evolutionarily stable strategy, we give
a simple example of the infinite population case. Let us consider a particular species of
crab and suppose that each crab’s fitness in a specific environment is mainly decided by its
capability to find food and use the nutrients from the food in an efficient way. In our crab
population a particular mutation makes its appearance, so the crabs born with the mutation
grow a significantly larger body size. We can picture the population now, consisting of two
distinct kinds of crabs; ε fraction of the population being the large ones and 1− ε being the
small ones. The large crabs, in fact, have difficulty maintaining the metabolic requirements
of their larger body structure, meaning that they need to divert more nutrients from the
food they eat and as a consequence, they experience a negative effect on fitness. However,
the large crabs have an advantage when it comes to conflicting with the small ones, so
they claim an above-average share of the food. To make our framework simple, we will
assume that food competition involves pairs of crabs, drawn at random, interacting with
each other once, but the reasoning of the analysis is equivalent to interactions that occur
(simultaneously or not) between every possible pair, with each individual receiving the
mean of the total fitness. When two crabs compete for food, we have the following “rules”
that apply: (1) When crabs of the same body size compete, they get equal shares of the
food. (2) When a large crab competes with a small crab, the large one gets the majority
of the food. (3) In all cases, large crabs experience less of a fitness benefit from a given
quantity of food, since some of it is diverted into maintaining their expensive metabolism.
(4) When two large crabs compete, they experience even less of a fitness benefit since they
put considerable effort in fighting. The following bimatrix encloses the aforementioned rules
in the context of a game.

Crab 2
Small Large

Crab 1 Small 7 , 7 1 , 9
Large 9 , 1 4 , 4

In this setting, we call a given strategy evolutionarily stable if, when the whole popula-
tion is using this strategy, any small enough group of invaders using a different strategy will
eventually die off over multiple generations. This idea is captured in terms of numerical
payoffs by saying that, when the entire population is using a strategy s, then an arbitrarily
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small ratio of invaders over the new (blended) population will have strictly lower fitness
than the initial population has in the new population. Since fitness translates into repro-
ductive success, and consequently passing one’s genes on to future generations at higher
frequencies, it is assumed by evolutionary principles [104] that strictly lower fitness is the
reason for a subpopulation (like the users of strategy t) to shrink over time through multiple
generations and eventually become extinct.

Let us see if any of the two pure strategies is evolutionarily stable. Suppose a population
of small crabs gets invaded by a group of large ones (of ratio ε over the whole population).
The expected payoff (fitness) of a small crab is:

7(1− ε) + 1ε = 7− 6ε because it meets a small crab with probability

1− ε and a large one with probability ε.

The expected payoff of a large crab is:

9(1− ε) + 4ε = 9− 5ε because it meets a small crab with probability

1− ε and a large one with probability ε.

Clearly, no ε can make the payoff of the small crabs greater than that of the large ones.
So, the pure strategy Small is not an ESS. Now suppose a population of large crabs gets
invaded by a group of small ones (of ratio ε over the whole population). The expected
payoff (fitness) of a large crab is:

4(1− ε) + 9ε = 4 + 5ε because it meets a large crab with probability

1− ε and a small one with probability ε.

The expected payoff of a small crab is:

1(1− ε) + 7ε = 1 + 6ε because it meets a large crab with probability

1− ε and a small one with probability ε.

In this case, for every ε ∈ (0, 1) the payoff of the large crabs is greater than that of the
small ones. So, the pure strategy Large is an ESS.
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3.1.1.2 The big picture

The concept of ESSs can also be extended to mixed strategies. We can think of three
natural ways to interpret the notion of probability assignment on the pure strategies of a
population. One is, each individual is preprogrammed (through its DNA) to play just a
specific pure strategy from a set of strategies and we say that individuals with the same
pure strategy are of the same type. The group of individuals can be considered to behave
as a player with a mixed strategy, defined as a probability vector over the pure strategies
used by the group. Each pure strategy’s probability equals the ratio of its type’s members
over the total population (type’s frequency), because of the simple assumption made, that
when two groups conflict one individual from each group is drawn equiprobably to play
a bimatrix game. Another one is, each individual is preprogrammed to play a particular
mixed strategy. Thus, whoever is drawn will play the specific mixed strategy. The last one is
the most general way to think of it, as a blend of the former cases. A group’s mixed strategy
is defined by its probabilities over the available pure strategies. As soon as one individual
is equiprobably picked from each group, the probability over a pure strategy of a group is
determined by the sum of the probability each type is picked times the probability this type
plays the specific pure strategy. Referring to our previous example (Section 3.1.1.1), the
following three infinite populations of crabs are equivalent: (i) One with 2/3 of type Small
and 1/3 of type Large. (ii) One with every crab playing the mixed strategy [2/3: Small,
1/3: Large]. (iii) One with 1/4 of type Small, 1/4 playing the mixed strategy [1/6: Small,
5/6: Large] and 1/2 playing the mixed strategy [3/4: Small, 1/4: Large]. Of course in the
particular example the individuals cannot have mixed strategies, each one is committed to
have a body size for life, but the reasoning holds for other games with strategies that do
not exclude each other such as in the Stag-Hunt game. We should mention here, that some
games such as Hawk-Dove do not have a pure ESS, but they have a mixed ESS. Other
games do not have either.

3.1.2 Previous work

Searching for the exact complexity of deciding if a bimatrix game possesses an ESS, Etes-
sami and Lochbihler [67] invent a nice reduction from the complement of the clique prob-
lem to a specific game with an appointed ESS, showing that the ess problem is coNP-hard.
They also show a polynomial time reduction from the sat problem to ess, thus proving
that ess is NP-hard too. This makes impossible for the ess to be NP-complete, unless NP
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=coNP. Furthermore, they provide a proof for the general ess being contained in ΣP
2 , the

second level of the polynomial-time hierarchy, leaving open the question of what is the
complexity class in which the problem is complete.

A further improvement of those results was made by Nisan [115], showing that, given
a payoff matrix, the existence of a mixed ESS is coDP-hard. The hardness result is due
to a relatively simple reduction from the coDP-complete problem co-exact-clique(for the
definition see [118]), to ess. A notable consequence of both [67] and [115] is that the
problem of recognizing a mixed ESS, once given along with the payoff matrix, is coNP-
complete. However, the question of the exact complexity of ESS existence, given the payoff
matrix, remained open. A few years later, Conitzer finally settled this question in [49],
showing that ess is actually ΣP

2 -complete.

On the contrary, Hart et al. [127] showed that if the symmetric bimatrix game defined
by a n × n payoff matrix with elements independently randomly chosen according to a
distribution F with exponential or faster decreasing tail, such as exponential, normal or
uniform, then the probability of having an ESS with just 2 pure strategies in the support
tends to 1 as n tends to infinity. In view of this result, and since the basic reduction of [67]
used only 3 payoff values, it is interesting to consider whether ESS existence remains hard
for arbitrary payoffs in some intervals.

3.1.3 Contribution and a roadmap for the chapter

In the reduction of Etessami and Lochbihler that proves coNP-hardness of ess the values of
the payoffs used, are 0, k−1

k and 1, for k ∈ N. A natural question is if the hardness results
hold when we arbitrarily perturb the payoff values within respective intervals (in the spirit
of smoothed analysis [138]). In our work we extend the aforementioned reduction and show
that the specific reduction remains valid even after significant changes of the payoff values.

We can easily prove that the evolutionarily stable strategies of a symmetric bimatrix
game remain the exact same if we add, subtract or multiply (or do all of the aforementioned)
with a positive value its payoff matrix. However, that kind of value modification forces the
entries of the payoff matrix to change in an entirely correlated manner, hence it does not
provide an answer to our question. In this work, we prove that if we partition the payoff
matrix into parts of entries with the same value, arbitrary independent perturbations of
those values within certain intervals do not affect the validity of our reduction. In other
words, we prove that deciding ESS existence remains hard even if we perturb the payoff
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values associated with the reduction. En route we give a definition of “reduction robustness
under arbitrary perturbations” and show how the reduction under examination adheres to
this definition.

In contrast, it was shown in [127] that if the payoffs of a symmetric game are random and
independently chosen from the same distribution F with “exponential or faster decreasing
tail” (e.g. exponential, normal or uniform), then an ESS (with support of size 2) exists
with probability that tends to 1 when n tends to infinity.

One could superficially get a non-tight version of our result by saying that (under
supposed continuity assumptions in the ESS definition) any small perturbation of the payoff
values will not destroy the reduction. However, in such a case (a) the continuity assumptions
have to be precisely stated and (b) this does not explain why the ESS problem becomes
easy when the payoffs are random [127].

In fact, the value of our technique is, firstly, to get as tight as possible ranges of the
perturbation that preserve the reduction (and the ESS hardness) without any continuity
assumptions, and secondly, to indicate the basic difference from random payoff values (which
is exactly the notion of partitioning the payoffs into groups in our definition of robustness,
and the allowance of arbitrary perturbation within some interval in each group). For
the reduction to be preserved when we independently perturb the values (in each of the
resulting parts arbitrarily), one must show that a system of inequalities has always a feasible
solution, and we manage to show this in our final theorem. Our result seems to indicate
that existence of an ESS remains hard despite a smoothed analysis [138].

An outline of the chapter is as follows: In Section 3.2 we define the robust reduction
notion and we provide a first extension of the aforementioned reduction by [67]. In Section
3.3 we provide another extended reduction, based on the one from [67], that is essentially
modified in order to be robust. In Section 3.4 we give our main result.

3.1.4 Definitions and preliminary results

A central problem of this chapter is the clique problem.

Definition 6 (clique). Given an undirected graph G and a number k, we are asked whether
there is a clique of size k.

A definition of ESS equivalent to that presented in Section 3.1.1 is:

Definition 7 (Evolutionarily stable strategy). A (mixed) strategy s ∈ X is an evolution-
arily stable strategy (ESS) of a two-player symmetric game Γ if:
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1. (s, s) is a symmetric NE of Γ, and

2. if t ∈ X is any best response to s and t 6= s, then U1(s, t) > U1(t, t).

Due to [113], we know that every symmetric game has a symmetric Nash equilib-
rium. The same does not hold for evolutionarily stable strategies (for example “rock-paper-
scissors” does not have any pure or mixed ESS). The ess problem is the following.

Definition 8 (ess). Given a symmetric two-player normal-form game Γ, we are asked
whether there exists an evolutionarily stable strategy of Γ.

Theorem 1 of Motzkin and Straus (see Chapter 2) gives us the following corollary.

Corollary 2. Let G = (V,E) be an undirected graph with maximum clique size d. Let Aτ,ρG
be a modified adjacency matrix of graph G where its entries with value 0 are replaced by
τ ∈ R and its entries with value 1 are replaced by ρ ∈ R. Let ∆1 =

{
x ∈ Rn≥0 :

∑n
i=1 xi =

1
}
. Then maxx∈∆1 x

TAτ,ρG x = τ + (ρ− τ)d−1
d .

Proof.

xTAτ,ρG x = xT [τ · 1 + (ρ− τ) ·AG]x , where 1 is the n× n matrix with value 1

in every entry.

= τ + (ρ− τ) · xTAGx , and by Theorem 1 the result follows.

3.2 Robust Reductions

Definition 9 (Neighbourhood). Let v ∈ R. An (open) interval I(v) = [a, b] (I(v) = (a, b))
with a < b where a ≤ v ≤ b, is called a neighbourhood of v of range |b− a|.

Definition 10 (Robust reduction under arbitrary perturbations of values). We are given
a valid reduction of a problem to a strategic game that involves a real matrix A of payoffs
as entries aij. A is partitioned into m parts, with each part’s entries having the same value
v(t), for t ∈ {1, 2, ...m}. Let I(v(t)) 6= ∅ be a neighbourhood of v(t) and w(t) ∈ I(v(t))

be an arbitrary value in that neighbourhood. The reduction is called robust under arbitrary
perturbations of values if it is valid for all the possible matrices W with entries w(t).
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3.2.1 A first extension of the reduction from the complement of the
clique problem to ess

In the sequel we extend the idea of K. Etessami and A. Lochbihler [67] by giving sufficient
conditions in order for the reduction to hold. We replace the zeros and ones of their
reduction with rational numbers τ and ρ respectively, and determine their acceptable values
so that the reduction still goes through.

Given an undirected graph G = (V,E) we construct the following game Γk,τ,ρ(G) =

(S, u1) for λ(k) = k−1
k , where k ∈ N, and suitable 0 < τ < ρ < 1 whose values are

determined in Theorem 2. Note that from now on we will only consider rational τ and ρ
so that every payoff value of the game is rational.

S = V ∪ {a, b, c} are the strategies for the players where a, b, c /∈ V .
n = |V | is the number of nodes.

• u1(i, j) = ρ for all i, j ∈ V with (i, j) ∈ E .

• u1(i, j) = τ for all i, j ∈ V with (i, j) /∈ E .

• u1(z, a) = ρ for all z ∈ S \ {b, c} .

• u1(a, i) = λ(k) for all i ∈ V .

• u1(y, i) = ρ for all y ∈ {b, c} and i ∈ V .

• u1(y, a) = τ for all y ∈ {b, c} .

• u1(z, y) = τ for all z ∈ S and y ∈ {b, c} .

An example of a graph G with 3 nodes is shown in Figure 3.1. The payoff matrix of
the strategic game derived from G is shown in Table 3.1. The transpose of it is the payoff
matrix of the column-player.

In the sequel we shall use two corollaries of the Motzkin and Strauss theorem, namely,
Corollary 2 and Corollary 1.

Theorem 2. Let G = (V,E) be an undirected graph. The game Γk,τ,ρ(G) with λ(k) = k−1
k

and

• ρ ∈
(

1− 4
(n+1)2

, 1− 1
(n+1)2

]
and τ ∈

[
(1− ρ)(n− 1), ρ− (1−

√
1− ρ)2

)
or
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2

1 3

Figure 3.1: Example: the graph G.

a b c 1 2 3
a ρ τ τ (k − 1)/k (k − 1)/k (k − 1)/k
b τ τ τ ρ ρ ρ
c τ τ τ ρ ρ ρ
1 ρ τ τ τ ρ τ
2 ρ τ τ ρ τ ρ
3 ρ τ τ τ ρ τ

Table 3.1: The payoff matrix of the row player in which we have encoded graph G.

• ρ ∈
(

1− 1
(n+1)2

, 1
)

and τ ∈
[
(1− ρ)(n− 1), (1− ρ)(n− 1) + 1

n+1

)
has an ESS if and only if G has no clique of size k.

Proof. Let G = (V,E) be an undirected graph with maximum clique size d. We consider
the game Γk,τ,ρ(G) above. Suppose s is an ESS of Γk,τ,ρ(G).

For the reduction we will prove by contradiction three claims, whose combined state-
ments imply that the only possible ESS s of Γk,τ,ρ(G) is the pure strategy a. Here we
should note that these three claims hold not only for the aforementioned intervals of τ and
ρ, but for any τ, ρ ∈ R for which τ < ρ.

Claim 1. The support of any possible ESS s of Γk,τ,ρ(G) does not contain b or c (supp(s)∩
{b, c} = ∅).

Proof. Suppose supp(s) ∩ {b, c} 6= ∅.
Let t 6= s be a strategy with t(i) = s(i) for i ∈ V , t(y) = s(b) + s(c) and t(y′) = 0 where

y, y′ ∈ {b, c} such that y 6= y′ and s(y) = min{s(b), s(c)}. Since u1(b, z) = u1(c, z) for all
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z ∈ S,

U1(t, s) =
∑
i∈V

t(i)U1(i, s) + (t(b) + t(c))U1(b, s) + t(a)U1(a, s) ,

U1(s, s) =
∑
i∈V

s(i)U1(i, s) + (s(b) + s(c))U1(b, s) + s(a)U1(a, s) ,

which yields U1(t, s) = U1(s, s) and so t is a best response to s. Also,

U1(s, t) =
∑
i∈V

s(i)U1(i, t) + (s(b) + s(c))U1(b, t) + s(a)U1(a, t) ,

U1(t, t) =
∑
i∈V

t(i)U1(i, t) + (t(b) + t(c))U1(b, t) + t(a)U1(a, t) ,

which yields U1(s, t) = U1(t, t). But this is a contradiction since it should be U1(s, t) >

U1(t, t) as s is an ESS.

Claim 2. The support of any possible ESS s of Γk,τ,ρ(G) contains a.

Proof. Suppose supp(s) ⊆ V .
Let us denote by AG the adjacency matrix of the graph G. Then,

U1(s, s) =
∑
i,j∈V

s(i)s(j)u1(i, j) = xTAG,τ,ρx

≤ τ + (ρ− τ)
d− 1

d
(by Corollary 2)

< ρ = U1(b, s) for every ρ > τ .

But this is a contradiction since s is an ESS and therefore a NE. From Claim 1 and Claim
2, it follows that a ∈ supp(s), i.e. s(a) > 0 .

Claim 3. s(a) = 1 .

Proof. Suppose s(a) < 1.
Since (s, s) is a NE, a is a best response to s and a 6= s. Then

U1(s, a) =
∑

z∈supp(s)

s(z)u1(s, a) = ρ = U1(a, a).
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But this is also a contradiction since it should be U1(s, a) > U1(a, a) as s is an ESS.
Therefore, the only possible ESS of Γk,τ,ρ(G) is the pure strategy a.

Now we show the following lemma, which concludes also the proof of Theorem 2.

Lemma 1. The game Γk,τ,ρ(G) with the requirements of Theorem 2 has an ESS (strategy
a) if and only if there is no clique of size k in graph G.

Proof. We consider two cases for k:

Case 1: d < k

Let t 6= a be a best response to a. Then supp(t) ⊆ V ∪ {a} .
Let r =

∑
i∈V t(i). So r > 0 (t 6= a) and t(a) = 1 − r . Combining Corollary 2 and 1

we get,

U1(t, t)− U1(a, t) =
∑
i,j∈V

t(i)t(j)u1(i, j) + r · t(a) · ρ+

+ t(a) · r · k − 1

k
+ t(a)2 · ρ−

[
r · k − 1

k
+ t(a) · ρ

]
≤
[
τ + (ρ− τ)

d− 1

d

]
r2 + r(1− r) · ρ+

+ (1− r)rk − 1

k
+ (1− r)2 · ρ− rk − 1

k
− (1− r) · ρ

=
[
τ + (ρ− τ)

d− 1

d

]
r2 − k − 1

k
r2

=
r2

d

[
τ + ρ(d− 1)− dk − 1

k

]
=
r2

d
E , where E = τ + ρ(d− 1)− dk − 1

k
.

If we can show that E < 0 then strategy a is an ESS. We now show why E < 0:

Let us define the following function,

f(k, d, ρ) = d
k − 1

k
− ρ(d− 1) , with the constraints: k ≥ d+ 1, 1 ≤ d ≤ n

and ρ ∈ (0, 1) .
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Then we define the function g(d, ρ):

g(d, ρ) = min
k
f(k, d, ρ) = d

d

d+ 1
− ρ(d− 1) = (1− ρ)(d− 1) +

1

d+ 1
. (3.1)

By examining the first and second partial derivative of g with respect to variable d, we
find the minimum of function g(d, ρ):

h(ρ) = min
d
g(d, ρ) = ρ− (1−

√
1− ρ)2 , for d∗ =

1√
1− ρ

− 1 . (3.2)

Now there are two subcases. The maximum clique size may be impossible to reach the
value of d∗, or it could reach it, depending on the size of n = |V |.

Subcase i) n < 1√
1−ρ − 1 or equivalently: ρ > 1− 1

(n+1)2
.

From the partial derivatives of function g(d, ρ) with respect to variable d we know that
it is a strictly decreasing function for d < d∗. And given that d ≤ n, from (3.1) we get:

h(ρ) = (1− ρ)(n− 1) +
1

n+ 1
, for 1− 1

(n+ 1)2
< ρ < 1 . (3.3)

Subcase ii) n ≥ 1√
1−ρ − 1 or equivalently: ρ ≤ 1− 1

(n+1)2
.

By examining the first and second partial derivative with respect to variable ρ, we find
the plot of function h(ρ) to be the one shown in Figure 3.2.

As we can see, the maximum of h(ρ) is 1
2 and it is achieved when ρ = 3

4 .

Interval a) 3
4 < ρ ≤ 1− 1

(n+1)2
.

The monotonicity of h(ρ) in this interval implies that its minimum is achieved for
ρ∗ = 1− 1

(n+1)2
. Thus if we want a minimum of h over all ρ, from (3.2) we get:

min
ρ
h(ρ) = 1− 1

(n+ 1)2
−

(
1−

√
1−

(
1− 1

(n+ 1)2

))2

=
2n

(n+ 1)2
. (3.4)

Interval b) 0 < ρ ≤ 3
4 .
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Figure 3.2: The function h(ρ) (thick graph in blue colour).
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The monotonicity of h(ρ) in this interval implies that there is no minimum point, but
when ρ gets arbitrarily close to zero then h(ρ) goes arbitrarily close to zero as well, i.e.
limρ→0+ h(ρ) = 0.

To sum up:

τ∗ = min
k,d

f(k, d, ρ) =


ρ− (1−

√
1− ρ)2 , if 0 < ρ ≤ 1− 1

(n+1)2
, from (3.2)

(1− ρ)(n− 1) + 1
n+1 , if 1− 1

(n+1)2
< ρ < 1 , from (3.3)

or if we want the minima to be independent of ρ when possible:

τ∗ = min
k,d,ρ

f(k, d, ρ) =



ρ− (1−
√

1− ρ)2 , if 0 < ρ ≤ 3
4

2n
(n+1)2

, if 3
4 < ρ ≤ 1− 1

(n+1)2
, from (3.4)

1
n+1 , if 1− 1

(n+1)2
< ρ < 1 , from (3.3).

Therefore, depending on the interval that ρ belongs to, we can demand τ to be strictly less
than τ∗ , making U1(t, t)− U1(a, t) negative. We conclude that when d < k then strategy
a is an ESS.

Case 2: d ≥ k

Let C ⊆ V be the vertex set of a clique of G, where |C| = k. Then t with t(i) = 1
k for

i ∈ C and t(j) = 0 for j ∈ S \ C is a best response to a and t 6= a, and

U1(t, t) =
∑
i,j∈C

t(i)t(j)u1(i, j) =
1

k2
· (k − 1)k · ρ+

1

k2
k · τ =

(k − 1)ρ+ τ

k
,

U1(a, t) =
k − 1

k
.
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Then,

U1(t, t)− U1(a, t) =
1

k

[
τ − (1− ρ)(k − 1)

]
=

1

k
E′ , where E′ = τ − (1− ρ)(k − 1) .

If E′ ≥ 0 then a cannot be an ESS. We explain why E′ ≥ 0:
Let’s define the following function:

y(k, ρ) = (1− ρ)(k − 1) , with the constraints: k ≤ d and ρ ∈ (0, 1) .

Then we define the function z(d, ρ):

z(d, ρ) = max
k

y(k, ρ) = (1− ρ)(d− 1) ,

so,

τ∗∗ = max
d
z(d, ρ) = (1− ρ)(n− 1) .

Now, given that τ needs to be at least τ∗∗ but strictly less than τ∗ the following should
hold:

(1− ρ)(n− 1) < ρ− (1−
√

1− ρ)2 , or equivalently, ρ > 1− 4

(n+ 1)2
.

So we conclude that when d ≥ k then strategy a is not an ESS. This completes the
proof of Lemma 1.

This completes the proof of Theorem 2.

Corollary 3. The ess problem with payoff values in the domains given in Theorem 2 is
coNP-hard.

3.3 Extending the Reduction with Respect to λ(k)

We now prove a generalization of the latter reduction for λ(k) = 1− 1
kx , with x ≥ 3. In this

section one can see that τ, ρ are non-negative but they are not always strictly smaller than
1. It is easy to show that adding, subtracting or multiplying with a positive number the
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payoff matrix of an ess instance, the set of ESSs remains the same. The proof is similar
to the one which shows that for the aforementioned operations on the payoff matrices of
a general strategic game the set of Nash equilibria remains the same. Therefore, we can
always scale down the payoffs in our ess instances and have a normalized payoff matrix
with payoffs in [0, 1].

Theorem 3. Let G = (V,E) be an undirected graph. The game Γxk,τ,ρ(G) with λ(k) =

1− 1
kx , for x ≥ 3 and

• ρ ∈
(

1 + nx−1−2x

2xnx−1(n−1)
, 1 + (n+1)x−n2x

2x(n+1)x(n−1)

]
and

τ ∈
[
(1− ρ)(n− 1) + 1− 1

nx−1 , 1− 1
2x

)
or

• ρ ∈
(

1 + (n+1)x−n2x

2x(n+1)x(n−1) , +∞
)

and

τ ∈
[
(1− ρ)(n− 1) + 1− 1

nx−1 , (1− ρ)(n− 1) + 1− n
(n+1)x

)
has an ESS if and only if G has no clique of size k.

Proof. Let G = (V,E) be an undirected graph with maximum clique size d. We consider
the game Γk,τ,ρ(G) defined in Section 3.2.1, with the only difference that now, we substitute
payoffs of value k−1

k with new payoffs kx−1
kx , meaning we make the change k ← kx. Suppose

s is an ESS of Γxk,τ,ρ(G).
In this case, the same analysis as in Section 3.2.1 is similarly applied up to the point

where we prove that the only possible ESS of Γxk,τ,ρ(G) is the pure strategy a. Now we
proceed to show the following lemma, which concludes also the proof of Theorem 3.

Lemma 2. The game Γxk,τ,ρ(G) with the requirements of Theorem 3 has an ESS (strategy
a) if and only if there is no clique of size k in graph G.

Proof. We consider again two cases for k:

Case 1: d < k

Let t 6= a be a best response to a. Then supp(t) ⊆ V ∪ {a}.
Let r =

∑
i∈V t(i). So r > 0, (t 6= a) and t(a) = 1− r. Combining Corollary 2 and 1 we

get,
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U1(t, t)− U1(a, t) =
∑
i,j∈V

t(i)t(j)u1(i, j) + r · t(a) · ρ+

+ t(a) · r · k
x − 1

kx
+ t(a)2 · ρ−

[
r · k

x − 1

kx
+ t(a) · ρ

]
≤
[
τ + (ρ− τ)

d− 1

d

]
r2 + r(1− r) · ρ+

+ (1− r)rk
x − 1

kx
+ (1− r)2 · ρ− rk

x − 1

kx
− (1− r) · ρ

=
[
τ + (ρ− τ)

d− 1

d

]
r2 − kx − 1

kx
r2

=
r2

d

[
τ − (1− ρ)(d− 1)− (1− d

kx
)
]

=
r2

d
E , where E = τ − (1− ρ)(d− 1)− (1− d

kx
) .

If we can show that E < 0 then strategy a is an ESS. We show why E < 0:

Let’s define the following function:

f(k, d, ρ) = (1− ρ)(d− 1) + 1− d

kx
, with the constraints: k ≥ d+ 1, 1 ≤ d ≤ n, x ≥ 3 .

Then we define the function g(d, ρ):

g(d, ρ) = min
k
f(k, d, r) = (1− ρ)(d− 1) + 1− d

(d+ 1)x
.

Now, the first two partial derivatives of g(d, ρ) with respect to variable d, are:

∂g(d, ρ)

∂d
= (1− ρ) +

(x− 1)d− 1

(d+ 1)x+1

∂2g(d, ρ)

∂d2
=
−x[(x− 1)d− 2]

(d+ 1)x+2
, which is non-positive for d ≥ 1, x ≥ 3 .

This means that function g has its minimum either at d = 1 or d = n:

g(1, ρ) = 1− 1

2x

g(n, ρ) = (1− ρ)(n− 1) + 1− n

(n+ 1)x
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If the minimum is g(1, ρ):

g(1, ρ) ≤ g(n, ρ), or equivalently, ρ ≤ 1 +
(n+ 1)x − n2x

2x(n+ 1)x(n− 1)
.

Then,

h(ρ) = min
d
g(d, ρ) = 1− 1

2x
.

If the minimum is g(n, ρ):

g(n, ρ) < g(1, ρ), or equivalently, ρ > 1 +
(n+ 1)x − n2x

2x(n+ 1)x(n− 1)
.

Then,

h(ρ) = min
d
g(d, ρ) = (1− ρ)(n− 1) + 1− n

(n+ 1)x
.

So, following the notation we used in Section 3.2.1:

τ∗ = min
k,d

f(k, d, ρ) =


1− 1

2x , if ρ ≤ 1 + (n+1)x−n2x

2x(n+1)x(n−1)

(1− ρ)(n− 1) + 1− n
(n+1)x , if ρ > 1 + (n+1)x−n2x

2x(n+1)x(n−1) .

Therefore, we can demand τ to be strictly less than τ∗, making U1(t, t)−U1(a, t) negative.
We conclude that when d < k then strategy a is an ESS.

Case 2: d ≥ k

Let C ⊆ V be a clique of G of size k. Then t with t(i) = 1
k for i ∈ C and t(j) = 0 for

j ∈ S \ C is a best response to a and t 6= a, and

U1(t, t) =
∑
i,j∈C

t(i)t(j)u1(i, j) =
1

k2
· (k − 1)k · ρ+

1

k2
k · τ =

(k − 1)ρ+ τ

k
,

U1(a, t) =
kx − 1

kx
.
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Then,

U1(t, t)− U1(a, t) =
1

k

[
τ − (1− ρ)(k − 1)− (1− 1

kx−1
)
]

=
1

k
E′ , where E′ = τ − (1− ρ)(k − 1)− (1− 1

kx−1
) .

If E′ ≥ 0 then a cannot be an ESS. We explain why E′ ≥ 0:
Let’s define the following function:

y(k, ρ) = (1− ρ)(k − 1) + 1− 1

kx−1
, with the constraints: k ≤ d .

Then we define the function z(d, ρ):

z(d, ρ) = max
k

y(k, ρ) = (1− ρ)(d− 1) + 1− 1

dx−1
,

so,

τ∗∗ = max
d
z(d, ρ) = (1− ρ)(n− 1) + 1− 1

nx−1
.

Now, given that τ needs to be at least τ∗∗ but strictly less than τ∗ the following should
hold:

(1− ρ)(n− 1) + 1− 1

nx−1
< 1− 1

2x
, or equivalently, ρ > 1 +

nx−1 − 2x

2xnx−1(n− 1)
.

So we conclude that when d ≥ k then strategy a is not an ESS. This completes the
proof of Lemma 2.

This concludes the proof of Theorem 3.

Corollary 4. The ess problem with payoff values in the domains given in Theorem 3 is
coNP-hard.

3.4 The Main Result

Now we can prove our main theorem:
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Theorem 4. Consider the numbers x0 ≥ 3, x1 ∈ (x0, x0 logn(n+ 1)), C =
(n+1)x0−nx1

nx1−1(n+1)x0 (n−1)
, D = C(n − 1), E = (n+1)x0−n2x0

2x0 (n+1)x0 (n−1) . Any reduction as in Theorem 3
for x = x0 from the complement of the clique problem to the ess problem is robust under
arbitrary perturbations of values in the intervals:

τ ∈
[
1− 1

2x0
−D, 1− 1

2x0
−D +B

)
,

ρ ∈ (1 + E, 1 + E +A) ,

λ ∈
[
1− 1

kx0
, 1− 1

kx1

]
,

for any A ∈ (0, C) and B = (C −A)(n− 1).

Proof. We partition the game’s payoff matrix U in three disjoint sets: Uτ , Uρ, Uλ with
Uτ ∪Uρ ∪Uλ = U and values τ, ρ, λ of their entries respectively. Each set’s entries have the
same value. For every λ ∈

[
1− 1

kx0 , 1−
1
kx1

]
there is a x = − logk(1 − λ) in the interval

[x0, x1] such that λ = 1 − 1
kx , where x0 ≥ 3 and x1 ∈ (x0, x0 logn(n + 1)). We will show

that, for this x, any reduction with the values of τ, ρ in the respective intervals stated in
Theorem 3, is valid.

In Figure 3.3, we show the validity area of τ depending on ρ with parameter x, due
to Theorem 3. The thin and thick plots bound the validity area (shaded) for x = x0 and
x = x1 respectively.

While x increases, the parallel lines of the lower and upper bound of τ move to the
right, the horizontal line of the upper bound of τ moves up, and the left acute angle as well
as the top obtuse angle of the plot move to the left (by examination of the monotonicity of
those bounds with respect to x).

The lower bound of τ for an x = x′ > x0 equals the upper bound of τ for x = x0, when
x′ = x0 logn(n+ 1). Thus, for all x ∈ (x0, x0 logn(n+ 1)) there is a non-empty intersection
between the validity areas. We have picked an x = x1 ∈ (x0, x0 logn(n+ 1)).

In Figure 3.4, we show a zoom-in of the intersection of the validity areas of Figure 3.3.
Let the intersection of lines: 1− 1

2x0 , (1− ρ)(n− 1) + 1− 1
nx1−1 be at point ρ = ρC .
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τ

ρ1

1 + nx1−1−2x1

2x1nx1−1(n−1)

1 + nx0−1−2x0

2x0nx0−1(n−1)

1 + (n+1)x1−n2x1

2x1 (n+1)x1 (n−1)

1 + E

1

1− 1
2x1

1− 1
2x0

1− 1
2x1

− (n+1)x1−nx1

nx1−1(n+1)x1

1− 1
2x0

− (n+1)x0−nx0

nx0−1(n+1)x0

Figure 3.3: The validity area of τ and ρ with parameter x.

Then,

(1− ρC)(n− 1) + 1− 1

nx1−1
= 1− 1

2x0

or equivalently, ρC = 1− 1

2x0(n− 1)
− 1

nx1−1(n− 1)
.
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τ

ρ

1− 1
2x0

(1− ρ)(n− 1) + 1− 1
nx1−1

1 + EρC

D

A

C

B

(1− ρ)(n− 1) + 1− n
(n+1)x0

ϕ

Figure 3.4: Detail of the validity areas’ intersection and the ρ, τ robust area (shaded).

So,

C = 1 +
(n+ 1)x0 − n2x0

2x0(n+ 1)x0(n− 1)
− ρC

=
(n+ 1)x0 − nx1

nx1−1(n+ 1)x0(n− 1)
.
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From the upper bound of τ as a function of ρ we can see that tanϕ = n− 1. Thus,

D = C tanϕ, or equivalently, D =
(n+ 1)x0 − nx1
nx1−1(n+ 1)x0

.

Now we can pick any A ∈ (0, C). So, it must be

B = (C −A) tanϕ, or equivalently, B = (n− 1)(C −A).

For the rectangle with sides A,B shown in Figure 3.4, the reduction is valid for all
x ∈ [x0, x1], thus for all λ ∈

[
1− 1

kx0 , 1−
1
kx1

]
. This completes the proof of Theorem 4.



Part II

Games between Rational and
Intelligent Entities
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Chapter 4

Strategic Contention Resolution

In this chapter we study a game in an unstructured, finite population. The problem under
examination is to resolve the contention in a communication network with selfish users. In
a contention game each of n ≥ 2 identical players has a single information packet that she
wants to transmit using one of k ≥ 1 multiple-access channels. To do that, a player chooses
a slotted-time protocol that prescribes the probabilities with which at a given time-step she
will attempt transmission at each channel. If more than one players try to transmit over the
same channel (collision) then no transmission happens on that channel. Each player tries
to minimize her own expected latency, i.e. her expected time until successful transmission,
by choosing her protocol. The natural problem that arises in such a setting is, given n and
k, to provide the players with a common, anonymous protocol (if it exists) such that no
one would unilaterally deviate from it (equilibrium protocol).

All previous theoretical results on strategic contention resolution examine only the case
of a single channel and show that the equilibrium protocols depend on the feedback that
the communication system gives to the players. Here we present multi-channel equilibrium
protocols in two main feedback classes, namely acknowledgement-based and ternary. In
particular, we provide equilibrium characterizations for more than one channels, and give
specific anonymous, equilibrium protocols with finite and infinite expected latency. In the
equilibrium protocols with infinite expected latency, all players transmit successfully in
optimal time, i.e. Θ(n/k), with probability tending to 1 as n/k →∞.

The results of this chapter have been published in the Proceedings of the 11th Interna-
tional Symposium on Algorithmic Game Theory (SAGT 2018) [46], and in the Proceedings
of the 16th Workshop on Approximation and Online Algorithms (WAOA 2018) [47] (co-

48
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authored with Christodoulou and Spirakis).

4.1 Overview

4.1.1 Motivation

In the last sixteen years a great number of works in the Electrical and Electronics Engi-
neering community has been devoted to designing medium access control (MAC) protocols
that achieve high throughput. Their main approach is to consider, instead of the initial
single-channel scheme, multi-channel schemes (multi-channel MAC protocols) which re-
solve contention caused by packet collisions (e.g. [40,110,130,135,136,145]). Apart from
high throughput, an additional benefit of introducing more channels in such a system is
robustness, meaning no great dependence on a single channel’s functionality. However, to
the authors’ knowledge, strategic behaviour study in multi-channel systems is limited to the
Aloha protocol ([98]), contrary to the case of single-channel systems (e.g. [10,43–45,69]).
In this work, we examine the problem of strategic contention resolution in multi-channel
systems, where obedience to a suggested protocol is not required. We seek only anonymous,
equilibrium protocols, that is, protocols which do not use player IDs. If a player’s protocol
depends on her ID, then equilibria are simple, but can be unfair as well; scheduling each
player’s transmission through a priority queue according to her ID is an equilibrium.

We provide two types of equilibrium protocols. The first type, called FIN-EQ, de-
scribes an anonymous, equilibrium protocol that yields finite expected time of successful
transmission (latency) to a player. Similarly, the second type, called IN-EQ, describes
an anonymous, equilibrium protocol which yields infinite expected latency to a player but
is also efficient, i.e, all players transmit successfully within Θ( #players

#channels) time with high
probability. In this chapter, we say that the expected latency is “infinite” when it equals
the number of time-steps t that the protocol runs for; the term comes from the fact that
t → ∞. We study equilibria for two classes of feedback protocols: (a) acknowledgement-
based protocols, where the user gets just the information of whether she had a successful
transmission or not, only when she tries to transmit her packet, and (b) protocols with
ternary feedback, where the user is informed about the number of pending players in each
time-step regardless of whether she attempted transmission or not. Previous results on
these classes of protocols have been produced only for the case of a single transmission
channel ([43,69]). Here we investigate the multiple-channels case.
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In the last part of this chapter we seek efficient protocols for both feedback classes.
Due to an impossibility result that we show (Theorem 11), the technique used in [69] by
Fiat et al. for the single-channel setting in order to provide a FIN-EQ that is also efficient,
cannot be applied when there are more than one channel. This fact discourages us from
searching for efficient FIN-EQ protocols and, instead, points to the search for efficient IN-
EQ protocols, which indeed we find. One could argue that an anonymous protocol with
infinite expected time until successful transmission, such as the IN-EQ protocols we provide,
does not incentivize a player to participate in such a communication system. To this we
reply that finite but exponential waiting-time for a large amount of players (see protocol
in Theorem 10, Section 4.3.2) is equally bad for a player, since waiting for e.g. e10 msec in
Real-Time-Communications is like waiting forever. In other words, if a FIN-EQ protocol
with exponential expected latency is acceptable, then so is an IN-EQ protocol.

4.1.2 Contribution and a roadmap for the chapter

The main contributions of this work are the characterizations of FIN-EQ and IN-EQ
protocols in the two aforementioned feedback classes. Note that in the current litera-
ture regarding the single-channel setting, there are no characterizations of equilibrium in
acknowledgement-based protocols. Also, in the single-channel setting the existence of a
symmetric equilibrium with finite expected latency in the class of acknowledgement-based
protocols remains an open problem, even for three players. However, for the settings with
2 and 3 transmission channels, we present simple anonymous FIN-EQ protocols for up to
4 and 5 players respectively. Furthermore, these protocols are memoryless, while the only
known FIN-EQ protocol in the single-channel setting ([43]) is not.

This chapter is organized in three main parts. Section 4.2 deals with FIN-EQ protocols
in the acknowledgement-based feedback setting. In that section we give two characteri-
zations of equilibrium and also provide FIN-EQ protocols for specific numbers of players
and channels. Section 4.3 deals with FIN-EQ protocols in the ternary feedback setting and
extends the corresponding results for the single-channel setting by Fiat et al. [69]. Finally,
in Section 4.4, IN-EQ protocols with deadline are provided with the property that the time
until all n players transmit successfully is Θ(n/k) with high probability, when there are k
channels. The latter result makes clear the advantage (with respect to time efficiency) that
multiple channels bring to a system with strategic users, which is that the time until all
players transmit successfully with high probability is inversely proportional to the number
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of available channels.

4.1.3 Related work

Contention in telecommunications is a major problem that results to poor throughput due
to packet collisions. Motivated mainly by this problem, many works studying conflict-
resolution protocols emerged in the late 70’s ([36,37,83,121,142]). Their approach is to
resolve a collision when it occurs, and only then allow further transmissions on the channel.
In those works the user’s packets are assumed either to be generated by some stochastic
process, or to appear at the same time in a worst-case scenario. Here, we consider the
latter setting, i.e. a worst-case model of slotted time, where at any time-step all users have
a packet ready to be transmitted (for an example of a similar bursty-input case, see [22]).
As stated in [77], even though real implementations of multiple-access channels do not fit
precisely within the slotted-time model, it can be shown (e.g. [82,91]) that results obtained
in this model do apply to realistic multiple-access channels.

Also, many works have examined multiple-channel communication protocols. In the
data link layer, a Medium Access Control (MAC) protocol is responsible for the flow of
data through a multiple-access medium. Our multiple-channels model is motivated by the-
oretical and experimental results which have shown that higher throughput and lower delay
is achieved by using “multi-channel” MAC protocols (see [110,114,135,136]). In [136], the
multi-channel hidden terminal problem is raised which, additionally to increased packet
collisions, results to incapability of the users to “sense” more than one channels at a time
(possibly none); therefore a user might not know whether another user transmitted success-
fully or not (see also [141] for the classical “hidden terminal problem”). This motivates us
for the consideration of feedback protocols with minimum feedback, i.e. “acknowledgement-
based” protocols (see par.2, Section 4.1.1). Also, settings with stronger feedback have been
studied (e.g. the Aloha protocol in [98]) in which a user is informed about the number of
users that have not transmitted successfully yet. This is why we consider “ternary feedback”
protocols (see par.2, Section 4.1.1).

Apart from the latter, all of the aforementioned works assume that the users blindly
follow the given protocol, i.e. the users are not strategic. Contention resolution with
strategic users has been studied only in single-channel settings or in the special case of the
multiple-channel Aloha protocol. Some interesting cooperative and noncooperative models
of slotted Aloha have been analysed in [9,97,98]. Aiming to understand the properties of
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contention resolution under selfishness, apart from various feedback settings, many cost
functions have also been studied. One of the most meaningful cost functions is the one that
models non-zero transmission costs as in [45] (and also [10,98]).

The theoretical works that relate the most to the current work are the seminal paper
by Fiat, Mansour and Nadav [69] and two by Christodoulou et al. [43,44] which study
protocols for strategic contention resolution with zero transmission costs. These works
examine the case of a single transmission channel only. In [69] the feedback is ternary. In
that work, a characterization of symmetric equilibrium is provided, along with an efficient
FIN-EQ protocol that puts an extremely costly equilibrium after a deadline in order to force
users to be obedient. The feedback model of [43] and [44] is the acknowledgement-based.
Among other results, [43] provides the unique FIN-EQ protocol for the case of two players
and a deadline IN-EQ protocol for at least three players.

4.1.4 The model and definitions

Game structure. We define a contention game as follows. Let N = {1, 2, . . . , n} be
the set of players, also denoted by [n], and K = {1, 2, . . . , k} the set of channels. Each
player has a single packet that she wants to send through a channel in K, without caring
about the identity of the channel. All players know n and K. We assume synchronous
communications with discretized time, i.e. time slots t = 1, 2, . . . . The players that have
not yet successfully transmitted their packet are called pending and initially all n players
are pending. At any given time slot t, a pending player i has a set A = {0, 1, 2, . . . , k} of
pure strategies: a pure strategy a ∈ A is the action of choosing channel a ∈ K to transmit
her packet on, or no transmission (a = 0). At time t, a (mixed) strategy of a player i is a
probability distribution over A that potentially depends on information that i has gained
from the process based on previous transmission attempts. If exactly one player transmits
on a channel in a given slot t, then her transmission is successful, the successful player
exits the game (i.e. she is no longer pending), and the game continues with the rest of the
players. On the other hand, whenever two or more players try to access the same channel
(i.e. transmit) at the same time slot, a collision occurs and their transmissions fail, in
which case the players remain in the game. If at some time slot k′ ≤ k players are the only
ones attempting transmission, and each of them attempts on a distinct channel then all
of them are successful. The game continues until all players have successfully transmitted
their packets.
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Transmission protocols. Let Xi,t ∈ A be the channel-indicator variable that keeps
track of the identity of the channel where player i attempted transmission at time t; value
0 indicates no transmission attempt. For any t ≥ 1, we denote by

#»

Xt the transmission
vector at time t, i.e.

#»

Xt = (X1,t, X2,t, . . . , Xn,t).
An acknowledgement-based protocol uses very limited channel feedback. After each

time step t, only players that attempted a transmission receive feedback, and the rest get
no information. In fact, the information received by a player i who transmitted during t is
whether her transmission was successful (in which case she gets an acknowledgement and
exits the game) or whether there was a collision.

In a protocol with ternary feedback every pending player in every round is informed
about the number of remaining players m ≤ n. This information is given to the players
regardless of their transmission history.

Let
#»

h i,t be the vector of the personal transmission history of player i up to time t, i.e.
#»

h i,t = (Xi,1, Xi,2, . . . , Xi,t). We also denote by
#»

h t the transmission history of all players
up to time t, i.e.

#»

h t = (
#»

h 1,t,
#»

h 2,t, . . .
#»

hn,t). A decision rule fi,t for a pending player i at
time t, is a function that maps

#»

h i,t−1 to a strategy
#»

P i,t, with elements Pr(Xi,t = a| #»h i,t−1)

for all a ∈ A. When the transmission probability on some a′ ∈ A is not stated in a decision
rule it is because it can be deduced from the stated ones.

For a player i ∈ N , a (transmission) protocol fi is a sequence of decision rules fi =

{fi,t}t≥1 = fi,1, fi,2, . . . . Given a protocol fi for player i, when her decision rules depend
on the number of pending players and the personal history of i, then we describe them by
the player’s probability distribution on the action set A. In this case, we denote by pi,am,t
the probability of player i choosing action a at time t given her personal history ht−1 when
m players are pending right before t. When the context is clear enough we will drop some
of the indices accordingly.

When we state that the players use an anonymous protocol f , we will mean that they
follow a common protocol f(= f1 = · · · = fn) whose decision rules do not depend on any
ID of the player (in our setting players do not have IDs), i.e. the decision rule assigns
the same strategy to all players with the same personal history. In particular, for any two
players i 6= j and any t ≥ 0, if

#»

h i,t−1 =
#»

h j,t−1, it holds that fi,t(
#»

h i,t−1) = fj,t(
#»

h j,t−1). In
this case, we drop the subscript i in the notation and write f instead of fi.

A protocol fi for player i is a deadline protocol with deadline t0 if and only if there
exists a finite t0 ≥ 1 such that a particular channel ai ∈ K is assigned (deterministically or
stochastically) to player i at some time t ≤ t0 and Pr(Xi,t = ai|

#»

h i,t−1) = 1 for every time
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slot t ≥ t0 and any history
#»

h i,t−1.

Efficiency. Assume that all n players follow an anonymous protocol f . We will call f
efficient if and only if all players will have successfully transmitted by time Θ(n/k) with
high probability (i.e. with probability tending to 1, as n/k →∞).

