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Abstract 

Clustering is one of the challenging machine learning techniques due to its unsupervised learning 

nature. While many clustering algorithms constrain objects to single clusters, K-means 

overlapping partitioning clustering based methods assign objects to multiple clusters by relaxing 

the constraints and allowing objects to belong to more than one cluster to better fit hidden 

structures in the data. However, when datasets contain outliers, they can significantly influence 

the mean distance of the data objects to their respective clusters, which is a drawback. 

Therefore, most researchers address this problem by simply removing the outliers. This can be 

problematic especially in applications such as autism screening, fraud detection, and 

cybersecurity attacks among others.  

In this thesis, an alternative solution to this problem is proposed that captures outliers and stores 

them on the fly within a new cluster, instead of discarding. The new algorithm is named Outlier-

based Multi-Cluster Overlapping K-Means Extension (OMCOKE). The algorithm addresses an 

issue previously ignored by other work in overlapping clustering and therefore benefits various 

stakeholders as these outliers could have real-life applications.  The proposed solution has been 

evaluated on a crucial behavioural science problem called screening of autistic traits to improve 

the performance of detecting autism spectrum disorder (ASD) traits and reduce features 

redundancy.  OMCOKE was integrated as a learning algorithm with a semi-supervised ML 

framework approach called Clustering based Autistic Trait Classification (CATC) in Chapter 5. 

Based on the experimental results obtained on real datasets related to autism screening OMCOKE 

was able to identify potential autism cases based on their similarity traits as opposed to 

conventional scoring functions used by ASD screening tools. Moreover, the empirical results 

obtained by OMCOKE on different datasets involving children, adolescents, and adults were 

compared to other results produced by common ML techniques. The results showed that our 

semi-supervised framework offers models with higher predictive accuracy, sensitivity, and 

specificity rates than those of other intelligent classification approaches such as Artificial Neural 

Network (ANN), Random Forest, and Random Trees, and Rule Induction. These models are useful 

since they are exploited by diagnosticians and other stakeholders involved in ASD screening 

besides highlighting the most influential features. The chapters in this thesis have been 

disseminated or are under review in various reputable journals and in refereed conference 

proceedings. 
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Chapter 1  

Thesis Introduction and Structure 

1.1 Introduction  

There has been an exponential data growth recently and massive amounts of data being collected 

and stored from social media sources such as Twitter, Snapchat, Facebook, etc. and other data 

sources collected from GPS sensors, Radio Frequency (RFID) systems, IoT (Internet of Things) 

among others. This has led to what is commonly known as Big Data (Coronel and Morris, 2018). 

Meaningful information can be extracted from Big Data through data mining (DM) and machine 

learning (ML) techniques in order to discover and predict hidden patterns and trends. Machine 

learning (ML) is a branch of artificial intelligence (AI) where systems are able to learn from any 

given data and adapt to the new information provided in the data (Abdelhamid et al., 2014; 

Witten and Frank, 2005). 

Two fundamental concepts define DM techniques; supervised and unsupervised learning (Town 

and Thabtah, 2019). In supervised learning, given an input object, we use a set of labelled 

training data to determine an output of continuous value (regression) or predict a class label 

associated with it (classification). By using the training dataset, supervised learning techniques 

would learn from the dataset after seeing some examples and use that knowledge to predict the 

output value. On the other hand, unsupervised learning techniques have no prior knowledge of 

the data labels. These techniques extract hidden patterns by looking at similarities between the 

data objects and grouping them into clusters.  
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Figure 1.1 below highlights the steps involved in DM activities. 

 

Data clustering, also known as the unsupervised classification, is a research field widely studied 

in DM and ML domains due to its applications to segmentation, summarization, learning, and 

target marketing (Aggarwal & Reddy, 2014; Hadi et al., 2008). 

Clustering involves the partitioning of a set of objects or data into clusters or subsets such that 

the objects or data in each subset or cluster contains similar traits based on measured similarities 

and data from different clusters are dissimilar (Saxena et al., 2017). Many techniques have been 

explored for clustering processes such as distance-based, probabilistic, and density/grid-based, 

etc. with the distance based being very popular in research fields (Jain, 2010).  

Many clustering algorithms in unsupervised learning constrain objects to single clusters (i.e., 

objects belong to exactly one cluster) while ignoring the fact that some objects may have 

attributes that can belong to more than one cluster. Undoubtedly, K-means is the most widely 

used partitional clustering algorithm (Jain, 2010). There are many reasons attributed to this such 

as; a) it is straightforward to implement, b) very versatile in that any part of the algorithm can 

be easily modified, c) it is guaranteed to converge (Selim and Ismail, 1984) at a quadratic rate 

(Bottou and Bengio, 1995). Thus, the algorithm has been used extensively to solve non-

overlapping clustering problems. Overlapping clustering methods remove the constraints and 

assign objects to one or more clusters building a non-disjoint partition of the data. 

Figure 1.1 Data mining steps 
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Data anomalies commonly referred to as outliers affect the mean distance used in the calculation 

of objects belonging to a cluster. This is a significant drawback in the K-means algorithm. While 

many algorithms opt to prune the outliers in the dataset (Liu, et al., 2018; Barai & Dey, 2017), 

little research has been done to store these outlier objects for further investigation. Therefore, 

this research addresses this gap by developing a new overlapping clustering algorithm that 

extends the K-means which stores outliers in a separate cluster. 

Many researchers have adopted ML techniques such as supervised learning in classification to 

predict or detect features in Autism Spectrum Disorder (ASD) screening and diagnosis (Thabtah, 

2018a; Abbas et al., 2017; Maenner et al., 2016). In the machine learning phase of ASD 

screening, data is pre-processed and cleansed before running it to a classifier. Little research 

has been done to apply clustering of the data at this stage where robust features can be identified 

and grouped to facilitate the cleansing process. This research addresses this gap by developing 

a new semi-supervised screening architecture that incorporates unsupervised clustering with 

supervised classification methods. 

This chapter discusses the research problems investigated and the significant contributions of 

this thesis. 

1.2 Problems Under Consideration and Research Questions 

Clustering is an unsupervised learning process that involves grouping a set of data objects into 

subsets, each of which has its label based on a predefined similarity metric (Arabie, Hubert & 

DeSoete, 1999). In clustering, some structural characteristics are not known a priori unless some 

domain knowledge is presented in advance (i.e., there are no labels attached to the data patterns 

as in the case of supervised classification), thus deeming clustering a challenging problem due 

to this unsupervised nature (Hrushka, Campello, Freitas, & Carvalho, 2009); (Saxena et. al., 

2017). Undoubtedly, the K-means (MacQueen, 1967), and its generic extensions and 

adaptations are one of the most widely used distance-based partition-clustering algorithms 

(Hrushka, Campello, Freitas & Carvalho, 2009); (Jain, Murty, & Flynn, 1999); (Lam & Wunsch, 
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2014). Thus, the K-means algorithm has been primarily utilized to deal with non-overlapping 

clustering problems that limit each data object to a single cluster. 

There are a few known issues that affect the K-means algorithm. These include; defining the 

number of cluster k in advance where the data is not known, defining the cut-off threshold for 

overlapping objects to belong to different clusters, and assigning weight to objects that belong 

at the intersection of two or more clusters. Another major challenge of K-means and its 

successors is sensitivity to exceptional data (outliers). K-means often derives clusters by 

optimizing the mean Sum of Squared Error (SSE) by calculating the Euclidean distance between 

the data objects and the cluster computed centroids. Therefore, any outliers in the dataset will 

significantly affect the means and the variance. In return, this will affect how the algorithm 

calculates and assigns objects to their cluster centroid. 

The lack of overlapping clustering algorithms that can store the outlier objects makes it difficult 

to scrutinize these noise data. This shortcoming has practical implications in domains such as in 

medical informatics where such data could indicate certain abnormal traits that can be picked up 

in the screening process or in cyber security domain where outlier data could indicate system 

intrusion.  

This study investigates some of the shortcomings associated with overlapping K-means 

algorithms listed above. The thesis will answer the following research questions: 

1) Can we determine the cut-off threshold for overlapping objects using heuristics calculated in 

the clustering process as opposed to defined ones? 

2) Can we store outlier objects that could potentially be investigated by experts in the field and 

derive some value in them as opposed to pruning and discarding them? 

3) Can a semi-supervised model based on clustering and classification techniques be used in the 

autism spectrum disorder (ASD) screening in order to improve the performance of the classifier 

such as specificity, accuracy, and sensitivity? 
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1.3 Thesis Research Issues and Contributions 

There are different issues related to unsupervised learning, specifically overlapping clustering 

approaches, that are discussed in this research. We categorize them into generic and domain 

specific issues.  

1.3.1 Generic Issues 

1.3.1.1 Issue 1: Overlapping Threshold 

The K-means algorithm has been primarily utilized to deal with non-overlapping clustering 

problems that limit each data object to a single cluster. Overlapping partitioning clustering 

methods tend to relax or remove the constraints allowing overlaps between clusters. Data 

objects that are at the intersection of two or more clusters are allowed to belong to multiple 

clusters with full membership to those clusters. A threshold has to be set to determine an object 

belonging to multiple clusters. Many algorithms define this threshold as a distance calculated 

based on the Euclidian average distance of all objects or as a percentage of the average distance 

defined a priori by the algorithm. These two techniques have inherent shortcomings. Objects 

that are very close together will have smaller distances to their centroid compared to other 

objects in other centroids that could be a bit sparse and using the mean on the Euclidean distance 

of these two clusters as the threshold to belonging may not be optimal and may eliminate some 

objects from belonging to other clusters. Determining a certain percentage of the average or 

overall distance a priori as the threshold is also not ideal; since in unsupervised learning, we do 

not have prior knowledge to the data. 