Individual utility. By protocol profile
#»

f = (f1, f2, . . . , fn) we will call the n-tuple of the
players’ protocols. For a given transmission sequence

#»

X1,
#»

X2, . . . , which is consistent with
#»

f , define the latency of agent i as Ti , inf{t : Xi,t = a,Xj,t 6= a, for some a ∈ K,∀j 6= i}.
That is, Ti is the time at which i successfully transmits. Also, define the finishing
time of

#»

f as T , supi{Ti}, i.e., the least time at which all players have successfully
transmitted. Given a transmission history

#»

h t, the n-tuple of protocols
#»

f induces a
probability distribution over sequences of further transmissions. In that case, we write
C

#»
f
i (

#»

h t) , E[Ti|
#»

h t,
#»

f ] = E[Ti|
#»

h i,t,
#»

f ] for the expected latency of a pending agent i given
that her current history is

#»

h i,t and from t+ 1 on she follows fi. For anonymous protocols,
i.e. when f1 = f2 = · · · = fn = f , we will simply write Cfi (

#»

h t) instead. Abusing notation
slightly, we will also write C

#»
f
i (

#»

h 0) for the unconditional expected latency of player i in-
duced by

#»

f . We also define the expected future latency F
#»
f
i (

#»

h t) , C
#»
f
i (

#»

h t)− t and again,
whenever clear from the context, we omit redundant indices or vectors from the notation.

Equilibria. The objective of every player is to minimize her expected latency. We call a
protocol gi a best response of player i to the partial protocol profile

#»

f −i if for any trans-
mission history

#»

h t, player i cannot decrease her expected latency by unilaterally deviating
from gi after t. That is, for all time slots t, and for all protocols f ′i for player i, we have

C
(

#»
f −i,gi)
i (

#»

h t) ≤ C
(

#»
f −i,f ′i)
i (

#»

h t),

where (
#»

f −i, gi) (respectively, (
#»

f −i, f
′
i)) denotes the protocol profile where every player j 6= i

uses protocol fj and player i uses protocol gi (respectively f ′i). For an anonymous protocol
f , we denote by (f−i, gi) the profile where player j 6= i uses protocol f and player i uses
protocol gi.

We say that
#»

f = (f1, f2, . . . fn) is an equilibrium if for any transmission history
#»

h t the
players cannot decrease their expected latency by unilaterally deviating after t; that is, for
every player i, fi is a best response to

#»

f −i.
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FIN-EQ and IN-EQ protocols. We call an anonymous protocol FIN-EQ if it is an
equilibrium protocol and yields finite expected latency to a player. Similarly, we call an
anonymous protocol IN-EQ if it is an equilibrium protocol, yields infinite expected latency
to a player, and is also efficient.

4.2 Equilibrium for Acknowledgement-based Protocols

4.2.1 Nash equilibrium characterizations

The following equilibrium characterizations for the class of acknowledgement-based proto-
cols help us check whether the protocols we subsequently guess are equilibrium protocols.
The characterizations are for symmetric and asymmetric equilibria, arbitrary number of
channels k ≥ 1 and number of players n ≥ 2.

In an acknowledgement-based protocol, the actions of player i at time t depend
only (a) on her personal history

#»

h i,t−1 and (b) on whether she is pending or not at t.
Let

#»

f = (f1, f2, . . . , fn) be a tuple of acknowledgement-based protocols (not necessar-
ily anonymous) for the n players. For a (finite) positive integer τ∗, and a given history
hi,τ∗ = (ai,1, ai,2, . . . , ai,τ∗), define for player i the protocol

gi = gi(hi,τ∗) ,

 (Pr{Xi,t = ai,t} = 1, Pr{Xi,t 6= ai,t} = 0) , for 1 ≤ t ≤ τ∗

fi,t, for t > τ∗.
(4.1)

A personal history
#»

h i,τ∗ is consistent with the protocol profile
#»

f if and only if there
is a non-zero probability that

#»

h i,τ∗ will occur for player i under
#»

f . Protocol gi(hi,τ∗) is
consistent with

#»

f if and only if hi,τ∗ is consistent with
#»

f , and when clear from the context
we write gi instead. We denote the set of all gi’s, that is, all gi(hi,t)’s for all t ≥ 1, which
are consistent with

#»

f , by G
#»
f
i . If fi = f ∀i (i.e. f is anonymous), then instead of gi and

G
#»
f
i we write g and Gf respectively.

Lemma 3 (Equilibrium characterization 1). Consider a profile
#»

f = (f1, f2, . . . fn) of
acknowledgement-based protocols and a protocol gi = gi(hi,τ∗) for some τ∗ ≥ 1. The follow-
ing statements are equivalent:
(i)

#»

f is an equilibrium.

(ii) For every player i ∈ [n], if gi ∈ G
#»
f
i then C(

#»
f −i,gi)
i (

#»

h 0) = min
f ′i

C
(

#»
f −i,f ′i)
i (

#»

h 0) = C
#»
f
i (

#»

h 0).
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Proof. To show that
#»

f being an equilibrium is a sufficient condition, we use the same
argument as in Lemma 4 of [43]. In particular, for a player i, due to the Tower Property
we have,

C
#»
f
i (

#»

h 0) = E[Ti|
#»

h i,0,
#»

f ]

=
∑

#»
h i,τ∗

E[Ti|
#»

h i,0, (
#»

f −i, gi(hi,τ∗))]Pr{
#»

h i,τ∗ happens for i}. (4.2)

For short, we will denote gi(hi,τ∗) by gi, thus we denote E[Ti|
#»

h i,0, (
#»

f −i, gi(hi,τ∗))] by

C
(

#»
f −i,gi)
i (

#»

h 0). Then, suppose that
#»

f is an equilibrium and assume for the sake of con-

tradiction that there is a transmission history
#»

h i,τ∗ for player i such that C(
#»
f −i,gi)
i (

#»

h 0) 6=
C

#»
f
i (

#»

h 0). Obviously, if C(
#»
f −i,gi)
i (

#»

h 0) < C
#»
f
i (

#»

h 0) this would mean that protocol gi(τ∗)

is better than fi, thus
#»

f is not an equilibrium. If, on the other hand, C(
#»
f −i,gi)
i (

#»

h 0) >

C
#»
f
i (

#»

h 0), then from (4.2) there must exist another transmission history
#»

h ′i,τ∗ such that

C
(

#»
f −i,gi(

#»
h ′
i,τ∗ ))

i (
#»

h 0) < C
#»
f
i (

#»

h 0). Therefore, we conclude that C
#»
f
i (

#»

h 0) = C
(

#»
f −i,gi)
i (

#»

h 0)

which also equals min
f ′i

C
(

#»
f −i,f ′i)
i (

#»

h 0) by definition of the equilibrium, for every transmission

history
#»

h i,τ∗ that is consistent with
#»

f .

To show that
#»

f being an equilibrium is also a necessary condition, assume that gi ∈ G
#»
f
i

implies C(
#»
f −i,gi)
i (

#»

h 0) = min
f ′i

C
(

#»
f −i,f ′i)
i (

#»

h 0). Then, equality (4.2) becomes

C
#»
f
i (

#»

h 0) =
∑

#»
h i,τ∗

C
(

#»
f −i,gi(hi,τ∗ ))
i (

#»

h 0)Pr{ #»

h i,τ∗ happens for i}

=
∑

#»
h i,τ∗

min
f ′i

C
(

#»
f −i,f ′i)
i (

#»

h 0)Pr{ #»

h i,τ∗ happens for i}

= min
f ′i

C
(

#»
f −i,f ′i)
i (

#»

h 0)

and thus
#»

f is by definition an equilibrium.

Corollary 5 (Best response). Consider a profile
#»

f = (f1, f2, . . . fn) of acknowledgement-
based protocols. For a fixed protocol f ′i of player i ∈ [n] and some hi,τ∗ = (ai,1, ai,2, . . . , ai,τ∗)
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consistent with (
#»

f −i, f
′
i), define the following protocol.

ri = ri(hi,τ∗) ,

 (Pr{Xi,t = ai,t} = 1, Pr{Xi,t 6= ai,t} = 0) , for 1 ≤ t ≤ τ∗

f ′i,t, , for t > τ∗.
(4.3)

If for player i there exists a finite τ∗ ≥ 1 such that C(
#»
f −i,ri(hi,τ∗ ))
i (

#»

h 0) ≥ C(
#»
f −i,fi)
i (

#»

h 0) for

every hi,τ∗, then C
(

#»
f −i,f ′i)
i (

#»

h 0) ≥ C(
#»
f −i,fi)
i (

#»

h 0).

Proof. By definition of the expected latency (equation (4.2)) for a fixed τ∗ we have:

C
(

#»
f −i,f ′i)
i (

#»

h 0) =
∑

#»
h i,τ∗

C
(

#»
f −i,ri(hi,τ∗ ))
i (

#»

h 0)Pr{ #»

h i,τ∗ happens for i}

≥
∑

#»
h i,τ∗

C
(

#»
f −i,fi)
i (

#»

h 0)Pr{ #»

h i,τ∗ happens for i}

= C
(

#»
f −i,fi)
i (

#»

h 0).

Lemma 4 (Equilibrium characterization 2). Consider a profile
#»

f = (f1, f2, . . . fn) of acknowledgement-based protocols. The following statements are equiv-
alent:
(i)

#»

f is an equilibrium.
(ii) For every player i ∈ [n],(a) C

(
#»
f −i,gi)
i (

#»

h 0) = C
(

#»
f −i,ri)
i (

#»

h 0) = C
#»
f
i (

#»

h 0), ∀gi, ri ∈ G
#»
f
i , and

(b) C
(

#»
f −i,gi)
i (

#»

h 0) ≤ C(
#»
f −i,ri)
i (

#»

h 0), ∀gi ∈ G
#»
f
i , ri /∈ G

#»
f
i .

Proof. Sufficiency of
#»

f being an equilibrium for condition (ii-a) comes directly from Lemma
3; for condition (ii-b), for the sake of contradiction suppose

#»

f is an equilibrium and that
there exist some protocols gi ∈ G

#»
f
i and ri /∈ G

#»
f
i such that C(

#»
f −i,gi)
i (

#»

h 0) > C
(

#»
f −i,ri)
i (

#»

h 0).
This means that ri is a better protocol than fi, thus (

#»

f −i, fi) is not an equilibrium, which
is a contradiction.

To prove necessity of
#»

f being an equilibrium under conditions (ii-a) and (ii-b), for the
sake of contradiction, suppose (ii-a) and (ii-b) hold and

#»

f is not an equilibrium. Then

there must exist some protocol f ′i such that C(
#»
f −i,f ′i)
i (

#»

h 0) < C
#»
f
i (

#»

h 0). Using (4.2) the
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latter inequality can be written as∑
#»
h i,τ∗

C
(

#»
f −i,ri(hi,τ∗ ))
i (

#»

h 0)Pr{ #»

h i,τ∗ happens for i} <
∑

#»
h i,τ∗

C
(

#»
f −i,gi(hi,τ∗ ))
i (

#»

h 0)Pr{ #»

h i,τ∗ happens for i},

where gi(hi,τ∗) is consistent with
#»

f and ri(hi,τ∗) is consistent with (
#»

f −i, f
′
i). Given the

conditions (ii-a) and (ii-b) the latter inequality is a contradiction.

4.2.2 Acknowledgment-based FIN-EQ protocols

Regarding the search for FIN-EQ protocols, there is no straight-forward way for our equi-
librium characterizations, i.e. Lemma 3 and Lemma 4, to be used in order to find an
equilibrium protocol. However, they allow us to check whether the protocols discussed in
this section are equilibrium protocols. In this section we give FIN-EQ protocols for k = 2

and k = 3.
We define the following anonymous, memoryless protocol for k ≥ 2 channels.

Protocol f k:
For player i, every t ≥ 1 and any history

#»

h i,t−1,

fki,t =

(
Pr{Xi,t = 0} = 0, Pr{Xi,t = a} =

1

k
, ∀a ∈ K

)
(4.4)

4.2.2.1 n players - 2 transmission channels

Here, we first give an example of a method for checking equilibria (Theorem 5). Then, with
a better approach, by employing our equilibrium characterizations (Lemma 3 and Lemma
4), we prove that f2 is an equilibrium protocol for n ∈ {2, 3, 4} players and k = 2 channels
(Theorem 7).

Lemma 5. When all n ≥ 2 players use protocol f2 the expected latency of any player is
2n/n.

Proof. The process from the perspective of an arbitrary player i can be modelled as the fol-
lowing Markov chain; the states are named after the number of remaining players including
i, and state 〈×〉 is the state where i finds herself after successful transmission.
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We write pyx to denote the transition probability to go from state 〈x〉 to state 〈y〉. We
have

p×m =
(

1
2

)m−1

pm−1
m = (m− 1)

(
1
2

)m−1

pmm = 1−m
(

1
2

)m−1

∀3 ≤ m ≤ n , and (4.5)

p×2 =
1

2
, p2

2 =
1

2
. (4.6)

The expected absorption time from state 〈n〉 to state 〈×〉 is found from the following
set of equations:

h×m = 1 + pmmh
×
m + pm−1

m h×m−1, for all 3 ≤ m ≤ n,

and h×2 = 1 + p2
2h
×
2 ,

where hyx denotes the expected hitting time from state 〈x〉 to state 〈y〉. By solving this
system of linear equations we get

h×n =
2n

n
, for n ≥ 2.

In the next theorem we will give an example of a method for checking whether a given
protocol profile is an equilibrium, which however could be inconclusive in some cases. Sup-
pose we want to check whether an arbitrary protocol profile

#»

f is an equilibrium. By
definition of the equilibrium, we can fix all protocols except player i’s, i.e.

#»

f −i and check
if fi is a best response to them, and repeat this for every player i. By fixing

#»

f −i we create
a stochastic environment for player i who can be considered to be free to take sequential
decisions through time. These decisions correspond to decision rules of fi. Since, due to
the feedback limitations, i has no information about the number of pending players, this
situation from her point of view is modeled as an infinite state Partially Observable Markov
Decision Process (POMDP). fi is a best response to

#»

f −i if and only if fi is an optimal
policy of the POMDP, that is, a set of decisions through time that minimize her expected
latency.

However for this kind of POMDPs there are no known techniques to find an optimal
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policy. In order to circumvent this problem, we can assume that player i is an advantageous
player that always knows how many players are pending. This turns the infinite state
POMDP into a finite state Markov Decision Process (MDP), whose optimal policy we can
find through known techniques (e.g. [116]). One can see that the optimal policy in the
MDP of the advantageous player i yields at most the expected latency of the optimal policy
in the POMDP of the initial player i. Thus, if the best policy in the MDP yields the same
expected latency as what

#»

f gives to i, then we know that fi is a best response; however,
if the best policy of the MDP yields smaller expected latency, then we get no information
about whether fi is a best response in the POMDP or not. The proof of the next theorem
demonstrates the method and shows that protocol f2 of (4.4) is an equilibrium protocol
for 3 players.

Theorem 5. For 3 players and 2 channels, f2 is an equilibrium protocol with expected
latency 8/3.

Proof. Consider the Markov Decision Process (MDP) (T, St, As,t, pt(j|s, a), rt(s, a)), where
St is the state space for time t; As,t is the set of possible actions that can be taken after
observing state s at time t; pt(j|s, a) defines the transition probability to state j ∈ St+1 at
time t + 1, and only depends on the state s and chosen action a at time t; rt(s, a) is the
cost function that determines the immediate cost for the agent’s choice of action a while
in state s. When the state s cannot be observed with certainty at time t, the agent only
knows a probability distribution, called belief state, over St. The process then is called
Partially Observable Markov Decision Process (POMDP). An optimal policy π : S → A

is a function that rules, for each state or belief state, which action to perform, with an
objective to minimize the expected cost.

For the proof of the above theorem we will use the following property of POMDPs. This
property comes directly from the fact that an agent optimizing over all policies that every
time consider her exact state gets a better policy than an agent that knows a probability
distribution on the state space (belief states).

Proposition 1. An optimal policy π1 of an agent in a POMDP yields as expected cost at
least the expected cost of the optimal policy π2 of the corresponding MDP, in which at any
time t the agent observes her exact state.

To prove Theorem 5 we think as follows. Let us fix protocol f2 as defined in (4.4) for
two players, and let the remaining player i have an arbitrary protocol gi. Then let us find
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the optimal policy for i. If and only if the optimal policy yields expected cost strictly lower
than what protocol f2 would yield for player i (due to Lemma 5, that is 8/3), then f2 is
not an equilibrium protocol. The game stated at Theorem 5, from player i’s perspective, is
modelled by a POMDP where each state is determined by the number of pending players,
with an additional absorbing state - where i goes after successfully transmitting - and i’s
transmission history for every t ≥ 1. Player i’s belief state at any time t is determined by
her belief state at time t− 1, the action she chose at time t− 1, and her observation (e.g.
her transmission history up to t− 1). This is a POMDP with infinite states, for which, to
the best of our knowledge, currently there are no methods in the literature for finding an
optimal policy.

However, we will find the best policy and the expected cost of the corresponding MDP,
where player i knows in what state she finds herself after an action and observation. This
expected cost is a lower bound on the expected cost of the optimal policy of the original
POMDP (see Proposition 1). In the MDP we create, player i knows at any time t how
many players are pending and her transmission history up to time t.

Let p ∈ {1, 2, 3} indicate the number of pending players. Observe that the time steps
at which the process has a given p are consecutive; without loss of generality assume that
for some p, the process is in the discrete time interval [τp, τp−1 − 1], where we set τ3 = 1.
Consider now the set Sp of all states sp(

#»

h i,t) of the MDP, where the number of pending
players p ∈ {1, 2, 3} is fixed, whereas the transmission history

#»

h i,t for τp ≤ t < τp−1 can
vary. Because of the protocol f being memoryless, the same action (probability distribution
over action space A) of i chosen at any state in Sp produces the same transition probabilities.
Therefore, choosing the optimal policy makes the set Sp of states collapse to a single state
sp, where p ∈ {1, 2, 3}. The resulting MDP is a finite MDP with states s1, s2, s3 and s×,
where the latter is an absorption state to which player i goes after a successful transmission.
Denote the expected cost of the MDP’s optimal policy given that the initial state is sp by
c(sp). In our problem the immediate cost for any combination of state and action is 1, since
we count the number of rounds in which i is pending. Using Lemma 5.4.2 and Theorem
5.4.3 of [116] we can find c(s3) by solving the following system of linear equations

c(sp) = 1 +
∑

s′∈{s1,s2,s3}

Pr(sp to s′| policy π)c(s′). (4.7)

Then, by minimizing each c(sp) over policies π we get the optimal expected costs C(sp),
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p ∈ {1, 2, 3}. As a byproduct of the minimization we find the best policy π∗.
In our problem, a policy π is a tuple (q1, z1, q2, z2, q3, z3), where qp, p ∈ {1, 2, 3} de-

termines the probability that player i will attempt a transmission, and zp, p ∈ {1, 2, 3}
determines the probability that she will attempt the transmission on channel a = 1. To
give a small example, for a given state sp, (Pr(Xt = 0),Pr(Xt = 1),Pr(Xt = 2)) =

(1− qp, qpzp, qp(1− zp)). By solving system (4.7), we get that

c(s1) =
1

q1
, c(s2) =

2 + 2q1 − 2q2

2q1 − q1q2
, c(s3) = 2 +

4− 2q2 − 2q2q3 + 2q1q2q3

4q1 − 2q1q2 + 2q1q3 − q1q2q3

which implies that a policy does not depend on any of the zp’s. Now, by minimizing the
above expected costs we get C(s1) = 1, C(s2) = 2 and C(s3) = 8/3 for q1 = 1 and q3 = 1.
Note that the optimal policy allows z1, z2, z3 and q2 to be arbitrary probabilities. q2 being
even 0 is not a contradiction since in our MDP the player is always aware of the pending
players (state); in the case where q2 = 0, when the player is in state s2, she waits one round
until the other player transmits successfully and then realizes that she is alone pending in
s1; in the next round she transmits with probability 1.

We have shown that a best policy of an advantageous player gives her the same expected
latency as protocol f2 defined in (4.4) (the expected latency of f2 is given by Lemma 5).
This, combined with Proposition 1 completes the proof of Theorem 5.

We subsequently exploit the lack of memory and the anonymity of our protocol f2

defined in equation (4.4) and show more general results on equilibria (Theorem 7), using
the characterizations of Lemma 3 and Lemma 4.

Theorem 6. In a contention game with k = 2 channels, consider an anonymous, memo-
ryless protocol of player i with the property: Pr{Xi,t = 0} = 0, for every t ≥ 1. For more
than 4 players any such protocol is not an equilibrium protocol.

Proof. Assume that an anonymous protocol f as stated in the theorem is an equilibrium
protocol for n ≥ 5 players. We will show that condition (ii-b) of Lemma 4 does not hold.
That is, if n ≥ 5 players use a protocol f with the property that in each time its decision
rule assigns zero probability to “no transmission”, then there exists a best response that
yields strictly better expected latency for an arbitrary player.

Suppose f is an equilibrium protocol. f consists of a decision rule for each time
slot t, i.e. a probability distribution on the available channels (with probability 0 of
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“no transmission” as the theorem’s statement requires). Since all players use this pro-
tocol, in an arbitrary time t all players have the same distribution on the channels.
For the sake of contradiction, suppose there is some t′ for which the decision rule is
other than

(
Pr{Xi,t = 1} = 1

2 , Pr{Xi,t = 2} = 1
2

)
. Without loss of generality, we have

Pr{Xi,t = 1} > Pr{Xi,t = 2}. Thus, an arbitrary player i, at time t, can unilaterally
change her distribution to (Pr{Xi,t = 1} = 0, Pr{Xi,t = 2} = 1) and increase her prob-
ability of transmitting successfully in the specific round. As a consequence her expected
latency would strictly decrease, hence a protocol with a decision rule with different proba-
bilities on each channel cannot be in a symmetric equilibrium. Therefore, the anonymous,
equilibrium protocol f , with the property Pr{Xi,t = 0} = 0 for every t ≥ 1, prescribes(
Pr{Xi,t = 1} = 1

2 , Pr{Xi,t = 2} = 1
2

)
for every t ≥ 1. The expected latency of a player

using such a protocol, when there are n pending players, is found in Lemma 5 to be 2n/n.

We will show that, when the number of pending players at t = 0 is n ≥ 5, protocol

gi ,

 (Pr{Xi,1 = 1} = 0, Pr{Xi,1 = 2} = 0)(
Pr{Xi,t = 1} = 1

2 , Pr{Xi,t = 2} = 1
2

)
, for t ≥ 2,

is a better response for an arbitrary player i, that is, C(f−i,gi)
i (

#»

h i,0) < Cfi (
#»

h i,0) = 2n/n.

Suppose player i uses protocol gi when there are n ≥ 5 pending players at t = 0.
At time t = 2 she is not aware of the number of players that remain pending. However,
there are two cases, either n players are pending in case none of the other n− 1 players in
t = 1 transmitted successfully, or n− 1 players remain in case only one of the other n− 1

players transmitted successfully in t = 1. Note that there is no way that two players cannot
simultaneously transmit successfully in round t = 2 due to the given protocol f and the
number of pending players. The probability for each of the two aforementioned events is,

Pn−1(x) =

n−1∑
r=x

(−1)r−x
(
r

x

)(
2

r

)(
n− 1

r

)
r!

(
1

2

)r (
1− r

2

)n−1−r

where x is the number of players that transmit successfully, 00 , 1, and
(
a
b

)
, 0 for a < b.

To see how this formula is produced, please refer to the proof of Lemma 9 (Section 4.4),
up to equation (4.19). Here, equation (4.19) is used for z = 1 and k = 2.

In order to capture the dependence of the expected future latency (after history ht−1)
on the number of pending players n, when player i uses gi and the rest of the players
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use f , we denote it by F
(

#»
f −i,gi)

i,n (
#»

h i,t−1). Similarly, we denote the expected latency by

C
(

#»
f −i,gi)
i,n (

#»

h i,t−1). We have,

C
(f−i,gi)
i,n (

#»

h i,0) = F
(f−i,gi)
i,n (

#»

h i,0) = 1 + Pn−1(0)F
(f−i,gi)
i,n (

#»

h i,1) + Pn−1(1)F
(f−i,gi)
i,n−1 (

#»

h i,1)

= 1 + Pn−1(0)
2n

n
+ Pn−1(1)

2n−1

n− 1
. (4.8)

For n ≥ 5, our formula in (4.19) gives Pn−1(0) = 1 − (n − 1)
(

1
2

)n−2 and Pn−1(1) =

(n− 1)
(

1
2

)n−2. Therefore (4.8) becomes

C
(f−i,gi)
i,n (

#»

h i,0) = 1 +

[
1− (n− 1)

(
1

2

)n−2
]

2n

n
+ (n− 1)

(
1

2

)n−2 2n−1

n− 1

=
2n

n
+

4

n
− 1

<
2n

n
, for n > 4

= Cfi,n(
#»

h i,0).

Thus protocol gi yields strictly smaller expected latency than fi for player i when n ≥ 5,
and this means that f is not a symmetric equilibrium for n ≥ 5.

Since protocol f2 belongs to the class of protocols defined in the statement of Theorem
6, the following corollary is immediate.

Corollary 6. For n ≥ 5 players and k = 2 channels, f2 is not an equilibrium protocol. In
fact, a better response for any player is to not transmit in t = 1 and then follow f2.

Now we prove two lemmata that, combined with our second characterization of equilibria
(Lemma 4), result in one of this section’s main theorems (Theorem 7) that determines
equilibrium protocols for n ∈ {2, 3, 4} players and k = 2 channels. In particular, we will
show that for number of players n = 2, n = 3 and n = 4, when n − 1 players use f ,
if some deviator unilaterally chooses any possible protocol gi as defined in (4.1) that is
consistent with

#»

f , she will suffer the same expected latency, namely 2n/n. Then, we will
show that if the deviator unilaterally chooses any possible protocol as defined in (4.1) that
is not consistent with

#»

f , she will suffer expected latency at least 2n/n. These two facts,
by Lemma 4, show that f is an equilibrium protocol for n ∈ {2, 3, 4}.
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Lemma 6. For n ≥ 2 players and k = 2 channels, any player i that follows a protocol
gi ∈ Gf

2 in the profile (f2
−i, gi), where f

2 is defined in (4.4), has expected latency 2n/n.

Proof. Consider the contention game with fixed number of players n ≥ 2 and 2 channels.
n − 1 players use protocol f2 and a player i ∈ [n] uses some protocol gi(hi,τ∗) ∈ Gf

2 as
defined in (4.1), for some τ∗ ≥ 1. To make easier our reference to the expected future
latency of a player in the special case where (almost) all players follow protocol f2 of
(4.4), and to capture the number of players in the notation, we will denote by D(ri, n) ,

E[Ti|
#»

h i,0, (
#»

f 2
−i, ri)] and D(f2

i , n) , E[Ti|
#»

h i,0,
# »

f2] the expected future latency of player i
when n players participate.

First we show that condition (ii-a) of Lemma 4 holds for every n ≥ 2. From Lemma 5
we know that D(f2

i , n) = 2n/n, for every i ∈ [n]. Now observe that the set of all protocols
gi(τ

∗) as defined in 4.1 that are consistent with f2
i , consists of the protocols for which

at 6= 0 for every 1 ≤ t ≤ τ∗ for any τ∗ ≥ 1. That is, for all possible tuples (a1, a2, . . . , aτ∗)

of a given τ∗, there is no t ≤ τ∗ for which at = 0, and this is for all τ∗ ≥ 1, since
a history with “no transmission attempt” in it is not consistent with f2. Given a tuple
hi,τ∗ = (a1, a2, . . . , aτ∗), denote by xt the indicator variable that equals 1 if player i chooses
channel 1, and 0 if she chooses channel 2 in round t ≤ τ∗. Formally, a protocol as described
above is

gi = gi(hi,τ∗) ,

 (Pr{Xi,t = 1} = xt, Pr{Xi,t = 2} = 1− xt) , for 1 ≤ t ≤ τ∗

f2
i,t , for t > τ∗,

This process where a single player i uses some protocol gi and has a latency according to gi
and the other players’ fixed protocols, can be modelled as a Partially Observable Markov
Decision Process (POMDP) with infinite states; in this POMDP, each state is determined
by the transmission history of player i and the number of pending players including i, with
an additional absorbing state where i goes after successfully transmitting; player i’s belief
state at any time t is determined by her belief state at time t− 1, the action she chose at
time t− 1, and her observation (e.g. her transmission history up to t− 1).

The fact that we consider acknowledgement-based protocols together with the fact that
the partial protocol profile f2

−i which produces our POMDP consists of memoryless and
time-independent protocols, make the states of our POMDP be independent of player i’s
history. We now remark that, regardless of the action taken in some belief state from player
i playing gi, the transition probabilities between belief states are independent of time. In
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particular, denote by 〈m, t〉 a state with m pending players including player i at time t ≥ 1,
and by 〈×〉 the unique absorption state where i finds herself after successful transmission.
We write pyx to denote the transition probability to go from state 〈x〉 to state 〈y〉. It is easy
to see that the transition probabilities among belief states with 1 ≤ t ≤ τ∗ are

p×m,t =
(

1
2

)m−1

pm−1,t+1
m,t = (m− 1)

(
1
2

)m−1

pm,t+1
m,t = 1−m

(
1
2

)m−1

∀3 ≤ m ≤ n, 1 ≤ t ≤ τ∗,

and p×2,t =
1

2
, p2,t+1

2,t =
1

2
.

Observe that the above transition probabilities of any state for which 1 ≤ t ≤ τ∗ are
identical to those of equations (4.5) and (4.6) in the proof of Lemma 5; obviously for t > τ∗

the same holds because player i has switched back to protocol f2. Since player i’s actions
do not affect the transition probabilities of the resulting belief states, the above POMDP
reduces to a Markov chain that is in fact identical to the one defined in the proof of Lemma
5, thus D(gi, n) = D(f2

i , n) = 2n/n.
The natural explanation for our POMDP resulting to the above Markov chain is that,

if for a given round all players have a given probability of transmission (not necessarily 1)
uniformly distributed on the channels and a single deviator picks an arbitrary distribution
on the channels for the same probability of transmission (in this case 1), then: (a) the
probability with which she transmits successfully remains unchanged because each channel
is blocked with equal probability (1 − 1/2n−1) by the rest of the players, and (b) the
probabilities with which a specific number s of players (excluding i) transmit successfully
remain unchanged because, the probability of s players successfully transmitting conditional
on i choosing any of the channels is the same (due to the uniform distributions on the
channels by the rest of the players) regardless of the channel chosen by i.

Remark: The above arguments hold also in the case of any number k ≥ 1 of channels
when an anonymous, memoryless protocol f is used by all players except i, where f is
defined by a probability 0 < z ≤ 1 that is split uniformly on the channels in every time-
step (in our proof, k = 2 and z = 1 for all t > 0). In such a case the POMDP is reduced
to a corresponding Markov chain that is produced when all players follow f .

Lemma 7. For 2 ≤ n ≤ 4 players and k = 2 channels, any player i that follows protocol
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ri /∈ Gf
2 in the profile (f2

−i, ri), where f
2 is defined in (4.4), has expected latency at least

2n/n.

Proof. Consider the contention game with fixed number of players n ∈ {2, 3, 4} and 2
channels. n − 1 players use protocol f2 and a player i ∈ [n] uses some protocol ri =

ri(hi,τ∗) /∈ Gf
2 as defined in (4.1), for some τ∗ ≥ 1. It is sufficient to show that the lemma

holds, when ri is a best response to f2
−i, where ri is constrained to be inconsistent with

(f2
−i, f

2
i ). Therefore, among such best responses ri there has to be one with a round t <∞

for which Pr{Xi,t = 0} > 0 by definition of inconsistency. Let us focus on the smallest such
t which we will call from now on t0, i.e. t0 , inf{t : Pr{Xi,t = 0} > 0}. Let us now define
the set of protocols ri(hi,t0) /∈ Gf2 for the aforementioned t0. There are two categories of
such protocols: Category (1) has at0 6= 0, and Category (2) has at0 = 0. Each of those
categories is partitioned in two other categories: Category (I) has Pr{Xi,t = 0} = 0 for
every t > t0, and Category (II) has Pr{Xi,t = 0} > 0 for some t > t0. The categories are
presented in Table 4.1 below.

Category 1 at0 6= 0

Category 2 at0 = 0

Category I ∀t > t0: Pr{Xi,t = 0} = 0

Category II ∃t > t0: Pr{Xi,t = 0} > 0

Table 4.1: The categories of protocol ri(hi,t0).

Right before time t0 there are n possible cases that could have occurred: m players are
pending including player i, for 1 ≤ m ≤ n. In each of those cases we want to find the
expected future latency of a player i that unilaterally uses protocol ri(hi,t0), given history
#»

h i,t0−1, and given that the pending players right before time t0 are m; we will denote this

by F
(

# »

f2−i,ri)
i,m (

#»

h i,t0−1). We will prove our claim step by step, starting from protocols of
Category (I) which are easier to analyze, and move on to protocols of Category (II); we
start the analysis from the case with the least possible players and build up to the required
number of players.

Starting with Category (1-I), the analysis of the proof of Lemma 6 implies that these
protocols ri yield the same expected latency as f2

i in the tuple f2, since their process’
Markov chain is identical to this of the case (f2

−i, f
2
i ). For Category (2-I), player i does not

transmit at t0. Given that right before t0 there are m pending players including i, at t0
either all m players remain pending, or m− 1, or m− 2; the first event occurs when none
of the m− 1 players using protocol f2 at t0 transmitted successfully, the second when only
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one of them did, and the third when two of them did. The probability for each of those
events is Pm−1(x), where x is the number of players that transmit successfully, and can be
found in (4.19) for k = 2 and z = 1. Therefore we have,

F
(

# »

f2−i,ri)
i,m (

#»

h i,t0−1) = 1 + Pm−1(0)F
(

# »

f2−i,f ′i)
i,m (

#»

h i,t0) + Pm−1(1)F
(

# »

f2−i,f ′i)
i,m−1 (

#»

h i,t0)

+ Pm−1(2)F
(

# »

f2−i,f ′i)
i,m−2 (

#»

h i,t0)

= 1 + Pm−1(0)D(f2
i ,m) + Pm−1(1)D(f2

i ,m− 1) + Pm−1(2)D(f2
i ,m− 2),

(4.9)

where f ′i is the protocol followed by i for t > t0. For m = 1 it is P0(0) = 1, and P0(1) =

P0(2) = 0. For m = 2 it is P1(0) = P1(2) = 0, and P1(1) = 1. For m = 3 it is
P2(0) = P2(2) = 1

2 , and P2(1) = 0. For m = 4 it is P3(0) = 1− 3
(

1
2

)2, P3(1) = 3
(

1
2

)2, and
P3(2) = 0.

Now, using (4.9), we can see that for 1 ≤ m ≤ 4 it is

F
(

# »

f2−i,ri)
i,m (

#»

h i,t0−1) ≥ F (
# »

f2−i,fi)
i,m (

#»

h i,t0−1) = D(f2
i ,m) = 2m/m.

In particular,

for m = 1 : 2 ≥ 1,

for m = 2 : 2 ≥ 2,

for m = 3 :
17

6
≥ 8

3
, and

for m = 4 : 4 ≥ 4.

Equivalently, C(
# »

f2−i,ri)
i,m (

#»

h i,t0−1) ≥ C(
# »

f2−i,fi)
i,m (

#»

h i,t0−1), and therefore, due to (4.2), it is

C
(

# »

f2−i,ri)
i,m (

#»

h i,0) ≥ C(
# »

f2−i,fi)
i,m (

#»

h i,0), for 1 ≤ m ≤ 4.

Thus, for Category (I) and 2 ≤ n ≤ 4, condition (ii-b) of Lemma 4 holds.

For Category (1-II), we prove our claim for 1 ≤ m ≤ 4 pending players right before

t0. For m = 1, obviously F (
# »

f2−i,ri)
i,1 (

#»

h i,t0−1) = 1, which is also the minimum possible when
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only one player is pending. For m = 2, we have

F
(

# »

f2−i,ri)
i,2 (

#»

h i,t0−1) = 1 + Pr{No player transmits successfully}F (
# »

f2−i,f ′i)
i,2 (

#»

h i,t0)

Now, given that the protocol f2 used by all players apart from i is time-independent, it

should be F (
# »

f2−i,ri)
i,2 (

#»

h i,t0−1) = F
(

# »

f2−i,f ′i)
i,2 (

#»

h i,t0). Because if

F
(

# »

f2−i,ri)
i,2 (

#»

h i,t0−1) < F
(

# »

f2−i,f ′i)
i,2 (

#»

h i,t0) or F (
# »

f2−i,ri)
i,2 (

#»

h i,t0−1) > F
(

# »

f2−i,f ′i)
i,2 (

#»

h i,t0), then f ′i is
not a best response; in the former situation player i would prefer ri(hi,t0) over f ′i ; in the
latter situation she would prefer a modified protocol ri(h′i,t0) with Pr{Xi,t0 6= 0} = 0

over the current ri(hi,t0), respectively. The probability of no player transmitting success-

fully in t0 is 1/2, thus we get F (
# »

f2−i,ri)
i,2 (

#»

h i,t0−1) = 2 = F
(

# »

f2−i,f2i )
i,2 (

#»

h i,t0−1), which implies

C
(

# »

f2−i,ri)
i,2 (

#»

h i,t0−1) = C
(

# »

f2−i,f2i )
i,2 (

#»

h i,t0−1).

For m = 3, we have

F
(

# »

f2−i,ri)
i,3 (

#»

h i,t0−1) = 1 + Pr{No player transmits successfully}F (
# »

f2−i,f ′i)
i,3 (

#»

h i,t0)

+ Pr{Exactly 1 player other than i transmits successfully}F (
# »

f2−i,f ′i)
i,2 (

#»

h i,t0)

(4.10)

From the previous step, we know that a best response to f−i when there are 2 players
pending including i yields expected latency to i equal to 2. Also, the probability that
exactly one player other than i transmits successfully when there are 3 players pending, is
1/2. So, (4.10) gives

F
(

# »

f2−i,ri)
i,3 (

#»

h i,t0−1) ≥ 2 + Pr{No player transmits successfully}F (
# »

f2−i,f ′i)
i,3 (

#»

h i,t0)

Again, given that the protocol f used by all players apart from i is time-independent,

it should be F (
# »

f2−i,ri)
i,3 (

#»

h i,t0−1) = F
(

# »

f2−i,f ′i)
i,3 (

#»

h i,t0) for the same reasons explained in the
case of m = 2. The probability of no player transmitting successfully in t0 is 1/2, thus

we get F (
# »

f2−i,ri)
i,3 (

#»

h i,t0−1) ≥ 8/3 = F
(

# »

f2−i,f2i )
i,3 (

#»

h i,t0−1), which implies C(
# »

f2−i,ri)
i,3 (

#»

h i,t0−1) ≥

C
(

# »

f2−i,f2i )
i,3 (

#»

h i,t0−1).
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Finally, for m = 4, we have

F
(

# »

f2−i,ri)
i,4 (

#»

h i,t0−1) = 1 + Pr{No player transmits successfully}F (
# »

f2−i,f ′i)
i,4 (

#»

h i,t0)

+ Pr{Exactly 1 player other than i transmits successfully}F (
# »

f2−i,f ′i)
i,3 (

#»

h i,t0)

(4.11)

From the previous step, we know that a best response to f2
−i when there are 3 players

pending including i yields expected latency to i at least 8/3. Also, the probability that
exactly one player other than i transmits successfully when there are 4 players pending, is
3/8. So, (4.11) gives

F
(

# »

f2−i,ri)
i,4 (

#»

h i,t0−1) ≥ 2 + Pr{No player transmits successfully}F (
# »

f2−i,f ′i)
i,4 (

#»

h i,t0)

Again, given that the protocol f2 used by all players apart from i is time-independent,

it should be F (
# »

f2−i,ri)
i,4 (

#»

h i,t0−1) = F
(

# »

f2−i,f ′i)
i,4 (

#»

h i,t0) for the same reasons explained for m ∈
{2, 3}. The probability of no player transmitting successfully in t0 is 1/2, thus we get

F
(

# »

f2−i,ri)
i,4 (

#»

h i,t0−1) ≥ 4 = F
(

# »

f2−i,f2i )
i,4 (

#»

h i,t0−1), which implies

C
(

# »

f2−i,ri)
i,4 (

#»

h i,t0−1) ≥ C(
# »

f2−i,f2i )
i,4 (

#»

h i,t0−1).

Thus, for Category (1-II) and 2 ≤ n ≤ 4, condition (ii-b) of Lemma 4 holds.

Now we proceed with the proof of the statement for 1 ≤ m ≤ 4 for the final category,
namely Category (2-II), using the results from Category (1-II). For every m ≥ 1, equation
(4.8) holds. For m = 1, we have

F
(

# »

f2−i,ri)
i,1 (

#»

h i,t0−1) = 1 + 1 · F (
# »

f2−i,f ′i)
i,1 (

#»

h i,t0) ≥ 2,

where the above inequality comes from the fact that the minimum expected future latency
for m = 1 is 1 (found in Category (1-II)). By applying the same methodology for 2 ≤ m ≤ 4

we have

F
(

# »

f2−i,ri)
i,m (

#»

h i,t0−1) ≥ 3 +

[
1− (m− 1)

(
1

2

)m−2
]

2m

m
≥ 2m

m
= F

(
# »

f2−i,f2i )
i,m (

#»

h i,t0−1).
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Then, by taking into account our lower bounds for F (
# »

f2−i,ri)
i (

#»

h i,t) when 0 ≤ t ≤ t0 − 1

and for all possible numbers m of remaining players (including i), we get

F
(

# »

f2−i,ri)
i (

#»

h i,t0−1) ≥ F (
# »

f2−i,f2i )
i (

#»

h i,t0−1),

which implies

C
(

# »

f2−i,ri)
i (

#»

h i,t0−1) ≥ C(
# »

f2−i,f2i )
i (

#»

h i,t0−1).

Then, from Corollary 5 and equation (4.2) it is C(
# »

f2−i,f ′i)
i (

#»

h i,0) ≥ C(
# »

f2−i,f2i )
i (

#»

h i,0) and this
completes the proof.

Theorem 7. For n ∈ {2, 3, 4} players and k = 2 channels, f2 is an equilibrium protocol
with expected latencies 2, 8/3 and 4, respectively.

Proof. By combining Lemma 6, Lemma 7 and the equilibrium characterization of Lemma
4.

4.2.2.2 n players - 3 transmission channels

Here, by employing our characterizations, namely Lemma 3 and Lemma 4, we give an
acknowledgement-based, equilibrium protocol for n ∈ {2, 3, 4, 5} players and k = 3 chan-
nels.

Theorem 8. For n ∈ {2, 3, 4, 5} players and k = 3 channels, f3 defined in (4.4) is an
equilibrium protocol with expected latencies 3/2, 15/8, 189/80 and 597/200, respectively.

We omit the proof because the proof idea is the same as that of Theorem 7. However,
the analysis here is done for each value of n separately, since we do not have a closed
form (similar to that of Lemma 5) for the expected latency of n players using protocol
f3 for 3 channels. This is because, although using standard Markov chain techniques a
linear recurrence relation of the expected latency is easily found, this recurrence relation
has non-constant coefficients, for which - to our knowledge - there are no techniques in the
literature to solve them1.

1We note that reducing the recurrence relation to one with constant coefficients using already existing
techniques did not work.
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4.3 Equilibria for Ternary Feedback Protocols

In this section we consider anonymous protocols with ternary feedback. In this feedback
setting, a pending player knows at every time t the number m ≤ n of pending players. This
knowledge is given to each player regardless of her transmission history. Our analysis is for
a special class of protocols, termed time-dependent where each player considers (besides the
numberm from the feedback) only time t ≥ 1 and not her whole transmission history. Time-
dependent protocols constitute a subset of the (most general) class of history-dependent
protocols. In this section we deal only with time-dependent protocols and extend the model
and results of [69] which studied the single channel setting. We also conjecture that general
history-dependent protocols have the same set of equilibria as time-independent protocols;
it seems that the ability of a player to remember her history ht−1 only contributes in that
it helps her estimate the number of pending players m at round t, so that they can adjust
their transmission probabilities in order to maximize their probability of success. Therefore
in the ternary feedback setting where m is known to the players at every t, we conjecture
that the whole history is not needed.

4.3.1 Nash equilibrium characterization

In Theorem 9 we give a characterization of FIN-EQ protocols for n ≥ 1 players and k = 2

channels in the time-dependent case for ternary feedback. The theorem follows from the
below analysis.

Suppose n ≥ 2 players use the same protocol f in a system with 2 available transmission
channels. At time t, where t ≥ 1, the decision rule of player i among m pending players
is described by the probabilities with which she will transmit on channel 1 and channel 2,
i.e. pi,1m,t and p

i,2
m,t respectively. Also, since the information about the value of t is common

knowledge to the players, pi,1m,t = pj,1m,t and pi,2m,t = pj,2m,t for any two pending players i, j.
Therefore we can omit the player indicator superscript from the probabilities and write
p1
m,t and p2

m,t respectively.

Now suppose that the anonymous protocol f is an equilibrium and also that p1
m,t 6= p2

m,t.
Without loss of generality p1

m,t > p2
m,t. Then a player could unilaterally deviate at round

t to p1
m,t = 0, p2

m,t = 1, thus maximizing her own probability of success. Therefore, in an
anonymous, equilibrium protocol, at any time t ≥ 1 and every number m ≥ 2 of pending
players, each player assigns equal transmission probabilities to the channels. Hence, we
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also drop the channel indicator superscript and write pm,t. Note that pm,t ∈ [0, 1
2 ].

We will slightly abuse the notation here and write Cm,t and Fm,t instead of Cm(ht−1)

and Fm(ht−1), for the expected cost of a player (e.g. Alice) and the expected future latency
of a player respectively, at time t ≥ 1, where there are 1 ≤ m ≤ n pending players. Note
that, since the protocol is symmetric, we have replaced the subscript that indicates the
player’s identity with the one that indicates the number of pending players, and we also
have omitted the superscript f .

We have2

Cm,t = P×m · t+ Pm−1
m · Cm−1,t+1 + Pm−2

m · Cm−2,t+1 + Pmm · Cm,t+1

or equivalently, Fm,t = 1 + Pm−1
m · Fm−1,t+1 + Pm−2

m · Fm−2,t+1 + Pmm · Fm,t+1,

where for m ≥ 2: P×m =Pr{Alice transmits successfully}

=2pm,t(1− pm,t)m−1,

Pm−1
m =Pr{Exactly 1 player other than Alice transmits successfully}

=2(m− 1)pm,t
[
(1− pm,t)m−1 − (m− 1)pm,t(1− 2pm,t)

m−2
]
,

Pm−2
m =Pr{Exactly 2 players other than Alice transmit successfully}

=(m− 1)(m− 2)p2
m,t(1− 2pm,t)

m−2,

Pmm =Pr{No player transmits successfully} = 1− P×m − Pm−1
m − Pm−2

m .

For m = 1 the pending player has probability of no transmission equal to zero, therefore
F1,t = 1 for every t ≥ 1.

Now, given that m ≥ 2 players are pending, the equilibrium protocol cannot assign to
them probability pm,t = 0 at any time t. That is because a unilateral deviator that surely
transmitted to a channel would be successful and therefore she would acquire strictly smaller
latency than any other player. Since transmission to both channels is in the support of the
decision rule of a player at time t, both sure transmission attempt to some channel and
no transmission attempt should yield the same expected latency to a player in a Nash
equilibrium. In the sequel we will use the expected future latency at time t ≥ 1, Fm,t
for our analysis. The expected future latency of Alice when she surely transmits on an

2The probabilities are correct by defining 00 = 1.
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arbitrary channel in round t with m ≥ 2 pending players (including herself) is

Fm,t = 1 +Qm−1
m · Fm−1,t+1 + (1−Q×m −Qm−1

m ) · Fm,t+1, (4.12)

where for m ≥ 3: Q×m =Pr{Alice transmits successfully}

=(1− pm,t)m−1,

Qm−1
m =Pr{Exactly 1 player other than Alice transmits successfully}

=(m− 1)pm,t
[
(1− pm,t)m−2 − (1− 2pm,t)

m−2
]
,

Qmm =Pr{No player transmits successfully} = 1−Q×m −Qm−1
m ,

for m = 2: Q×2 =1− pm,t, Q1
2 = 0, Q2

2 = pm,t. (4.13)

The expected future latency of Alice when she surely does not attempt transmission in
round t with m ≥ 2 pending players (including herself) is

Fm,t = 1 + Sm−1
m · Fm−1,t+1 + Sm−2

m · Fm−2,t+1 + (1− Sm−1
m − Sm−2

m ) · Fm,t+1, (4.14)

where for m ≥ 3: Sm−1
m =Pr{Exactly 1 player other than Alice transmits successfully}

=2(m− 1)pm,t
[
(1− pm,t)m−2 − (m− 2)pm,t(1− 2pm,t)

m−3
]
,

Sm−2
m =Pr{Exactly 2 players other than Alice transmit successfully}

=(m− 1)(m− 2)p2
m,t(1− 2pm,t)

m−3,

Smm =Pr{No player transmits successfully} = 1− Sm−1
m − Sm−2

m ,

for m = 2: S1
2 =2pm,t, S0

2 = 0, S2
2 = 1− 2pm,t. (4.15)

By equating the right-hand sides of (4.12) and (4.14) we get an equality that includes the
required probability pm,t and the expected future latencies Fm−1,t+1, Fm−2,t+1 and Fm,t+1.

Theorem 9. An anonymous, time-dependent protocol with ternary feedback for n players
and 2 transmission channels, with transmission probability pm,t of any of m pending players
at t ≥ 1, is an equilibrium protocol if and only if the right-hand sides of (4.12) and (4.14)
are equal for some pm,t ∈ (0, 1/2].

The equilibrium probability depends on the number of pending players m, time t and
the expected future latencies Fm,t+1, Fm−1,t+1 and Fm−2,t+1 and defines the equilibrium
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protocol. However, it is difficult to be expressed in closed form. Contrary to the case of a
single channel studied in [69], where pm,t can be nicely expressed as a function of Fm−1,t+1

and Fm,t+1 in closed form, this does not seem to be the case in the current setting.

We should mention here that in the single-channel setting studied in [69] the decision
rule pm,t = 1 for m ≥ 3 is in equilibrium. However, in the case of two channels, a similar
result (e.g. pm,t = 1/2) for any number of pending players does not seem to hold. Indeed,
in time t with m ≥ 5 pending players playing pm,t = 1/2, the best response with strictly
better expected latency is pm,t = 0.

4.3.2 History-independent FIN-EQ protocols

Let us now consider anonymous, history-independent protocols, that is, protocols whose
decision rules depend only on the number 1 ≤ m ≤ n of pending players. Now, the decision
rule pm of the players does not depend on their transmission history (and therefore on time
as well), hence a player’s expected future latency Fm does not depend on her transmission
history. In this class of protocols the following theorem fully characterizes the equilibria.

Theorem 10. There exists a unique, anonymous, history-independent, equilibrium protocol
with ternary feedback for n players and 2 transmission channels, which is: any player among
2 ≤ m ≤ n remaining players, for every t ≥ 1 attempts transmission to each channel with
equal probability pm. This probability is Θ( 1√

m
) and yields expected future latency eΘ(

√
m)

for every player.

Proof. By manipulating the equilibrium conditions (4.12) and (4.14) we find

Fm =

[
Qm−2
m−1S

m−1
m + Sm−2

m (1−Qm−1
m−1)

]
−Qm−1

m (Qm−2
m−1 − Sm−2

m )

(1−Qmm)
[
Qm−2
m−1S

m−1
m + Sm−2

m (1−Qm−1
m−1)

]
−Qm−2

m−1Q
m−1
m (1− Smm)

. (4.16)

From this we can also get Fm−1, thus, replacing these two in relation (4.12), which, in
the history-independent case becomes

(1−Qmm)Fm = 1 +Qm−1
m Fm−1, (4.17)

we get the recurrence relation for the transmission probability pm to each channel. The
resulting recurrence relation of pm is non-linear with non-constant coefficients and for its
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form there is no methodology in the literature that solves it - to the authors’ knowledge.
However, we can determine the asymptotic behaviour of pm in the following way.

First, we show by induction that pm is uniquely determined. The recurrence relation of
pm holds for m ≥ 2 since our probabilities Q and S are defined for this domain only. That
is because probabilities Q and S stem from the requirement that “transmission" and “no
transmission" are both in the support of the decision rule for a player, which is not true in
the case of m = 1. As a base case of our induction we use m = 2, for which we find from
(4.12) and (4.14) as unique solution the pair (p2 = 1/2, F2 = 2). Now consider some m ≥ 2

and assume that all pm′ are uniquely determined for every m′, 2 ≤ m′ ≤ m, and thus all
Fm′ are uniquely determined by (4.16). Let us replace m with m+ 1 in (4.17), and fix pm
and Fm with the known ones. This gives us a rational univariate function - let us call it
h - of pm+1, i.e. h(pm+1) = (1 − Qm+1

m+1)Fm+1 − 1 − Qmm+1Fm. We would like to find the
roots of h in the interval (0, 1/2]. By substituting Qm+1

m+1, Q
m
m+1 and Fm from (4.13) and

(4.16) respectively, and then examining the first and second derivative of h, we can see that
h(0) = 0, h has its unique minimum for some p′m+1 ∈ (0, 1/2), and it is strictly decreasing
in [0, p′m+1]. In [p′m+1, 1/2] it is strictly increasing and h(1/2) ≥ 0. Therefore, in (0, 1/2]

there is a unique root p∗m+1 of h.

Now we proceed in showing that the asymptotic behaviour in both sides of the recurrence
relation (4.17) is the same for pm ∈ Θ(1/

√
m). First, we express the probabilities Q and

S (see sets of equations (4.13) and (4.15)) in terms of Q×m, and then we put pm,t = pm ∈
Θ(1/

√
m). This gives:

Q×m ∈ e−Θ(
√
m), Qm−1

m = Q×m · f1(m), Qm−2
m = 0, Qmm = 1−Q×m · f2(m), and

S×m = 0, Sm−1
m = Q×m · g1(m), Sm−2

m =
(
Q×m
)2 · g2(m), Smm = 1−Q×m · g3(m),

where the functions f1(m), f2(m), g1(m), g3(m) are in Θ(
√
m) and g2(m) is in Θ(m). Now

that we have described the asymptotic behaviour of the probabilities Q and S, we can find
the asymptotic behaviour of the expected future latency Fm using (4.16). By carefully
simplifying the numerator and denominator in the right-hand side of (4.16) we get

Fm =
1

Q×m · h1(m)
, where h1(m) ∈ Θ(

√
m).

Recall that Q×m ∈ e−Θ(
√
m), thus Fm ∈ eΘ(

√
m). The above formula for Fm also implies that

Fm−1 = 1/
(
Q×m−1 · h2(m)

)
, where h2(m) ∈ Θ(

√
m). By substituting Fm and Fm−1 in the
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recurrence relation (4.17), we show that the asymptotic behaviour in both sides of it are
the same, in particular, Θ(1). This completes the proof.

The latter result is analogous to the one in [69] that characterizes anonymous, history-
independent, equilibrium protocols with ternary feedback for the case of a single channel.
However here, the proof methodology is different due to the fact that there is no known
technique to express the equilibrium transmission probabilities in closed form, therefore
their asymptotic behaviour can only be extracted from a recurrence relation, which, con-
trary to the one in [69], is quite complex. Using dynamic programming, we can compute
the equilibrium probabilities in linear time; for up to m = 100 the equilibrium probabilities
are presented in Figure 4.1.

Figure 4.1: Blue: the equilibrium probabilities pm for 2 ≤ m ≤ 100. Red: experimental
upper bound, function 2√

m−1
. Black: experimental lower bound, function 1

2
√
m−1

.

4.4 IN-EQ Protocols for Both Feedback Classes

Ideally, we would like to find an anonymous, equilibrium protocol that is efficient (i.e.
the time until all players transmit successfully is Θ(n/k) with high probability) and also
has finite expected latency. For the case of ternary feedback and a single channel such a
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protocol was found in [69]. That protocol sets a deadline t0 ∝ n after which it prescribes
to the players to transmit with probability 1 on the channel at every time. It is easy to see
that transmitting surely at every time is an equilibrium for more than 2 players. The idea
of that protocol was to employ that “bad equilibrium” by putting it after the deadline so as
to keep the players that were unsuccessful until t0 for a very long (exponential in n) time.
This works as a threat to the players, which they try to avoid by adopting a cooperative
behaviour; using a time-dependent, equilibrium protocol they attempt transmission with
probability low enough so that all of them are successful before the deadline with high
probability. After the long part of the protocol, there is a last part that prescribes to the
players to use a history-independent, equilibrium protocol (similar to the one we find for
the 2-channel case) which has finite expected future latency. Since all three parts of the
protocol are in equilibrium, the whole protocol is in equilibrium as well.

However, for the case of multiple channels in both the ternary feedback and
acknowledgement-based feedback classes, a protocol with the above structure cannot be
constructed as the following theorem shows. First, let us define the following notion of
equilibrium protocol: By equilibrium with blocking step (EBS) we call an anonymous, equi-
librium protocol with the property that there exists a time-step (< ∞) of the protocol in
which every pending player has probability of successful transmission equal to 0.

Theorem 11. In the classes of acknowledgement-based and ternary feedback protocols with
k ≥ 2 channels and n ≥ 2 players, there exists no equilibrium protocol with blocking step
(EBS) and finite expected latency.

Proof. Assume for the sake of contradiction, that f is an anonymous equilibrium protocol
with finite expected latency and it has a blocking step. Suppose all n players follow f ,
therefore the protocol profile is

#»

f = (f1, f2, . . . , fn) = (f, f, . . . , f). Also, suppose that
the blocking step is at t = t0, which means that in any combination of personal histories
#»

h t0 = (h1,t0 , h2,t0 , . . . , hm,t0) of the m ≤ n pending players which happens with positive
probability under

#»

f , no player transmits successfully. Additionally, since f is an equilibrium
protocol, at t0 the probability that some channel is “free” is 0, because if not, a player could
deviate unilaterally at t0 by choosing that channel with some positive probability, and thus
improve her expected latency.

Consider the set H that contains all combinations of personal histories
#»

h t0−1 = (h1,t0−1, h2,t0−1, . . . , hm,t0−1). Consider also the subset H> of H that contains all
combinations that happen with positive probability, and the subsetH0 = H\H> containing
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those that happen with probability 0. For the reasons explained above, any combination
#»

h ′t0−1 ∈ H> is characterized by the property that the combination of decision rules of
the m pending players at t0 that it produces necessarily has at least 2 players assigning
probability 1 on each channel (so that every channel is surely blocked and no player can
deviate unilaterally). Any combination

#»

h ′t0−1 that does not have this property must be in
H0, otherwise a player that under f would assign probability 1 on a surely blocked channel
at t0, she could unilaterally deviate by assigning at t0 an appropriate positive probability
on a channel that is “free” with positive probability, and decreasing her expected latency.

Now pick an arbitrary element
#»

h ′t0−1 of H>, and without loss of generality, suppose
that players 1, 2, . . . , 2k block all k channels with probability 1 at t0. That is

f1(h1,t0−1) = (Pr{X1,t0 = 1} = 1, Pr{X1,t0 6= 1} = 0) , (4.18)

f2(h2,t0−1) = (Pr{X2,t0 = 1} = 1, Pr{X2,t0 6= 1} = 0) ,

f3(h3,t0−1) = (Pr{X3,t0 = 2} = 1, Pr{X3,t0 6= 2} = 0) ,

f4(h4,t0−1) = (Pr{X4,t0 = 2} = 1, Pr{X4,t0 6= 2} = 0) ,

...

f2k−1(h2k−1,t0−1) = (Pr{X2k−1,t0 = k} = 1, Pr{X2k−1,t0 6= k} = 0) ,

f2k(h2k,t0−1) = (Pr{X2k,t0 = k} = 1, Pr{X2k,t0 6= k} = 0) .

Consider now that the event
#»

h ∗t0−1 where all players have the same history h1,t0−1 right
before t0, and observe that this happens with positive probability, because the game starts
with all players having the exact same history, i.e. the empty history, and can continue
having the same history by transmitting to the exact same channels for every t ≤ t0 − 1

since they will be prescribed identical decision rules by protocol f . Therefore
#»

h ∗t0−1 ∈ H>.
In such an event, all players, just like player 1 in (4.18) above, will transmit with probability
1 on channel 1 at t0. Therefore the remaining k − 1 channels will be “free” at t0, therefore
#»

h ∗t0−1 ∈ H0 which is a contradiction.

In the above analysis, the arguments about a player being able to unilaterally deviate
and decrease her expected latency, need the extra property that the expected latency of
the player is finite; because if the expected latency is infinite, unilateral deviation does not
make it finite, therefore the player has no incentive to deviate. The proof is complete.

This impossibility result discourages the search for anonymous, efficient, multiple-
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channel, equilibrium protocols with the additional property of finite expected latency, since
it seems to the authors that the only candidate that guarantees efficiency is a deadline
protocol; but deadline protocols are successful as long as they are EBS. Whether no anony-
mous, efficient, equilibrium protocol with finite expected latency can be found for multiple
channels is one of the most interesting open problems that stem from this work.

Due to the latter impossibility theorem, in the rest of this section we drop the “fi-
nite expected latency requirement” and present IN-EQ protocols within the classes of
acknowledgement-based and ternary feedback for the general case of k ≥ 1 channels and
any number of n ≥ 2k + 1 players. For this, we employ the deadline idea introduced in
[69] and consequently used in [43,44]. Our protocols are efficient, even though the expected
latency is infinite.

4.4.1 Acknowledgement-based feedback

We provide an efficient deadline protocol (see Protocol g1 below) with infinite expected
latency for k ≥ 1 channels and n ≥ 2k + 1 players. This protocol generalizes the efficient
protocol of [43] which deals with a single channel and at least 3 players. The general protocol
we present uses their idea, that is, estimating the number of pending players (since it is
not known in the acknowledgement-based environment) and adjusting the transmission
probabilities of the players accordingly, in order to simulate a socially optimal protocol (see
protocol SOP below) that allows all transmissions to be successful by time Θ(n/k) with
high probability. Our modification is that, instead of prescribing to the players to always
transmit to the single channel once they reach the deadline (so that with some positive
probability they get blocked forever), we block all channels with positive probability by
prescribing a random assignment of each player to a channel.

In particular, consider k ≥ 1 transmission channels, n ≥ 2k+1 players, a fixed constant
β ∈ (0, 1) and a deadline t0 to be determined consequently. The window of time steps
{1, 2, . . . , t0 − 1} is partitioned into r + 1 consecutive intervals (sets of consecutive time
steps) I1, I2, . . . , Ir+1 where r is the unique integer in

[
− logβ n/2− 1,− logβ n/2

]
. For any

j ∈ {1, 2, . . . , r + 1} define nj = βjn/k. For j ∈ {1, 2, . . . , r} the length of interval Ij is
lj = b eβnjc. Interval Ir+1 is special and has length lr+1 = n/k. We define the following
anonymous protocol.
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Protocol g1:
Every player among 1 ≤ m ≤ n pending players for every time step t ∈ Ij assigns
transmission probability 1/max{nj , k} to each channel. Right before the deadline
t0 = 1 +

∑r+1
j=1 lj each pending player is assigned to a random channel equiprobably,
and for t ≥ t0 always attempts transmission to that channel.

Lemma 8. Protocol g1 for n ≥ 2k + 1 players and k ≥ 1 channels, is an equilibrium
protocol and it is also efficient.

Proof. First we prove that g1 is an equilibrium protocol when n ≥ 2k + 1. Consider an
arbitrary player i, and observe that since all players play g1 the probability that all of them
will be still pending by t0 is 1/nt0 > 0. Given that, the probability that player i at t0 will
be assigned to the same channel with at least 2 other players is at least the probability that
she will be assigned to the same channel with all other players, which is at least 1/kn > 0.
Hence, the probability that player i can find herself in t = t0 pending together with two
other players is positive, and in this case she will remain pending forever. Therefore, i’s
expected latency is ∞, and since by any unilateral deviation of i she cannot make the
aforementioned event empty, her expected latency will always be ∞. Therefore, g1 is an
equilibrium protocol.

Now we proceed by showing that g1 is also efficient, that is, all players transmit suc-
cessfully by time t0 = 1 +

∑r+1
j=1 lj ∈ Θ(n/k). The proof of efficiency is essentially the

same as that of Theorem 11 in [43] and it is omitted. The difference here is that we have
tuned nj and lr+1 according to our problem and we have used variable r instead of k. As a
consequence, this result is the same as that of the aforementioned theorem in [43], except
that ours has n/k instead of n.

4.4.2 Ternary feedback

In the ternary feedback setting, the use of the unique history-independent equilibrium (see
Theorem 10, Section 4.3.2) yields exponential expected latency in the number of players
n, and additionally, even one player’s latency being any polynomial in n happens with
exponentially small probability. This fact points to history-dependent protocols as candi-
dates for efficient equilibria. Here, we look in the more restricted class of time-dependent
protocols, where only time t is considered by each player and not her entire transmission



82 Themistoklis Melissourgos

history. We construct a protocol (Theorem 12) which imposes a heavy cost on any player
that does not manage to transmit successfully until a certain deadline-round. This forces
any potential deviator to play “fairly” until the deadline and follow an anonymous, socially
optimal protocol, named SOP (guarantees expected time Θ(n/k) for all players to pass).

To prove the main theorem of this section we need a series of technical results. As a
first step, we give the general Lemma 9 that determines the expected number of successful
transmissions in a round where m players have a uniform distribution on the channels,
and subsequently in Fact 1 we find the maximum of that expected number. Then, we
present another lemma (Lemma 10) that gives an upper bound on the expected finishing
time when m ≤ k. Finally, using all the aforementioned intermediate results, we present a
socially optimal protocol in Lemma 11 which is employed in the proof for our main theorem
(Theorem 12) that concerns our IN-EQ protocol.

Lemma 9. Consider a single round with k ≥ 1 channels and n ≥ 1 players. Assume
that for every player the probability of transmission attempt is z ∈ [0, 1] which she splits
equally to all k channels. Then, the expected number3 of players that transmit successfully
is zn

(
1− z

k

)n−1.

Proof. For a fixed z ∈ [0, 1], denote by Xn the random variable that indicates how many
players transmit successfully in a round with n players. Note that when z = 1 and n ≥ 2,
the case where Xn = n − 1 is impossible since in order for some player to have a failed
transmission she has to be blocked by someone else.

Our problem reduces to the following balls-and-bins problem: Consider n balls and k
bins, where n ≥ 1. Each ball is thrown with probability z/k to each bin, and not thrown at
all with probability 1− z. Random variable Xn ∈ {0, 1, 2, . . . , n} now indicates the number
of bins that had a single ball after the experiment.

We want to find E[Xn]. For this, we will employ the probability of the event that x
bins contain a single ball given that the round started with n balls. Denote by Aj the event
that bin j contains a single ball. Also, we define the probabilities of intersections between
such events

pj = Pr(Aj), pjm = Pr(Aj ∩Am), pjml = Pr(Aj ∩Am ∩Al), . . .

3We define 00 = 1.
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and we write Sr to denote the sums of all distinct p’s with r subscripts. That is

S1 =

k∑
j=1

pj , S2 =
∑
j<m

pjm, S3 =
∑

j<m<l

pjml, . . .

where the subscripts are in increasing order j < m < l < · · · < k for uniqueness, so that in
the sums each combination appears only once; therefore Sr has

(
k
r

)
terms. In our setting,

each term of Sr equals (
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r
since for specific r bins to contain a single ball there are

(
n
r

)
combinations of r balls, which

should occupy the r bins with r! orders. Each of those chosen r balls can fall in a bin with
probability z

k and each of the rest n− r balls has to fall in some other than those r bins or
not be thrown at all, which happens with probability 1− rz

k . So,

Sr =

(
k

r

)(
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r
and by the Inclusion-Exclusion Theorem, the probability that exactly x bins contain a
single ball is the following4

Pn(x) =

n∑
r=x

(−1)r−x
(
r

x

)
Sr

=
n∑
r=x

(−1)r−x
(
r

x

)(
k

r

)(
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r
(4.19)

4For the case where a < b we define
(
a
b

)
, 0 so that the analysis is displayed only once for both cases

n ≤ k and n > k.
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We want to calculate E[Xn]. We have

E[Xn] =
n∑
x=0

xPn(x)

=

n∑
x=0

n∑
r=x

(−1)r−xx

(
r

x

)(
k

r

)(
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r
=

n∑
r=0

r∑
x=0

(−1)r−xx

(
r

x

)(
k

r

)(
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r
=

n∑
r=0

(
k

r

)(
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r r∑
x=0

(−1)r−xx

(
r

x

)

=
n∑
r=0

(
k

r

)(
n

r

)
r!
(z
k

)r (
1− rz

k

)n−r
(−1)r

r∑
x=0

(−1)xx

(
r

x

)
=

(
k

1

)(
n

1

)
z

k

(
1− z

k

)n−1
(−1)(−1)(

since
r∑

x=0

(−1)xx

(
r

x

)
= −1 for r = 1, 0 otherwise

)

= zn
(

1− z

k

)n−1
.

The following fact shows where the expected number of players of the above theorem is
maximized as a function of z (the probability mass devoted to transmission).

Fact 1. Consider the function f(z) = zn(1 − z/k)n−1, with domain [0, 1] and parameters
k ≥ 1, and n ≥ 1. The maximum of f is attained for z = min{k/n, 1}.

Proof. The first and second derivatives of f are

f ′(n) = n
(

1− zn

k

)(
1− z

k

)n−2

f ′′(n) = n(n− 1)
(

1− z

k

)n−3 nz − 2k

k2

When n < k, then f ′(z) > 0 and therefore the global maximum of f is attained for z = 1,
which gives f(1) = n(1− 1/k)n−1.

When n ≥ k, the first derivative of f is 0 for (a) z = k when n ≥ 3, or (b) z = k/n
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when n ≥ 1. Case (a) only works if k = 1 due to the domain of z and gives f(1) = 0. f ′(z)
is positive in [0, k/n), and negative in (k/n, 1). Therefore, f(k/n) = k(1 − 1/n)n−1 is the
global maximum.

Lemma 10. Suppose there are k ≥ 2 channels and 2 ≤ n ≤ k players and suppose that
all players use the following protocol: A player in every time step t ≥ 1 has a probability
of transmission 1/k to every channel. Then, the expected time until everyone transmits
successfully is upper bounded by 1

1−ln(e−1) ln(n2 ) +
(
1− 1

k

)−1.

Proof. Denote by Xm the random variable that indicates how many players transmit suc-
cessfully in a round t where m ∈ {0, 2, . . . , n} players are left. Note that the case where
m = 1 is impossible since in order for some player to have a failed transmission she
has to be blocked by someone else. In the next round the expected number of play-
ers will be m − E[Xm]. We define the finishing time as the following random variable
T , inf{t : m = 0} and we would like to find its expectation.

Our problem reduces to the following balls and bins problem: Consider n balls and k
bins, where 2 ≤ n ≤ k. At time t = 1 all balls are thrown uniformly at random to the k
bins. For all the bins that contain a single ball, these balls are removed, and in the next
round m ∈ {0, 2, . . . , n} balls remain. At time t = 2 all m balls are thrown uniformly at
random to the k bins. The process continues as long as there are remaining balls. Random
variable Xm ∈ {0, 1, 2, . . . ,m} now indicates the number of bins that had a single ball when
the respective round started with m balls. Note again that Pr(Xm = m−1)= 0 since there
is no allocation of balls in the bins such that m−1 bins have a single ball. Random variable
T , inf{t : m = 0} is the finishing time of this process.

We define the function f(m) to be the expected finishing time E[T ] when m players
remain. We assume that this function is non-decreasing and concave. Then we have,

f(m) = 1 +

m∑
i=0

Pr(Xm = i)f(m−Xm)

= 1 + E[f(m−Xm)]

≤ 1 + f (E[m−Xm]) (concavity of f and Jensen’s inequality)

= 1 + f(m− E[Xm]) (linearity of expectation) (4.20)

Now by exploiting the monotonicity of the function f(m) in equation (4.20), and using
Lemma 9 we only need to find a lower bound on E[Xm]. This is easy, since m

(
1− 1

k

)m−1 ≥
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m
(
1− 1

k

)k−1 ≥ m/e. Then from equation (4.20) we get

f(m) ≤ 1 + f

(
m

(
1− 1

e

))
≤ r + f

(
m

(
1− 1

e

)r)
.

We use as base case f(2) for which holds that f(2) = 1 + k 1
k2
f(2), or equivalently, f(2) =

(1− 1/k)−1. Then the r for which m
(
1− 1

e

)r
= 2 finally gives us

f(m) ≤ 1

1− ln(e− 1)
ln(

m

2
) +

(
1− 1

k

)−1

Let us define the following anonymous, history-independent protocol which we prove to
be efficient. However, we remark that it is not in equilibrium, due to Theorem 10 which
characterizes the unique, anonymous, equilibrium protocol that is history-independent.

Protocol SOP:
Every player among 1 ≤ m ≤ n pending players, in each round t ≥ 1 assigns

transmission probability 1/max{m, k} to each channel.

Lemma 11. Protocol SOP for k ≥ 1 channels and n > k players has expected finishing
time O((n− k)/k).

Proof. Suppose protocol SOP as stated in the theorem is used. Then, the transmission
probability of each player in each round is uniform on the set of channels K. Using the
framework of Lemma 9, according to protocol SOP for variable z we have z = min{k/m, 1},
and we know from Fact 1 that this value maximizes the number of successful transmissions
in a round with m players. Denote by Xm the random variable that keeps track of the
number of successful transmissions in a single round with m > k pending players. Then,
according to Lemma 9, in a round withm > k pending players it is E[Xm] = k(1−1/m)m−1.

Define the function f(m) to be the expected finishing time when there are m > k

pending players. We assume that this function is non-decreasing and concave. Then we
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have

f(m) = 1 +
m∑
i=0

Pr(Xm = i)f(m−Xm)

= 1 + E[f(m−Xm)]

≤ 1 + f (E[m−Xm]) (concavity of f and Jensen’s inequality)

= 1 + f(m− E[Xm]) (linearity of expectation) (4.21)

Now by exploiting the monotonicity of the function f(m) in equation (4.21), and using
Lemma 9 we only need to find a lower bound on E[Xm]. This is easy, since k

(
1− 1

m

)m−1 ≥
k/e. Then from equation (4.21) we get

f(m) ≤ 1 + f

(
m− k

e

)
≤ r + f

(
m− rk

e

)
.

We use as base case f(k) for which holds that f(k) ≤ 1
1−ln(e−1) ln(k2 ) +

(
1− 1

k

)−1, due to
Lemma 10. Then the r for which m− r ke = k finally gives us

f(m) ≤ em− k
k

+
1

1− ln(e− 1)
ln(

k

2
) +

(
1− 1

k

)−1

.

Using the above lemmata we are able to prove the following.

Lemma 12. (a) If at t = 0 there are n pending players, the probability that more than k

players are pending at time t1 = 2e(n− k)/k is at most exp
(
−n−k

2ek

)
.

(b) If at t = 0 there are k pending players, the probability that not all players have trans-
mitted successfully at time t2 = 2e(n− k)/k is at most exp

(
−n−k

2ek

)
.

Proof. Let {Yt}t1t=1 be random variables which indicate the number of successful transmis-
sions that occur in each time-step from t = 1 up to t1 , 2e(n− k)/k, given that there are
n pending players at time t = 0. For the events for which Y ,

∑t1
t=1 Yt > n − k we have

the desired outcome. For the rest, since the pending players in each round 1 ≤ t ≤ t1 are
m > k, the protocol prescribes to each player probability 1/m on each channel. There-



88 Themistoklis Melissourgos

fore, by Lemma 9, we have E[Yt] = k (1− 1/m)m−1. In the next claim we show that Yt
stochastically dominates a random variable Zt ∈ {0, 1, . . . , k} that indicates the number of
successful transmissions in round 1 ≤ t ≤ t1 but, in this process, the players that transmit
successfully are placed back to the group of pending players.

Claim 4. Pr{Yt ≥ x} ≥ Pr{Zt ≥ x}, for all x ∈ {0, 1, · · · , k}.

Proof. We will prove the above claim by showing the stronger fact that, for any fixed
number 1 ≤ m ≤ n− 1 of pending players at time t,

Pr{Yt ≥ x | m pending players} ≥ Pr{Yt ≥ x | m+ 1 pending players},

for all x ∈ {0, 1, · · · , k}.
Indeed, by substituting the probabilities of the above inequality we get,(

m

x

)
x!

(
1

m

)x (
1− x

m

)m−x
≥
(
m+ 1

x

)
x!

(
1

m+ 1

)x(
1− x

m+ 1

)m+1−x
,

or equivalently, (m+ 1)m(m− x)m−x ≥ mm(m− x+ 1)m−x,

and finally,
(

1 +
1

m

)m
≥
(

1 +
1

m− x

)m−x
,

which is true, since the function f(w) = (1 + 1/w)w is strictly increasing. The claim
follows from the fact that for any fixed x ∈ {0, 1, · · · , k},

Pr{Zt ≥ x} = Pr{Yt ≥ x | n pending players}.

Clearly {Zt}t1t=1 are independent random variables bounded in [0, k]. Let Z ,
∑t1

t=1 Zt

and µ1 , E[Z] =
∑t1

t=1 E[Zt] = t1k (1− 1/n)n−1. Then by Hoeffding’s inequality [86] and
the stochastic domination we have,

Pr(Y ≤ n− k) ≤ Pr(Z ≤ n− k) = Pr
(
Z ≤ µ1

2e (1− 1/n)n−1

)
≤ Pr

(
Z ≤ µ1

2

)
≤ exp

(
−(1− 1/2)2µ2

1

t1(k − 0)2

)
≤ exp

(
−1

4

t1
e2

)
= exp

(
−n− k

2ek

)
,

where in the last three inequalities we used the fact that (1− 1/n)n−1 ≥ 1/e.



Chapter 4. Strategic Contention Resolution 89

For the second part of the proof, suppose the process is at round t = 0 with k pending
players. Let {Xt}t2t=1 be random variables which indicate the number of successful transmis-
sions that occur in each time-step from t = 1 up to t2 , 2e(n− k)/k, given that there are
k pending players at time t = 0. The pending players in each round 1 ≤ t ≤ t2 are m ≤ k,
hence the protocol prescribes to each player probability 1/k on each channel. By Lemma 9,
we have E[Xt] = m (1− 1/k)m−1. Now, observe that Xt stochastically dominates a random
variable Wt ∈ {0, 1, . . . , k} that indicates the number of successful transmissions in round
1 ≤ t ≤ t2 but, in this process, the players that transmit successfully are placed back to the
group of pending players. The latter observation is easy to see since an argument similar
to the Claim that was stated earlier holds in this case.

Clearly, {Wt}t2t=1 are independent random variables bounded in [0, k]. LetW ,
∑t2

t=1Wt

and µ2 , E[W ] =
∑t2

t=1 E[Wt] = t2k (1− 1/k)k−1. Then by Hoeffding’s inequality [86] and
the stochastic domination we have,

Pr(X ≤ k − 1) ≤ Pr(W ≤ k) = Pr

(
W ≤ µ2k

2e(n− k) (1− 1/k)k−1

)

≤ Pr
(
W ≤ µ2

2

)
≤ exp

(
−(1− 1/2)2µ2

2

t2(k − 0)2

)
≤ exp

(
−1

4

t2
e2

)
= exp

(
−n− k

2ek

)
,

where in the last three inequalities we used the fact that (1−1/k)k−1 ≥ 1/e, and n ≥ 2k+1.
This completes the proof of the lemma.

We define the following anonymous protocol. In the next theorem we show that it is an
equilibrium protocol and also that it is efficient.

Protocol r:
Let the deadline be t0 = 4e(n− k)/k. Every player among 1 ≤ m ≤ n pending
players for 1 ≤ t ≤ t0 − 1 assigns transmission probability 1/max{m, k} to each
channel. Right before t0 each pending player is assigned to a random channel
equiprobably, and for t ≥ t0 always attempts transmission to that channel.

Theorem 12. Protocol r for n ≥ 2k + 1 players and k ≥ 1 channels is an equilibrium
protocol whose finishing time is Θ(n/k) with probability tending to 1 as n/k →∞.
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Proof. First, we show that it is an equilibrium protocol when n ≥ 2k + 1. The expected
latency of a player using protocol r is ∞. That is because there is an event with positive
probability in which some player i finds herself in an equilibrium where at least 2 of the
other players have been assigned to each and all of the k channels and transmit there in
every time slot. In particular, with probability at least k( 1

n)t0−1 > 0 all players will be
pending right after t0−1. Given this, with probability

(
n−1

2,2,...,2,n−1−2k

)
( 1
k )n−1 > 0 exactly 2

out of n−1 players will be assigned to each of the k−1 channels and the remaining players
(including player i), which are at least 3, are assigned to the remaining channel. Therefore,
the aforementioned two events occur with positive probability, and then for player i all
channels are blocked for every t ≥ t0, resulting to infinite latency. Hence, the expected
latency of a player using protocol r is ∞.

Now suppose that player i unilaterally deviates to some protocol r′. The event that
all players are pending right before t0 remains non-empty, since the event that all players
transmit on the same channel as i for every 1 ≤ t ≤ t0 − 1 happens with positive proba-
bility. Given that, the event that at least 2 of the players other than i will be assigned to
each channel happens with positive probability. Therefore, the deviator’s expected latency
remains ∞ and r is an equilibrium protocol.

Finally, we will show that, when n ∈ ω(k), this protocol is also efficient, i.e. the time
until all n players transmit successfully is linear in n/k with probability tending to 1 as
n
k →∞. By Lemma 12, the probability that not all players have successfully transmitted by
time t1 + t2 = 4e(n−k)/k is at most exp

(
−n−k

2ek

)
+exp

(
−n−k

2ek

)
= 2exp

(
−n−k

2ek

)
. Therefore,

when n ∈ ω(k), no player is pending after 4e(n− k)/k rounds with high probability.



Chapter 5

Connected Subgraph Defense Games

This chapter studies a game in a structured population. We consider a security game over
a network played between a defender and k attackers. Every attacker chooses, probabilis-
tically, a node of the network to damage. The defender chooses, probabilistically as well,
a connected induced subgraph of the network of λ nodes to scan and clean. Each attacker
wishes to maximize the probability of escaping her cleaning by the defender. On the other
hand, the goal of the defender is to maximize the expected number of attackers that she
catches. This game is a generalization of the model from the seminal paper of Mavronicolas
et al. [100]. We are interested in Nash equilibria of this game, as well as in characterizing
defense-optimal networks which allow for the best equilibrium defense ratio; this is the ratio
of k over the expected number of attackers that the defender catches in equilibrium.

We provide a characterization of the Nash equilibria of this game and defense-optimal
networks. The equilibrium characterizations allow us to show that even if the attackers
are centrally controlled the equilibria of the game remain the same. In addition, we give
an algorithm for computing Nash equilibria. Our algorithm requires exponential time in
the worst case, but it is polynomial-time for λ constantly close to 1 or n. For the special
case of tree-networks, we further refine our characterization which allows us to derive a
polynomial-time algorithm for deciding whether a tree is defense-optimal and if this is
the case it computes a defense-optimal Nash equilibrium. On the other hand, we prove
that it is NP-hard to find a best-defense strategy if the tree is not defense-optimal. We
complement this negative result with a polynomial-time constant-approximation algorithm
that computes solutions that are close to optimal ones for general graphs. Finally, we
provide asymptotically (almost) tight bounds for the Price of Defense for any λ; this is the

91
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worst equilibrium defense ratio over all graphs.
The results of this chapter have been published in the Proceedings of the 12th In-

ternational Symposium on Algorithmic Game Theory (SAGT 2019) [4] (co-authored with
Akrida, Deligkas and Spirakis).

5.1 Overview

With technology becoming a ubiquitous and integral part of our lives, we find ourselves
using several different types of computer networks. An important issue when dealing with
such networks, which are often prone to security breaches [42], is to prevent and monitor
unauthorized access and misuse of the network or its accessible resources. Therefore, the
study of network security has attracted a lot of attention over the years [139]. Unfortunately,
such breaches are often inevitable, since some parts of a large system are expected to have
weaknesses that expose them to security attacks; history has indeed shown several successful
and highly-publicized such incidents [137]. Therefore, the challenge for someone trying to
keep those systems and networks of computers secure is to counteract these attacks as
efficiently as possible, once they occur.

To that end, inventing and studying appropriate theoretical models that capture the
essence of the problem is an important line of research, ongoing for a few years now [102,103].
Here, extending some known models for very simple cases of attacks and defenses [100,101],
we introduce and analyze a more general model for a scenario of network attacks and
defenses modeling it as a defense game.

The Network Security Game. We follow the terminology established by the seminal
paper of Mavronicolas et al. [100]. We consider a network whose nodes are vulnerable
to infection by threats called attackers; think of those as viruses, worms, Trojan horses
or eavesdroppers [73] infecting the components of a computer network. Available to the
network is a security software (or firewall), called the defender. The defender is only able
to “clean” a limited part of the network from threats that occur; the reason for the limited
cleaning capacity of the defender may be, for example, the cost of purchasing a global
security software. The defender seeks to protect the network as much as possible, and on
the other hand, every attacker seeks to increase the likelihood of not being caught. Both the
attackers and the defender make individual decisions for their positioning in the network
with the aim to maximize their own objectives.
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Every attacker targets (and attacks) a node chosen via her own probability distribution
over the nodes of the network. The defender cleans a connected induced subgraph of the
network with size λ, chosen via her own probability distribution over all connected induced
subgraphs of the graph with λ nodes. The attack of a particular attacker is successful unless
the node chosen by the attacker is incident to an edge (link) being cleaned by the defender,
i.e. to an edge belonging in the induced subgraph chosen by the defender. One could equiv-
alently think of the defender selecting a set of λ connected nodes to defend, and an attacker
is successful if and only if she attacks a node that is not being defended. Since attacks and
defenses over a large computer network are self-interested procedures that seek to maximize
damage and protection, respectively, it is natural to model this network security scenario
as a non-cooperative strategic game on graphs with two kinds of players: k ≥ 1 attackers,
each playing a vertex of the graph, and a single defender playing a connected induced sub-
graph of the graph. The (expected) payoff of an attacker is the probability that she is not
caught by the defender; the (expected) payoff of the defender is the (expected) number of
attackers she catches. We are interested in the Nash equilibria [112,113] associated with
this graph theoretic game, where no player can unilaterally improve her (expected) payoff
by switching to another probability distribution. We are also interested in understanding
and characterizing the networks that allow for a good defense ratio: given a strategy pro-
file, i.e. a combination of strategies for the network entities (attackers and defender), the
defense ratio of a network is the ratio of the total number of attackers over the defender’s
expected payoff in that strategy profile.

5.1.1 Contribution

In this work we depart from and significantly extend the line of work of Mavronicolas et
al. in their seminal paper [100] on defense games in graphs; we term the type of games
we consider Connected Subgraph Defense (CSD) games. In our model the defender is more
powerful than in [100–103], since her power is parameterized by the size, λ, of the defended
part of the network. We allow λ to take values from 1 to n, while in [100–103] only the case
where λ = 2 was studied. We study many questions related to CSD games. We extend the
notions of defense ratio and defense-optimal graphs for CSD games. In fact, the defense
ratio of a given graph G and a given strategy profile S of the attackers and the defender is
the ratio of the number of attackers, k, over the defender’s expected payoff (the number of
attackers she catches on expectation). We thoroughly investigate the notion of the defense
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ratio for Nash equilibria strategy profiles.

Firstly, we precisely characterize the Nash equilibria and defense-optimal graphs in CSD
games. This allows us to show that, in equilibrium, the game version of k uncoordinated
attackers and a single defender is equivalent to the version in which a single leader coordi-
nates the k attackers, meaning that both versions of the game have the exact same equilibria
and defense ratio. We present an LP-based algorithm to compute an exact equilibrium of
any given CSD game, whose running time is polynomial in

(
n
λ

)
. Then, we focus on tree-

graphs. There, we further refine our equilibrium characterization which allows us to derive
a polynomial-time algorithm for deciding whether a tree is defense-optimal and, if this is
the case, it computes a defense-optimal Nash equilibrium. A tree is defense-optimal if and
only if it can be partitioned into n

λ disjoint sub-trees. On the other hand, we prove that
it is NP-hard to find a best-defense strategy if the tree is not defense-optimal. We remark
that a very crucial parameter for defense-optimality of a graph G is the “best” probability
with which any vertex of G is defended in a NE; we call that probability MaxMin proba-
bility and denote it by p∗(G). Then, for any graph G, the defense ratio in equilibrium is
shown to be exactly 1

p∗(G) . Although it is hard to exactly compute p∗(G) even for trees, we
complement this negative result with a polynomial-time constant-approximation algorithm
that computes solutions that are close to the optimal ones for any λ, for any given general
graph. In particular, we approximate the (best) defense ratio of any graph within a factor
of 2 + λ−3

n . Finally, we provide asymptotically tight bounds for the Price of Defense for
any λ ∈ ω(1) ∩ o(n), and almost tight bounds for any other value of λ.

5.1.2 Related work

Our graph-theoretic game is a direct generalization of the defense game considered by
Mavronicolas et al. [100–103]. In the latter, the authors examined the case where the size
of the defended part of the network is λ = 2, i.e. where the defender “cleans” an edge. This
leads to a nice connection between equilibria and (fractional) matchings in the graph [102].
But when λ is greater than 2, one has to investigate (as we shall see here) how to sparsely
cover the graph by as small a number as possible of connected induced subgraphs of size λ.
This direction can be seen as an extension of fractional matchings to covers of the graph by
equisized connected subgraphs. Sparse covering of graphs by connected induced subgraphs
(clusters), not necessarily equisized, is a notion known to be useful also for distributed
algorithms, since it affects message communication complexity [15].
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In another line of work, Kearns and Ortiz [89] study Interdependent Security games in
which a large number of players must make individual decisions regarding security. Each
player’s safety may depend on the actions of the entire population (in a complex way). The
graph-theoretic game that we consider could be seen as a particular instance of such games
with some sort of limited interdependence: the actions of the defender and an attacker are
interdependent, while the actions of the attackers are not dependent on each other.

Aspnes et al. [14] consider a graph-theoretic game that models containment of the
spread of viruses on a network; each node individually must choose to either install anti-
virus software at some cost, or risk infection if a virus reaches it without being stopped by
some intermediate node with installed anti-virus software. Aspnes et al. [14] prove several
algorithmic properties for their graph-theoretic game and establish connections to a certain
graph-theoretic problem called Sum-of-Squares Partition.

A game on a weighted graph with two players, the tree player and the edge player, was
studied by Alon et al. [5]. At each play, the tree player chooses a spanning tree and the
edge player chooses an edge of the graph, and the payoffs of the players depend on whether
the chosen edge belongs in the spanning tree. Alon et al. investigate the theoretical aspects
of the above game and its connections to the k-server problem and network design.

Finally, there is a long line of work on security games [12] where many scenarios are
modelled using graph theoretic problems [87,93,143,144].

5.1.3 The model and definitions

The game. A Connected-Subgraph Defense (CSD) game is defined by a graphG = (V,E),
a defender, k ≥ 1 attackers, and a positive integer λ. Throughout the current chapter, λ
is considered to be a given parameter of the game. A pure strategy for the defender is
any induced connected subgraph H of G with λ vertices, which we term λ-subgraph. For
any λ-subgraph H of G we denote V (H) its set of vertices. Since V (H) uniquely defines
an induced subgraph of G, we will use the term λ-subgraph to denote either V (H) or H.
The action set of the defender is D := {V (H)|H is a λ-subgraph of G} and we will denote
its cardinality by θ, i.e. θ := |D|. For ease of presentation, we will also refer to D as
[θ] := {1, 2, . . . , θ}. A pure strategy for each of the attackers is any vertex of G. So, the
action set of every attacker is V , the vertex set of G; we denote n := |V | and we similarly
refer to V also as [n].

To play the game, the defender chooses a defense (mixed) strategy, i.e. a probability
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distribution over her action set, and each attacker chooses an attack (mixed) strategy, i.e. a
probability distribution over the vertices of G. We denote a strategy by s := (s1, . . . , sd) ∈
∆d, i.e. by the probability distribution over d enumerated pure strategies, where ∆d :=

{x1, . . . , xd ≥ 0|
∑d

i=1 xi = 1} is the (d−1)-unit simplex. In a defense strategy q ∈ ∆θ each
pure strategy j ∈ [θ] is assigned a probability qj .

We say that a pure strategy of the defender, i.e. a specific λ-subgraph H of G, covers
a vertex v ∈ V if v ∈ V (H). A defense strategy covers a vertex v ∈ V if it assigns strictly
positive probability to at least one λ-subgraph H of G which contains v.

Definition 11 (Vertex Probability). The vertex probability pi of vertex i ∈ [n], is the
probability that i will be covered, formally pi :=

∑
j∈[θ]: i∈j qj.

Payoffs and Strategy profiles. A strategy profile is a tuple of strategies S =

(q, t1, . . . , tk), where q denotes the defender’s strategy and tj denotes the j-th attacker’s
strategy, j ∈ [k]. A strategy profile is pure if the support of every strategy has size one.
The payoff of every attacker is 1 in any pure strategy profile where she does not choose a
defended vertex, and 0 in all the rest. The payoff of the defender in a pure strategy profile
where she defends V (H), is the number of attackers that choose a vertex in V (H). Under
a strategy profile, the expected payoff of the defender is the expected number of attackers
that she catches, which we call defense value, and the expected payoff of the attacker is
the probability that she will not get caught. A best response strategy for a participant is
a strategy that maximizes her expected payoff, given that the strategies of the rest of the
participants are fixed. A Nash equilibrium is a strategy profile where all the participants
are playing a best response strategy. In other words, neither the defender nor any of the
attackers can increase their expected payoff by unilaterally changing their strategy.

Definition 12 (Defense Ratio). For a given graph G we define a measure of the quality
of a strategy profile S, called defense ratio of G and denoted DR(G,S), as the ratio of the
total number of attackers k over the defense value.

In this work we are only interested in the cases where S is an equilibrium. For a given
graph, when in equilibrium, the defender’s expected payoff is unique (due to Corollary 7
(a)) and achieves the equilibrium defense ratio DR(G,S∗), where S∗ is an equilibrium. The
defense strategy in S∗ which achieves this defense ratio will be termed best-defense strategy.
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Definition 13 (MaxMin Probability, p∗). We call MaxMin Probability of a graph G the
maximum, over all defense strategies, minimum vertex probability in G, that is:

p∗(G) := max
q∈∆θ

min
i∈[n]

pi.

As we will show in Lemma 13, the equilibrium defense ratio of a graph G turns out to
be DR(G,S∗) = 1/p∗(G).

Definition 14 (Price of Defense). The Price of Defense, PoD, for a given parameter λ of
the game, is the worst defense ratio, over all graphs, achievable in equilibrium, that is:

PoD(λ) = max
G

DR(G,S∗).

Definition 15 (Defense-Optimal Graph). For a given λ, a graph G∗ that achieves the
minimum equilibrium defense ratio over all graphs, i.e. G∗ ∈ arg minG DR(G,S∗), is called
defense-optimal graph.

In the following, for ease of presentation, whenever we refer to defense optimality, we
implicitly assume that λ has a fixed value.

5.2 Nash Equilibria

In this section, we provide a characterization of Nash equilibria in CSD games, as well
as important properties of their structure which prove useful for the development of our
algorithms in the remainder of the Chapter.

Theorem 13 (Equilibrium characterization). For a given graph G, in any equilibrium with
support S ⊆ [θ] of the defender and support Tj ⊆ [n] of each attacker j ∈ [k], the following
conditions are necessary and sufficient:

1. mini∈[n] pi is maximized over all defense strategies, and

2.
⋃
j∈[k] Tj ⊆ V ∗, where V ∗ := {i | mini∈[n] pi is maximized over all defense strategies},

and

3. every s ∈ S has the maximum expected total number of attackers on its vertices over
all pure strategies.
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Proof. First we will prove that the conditions in the statement of the theorem hold in
equilibrium, i.e. equilibrium is sufficient for the conditions to hold.

Condition 1. By definition, in an equilibrium the defender and each attacker have cho-
sen a best response. Suppose that the defender has chosen some strategy q = (q1, q2, . . . , qθ)

over her action set [θ], and we will consider this strategy to be a vector variable for now.
Given q, each vertex i ∈ [n] has a vertex probability pi. Now consider the minimum vertex
probability p′ := mini∈[n] pi, and the set V ′ ⊆ V consisting of the vertices with vertex prob-
ability p′, i.e. V ′ := arg mini∈[n] pi. Since an attacker plays a best response, her support
will be a subset of V ′; otherwise, if she assigns probability tv > 0 on a vertex v /∈ V ′ (with
pv > p′) her expected payoff (see quantity (5.2)) can be strictly increased by choosing to
move all of tv to another vertex u ∈ V , thus increasing her expected payoff by tu(pv − p′).
Therefore, every attacker’s support will be a subset of V ′.

Now suppose that there are k ≥ 1 attackers and let us denote the set of attackers by
[k]. We will denote by tji the probability that the strategy of attacker j ∈ [k] has assigned
on vertex i ∈ [n]. The expected payoff of the defender is:

∑
i∈[n]

pi ∑
j∈[k]

tji

 . (5.1)

Since as we argued above, in an equilibrium, each attacker’s strategy has support that is
subset of V ′, the expected payoff of the defender will be

∑
i∈V ′

pi ∑
j∈[k]

tji

+
∑

i∈V \V ′

pi ∑
j∈[k]

tji

 = p′ ·
∑
i∈V ′

∑
j∈[k]

tji

 = p′ ·
∑
j∈[k]

∑
i∈V ′

tji

 = p′ · k,

where the first equality is due to the fact that pi = p′ ∀i ∈ V ′ and tji = 0 ∀i ∈ V \ V ′, and
the last equality is due to the fact that the support of any strategy tj = (tj1, . . . , tji) of an
attacker j ∈ [k] is a subset of V ′. In an equilibrium, the defender also plays a best response,
i.e. she maximizes her expected utility. Therefore, given the above quantity, the defender
in an equilibrium has expected utility maxq∈∆θ

p′ · k, and Condition 1 of the theorem’s
statement is satisfied.

Condition 2. The proof is by contradiction. Assume an equilibrium profile where
the defender has strategy q = (q1, . . . , qθ) and there is an attacker, a, with strategy t =

(t1, . . . , tn) whose support includes vertex v ∈ [n] with pv > p′, where p′ := mini∈[n] pi.
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Then a’s expected payoff is ∑
i∈V
i 6=v

ti(1− pi) + tv(1− pv). (5.2)

However, a can increase her expected payoff by moving all her probability tv to a vertex v′

for which pv′ = p′, which contradicts the equilibrium assumption.

Condition 3. The proof is by contradiction. Suppose that in an equilibrium the
defender has strategy q∗ ∈ ∆θ, where supp(q∗) := S. According to Condition 1, this
strategy achieves p∗(G), and let us define the set

V ∗ := {i ∈ [n] | min
i∈[n]

pi is maximized over all defense strategies}

. We denote by Ni the random variable that indicates the number of attackers on vertex i ∈
[n], under the strategy profile determined by the strategy of the defender and each attacker.
The expected utility of the defender is as in (5.1), or equivalently,

∑
i∈[n] (pi · E[Ni]). Since,

as argued above, in an equilibrium each attacker has support in V ∗, the defender’s expected
payoff is in fact p∗ ·

∑
i∈V ∗ E[Ni].

For the sake of contradiction, suppose that for the expected total number of attackers
on two different pure defense strategies s1 ∈ S and s2 ∈ [θ] it holds that E

[∑
i∈s1 Ni

]
<

E
[∑

j∈s2 Nj

]
, and equivalently E

[∑
i∈s1\s2 Ni

]
< E

[∑
j∈s2\s1 Nj

]
. Then, the expected

payoff of the defender can be strictly increased if she chooses a strategy q′ = (q′1, . . . , q
′
θ)

where q′s1 = 0 and q′s2 = q∗s2 + q∗s1 . In particular, when the defender plays q∗ her expected
payoff is

U∗ = p∗ · E

 ∑
i∈V \(s1∪s2)

Ni

+ p∗ · E

 ∑
j∈s1∩s2

Nj

+ p∗ · E

 ∑
l∈s2\s1

Nl

+ p∗ · E

 ∑
r∈s1\s2

Nr

 ,
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whereas when she plays q′ it is

U ′ = p∗ · E

 ∑
i∈V \(s1∪s2)

Ni

+ p∗ · E

 ∑
j∈s1∩s2

Nj

+ (p∗ + q∗s1) · E

 ∑
l∈s2\s1

Nl


+ (p∗ − q∗s1) · E

 ∑
r∈s1\s2

Nr


= U∗ + q∗s1 ·

E

 ∑
l∈s2\s1

Nl

− E

 ∑
r∈s1\s2

Nr


> U∗,

which contradicts the equilibrium assumption. Therefore, for every pure defense strategy
s1 ∈ S it holds that E

[∑
i∈s1 Ni

]
≥ E

[∑
j∈s2 Nj

]
for every s2 ∈ [θ].

Now we will prove that equilibrium is necessary for the three conditions of the statement
to hold. Suppose that all conditions hold and p∗(G) is achieved for the defense strategy
q = (q1, . . . , qθ). We will show that the defender and each attacker play a best response.

Consider an attacker j ∈ [k] with strategy t = (t1, . . . , tn) and support Tj ⊆ V ∗ accord-
ing to Condition 2. Her expected payoff is∑

i∈Tj

ti(1− p∗) = 1− p∗.

It suffices to consider unilateral deviations of j to pure strategies. Any pure strategy
i′ ∈ Tj gives her expected payoff 1 − p∗, since pi′ = p∗ (because Tj ⊆ V ∗). Any pure
strategy i′ ∈ V ∗ \Tj also gives her expected payoff 1− p∗ for the same reason. Finally, any
pure strategy i′ ∈ V \ V ∗ gives her expected payoff 1− pi′ < 1− p∗ by the definition of V ∗.
Therefore every attacker plays a best response.

Now consider the defender with strategy q = (q1, . . . , qθ) and support S ⊆ [θ]. Ac-
cording to Condition 1 of the theorem’s statement, q results to vertices of G having ver-
tex probability p∗. By Condition 3, for any pure defense strategy s1 ∈ S it holds that
E
[∑

i∈s1 Ni

]
≥ E

[∑
j∈s2 Nj

]
for every s2 ∈ [θ], and let us denote Nmax := E

[∑
i∈s1 Ni

]
.

Now consider a unilateral deviation q′ = (q′1, . . . , q
′
θ) of the defender. Her expected payoff
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is

U(q′) =
∑
j∈[θ]

q′jE
∑
i∈j

Ni


≤
∑
j∈[θ]

q′jNmax

= Nmax

=
∑
j∈S

qjE
∑
i∈j

Ni


= U(q),

where the penultimate equation holds due to the fact that
∑

j∈S qj = 1. Therefore, q is a
best response for the defender, and the three conditions of the theorem’s statement imply
a strategy profile that is an equilibrium.

Lemma 13. For any given graph G, the equilibrium defense ratio is DR(G,S∗) = 1
p∗(G) ,

where p∗(G) := maxq∈∆θ
mini∈[n] pi and S∗ is an equilibrium.

Proof. By Theorem 13, in an equilibrium, every attacker will have in her support only
vertices that are defended with probability exactly p∗(G). Therefore, the expected number
of attackers that the defender catches is p∗(G) · k. By definition of the defense ratio,
DR(G,S∗) = k

p∗(G)·k = 1
p∗(G) .

Corollary 7. The following hold:

(a) For a given graph G, in any equilibrium, the expected payoff of the defender and each
attacker is unique.

(b) For a given graph G, in any equilibrium with support S ⊆ [θ] of the defender, for
every s ∈ S there exists a vertex v ∈ s such that pv = p∗(G).

(c) In any CSD game on a graph G, the problem of finding the equilibrium defense ratio
(or equivalently, p∗(G)) for k ≥ 2 attackers reduces to the same problem in the game
with k = 1 attacker, which is a two-player constant-sum game.

Proof. (a) By Theorem 13, in an equilibrium the defender chooses a strategy that induces
probability p∗(G) to some vertex of G (Condition 1). Also, each of the attackers
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has in her support T only vertices with vertex probability p∗(G). Therefore, all
attackers attack only such vertices and the expected payoff of the defender is k ·p∗(G).
Consider also an attacker with strategy t = (t1, t2, . . . , tn). Her expected payoff is∑

i∈[n] ti(1− pi), where pi is the vertex probability of vertex i. This value is equal to∑
i∈T ti(1 − p∗(G)) = 1 − p∗(G). Since p∗(G) is unique for a graph G, the expected

payoffs of the defender and each attacker is unique.

(b) The proof is by contradiction. Consider an equilibrium where the defender’s strategy
is q ∈ [θ] with support S, and there exists a pure strategy s ∈ S for which every
vertex v ∈ s has pv > p∗(G). By Condition 2 of Theorem 13, no attacker has in
her support a vertex in s. Therefore, the defender can strictly increase her expected
payoff by moving all her probability qs > 0 from s to some other pure strategy s′ that
contains a vertex which is in the support of some attacker.

(c) Observe that for any given graph G, the quantity p∗(G), by definition, only depends
on the graph and not the number of attackers k. That is, p∗(G) is the same for every
k ≥ 1. Lemma 13 states that in any equilibrium S∗, it is DR(G,S∗) = 1

p∗(G) , therefore
the defense ratio in an equilibrium does not depend on k. This means that when we
are given G and we are interested in the equilibrium defense ratio, we might as well
consider the game with the single defender and a single attacker. By definition of the
game (see Section 5.1.3) the latter is a two-player constant-sum game.

The following corollary implies that coordination (resp. individual selfishness) of the
attackers cannot increase the attackers’ (resp. defender’s) expected payoff in equilibrium.

Corollary 8. Every equilibrium with uncoordinated attackers (i.e. as described in Section
5.1.3) is an equilibrium with coordinated (i.e. centrally controlled) attackers, and vice versa.

Proof. Let q∗ be a best-defense strategy for the defender. Then, in any best response
of any attacker, coordinated or not, every attacker plays only pure strategies that yield
maximum payoff against q∗; i.e. they play only strategies that are defended with probability
p∗(G). If this was not the case, either an uncoordinated attacker could increase her payoff
by unilaterally changing her strategy, or the “coordinator” could increase the payoff the
attackers collectively get by dictating all the attackers to play vertices that are covered
with probability p∗(G).
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So, assume that we have an equilibrium in the uncoordinated case. This is an equilib-
rium for the coordinated case as well: according to Theorem 13, all attackers play vertices
that are defended with probability p∗(G) and thus the expected collective payoff of the
attackers cannot be increased, and furthermore the expected total number of attackers on
the vertices of a pure strategy that is in the support of the defender is maximized over all
pure defense strategies, so no unilateral deviation of the defender can increase her expected
payoff.

Conversely, in any equilibrium in the coordinated setting the “coordinator” dictates all
the attackers to attack vertices that are covered with probability p∗(G), satisfying Condi-
tions 1,2 of Theorem 13. Also in the equilibrium of the coordinated setting, similarly to
Condition 3 of Theorem 13, the “coordinator” will have placed the attackers in a way such
that the vertices of any pure defense strategy in the support have maximum expected total
number of attackers over all pure defense strategies; otherwise the defender can increase her
expected payoff by neglecting a pure strategy with smaller than maximum expected total
number of attackers, and move the probability assigned on that pure strategy to another
one that has maximum expected total number of attackers. By Theorem 13, this is an
equilibrium also for the uncoordinated setting.

The following theorem provides an algorithm for computing an equilibrium for any CSD
game, whose running time is polynomial in n when λ = c or λ = n−c, where c is a constant
natural number.

Theorem 14. For any given graph G and parameter λ, there is an algorithm that computes
p∗(G) and also finds an equilibrium in time polynomial in

(
n
λ

)
.

Proof. Given a graph G, the number of attackers k ≥ 1, and some λ ∈ {1, 2, . . . , n}, the
action set D of the defender is constructed by the vertex sets of at most

(
n
λ

)
λ-subgraphs,

so for D’s cardinality θ it holds that θ ≤
(
n
λ

)
. Consider now the mixed strategy q ∈ ∆θ

of the defender, where each pure strategy j ∈ [θ] is assigned probability qj . Consider also
the vertex probability pi for each vertex i ∈ [n]. According to Corollary 7 (a) and (c),
the unique p∗(G) in the case of a single attacker can be used to derive an equilibrium for
the case of k ≥ 2 attackers. Therefore, we will find p∗(G) for a single attacker, find an
equilibrium for that case, and then extend this equilibrium to one in the case of k ≥ 2

attackers. In more detail, after we find the defense strategy q∗ that maximizes mini∈[n] pi

(Condition 1 of Theorem 13), i.e. yields p∗(G) on the set V ∗ := arg maxq∈∆θ
mini∈[n] pi,
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an equilibrium is achieved if the single attacker assigns probability 1/|V ∗| to each vertex
of V ∗; that is because all conditions of Theorem 13 are satisfied. Then, an equilibrium for
k ≥ 2 is achieved if every attacker plays the same strategy as the single attacker; that is
because again all conditions of Theorem 13 are satisfied.

The crucial observation that allows us to design such an algorithm is that we can com-
pute p∗(G) via a Linear Program which has O

((
n
λ

))
many variables and O(n) constraints,

and therefore its running time is in the worst case polynomial in
(
n
λ

)
, for λ ∈ {2, 3, . . . , n−1}.

For the trivial cases λ = 1 and λ = n, D = {{i}|i ∈ V } and D = V respectively, therefore
p∗(G) = 1/n and p∗(G) = 1 respectively. So in the rest of the proof we will imply that
λ ∈ {2, 3 . . . , n− 1}. It remains to show how p∗(G) is computed.

Let us denote p∗ := p∗(G) := maxq∈∆θ
mini∈[n] pi. The computation of p∗ can be done

as follows: First, consider each of the
(
n
λ

)
subsets of V of size λ, and find if it is a proper

λ-subgraphs of G (i.e. connected); this can be done by running a Depth (or Breadth)
First Search algorithm for each subset of size λ. If it is not, then continue with the next
subset. If it is, we consider it in the action set [θ], and assign to it a variable qj which
stands for its assigned probability in a general defense strategy. Now, by definition, for
some vertex i ∈ [n], pi =

∑
j∈[θ]
i∈j

qj . Therefore, we will consider only pure strategies j which

are λ-subgraphs to create the pi’s. To compute the minimum pi over all i’s we introduce
the variable p′ and write the following set of n inequalities as a constraint in our Linear
Program: ∑

j∈[θ]
i∈j

qj ≥ p′ , for i ∈ {1, 2, . . . , n}.

The variable constraints are p′, q1, q2, . . . , qθ ≥ 0 and also
∑θ

j=1 qj = 1, and all of the
aforementioned constraints can be written in canonical form by applying standard trans-
formations. Finally, the objective function of the Linear Program is variable p′ and we
require its maximization, which is the value p∗.

5.2.1 Connections to other types of games

Although CSD games are defined as a normal form game with k+1 players, we can observe
that they are a special case of other well-studied types of games: polymatrix games and
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Stackelberg games.
A polymatrix game is defined by a graph where every vertex represents a player and

every edge represents a two-player game played by the endpoints of the edge. Every player
has the same set of pure strategies in every game he is involved and to play the game he
plays the same (mixed) strategy in every game. The payoff of every player is the sum
they get from every two-player game they participate in. In a CSD game we observe the
following. Firstly, the payoff of every attacker depends only on the strategy the defender
plays, thus every attacker is involved only in one two-player game. In addition, all the
attackers have the same set of pure strategies and they share the same payoff matrix.
Similarly, the payoff the defender gets from catching an attacker depends only on the
strategy the defender and this specific attacker chose. Hence, the payoff of the defender can
be decomposed into a sum of payoffs from k two-player games. So, a CSD game can be seen
as a polymatrix game where the underlying graph is a star with k leaves that correspond to
the attackers and the defender is the center of the star. Although many-player polymatrix
games have exponentially smaller representation size compared to the equivalent normal-
form representation, we should note that this polymatrix game is of exponential size in the
worst case since the defender can have exponential in n pure strategies to choose from.

A Stackelberg game is an extensive form two-player game. In the first round, one of the
players commits to a (mixed) strategy. In the second round, the other player chooses a best
response against the committed strategy of her opponent. In a Stackelberg equilibrium the
first player is playing a strategy that maximizes her expected payoff, given that the second
player plays a best response (mixed strategy). The MaxMin probability p∗(G) for a CSD
game on a graph G corresponds to a Stackelberg equilibrium. By Corollary 7(c), any CSD
game with k ≥ 1 attackers has the same p∗ as that of the case with k = 1. Furthermore, as
in a Stackelberg game, in the CSD game with k = 1 the defender chooses a mixed strategy
that maximizes her expected payoff, given that the attacker plays a best response (mixed
strategy). Therefore, when we are interested in the defense-ratio in equilibrium of a CSD
game for some arbitrary k ≥ 1, finding a Stackelberg equilibrium of the corresponding CSD
game with k = 1 suffices.

5.3 Defense-Optimal Graphs

We now focus our attention on defense-optimal graphs. We first characterize defense-
optimal graphs with respect to the MaxMin probability p∗ and then use this characterization
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to analyze more specific classes of graphs like Hamiltonian graphs and tree graphs. We begin
by an exact computation of the equilibrium defense ratio of any defense-optimal graph.

Theorem 15. In any defense-optimal graph G, we have that DR(G,S∗) = n
λ .

Proof. First we will show that nλ is a lower bound on the equilibrium defense ratio DR(G,S∗)

and then prove that it is tight. According to Lemma 13, a lower bound on DR(G,S∗) can
be found by equivalently founding an upper bound on p∗(G) over all graphs G with n

vertices. Let us show that p∗(G) ≤ λ
n for every G.

Suppose there is a graph G′ such that p∗(G′) > λ
n , and let us focus only on G′. Suppose

also that the defender has an action set [θ] on G′. Fix the strategy q = (q1, . . . , qθ) ∈ ∆θ

that achieves p∗(G′). Then, by definition of p∗(G′), for the vertex probabilities pi it holds
that pi > λ

n for all i ∈ [n]. Therefore, it is

n∑
i=1

pi > λ. (5.3)

Also, by definition of a defense strategy, if X denotes the random variable corresponding
to the number of vertices that the defender covers, then:

E[X] =

θ∑
j=1

qj · |Lj | = λ (where Lj is a λ-subgraph of G, hence |Lj | = λ ∀j ∈ [θ]).

(5.4)
Let us introduce the indicator variables Xij , i ∈ [n], j ∈ [θ] with value 1 if vertex i ∈ Lj ,

and 0 otherwise. Then,

E[X] =

θ∑
j=1

qj

n∑
i=1

Xij

=

n∑
i=1

θ∑
j=1

qjXij

=

n∑
i=1

pi (5.5)

> λ (by inequality (5.3)),

which contradicts (5.4).
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It remains to show that the lower bound n
λ on DR(G,S∗) is tight. This is easy to do by

showing that λ
n is a tight upper bound on p∗(G): any Hamiltonian graph has p∗(G) = λ

n as
we show in Observation 1.

As an intermediate corollary of Theorem 15 we get the following characterization of
defense-optimal graphs.

Corollary 9. A graph G is defense-optimal if and only if all of its vertices are defended
with probability λ

n .

Proof. Necessity of defense-optimality is trivial: every vertex has vertex probability λ
n ,

therefore p∗(G) = λ
n , so by Theorem 15 the graph is defense-optimal.

Sufficiency of defense-optimality is also easy to see using the equations (5.4), (5.5) of the
proof of Theorem 15. Suppose that the graph is defense-optimal and consider an equilibrium
where the defense strategy is q = (q1, . . . , qθ). Then the sum of vertex probabilities is∑n

i=1 pi = λ according to the aforementioned equations. Therefore, if there exists a vertex v
with vertex probability pv > λ

n then there is another vertex u with probability pu < λ
n . This

means that p∗(G) < λ
n , and as a result the graph is not defense-optimal which contradicts

our assumption.

Someone may wonder whether Corollary 9 can be further exploited to prove that, in
general, there are best-defense strategies in defense-optimal graphs are uniform, i.e. every
pure strategy s in the support S of the defender is assigned probability 1/|S|. However, as
we demonstrate in Figure 5.1 this is not the case. On the other hand, this claim is true for
Hamiltonian graphs and tree graphs.

Observation 1. All Hamiltonian graphs are defense-optimal.

Proof. Consider an arbitrary Hamiltonian graph G with n vertices. We will show that the
graph can achieve vertex probability pi = λ

n for every i ∈ [n], thus by Corollary 9 it is
defense-optimal. Consider a Hamiltonian cycle of G and let us denote it by H. In the rest
of the proof H will be the graph under study. Now consider the whole action set D of
the defender, i.e. every path on H starting from a vertex i going clockwise and ending at
vertex i + λ − 1. Observe that there are only n such paths, therefore θ := |D| = n. By
assigning probability 1

n to each pure strategy j ∈ [θ], since each vertex is in exactly λ pure
strategies, each vertex i ∈ [n] has vertex probability pi = λ · 1

θ = λ
n .
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v1 v2 v3 v4

v5

v6

v7

Figure 5.1: An example of a defense-optimal graph G with no uniform best-defense strat-
egy. Here n = 7, λ = 3 and p∗(G) = 3/7 is achievable by assigning probability 3/7 to
pure strategy {v1, v2, v3} and probability 1/7 to each of the pure strategies {v4, v5, v6},
{v4, v5, v7}, {v4, v6, v7}, {v5, v6, v7}, so the graph is defense optimal. Suppose that there is
a uniform best-defense strategy for the graph, with support of size r. Observe that v1 can-
not participate in more than one pure defense strategies, so in the uniform defense strategy
the vertex probability pv1 has to be 1/r (by definition of uniformity), but it also has to
be 3/7 due to Corollary 9. Since r ∈ N, this is a contradiction, and there is no uniform
best-defense strategy for G.

5.3.1 Tree graphs

In this section we focus on the case where the graph is a tree. We first further refine the
characterization of defense-optimal graphs for trees. Then, we utilise this characterization
to derive a polynomial-time algorithm that decides in polynomial time whether a given tree
is defense-optimal, and if that is the case, it constructs in polynomial time a defense-optimal
strategy for it. On the other hand, in the case where the tree is not defense-optimal, we
show that it is NP-hard to compute a best-defense strategy for it, namely it is NP-hard to
compute p∗(G). We first provide Lemma 14 which will be used in our polynomial-time
algorithm for checking defense-optimality on trees. Henceforth, we write that a graph is
covered by a defense strategy if every vertex of the graph is covered by a λ-subgraph that
is in the support of the defense strategy.

Lemma 14. A tree T is defense-optimal if and only if T can be decomposed into n
λ disjoint

λ-subgraphs.

Proof. (⇒)(⇒)(⇒) Let T be defense-optimal. We will show that the support of any best-defense
strategy on T must comprise of pure strategies that are disjoint λ-subgraphs which alto-
gether cover every v ∈ V . Since those are disjoint and cover T , it follows that their number
is n

λ in total.
If λ = 1 then the above trivially holds. Assume that λ ≥ 2 and consider a best-defense
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strategy on T whose support comprises of a collection L of λ-subgraphs.
Let u ∈ V be a leaf of T and let v ∈ V be its parent. Any λ-subgraph in L covering

u must also cover v, since λ ≥ 2. Also, any λ-subgraph in L covering v must also cover
u, otherwise pv would be greater than pu. Now, consider the neighbors of v. For those
of them that are leaves, the same must hold as holds for u, namely v and its leaf-children
must all be covered by the same exact λ-subgraph(s).

Consider the case where there is a leaf u ∈ V , such that a single λ-subgraph contains u,
its parent v, and all the other leaf-children of v (and, possibly, other vertices connected to
v). Then we can remove this λ-subgraph from L and the corresponding tree from T . This
leaves the remainder of T being a forest comprising of trees T1, . . . , Tx, each of which has
a (best-) defense strategy comprising of the corresponding subset of (the remainder of) L
on Ti. Notice that it must be the case that every tree Ti, i = 1, 2, . . . , x, has size at least λ
(otherwise the initial collection L would not have covered T ). So, if there is always a leaf
u in some tree of the forest, such that a single λ-subgraph contains u, its parent v, and all
the other leaf-children of v (and, possibly, other vertices connected to v), we can proceed
in the same fashion for each of the Ti’s, always removing a λ-subgraph from L, and the
corresponding vertices from T , until we end up with an empty tree. This means that L was
indeed a collection of disjoint λ-subgraphs covering T .

However, assume for the sake of contradiction that at some “iteration” the assumption
does not hold, namely assume that there is a tree in the forest with no leaf u, such that a
single λ-subgraph contains u, its parent v, and all the other leaf-children of v (and, possibly,
other vertices connected to v). This means that there are (at least) two λ-subgraphs in L,
namely L1, L2, that cover u. Due to our initial observations, u, together with its parent
v and all of v’s leaf-children are contained in both L1 and L2. Since those are different
λ-subgraphs, there is a vertex z in the tree which belongs to L2 but does not belong to L1.
Since pz = pv (due to the fact that L is the support of the defense-optimal strategy and
Corollary 9), it must hold that there is a different λ-subgraph, L3, which covers z but does
not cover v or any of its leaf-children. If L3 also covers a vertex in L1 \ L2

1, then there
is a cycle in the tree which is a contradiction. So L3 must not cover vertices in L1 \ L2.
Since 3 is different to L2, there must be a vertex z′ in the tree which belongs in L3 but
not in L2 (also not in L1). Since pz′ = pz (due to the fact that L is the support of the
defense-optimal strategy and Corollary 9), it must hold that there is a different λ-subgraph,

1We use Li \Lj for some λ-subgraphs Li, Lj to denote the set of vertices which are contained in Li but
not in Lj .
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L4, which covers z′ but does not cover z or any of the vertices in L2. Similarly to before,
if L4 covers a vertex in L1 \ L2, then there is a cycle in the tree which is a contradiction.
So L4 must not cover vertices in L1 or in L2.

Proceeding in the same way, we result in contradiction since the tree has finite number
of vertices and there will need to be an overlap in coverage of some Lj with some Li,
j > i+ 1, which would mean that there is a cycle in the tree.

Therefore, there cannot be any overlaps between the λ-subgraphs of L, meaning that
L comprises of nλ disjoint λ-subgraphs which altogether cover T .

(⇐⇐⇐) Let L = {L1, . . . , Ln
λ
} be a collection of nλ disjoint λ-subgraphs that altogether cover

T . Let the defender play each Li, i ∈ {1, . . . , nλ}, equiprobably, that is, with probability
1/
(
n
λ

)
= λ

n . Then every vertex v ∈ V is covered with probability pv = λ
n = p∗(G), meaning

that T is defense-optimal.

With Lemma 14 in hand we can derive a polynomial-time algorithm that decides if a
tree is defense-optimal, and if it is, to produce a best-defense strategy.

Theorem 16. There exists a polynomial-time algorithm that decides whether a tree is
defense-optimal, and if it is, it outputs a best-defense strategy.

Proof. The algorithm works as follows. Initially, there is a pointer associated with a counter
in every leaf of the tree T that moves “upwards” towards an arbitrary root of the tree. For
every move of the pointer the corresponding counter increases by one. The pointer moves
until one of the following happens: either the counter is equal to λ, or it reaches a vertex
with degree greater of equal to 3 where it “stalls”. In the case where the counter is equal
to λ, we create a λ-subgraph of T , we delete this λ-subgraph from the tree, we move the
pointer one position upwards, and we reset the counter back to zero. If a pointer stalls at
a vertex of degree d ≥ 3, it waits until all d− 1 pointers reach this vertex. Then, all these
pointers are merged to a single one and a new counter is created whose value is equal to
the sum of the counters of all d pointers. If this sum is more than λ, then the algorithm
returns that the graph is not defense-optimal. If this sum is less than or equal to λ, then we
proceed as if there was initially only this pointer with its counter; if the new counter is equal
to λ, then we create a λ-subgraph of T and reset the counter to 0; else the pointer moves
upwards and the counter increases by one. To see why the algorithm requires polynomial
time, observe that we need at most n pointers and n counters and in addition every pointer
moves at most n times.
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We now argue about the correctness of the algorithm described above. Clearly, if the
algorithm does not output that the tree is not defense-optimal, it means that it partitioned
T into λ-subgraphs. So, from Lemma 14 we get that T is defense-optimal and the uniform
probability distribution over the produced partition covers every vertex with probability λ

n .
It remains to argue that when the algorithm outputs that the graph is not defense-optimal,
this is indeed the case. Consider the case where we delete a λ-subgraph of the (remaining)
tree. Observe that the λ-subgraph our algorithm deleted should be uniquely covered by this
λ-subgraph in any best-defense strategy; any other λ-subgraph would overlap with some
other λ-subgraph. Hence, the deletion of such a λ-subgraph was not a “wrong” move of
our algorithm and the remaining tree is defense-optimal if and only if the tree before the
deletion was defense-optimal. This means that any deletion that occurred by our algorithm
did not make the remaining graph non defense-optimal. So, consider the case where after
a merge that occurred at vertex v we get that the new counter is c > λ. Then, we can
deduce that all the subtrees rooted at v associated with the counters have strictly less than
λ vertices. Hence, in order to cover all the c > λ vertices using λ-subgraphs, at least two
of these λ-subgraphs cover vertex v. Hence, the condition of Lemma 14 is violated. But
since every step of our algorithm so far was correct, it means that v cannot be covered only
by one λ-subgraph. Hence, our algorithm correctly outputs that the tree is not defense-
optimal.

In Theorem 16 we showed that it is easy to decide whether a tree is defense-optimal
and if this is the case, it is easy to find a best-defense strategy for it. Now we prove that if
a tree is not defense-optimal, then it is NP-hard to compute p∗(G). Note that the problem
of computing p∗(G) reduces to the problem of finding a best-defense strategy for graph G.
Therefore finding a best-defense strategy is also NP-hard.

Theorem 17. Computing p∗(G) in CSD games is NP-hard, even if the graph G is a tree.
Consequently, finding a best-defense strategy is NP-hard.

Proof. We will prove the theorem by reducing from 3-Partition. In an instance of 3-

Partition we are given a multiset with n positive integers a1, a2, . . . , an where n = 3m

for some m ∈ N>0 and we ask whether it can be partitioned into m triplets S1, S2, . . . , Sm

such that the sum of the numbers in each subset is equal. Let s =
∑n

i=1 ai. Observe then
that the problem is equivalent to asking whether there is a partition of the integers to m
triplets such that the numbers in every triplet sum up to s

m . Without loss of generality
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we can assume that ai < s
m for every i ∈ [n]; if this was not the case, the problem could

be trivially answered. So, given an instance of 3-Partition, we create a tree G = (V,E)

with s+ 1 vertices and λ = s
m + 1. The tree is created as follows. For every integer ai, we

create a path with ai vertices. In addition, we create the vertex v0 and connect it to one
of the two ends of each path. We will ask whether p∗(G) ≥ 1

m .
Firstly, assume that the given instance of 3-Partition is satisfiable. Then, given Sj

we create a ( sm + 1)-subgraph of G as follows. If ai ∈ Sj , then we add the corresponding
path of G to the subgraph. Finally, we add vertex v0 in our ( sm + 1)-subgraph and the
resulting subgraph is connected (by the construction of G). Since the sum of ai’s equals
s
m , the constructed subgraph has s

m + 1 vertices. If we assign probability 1
m to every

( sm + 1)-subgraph we get that pv ≥ 1
m for every v ∈ V .

To prove the other direction, assume that p∗(G) ≥ 1
m and observe the following. Firstly,

since as we argued it is ai < s
m for every i ∈ [n], it holds that every ( sm + 1)-subgraph of G

contains vertex v0. Thus, pv0 = 1 and
∑

v 6=v0 pv ≥
s
m , since there are s vertices other than v0

and for each one of them holds that pv ≥ 1
m . In addition, observe that

∑
v∈V pv = λ = s

m+1.
Hence, we get that pv = p∗(G) = 1

m for every vertex v 6= v0. In addition, observe that every
pure defense strategy that covers a leaf of this tree, covers all the vertices of the branch.
Hence, for every branch of the tree, all its vertices are covered by the same set of pure
strategies; if a vertex u that is closer to v0 is covered by one strategy that does not cover
the whole branch, then the leaf u′ of the branch is covered with probability less than u. So,
in order for pv = p∗(G) = 1

m for every v 6= v0, it means that there exist a ( sm + 1)-subgraph
that exactly covers a subset of the paths; this means that if a ( sm + 1)-subgraph covers a
vertex in a path, then it covers every vertex of the path. Hence, by the construction of
the graph, we get that this ( sm + 1)-subgraph of G corresponds to a subset of integers in
the 3-Partition instance that sum up to s

m . Since, 3-Partition is NP-hard, we get that
computing p∗(G) is NP-hard. Also, since finding a best-defense strategy is at least as hard,
we conclude it is NP-hard.

5.3.2 General graphs

We conjecture that contrary to checking defense-optimality of tree graphs and constructing
a corresponding defense-optimal strategy in polynomial time, it is NP-hard to even decide
whether a given (general) graph is defense-optimal.

Conjecture 1. It is NP-hard to decide whether a graph is defense-optimal.
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5.4 Approximation Algorithm for p∗(G)

We showed in the previous section that, given a graph G, it is NP-hard to compute p∗(G),
and consequently, NP-hard to find a best-defense strategy. We also presented in Theorem
14 an algorithm for computing the exact value p∗(G) of a given graph G (and therefore
its best defense ratio), but this algorithm has running time polynomial in the size of the
input only in the cases λ = c or λ = n− c, where c is a constant natural. On the positive
side, we present now a polynomial-time algorithm which, given a graph G of n vertices,
returns a defense strategy with defense ratio which is within factor 2 + λ−3

n of the best
defense ratio for G. In particular, it achieves defense ratio 1/p′ ≤

(
2 + λ−3

n

)
/p∗(G), where

p′ = mini∈[n] pi and every pi, i ∈ [n] is the vertex probability determined by the constructed
defense strategy. We henceforth write that a collection L of λ-subgraphs covers a graph
G = (V,E), if every vertex of V is covered by some λ-subgraph in L. The algorithm
presented in this section returns a collection L of at most 2n−3

λ + 1 λ-subgraphs that covers
G. Therefore, the uniform defense strategy over L assigns probability at least 1/

(
2n−3
λ + 1

)
to each λ-subgraph.

For any collection L of λ-subgraphs and for any v ∈ V , let us denote by coverageL(v)

the number of λ-subgraphs in L which v belongs in. Observe that:∑
v∈V

coverageL(v) = |L| · λ, (5.6)

where |L| denotes the cardinality of L.
We first prove Lemma 15, to be used in the proof of the main theorem of this Section.

We henceforth denote by V (G) and E(G) the vertex set and edge set, respectively, of some
graph G.

Lemma 15. For any tree T of n vertices, and for any λ ≤ n, we can find a collection
L of distinct λ-subgraphs such that for every v ∈ V , it holds that 1 ≤ coverageL(v) ≤
degree(v), except maybe for (at most) λ − 1 vertices, where for each of them it holds that
coverageL(v) = degree(v) + 1.

Proof. We will prove the statement of the lemma by providing Algorithm 1 that takes as
input T and λ and outputs the requested collection L of λ-subgraphs.

The algorithm starts by picking an arbitrary vertex v to serve as the root of the tree.
Then it performs a Depth-First-Search (DFS) starting from v. We will distinguish between
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Algorithm 1 Main Algorithm
Require: A tree graph T = (V,E) of n vertices, and a natural λ ≤ n.
Ensure: A collection L of distinct λ-subgraphs that satisfies the statement of Lemma 15.

1: i, global variable. % The index of the λ-subgraph Li.
2: count, global variable. % Is 0 until the whole tree is covered, then it becomes 1 to

allow for the last λ-subgraph to be completed, if it is not already.
3: S, global variable. % The set of vertices already covered by the algorithm.
4: vertex, global variable. % The vertex considered to be inserted in a λ-subgraph.

5: S ← ∅
6: i← 1
7: Li ← ∅
8: Pick an arbitrary vertex v of T and consider it the root.
9: vertex← v

10: count← 0

11: while count < 2 do
12: while S 6= V do
13: while vertex ∈ S do % The while-loop to ensure that the first element of Li is

uncovered.
14: if vertex has a child u /∈ S then
15: vertex← u
16: else
17: vertex← parent of vertex
18: while |Li| < λ do % The while-loop that fills in the current λ-subgraph Li.
19: Li ← Li ∪ {vertex}
20: S ← S ∪ {vertex}
21: if vertex has a child u /∈ S then
22: vertex← u
23: else
24: vertex← parent of vertex
25: if count < 1 then
26: i← i+ 1
27: Li ← ∅
28: else
29: break
30: S ← ∅
31: i← i− 1
32: Pick an arbitrary vertex v ∈ Li and consider it the root.
33: vertex← v
34: count← count+ 1
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visiting a vertex and covering a vertex in the following way. We say that DFS visited a
vertex if it considered that vertex as a candidate to be inserted to some λ-subgraph, and
we say that DFS covered a vertex if it visited and inserted the vertex at some λ-subgraph.
By definition, DFS visits in a greedy manner first an uncovered child, and only if there is
no such child, it visits its parent (lines 14-17, 21-24). The set-variable that keeps track of
the covered vertices is S.

Starting with the root of T , the algorithm simply visits the whole vertex set according
to DFS, putting each visited vertex in the same λ-subgraph Li (starting with i = 1) (lines
18-24), and when |Li| = λ, a new empty λ-subgraph Li+1 is picked to get filled in with λ
vertices (lines 26-27) taking care of one extra thing: The first vertex that the algorithm
puts in an empty λ-subgraph Li, i ∈ {1, 2, . . . } is guaranteed to be one that has not been
covered by any other λ-subgraph so far (lines 13-17). This ensures that no two λ-subgraphs
will eventually be identical.

The algorithm will not only visit all vertices in T , but also cover them. That is be-
cause there is no point where the algorithm checks whether the currently visited vertex
is uncovered and then does not cover it. On the contrary, it covers every vertex that it
visits, except for some already covered one in case the current λ-subgraph is empty (lines
13-24). And since DFS by construction visits every vertex, we know that at some point the
whole vertex set will be covered, or equivalently, coverageL(v) ≥ 1,∀v ∈ V . Therefore, the
algorithm will eventually exit the while-loop in lines 12-29.

Now we prove that, after the algorithm terminates, every vertex v ∈ V is covered at
most degree(v) times, except for at most λ−1 vertices that are covered degree(v)+1 times.
Observe that DFS visits every vertex v at most degree(v) times: (a) v will be visited after
its parent u only if v is uncovered (lines 14-15, 21-22), v will get covered (lines 19-20), and
will not get visited ever again by its parent since it will be covered (lines 16-17, 23-24). (b)
v will be visited at most once by each of its children, say w, only if w does not have an
uncovered child (lines 16-17, 23-24), and v will not get ever visited by its parent since v will
be covered, and also v cannot be visited a second time by any of its children, since they can
never be visited again (they can only be visited through v since T is a tree). Therefore, any
vertex v will be visited exactly once after its parent is visited, and at most once by each
of its children, having a total of at most degree(v) visits. And since, as argued above, the
total number of times a vertex will be covered is at most the number of times it will get
visited, when DFS terminates (i.e S = V ), it will be coverageL(v) ≤ degree(v), for every
v ∈ V .
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However, note that the last nonempty λ-subgraph Li might not consist of λ vertices since
the entire V was covered and DFS could not proceed further. In this case, the algorithm
empties the set S that keeps track of the covered nodes, takes the current Li and fills it in
with exactly another λ− |Li| vertices. This is done by picking an arbitrary vertex from Li

and setting it as the root of T , and performing one last DFS starting from it until Li has λ
vertices in total (lines 30-33). To ensure that the DFS will continue only until it fills in this
current Li, the algorithm counts the number of times that it runs the while-loop of DFS,
namely lines 12-29, via the variable count (line 34), which escapes the while-loop of DFS in
case DFS has filled in Li (lines 28-29) and terminates. Observe that in the last λ-subgraph
Li, a vertex v inserted in the last iteration of DFS (count = 1) and was not inserted in
Li by the first run (count = 0) might have been covered by the first run of DFS exactly
degree(v) times, therefore when the algorithm terminates it has been covered degree(v)+1

times. Since by the end of the first DFS run Li had at least one vertex, the cardinality of
such vertices that are covered more times than their degree are at most λ− 1.

We can now prove the following.

Lemma 16. For any graph G of n vertices, and for any λ ≤ n, there exist (at most)
2n−3
λ + 1 λ-subgaphs of G that cover G.

Proof. Consider a spanning tree T of G. Then Lemma 15 applies to T . Observe that
a collection L as described in the statement of the aforementioned lemma has the same
qualities for G since V (T ) = V (G) and E(T ) ⊆ E(G). That is, L is a collection of distinct
λ-subgraphs of G, such that for every v ∈ V , it holds that 1 ≤ coverageL(v) ≤ degree(v),
except maybe for (at most) λ−1 vertices, for each v of which it is coverageL(v) = degree(v)+

1, where by degree(v) we denote the degree of vertex v in T .
Fix a particular value for λ and consider a collection L of λ-subgraphs as constructed

in the proof of Lemma 15. Then, by equation (5.6),

|L| =
∑

v∈V coverageL(v)

λ
≤
∑

v∈V degree(v) + (λ− 1)

λ
=

2(n− 1)

λ
+
λ− 1

λ
=

2n− 3

λ
+ 1.

We conclude with the simple algorithm that achieves a defense strategy with defense
ratio which is within factor 2 + λ−3

n of the best defense ratio for G.
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Algorithm 2 Approximating the best defense ratio
Require: Graph G = (V,E) of n vertices, a natural λ ≤ n.
Ensure: A defense strategy that satisfies the statement of Theorem 18.

1: Find a spanning tree T of G.
2: Construct a collection L of λ-subgraphs of T as described in the proof of Lemma 15.
3: Assign probability qi = 1

|L| to every λ-subgraph in L, i = 1, 2, . . . , |L|.

4: return The above uniform defense strategy over the collection L.

Theorem 18. Given any graph G = (V,E), Algorithm 2 computes in time O(|E|) a defense
strategy such that, for any combination of attack strategies, the resulting strategy profile S
yields defense ratio DR(G,S) ≤

(
2 + λ−3

n

)
·DR(G,S∗).

Proof. As argued in Lemma 16, there is a collection L of λ-subgraphs with |L| ≤ 2n
λ +

1 − 3
λ which covers G. Therefore, the uniform defense strategy returned by Algorithm 2

(which determines the vertex probability pi for each vertex i) achieves a minimum vertex
probability p′ := mini∈[n] pi for which it holds that:

p′ =
1

|L|
≥ 1

2n
λ + 1− 3

λ

=
λ
n

2 + λ−3
n

≥ 1

2 + λ−3
n

· p∗(G),

where the first equality is due to the fact that any leaf v ∈ V of the spanning tree T of G
through which L was created has coverageL(v) = 1, and therefore there is such a vertex
v in G that is covered by exactly one λ-subgraph; and the last inequality is due to the
fact that p∗(G) ≤ λ/n for any graph G (due to Corollary 9), where p∗(G) is the MaxMin
probability of G.

The above inequality implies that if the defender chooses the prescribed strategy the
minimum defense ratio cannot be too bad. That is because in the worst case for the
defender, each and every attacker will choose a vertex v′ on which the aforementioned
strategy of the defender results to vertex probability p′ (so that the attacker is caught with
minimum probability). As a result, the defender will have the minimum possible expected
payoff which is p′ · k. Thus, for the constructed defend strategy and any combination of
attack strategies, the resulting strategy profile S yields defense ratio:

DR(G,S) ≤ k

p′ · k
≤
(

2 +
λ− 3

n

)
· 1

p∗(G)
=

(
2 +

λ− 3

n

)
·DR(G,S∗),
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where the last equality is due to Lemma 13.
With respect to the running time, notice that Step 1 of Algorithm 2 can be executed

in time O(|V |+ |E(G)|) = O(|E(G)|). Step 2 can be executed in time O(|V |+ |E(T )|) =

O(|V |). Finally, Step 3 can be executed in constant time. Therefore, the total running time
of Algorithm 2 is O(|E(G)|).

Corollary 10. For any graph G there is a polynomial (in both n and λ) time approximation
algorithm (Algorithm 2) with approximation factor 1/

(
2 + λ−3

n

)
for the computation of

p∗(G).

The merit of finding a probability p′ that approximates (from below) p∗(G) for a given
graph G through an algorithm such as Algorithm 2 is in guaranteeing to the defender that,
no matter what the attackers play, she always “catches” at least a portion p′ of them in
expectation, where the best portion is p∗(G) in an equilibrium. Algorithm 2 guarantees
that the defender catches at least 1/

(
2 + λ−3

n

)
of the attackers in expectation.

5.5 Bounds on the Price of Defense

In the following theorem we give a lower bound on the PoD for any given n and 2 ≤ λ ≤ n−1

by constructing a graph G with particular (very small) p∗(G) (which, by Lemma 13 implies
great best defense ratio).

Theorem 19. The PoD(λ) is lower bounded by b2(n−1)
λ c and b2(n−1)

λ+1 c for λ even and odd
respectively, when λ ∈ {2, 3, . . . , n− 1}.

Proof. We will prove the statement by showing that for any given n and λ ∈ {2, 3, . . . , n−1},
there exists a graph G = (V,E) on n vertices that requires (at least) some number roughly
b = b2(n−1)

λ+1 c of λ-subgraphs to be covered and additionally this graph’s structure achieves
p∗(G) for the uniform defense strategy, i.e. each λ-subgraph is assigned equal probability
1/b.

The graph we construct is the following. First, consider a line graph with σ vertices,
where σ = dλ2 e. Keep a central vertex to use later, and using only n− 1 vertices, create as
many complete lines with σ vertices as possible, i.e. b = bn−1

σ c. Create another incomplete
line (if needed) with strictly less than σ vertices using the remaining ones n − 1 − b · σ.
Now draw an edge from the central vertex to a single leaf of each of the constructed lines.
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L1

L2

L3

L4

Figure 5.2: An example of Case 1 of Theorem 19, where n = 15 and λ = 6. Here, graph
G has σ = 3 and b = 4. The λ-subgraphs L1, L2, L3, L4 that constitute the support of a
best-defense strategy are shown with various colors.

For examples of the construction of G in each of the below three cases, see Figures 5.2, 5.3,
and 5.4.

L1

L2

L3

L4

Figure 5.3: An example of Case 2(a) of
Theorem 19, where n = 19 and λ = 7.
Here, graph G has σ = 4 and b = 4. The
λ-subgraphs L1, L2, L3, L4 that constitute
the support of a best-defense strategy are
shown with various colors.

L1

L2

L3

L4

L5

Figure 5.4: An example of Case 2(b) of
Theorem 19, where n = 20 and λ = 7.
Here, graph G has σ = 4 and b = 4. The
λ-subgraphs L1, L2, L3, L4, L5 that consti-
tute the support of a best-defense strategy
are shown with various colors.

Consider now a defense strategy q := (q1, q2, . . . , qθ) ∈ ∆θ and the vertex probabilities
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p1, p2, . . . , pn it induces on the vertices of G.
Case 1: λ is even. In this case σ = λ/2 and observe that the diameter of this graph

G is equal to λ, therefore no λ-subgraph that covers a leaf of a complete line can cover a
leaf of another complete line. Also, any λ-subgraph that covers a leaf of a complete line
can cover the whole incomplete line. Therefore, this graph can be covered by b λ-subgraphs
but no less. Assume that q covers G, i.e. pi > 0, ∀i ∈ [n], and let us focus on the set
Vcom of leaves of the complete lines of G, where |Vcom| = b as argued earlier, and denote
Vcom by [b]. Consider the vertex probabilities pi, i ∈ [b], and note that

∑
i∈[b] pi ≤ 1 where

strict inequality holds for the case where there exists some pure strategy Lj ∈ supp(q) such
that Lj ∩ Vcom = ∅. Then for p′ := mini∈[b] pi it holds that p′ ≤ 1/b, otherwise pi > 1/b,
∀i ∈ [b] and therefore

∑
i∈[b] pi > 1 which is a contradiction. Also, for pi = 1/b, ∀i ∈ [b], it

is p′ = 1/b, which yields p∗(G) := maxq∈∆θ
p′ = 1/b.

Case 2: λ is odd. In this case σ = (λ + 1)/2 and the diameter of G equals λ + 1,
therefore no λ-subgraph that covers a leaf of a complete line can cover a leaf of another
complete line.

• Subcase (a): σ−(n− 1− b · σ) 6= 1. Any λ-subgraph that covers a leaf of a complete
line can cover the whole incomplete line. Therefore, this graph can be covered with b
λ-subgraphs but no less. Following the analysis of Case 1, it is p∗(G) := maxq∈∆θ

p′ =

1/b.

• Subcase (b): σ−(n− 1− b · σ) = 1. No λ-subgraph that covers a leaf of a complete
line can cover the leaf of the incomplete line. Therefore, this graph can be covered
by b+ 1 λ-subgraphs but no less. Following similar analysis as that of Case 1, where
instead of Vcom we have Vcom ∪ {vinc} where vinc is the leaf of the incomplete line,
and instead of b we have b+ 1, we conclude that p∗(G) := maxq∈∆θ

p′ = 1/(b+ 1).

For Case 1, and Case 2(a), since each of the leaves of the b complete lines have vertex
probability 1/b, the defense strategy q∗ with probability q∗i = 1/b assigned to the respective
pure defense strategy Li, i ∈ [b] that contains vertex i ∈ [b], yields p∗(G). For Case 2(b),
since each of the leaves of the b complete lines and the leaf vinc of the incomplete line have
vertex probability 1/(b+1), the defense strategy q∗ with probability q∗i = 1/(b+1) assigned
to the respective pure strategy Li, i ∈ [b]∪{vinc} that contains vertex i ∈ [b]∪{vinc}, yields
p∗(G).

By the above values of p∗(G) and Lemma 13 the proof of the theorem is complete.
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Corollary 11. For any given n and 2 ≤ λ ≤ n − 1, it holds that b2(n−1)
λ+1 c ≤ PoD(λ) ≤

2(n−1)+λ−1
λ . Furthermore, for the trivial cases λ ∈ {1, n} it is PoD(1) = n and PoD(n) = 1.

Proof. The lower bound is established by Theorem 19. The upper bound is due to Theorem
18. For the cases λ = 1 and λ = n, observe that the defender’s action set isD = {{i}|i ∈ V }
and D = {V } respectively, therefore p∗(G) = 1/n and p∗(G) = 1 respectively, and again
from Lemma 13 we get the values in the statement of the corollary.
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Fair Division
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Chapter 6

The Consensus Halving Problem and
the Borsuk-Ulam Theorem

In this chapter we study the problem of finding an exact solution to the Consensus Halving
problem. While recent work has shown that the approximate version of this problem is
PPA-complete [71,72], we show that the exact version is much harder. Specifically, finding a
solution with n agents and n cuts is FIXP-hard, and deciding whether there exists a solution
with fewer than n cuts is ETR-complete.

Along the way, we define a new complexity class BU, which captures all problems that
can be reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that
FIXP ⊆ BU ⊆ TFETR and that LinearBU = PPA, where LinearBU is the subclass of BU in
which the Borsuk-Ulam instance is specified by a linear arithmetic circuit.

The results of this chapter have been published in the Proceedings of the 46th In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2019) [58]
(co-authored with Deligkas, Fearnley and Spirakis).

6.1 Overview

Dividing resources among agents in a fair manner is among the most fundamental problems
in multi-agent systems [32]. Cake cutting [11,17,18,31], and rent division [30,65,79] are
prominent examples of problems that lie in this category. At their core, each of these
problems has a desired solution whose existence is usually proved via a theorem from
algebraic topology such as Brouwer’s fixed point theorem, Sperner’s lemma, or Kakutani’s

123
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fixed point theorem.

In this work we focus on a fair-division problem called Consensus Halving : an object
A represented by [0, 1] is to be divided into two halves A+ and A−, so that n agents agree
that A+ and A− have the same value. Provided the agents have bounded and continuous
valuations over A, this can always be achieved using at most n cuts, and this fact can be
proved via the Borsuk-Ulam theorem from algebraic topology [133]. The necklace splitting
and ham-sandwich problems are two other examples of fair-division problems for which the
existence of a solution can be proved via the Borsuk-Ulam theorem [6,7,120].

Recent work has further refined the complexity status of approximate Consensus Halv-
ing, in which we seek a division of the object so that every agent agrees that the values of
A+ and A− differ by at most ε. Since the problem always has a solution, it lies in TFNP,
which is the class of function problems in NP that always have a solution. More recent work
has shown that the problem is PPA-complete [71], even for ε that is inverse-polynomial
in n [72]. The problem of deciding whether there exists an approximate solution with k

cuts when k < n is NP-complete [70]. These results are particularly notable, because they
identify consensus halving as one of the first natural PPA-complete problems.

While previous work has focused on approximate solutions to the problem, in this work
we study the complexity of solving the problem exactly. For problems in the complexity
class PPAD, which is a subclass of both TFNP and PPA, prior work has found that there
is a sharp contrast between exact and approximate solutions. For example, the Brouwer
fixed point theorem is the theorem from algebraic topology that underpins PPAD. Finding
an approximate Brouwer fixed point is PPAD-complete [120], but finding an exact Brouwer
fixed point is complete for (and the defining problem of) a complexity class called FIXP [66].

It is believed that FIXP is significantly harder than PPAD. While PPAD ⊆ TFNP ⊆ FNP,
there is significant doubt about whether FIXP ⊆ FNP. The reason for this is that there are
Brouwer instances for which all solutions are irrational. This is not particularly relevant
when we seek an approximate solution, but is a major difficulty when we seek an exact
solution. For example, the square-root-sum problem asks us to decide for integers a1, a2,
. . . , an, t, whether

∑n
i=1

√
ai ≤ t. This deceptively simple problem is not known to lie in

NP, and can be reduced to the problem of finding an exact Brouwer fixed point [66], which
provides evidence that FIXP may be significantly harder than FNP.
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6.1.1 Contribution

In this work we study the complexity of solving the consensus halving problem exactly. In
our formulation of the problem, the valuation function of the agents is presented as an arbi-
trary arithmetic circuit, and the task is to cut A such that all agents agree that A+ and A−
have exactly the same valuation. We study two problems. The (n, n)-Consensus Halving

problem asks us to find an exact solution for n agents using at most n cuts, while the (n, k)-
Consensus Halving problem asks us to decide whether there exists an exact solution for
n agents using at most k cuts, where k < n.

Our results for (n, n)-Consensus Halving are intertwined with a new complexity class
that we call BU. This class consists of all problems that can be reduced in polynomial time
to the problem of finding a solution of the Borsuk-Ulam problem. We show that (n, n)-
Consensus Halving lies in BU, and is FIXP hard. The hardness for FIXP implies that
the exact variant of consensus halving is significantly harder than the approximate variant:
while the approximate problem is PPA-complete, the exact variant is unlikely to be in FNP.

We show that (n, k)-Consensus Halving is ETR-complete. The complexity class ETR
consists of all decision problems that can be formulated in the existential theory of the reals.
It is known that NP ⊆ ETR ⊆ PSPACE [35], and it is generally believed that ETR is distinct
from the other two classes. So our result again shows that the exact version of the problem
seems to be much harder than the approximate version, which is NP-complete [70].

Just as FIXP can be thought of as the exact analogue of PPAD, we believe that BU is the
exact analogue of PPA, and we provide some evidence to justify this. It has been shown that
LinearFIXP = PPAD [66], which is the version of the class in which arithmetic circuits are
restricted to produce piecewise linear functions (FIXP allows circuits to compute piecewise
polynomials). We likewise define LinearBU, which consists of all problems that can be
reduced to a solution of a Borsuk-Ulam problem using a piecewise linear function, and we
show that LinearBU = PPA.

The containment LinearBU ⊆ PPA can be proved using similar techniques to the proof
that LinearFIXP ⊆ PPAD. However, the proof that PPA ⊆ LinearBU utilises our BU con-
tainment result for consensus halving. In particular, when the input to the consensus
halving problem is a piecewise linear function, our containment result shows that the prob-
lem actually lies in LinearBU. The PPA-hardness results for consensus halving show that
piecewise-linear-consensus halving is PPA-hard, which completes the containment [71,72].
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6.1.2 Related work

Although for a long period there were a few results about PPA, recently there has been a
flourish of PPA-completeness results. The first PPA-completeness result was given by [78] who
showed PPA-completeness of the Sperner problem for a non-orientable 3-dimensional space.
In [74] this result was strengthened for a non-orientable and locally 2-dimensional space.
In [3], 2-dimensional Tucker was shown to be PPA-complete; this result was used in [71,72]
to prove PPA-completeness for approximate consensus halving. In [63] PPA-completeness
was proven for a special version of Tucker and for problems of the form “given a discrete
fixed point in a non-orientable space, find another one”. Finally, in [64] it was shown
that octahedral Tucker is PPA-complete. In [106], a subclass of 2DLinearFIXP ⊆ FIXP

that consists of 2-dimensional fixed-point problems was studied, and it was proven that
2DLinearFIXP = PPAD.

A large number of problems are now known to be ETR-complete: geometric intersec-
tion problems [99,123], graph-drawing problems [1,23,39,124], matrix factorization prob-
lems [131,132], the Art Gallery problem [2], and deciding the existence of constrained
(symmetric) Nash equilibria in (symmetric) normal form games with at least three play-
ers [24–27,75].

6.2 Preliminaries

6.2.1 Arithmetic circuits

An arithmetic circuit is a representation of a continuous function f : Rn → Rm. The circuit
is defined by a pair (V, T ), where V is a set of nodes and T is a set of gates. There are n
nodes in V that are designated to be input nodes, and m nodes in V that are designated
to be output nodes. When a value x ∈ Rn is presented at the input nodes, the circuit
computes values for all other nodes v ∈ V , which we will denote as x[v]. The values of x[v]

for the m output nodes determine the value of f(x) ∈ Rm.
Every node in V , other than the input nodes, is required to be the output of exactly

one gate in T . Each gate g ∈ T enforces an arithmetic constraint on its output node, based
on the values of some other node in the circuit. Cycles are not allowed in these constraints.
We allow the operations {ζ,+,−, ∗ζ, ∗,max,min}, which correspond to the gates shown in
Table 6.1. Note that every gate computes a continuous function over its inputs, and thus
any function f that is represented by an arithmetic circuit of this form is also continuous.
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Gate Constraint
Gζ(ζ, vout) x[vout] = ζ, where ζ ∈ Q
G+(vin1, vin2, vout) x[vout] = x[vin1] + x[vin2]

G−(vin1, vin2, vout) x[vout] = x[vin1]− x[vin2]

G∗ζ(ζ, vin, vout) x[vout] = x[vin1] · ζ, where ζ ∈ Q
G∗(vin1, vin2, vout) x[vout] = x[vin1] · x[vin2]

Gmax(vin1, vin2, vout) x[vout] = max{x[vin1], x[vin2]}
Gmin(vin1, vin2, vout) x[vout] = min{x[vin1], x[vin2]}

Table 6.1: The types of gates and their constraints.

We study two types of circuits in this work. General arithmetic circuits are allowed to
use any of the gates that we have defined above. Linear arithmetic circuits allow only the
operations {ζ,+,−, ∗ζ,max,min}, and the ∗ operation (multiplication of two variables) is
disallowed. Observe that a linear arithmetic circuit computes a continuous, piecewise linear
function.

6.2.2 The Consensus Halving problem

In the consensus halving problem there is an object A that is represented by the [0, 1] line
segment, and there are n agents. We wish to divide A into two (not necessarily contiguous)
pieces such that every agent agrees that the two pieces have equal value. Simmons and
Su [133] have shown that, provided the agents have bounded and continuous valuations
over A, then we can find a solution to this problem using at most n cuts.

In this work we consider instances of the consensus halving problem where the valuations
of the agents are presented as arithmetic circuits. Each agent has a valuation function
fi : [0, 1]→ R, but it is technically more convenient if they give us a representation of the
integral of this function. So for each agent i, we are given an arithmetic circuit computing
Fi : [0, 1] → R where for all x ∈ [0, 1] we have Fi(x) =

∫ x
0 f(y) dy. Then, the value of any

particular segment of [a, b] to agent i can be computed as Fi(b)− Fi(a).

A solution to the consensus halving problem is given by a k-cut of the object A,
which is defined by a vector of cut-points (t1, t2, . . . , tk) ∈ [0, 1]k, and a vector of signs
(s1, s2, . . . , sk+1) ∈ {−1,+1}k+1. The cut-points ti split A into up to k + 1 pieces. Note
that they may in fact split A into fewer than k + 1 pieces in the case where two cut-
points ti = tj overlap. We define Xi to be the ith piece of A, meaning that X0 = [0, t1],
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Xi = [ti, ti+1] for all i in the range 1 ≤ i < k, and Xk = [tk, 1].
The sign vector determines which half of A the piece belongs to. We define A+ := {Xi :

si = +1} and A− := {Xi : si = −1} to be the two halves. For each agent i, we denote
the value A+ to agent i as Fi(A+) :=

∑
[a,b]∈A+

(Fi(b)− Fi(a)), and we define Fi(A−)

analogously. The k-cut is a solution to the consensus halving problem if Fi(A+) = Fi(A−)

for all agents i.
We define two computational problems. Simmons and Su [133] have proved that there

always exists a solution using at most n cuts, and our first problem is to find that solution.

(n, n)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of
agent i’s valuation function.
Task: Find an n-cut for A such that Fi(A+) = Fi(A−), for every agent i ∈ [n].

For k < n a solution to the problem may or may not exist. So we define the following
decision variant of the problem.

(n, k)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of
agent i’s valuation function.
Task: Decide whether there exists a k-cut for A such that Fi(A+) = Fi(A−), for
every agent i ∈ [n].

For either of these two problems, if all of the inputs are represented by linear arithmetic
circuits, then we refer to the problem as Linear Consensus Halving. We note that
the known hardness results [70,71] for consensus halving fall into this class. Specifically,
those results produce valuations that are piecewise constant, and so the integral of these
functions is piecewise linear, and these functions can be written down as linear arithmetic
circuits [117].

6.3 The Class BU

The Borsuk-Ulam theorem states that every continuous function from the surface of a
(d+ 1)-dimensional sphere to the d-dimensional Euclidean space maps at least one pair of
antipodal points to the same point.
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Theorem 20 (Borsuk-Ulam). Let f : Sd → Rd be a continuous function, where Sd is a
(d+ 1)-dimensional sphere. Then, there exists an x ∈ Sd such that f(x) = f(−x).

This theorem actually works for any domain D that is antipode-preserving homeomor-
phism of Sd, where by “antipode-preserving” we mean that for every x ∈ D we have that
−x ∈ D. In this work, we choose Sd to be the sphere in d + 1 dimensions with respect to
L1 norm: Sd :=

{
x | x = (x1, x2, . . . , xd+1),

∑d+1
i=1 |xi| = 1

}
.

We define the Borsuk-Ulam problem as follows.

Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit.
Task: Find an x ∈ Sd such that f(x) = f(−x).

Note that we cannot constrain an arithmetic circuit to only take inputs from the domain
Sd, so we instead put the constraint that x ∈ Sd onto the solution.

The complexity class BU is defined as follows.

Definition 16 (BU). The complexity class BU consists of all search problems that can be
reduced to Borsuk-Ulam in polynomial time.

6.3.1 LinearBU

When the input to a Borsuk-Ulam instance is a linear arithmetic circuit, then we call
the problem Linear Borsuk-Ulam, and we define the class LinearBU as follows.

Definition 17 (LinearBU). The complexity class LinearBU consists of all search problems
that can be reduced to Linear Borsuk-Ulam in polynomial time.

We will show that LinearBU = PPA. The proof that LinearBU ⊆ PPA is similar to the
proof that Etessami and Yannakakis used to show that LinearFIXP ⊆ PPAD [66], while the
fact that PPA ⊆ LinearBU will follow from our results on consensus halving in Section 6.4.

To prove LinearBU ⊆ PPA we will reduce to the approximate Borsuk-Ulam problem.
It is well known that the Borsuk-Ulam theorem can be proved via Tucker’s lemma, and
Papadimitriou noted that this implies that finding an approximate solution to a Borsuk-
Ulam problem lies in PPA [120]. This is indeed correct, but the proof provided in [120] is for
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a slightly different problem1. Since our results will depend on this fact, we provide our own
definition and self-contained proof here. We define the approximate Borsuk-Ulam problem
as follows.

ε-Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit,
along with two constants ε, λ ∈ R.
Task: Find one of the following.

1. A point x ∈ Sd such that ‖f(x)− f(−x)‖∞ ≤ ε.

2. Two points x, y ∈ Sd such that ‖f(x)− f(y)‖∞ > λ · ‖x− y‖∞.

The first type of solution is an approximate solution to the Borsuk-Ulam problem, while
the second type of solution consists of any two points that witness that the function is not λ-
Lipschitz continuous in the L∞-norm. The second type of solution is necessary, because an
arithmetic circuit is capable, through repeated squaring, of computing doubly-exponentially
large numbers, and the reduction to Tucker may not be able to find an approximate solution
for such circuits. We now re-prove the result of Papadimitriou in the following lemma.

Lemma 17 ([120]). ε-Borsuk-Ulam is in PPA.

Proof. This proof is essentially identical to the one given by Papadimitriou, but various
minor changes must be made due to the fact that our input is an arithmetic circuit, and
our domain is the L1-sphere. His proof works by reducing to the Tucker problem. In this
problem we have an antipodally symmetric triangulation of Sd with set of vertices V , and
a labelling function L : V → {−1, 1,−2, 2, . . . ,−d, d} that satisfies L(v) = −L(−v) for all
v ∈ V . The task is to find two adjacent vertices v and u such that L(v) = −L(u), whose
existence is guaranteed via Tucker’s lemma. Papadimitriou’s containment proof goes via
the hypercube, but in [70] it is pointed out that this problem also lies in PPA when the
domain is the L1-sphere Sd.

To reduce the ε-Borsuk-Ulam problem for (f, ε, λ) to Tucker, we choose an arbitrary
triangulation of Sd such that the distance between any two adjacent vertices is at most ε/λ.
Let g(x) = f(x)−f(−x). To determine the label of a vertex v ∈ V , first find the coordinate

1The problem used in [120] presents the function as a polynomial-time Turing machine rather than an
arithmetic circuit, and the Lipschitzness of the function is guaranteed by constraining the values that it
can take.
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i that maximises |g(v)i| breaking ties arbitrarily, and then set L(v) = i if g(v)i > 0 and
L(v) = −i otherwise.

Tucker’s lemma will give us two adjacent vertices v and u satisfying L(v) = −L(u), and
we must translate this to a solution to ε-Borsuk-Ulam. If ‖g(u)−g(v)‖∞ > λ · ‖u−v‖∞,
then we have a violation of Lipschitz continuity. Otherwise, we have

‖g(u)− g(v)‖∞ ≤ λ · ‖u− v‖∞

≤ λ · ε
λ

≤ ε

Let i = L(v). Note that by definition we have that |g(v)j | ≤ |g(v)i| for all j, that |g(u)j | ≤
|g(u)i| for all j, and that that g(u)i and g(v)i have opposite signs. These three facts, along
with the fact that ‖g(u) − g(v)‖∞ ≤ ε imply that |g(v)j | ≤ ε for all j. Hence we can
conclude that ‖f(v)− f(−v)‖∞ ≤ ε meaning that v is a solution to ε-Borsuk-Ulam.

To show that LinearBU ⊆ PPA we will provide a polynomial time reduction from
Linear Borsuk-Ulam to ε-Borsuk-Ulam. To do this, we follow closely the technique
used by Etessami and Yannakakis to show that LinearFIXP ⊆ PPAD [66]. The idea is to
make a single call to ε-Borsuk-Ulam to find an approximate solution to the problem for
a suitably small ε, and to then round to an exact solution by solving a linear program. To
build the LP, we depend on the fact that we have access to the linear arithmetic circuit
that represents f .

Lemma 18. Linear Borsuk-Ulam is in PPA.

Proof. Suppose that we have a function f that is represented as a linear arithmetic circuit.
We will provide a polynomial time reduction to ε-Borsuk-Ulam.

The first step is to argue that, for all ε > 0, we can make a single call to ε-Borsuk-Ulam

in order to find an ε-approximate solution to the problem. The only technicality here is
that we must choose λ so as to ensure that no violations of λ-Lipschitzness in the L∞-norm
can be produced as a solution.

Fortunately, every linear arithmetic circuit computes a λ-Lipschitz function where the
bit-length of λ is polynomial in the size of the circuit. Moreover, an upper bound on λ can
easily be computed by inspecting the circuit.

• An input to the circuit has a Lipschitz constant of 1.
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• A + gate operating on two gates with Lipschitz constants x and y has a Lipschitz
constant of at most x+ y.

• A ∗ζ gate operating on a gate with Lipschitz constant x has a Lipschitz constant of
at most |ζ| · x.

• A max or min gate operating on two gates with Lipschitz constants x and y has a
Lipschitz constant of at most max(x, y).

The Lipschitz constant for the circuit in the L∞-norm is then the maximum of the Lipschitz
constants of the output nodes of the circuit. So, for any given ε > 0 that can be represented
in polynomially many bits, we can make a single call to ε-Borsuk-Ulam, in order to find
an ε-approximate solution to the Borsuk-Ulam problem.

The second step is to choose an appropriate value for ε so that the approximate solution
can be rounded to an exact solution using an LP. Let g(x) = f(x) − f(−x). Note that
g(x) can also be computed by a linear arithmetic circuit, and that g(x) = 0 if and only if
f(x) = f(−x).

We closely follow the approach of Etessami and Yannakakis [66]. They use the fact that
the function computed by a linear arithmetic circuit is piecewise-linear, and defined by
(potentially exponentially many) hyperplanes. They give an algorithm that, given a point
p in the domain of the circuit, computes in polynomial time the hyperplane that defines
the output of the circuit for p. Furthermore, they show that the following can be produced
in polynomial time from the representation of the circuit and from p.

• A system of linear constraints Ax ≤ b such that a point x satisfies the constraints if
and only if the hyperplane that defines the output of the circuit for p also defines the
output of the circuit for x.

• A linear formula Cx+C ′ that determines the output of the circuit for all points that
satisfy Ax ≤ b.

To choose ε, the following procedure is used. Let n be the number of inputs to g, and
let m be an upper bound on the bit-size of the solution of any linear system with n + 1

equations where the coefficients are drawn from the hyperplanes that define the function
computed by g. This can be computed in polynomial time from the description of the
circuit, and m will have polynomial size in relation to the description of the circuit. We
choose ε < 1/2m.
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We make one call to ε-Borsuk-Ulam to find a point p ∈ Sn such that ‖f(p) −
f(−p)‖∞ ≤ ε, meaning that ‖g(p)‖∞ ≤ ε. The final step is to round this to an exact
solution of Borsuk-Ulam. To do this, we can modify the linear program used by Etes-
sami and Yannakakis [66]. We apply the operations given above to the circuit g and the
point p to obtain the system of constraints Ax ≤ b and the formula Cx + C ′ for the hy-
perplane defining the output of g for p. We then solve the following linear program. The
variables of the LP are a vector x of length n, and a scalar z. The goal is to minimize z
subject to:

Ax ≤ b

(Cx)i + C ′i ≤ z for i = 1, . . . , n

−((Cx)i + C ′i) ≤ z for i = 1, . . . , n

xi ≥ 0 for each i with pi ≥ 0

xi < 0 for each i with pi < 0
n∑
i=1

|xi| = 1 (see below regarding |xi|)

The first constraint ensures that we remain on the same hyperplane as the one defining
the output of g for p. The second and third constraints ensure that ‖g(x)‖∞ ≤ z. The
fourth and fifth constraints ensure that xi has the same sign as pi, while the sixth constraint
ensures that x lies on the surface Sn. Note that the |xi| operation in the sixth constraint
is not a problem, since the fourth and fifth constraints mean that we know the sign of xi
up front, and so we just need to add either xi or −xi to the sum. All of the above implies
that that x is a z-approximate solution of Borsuk-Ulam for f .

We must now argue that the solution sets z = 0. First we note that the LP has a
solution, because the point (p, ε) is feasible, and the LP is not unbounded since z cannot
be less than zero due to the second and third constraints. So let (x∗, z∗) be an optimal
solution. This solution lies at the intersection of n+1 linear constraints defined by rationals
drawn from the circuit representing g, and so it follows that z∗ is a rational of bit length at
most m. Since 0 ≤ z∗ ≤ ε < 1/2m, it follows that z∗ = 0, and thus x∗ is an exact solution
to Borsuk-Ulam for f .
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6.4 Containment Results for Consensus Halving

6.4.1 (n, n)-Consensus Halving is in BU and LinearBU = PPA

We show that (n, n)-Consensus Halving is contained in BU. Simmons and Su [133] show
the existence of a n-cut solution to the consensus halving problem by applying the Borsuk-
Ulam theorem, and we follow their approach in this reduction. However, we must show that
the approach can be implemented using arithmetic circuits. We take care in the reduction
to avoid G∗ gates, and so if the inputs to the problem are all linear arithmetic circuits,
then our reduction will produce a Linear Borsuk-Ulam instance. Hence, we also show
that (n, n)-Linear Consensus Halving is in LinearBU.

Theorem 21. The following two containments hold.

• (n, n)-Consensus Halving is in BU.

• (n, n)-Linear Consensus Halving is in LinearBU.

Proof. Let us first summarise the approach used by Simmons and Su [133]. Given valuation
functions Fi for the n agents, they construct a Borsuk-Ulam instance given by a function
b : Sn → Rn. Each point (x1, x2, . . . , xn+1) ∈ Sn can be interpreted as a n-cut of [0, 1],
where |xi| gives the width of the ith piece, and the sign of xi indicates whether the ith
piece should belong in A+ or A−. They then define b(x)i = Fi(A+) for each agent i. The
fact that −x flips the sign of each piece, but not the width, implies that b(−x)i = Fi(A−).
Hence, any point that satisfies b(x) = b(−x) has the property that Fi(A+) = Fi(A−) for
all agents i, and so is a solution to the consensus halving problem.

Our task is to implement this reduction using arithmetic circuits. Suppose that we are
given arithmetic circuits Fi implementing the integral of each agent’s valuation function.
Given a point (x1, x2, . . . , xn+1) ∈ Sn, we show that b(x)i = Fi(A+) can be computed via a
linear arithmetic circuit. The tricky part of this, is that we must only include the ith piece
in the sum if xi is positive.

We begin by observing that the operation of |x| can be implemented via a linear arith-
metic circuit. Specifically, via the following construction:

|x| := max(x, 0) + max(−x, 0).
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Hence, we can implement |x| using only max, plus, and constant gates. Then, we define
t0 := 0 and x0 := 0, and for each j in the range 1 ≤ j ≤ n+ 1, define:

tj := tj−1 + |xj−1|.

The value of tj gives the start of the jth piece. Next, for each j in the range 1 ≤ j ≤ n+ 1

we define:
pj := max(xj , 0).

Note that pj is xj whenever xj is positive, and zero otherwise. Finally, for 1 ≤ j ≤ n + 1

define:
qj := Fi(tj + pj)− Fi(tj).

Using the reasoning above, we can see that qj is agent i’s valuation for piece j whenever
xj is positive, and zero otherwise. So we can define

b(x)i =

n+1∑
j=1

qj ,

implying that b(x)i = Fi(A+), as required.

To complete the proof, it suffices to note that none of the operations specified above
use the gate G∗, and so if each Fi is specified by a linear arithmetic circuit, then b will also
be a linear arithmetic circuit.

We note that this also implies that PPA ⊆ LinearBU, thereby completing the proof
that PPA = LinearBU. Specifically, Filos-Ratsikas and Goldberg have shown that ap-
proximate-(n, n)-Consensus Halving is PPA-complete, and their valuation functions are
piecewise constant. Therefore, the integrals of these functions are piecewise linear, and so
their approximate-(n, n)-Consensus Halving instances can be reduced to (n, n)-Linear

Consensus Halving. Hence (n, n)-Linear Consensus Halving is PPA-hard, which
along with Lemma 18 implies the following corollary.

Corollary 12. PPA = LinearBU.
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6.4.2 (n, k)-Consensus Halving is in ETR

The existential theory of the reals consists of all true existentially quantified formulae using
the connectives {∧,∨,¬} over polynomials compared with the operators {<,≤,=,≥, >}.
The complexity class ETR captures all problems that can be reduced in polynomial time to
the existential theory of the reals.

We prove that (n, k)-Consensus Halving is in ETR. The reduction simply encodes the
arithmetic circuits using ETR formulas, and then constrains Fi(A+) = Fi(A−) for every
agent i.

Theorem 22. (n, k)-Consensus Halving is in ETR.

Proof. The first step is to argue that an arithmetic circuit can be implemented as an
ETR formula. Let (V, T ) be the arithmetic circuit. For every vertex v ∈ V we introduce
a new variable xv. For every gate g ∈ T we introduce a constraint. For the gates in
the set {Gζ , G+, G−, G∗ζ , G∗} the constraints simply implement the gate directly, eg., for
a gate G+(vin1, vin2, vout) we use the constraint x[vout] = x[vin1] + x[vin2]. For a gate
Gmax(vin1, vin2, vout) we use the formula

(
(x[vout] = x[vin1]) ∧ (x[vin1] ≥ x[vin2])

)
∨
(
(x[vout] = x[vin2]) ∧ (x[vin2] ≥ x[vin1])

)
,

and likewise for a gate Gmin(vin1, vin2, vout) we use the formula

(
(x[vout] = x[vin1]) ∧ (x[vin1] ≤ x[vin2])

)
∨
(
(x[vout] = x[vin2]) ∧ (x[vin2] ≤ x[vin1])

)
.

Taking the conjunction of the constraints for each of the gates yields an ETR formula that
implements the circuit.

Now we perform the reduction from consensus halving to the existential theory of the
reals. Suppose that we have been given, for each agent i, an arithmetic circuit Fi imple-
menting the integral of agent i’s valuation function. We have already shown in the proof
of Theorem 21 that, given a description of a k-cut given as a point in Sk, we can create
a circuit implementing Fi(A+) and a circuit implementing Fi(A−) for each agent i. We
also argued in that proof that

∑k+1
j=1 |xj | can be implemented as an arithmetic circuit. Our

ETR formula is as follows.

∃x ·

(
n∧
i=1

Fi(A+) = Fi(A−)

)
∧
k+1∑
j=1

|xj | = 1
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The first set of constraints ensure that x is a solution to the consensus halving problem,
and the final constraint ensures that x ∈ Sk.

Using the same technique, we can also reduce Borsuk-Ulam to an ETR formula. In
this case, we get an ETR formula that always has a solution, and so this result places the
problem in TFETR, which is the subclass of ETR in which the formula is guaranteed to be
true.

Theorem 23. BU ⊆ TFETR.

Proof. The proof is essentially identical to the proof of Theorem 22, and the only difference
is that instead of starting with a consensus halving instance, we start with an arbitrary
arithmetic circuit representing the function f : Sd → Rd, for which we wish to find a point
x satisfying f(x) = f(−x). We implement the arithmetic circuit in the same way as in
Theorem 22, and our ETR formula is:

∃x ·

(
d∧
i=1

fi(x) = fi(−x)

)
∧
d+1∑
j=1

|xj | = 1.

6.5 Hardness Results for Consensus Halving

In this section we prove that (n, n)-Consensus Halving is FIXP-hard and that (n, n−1)-
Consensus Halving is ETR-hard. These two reductions share a common step of embed-
ding an arithmetic circuit into a consensus halving instance. So we first describe this step,
and then move on to proving the two individual hardness results.

6.5.1 Embedding a circuit in a Consensus Halving instance: an out-
line

Our approach is inspired by [70], who provided a reduction from ε-GCircuit [41,122]
to approximate consensus halving. However, our construction deviates significantly from
theirs due to several reasons.

Firstly, the reduction in [70] works only for approximate consensus halving. Specifically,
some valuations used in that construction have the form of 1/ε, where ε is the approximation
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Special Gate Constraint Ranges
G()2(vin, vout) x[vout] = (x[vin])2 x[vin] ∈ [0, 1]

G
[0,1]
∗2 (vin, vout) x[vout] = x[vin] · 2 x[vin] ∈ [0, 1/2]

G
[0,1]
− (vin1, vin2, vout) x[vout] = max{x[vin1]− x[vin2], 0} x[vin1], x[vin2] ∈ [0, 1]

Table 6.2: The special types of gates, their constraints and ranges of input.

guarantee, so the construction is not well-defined when ε = 0 as it is in our case. Many
of the gate gadgets used in [70] cannot be used due to this issue, including the max gate,
which is crucially used in that construction to ensure that intermediate values do not get
too large. We provide our own implementations of the broken gates. Our gate gadgets only
work when the inputs and outputs lie in the range [0, 1], and so we must carefully construct
circuits for which this is always the case. The second major difference is that the reduction
in [70] does not provide any method of multiplying two variables, which is needed in our
case. We construct a gadget to do this, based on a more primitive gadget for squaring a
single variable.

Special circuit. Our reduction from an arithmetic circuit to consensus halving will use
a very particular subset of gates. Specifically, we will not use Gmin, Gmax, or G∗, and we
will restrict G∗ζ so that ζ must lie in (0, 1]. We do however introduce three new gates,
shown in Table 6.2. The gate G()2 squares its input, the gate G[0,1]

∗2 multiplies its input by
two, but requires that the input be in [0, 1/2], and the gate G[0,1]

− is a special minus gate
that takes as inputs a, b ∈ [0, 1] and outputs max{a− b, 0}.

We note that Gmin, Gmax, and G∗ can be implemented in terms of our new gates
according to the following identities.

max{a, b} =
a+ b

2
+
|a− b|

2
=
a

2
+
b

2
+

1

2
max{a− b, 0}+

1

2
max{b− a, 0},

min{a, b} =
a+ b

2
− |a− b|

2
=
a

2
+
b

2
− 1

2
max{a− b, 0} − 1

2
max{b− a, 0},

a · b = 2

[(
a

2
+
b

2

)2

−

((a
2

)2
+

(
b

2

)2
)]

.

Also, a very important requirement of the special circuit is that both inputs of any G+

gate are in [0, 1/2]. To make sure of that, we downscale the inputs before reaching the gate,
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and upscale the output, using the fact that a+ b = (a/2 + b/2) · 2.

The reduction to consensus halving. The reduction follows the general outline of the
reduction given in [70]. The construction is quite involved, and so we focus on the high-level
picture here.

Each gate is implemented by 4 agents, namely ad,mid, cen, ex in the consensus halving
instance. The values computed by the gates are encoded by the positions of the cuts that
are required in order to satisfy these agents. Agent ad performs the exact mathematical
operation of the gate, and feeds the outcome in mid, who “trims” it in accordance with
the gate’s actual operation. Then mid feeds her outcome to cen and ex, who make a copy
of mid’s correct value of the gate, with “negative” and “positive” labels respectively. This
value with the appropriate label will be input to other gates.

The most important agents are the ones that perform the mathematical operation of
each gate, i.e. agents ad. Figure 6.1 shows the part of the valuation functions of these
agents that perform the operation. Each figure shows a valuation function for one of the
agents, meaning that the blue regions represent portions of the object that the agent desires.
The agent’s valuation for any particular interval is the integral of this function over that
interval.

To understand the high-level picture of the construction, let us look at the construction
for G∗ζ . The precise valuation functions of the agents in the construction (see (6.1)) ensure
that there is exactly one input cut in the region v+

in. The leftmost piece due to that cut
in that region will belong to A+, while the rightmost will belong to A−. It is also ensured
that there is exactly one output cut in the region vaout, and that the first piece in that region
will belong to A− and the second will belong to A+.

Suppose that gate gi in the circuit is of type G∗ζ and we want to implement it through a
Consensus Halving instance. If we treat v+

in and vaout in Figure 6.1 as representing [0, 1],
then agent adi will take as input a cut at point x ∈ v+

in. In order to be satisfied, adi will
impose a cut at point y ∈ vaout, such that Fi(A+) = Fi(A−), where: Fi(A+) = x+ (ζ−y)/ζ

and Fi(A−) = (1− x) + y/ζ. Simple algebraic manipulation can be used to show that adi
is satisfied only when y = ζ · x, as required.

We show that the same property holds for each of the gates in Figure 6.1. Two notable
constructions are for the gates G()2 and G[0,1]

− . For the gate G()2 the valuation function of
agent ad is non-constant, which is needed to implement the non-linear squaring function.
For the gate G[0,1]

− , note that the output region vaout only covers half of the possible output
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Valuation function

1 if t ∈ [vaout,l + ζ − 1
2, v

a
out,l + ζ + 1

2]

0 otherwise

1 if t ∈ v+in

0 otherwise

1/ζ if t ∈ [vaout,l, v
a
out,l + ζ ]

2(t− v+in,l) if t ∈ v+in

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in2,l, v
+
in2,l +

1
2]

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in1,l, v
+
in1,l +

1
2]

Gπ(t)

1 if t ∈ [v+in,l, v
+
in,l +

1
2]

0 otherwise

1/2 if t ∈ vaout

1 if t ∈ v−in2

0 otherwise

1 if t ∈ [vaout,l − 1, vaout,r]

1 if t ∈ v+in1
1

vaout

vaoutv+in

vaoutv+in2v+in1

vaoutv+in

v+in

vaoutv−in2v+in1

vaout
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1
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2

1
ζ

G
[0,1]
−

Figure 6.1: Gates and their corresponding functions Gπ(t).
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space. The idea is that if the result of x[vin1] − x[vin2] is negative, then the output cut
will lie before the output region, which will be interpreted as a zero output by agents
mid, cen, ex in the construction. On the other hand, if the result is positive, it will lie in
the usual output range, and will be interpreted as a positive number. An example where
x[vin1] = 1/4 and x[vin2] = 3/4 is shown in Figure 6.2.

Ultimately, this allows us to construct a Consensus Halving instance that implements
this circuit. This means that for any x ∈ [0, 1]n, we can encode x as a set of cuts, which
then force cuts to be made at each gate gadget that encode the correct output for that
gate.

Lemma 19. Suppose that we are given an arithmetic circuit with the following properties.

• The circuit uses the gates Gζ , G+, G∗ζ , G()2 , G
[0,1]
− , G

[0,1]
∗2 .

• Every Gζ and G∗ζ has ζ ∈ Q ∩ (0, 1].

• For every input x ∈ [0, 1]n, all intermediate values computed by the circuit lie in [0, 1].

We can construct a Consensus Halving instance that implements this circuit.

6.5.2 Proof of Lemma 19

6.5.2.1 Special circuit to Consensus Halving instance

Consider a circuit H = (V, T ) that uses gates in {Gζ , G+, G∗ζ , G()2 , G
[0,1]
− , G

[0,1]
∗2 }, with

ζ ∈ Q∩ (0, 1], each gate’s inputs/output are in [0, 1], and both inputs of G+ are in [0, 1/2].
The constraints of the special gates G()2 , G

[0,1]
− , G

[0,1]
∗2 are shown in Table 6.2.

In general, the input of H is a N -dimensional vector x ∈ [0, 1]N is given by N nodes
with in-degree 0 and out-degree 1, called input-nodes. Also, in general, the output of H is a
M -dimensional vector x′ ∈ [0, 1]M (the dimension of the circuit’s output is of no importance
here). Moreover, it could be the case that H is cyclic, meaning that it has no input and no
output, but here we will consider the general case. Without loss of generality, let the rest
of the nodes be of in-degree 1 and out-degree 1, located right after each gate’s output. By
“right after” we mean that if a gate’s output has a branching, the node is placed before the
branching. Suppose that the total number of nodes in H is r := N + |T | = poly(N), since
by definition H has polynomial size.

If the node vi ∈ V for i ∈ [r] is at the output of gate gi we will call it the output-node
of gi (otherwise it will be an input-node). For an example see Figure 6.3.
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v+j v−k vai vmi v−i v+i· · · · · ·

adi

midi

ceni

exi

Figure 6.2: An example where the computation at the output vout := vi of a G
[0,1]
− gate

with inputs vin1 := vj and vin2 := vk is simulated by the Consensus Halving instance.
Here x[vj ] = 1/4 and x[vk] = 3/4, hence x[vi] = 0. The information about the values of
the inputs is encoded by the cuts (red lines) in intervals v+

j , and v−k imposed by agents
exj and cenk respectively. The blue and green shapes depict the area below the valuation
function of each of the 4 agents. The pink regions have label “+” while the yellow have label
“−”. Agent adi performs the subtraction, by demanding that she is satisfied, and places a
cut 1/10 to the left of the left endpoint of interval vai . Then agent midi gets satisfied by
placing a cut at exactly the left endpoint of interval vmi , thus encoding the value 0 which is
the correct output value of the gate. Finally, agents ceni, exi copy this value by enforcing
similar cuts at the left endpoints of intervals v−i and v+

i respectively. The encoded values
in the latter two intervals are the “negative” and “positive” version of x[vi].
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G+

G∗1
2

G()2

G+

G∗1
2

G()2

v

g g

Figure 6.3: Before (leftmost figure) and after (rightmost figure) the creation of a node in
series with the output of an addition gate. v is the output-node of g.

Consider the node vi, the output-node of gate gi. vi corresponds to 4 consensus halving
agents, named adi, midi, ceni and exi. Player adi (Latin for “to”) represents the incoming
edge to node vi and agent exi (Latin for “from”) the outgoing edge from vi, while both
midi and ceni represent an edge at the middle (center) of node vi that connects its input
and output. The number of agents created in H is n := 4r. The domain of the valuation
functions of the agents is [0, 12r]. Furthermore, this interval is split to r blocks, with the
i-th block being [bi, bi+1], where bi := 12(i− 1), i ∈ [r].

According to the definition of the Consensus Halving problem, the domain of the
valuation functions of the agents is [0, 1]. Although the domain of the valuation functions of
the Consensus Halving instance that we reduce to is [0, 12r], this is just for convenience
of presentation. In fact, by scaling down each block to length 1/(12r) (divide by 12r), the
domain becomes [0, 1] and the correctness of the reduction is preserved.

Let us define the function borderi(t), t ∈ [0, 12r] for each node vi, i ∈ [r]. The idea for
this function is from [70]. If vi is the output-node of gate type G∗ζ , then

borderi(t) =

4, t ∈ [bi, bi + 1] ∪ [bi + 1 + ζ, bi + 2 + ζ]

0, otherwise
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If vi is the output-node of any gate type other than G∗ζ , then

borderi(t) =

4, t ∈ [bi, bi + 1] ∪ [bi + 2, bi + 3]

0, otherwise

and also:

• vai := [bi + 1, bi + 2] := [vai,l, v
a
i,r]

• vmi := [bi + 4, bi + 5] := [vmi,l, v
m
i,r]

• v−i := [bi + 7, bi + 8] := [v−i,l, v
−
i,r]

• v+
i := [bi + 10, bi + 11] := [v+

i,l, v
+
i,r]

• Gπ(t) is the function corresponding to gate of type Gπ ∈
{Gζ , G∗ζ , G+, G()2 , G

[0,1]
− , G

[0,1]
∗2 } (see Figure 6.1).

The valuation functions of the agents adi, midi, ceni and exi corresponding to node vi
are,

adi(t) =

borderi(t) +Gπ(t), if vi is the output-node of gate type Gπ

borderi(t), if vi is input-node (input of H).
(6.1)

midi(t) =


4, t ∈ [bi + 3, bi + 4] ∪ [bi + 5, bi + 6]

1, t ∈ vai ∪ vmi
0, otherwise

ceni(t) =


4, t ∈ [bi + 6, bi + 7] ∪ [bi + 8, bi + 9]

1, t ∈ vmi ∪ v
−
i

0, otherwise

exi(t) =


4, t ∈ [bi + 9, bi + 10] ∪ [bi + 11, bi + 12]

1, t ∈ v−i ∪ v
+
i

0, otherwise

The intuition for the synergy of the 4 agents is the following: Take as a given that in a
solution of the created Consensus Halving instance with at most n cuts, a cut is placed
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only (almost always2) in the intervals vai , v
m
i , v

−
i , v

+
i for every i ∈ [r]. Since the length

of each of those intervals is 1, each such cut encodes a number in [0, 1]. Consider vi, the
output-node of gate gi with inputs vj , vk. Think of the agents adi, midi, ceni, exi as being
sequential, meaning that each of them “computes” a value through a cut in vai , v

m
i , v

−
i or v+

i

respectively, and feeds it in the next agent. In particular, agent adi takes as input the values
(in the form of cuts) that nodes vj , vk give her, and computes the exact operation that gi
prescribes (e.g. if gi is type G[0,1]

− , adi performs subtraction of the input values without
capping at 0). Then adi feeds this value inmidi via creating a cut in vai , andmidi computes
the actual value in [0, 1] that gi should output (e.g. if gi is type G[0,1]

− , in this step midi
caps the value at 0), and feeds it in ceni via creating a cut in vmi . This correct value should
be exported for further use from other gates to which vi is input, but depending on these
gates, the positive or negative of that value might be needed (by “positive” and “negative”
we mean the label, not the actual sign of the value). That is why a negative version of
this value is produced by ceni and a positive by exi, via a cut in v−i and v+

i respectively.
A negative(resp. positive) value is one encoded by a cut that defines an interval at its left
which is negative(resp. positive). Moreover, for every input-node vj we arbitrarily consider
adj to encode a negative value, and since (by the structure of the Consensus Halving

instance) the labels of the values induced by the 4 agents are alternating, always ceni(resp.
exi) encodes a negative(resp. positive) value.

6.5.2.2 1-1 correspondence of circuit values to Consensus Halving cuts

Let us define the functions zi(x), i ∈ [r] that depend on the input vector x ∈ [0, 1]N , and
compute the value of each node vi of the arithmetic circuit H. Let us also arbitrarily set
(z1, . . . , zN ) := (x1, . . . , xN ). First, we will show that for every tuple (z1(x), . . . , zr(x)) of
values that satisfy H, a solution in the constructed Consensus Halving instance with n
agents and n cuts (n := 4r) encodes the same values via its cuts. We will then show that
for every solution of the Consensus Halving instance with n agents and n cuts, the cuts
correspond to a unique tuple (z1, . . . , zr) that satisfies H. In the sequel, we call a cut t
negative(resp. positive) if the interval that it defines at its left has negative(resp. positive)
label. Without loss of generality, let the interval at the left of the first cut to be a negative
interval.

2With the only exception being a cut before vai when gate gi is G[0,1]
− and its result is negative. See

Figure 6.2 for an example
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Circuit values to cuts. Suppose the tuple (z∗1 , . . . , z
∗
r ) satisfies H. We will show that

from this solution we can create a Consensus Halving solution with n := 4r cuts, i.e.
all of the agents are satisfied. Consider node vi of H. Let us translate the values z∗i , i ∈ [r]

into cuts as follows:

• If gi’s type is one of Gζ , G∗ζ , G+, G()2 , G
[0,1]
∗2 or vi is an input-node.

– Place a cut at t = vai,l + z∗i ,

– Place a cut at t = vmi,l + z∗i ,

– Place a cut at t = v−i,l + z∗i ,

– Place a cut at t = v+
i,l + z∗i .

• If gi’s type is G[0,1]
− , i.e. gi = max{gj − gk, 0}, and z∗j ≥ z∗k.

– Place a cut at t = vai,l + z∗i ,

– Place a cut at t = vmi,l + z∗i ,

– Place a cut at t = v−i,l + z∗i ,

– Place a cut at t = v+
i,l + z∗i .

• If gi’s type is G[0,1]
− , i.e. gi = max{gj − gk, 0}, and z∗j < z∗k

– Place a cut at t = vai,l − (z∗k − z∗j )/5,

– Place a cut at t = vmi,l + z∗i ,

– Place a cut at t = v−i,l + z∗i ,

– Place a cut at t = v+
i,l + z∗i .

By construction of the valuation functions of the agents, these cuts are placed one after
the other, and therefore they alternate between “negative” and “positive”, starting with
negative. Let us now prove that for every i ∈ [r], the adi agent is satisfied.

Gζ : This gate has no input. Consider its output z∗i = ζ and its output-node vi. By
our constructed n-cut, a cut is placed at t = vai,l + ζ, which cuts exactly in half the total
valuation of adi in vai (see Figure 6.1). Since the valuation function is symmetric around
vai (see (6.1)), agent adi is satisfied.
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G∗ζ : Consider its input z∗j , output z
∗
i = ζ ·z∗j and its output-node vi. By our constructed

n-cut, a positive cut is placed at t = v+
j,l + z∗j and a negative cut is placed at t = vai,l + z∗i .

The valuation function is symmetric around vai (see (6.1)), therefore, in order for adi to be
satisfied, it suffices that z∗j · 1 + (ζ − z∗i ) · 1

ζ = (1− z∗j ) · 1 + z∗i · 1
ζ , which is true.

G+ : Consider its inputs z∗j , z
∗
k, its output z∗i = z∗j + z∗k and its output-node vi. By our

constructed n-cut, a positive cut is placed at t = v+
j,l + z∗j , another positive cut is placed

at t = v+
k,l + z∗k and a negative cut is placed at t = vai,l + z∗i . The valuation function is

symmetric around vai (see (6.1)), therefore, in order for adi to be satisfied, it suffices that
z∗j · 1 + z∗k · 1 + (1− z∗i ) · 1 = (1/2− z∗j ) · 1 + (1/2− z∗k) · 1 + z∗i · 1, which is true.

G()2 : Consider its input z∗j , output z
∗
i = (z∗j )2 and its output-node vi. By our constructed

n-cut, a positive cut is placed at t = v+
j,l + z∗j and a negative cut is placed at t = vai,l + z∗i .

The valuation function is symmetric around vai (see (6.1)), therefore, in order for adi to be
satisfied, it suffices that (z∗j )2 + (1− z∗i ) · 1 = (1− (z∗j )2) + z∗i · 1, which is true.

G
[0,1]
∗2 : Consider its input z∗j , output z

∗
i = 2·z∗j and its output-node vi. By our constructed

n-cut, a positive cut is placed at t = v+
j,l + z∗j and a negative cut is placed at t = vai,l + z∗i .

The valuation function is symmetric around vai (see (6.1)), therefore, in order for adi to be
satisfied, it suffices that z∗j · 1 + (1− z∗i ) · 1

2 = (1/2− z∗j ) · 1 + z∗i · 1
2 , which is true.

G
[0,1]
− : Consider its inputs z∗j , z

∗
k, its output z∗i = max{z∗j − z∗k, 0} and its output-node

vi. By our constructed n-cut,

• if z∗j ≥ z∗k, then z
∗
i = z∗j − z∗k. By our constructed n-cut, a positive cut is placed at

t = v+
j,l + z∗j , a negative cut is placed at t = v−k,l + z∗k and another negative cut is

placed at t = vai,l + z∗i . In order for adi to be satisfied, it suffices that z∗j · 1 + (1 −
z∗k) · 1 + (1− z∗i ) · 1 + 4 = (1− z∗j ) · 1 + z∗k · 1 + (4 + 1) + z∗i · 1, which is true.

• if z∗j < z∗k, then z∗i = 0. By our constructed n-cut, a positive cut is placed at
t = v+

j,l + z∗j , a negative cut is placed at t = v−k,l + z∗k and another negative cut
is placed at t = vai,l − (z∗k − z∗j )/5. In order for adi to be satisfied, it suffices that

z∗j · 1 + (1− z∗k) · 1 +
z∗k−z

∗
j

5 · (4 + 1) + 1 + 4 = (1− z∗j ) · 1 + z∗k · 1 + (1− z∗k−z
∗
j

5 ) · (4 + 1),
which is true.
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We will now prove that in our constructed n-cut, the agents midi, ceni, exi are also
satisfied. If gi is not a G

[0,1]
− gate, let us prove that midi is satisfied. In our n-cut there is

a negative cut at t = vai,l + z∗i and a positive one at t = vmi,l + z∗i . In order for midi to be
satisfied, it suffices that z∗i · 1 + (1− z∗i ) · 1 = (1− z∗i ) · 1 + z∗i · 1, which is true. The proof
of satisfaction of agents midi, ceni, exi is similar, since the succeeding agent’s valuation
function is the same as the preceding agent’s one, shifted 3 units.

If gi is a G
[0,1]
− gate, let us prove that midi is satisfied.

• if z∗j ≥ z∗k, then a negative cut is placed at t = vai,l + z∗i , and a positive cut is placed
at t = vmi,l + z∗i . In order for midi to be satisfied, it suffices that z∗i · 1 + (1− z∗i ) · 1 =

(1− z∗i ) · 1 + z∗i · 1, which is true.

• if z∗j < z∗k, then a negative cut is placed at t = vai,l − (z∗k − z∗j )/5 and a positive cut is

placed at t = vmi,l. In order formidi to be satisfied, it suffices that
z∗k−z

∗
j

5 ·0+1·1 = 1·1,
which is true.

For the agents ceni and exi, it is easy to see that due to their valuation functions, the n-cut
we provide forces them to have positive total valuation equal to the negative one.

Cuts to circuit values. Now suppose that the tuple (t∗1, . . . , t
∗
n) with 0 ≤ t∗1 ≤ · · · ≤ t∗n ≤

12r, represents a n-cut (n := 4r) that is a solution of the constructed Consensus Halving

instance with n agents, where w.l.o.g. the first 4N cuts correspond to the N input-nodes.
We will show that from this solution we can construct a tuple (z1, . . . , zr) that satisfies
circuit H.

Consider node vi which is the output-node of gate gi or it is an input-node. Observe
that the valuation function of each of adi,midi, ceni and exi has more than half of her total
valuation inside the interval [bi, bi + 3], [bi + 3, bi + 6], [bi + 6, bi + 9] and [bi + 9, bi + 12]

respectively. This means that in a solution, each of them has to have at least one cut in
her corresponding aforementioned interval. But since these intervals are not overlapping
for all n agents, and we need to have at most n cuts, exactly one cut has to be placed by
each agent in her corresponding interval.

Consider now the first 4N cuts that correspond to the input-nodes. As it is apparent
from the definition of these nodes’ valuation functions, each agent of adi,midi, ceni, exi for
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i ∈ [N ] has to place her single cut in the interval vai , v
m
i , v

−
i , v

+
i respectively. Given the latter

fact, the definition of valuation functions for non input-node agents dictates that there will
always be a cut in v+

i for every i ∈ [r]. Since 0 ≤ t∗1 ≤ · · · ≤ t∗n ≤ 12r, the sequential nature
of our agents indicates that the cut t∗4i, i.e. with index 4 · i, is found in interval v+

i . Now,
let us translate the position of the cut t∗4i, i ∈ [r] into the value zi = t∗4i − v

+
i,l. By a similar

argument as that of the previous paragraph showing that the adi agents are satisfied, it is
easy to see that, by the aforementioned translation, the created tuple (z1, . . . , zr) satisfies
circuit H.

Valuation functions to circuits. In the Consensus Halving instances we construct,
we have described the valuation functions of the agents mathematically. However, in a
Consensus Halving instance the input is an arithmetic circuit, therefore we have to turn
each valuation function of each agent j ∈ [n] into its integral, and subsequently into an
arithmetic circuit. Here we describe a method to do that.

The valuation functions we construct in our reduction (see Section 6.5.2.1) are piecewise
polynomial functions of a single variable and their degree is at most 1, with k pieces where
k is constant. Therefore, their integrals, which are the input of the Consensus Halving

problem (captured by arithmetic circuits), are piecewise polynomial functions (with the
same pieces) with degree at most 2. Consider the valuation function f of an arbitrary
player. Let the pieces of f be [p0, p1), [p1, p2), . . . , [pk−1, pk] where p0 = 0 and pk = 1

and denote P1, P2, . . . , Pk the above pieces respectively. Let us also denote by fPs the
polynomial in interval Ps, s ∈ {1, 2, . . . , k}. In particular, f can be defined as

f(t) =



fP1(t) , t ∈ [p0, p1)

fP2(t) , t ∈ [p1, p2)
...

fPk(t) , t ∈ [pk−1, pk],

(6.2)

and according to the valuation functions used in the reduction (see Section 6.5.2.1), for any
given piece Ps there are two kinds of possible functions

(a) fPs(t) = cs, where cs ≥ 0 is a constant, or

(b) fPs(t) = 2 · (t− ps−1).
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(The latter comes from the valuation function of an ad agent that corresponds to an output
node of a G()2 gate.)

We would like to find a formula for the integral of f(t), denoted F (t), and we also
require that F (t) is computable by an arithmetic circuit, so that it is a proper input (to-
gether with the other agents’ integrals of valuation functions) to the Consensus Halving

instance. For each piece Ps we will construct an integral, denoted by FPs(t), such that
each such integral will be computable by an arithmetic circuit, and so that it will be
F (t) =

∑
s∈{1,2,...,k} F

Ps(t). First, let us construct the function Ds(t) using the domain Ps
of fPs(t):

Ds(t) := min {max {t, ps−1} , ps} ,

which takes values

Ds(t) =


ps−1, t < ps−1

t, t ∈ [ps−1, ps]

ps, t > ps.

Now, for function fPs(t) of case (a), we construct its integral:

FPs(t) := cs · (Ds(t)− ps−1) ,

which takes values

FPs(t) =


0, t < ps−1

cs · (t− ps−1) , t ∈ [ps−1, ps]

cs · (ps − ps−1) , t > ps.

Similarly, for function fPs(t) of case (b), we also construct its integral:

FPs(t) := (Ds(t)− ps−1)2 ,
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which takes values

FPs(t) =


0, t < ps−1

(t− ps−1)2 , t ∈ [ps−1, ps]

(ps − ps−1)2 , t > ps.

Finally, for the agent with valuation function f(t), the corresponding function com-
putable by the arithmetic circuit that is input to the Consensus Halving problem is:

F (t) :=
∑

s∈{1,2,...,k}

FPs(t).

For the integral function F (t) indeed it holds that F (t) =
∫ t

0 f(x) dx as required. That is
because, by the way we defined each FPs(t), for any t ∈ Ps∗ it is

F (t) =
∑

s∈{1,2,...,k}

FPs(t) =
∑

s∈{1,2,...,s∗−1}

FPs(t) + FP
∗
s (t) +

∑
s∈{s∗+1,...,k}

0

=
∑

s∈{1,2,...,s∗−1}

∫
Ps

fPs(x) dx+

∫ t

ps∗−1

fP
∗
s (x) dx

=
∑

s∈{1,2,...,s∗−1}

∫ ps

ps−1

f(x) dx+

∫ t

ps∗−1

f(x) dx

=

∫ t

0
f(x) dx

For each player with some valuation function f as defined above, we can compute
the functions FPs , s ∈ [k] by using gates Gζ , G∗ζ , G−, G∗, Gmin, Gmax. Then F (t) can be
computed by using G+ gates. The arithmetic circuits that compute the functions F (t) (one
for each agent j ∈ [n]) constitute a proper Consensus Halving instance. This completes
the proof of Lemma 19.

6.5.3 (n, n)-Consensus Halving is FIXP-hard

We show that (n, n)-Consensus Halving is FIXP-hard by reducing from the problem of
finding a Nash equilibrium in a d-player game for d ≥ 3, which is known to be FIXP-
complete [66]. As shown in [66], this problem can be reduced to the Brouwer fixed point
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problem: given an arithmetic circuit computing a function F : [0, 1]n → [0, 1]n, find a point
x ∈ [0, 1]n such that F (x) = x. In a similar way to [70], we take this circuit, with the
outputs looped back to the inputs, and embed it into a consensus halving instance. Since
Lemma 19 implies that our implementation of the circuit is correct, this means that any
solution to the consensus halving problem must encode a point x satisfying F (x) = x.

One difficulty is that we must ensure that the arithmetic circuit that we build falls into
the class permitted by Lemma 19. To do this, we carefully analyse the circuits produced
in [66], and we modify them so that all of the preconditions of Lemma 19 hold. This gives
us the following result.

Theorem 24. (n, n)-Consensus Halving is FIXP-hard.

6.5.3.1 Proof of Theorem 24

In [66] it is shown that the problem of finding a Nash equilibrium of a d-player normal form
game with d ≥ 3 (“d-player Nash equilibrium” problem) is FIXP-complete. Given an in-
stance of this problem, we will construct a polynomial-time reduction to (n, n)-Consensus

Halving. We will start from an arbitrary instance of “d-player Nash equilibrium” and, ac-
cording to it, design a circuit using only the gates Gζ , G+, G−, G∗, Gmax, Gmin with ζ ∈ Q.
This step is done by a straightforward application of the procedure described in the proofs
of Lemma 4.5 and Lemma 4.6 in [66]. This circuit computes a function whose fixed points
correspond precisely to the Nash equilibria of the initial game. Then, we create an equiva-
lent circuit by “breaking down” the initial gates to some more suitable ones (by introducing
“special gates”, see Table 6.2), whose inputs and outputs are guaranteed to be in [0, 1].
From this, we will create a cyclic circuit, introduce consensus halving players on the “wires”
of the circuit, and show that a consensus halving solution with at most as many cuts as the
number of players in this instance can be efficiently translated back to a Nash equilibrium
of the initial game.

6.5.3.1.1 Expressing the game as a circuit without division gates

Here, given an arbitrary d-player game, we will create a function whose fixed points are
precisely the Nash equilibria of that game. Consider a given instance I of the “d-player
Nash equilibrium” problem, i.e. a d-player normal form game where each player i has a
set Si of pure strategies. We will use the following notation similar to the one in [66]:
Ni := |Si|, N :=

∑d
i Ni and vi is the payoff function of player i with domain DI :=
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×di=1∆Ni , where ∆Ni is the unit (Ni − 1)-simplex. Define the mixed strategy profile x :=

(x11, . . . , x1N1 , x21, . . . , x2N2 , . . . , xd1, . . . , xdNd) to be aN -dimensional vector with the entry
xij being the probability that player i ∈ [d] plays pure strategy j ∈ Si. Also, v(x) is an
N -dimensional vector with entries indexed as in x, with vij(x) := vi(j, x−i), the latter being
the expected payoff of player i when she plays the pure strategy j ∈ Si against the partial
profile x−i of the rest of the players. The payoff function of each player is normalized by
a standard scaling in [0, 1] so that the Nash equilibria of the game are precisely the same.
Thus, vij(x) ∈ [0, 1]. Finally, let h(x) := x+ v(x).

Now, define for each player i the function fi,x(t) :=
∑

j∈Si max(hij(x) − t, 0) with
parameter x. This function is defined in R and it is continuous, piecewise linear, strictly
decreasing with values from 0 to +∞, thus there is a unique value ti ∈ R such that
fi,x(ti) = 1. The required function whose set of fixed points is identical to the set of Nash
equilibria of instance I is GI(x)ij := max(hij(x) − ti, 0) for i ∈ [d], j ∈ Si. The function
GI takes as input the n-dimensional vector x and outputs an N -dimensional vector GI(x)

with entries defined as above. By definition of GI and choice of ti, it is
∑

j∈Si GI(x)ij = 1

for every i ∈ [d], and therefore GI is a mapping of the domain DI to itself.

Lemma 20 (LEMMA 4.5, [66]). The fixed points of the function GI are precisely the Nash
equilibria of the game I.

In fact, the structure of function GI allows for it to be efficiently constructed using only
the required types of gates.

Lemma 21 (LEMMA 4.6, [66]). We can construct in polynomial time a circuit with basis
{+,−, ∗,max,min} (no division) and rational constants that computes the function GI .

For the proofs of the above lemmata the reader is referred to the indicated work by
Etessami and Yannakakis.

In the proof of the latter lemma in [66] it is shown how to construct an arithmetic circuit
CI that computes the function GI using only gates of type Gζ , G+, G−, G∗, Gmax, Gmin,
where ζ ∈ Q. The construction of CI is the following: Compute the function y = h(x) =

x+ v(x) using only G+, G∗ type of gates, allowed by the definition of v(x). Vector y has d
sub-vectors, where yi = (yi1, yi2, . . . , yiNi). Then, each yi is sorted using a sorting network
Zi thus creating a vector zi = (zi1, zi2, . . . , ziNi) with sorted entries zi1 ≥ zi2 ≥ · · · ≥ ziNi ;
sorting networks can be implemented in arithmetic circuits using only gates Gmax, Gmin (for
more see e.g. [92]). Using zij ’s the function ti := maxl∈[Ni]

{
(1/l) ∗

((∑l
j=1 zij

)
− 1
)}

is
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computed and the final output of the whole circuit is

x′ij := max{yij − ti, 0} for each i ∈ [d], j ∈ Si. (6.3)

6.5.3.1.2 A circuit with gates whose inputs/outputs are in [0, 1]

One can easily observe that some of the gates of circuit CI may have inputs and outputs
outside of [0, 1]. For example, the G+ gate that computes yij = xij + v(x)ij can be 2
and the arguments of Gmax in ti can be negative. We will transform this circuit into an
equivalent one that guarantees its gates’ inputs and outputs to be in [0, 1], using only gates
Gζ , G+, G

[0,1]
− , G∗, G

[0,1]
∗2 , Gmax, Gmin, where ζ ∈ Q∩(0, 1], G[0,1]

− is a special subtraction gate
that outputs 0 in case the subtraction results to a negative number, and G[0,1]

∗2 is a special
multiplication gate that multiplies a single input in [0, 1

2 ] with 2 and its output is in [0, 1].
In particular, instead of constructing the circuit CI as described in the previous para-

graph, we will construct an equivalent one, called C ′I , whose input and output are the
same as that of CI , namely xij and x′ij , i ∈ [d], j ∈ [Ni] respectively, but its gates have
inputs/outputs in [0, 1]. We do this by manipulating the formula for the required function
GI under computation, by suitably scaling up or down the input values of each gate, using
additional gates Gζ , G+, G

[0,1]
− , G∗.

We construct C ′I as follows: First, we compute the vector p := h(x)/2 = x∗ 1
2 + v(x)∗ 1

2

using only G+, G∗ gates. Note that xij , vij(x), pij ∈ [0, 1], ∀i ∈ [d], j ∈ Si (recall that the
payoff function is normalized in [0, 1]). Then, we sort each of the sub-vectors pi, i ∈ [d] via
a sorting network Qi that can be constructed using Gmax and Gmin gates, thus computing
the sorted vectors qi = (qi1, qi2, . . . , qiNi) with sorted entries qi1 ≥ qi2 ≥ · · · ≥ qiNi . Now,
for every i ∈ [d] and l ∈ [Ni] we compute the following sub-function

t′′il :=
1

2
∗ 1

l
∗

l∑
j=1

qij +
1

2
− 1

4
∗ 1

l
,

by using l + 1 G+ gates, 3 G+ gates and 1 G[0,1]
− gate, where the subtraction gate is the

last to take place. One should observe that since
∑Ni

j=1 xij = 1 and
∑Ni

j=1 vij(x) ≤ 1 (by
definition of normalized payoff function), it is

∑Ni
j=1 qij ≤

1
2 · (1 + 1) = 1, therefore none of

the individual computations of t′′il is outside [0, 1]. Moreover, in the subtraction, the value
of the subtrahend is at most the value of the minuend so the subtraction is precise (not
capped at 0).
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Now, for each i ∈ [d] we compute the sub-function

t′′i := max
l∈[Ni]

{t′′il},

by using Ni − 1 Gmax gates, and consequently compute

t′i :=

(
t′′i −

1

2

)
∗ 2,

by using one G[0,1]
− and one special G[0,1]

∗2 gate and the computations happen from left to
right. Note that t′′i ≥ 1/2, therefore the subtraction is precise (not capped at 0). Also, note
that, by definition of t′′il, it is t

′′
i ≤ 1, therefore t′′i − 1/2 ≤ 1/2 and the output of the G[0,1]

∗2
gate of t′i is in [0, 1]. Finally, the output of the circuit C ′I is computed by

x′ij := max{pij − t′i, 0} ∗ 2, for each i ∈ [d], j ∈ Si, (6.4)

using one G[0,1]
− and one special G[0,1]

∗2 gate.

Lemma 22. Circuit C ′I is equivalent to CI , i.e. it computes the function GI .

Proof. We will show that for every i ∈ [d], j ∈ Si, the value xij of (6.4) is the same as
that of (6.3), i.e. the output of the circuits C ′I and CI is the exact same. Using the
formulas for t′′il, t

′′
i and t′i, we can re-write algebraically xij by substituting the circuit’s

operations with the regular mathematical ones, i.e. G+, G
[0,1]
− , G

[0,1]
∗2 , G∗, Gmax, Gmin trans-

late to +,−, ·2, ·,max,min respectively. Observe that this is possible since the G[0,1]
− gate,

excluding the one in (6.4), actually performs subtraction without capping the output to 0.
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Thus, starting from (6.4) we have

x′ij = max{pij − t′i, 0} · 2

= max{2 · pij − 2 · t′i, 0}

= max

{
yij − 4 ·

(
t′′i −

1

2

)
, 0

}
(yij from construction of CI)

= max

{
yij − 4 ·

(
max
l∈[Ni]

{t′′il} −
1

2

)
, 0

}

= max

yij − 4 ·

max
l∈[Ni]

 1

2l
·

 l∑
j=1

qij

+
1

2
− 1

4l

− 1

2

 , 0


= max

yij − 4 · max
l∈[Ni]

 1

2l
·

 l∑
j=1

qij

− 1

4l

 , 0


= max

yij − max
l∈[Ni]

1

l
·

 l∑
j=1

2 · qij

− 1

l

 , 0


= max

yij − max
l∈[Ni]

1

l
·

 l∑
j=1

zij

− 1

 , 0

 (zij from construction of CI)

= max {yij − ti, 0} (ti from construction of CI),

which is by definition equal to the output x′ij of (6.3).

The circuit C ′I we constructed that computes the function GI uses gates of type in the
set {Gζ , G+, G∗, Gmax, Gmin, G

[0,1]
− , G

[0,1]
∗2 }, where ζ ∈ Q ∩ (0, 1].

6.5.3.1.3 The (n, n)-Consensus Halving instance

At this point we are ready to construct the (n, n)-Consensus Halving instance. The final
circuit C ′I computes the function GI , where GI : DI → DI , whose fixed points are precisely
the Nash equilibria of the initial instance I of the d-player game, due to Lemma 20. The
output of C ′I is the N -dimensional vector x′ with entries x′ij computed from (6.4). Let us
close the circuit by connecting the output x′ij with the input xij for every i ∈ [d], j ∈ Si.
This new circuit, called CoI , is cyclic, meaning that it has no input and no output.

The cyclic circuit CoI (like C ′I) uses only gates in {Gζ , G+, G∗, Gmax, Gmin, G
[0,1]
− , G

[0,1]
∗2 },

where ζ ∈ Q∩(0, 1]. In Section 6.5.1 we describe how to turn such circuits into Consensus
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Halving instances. Suppose that CoI uses l gates. Then, by the procedure of Section 6.5.1
let us turn CoI into a special circuit Co′I with r = linear(l) gates which uses only the
required gates by Lemma 19. Finally, still following that procedure, let us turn Co′I into a
Consensus Halving instance with n := 4r agents.

We can now prove Theorem 24

Proof. In Section 6.5.2 it was proven that a solution to the above (n, n)-
Consensus Halving instance, i.e. a solution with n cuts, in linear time can be translated
back to a tuple z∗ := (z∗1 , z

∗
2 , . . . , z

∗
r ) of satisfying values for the nodes of Co′I . Recall that

Co
′
I was created by another cyclic equivalent circuit CoI which was also created by merging

the input and output nodes of an acyclic circuit C ′I .
Let us denote by v1, v2, . . . , vN and v′1, v′2, . . . , v′N the input and output nodes respec-

tively of C ′I and denote by V1, V2, . . . , VN the merged nodes in CoI and Co
′
I . Let us de-

note by x∗ := (x∗1, x
∗
2, . . . , x

∗
N ) the N entries of z∗ that correspond to the values of nodes

(V1, V2, . . . , VN ). Since the procedure in Section 6.5.1 which turns CoI into Co′I preserves the
computation of the values of V1, V2, . . . , VN , it follows that x∗ satisfies CoI . Consequently, if
the values x∗ are copied as values of both input (v1, v2, . . . , vN ) and output (v′1, v

′
2, . . . , v

′
N )

nodes of C ′I then C ′I is satisfied, since these nodes of C ′I compute the same values as those
that V1, V2, . . . , VN compute in CoI .

As it was shown in Lemma 22, the output of C ′I computes the same output as CI ,
which computes the function GI . Thus, for x∗ it holds that GI(x∗) = x∗, i.e. it is a
fixed point of GI . Recall now that the fixed points of GI are precisely the Nash equilibria
of instance I of the initial “d-player Nash equilibrium” problem. Since, due to [66], “d-
player Nash equilibrium” is FIXP-complete, it follows that (n, n)-Consensus Halving is
FIXP-hard.

Theorem 24, along with Theorem 21 give the following corollary.

Corollary 13. FIXP ⊆ BU.

6.5.4 (n, n− 1)-Consensus Halving is ETR-complete

We will show the ETR-hardness of (n, n − 1)-Consensus Halving by reducing from the
following problem Feasible, which is known to be ETR-complete [125].
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Definition 18 (Feasible, Feasible[0,1]). Let p(x1, . . . , xm) be a polynomial. Feasible

asks whether there exists a point (x1, . . . , xm) ∈ Rm that satisfies p(x1, . . . , xm) = 0.
Feasible[0,1] asks whether there exists a point (x1, . . . , xm) ∈ [0, 1]m that satisfies
p(x1, . . . , xm) = 0.

The idea is to turn the polynomial into a circuit, and then embed that circuit into a
consensus halving instance using Lemma 19. As before, the main difficulty is ensuring that
the preconditions of Lemma 19 are satisfied. To do this, we must ensure that the inputs to
the circuit take values in [0, 1], which is not the case if we reduce directly from Feasible.
Instead, we first consider the problem Feasible[0,1], in which x is constrained to lie in
[0, 1]n rather than Rn, and we show the following result.

Lemma 23. Feasible[0,1] is ETR-complete.

6.5.4.1 Proof of Lemma 23

Let us define the constrained version of ETR, denoted ETR[0,1], where the polynomials are
over [0, 1]n (while in ETR they are over Rn). It is easy to see that ETR[0,1] ⊆ ETR; an arbitrary
ETR[0,1] instance ∃(X1, . . . , Xm) ∈ [0, 1]m ·Φ, where Φ is the ETR[0,1] formula, can be written
as the following ETR instance ∃(X1, . . . , Xm) ∈ Rm · Φ

∧m
i=1 ((Xi ≥ 0) ∧ (Xi ≤ 1)).

We present a polynomial-time reduction from the ETR-complete problem Feasible to
an intermediate problem Conjuction[0,1], which belongs to ETR[0,1], thus showing that
ETR[0,1] = ETR. Then we reduce a typical complete problem of ETR[0,1] to another in-
termediate problem called Feasible[0,1], and finally we reduce the latter to (n, n − 1)-
Consensus Halving, thus showing that the latter is ETR-hard. A straightforward corol-
lary is that Conjuction[0,1] and Feasible[0,1] are ETR-complete, results that, together
with the equivalence of classes ETR[0,1] = ETR, we believe are of independent interest.

6.5.4.1.1 ETR[0,1] = ETR

In this section we prove that ETR ⊆ ETR[0,1], hence ETR[0,1] = ETR. To this end, we present
a polynomial time reduction from Feasible to Conjuction[0,1]. Let us first define the
problem Conjuction[0,1].

Definition 19 (Conjuction[0,1]). Let p1, . . . , pk : [0, 1]n → R be a family of polyno-
mials, where each one of them is given as a sum of monomials with integer coefficients.
Conjuction[0,1] asks whether the polynomials have a common zero.
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Figure 6.4: Function x(y) = 22L+5 · (2 · y − 1).

Suppose we are asked to decide an arbitrary instance (∃X ∈ Rn) (p(X) = 0) of
Feasible. We wish to map every X ∈ Rn to a Y ∈ [0, 1]n so that there is a solution
Y ∗ ∈ [0, 1]n if and only if there exists a solution X∗ ∈ Rn. To this end, we will need
the following result by Schaefer and Štefanckovič [125]. A semialgebraic set is a subset
of Rn described by a finite Boolean formula whose atoms are equalities and inequalities
of multivariate polynomials over the reals. We borrow the terminology of [125] and by
(bit-)complexity of a semialgebraic set we call the shortest length of any formula defining
the set.

Proposition 2 ([125]). If a bounded semialgebraic set in Rn has complexity at most L ≥ 5n,
then all its points have distance at most 22L+5 from the origin.

The above proposition implies that if Xi is in a solution of Feasible then |Xi| is upper
bounded by 22L+5 . Therefore, there is no need to map all real numbers to [0, 1], just the
interval

[
−22L+5

, 22L+5
]
. So, we will use the linear function

x(y) := 22L+5 · (2 · y − 1), y ∈ [0, 1] (6.5)

in order to scale the solutions of p(X) in [0, 1]n, (see Figure 6.4). First, we need to create
the number 22L+5 or the number 2−2L+5 . These numbers have exponential in the input
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bit-representation, that is why we will use the trick of “repeated squaring” to create the
required number by introducing auxiliary variables which we repeatedly square L+5 times.
Since we need our variables to be in [0, 1], we will create the number 2−2L+5 , and we do
this by introducing the variables S1, . . . , SL+6 and including the following conjunctions in
our formula:

(2 · S1 = 1) ∧
(
S2 = (S1)2

)
. . . ∧

(
SL+6 = (SL+5)2

)
.

Now, using (6.5), we have

Xi · SL+6 = 2 · Yi − 1,

where we have introduced a tuple of variables Y := (Y1, . . . , Yn) ∈ [0, 1]n.

In order to make the substitution of variables, we multiply the given equation p(X) = 0

with (SL+6)d, where d :=
∑n

i=1 di and di is the maximum degree of Xi in p(X). Subse-
quently, in the new equation we substitute each product SL+6 ·Xi with 2 · Yi − 1, and we
get a polynomial equation q(Y ) = 0.

Eventually, the instance of the problem Conjuction[0,1] that we create is

(
∃Y, S ∈ [0, 1]n+L+6

)
(q(Y ) = 0) ∧ (2 · S1 = 1)

L+6∧
j=2

(
Sj = (Sj−1)2

)
,

where we denote by S the tuple (S1, . . . , SL+6) and L is the total complexity of the initial
Feasible instance. Note that the above instance has a solution if and only if the initial
instance of Feasible has one. In fact, the stronger property holds that we can get any
solution X from a solution Y in polynomial time, through (6.5), although this property is
not necessary for our reduction since we are dealing with “yes/no problems”. Also, note
that the complexity of the new formula is at most O(L2) +O(L+ 6) = O(L2).

Hence, we have proven that ETR ⊆ ETR[0,1]. Since ETR[0,1] ⊆ ETR the following theorem
follows:

Theorem 25. ETR[0,1] = ETR.
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6.5.4.1.2 Feasible[0,1] is ETR-complete

We will show that Feasible[0,1] is ETR[0,1]-complete, so it is ETR-complete according to
Theorem 25. Clearly, Feasible[0,1] is in ETR[0,1], since it is a special case of a problem in
ETR with constrained variables in [0, 1]n where the boolean formula consists only of a single
equation. We will now show that any problem in ETR[0,1] can be reduced to a Feasible[0,1]

instance.

Suppose we are asked to decide an arbitrary existential sentence of ETR[0,1]:

(∃(X1, . . . , Xn) ∈ [0, 1]n) Φ (6.6)

where Φ is a boolean formula with atoms Φi := fi �0 where each fi, i ∈ [m] is a polynomial
function of X1, . . . , Xn written in the standard form (a sum of monomials with integer
coefficients) and � ∈ {≤, >}. This is without loss of generality, since we can turn every
equality to a conjunction of two inequalities, and also, we can always move all monomials
of an inequality to the left or right side appropriately.

The formula Φ consists of atoms Φi, i ∈ [m] connected with ∧,∨ and ¬. Let us transform
Φ in polynomial time into its equivalent one without ¬, by employing De Morgan’s laws,
and thus the negation of an “≤-inequality” becomes an “>-inequality” and vice versa. As a
first step, we would like to eliminate all the ≤ and > symbols, so that our formula contains
only atoms with =.

Consider an arbitrary atom fi ≤ 0. For brevity, in the following we will denote
(X1, . . . , Xn) by X and always imply that fi depends on X. The sentence

(∃X ∈ [0, 1]n) (fi ≤ 0)

is equivalent to the following,

(
∃X,Ri ∈ [0, 1]n+1

)(
fi +

Ri
1−Ri

= 0

)
, (6.7)

where an additional variable Ri is introduced. In an ETR formula division is not allowed,
so in order to eliminate the division operation, we further transform (6.7) to the equivalent

(
∃X,Ri ∈ [0, 1]n+1

)
(fi · (1−Ri) +Ri = 0) , (6.8)
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where allowing Ri = 1 still does not allow fi > 0, since (6.8) has no solution for Ri = 1.
Now, consider an arbitrary atom fi > 0 of complexity L, i.e. the sentence

(∃X ∈ [0, 1]n) (fi > 0) (6.9)

We will use the following result by Schaefer and Štefankovič. We remind that by (bit-
)complexity of a semialgebraic set we call the shortest length of any formula defining the
set.

Proposition 3 ([125]). If two semialgebraic sets in Rn each of complexity at most L ≥ 5n

have positive distance (for example, if they are disjoint and compact), then that distance is
at least 2−2L+5.

According to the above proposition, sentence (6.9) is equivalent to the following,

(∃X ∈ [0, 1]n)
(
fi ≥ 2−2L+5

)
, (6.10)

where, since the bit-length of 2−2L+5 is exponential, we can create it using the “repeated
squaring” trick. That is we introduce L+6 more variables S1, . . . , SL+6 ∈ [0, 1] whose tuple
we denote by S and add the following conjunction of atoms in the formula:

(2 · S1 = 1)

∧
(
S2 = (S1)2

)
...

∧
(
SL+6 = (SL+5)2

)
.

Then, (6.10) is equivalent to

(
∃X,S ∈ [0, 1]n+L+6

)
(SL+6 − fi ≤ 0) , (6.11)

which we know how to transform to an equality (see (6.8)). Therefore, by introducing a
variable Ti, (6.11) is equivalent to,(

∃X,S, Ti ∈ [0, 1]n+L+7
)

((SL+6 − fi) · (1− Ti) + Ti = 0) , (6.12)

Now our boolean formula consists of m atoms that are polynomials equal to 0. We
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will proceed using the arsenal introduced in [99] where they prove a similar result for
the unconstrained ETR case. First, let us introduce an additional “boolean” variable Wi,
i ∈ [m], one for each atom, with value 1 if the atom initially had ≤, and 0 if the atom
initially had >. That is, for an arbitrary atom i, one of (6.8) or (6.12) is true. So, we can
add in our formula the following sub-formula and the conjunction of them for every i ∈ [m]:

((fi · (1−Ri) +Ri = 0) ∧ (1−Wi = 0))

∨ (((SL+6 − fi) · (1− Ti) + Ti = 0) ∧ (Wi = 0)) . (6.13)

Next, we will eliminate the ∨ and ∧ operators using the following trick: (p = 0)∨(q = 0)

is equivalent to p · q = 0 and (p = 0) ∧ (q = 0) is equivalent to p2 + q2 = 0. We will start
from the latter conjunction of sub-formulas. For every sub-formula i ∈ [m], as in (6.13),
we have a single polynomial hi = 0, where

hi :=
(

(fi · (1−Ri) +Ri)
2 + (1−Wi)

)
·
(

((SL+6 − fi) · (1− Ti) + Ti)
2 +Wi

)
,

thus replacing the conjunction of sub-formulas as in (6.13) with
∧m
i=1(hi = 0). Note that

we have not squared (1 − Wi) and Wi because we know they are in [0, 1]. Now, let us
substitute the initial formula Φ (after removing the ¬ operators) with its equivalent, using
Wi’s. That is, if the i-th atom of the initial formula is a “≤-inequality” we substitute it with
the atom (1−Wi = 0), and if it is a “>-inequality” we substitute it with the atom (Wi = 0).
Therefore, we can now apply the aforementioned trick of multiplication to eliminate the ∨
operators and thus have a formula with just ∧, i.e.

m′∧
i=1

(gi = 0),

where m′ ≤ m is the number of atoms in the resulting formula that represents Φ.

The whole formula, that is, together with the sub-formulas for the “boolean” variables
is

m′∧
i=1

(gi = 0)

m∧
i=1

(hi = 0).

What is left is to transform this into a single polynomial using the trick of sum of squares
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(squares are not needed for gi’s because our polynomials are in [0,1]),

m′∑
i=1

gi +
m∑
i=1

h2
i = 0.

Let us denote by W the tuple of “boolean variables” (W1, . . . ,Wm) ∈ [0, 1]m, and similarly,
R := (R1, . . . , Rm) ∈ [0, 1]m and T := (T1, . . . , Tm) ∈ [0, 1]m. Then the existential sentence
that we have to decide is

(
∃X,R, S, T ∈ [0, 1]n+2m+L+6

)( m′∑
i=1

gi +

m∑
i=1

h2
i = 0

)
, (6.14)

where L is the maximum complexity of an “>-inequality” in Φ. Since the number of atoms
m of Φ is at most twice the total complexity L′ of Φ (because we substituted each equation
with two inequalities), the number of variables is O(L′). Also, since m′ ≤ m and the
complexity of hi is at most 8 · 16 = 128 times the complexity of the i-th atom in Φ, the
complexity of the resulting formula of Feasible[0,1] is O(L′).

We have proven that the formulas (6.6) and (6.14) are equivalent. Therefore, one is true
if and only if the other is, hence Feasible[0,1] is ETR[0,1]-complete. Finally, from Theorem
25 we get that Feasible[0,1] is ETR-complete.

Theorem 26. (n, n− 1)-Consensus Halving is ETR-complete.

6.5.4.2 Proof of Theorem 26

As we show in Theorem 22, (n, k)-Consensus Halving is in ETR. In this section we prove
that (n, n−1)-Consensus Halving is ETR-hard, implying that it is complete for ETR. This
extends the results of [70], where it was established that (n, n − 1)-Consensus Halving

is NP-hard even when a solution is required to be 1/poly(n)-approximately correct, i.e. it
allows that |Fi(A+)− Fi(A−)| ≤ ε for every agent i, where ε = 1/poly(n).

We present a polynomial time reduction from the ETR-complete problem Feasible[0,1]

to (n, n− 1)-Consensus Halving. Suppose we are asked to decide an arbitrary instance
of Feasible[0,1], i.e. the existential sentence

(
∃X ∈ [0, 1]N

)
(p(X) = 0), (6.15)

where X := (X1, . . . , XN ) ∈ [0, 1]N and p, is a polynomial function of X1, . . . , XN written
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in the standard form (a sum of monomials with integer coefficients). Consider the positive
integer coefficients C1, . . . , Cl of p, where the number of terms of the polynomial is l. These
coefficients are positive without loss of generality, since we can replace a negative coefficient
C that follows after a +(−) in the polynomial, with −C that follows a −(+). Also, let us
normalize the coefficients and create new ones c1, . . . , cl, where

cj :=
Cj

l · Cmax
, j ∈ [l],

where Cmax := maxj Cj . Note that our new polynomial q(X) which uses the new coeffi-
cients has exactly the same roots as p(X). Also, note that cj ∈ (0, 1

l ] for every j ∈ [l], a
fact that will play an important role at the last steps of our reduction.

Now, let us split polynomial q into two polynomials q1 and q2, such that

q(X) := q1(X)− q2(X),

and both q1 and q2 are sums of positive terms; l1 and l2 terms of q1 and q2 respectively,
where l = l1 + l2. In particular,

q1(X) :=

l1∑
j=1

rj(X),

q2(X) :=

l2∑
j=l1+1

rj(X),

where rj(X) := cj ·X
d1j
1 · · · · ·XdNj

N is the term j ∈ [l] and dij is the exponent of variable
Xi, i ∈ [N ], in the j-th term. Eventually, the existential sentence, equivalent to (6.15),
that we ask to decide is

(
∃X ∈ [0, 1]N

)
(q1(X) = q2(X)).

Let us construct the algebraic circuit that takes as input the tuple X and computes
the value of q1(X). This circuit needs only to use gates in {Gζ , G+, G∗ζ , G∗, G()2}, where
ζ ∈ Q ∩ (0, 1]. To see why, observe that since every Xi ∈ [0, 1], i ∈ [N ], any multiplication
between them by a G∗ gate is done properly (the gate’s inputs/output are in [0, 1]), and
obviously the same holds for G()2 . Also, note that due to our downscaled coefficients cj , it



166 Themistoklis Melissourgos

is cj ≤ 1/2 for every j, and also

l1∑
j=1

rj(X) ≤ l1/l ≤ 1. (6.16)

Therefore, we guarantee that any of the l1− 1 additions of the terms rj of q1 by a G+ gate
is done properly, (inputs in [0, 1/2] and output in [0, 1]). Similarly, we construct a circuit
that computes q2.

Example: Consider the following instance of Feasible[0,1]:(
∃X := (X1, X2, X3) ∈ [0, 1]3

)
(p(X) = 0),

where p(X) := 6X3
1X2 − 4X2

2X
2
3 −X1X

4
3 + 8X2X

2
3 + 3.

Let us create an equivalent existential sentence by replacing p(X) with the polynomial
q(X), where q(X) := p(X)

40 , so

(
∃X := (X1, X2, X3) ∈ [0, 1]3

)
(q(X) = 0),

where q(X) :=
6

40
X3

1X2 −
4

40
X2

2X
2
3 −

1

40
X1X

4
3 +

8

40
X2X

2
3 +

3

40
.

We proceed by splitting q(X) into the following polynomials,

q1(X) :=
6

40
X3

1X2 +
8

40
X2X

2
3 +

3

40

q2(X) :=
4

40
X2

2X
2
3 +

1

40
X1X

4
3 .

The circuit that computes these polynomials is presented in Figure 6.5.

At this point we are ready to prove Theorem 26.

Proof. Let us construct a (n, n−1)-Consensus Halving instance, where n is to be defined
later. In Section 6.5.1 we have shown how to construct an equivalent circuit to the one that
computes q1, q2, called “special circuit”, that

• uses only gates Gζ , G+, G∗ζ , G()2 , G
[0,1]
− , G

[0,1]
∗2 ,
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G()2

G∗

G∗ 6
40

G∗ 8
40

G+

G+

G 3
40

G()2

r1 r2 r3

q1

G()2

G∗ 4
40

G∗ 1
40

G+

G()2

G()2

r4 r5

q2

X1 X3X2

G∗

G∗

G∗

G∗

Figure 6.5: An example of the circuit that computes q1 and q2. Each G∗ gate that multiplies
two variable inputs is replaced by the structure shown in Figure 6.6.
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G+ G()2 G()2

G()2 G+

G−

G∗1
2

G∗1
2

a b

a · b

G∗

[0,1]

G∗2
[0,1]

Figure 6.6: The internal components of G∗ (see Section
6.5.1 for the mathematical formula that prescribes this
transformation).

G+

q1

G+

q2

vr−1 vr

Figure 6.7: The last two nodes of the
special circuit.
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• every Gζ and G∗ζ has ζ ∈ Q ∩ (0, 1],

• for every input x ∈ [0, 1]N , all intermediate values computed by the circuit lie in [0, 1].

For the constraints of the above types of gates, see Tables 6.1, 6.2.
Let the number of gates in that special circuit be r := poly(N). Consider the last two

nodes of the special circuit whose outgoing edges are q1 and q2 respectively. Without loss
of generality, we name them vr−1 and vr (see Figure 6.7).

By Lemma 19 and the construction described in its proof (Section 6.5.2), we embed
the special circuit in a Consensus Halving instance. This instance now consists of 4r

agents, since to each node i ∈ [r] correspond 4 agents: adi,midi, ceni and exi with valuation
functions described by (6.1).

According to the embedding described in Section 6.5.2, a tuple (z∗1 , . . . , z
∗
r ) of values

that satisfies the special circuit, corresponds to a (4r, 4r)-Consensus Halving solution,
i.e. a tuple (t∗1, . . . , t

∗
4r) with 0 ≤ t∗1 ≤ · · · ≤ t∗4r ≤ 12r, of the Consensus Halving

instance we constructed, and vice versa. As shown in detail in Section 6.5.2, a cir-
cuit every value z∗i in a solution can be translated to 4 cuts t∗4i−3, t

∗
4i−2, t

∗
4i−1, t

∗
4i in the

Consensus Halving solution by the transformation in paragraph Section 6.5.2.2. Con-
versely, a 4-tuple (t∗4i−3, t

∗
4i−2, t

∗
4i−1, t

∗
4i) of cuts in a Consensus Halving solution can be

translated to a single value z∗i by the simple transformation z∗i = t∗4i−v
+
i,l in Section 6.5.2.2.

Let us now introduce a (4r + 1)-st additional agent, named finis (from the Latin word
for “end”) who does not correspond to any node. The valuation function of this agent is
non-zero only in the intervals v+

r−1 and v−r and, in particular is the following,

finis(t) =

1, t ∈ v+
r−1 ∪ v−r

0, otherwise.
(6.17)

Eventually, the number of agents in the embedding is n := 4r + 1.
We will show that the answer to the arbitrary Feasible[0,1] instance (6.15) is “yes”, if

and only if the answer to the (n, n− 1)−Consensus Halving problem is “yes”, i.e. there
exists a (n− 1)-cut that satisfies n agents.

Suppose that there exists a solution X∗ := (X∗1 , . . . , X
∗
N ) ∈ [0, 1]N of (6.15), which

equivalently means that q1(X∗) = q2(X∗). Then, by the correct construction of our special
circuit (following the procedure in Section 6.5.1) which uses r gates and computes q1 and
q2, there is a tuple z∗ := (z∗1 , . . . , z

∗
r ) that satisfies it. Let, without loss of generality,
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(z∗1 , . . . , z
∗
N ) := (X∗1 , . . . , X

∗
N ). Then it holds that q1(z∗1 , . . . , z

∗
N ) = q2(z∗1 , . . . , z

∗
N ), therefore

z∗r−1 = z∗r .
According to the aforementioned translation to cuts, in the Consensus Halving in-

stance there will be a cut t∗4(r−1) = v+
r−1,l + z∗r−1 in interval v+

r−1 (i.e. a positive cut), and
another one in t∗4r−1 = v−r,l + z∗r in interval v−r (i.e. a negative cut). From the valuation
function (6.17) of agent finis, we can see that her positive total valuation equals her nega-
tive total valuation, since z∗r−1 · 1 + (1− z∗r ) · 1 = (1− z∗r−1) · 1 + z∗r · 1 holds from z∗r−1 = z∗r .
Therefore finis is satisfied. Also, the agents adi,midi, ceni, exi for all i ∈ [r] are satisfied
as argued in Section 6.5.2, and the answer to (n, n − 1) − Consensus Halving is “yes”,
since we have 4r + 1 agents satisfied by 4r cuts.

Suppose now that there exists a 4r-cut (t∗1, . . . , t
∗
4r) with 0 ≤ t∗1 ≤ · · · ≤ t∗4r ≤ 12r

that is a solution of the (n, n − 1)-Consensus Halving instance we constructed, where
n := 4r + 1. As argued in Section 6.5.2, if the adi,midi, ceni, exi agents for i ∈ [r] are
satisfied then each of ceni, exi agents imposes a cut in interval v−i and v+

i respectively. The
cuts in intervals v+

i , for all i ∈ [r] can be translated back to values z∗i , which successfully
compute the values of the circuit, i.e. they satisfy the circuit. There are also two interesting
cuts t∗4(r−1) and t∗4r−1 imposed by exr−1 and cenr respectively which satisfy agent finis.
Since this agent is satisfied with no additional cut, it holds that z∗r−1 · 1 + (1 − z∗r ) · 1 =

(1 − z∗r−1) · 1 + z∗r · 1, or equivalently z∗r−1 = z∗r . Since z∗r−1 and z∗r correspond to the
value of the circuit at q1 and q2 respectively, for the circuit’s inputs (z∗1 , . . . , z

∗
N ) it holds

that q1(z∗1 , . . . , z
∗
N ) = q2(z∗1 , . . . , z

∗
N ). Equivalently, q(z∗1 , . . . , z∗N ) = 0, and equivalently

p(z∗1 , . . . , z
∗
N ) = 0. Therefore, we have found values that satisfy (6.15), and the answer to

Feasible[0,1] is “yes”.

6.6 A Discussion on ETR and Other Complexity Classes

As shown in Sections 6.4.2 and 6.5.4, the decision problem (n, n−1)-Consensus Halving

that asks to decide whether a (n− 1)-cut solution exists for n agents is ETR-complete. This
result is analogous to the result in [70], where it is shown that in its approximate version,
(n, n − 1, ε)-Consensus Halving is NP-complete, for inverse-polynomial ε. Furthermore,
the exact problem (n, n)-Consensus Halving we considered here was proved to be in BU

and FIXP-hard (see Sections 6.4.1 and 6.5.3), while its approximate counterpart (n, n, ε)-
Consensus Halving was shown to be PPA-complete in [71]. Moreover, our result that
LinearBU =PPA gives an indication that (n, n)-Consensus Halving is BU-complete. The
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aforementioned results, if indeed the latter is also a truth, confirm a remarkable correspon-
dence between the approximate and exact computation worlds that has been suspected due
to many previous results. An example of such results is the ones on the problem of finding a
Nash equilibrium in a strategic game: for the m-player case, with m ≥ 3, the exact version
was proven to be FIXP-complete [66], while the approximate version is PPAD-complete [50].
It has also been shown in [66] that LinearFIXP =PPAD. Finally, in a slightly different cor-
respondence than the one mentioned for Consensus Halving, various decision versions
of the m-player Nash equilibrium problem with m ≥ 3, are ETR-complete [27,75,80], while
for m = 2 they are NP-complete [24,25,76].

It seems that ETR is a class that captures decision problems that are a lot harder than
these in NP (under standard complexity assumptions) because either they do not have truth
certificates of polynomial length or because the certificate cannot be checked in polynomial
time. However, it seems that ETR is the analogue of NP in the Blum-Shub-Smale model
of computation [28], in which computing functions over real numbers is as costly as is
computing functions over rational numbers in Turing machines. In this thesis, we also
make an attempt to define the analogues of FNP and TFNP, namely FETR and TFETR (see
Section 2.4). According to previous results and the ones shown in this thesis, it holds that
PPAD ⊆ PPA ⊆ TFNP ⊆ FNP and FIXP ⊆ BU ⊆ TFETR ⊆ FETR.

In the next chapter we provide a general framework for approximation schemes, a frame-
work designed for problems in a subclass of ETR. In particular, since some optimization
problems in TFNP or, in general, FNP (whose corresponding decision problems are in NP),
have polynomial or quasi-polynomial time approximation schemes (PTAS/QPTAS), we
study harder problems in TFETR or FETR, and seek similar approximation schemes. In a
beautiful turn of events, in Chapter 7, we show that PTASs and QPTASs exist for a wide
class of problems in ETR (or more precisely, FETR). By extending a well-known technique
that yields the best possible algorithm (under standard complexity assumptions) for com-
puting approximate Nash equilibria in strategic games, we provide a general framework
that gives in a standardized way, approximation algorithms of the same quality as the state
of the art for some problems, while for some other problems these algorithms are the first
to achieve an efficient approximation. Interestingly, approximation techniques that work
inside FNP, transcend it, and reach FETR.
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Chapter 7

Approximating the Existential
Theory of the Reals

The Existential Theory of the Reals (ETR) consists of existentially quantified Boolean
formulas over equalities and inequalities of polynomial functions of variables in R. In this
chapter we propose and study the approximate existential theory of the reals (ε-ETR), in
which the constraints only need to be satisfied approximately. We first show that when
the domain of the variables is R then ε-ETR = ETR under polynomial-time reductions,
and then study the constrained ε-ETR problem when the variables are constrained to lie
in a given bounded convex set. Our main theorem is a sampling theorem, similar to those
that have been proved for approximate equilibria in normal form games. It discretizes the
domain in a grid-like manner whose density depends on various properties of the formula.
A consequence of our theorem is that we obtain a quasi-polynomial time approximation
scheme (QPTAS) for a fragment of constrained ε-ETR. We use our theorem to create several
new PTAS and QPTAS algorithms for problems from a variety of fields.

The results of this chapter have been published in the Proceedings of the 14th Inter-
national Conference on Web and Internet Economics (WINE 2018) [57] (co-authored with
Deligkas, Fearnley and Spirakis).
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7.1 Overview

7.1.1 Sampling techniques

The Lipton-Markakis-Mehta algorithm (LMM) is a well known method for computing ap-
proximate Nash equilibria in normal form games [96]. The key idea behind their technique
is to prove that there exist approximate Nash equilibria where all players use simple strate-
gies.

Suppose that we have a convex set C = conv(c1, c2, . . . , cl) defined by vectors c1 through
cl. A vector x ∈ C is k-uniform if it can be written as a sum of the form (β1/k) · c1 +

(β2/k) · c2 + · · ·+ (βl/k) · cl, where each βi is a non-negative integer and
∑l

i=1 βi = k.

Since there are at most lO(k) k-uniform vectors, we can enumerate all k-uniform vectors
in lO(k) time. For approximate equilibria in n× n bimatrix games, Lipton, Markakis, and
Mehta showed that for every ε > 0 there exists an ε-Nash equilibrium where both players
use k-uniform strategies where k ∈ O(log n/ε2), and so they obtained a quasi-polynomial
time approximation scheme (QPTAS) for finding an ε-Nash equilibrium.

Their proof of this fact uses a sampling argument. Every bimatrix game has an exact
Nash equilibrium (NE), and each player’s strategy in this NE is a probability distribution.
If we sample from each of these distributions k times, and then construct new k-uniform
strategies using these samples, then when k ∈ O(log n/ε2) there is a positive probability the
new strategies form an ε-NE. So by the probabilistic method, there must exist a k-uniform
ε-NE.

The sampling technique has been widely applied. It was initially used by Althöfer [8]
in zero-sum games, before being applied to non-zero sum games by Lipton, Markakis, and
Mehta [96]. Subsequently, it was used to produce algorithms for finding approximate equi-
libria in normal form games with many players [19], sparse bimatrix games [20], tree poly-
matrix [21], and Lipschitz games [62]. It has also been used to find constrained approximate
equilibria in polymatrix games with bounded treewidth [60].

At their core, each of these results uses the sampling technique in the same way as
the LMM algorithm: first take an exact solution to the problem, then sample from this
solution k times, and finally prove that with positive probability the sampled vector is an
approximate solution to the problem. The details of the proofs, and the value of k, are
often tailored to the specific application, but the underlying technique is the same.
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7.1.2 The existential theory of the reals

In this chapter we ask the following question: is there a broader class of problems to which
the sampling technique can be applied? We answer this by providing a sampling theorem for
the existential theory of the reals. The existential theory of the reals consists of existentially
quantified formulae using the connectives {∧,∨,¬} over polynomials compared with the
operators {<,≤,=,≥, >}. For example, each of the following is a formula in the existential
theory of the reals.

∃x∃y∃z · (x = y) ∧ (x > z) ∃x · (x2 = 2)

∃x∃y · ¬(x10 = y100) ∨ (y ≥ 4) ∃x∃y∃z · (x2 + y2 = z2)

Given a formula in the existential theory of the reals, we must decide whether the formula is
true, that is, whether there do indeed exist values for the variables that satisfy the formula.
Throughout this chapter we will use the Turing model of computation (also known as bit
model). In this model, the inputs of our problems will be polynomial functions represented
by tensors with rational entries which are encoded as a string of binary bits.

ETR is defined as the class that contains every problem that can be reduced in polynomial
time to the typical ETR problem: Given a Boolean formula F , decide whether F is a
true sentence in the existential theory of the reals. It is known that in the Turing model
ETR ⊆ PSPACE [35], and NP ⊆ ETR since the problem can easily encode Boolean satisfiability.
However, the class is not known to be equal to either PSPACE or NP, and it seems to be
a distinct class of problems between the two. Many problems are now known to be ETR-
complete, including various problems involving constrained equilibria in normal form games
with at least three players [24–27,75].

7.1.3 Our contribution

In this chapter we propose the approximate existential theory of the reals (ε-ETR), where
we seek a solution that approximately satisfies the constraints of the formula. We show a
subsampling theorem for a large fragment of ε-ETR, which can be used to obtain PTASs
and QPTASs for the problems that lie within it. We believe that this will be useful for
future research: instead of laboriously reproving subsampling results for specific games, it
now suffices to simply write a formula in ε-ETR and then apply our theorem to immediately
get the desired result. To exemplify this, we prove several new QPTAS and PTAS results
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using our theorem.

Our first result is actually that, in the computational complexity world, ε-ETR = ETR,
meaning that the problem of computing an approximate solution to an ETR formula is
as hard as finding an exact solution. However, this result crucially relies on the fact that
ETR formulas can have solutions that are doubly-exponentially large. This motivates the
study of constrained ε-ETR, where the solutions are required to lie within a given bounded
convex set.

Our main theorem (Theorem 29) gives a subsampling result for constrained ε-ETR. It
states that if the formula has an exact solution, then it also has a k-uniform approximate
solution, where the value of k depends on various parameters of the formula, such as the
number of constraints and the number of variables. The theorem allows for the formula
to be written using tensor constraints, which are a type of constraint that is useful in
formulating game-theoretic problems.

The consequence of the main theorem is that, when various parameters of the formula
are up to polylogarithmic in specific parameters (see Corollary 14), we are able to obtain
a QPTAS for approximating the existential theory of the reals. Specifically, this algorithm
either finds an approximate solution of the constraints, or verifies that no exact solution
exists. In many game theoretic and fair division applications an exact solution always
exists, and so this algorithm will always find an approximate solution.

We should mention here also that our technique allows approximation of optimization
problems whose objective function does not need to be described using the grammar of
ETR formulas. For a discussion on this, see Remark 1. Also, we are not just applying
the well-known subsampling techniques in order to derive our main theorem. Our main
theorem incorporates a new method for dealing with polynomials of degree d, which prior
subsampling techniques were not able to deal with.

Our theorem can be applied to a wide variety of problems. In the game theoretic set-
ting, we prove new results for constrained approximate equilibria in normal form games,
and approximating the value vector of a Shapley game. Then we move to the fair division
setting, and we show how a special case of the Consensus Halving problem admits a QP-
TAS. We also show optimization results. Specifically, we give approximation algorithms
for optimizing polynomial functions over a bounded convex set, subject to polynomial con-
straints. We also give algorithms for approximating eigenvalues and eigenvectors of tensors.
Finally, we apply the theorem to some problems from computational geometry.
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7.2 The Existential Theory of the Reals

Let x1, x2, . . . , xq ∈ R be distinct variables, which we will treat as a vector x ∈ Rq. A
term of a multivariate polynomial is a function T (x) := a ·xd11 ·x

d2
2 · · · · ·x

dq
q , where a is non

negative rational and d1, d2, . . . , dq are non negative integers. A multivariate polynomial is
a function p(x) := T1(x) +T2(x) + · · ·+Tt(x) + c, where each Ti is a term as defined above,
and c ∈ Q≥0 is a constant.

We now define Boolean formulae over multivariate polynomials. The atoms of the
formula are polynomials compared with {<,≤,=,≥, >}, and the formula itself can use the
connectives {∧,∨,¬}.

Definition 20. The existential theory of the reals consists of every true sentence of the
form ∃x1∃x2 . . . ∃xq · F (x), where F is a Boolean formula over multivariate polynomials of
x1 through xq.

ETR is defined as the class that contains every problem that can be reduced in polynomial
time to the typical ETR problem: Given a Boolean formula F , decide whether F is a true
sentence in the existential theory of the reals. We will say that F has m constraints if it
uses m operators from the set {<,≤,=,≥, >} in its definition.

7.2.1 The approximate ETR

In the approximate existential theory of the reals, we replace the operators {<,≤,≥, >} with
their approximate counterparts. We define the operators <ε and >ε with the interpretation
that x <ε y holds if and only if x < y+ ε and x >ε y if and only if x > y− ε for some given
ε > 0. The operators ≤ε and ≥ε are defined analogously.

We do not allow equality tests in the approximate ETR. Instead, we require that every
constraint of the form x = y should be translated to (x ≤ y) ∧ (y ≤ x) before being
weakened to (x ≤ε y) ∧ (y ≤ε x).

We also do not allow negation in Boolean formulas. Instead, we require that all negations
are first pushed to atoms, using De Morgan’s laws, and then further pushed into the atoms
by changing the inequalities. So the formula ¬((x ≤ y)∧ (a > b)) would first be translated
to (x > y) ∨ (a ≤ b) before then being weakened to (x >ε y) ∨ (a ≤ε y).

Definition 21. The approximate existential theory of the reals consists of every true sen-
tence of the form ∃x1∃x2 . . . ∃xq · F (x), where F is a negation-free Boolean formula using
the operators {<ε,≤ε,≥ε, >ε} over multivariate polynomials of x1 through xq.
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Given a Boolean formula F , the ε-ETR problem asks us to decide whether F is a true
sentence in the approximate existential theory of the reals, where the operators {<ε,≤ε,≥ε
, >ε} are used.

7.2.1.1 Unconstrained ε-ETR

Our first result is that if no constraints are placed on the value of the variables, that is if
each xi can be arbitrarily large, then ε-ETR = ETR for all values of ε > 0. We show this via
a two way polynomial-time reduction between ε-ETR and ETR. The reduction from ε-ETR to
ETR is trivial, since we can just rewrite each constraint x <ε y as x < y + ε, and likewise
for the other operators.

For the other direction, we show that the ETR-complete problem Feasible, which asks
us to decide whether a system of multivariate polynomials (pi)i=1,...,k has a shared root,
can be formulated in ε-ETR. We will prove this by modifying a technique of Schaefer and
Stefankovic [125].

Definition 22 (Feasible). Given a system of k multi-variate polynomials pi : Rn → Rn,
i = 1, . . . , k, decide whether there exists an x ∈ Rn such that pi(x) = 0 for all i.

Schaefer and Stefankovic showed that this problem is ETR-complete.

Theorem 27 ([125]). Feasible is ETR-complete.

We will reduce Feasible to ε-ETR. Let P = (pi)i=1,...,k be an instance of Feasible, and
let L be the number of bits needed to represent this instance. We define gap(P ) = 2−2L+5 .
The following lemma was shown by Schaefer and Stefankovic.

Lemma 24 ([125]). Let P = (pi)i=1,...,k be an instance of Feasible. If there does not exist
an x ∈ Rn such that pi(x) = 0 for all i, then for every x ∈ Rn there exists an i such that
|pi(x)| > gap(P ).

In other words, if the instance of Feasible is not solvable, then one of the polynomials
will always be bounded away from 0 by at least gap(P ).

The reduction The first task is to build an ε-ETR formula that ensures that a variable
t ∈ R satisfies t ≥ ε/ gap(P ). This can be done by the standard trick of repeated squaring,
but we must ensure that the ε-inequalities do not interfere with the process. We define
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the following formula over the variables t, g1, g2, . . . , gL+6 ∈ Rn, where all of the following
constraints are required to hold.

g1 ≥ε 2 + ε,

gj ≥ε g2
j−1 + ε for all j ∈ {2, 3, . . . , L+ 6}.

t ≥ε ε · gL+6 + ε

In other words, this requires that g1 ≥ 2, and gj ≥ g2
j−1. So we have gL+6 ≥ 22L+5 , and

hence t ≥ ε/ gap(P ). Note that the size of this formula is polynomial in the size of P .
Given an instance P = (pi)i=1,...,k of Feasible we create the following ε-ETR instance

ψ, where all of the following are required to hold.

t · pi(x) ≤ε 0 for all i, (7.1)

t · pi(x) ≥ε 0 for all i, (7.2)

t ≥ ε/ gap(P ), (7.3)

where the final inequality is implemented using the construction given above.

Lemma 25. ψ is satisfiable if and only if P has a solution.

Proof. First, let us assume that P has a solution. This means that there exists an x ∈ Rn

such that pi(x) = 0 for all i. Note that x clearly satisfies inequalities (7.1) and (7.2), while
inequality (7.3) can be satisfied by fixing t to be any number greater than ε/ gap(P ). So
we have proved that ψ is satisfiable.

On the other hand, now we will assume that x ∈ Rn satisfies ψ. Note that we must
have

pi(x) ≤ ε/t ≤ gap(P )

and likewise
pi(x) ≥ −ε/t ≥ − gap(P ),

and hence |pi(x)| ≤ gap(P ) for all i. But Lemma 24 states that this is only possible in the
case where P has a solution.

This completes the proof of the following theorem.

Theorem 28. ε-ETR = ETR for all ε ≥ 0.
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7.2.1.2 Constrained ε-ETR

In our negative result for unconstrained ε-ETR, we abused the fact that variables could be
arbitrarily large to construct the doubly-exponentially large number t. So, it makes sense
to ask whether ε-ETR gets easier if we constrain the problem so that variables cannot be
arbitrarily large.

In this chapter, we consider ε-ETR problems that are constrained by a bounded convex set
in Rq. For vectors c1, c2, . . . , cl ∈ Rq we use conv(c1, c2, . . . , cl) to denote the set containing
every vector that lies in the convex hull of c1 through cl. In the constrained ε-ETR, we require
that the solution of the ε-ETR problem should also lie in the convex hull of c1 through cl.

Definition 23. Given vectors c1, c2, . . . , cl ∈ Rq and a Boolean formula F that uses the
operators {<ε,≤ε,≥ε, >ε}, the constrained ε-ETR problem asks us to decide whether

∃x1∃x2 . . . ∃xq ·
(
x ∈ conv(c1, c2, . . . , cl) ∧ F (x)

)
.

Note that, unlike the constraints used in F , the convex hull constraints are not weak-
ened. So the resulting solution x1, x2, . . . , xq, must actually lie in the convex set.

7.3 Approximating Constrained ε-ETR

7.3.1 Polynomial classes

To state our main theorem, we will use a certain class of polynomials where the coefficients
are given as a tensor. This will be particularly useful when we apply our theorem to certain
problems, such as normal form games. To be clear though, this is not a further restriction
on the constrained ε-ETR problem, since all polynomials can be written down in this form.

In the sequel, we use the term variable to refer to a p-dimensional vector; for example, in
Definition 23, the q-dimensional vector x would be called variable under this new naming.
The variables of the polynomials we will study will be p-dimensional vectors denoted as
x1, x2, . . . , xn, where xj(i) will denote the i-th element (i ∈ [p]) of vector xj . The coefficients
of the polynomials will be a captured by tensor denoted by A. Given a ×nj=1p tensor A, we
denote by a(i1, . . . , in) its element with coordinates (i1, . . . , in) on the tensor’s dimensions
1, . . . , n, respectively, and by α we denote the maximum absolute value of these elements.
We define the following two classes of polynomials.
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• Simple tensor multivariate.

We will use STM(A, xd11 , . . . , x
dn
n ) denote an STM polynomial with n variables where

each variable xj , j ∈ [n] is applied dj times on tensor A that defines the coefficients.
Tensor A has

∑n
j=1 dj dimensions with p indices each. We will say that an STM

polynomial is of maximum degree d, if d = maxj dj . Here is an example of a degree
2 simple tensor polynomial with two variables:

STM(A, x2, y) =

p∑
i=1

p∑
j=1

p∑
k=1

x(i) · x(j) · y(k) · a(i, j, k) + 10.

This polynomial itself is written as follows.

STM(A, xd11 , . . . , x
dn
n ) =∑

i1,1∈[p]

· · ·
∑

in,dn∈[p]

(x1(i1,1)) · . . . · (x1(i1,d1)) · . . . · (xn(in,1)) · . . . · (xn(in,dn))·

· a(i1,1, . . . , i1,d1 . . . , in,1, . . . , in,dn) + a0.

• Tensor multivariate. A tensor multivariate (TMV) polynomial is the sum over a
number of simple tensor multivariate polynomials. We will use TMV(x1, . . . , xn)

to denote a tensor multivariate polynomial with n vector variables, which is formally
defined as

TMV(x1, . . . , xn) =
∑
i∈[t]

STM(Ai, x
di1
1 , . . . , xdinn ),

where the exponents di1, . . . , din depend on i, and t is the number of simple multi-
variate polynomials. We will say that TMV(x1, . . . , xn) has length t if it is the sum
of t STM polynomials, and that it is of degree d if d = max

i∈[t],j∈[n]
dij . Observe that

t ≤ (d+ 1)n; it could be the case that a TMV polynomial is a sum of STM polynomi-
als, each of which has a distinct combination of exponents di1, . . . , din in its variables,
where each dij ∈ {0, 1, . . . , d}.

7.3.2 ε-ETR with tensor constraints

We focus on ε-ETR instances F where all constraints are of the form TMV(x1, . . . , xn) ./ 0,
where ./ is an operator from the set {<ε,≤ε, >ε,≥ε}. Recall that each TMV constraint
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considers vector variables. We consider the number of variables used in F (denoted as
n) to be the number of vector variables used in the TMV constraints. So the value of n
used in our main theorem may be constant if only a constant number of vectors are used,
even if the underlying ε-ETR instance actually has a non-constant number of variables. For
example, if x and y and w are p-dimensional probability distributions and A1 and A2 are
p×p tensors, the TMV constraint xTA1y+wTA2x > 0 has three variables, degree 1, length
two; though the underlying problem has 3 · p variables.

Note that every ε-ETR constraint can be written as a TMV constraint, because all
multivariate polynomials can be written down as a TMV polynomial. Every term of a
TMV can be written as a STM polynomial where the tensor entry is non zero for exactly
the combination of variables used in the term, and 0 otherwise. Then a TMV polynomial
can be constructed by summing over the STM polynomial for each individual term.

7.3.2.1 The main theorem

Given an ε-ETR formula F , we define exact(F ) to be a Boolean formula in which every
approximate constraint is replaced with its exact variant, meaning that every instance of
x ≤ε y is replaced with x ≤ y, and likewise for the other operators.

Our main theorem is as follows.

Theorem 29. Let F be an ε-ETR instance with n vector variables and m multivariate-
polynomial constraints each one of maximum length t and maximum degree d, constrained
by the convex hull defined by c1, c2, . . . , cl ∈ Rnp. Let α be the maximum absolute value of
the coefficients of constraints of F , and let γ = maxi ‖ci‖∞. If exact(F ) has a solution in
conv(c1, c2, . . . , cl), then F has a k-uniform solution in conv(c1, c2, . . . , cl) where

k =
512 · α6 · γ2d+2 · n6 · d6 · t5 · ln(2 · α′ · γ′ · d · n ·m)

ε5
,

where α′ := max(α, 1), γ′ := max(γ, 1).

7.3.2.2 Consequences of the main theorem

Our main theorem gives a QPTAS for approximating a fragment of ε-ETR. The total number
of k-uniform vectors in a convex set C = conv(c1, c2, . . . , cl) is lO(k). So, if the parameters
α, γ, d, t, and n are all polylogarithmic in m, then our main theorem tells us that the total
number of k-uniform vectors is lO(poly logm), where m is the number of constraints. So if
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we enumerate each k-uniform vector x, we can check whether F holds, and if it does, we
can output x. If no k-uniform vector exists that satisfies F , then we can determine that
exact(F ) has no solution. This gives us the following result.

Corollary 14. Let F be an ε-ETR instance constrained by the convex hull defined by
c1, c2, . . . , cl. If α, γ, n, d, and t are polylogarithmic in m, then we have an algorithm

and runs in time lO
(

poly logm

ε5

)
that either finds a solution to F , or determines that exact(F )

has no solution.

Let N be the input size of the given problem. If m is constant and l is polynomial in
N then this gives a PTAS, while if m and l are polynomial in N , then this gives a QPTAS.

In Section 7.5 we will show that the problem of approximating the best social welfare
achievable by an approximate Nash equilibrium in a two-player normal form game can be
written down as a constrained ε-ETR formula where α, γ, d, and n are constant (and recall
that t ≤ (d+ 1)n). It has been shown that, assuming the exponential time hypothesis, this
problem cannot be solved faster than quasi-polynomial time [33,61], so this also implies
that constrained ε-ETR where α, γ, d, and n are constant cannot be solved faster than
quasi-polynomial time unless the exponential time hypothesis is false.

Many ε-ETR problems are naturally constrained by sets that are defined by the convex
hull of exponentially many vectors. The cube [0, 1]p is a natural example of one such set.
Brute force enumeration does not give an efficient algorithm for these problems, since we
need to enumerate lO(k) vectors, and l is already exponential in the dimension parameter p.
However, our main theorem is able to provide non-deterministic polynomial time algorithms
for these problems.

This is because each k-uniform vector is, by definition, the convex combination of at
most k of the vectors in the convex set, and this holds even if l is exponential. So, provided
that k is polynomial in the input size, we can guess the subset of vectors that are used,
and then verify efficiently that the formula holds. This is particularly useful for problems
where exact(F ) always has a solution, which is often the case in game theory applications,
since it places the approximation problem in NP, whereas deciding the existence of an exact
solution may be ETR-complete.

Corollary 15. Let F be an ε-ETR instance constrained by the convex hull defined by
c1, c2, . . . , cl. If α, γ, d, t, n, are polynomial in the input size, then there is a non-
deterministic polynomial time algorithm that either finds a solution to F , or determines
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that exact(F ) has no solution. Moreover, if exact(F ) is guaranteed to have a solution, then
the problem of finding an approximate solution for F is in NP.

7.3.2.3 Approximation notions

According to the relaxation procedure for ETR that we have described, each atom Ai of the
ETR formula is relaxed additively by a positive quantity ε. The main theorem (Theorem
29) and the intermediate resluts, give a sufficiently fine discretization (distance at most 1/k

for some k ∈ N∗) of the domain of the ETR instance’s variables, such that if there exists an
exact solution x∗ = (x∗1, . . . , x

∗
n) of the formula then there exists a k-uniform solution in the

discretized domain that ε-satisfies every Ai. In particular we prove that if Ai = (p(x) ./ 0),
where p(x) is a multivariate polynomial and ./∈ {<,≤,=,≥, >} then there exists a k-
uniform vector x′ such that |p(x′) − p(x∗)| ≤ ε. This implies the ε-satisfaction of each Ai
by the triangle inequality.

In fact, by this work we do not aim to reply an “approximate yes/no” to an ETR instance,
i.e. to give a yes/no answer to the relaxed ETR instance, but instead to output an approxi-
mate solution (if an exact solution exists) to the ETR instance. Therefore, more accurately
we should refer to this approximation of ETR as an approximation of Function ETR (FETR),
where FETR is the function problem extension of the decision problem complexity class
ETR. As ETR is the analogue of NP, FETR is the analogue of FNP in the Blum-Shub-Smale
computation model [28].

Definition 24 (ε-approximation). Consider a given ETR instance with domain D and for-
mula F . If x∗ is a solution to the instance and x′ is a solution to the respective ε-ETR
instance for a given ε > 0, then x′ is called an ε-approximation of x∗.

Definition 25 (PTAS/QPTAS). Consider a function problem P with input size N , whose
objective is to output a solution x∗. An algorithm that computes an ε-approximation x′ of P
in time polynomial in N for any fixed ε > 0 is a Polynomial Time Approximation Scheme
(PTAS). An algorithm that computes x′ in time O(Npoly logN ) is a Quasi-Polynomial Time
Approximation Scheme (QPTAS).

Remark 1. Our technique that finds an x′ such that |p(x′) − p(x∗)| ≤ ε provides one
with more power than showing that polynomial inequalities weakened by ε hold for x′. In
fact, it allows for approximation of solutions that need not be described by an ETR formula.
A simple example of such a case is the one presented in Section 7.4.1 where we seek an
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approximation of the maximum of the quadratic function in the simplex. The maximization
objective does not need to be written in an ETR formula. Instead, we show that any point
f(x) of the quadratic function, for x in the simplex, can be approximated by a point f(x′)

where x′ is in a discrete simplex with a small number of points. Then we find the maximum
of f(x′)′s which is smaller than max(f(x)) by at most ε.

The fact that operation “max” can be executed in time linear in the number of points
of the discretized simplex allows us to use our method for expressions with “max” which is
forbidden in the grammar of ETR. More generally, the following theorem shows that even
more complicated objectives, such as “maxx1 minx2” can be treated by a modification of the
algorithm described in Section 7.3.2.2.

Theorem 30. Let F be a multi-objective optimization instance whose objective functions
are multivariate polynomials, with variables constrained by the convex hull defined by c1, c2,

. . . , cl. Let k be the quantity specified in Theorem 29 with m being the number of polynomial
functions in the instance, meaning the ones in the objectives and constraints. If every
objective on the functions has a polynomial time algorithm to be performed on a discrete
domain, then there is an algorithm that runs in time lO(k), and either finds a solution which
satisfies every objective of F within additive ε, or determines that F has no solution.

Proof. As explained at the beginning of this section, our technique discretizes the domain
of the variables with a density sufficient to approximate any point of any of the polynomial
functions that are given as part of the atoms of an ETR formula. That is, for any x∗ in the
continuous domain it guarantees the existence of a discrete x′ such that for every polynomial
p in the atoms, it is |p(x′) − p(x∗)| ≤ ε. Note now that the technique works for any given
set of polynomials when we require that for every polynomial in the set, every point x∗ has
a discrete x′. This is regardless of what the atoms’ operators from {<,≤,=,≥, >} are or
with what logical operators from {∧,∨} the atoms connect to each other.

In view of the above, observe that any objective (with the properties of the statement of
the theorem) on functions, takes time polynomial in the size of the discretized space, there-
fore it does not change asymptotically the total running time of the algorithm described
at the beginning of Section 7.3.2.2. That is because first, the aforementioned algorithm
will brute-force through all of the points in the discretized domain and for these points it
will check if all of the constraints of F are satisfied. Now the algorithm we propose will
deviate from the aforementioned algorithm and for the points that satisfy the constraints
of F (feasible points), for each objective it will run the efficient respective algorithm of
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the objective on the feasible points and check whether all objectives of the relaxed by ε
instance are satisfied for some point. This can be done in time polynomial in the size of
the discretized domain, i.e. lO(k). If a discrete point is found that ε-satisfies F , then the
algorithm returns it, otherwise there no point in the continuous domain that satisfies F
according to Theorem 29.

7.3.3 A theorem for non-tensor constraints

One downside of Theorem 29 is that it requires that the formula is written down using tensor
constraints. We have argued that every ETR formula can be written down in this way, but
the translation introduces a new vector-variable for each variable in the ETR formula. When
we apply Theorem 29 to obtain PTASs or QPTASs we require that the number of vector
variables is at most polylogarithmic, and so this limits the application of the theorem to
ETR formulas that have at most polylogarithmically many variables.

Theorem 32 is a sampling result for ε-ETR with non-tensor constraints, which is proved
via some intermediate results. First, we will use the following theorem of Barman.

Theorem 31 ([20]). Let c1, c2, . . . , cl ∈ Rq with maxi ‖ci‖∞ ≤ 1. For every x ∈ conv(c1, c2,

. . . , cl) and every ε > 0 there exists a O(log l/ε2)-uniform vector x′ ∈ conv(c1, c2, . . . , cl)

such that ‖x− x′‖∞ ≤ ε.

The following lemma shows that if we take two vectors x and x′ that are close in the
L∞ norm, then for all polynomials p the value of |p(x)− p(x′)| cannot be too large.

We denote by consts(p) the maximum absolute coefficient in polynomial p, and by
terms(p) the number of terms of p.

Lemma 26. Let p(x) be a multivariate polynomial over x ∈ Rq with degree d and let
ε ∈ (0, γ] for some constant γ > 0. For every pair of vectors x, x′ ∈ [0, γ]q with ‖x−x′‖∞ ≤ ε
we have:

|p(x)− p(x′)| ≤ γd−1 · (2d − 1) · consts(p) · terms(p) · ε.

Proof. Consider a term of p(x), which can without loss of generality be written as t(x) =

c ·
∏
i∈[q]∑
i

=d

xi , where it could be the case that any number of xi’s are the same. We have
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|t(x)− t(x′)| =

∣∣∣∣∣∣∣∣∣∣
c ·
∏
i∈[q]∑
i

=d

xi − c ·
∏
i∈[q]∑
i

=d

x′i

∣∣∣∣∣∣∣∣∣∣
= c ·

∣∣∣∣∣∣∣∣∣∣
∏
i∈[q]∑
i

=d

xi −
∏
i∈[q]∑
i

=d

x′i

∣∣∣∣∣∣∣∣∣∣
≤ c ·

∣∣∣∣∣∣∣∣∣∣
∏
i∈[q]∑
i

=d

xi −
∏
i∈[q]∑
i

=d

(xi + ε)

∣∣∣∣∣∣∣∣∣∣
≤ c ·

∣∣∣∣∣∣∣∣∣∣
∏
i∈[q]∑
i

=d

xi −


∏
i∈[q]∑
i

=d

xi +

(
d

1

)
γd−1ε+

(
d

2

)
γd−2ε2 + · · ·+

(
d

d

)
γ0εd


∣∣∣∣∣∣∣∣∣∣

≤ c ·

∣∣∣∣∣ε ·
d∑

k=1

(
d

k

)
γd−1

∣∣∣∣∣
≤ c · ε · γd−1 ·

d∑
k=1

(
d

k

)
= ε · c · γd−1 · (2d − 1),

where the second to last four lines use the fact that xi’s, and ε are all less than or equal to
γ.

Next consider a term t(x) of p(x) of degree d′ ≤ d. This can be written similarly to the
aforementioned term. Then |t(x)− t(x′)| ≤ c · ε ·γd−1 · (2d′ − 1) ≤ c · ε ·γd−1 · (2d− 1). Since
there are terms(p) many terms in p, we therefore have that

|p(x)− p(x′)| ≤ γd−1 · (2d − 1) · consts(p) · terms(p) · ε.
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We now apply this to prove the following theorem.

Theorem 32. Let F be an ε-ETR instance constrained over the convex hull defined by
c1, c2, . . . , cl ∈ Rq. Let m be the number of constraints used in F , Let γ = maxi ‖ci‖∞, let
α be the largest constant coefficient used in F , let t be the number of terms used in total in
all polynomials of F , and let d be the maximum degree of the polynomials in F . If exact(F )

has a solution in conv(c1, c2, . . . , cl), then F has a k-uniform solution in conv(c1, c2, . . . , cl)

where
k = α2 · γ2d−2 · (2d − 1)2 · t2 · log l/ε2.

Proof. Let x be the solution to exact(F ). First we apply Theorem 31 to find a point y that
is k-uniform, where k = α2 · γ2d−2 · (2d − 1)2 · t2 · log l/ε2, such that

‖x− y‖∞ ≤ ε/(α · γd−1 · (2d − 1) · t).

Next we can apply Lemma 26 to argue that, for each polynomial p used in F , we have

|p(x)− p(y)| ≤ α · γd−1 · (2d − 1) · t ·
(

ε

α · γd−1 · (2d − 1) · t

)
= ε.

Since all constraints of F have a tolerance of ε, and since x satisfies exact(F ), we can
conclude that F (y) is satisfied.

The key feature here is that the number of variables does not appear in the formula for
k, which allows the theorem to be applied to some formulas for which Theorem 29 cannot.
However, since the theorem does not allow tensor constraints, its applicability is more lim-
ited because the number of terms t will be much larger in non-tensor formulas. For example,
as we will see in Section 7.5, we can formulate bimatrix games using tensor constraints over
constantly many vector variables, and this gives a result using Theorem 29. No such result
can be obtained via Theorem 32, because when we formulate the problem without ten-
sor constraints, the number of terms t used in the inequalities becomes polynomial in the
dimension.
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7.4 The Proof of the Main Theorem

In this section we prove Theorem 29. Before we proceed with the technical results, let
us illustrate via an example the crucial idea for proving that the special vectors we have
defined (i.e. the k-uniform vectors for some k ∈ N∗) inside a discretized convex hull can be
used to approximate not only multilinear polynomials, but also multivariate polynomials of
degree d ≥ 2. At the same time, we show that the discretization of the domain (points in
distance at most 1/k from each other) does not need to be very fine in order to achieve an
additive approximation ε at any point of such a function. Our example is in approximating
the quadratic polynomial over the simplex.

Let us provide a roadmap for this section. We begin by the detailed aforementioned
example. Then we proceed by considering two special cases, namely Lemma 28 and Lemma
30, which when combined will be the backbone of the proof of the main theorem.

Firstly, we will show how to deal with problems where every constraint of the Boolean
formula is a multilinear polynomial, which we will define formally later. We deal with this
kind of problems using Hoeffding’s inequality and the union bound, which is similar to how
such constraints have been handled in prior work.

Then, we study problems where the Boolean formula consists of a single degree d poly-
nomial constraint. We reduce this kind of problems to a constrained ε/2-ETR problem with
multilinear constraints, so we can use our previous result to handle the reduced problem.
Sampling techniques in degree d polynomial problems have not been considered in previous
work, and so this reduction is a novel extension of sampling based techniques to a broader
class of ε-ETR formulas.

Finally, we deal with the main theorem: we reduce the original ETR problem with mul-
tivariate constraints to a set of ε′-ETR problems with a single standard degree d constraint,
and then we use the last result to derive a bound on k.

As a byproduct of our main result one can get the same result as that of [54] in which
a PTAS for fixed degree polynomial minimization over the simplex was presented. Even
though the PTAS that follows from our result on the same optimization problem has roughly
the same running time as that of [54], the proof presented in this chapter (which is inde-
pendent of the aforementioned work) is significantly simpler. Nevertheless, the result in the
current chapter generalizes previous results on polynomial optimization over the simplex,
by providing a universal algorithm for multi-objective optimization problems, and showing
how its running time depends on the parameters of the problem (see Theorem 30).
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7.4.1 Example: A simple PTAS for quadratic polynomial optimization
over the simplex

Definition 26 (Standard quadratic optimization problem (SQP)). Given a p × p matrix
A with entries normalized in [0, 1], find the value

v∗ := max
x∈∆p

xTAx, where ∆p is the (p− 1)− simplex.

sqp is a strongly NP-hard problem, even for the case where A has entries in {0, 1};
in a theorem of Motzkin and Straus [111] it is shown that if matrix A is the adjacency
matrix of a graph on p vertices whose maximum clique has c vertices, then v∗ = 1 − 1/c.
The problem of finding the size of the maximum clique in a general graph is known to be
(strongly) NP-hard since its decision version is one of Karp’s 21 NP-complete problems [88].
Therefore, unless P = NP there is no Fully Polynomial Time Approximation Scheme for sqp

and the best thing we can hope for the problem is a PTAS. We present a PTAS for sqp

(Corollary 16), which has almost the same running time as that of [29], but we claim that
our proof is significantly simpler.

Let x∗ := arg(v∗). Consider the set ∆p(k) of all k-uniform vectors, for k = 16 ln(3/ε)/ε2,
with items x(i) ∈ ∆p(k), for i = 1, 2, . . . , |∆p(k)|.

Lemma 27. There exists a multiset X of ∆p(k) with |X | = 2/ε such that for every
x(i), x(j) ∈ X with i 6= j, it is

x∗TAx∗ − x(i)TAx(j) < ε/2.

Proof. Note that although i 6= j, x(i) could be equal to x(j) since the two k-uniform vectors
belong to a multiset of ∆p(k). The proof is by the probabilistic method. Let us create the
events

Ei =
{
x∗TAx∗ − x(i)TAx∗ < ε/4

}
, ∀i for which x(i) ∈ X ,

Fi,j =
{
x(i)TAx∗ − x(i)TAx(j) < ε/4

}
, ∀i, j with i 6= j, for which x(i), x(j) ∈ X ,

Gi,j =
{
x∗TAx∗ − x(i)TAx(j) < ε/2

}
, ∀i, j with i 6= j, for which x(i), x(j) ∈ X .

Observe that Ei ∩Fi,j ⊆ Gi,j . Now, let each of k i.i.d. random variables be drawn from x∗.
The sample space for each is [p]. For any x(i), x(j) ∈ ∆p(k), the expectation of x(i)TAx∗
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is x∗TAx∗, and the expectation of x(i)TAx(j) (for fixed x(i)) is x(i)TAx∗. Let us denote
r := |X | = 2/ε. By using a Höffding bound [86], we get

Pr{Ei} ≤ e−kε
2/8, ∀i for which x(i) ∈ X , and

Pr{Fi,j} ≤ e−kε
2/8, ∀i, j with i 6= j, for which x(i), x(j) ∈ X .

Consider now the event H that captures the condition that needs to be satisfied by the
lemma. It is

H =
⋂
i,j∈X
i 6=j

Gi,j .

Therefore

H =
⋃
i,j∈X
i 6=j

Gi,j ⊆
⋃
i∈X

Ei
⋃
i,j∈X
i 6=j

Fi,j .

Hence

Pr{H} ≤ re−kε2/8 + r(r − 1)e−kε
2/8

= r2e−kε
2/8

< 1.

The above strict inequality means that Pr{H} > 0, therefore, there exists a set X that
satisfies the statement of the lemma.

The following theorem corresponds to the general Lemma 30, for the case α = γ = 1,
d = 2.

Theorem 33. There exists a 32 ln(3/ε)
ε3

-uniform vector x, such that v∗ − xTAx < ε .

Proof. Consider the multiset X of ∆p(k) of Lemma 27, and recall that r := |X | = 2/ε. Let
us create the vector

x :=
1

r

∑
i∈X

x(i).
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Then, it is

x∗TAx∗ − xTAx = x∗TAx∗ −

1

r

∑
x(i)∈X

x(i)T

A

1

r

∑
x(i)∈X

x(i)


= x∗TAx∗ − 1

r2

∑
x(i),x(j)∈X

x(i)TAx(j)

= x∗TAx∗ − 1

r2

 ∑
x(i),x(j)∈X

i 6=j

x(i)TAx(j) +
∑
x(i)∈X

x(i)TAx(i)



=
1

r2

r(r − 1)x∗TAx∗ −
∑

x(i),x(j)∈X
i 6=j

x(i)TAx(j) + rx∗TAx∗ −
∑
x(i)∈X

x(i)TAx(i)


<

1

r2

(
r(r − 1)

ε

2
+ r
)

≤ ε

2
+

1

r

= ε,

where the second to last inequality is implied from Lemma 27 which applies for every
x(i), x(j) ∈ X when i 6= j, and from the fact that x∗TAx∗− x(i)TAx(i) is upper bounded by
1 for every x(i) ∈ X (recall that the entries of A are in [0, 1]).

The proof is concluded by observing that the vector x we created is a kr-uniform vector,
for k = 16 ln(3/ε)/ε2 and r = 2/ε.

Corollary 16. There is a PTAS for sqp.

Proof. By Theorem 33, since the desired probability vector x that is suitable for the ap-
proximation is the mean of r many k-uniform vectors, x is kr-uniform. Therefore, it can be
found by exhaustively searching through all possible multisets of [p] created by sampling
with replacement kr = 32 ln(3/ε)/ε3 times. The number of all those possible multisets is(
p+kr−1
kr

)
∈ O(pkr). For each multiset, i.e. vector x that the search algorithm takes into

account, it picks the one that makes xTAx maximum. This value is guaranteed to be ε-close
to v∗ by Theorem 33.

Hence, if we desire a (1 − ε)-approximation of sqp in the weak sense according to
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Definition 2.2 of [52], the described algorithm runs in time O
(
pln( 3

ε
)/ε3
)
.

7.4.2 The general proof

7.4.2.1 Problems with multilinear constraints

We begin by considering constrained ε-ETR problems where the Boolean formula F consists
of tensor-multilinear polynomial constraints. We will use TML(A, x1, . . . , xn) to denote a
tensor-multilinear polynomial with n variables and coefficients defined by tensor A of size
×nj=1p. Formally,

TML(A, x1, . . . , xn) =
∑
i1∈[p]

· · ·
∑
in∈[p]

x1(i1) · . . . · xn(in) · a(i1, . . . , in) + c.

We will use α to denote the maximum entry of tensor A in the absolute value sense and γ
to denote the infinite norm of the convex set that constrains the variables.

Lemma 28. Let F be a Boolean formula with n variables and m tensor-multilinear poly-
nomial constraints and let Y be a convex set in the variables space. If the constrained ETR

problem defined by exact(F ) and Y has a solution, then the constrained ε-ETR problem
defined by F and Y has a k uniform solution where

k =
2 · α2 · γ2 · n2 · ln(3 · n ·m)

ε2
.

Proof. Let (x∗1, x
∗
2, . . . , x

∗
n) ∈ Y be a solution for exact(F ). Since we assume the Y is the

convex hull of c1, . . . , cl any x ∈ Y can be written as a convex combination of the ci’s, i.e.,
x =

∑
i∈[l] ai · ci, where ai ≥ 0 for every i ∈ [l], and

∑
i∈[l] ai = 1. Observe, a = (a1, . . . , al)

corresponds to a probability distribution over c1, . . . , cl, where vector ci is drawn with
probability ai, and x can be thought of as the mean of a. So, we can “sample” a point by
sampling over ci’s according to the probability that defines this point.

For every i ∈ [n], let x′i be a k-uniform vector sampled independently from x∗i . To prove
the lemma, we will show that, because of the choice of k, with positive probability the
sampled vectors satisfy every constraint of the ε-ETR problem. Then, by the probabilistic
method the lemma will follow.

Let TMLj(Aj , x1, . . . , xn) be a multilinear polynomial that defines a constraint of F .
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For every j ∈ [m] we define the following event

|TMLj(Aj , x
′
1, . . . , x

′
n)− TMLj(Aj , x

∗
1, . . . , x

∗
n)| ≤ ε. (7.4)

Observe that if x′1, . . . , x′n satisfy inequality (7.4) for every j ∈ [m], then the lemma follows.

For every j ∈ [m], we replace the corresponding event (7.4) with n events that are linear
in each variable. For notation simplicity, let us denote by MLij the multilinear polynomial
TMLj(Aj , x1, . . . , xn) in which we have additionally set x1 = x′1, x2 = x′2, . . . , xi = x′i and
xi+1 = x∗i+1, xi+2 = x∗i+2, . . . , xn = x∗n. Furthermore, let ML0

j = MLj(Aj , x
∗
1, . . . , x

∗
n).

Then, for every i ∈ [n] consider the event

|MLij −MLi−1
j | ≤

ε

n
. (7.5)

Observe that, if for a given j ∈ [m] all n events defined in (7.5) are satisfied, then by the
triangle inequality, the corresponding event (7.4) is satisfied as well.

Consider now MLij . This can be seen as a random variable that depends on the choice
of x′i and takes values in [−γ · α, γ · α]. But recall that the x′i’s are sampled from x∗i using
k samples, and that they are mutually independent, so E

[
MLij

]
= MLi−1

j . Thus, we can
bound the probability that a constraint (7.5) is not satisfied, i.e. bound the probability
that |MLij −MLi−1

j | >
ε
n , using Hoeffding’s inequality [86]. So,

Pr
(∣∣∣MLij −MLi−1

j

∣∣∣ > ε

n

)
= Pr

(∣∣MLij − E
[
MLij

]∣∣ > ε

n

)
≤ 2 · exp

(
−

2 · k2 ·
(
ε
n

)2
4 · k · γ2 · α2

)

= 2 · exp
(
− k · ε2

2 · n2 · γ2 · α2

)
. (7.6)

Recall, that we have n ·m events of the form (7.5). We can bound the probability that any
of those events is violated, via the union bound. So, using (7.6) and the union bound, the
probability that any of these events is violated is upper bounded by

2 ·m · n · exp
(
− k · ε2

2 · n2 · γ2 · α2

)
. (7.7)

Hence, if the value of (7.7) is strictly less than 1, then there are x′1, . . . , x′m such that all of
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the n ·m events of (7.5) are realized with positive probability, therefore the events of (7.4)
are realized with positive probability and thus the lemma follows. By requiring (7.7) to be
strictly less than 1, and solving for k we get

k >
2 · α2 · γ2 · n2 · ln(2 · n ·m)

ε2

which holds, by our choice of k.

7.4.2.2 Problems with a standard degree d constraint

We now consider constrained ε-ETR problems with exactly one tensor polynomial constraint
of standard degree d. We will use TSD(A, x, d) to denote a standard degree d tensor-
polynomial with coefficients defined by the ×dj=1p tensor A. Here, d identical vectors x are
applied on A. Formally,

TSD(A, x, d) =
∑
i1∈[p]

· · ·
∑
id∈[p]

x(i1) · . . . · x(id) · a(i1, . . . , id) + c.

To prove the following lemma we consider the variable x to be defined as the average of
r = O(α

2·γd·d2
ε ) variables. This allows us to “break” the standard degree d tensor polynomial

to a sum of multilinear tensor polynomials and to a sum of not-too-many multivariate
polynomials. Then, the choice of r allows us to upper bound the error occurred by the
multivariate polynomials by ε

2 . Then, we observe that in order to prove the lemma we can
write the sum of multilinear tensor polynomials as an ε

2 -ETR problem with r variables and
roughly rd multilinear constraints. This allows us to use Lemma 28 to complete the proof.

Lemma 29. Let F be a Boolean formula with one variable and one tensor-polynomial
constraint of standard degree d, let Y be a bounded convex set, and let r = 2·α2·γd·d2

ε . If
the constrained ETR problem exact(F ) has a solution in Y, then there exists a satisfiable
constrained ε

2 -ETR problem ΠML with r variables, where each variable is a k-uniform vector
for k = 16·α4·γd·d4

ε3
. The Boolean formula of ΠML is the conjunction of

∏d−1
i=0 (r − i) tensor

multilinear constraints, and every solution of ΠML in Y can be transformed to a solution
for the constrained ε-ETR problem defined by F and Y.

Proof. Assume that x∗ ∈ Y is a solution for F . Let TSD(A, x, d) denote the tensor polyno-
mial of standard degree d used in F . For notation simplicity, let TSD(A, x, d) = A(xd). Cre-
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ate r new k-uniform variables x1, . . . , xr ∈ Y(k) by sampling each one from x∗, where Y(k)

is the discretized set made from Y by using k-uniform vectors, and set x = 1
r (x1 + . . .+xr).

Let X =
⋃r
i=1{xi} be a multiset of Y(k) with cardinality r, meaning that multiple copies

of an element of Y(k) are allowed in X . In the sequel we will treat the elements of X as
distinct, even though some might correspond to the same element of Y(k). Then, note that
A(xd) can be written as a sum of simple tensor-multivariate polynomials where some of
them are multilinear and have as variables x1, . . . , xr. Now, let S be the set of all ordered
d-tuples that can be made by drawing d elements from X with replacement. Formally,
S = {(x̂1, . . . , x̂d) : x̂1, . . . , x̂d ∈ X}. Let us also define Sd to be the set of all ordered
d-tuples that can be made by drawing d elements from X without replacement. Formally,
Sd = {(x̂1, . . . , x̂d) : x̂1, . . . , x̂d ∈ X , x̂1, . . . , x̂d are pairwise different}, and observe that
|Sd| =

∏d−1
i=0 (r− i). So, any element of Sd, combined with tensor A, produces a multilinear

polynomial. Hence, using the notation introduced, we get that |A(xd)−A(x∗
d
)| is less than

or equal to the sum of the following two sums

1

rd

∑
(x̂1,...,x̂d)∈Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d
)
∣∣∣ and (7.8)

1

rd

∑
(x̂1,...,x̂d)∈S−Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d
)
∣∣∣ . (7.9)

Observe, |S − Sd| = rd − |Sd| and that
∣∣∣A(x̂1, . . . , x̂d)−A(x∗

d
)
∣∣∣ ≤ γd · α for every



Chapter 7. Approximating the Existential Theory of the Reals 197

A(x̂1, . . . , x̂d). Then, for the sum given in (7.9) we get

1

rd

∑
(x̂1,...,x̂d)∈S−Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d
)
∣∣∣

≤
(

1− r · (r − 1) · · · (r − d+ 1)

rd

)
· γd · α

≤
(

1−
(

1− 1

r

)(
1− 2

r

)
·
(

1− d− 1

r

))
· γd · α

≤

(
1−

(
1− d− 1

r

)d−1
)
· γd · α

≤
(

1−
(

1− (d− 1)2

r

))
· γd · α (Bernoulli’s inequality)

=
(d− 1)2

r
· γd · α

≤ ε

2
.

Hence, in order for the original constraint to be satisfied, it suffices to satisfy the constraint

1

rd

∑
(x̂1,...,x̂d)∈Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d
)
∣∣∣ ≤ ε

2
. (7.10)

Observe that |Sd| =
∏d−1
i=0 (r− i) < rd, therefore, instead of the constraint (7.10), it suffices

to satisfy the following |Sd| constraints (we introduce one constraint for every (x̂1, . . . , x̂d) ∈
Sd) ∣∣∣A(x̂1, . . . , x̂d)−A(x∗

d
)
∣∣∣ ≤ ε

2
. (7.11)

Note that each constraint (7.11) is the relaxed by ε/2 version of a constraint with a mul-
tilinear function equal to 0; multilinearity is due to the fact that x̂1, . . . , x̂d are pairwise
different by definition of the set Sd. The proof is completed by using Lemma 28 for n = d,
m = |Sd| and ε/2 instead of ε to show that indeed there exists a collection Sd of tuples
x̂1, . . . , x̂d, where each x̂i, i ∈ [d] is a k-uniform vector with k ≥ 8·α2·γ2·d2(d+2)·ln r

ε2
such that

all |Sd| constraints of (7.11) are satisfied. The latter inequality is true by our choice of k
and r.
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Now we can prove the following lemma.

Lemma 30. Let F be a Boolean formula with variable x and one tensor-polynomial con-
straint of standard degree d, and let Y be a bounded convex set. If the constrained ETR

problem defined by exact(F ) and Y has a solution, then the constrained ε-ETR problem
defined by F and Y has a k-uniform solution where

k =
32 · α6 · γ2d · d6

ε4
.

Proof. First, we use Lemma 29 to construct the constrained ε
2 -ETR problem ΠML with

tensor-multilinear constraints. Recall that ΠML has r = 2·α2·γd·d2
ε variables and if ΠML is

satisfiable, then there exist k
r -uniform vectors x̂1 ∈ Y, . . . , x̂r ∈ Y that ε/2-satisfy ΠML.

Then, let us construct the k-uniform vector x̂ = 1
r · (x̂1 + . . .+ x̂r). Note that, according to

Lemma 29, it is

|A(x̂d)−A(x∗
d
)| ≤ 1

rd

∑
(x̂1,...,x̂d)∈Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d
)
∣∣∣

+
1

rd

∑
(x̂1,...,x̂d)∈S−Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d
)
∣∣∣

≤ ε

2
+
ε

2

= ε.

This completes the proof of the lemma.

7.4.2.3 Problems with simple multivariate constraints

We now assume that we are given a constraint-ε-ETR problem defined by a Boolean formula
F of tensor simple multilinear polynomial constraints and a bounded convex set Y. As
before γ = ‖Y‖∞ and let α be the maximum absolute value of the coefficients of the
constraints. We will say that the constraints are of maximum degree d if d is the maximum
degree among all variables. The main idea of the proof of the following lemma is to rewrite
the problem as an equivalent problem with standard degree d constraints and then apply
Lemmas 30 and 28 to derive the bound for k.

Lemma 31. Let F be a Boolean formula with n variables and m simple tensor-multivariate
polynomial constraints of maximum degree d and let Y be a bounded convex set in the
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variables space. If the constrained ETR problem defined by exact(F ) and Y has a solution,
then the constrained ε-ETR problem defined by F and Y has a k-uniform solution where

k =
512 · α6 · γ2d+2 · n6 · d6 · ln(2 · α′ · γ′ · d · n ·m)

ε5
,

where α′ := max(α, 1), γ′ := max(γ, 1).

Proof. Let x∗1, . . . , x∗n be a solution for exact(F ) and let x′i, i ∈ [n] be a variable k-uniform
vector sampled from x∗i . We will prove that if k equals at least the quantity of the state-
ment of the lemma, then there exist vectors x′1, . . . , x′n that constitute a solution to the
constrained ε-ETR problem defined by F and Y.

Consider the j-th constraint where j ∈ [m] defined by the simple tensor-multivariate
polynomial STM(Aj , x

dj1
1 , . . . , x

djn
n ). We will use the same technique we used in Lemma 28

to create n constraints, where constraint i ∈ [n] is defined via a simple degree dji polynomial.
Again, for notation simplicity for every i ∈ [m] we use STMi

j to denote the polynomial
STM(Aj , x

dj1
1 , . . . , x

djn
n ) where we set x1 = x′1, . . . , xi = x′i and xi+1 = x∗i+1, . . . , xn = x∗n.

Let STM0
j := STM(Aj , (x

∗
1)dj1 , . . . , (x∗n)djn). Then, for every j ∈ [m] we define the following

n constraints

|STMi
j −STMi−1

j | ≤ ε

n
. (7.12)

Observe that for some j ∈ [m], every constraint i of the form (7.12) defines a simple
degree dji polynomial with respect to variable x′i. Furthermore, observe that if every
such constraint is satisfied, then the initial constraint defined by STM(Aj , x

dj1
1 , . . . , x

djn
n )

is satisfied too. Then, we convert each such constraint to a set of
∏d−1
i=0 (r − i) multilinear

constraints with r = 2·α2·γd·d2
ε variables, using Lemma 29 where we demand that every

multilinear constraint is ε
2n -satisfied (we restrict the current ε

n to half of it in order to use
Lemma 29). The proof is then completed by using Lemma 28 where we observe that we
have r · n = 2·α2·γd·d2·n

ε variables and
∏d−1
i=0 (r− i) · n ·m < rd · n ·m constraints and we set

ε to ε
2n .

To arrive to the actual size k of the required uniform vector, we start from the size k′

prescribed by Lemma 28 and sequentially set proper values for the parameters as dictated
by our method of for transforming the constraints. We have
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k′ =
2 · α2 · γ2 · n2 · ln(3 · n ·m)

ε2

=
8 · α6 · γ2d+2 · n2 · d4 · ln(6 · α2 · γd · d2 · n ·m/ε)

ε4
(n← n · r)

=
8 · α6 · γ2d+2 · n2 · d4 · ln(6 · α2d+2 · γd2+d · d2d+2 · n2 ·m/εd+1)

ε4
(m← rd · n ·m)

=
128 · α6 · γ2d+2 · n6 · d4 · ln(6 · 2d+1 · α2d+2 · γd2+d · d2d+2 · nd+3 ·m/εd+1)

ε4
(ε← ε

2n
)

≤ 128 · α6 · γ2d+2 · n6 · d4 · ln(2 ·max(α, 1) ·max(γ, 1) · d · n ·m/ε)4d2

ε4
(for any d ≥ 1)

=
512 · α6 · γ2d+2 · n6 · d6 · ln(2 ·max(α, 1) ·max(γ, 1) · d · n ·m/ε)

ε4

≤ 512 · α6 · γ2d+2 · n6 · d6 · ln(2 ·max(α, 1) ·max(γ, 1) · d · n ·m)

ε5
.

We want k ≥ k′, therefore it suffices to bound from below k by the upper bound of k′. This
completes the proof.

7.4.2.4 Putting everything together

Proof. For the final step of the proof of Theorem 29, assume that x∗1, . . . , x∗n ∈ Y is a
solution for exact(F ). Consider now a multivariate constraint i ∈ [m] of F defined by
TMVi(x1, . . . , xn). Firstly, we replace this constraint by

|TMVi(x1, . . . , xn)− TMVi(x
∗
1, . . . , x

∗
n)| ≤ ε. (7.13)

Then, replace constraint (7.13) by t constraints of the form

|STMi,j(x1, . . . , xn)− STMi,j(x
∗
1, . . . , x

∗
n)| ≤ ε

t
(7.14)

where STMi,1(x1, . . . , xn), . . . , STMi,t(x1, . . . , xn) are the simple tensor multivariate poly-
nomials TMVi(x1, . . . , xn) consists of. By the triangle inequality we get that if all t con-
straints given by (7.14) hold, then constraint (7.13) holds as well. Hence, we can reduce
the problem to an equivalent problem with the same n variables and m · t constraints that
all of them are simple tensor multivariate polynomials. So, we can apply Lemma 31 where
we replace m with m · t and ε with ε

t . This completes the proof of the theorem.
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7.5 Applications

We now show how our theorems can be applied to derive new approximation algorithms for
a variety of problems. In order to conclude that Corollary 14 provides a PTAS or QPTAS
for some given problem, one has to carefully determine the actual input size of the problem
and show that the running time of the corollary’s algorithm satisfies the PTAS or QPTAS
definition.

7.5.1 Constrained approximate Nash equilibria

A constrained Nash equilibrium is a Nash equilibrium that satisfies some extra constraints,
like specific bounds on the payoffs of the players. Constrained Nash equilibria attracted the
attention of many authors, who proved NP-completeness for two-player games [24,48,76] and
ETR-completeness for three-player games [24–27,75] for constrained exact Nash equilibria.

Constrained approximate equilibria have been studied, but so far only lower bounds
have been derived [16,33,60,61,84]. It has been observed that sampling methods can give
QPTASs for finding constrained approximate Nash equilibria for certain constraints in two
player games [61].

By applying Theorem 29, we get the following result for games with number of players
up to polylogarithmic in the number of pure strategies (here n is the number of players):
Any property of an approximate equilibrium that can be formulated in ε-ETR where α, γ,
d, t and n are up to polylogarithmic in the number of pure strategies has a QPTAS. This
generalises past results to a much broader class of constraints, and provides results for
games with more than two players, which had not previously been studied in this setting.

A game is defined by the set of players, the set of actions for every player, and the payoff
function of every player. In normal form games, the payoff function is given by a multilinear
function on a tensor of appropriate size. Consider an n-player game where every player has
l-actions, and let Aj denote the payoff tensor of player j with elements in [0, 1]; Aj has size
×ni=1l. The interpretation of the tensor Aj is the following: the element Aj(i1, . . . , in) of the
tensor corresponds to the payoff of player j when Player 1 chooses action i1, Player 1 chooses
action i2, and so on. To play the game, every player j chooses a probability distribution
xj ∈ ∆l, a.k.a. a strategy, over their actions. A collection of strategies is called strategy
profile. The expected payoff of player j under the strategy profile (x1, . . . , xn) is given by
ML(Aj , x1, . . . , xn). For notation simplicity, let uj(xj , x−j) := ML(Aj , x1, . . . , xn), where
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x−j is the strategy profile of all players except player j. A strategy profile (x∗1, . . . , x
∗
n) is

a Nash equilibrium if for every player j it holds that uj(x∗j , x
∗
−j) ≥ uj(xj , x

∗
−j) for every

xj ∈ ∆l, or equivalently uj(x∗j , x
∗
−j) ≥ uj(sp, x

∗
−j) for every possible sp, where sp denotes

the case where player j chooses their action p with probability 1.
Our framework formally describes a broad family of constrained Nash equilibrium prob-

lems for which we can get a QPTAS.

Theorem 34. Let Γ be an n-player l-action normal form game Γ. Furthermore, let F be a
Boolean formula with c ∈ poly(l) TMV constraints of degree d. If n, d ∈ poly log(l), then in
quasi-polynomial time we can compute an approximate NE of Γ constrained by F , or decide
that no such constrained approximate NE exists.

Proof. Observe that we can write the problem of the existence of a constrained Nash equi-
librium as an ETR problem. The constraints of the problem will be the constraints of F
plus the constraint

uj(sl, x−j)− uj(xj , x−j) ≤ 0

for every player i ∈ [m] and every action sl of player j.
Thus, we can use Theorem 29 and complete the proof since we produced an ε-ETR

problem with m = c + n · l = poly(l) constraints, which is polynomial in the input size; d
and t are polylogarithmic in l by assumption (it always holds that t ≤ d); γ = 1 since every
variable is a probability distribution; α = 1 by the definition of normal form games.

7.5.2 Shapley games

Shapley’s stochastic games [129] describe a two-player infinite-duration zero-sum game.
The game consists of N states. Each state specifies a two-player M ×M bimatrix game
where the players compete over: (1) a reward (which may be negative) that is paid by player
two to player one, and (2) a probability distribution over the next state of the game. So
each round consists of the players playing a bimatrix game at some state s, which generates
a reward, and the next state s′ of the game. The reward in round i is discounted by λi−1,
where 0 < λ < 1 is a discount factor. The overall payoff to player 1 is the discounted sum
of the infinite sequence of rewards generated during the course of the game.

Shapley showed that these games are determined, meaning that there exists a value
vector v, where vs is the value of the game starting at state s. A polynomial-time algorithm
has been devised for computing the value vector of a Shapley game when the number of
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states N is constant [81]. However, since the values may be irrational, this algorithm needs
to deal with algebraic numbers, and the degree of the polynomial is O(N)N

2 , so if N is
even mildly super-constant, then the algorithm is not polynomial.

Furthermore, Shapley showed that the value vector is the unique solution of a system
of polynomial optimality equations, which can be formulated in ETR. Any approximate
solution of these equations gives an approximation of the value vector, and applying Theo-
rem 29 gives us a QPTAS. This algorithm works when N ∈ O( 6

√
logM), which is a value of

N that prior work cannot handle. The downside of our algorithm is that, since we require
the solution to be bounded by a convex hull defined by finitely many points, the algorithm
only works when the value vector is reasonably small. Specifically, the algorithm takes a
constant bound B ∈ R, and either finds the approximate value of the game, or verifies that
the value is strictly greater than B.

To formally define a Shapley game, we use N to denote the number of states, and M
to denote the number of actions. The game is defined by the following two functions.

• For each s ≤ N and j, k ≤M the function r(s, j, k) gives the reward at state s when
player one chooses action j and player two chooses action k.

• For each s, s′ ≤ N and j, k ≤ M the function p(s, s′, j, k) gives the probability of
moving from state s to state s′ when player one chooses action j and player two
chooses action k. It is required that

∑N
s′=1 p(s, s

′, j, k) = 1 for all s, j, and k.

The game begins at a given starting state. In each round of the game the players
are at a state s, and play the matrix game at that state by picking an action from the set
{1, 2, . . . ,M}. The players are allowed to use randomization to make this choice. Supposing
that the first player chose action j and the second player chose the action k, the first player
receives the reward r(s, j, k), and then a new state s′ is chosen according to the probability
distribution given by p(s, ·, j, k).

The reward in future rounds is discounted by a factor of λ where 0 < λ < 1 in each
round. So if r1, r2, . . . is the infinite sequence of rewards, the total reward paid by player
two to player one is

∑∞
i=1 λ

i−1 · ri, which, due to the choice of λ, is always a finite value.

The two players play the game by specifying a probability distribution at each state,
which represents their strategy for playing at that state. Let ∆M denote theM -dimensional
simplex, which represents the strategy space for both players at a single state. For each
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x, y ∈ ∆M , we overload notation by defining the expected reward and next state functions.

r(s, x, y) =
M∑
j=1

M∑
k=1

x(j) · y(k) · r(s, i, j),

p(s, s′, x, y) =
M∑
j=1

M∑
k=1

x(j) · y(k) · p(s, s′, i, j).

Shapley showed that these games are determined [129], meaning that there is a unique
vector v ∈ RN such that vs is the value of the game starting at state s: player one has a
strategy to ensure that the expected reward is at least v(s), while player two has a strategy
to ensure that the expected reward is at most v(s). Furthermore, Shapley showed that this
value vector is the unique solution of the following optimality equations [129]. For each
state s we have the equation

v(s) = min
x∈∆M

max
y∈∆M

(
r(s, x, y) + λ ·

N∑
s′=1

p(s, s′, x, y) · vs′
)
. (7.15)

In other words, vs must be the value of the one-shot zero-sum game at s, where the payoffs
of this zero-sum game are determined by the values of the other states given by vs′ .

Theorem 35. Let Γ be a Shapley game with N ∈ O( 6
√

logM), unbounded number of actions
per state, and rewards in [−c, c] for every state-action combination, where c is a constant.
Furthermore, let s be the starting state of the game. Let B ∈ R be a constant. In quasi-
polynomial time we can approximately compute the value of Γ starting from s, if the value
of every state is less than or equal to B, or decide that at least one of these values is greater
than or equal to B.

Proof. Let v = (v(1), v(2), . . . , v(N)), and for every state s let xs and ys denote the strategy
player one and player two choose at state s respectively. Observe that r(s, xs, ys) is an STM
polynomial with variables x and y of the form

STM(As1, xs, ys) =

M∑
j=1

M∑
k=1

xs(j) · ys(k) · as1(j, k)

where as1(i, j, k) = r(s, j, k).
Observe also that λ ·

∑N
s′=1 p(s, s

′, xs, ys) · vs′ can be written as an STM polynomial
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with variables x, y and v of the form

STM(As2, x, y, v) =
M∑
j=1

M∑
k=1

N∑
l=1

xs(j) · ys(k) · v(l) · as2(j, k, l)

where as2(i, j, k) = λ · p(s, l, j, k).
Let us define TMVs(xs, ys, v) = STM(As1, xs, ys)+STM(As2, xs, ys, v); TMVs(xs, ys, v)

has length 2 and degree 1.
Note that we can replace equation (7.15) with the following 2 ·M TMV polynomial

constraints

TMV(xs, ys, v)− TMV(j, ys, v) ≤ 0 for every action j ≤M of player one

TMV(xs, k, v)− TMV(xs, ys, v) ≥ 0 for every action k ≤M of player two.

So, to approximate v(s) it suffices to solve the ε-ETR problem defined by the 2 ·M ·N
constraints defined as above for every state s ≤ N . Observe, the ε-ETR problem has:
2N + 1 variables (x1 through xN , y1 through yN , and v); 2 · M · N TMV constraints;
γ = max

{
1,maxs v(s)

}
; α = max

{
c, λ · maxs,s′,j,k p(s, s

′, j, k)
}

= max{c, 1}, since λ < 1

and maxs,s′,j,k p(s, s
′, j, k) < 1. So, if N ∈ O( 6

√
logm), maxs v(s) is constant, and c is a

constant, we can use Theorem 29 and derive a QPTAS for (7.15).
Finally, we note that an approximate solution to (7.15) gives an approximation of the

value vector itself. This is because Shapley has shown that, when v is treated as a variable,
the optimality equation given in (7.15) is a contraction map. The value vector is a fixed
point of this contraction map, and the uniqueness of the value vector is guaranteed by
Banach’s fixed point theorem. Our algorithm produces an approximate fixed point of the
optimality equations. It is easy to show, using the contraction map property, that an
approximate fixed point must be close to an exact fixed point.

7.5.3 Approximate consensus halving

In this section we show that an approximate solution to the consensus halving problem
can be found in quasi-polynomial time when each agent’s valuation function is a single
polynomial of constant or even polylogarithmic degree. We will do so by formulating the
problem as a constrained ε-ETR instance, and then applying Theorem 29.

This result first appeared in [58,59] and implies that these instances can be solved
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approximately using a polylogarithmic number of cuts. We note that this is one of the most
general classes of instances for which we could hope to prove such a result: any instance
in which n agents desire completely disjoint portions of the object can only be solved by
an n-cut, and piecewise linear functions are capable of producing such a situation. So in
a sense, we are exploiting the fact that this situation cannot arise when the agents have
non-piecewise polynomial valuation functions.

Lemma 32. For every Consensus Halving instance with n agents, and every ε > 0, if
each agent’s valuation function Fi is a single polynomial of degree at most O(poly log n),
then there exists a k-cut, where k := O(poly log n)/ε5, and pieces A+ and A− such that:

• every cut point is a multiple of 1/k = ε5

O(poly logn) ;

• |Fi(A+)− Fi(A−)| ≤ ε, for every agent i.

Proof. Since each agent i has a polynomial valuation function, there is a d ∈ O(log n) and
constants a0, a1, . . . , al such that each function Fi can be written as Fi(t) =

∑d
j=0 aj · tj .

To prove the theorem, we will formulate the problem as a constrained ε-ETR instance,
and apply Theorem 29, which proves the claim. We first write a simple ETR formula for
consensus halving with polynomial valuation functions. If a consensus halving instance has
a solution, then it also has one in which the cuts are strictly alternating, meaning that

Fi(A+) =

bn/2c∑
j=1

(
Fi(t2j)− Fi(t2j−1)

)
,

Fi(A−) =

dn/2e∑
j=1

(
Fi(t2j−1)− Fi(t2j−2)

)
,

where the cut is the tuple (t1, t2, . . . , tn), with 0 ≤ t1 ≤ · · · ≤ tn ≤ 1 and t0 := 0, tn+1 := 1.
In this encoding, we have no need to encode which set a particular cut belongs to, and

so we can encode a n-cut as an element of the n-simplex x := (x1, x2, . . . , xn+1) ∈ ∆n+1,
where xi := ti − ti−1. From the latter, it is easy to see that

ti :=
i∑

j=1

xj . (7.16)

For j ∈ {0, 1, . . . , n}, let us denote by 1j and 0j a j-tuple of 1’s and 0’s respectively.
Let us also define the n-dimensional vector vj := (0j , 1n−j). Now observe that any n-cut
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t := (t1, t2, . . . , tn) can be represented by a n-dimensional point which is in fact a convex
combination of the n + 1 vectors vj , j ∈ {0, 1, . . . , n}. In particular, from (7.16) it is easy
to see that

t := (t1, t2, . . . , tn) =
n+1∑
j=1

xj · vj−1.

Hence, we can encode the problem as an ETR formula

∃t ·

(
n∧
i=1

Fi(A+) = Fi(A−)

)
∧ t ∈ C,

where C is the convex hull of the vectors v0, v1, . . . , vn. This formula has n constraints, one
for each agent, and a single constraint bounding the variables in the convex set C which
can be expressed by n+ 1 vectors, namely vj , j ∈ {0, 1, . . . , n}.

The main theorem of [57] allows us to leave the constraint t ∈ C unchanged, but
insists that we weaken the others. Specifically each constraint is weakened so that only
Fi(A+)−Fi(A−) ≤ ε and Fi(A+)−Fi(A−) ≥ −ε are enforced, which implies that |Fi(A+)−
Fi(A−)| ≤ ε. This is sufficient to encode an approximate solution to the problem.

The constructed ε-ETR instance has one vector-variable t ∈ C and 2n constraints. Let
us now study one of the constraints of the ε-ETR instance.

bn/2c∑
j=1

(
Fi(t2j)− Fi(t2j−1)

)
−
dn/2e∑
j=1

(
Fi(t2j−1)− Fi(t2j−2)

)
≤ ε.

Using the representation of Fi, we can write down a constraint as
∑d

k=0 ak ·
hk(t1, t2, . . . , tn) ≤ ε, where hk(t1, t2, . . . , tn) is a sum of monomials, each one of degree
d. Fi depends on t0 and tn+1 as well, but recall that these are 0 and 1 respectively.

The term ak · hk(t1, t2, . . . , tn) is a simple tensor multivariate polynomial with one
variable of degree k, which we will denote by STM(Hk, t

k). Under this notation Hk is a
k-dimensional tensor where vector t is applied k times. Hence, every constraint is a sum of
d+ 1 simple tensor multivariate polynomials, i.e. a TMV polynomial of maximum degree d
constructed by d + 1 STM polynomials. Furthermore, ||vj ||∞ ≤ 1 for all j ∈ {0, 1, . . . , n},
and for every constraint, the maximum absolute coefficient is constant by definition, and the
degree d is O(poly log n). Hence, we can apply Theorem 29 and get the claimed result.
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As a consequence, we can perform a brute force search over all possible k-cuts to find
an approximate solution, which can be carried out in nO(poly logn/ε5) time.

Theorem 36. Consensus Halving admits a QPTAS when the valuation function of
every agent is a single polynomial of degree O(poly log n).

7.5.4 Optimization problems

Our framework can provide approximation schemes for optimization problems with one
vector variable x ∈ Rp with polynomial constraints over bounded convex sets. Formally,

max h(x)

s.t. h1(x) ≥ 0, . . . , hm(x) ≥ 0

x ∈ conv(c1, . . . , cl)

where h(x), h1(x), . . . , hm(x) are polynomials with respect to vector x; for example h(x) =

xTAx, where A is an p× p matrix, subject to h1(x) = xTx− 1
10 ≥ 0 and x ∈ ∆p. We will

call the polynomials hi solution-constraints. Optimization problems of this kind received a
lot of attention over the years [53,55,56,68].

For optimization problems, we sample from the solution that achieves the maximum
when we apply Theorem 29, in order to prove that there is a k-uniform solution that is
close to the maximum. Our algorithm enumerates all k-uniform profiles, and outputs the
one that maximizes the objective function. Using this technique, Theorem 29 gives the
following results.

1. There is a PTAS if h(x) is a STM polynomial of maximum degree independent of p,
the number of solution-constraints is independent of p, and l = poly(p).

2. There is QPTAS if h(x) is a STM polynomial of maximum degree up to poly log p,
the number of solution-constraints is poly(p), and l = poly(p).

To the best of our knowledge, the second result is new. The first result was already
known, however it was proven using completely different techniques: in [29] it was proven
for the special case of degree two, in [68] it was extended to any fixed degree, and alternative
proofs of the fixed degree case were also given in [55,56]. We highlight that in all of the
aforementioned results solution constraints were not allowed. Note that unless NP = ZPP
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there is no FPTAS for quadratic programming even when the variables are constrained
in the simplex [53]. Hence, our results can be seen as a partial answer to the important
question posed in [53]: What is a complete classification of functions that allow a PTAS?

Furthermore, as shown in Theorem 30 this technique yields a generalized algorithm for
multi-objective optimization problems which, to the best of our knowledge, is a completely
new result.

7.5.5 Tensor problems

Our framework provides quasi-polynomial time algorithms for deciding the existence of
approximate eigenvalues and approximate eigenvectors of tensors in Rp×p×p, where the
elements are bounded by a constant, where the solutions are required to be in a bounded
convex set. In [85] it is proven that there is no PTAS for these problems when the domain
is unrestricted. To the best of our knowledge this is the first positive result for the problem
even in this, restricted, setting.

Definition 27. The nonzero vector x ∈ Rp is an eigenvector of tensor A ∈ Rp×p×p if there
exists an eigenvalue λ ∈ R such that for every k ∈ [p] it holds that

n∑
i

n∑
j

a(i, j, k) · x(i) · x(j) = λ · x(k). (7.17)

Theorem 37. Let A be an Rp×p×p tensor with entries in [−c, c], where c is a constant.
Furthermore, let B ∈ R be a constant and let Y be a bounded convex set where ‖Y‖∞ is a
constant. In a quasi-polynomial time we can compute an eigenvalue-eigenvector pair (λ, x)

that approximately satisfy (7.17) such that λ ≤ B and x ∈ Y, or decide that no such pair
exists.

Proof. Observe that
∑n

i

∑n
j a(i, j, k) · x(i) · x(j) can be written as an STM polynomial

STM(A1, x
2) where a1(i, j) = a(i, j, k). Furthermore, let ` be a p-dimensional vector.

Then, λ ·x(k) can be written as an STM polynomial STM(A2, x, `), where a2(k, 1) = 1 and
zero otherwise.

So, Equation (7.17) can be written as an TMV polynomial constraint of degree 2 and
length 2, with two vector variables, x and `. So, the problem of computing an eigenvalue-
eigenvector pair that approximately satisfy (7.17) can be written as an ε-ETR problem with
p TMV polynomial constraints of degree 2 and length 2 and two vector variables. Hence,
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we can use Theorem 29 with γ = ‖Y‖∞ which is constant, α = c, n = 2, t = 2, d = 2, and
m = p to find a solution if exists, or decide that no such solution exists.

7.5.6 Computational geometry

Finally, we note that our theorem can be applied to problems in computational geometry,
although the results are not as general as one may hope. Many problems in this field are
known to be ETR-complete, including, for example, the Steinitz problem for 4-polytopes,
inscribed polytopes and Delaunay triangulations, polyhedral complexes, segment intersec-
tion graphs, disk intersection graphs, dot product graphs, linkages, unit distance graphs,
point visibility graphs, rectilinear crossing number, and simultaneous graph embeddings.
We refer the reader to the survey of Cardinal [38] for further details.

All of these problems can be formulated in ε-ETR, and indeed our theorem does give
results for these problems. However, our requirement that the bounding convex set be given
explicitly limits their applicability. Most computational geometry problems are naturally
constrained by a cube, so while Corollary 15 does give NP algorithms, we do not get QP-
TASs unless we further restrict the convex set. Here we formulate QPTASs for the segment
intersection graph and the unit disk intersection graph problems when the solutions are
restricted to lie in a simplex. While it is not clear that either problem has natural appli-
cations that are restricted in this way, we do think that future work may be able to derive
sampling theorems that are more tailored towards the computational geometry setting.

7.5.6.1 Segment intersection graphs

Definitions Let G be an undirected graph with vertex set {v1, v2, . . . , vn}. We say that
G is a segment graph if there are straight segments s1, s2, . . . , sn in the plane such that,
for every i, j, 1 ≤ i < j ≤ n, the segments si and sj have a common point if and only if
{vi, vj} ∈ E(G).

By a suitable rotation of the co-ordinate system we can achieve that none of the segments
is vertical. Then the segment si representing vertex vi can be algebraically described as the
set {(x, y) ∈ R2 : y = aix+ bi, ci ≤ x ≤ di} for some real numbers ai, bi, ci, di. We say that
G is a simplex K segment graph if the real numbers ai, bi, ci, di, i = 1, 2, . . . n are under the



Chapter 7. Approximating the Existential Theory of the Reals 211

constraints

ai, bi, ci, di ≥ 0, for every i = 1, 2, . . . n, and
n∑
i=1

(ai + bi + ci + di) = K, where K > 0 is a given constant.

We let SIM-K-SEG denote the class of all simplexK segment graphs with parameterK > 0.

The problem ε-RECOG(SIM-K-SEG) is defined as follows. Given an abstract undi-
rected graph G, does it belong with tolerance ε to SIM-K-SEG?

Formulation of ε-RECOG(SIM-K-SEG) We first give a description for the problem
with ε = 0 and then we generalize for arbitrary ε ≥ 0. The formulation is taken from [99].

Letting li be the line containing si, we note that si ∩ sj 6= ∅ if li and lj intersect in a
single point whose x-coordinate lies in both the intervals [ci, di] and [cj , dj ]. It is easy to
see that the x-coordinate equals bj−bi

ai−aj .

Now we turn to the general case where ε ≥ 0. Let us introduce variables Ai, Bi, Ci, Di

representing the unknown quantities ai, bi, ci, di, i = 1, 2, . . . , n. By the problem’s definition
we require the vector (A1, B1, C1, D1, . . . , An, Bn, Cn, Dn) to be in the (4n−1)-simplex with
parameter K. Then si ∩ sj 6= ∅ can be expressed by the following predicate:

INTS(Ai, Bi, Ci, Di,Aj , Bj , Cj , Dj) =

(Ai >ε Aj ∧ Ci(Ai −Aj) ≤ε Bj −Bi ≤ε Di(Ai −Aj)

∧ Cj(Ai −Aj) ≤ε Bj −Bi ≤ε Dj(Ai −Aj))

∨(Ai <ε Aj ∧ Ci(Ai −Aj) ≥ε Bj −Bi ≥ε Di(Ai −Aj)

∧ Cj(Ai −Aj) ≥ε Bj −Bi ≥ε Dj(Ai −Aj))

(this is only correct if we “globally” assume that Ci ≤ε Di for all i). The existence of a
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SEG-representation of G can then be expressed by the formula

(∃A1B1C1D1 . . . AnBnCnDnK)

(
n∧
i=1

Ci ≤ε Di

)

∧

 ∧
{i,j}∈E

INTS(Ai, Bi, Ci, Di, Aj , Bj , Cj , Dj)


∧

 ∧
{i,j}/∈E

¬INTS(Ai, Bi, Ci, Di, Aj , Bj , Cj , Dj)


Theorem 38. There is an algorithm that runs in time nO(K2·logn/ε2) and either finds a
vector (A1, B1, C1, D1, . . . , An, Bn, Cn, Dn) that is a solution to ε-RECOG(SIM-K-SEG),
or determines that there is no solution to 0-RECOG(SIM-K-SEG).

Proof. We set x = (A1, B1, C1, D1, . . . , An, Bn, Cn, Dn) and F (x) to be the above formula
that we constructed. Their combination makes an ε-ETR instance. Vector x is constrained
over the convex hull defined by the vertices of the (4n − 1)-simplex, i.e. vectors vi ∈ R4n,
i ∈ {1, 2, . . . 4n} with their i-th element equal to K and the rest equal to 0. Therefore the
cardinality of our convex set is m = 4n, and γ = K. By looking at the formula we can
conclude that a = 1, t = 4, and d = 2. By Theorem 32 the result follows.

7.5.6.2 Unit disk intersection graphs

Definitions Let G be an undirected graph with vertex set {v1, v2, . . . , vn}. We say that
G is a unit disk intersection graph or unit disk graph if there are disks d1, d2, . . . , dn (in the
plane) with radius 1 such that, for every i, j, 1 ≤ i < j ≤ n, the disks di and dj have more
than one points common (i.e. an area) if and only if {vi, vj} ∈ E(G).

The disk di representing vertex vi can be algebraically described as the set {(x, y) ∈
R2 : (x−xi)2 + (y− yi)2 ≤ 1} for some real numbers xi, yi that determine the centre of the
disk. We say that G is a simplex K unit disk graph if the real numbers xi, yi, i = 1, 2, . . . n

are under the constraints

xi, yi ≥ 0, for every i = 1, 2, . . . n, and
n∑
i=1

(xi + yi) = K, where K > 0 is a given constant.
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We let SIM-K-UDG denote the class of all simplex K unit disk graphs with parameter
K > 0.

The problem ε-RECOG(SIM-K-UDG) is defined as follows. Given an abstract undi-
rected graph G, does it belong with tolerance ε to SIM-K-UDG?

Formulation of ε-RECOG(SIM-K-UDG) Let us introduce variables Xi, Yi represent-
ing the unknown quantities xi, yi, i = 1, 2, . . . , n. We require the vector (X1, Y1, . . . , Xn, Yn)

to be in the (2n − 1)-simplex with parameter K. Then we consider an ε-intersection
di ∩ε dj 6= ∅ to happen if: √

(Xi −Xj)2 + (Yi − Yj)2 < 2 + ε

and an ε-non-intersection di ∩ε dj = ∅ to happen if:√
(Xi −Xj)2 + (Yi − Yj)2 ≥ 2− ε

The existence of a UDG-representation of G can then be expressed by the formula

(∃X1Y1 . . . XnYn) ∧
{i,j}∈E

(Xi −Xj) · (Xi −Xj) + (Yi − Yj) · (Yi − Yj) < 4 + 2ε+ ε2


∧

 ∧
{i,j}/∈E

(Xi −Xj) · (Xi −Xj) + (Yi − Yj) · (Yi − Yj) ≥ 4− 2ε+ ε2


Theorem 39. There is an algorithm that runs in time nO(K2·logn/ε2) and either finds a
vector (X1, Y1, . . . , Xn, Yn) that is a solution to ε-RECOG(SIM-K-UDG), or determines
that there is no solution to 0-RECOG(SIM-K-UDG).

Proof. We set x = (X1, Y1, . . . , Xn, Yn) and F (x) to be the above formula that we con-
structed. Their combination makes an ε-ETR instance. Vector x is constrained over the con-
vex set defined by the vertices of the (2n−1)-simplex, i.e. vectors vi ∈ R2n, i ∈ {1, 2, . . . 2n}
with their i-th element equal to K and the rest equal to 0. Therefore the cardinality of our
convex set is m = 2n, and γ = K. By looking at the formula we can conclude that a = 2,
t = 7, and d = 2. By Theorem 32 the result follows.
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Conclusions

In this thesis we extend results regarding computational complexity and efficient algorithms
for problems in various strategic settings. Here we give an overview of how our results relate
to previous work and present interesting questions that remain to be answered.

8.1 Evolutionary Games

Our results extend the work of Etessami and Lochbihler [67] which showed that deciding the
existence of an ESS in a given game is coNP-hard. In particular, their hardness reduction is
from the complement of the Clique problem to a particular instance of a game. We extend
this reduction to be valid from the same coNP-complete problem to a family of games whose
values can be arbitrarily picked within specific intervals. This reveals that infinitely many
instances of the problem are coNP-hard, and that arbitrary perturbations of payoff values
around those of the hard instances do not suffice to make the problem easier.

On the other hand, the work of Hart and Rinott [127] implies that, for almost all games
whose payoffs are sampled from common probability distributions, not only it is easy to
decide existence of ESS, but the answer is “yes”. This indicates that there should be some
instance “between” the ones we find hard, and the ones of [127] for which the problem
becomes easier to decide, perhaps in polynomial time. In view of this, an interesting open
problem is to categorize families of games according to the complexity of the ESS existence
problem.

214



Chapter 8. Conclusions 215

8.2 Games between Rational and Intelligent Entities

8.2.1 Strategic contention resolution

We have extended the results of Christodoulou et al. [43] and Fiat et al. [69] for the
acknowledgement-based and ternary feedback, respectively. These works provide equilib-
rium protocols with desirable properties of anonymity and time-efficiency for the case of a
single channel. In this thesis we studied the same setting for multiple channels and showed
that there are more, and easier to find equilibrium protocols with the same properties.

However, this work leaves open some interesting problems. One of them is to find equi-
libria for arbitrary number of players in the multiple-channel setting with acknowledgement-
based feedback for the general, history-dependent case or the special, history-independent
case. This will probably require a characterization of equilibria which will also give a great
amount of information about how the equilibria look like, similarly to how the characteriza-
tion we provide for history-independent, ternary feedback protocols in Theorem 10 indicates
the exact (asymptotic) behaviour of the transmission probability and the expected latency.

Another important open problem is to prove or disprove that there exists a FIN-EQ
protocol that is efficient in the multiple-channels setting. This could be a deadline protocol
or it might use some other key idea to impose a heavy latency on the players as a threat, so
that they auto-restrain themselves from frequently attempting transmission. Proving that
there is no efficient deadline FIN-EQ for the multiple-channel setting would be an interesting
“paradox”, since an efficient deadline FIN-EQ is found in [69] for the single-channel setting
with ternary feedback. In view of Theorem 11 we conjecture that the “paradox” is there.

8.2.2 Connected Subgraph Defense Games

Here our results extend the line of work of Mavronicolas et al. [100] on defense games
in graphs. In these games, we have generalized the pure strategy of the defender to be a
connected induced subgraph of the underlying graph of size λ instead of two adjacent nodes.
We termed these new games Connected Subgraph Defense (CSD) games and studied the
structure of equilibria and the complexity of finding one, depending on the power of the
defender λ. We also extended the notion of Price of Defense, as termed in [100], for any λ
and found almost tight bounds for its value.

An interesting open problem is the following. For λ that is both more than constantly
away from 1 and n, our LP-based algorithm for computing a Nash equilibrium is not ef-
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ficient. That is because in that case, our algorithm considers the strategy space of the
defender to have cardinality

(
n
λ

)
and brute forces through all of that space. Is there a

polynomial time algorithm for computing a Nash equilibrium when λ ∈ ω(1) ∩ o(n)? An-
other open problem is to determine the complexity of deciding whether a general graph is
defense-optimal. Here we conjecture that it is NP-hard.

8.3 Fair Division

We studied the “exact” counterpart of the recent work [71,72] which has shown that the ap-
proximate version of the Consensus Halving problem is PPA-complete. We proved that the
exact version is much harder (under standard complexity assumptions), namely FIXP-hard,
and deciding whether there exists a solution with fewer than n cuts is ETR-complete. En
route we defined a new complexity class BU, which captures the search problems whose solu-
tion is proven via the Borsuk-Ulam theorem. We also showed that FIXP ⊆ BU ⊆ TFETR and
that LinearBU = PPA, where LinearBU is the subclass of BU whose input can be expressed
by a linear arithmetic circuit. The latter is analogous to the result that LinearFIXP = PPAD

by Etessami and Yannakakis in [66] which established a relation between the class FIXP of
exact solutions via Brouwer’s fixed point theorem and the class PPAD of solutions guaranteed
to exist by the parity argument on directed graphs.

The main open problem of this work is to find matching upper and lower complexity
bounds. We believe that the true complexity of Consensus Halving is BU-completeness.
Such a result would make Consensus Halving the first natural problem that characterizes
BU, and establish BU as a distinct complexity class between FIXP and TFETR.

8.4 Approximation Algorithms

In the last set of results, we extended the Lipton-Markakis-Mehta (LMM) algorithm for
computing ε-Nash equilibria, and employed it in order to derive approximation schemes for
a wide subclass of ETR. For a given constrained ε-ETR instance whose variables’ domain
is the convex hull of l vectors, we presented an algorithm which runs in time lO(k), for k
indicated in Theorem 29, that either computes a solution or respond that a solution to the
exact problem does not exist. This algorithm is a QPTAS or PTAS for many well-known
problems. However, our algorithm, being an extension of the LMM algorithm, for some
problems does not have better running time than the state of the art algorithms that are
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tailored to these problems. The most important open problem is to make the quantity
k depend logarithmically on crucial parameters, such as the number of variables n and
the degree of the polynomials d, instead of polynomially. This would generalize many
algorithms, such as the PTAS for computing an ε-Nash equilibrium in anonymous games
[51] and the best algorithm for computing an ε-Nash equilibrium in general multi-player
normal form games [19].
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