Contribution 

The K-means clustering being a greedy-descent nature algorithm is guaranteed to converge to 

a local minimum. Data objects are assigned to their nearest cluster center by calculating the 

distance using Euclidean distance measurement. The sum of squares errors (objective function) 

is calculated by squaring the Euclidean distances to each cluster centroid as the object is assigned 
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to the cluster with the smallest value. Our algorithm keeps track of the value of each by updating 

a constant maxdist with the higher value of each object assignment distance. As opposed to the 

Euclidian average distance, we use the highest Euclidian distance an object had to its assigned 

cluster. Upon completion of the K-means clustering, all objects would have been assigned to a 

cluster. We then iterate all objects again and using the constant maxdist as the threshold; we 

relax the object belonging to a single cluster if that object distance to the next cluster is less or 

equal than the threshold.  

Our method, Multi-Cluster Overlapping K-means Extension (MCOKE) was published in Baadel et 

al. (2016). An improved version of this method is also discussed in Chapters 3 and 4. 

1.3.1.2 Issue 2: Outlier Detection and Retention 

One of the significant challenges of K-means and its successors such as K-Medoids (Mirkin, 2005; 

Sheng and Liu, 2006), K-Modes (Huang, 1998), Bisecting K-means (Steinbach, et al., 2000) 

Kernel K-means (Scholkopf, et al., 1998) and Weighted K-means (Huang, et al., 2005) among 

others are sensitivity to exceptional data (outliers). Outliers are data objects or points that do 

not conform to the normal behaviour or model of the dataset, hence are deemed inconsistent or 

grossly different (Berkhin, 2006). In cases when the input dataset contains few outliers, this 

may significantly influence the mean distance (the outlier will skew the mean and variance) of 

the data objects to their respective clusters, and thus K-means tends to discard outliers (Barai 

& Dey, 2017; Zhang & Leung, 2003; Chandola, et. Al., 2009).  

This data can be erroneous, but could also provide value in the specialised field of cybersecurity 

such that they can be classified as suspicious data in fraudulent activity; that could be useful for 

fraud detection, intrusion detection marketing, and website phishing sites. Detecting these 

outliers is advantageous for decision makers (as opposed to discarding them). Therefore, it will 

be more useful to store these outliers in a separate cluster for potential use as they represent 

unusual patterns. 

 



7 

 

Contribution 

It is assumed that most objects being clustered will fall close to the inner radius threshold (i.e., 

close to their cluster centroid) that are based on the average distance of all objects belonging to 

the cluster centroids. Anomalies or outliers, therefore, tend to be further away from their closest 

cluster centroid. Objects that have a distance more significant than the inner radius but less or 

equal to the outer radius (maxdist) are subject to further scrutiny and are flagged to ensure they 

are not outliers on the border of the clusters. We introduce another variable that calculates the 

average distance (averdist) between the object and the centroid for all clusters. Averdist acts as 

a new threshold for the inner radius between the object and the centroid. A third constant, 

maxdistThreshold, defines the area of the radius to be considered from the outer boundary, for 

example, 0.99 will mean the area covered inside the outer boundary for objects not to be 

considered an anomaly. By doing this, we cut off the very extreme objects that are at the borders 

of the clusters and are assigned to the Outlier cluster for further investigation. In cases where 

some knowledge of the data is known beforehand, this value (maxdistThreshold) can also be 

adjusted by the user before running the algorithm to cater for the dataset. 

Our method, Outlier based Multi-Cluster Overlapping K-means Extension (OMCOKE) has been 

submitted for review and publication to the reputable Statistical Analysis and Data Mining 

journal. 

1.3.1.3 Issue 3: Outlier Detection Clustering in WEKA ML Tool 

WEKA is an open source ML tool based on the Java platform that contains implementations for 

different DM methods including filtering, classification, clustering, evaluation, and visualisation 

among others. This tool is widespread in research study fields in data analytics, bioinformatics, 

data mining, and computer science. The acronym stands for Waikato Environment for Knowledge 

Analysis, designed and implemented at New Zealand's Waikato University. However, there is not 

an overlapping clustering algorithm implemented in WEKA with the ability to detect outliers. 

Therefore, it is imperious to have an overlapping clustering algorithm in WEKA where such a 
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contribution can be applied to various data applications and can be of benefit to the different 

users in the community.  

Contribution 

OMCOKE has been implemented in Java and incorporated into WEKA 3.8.2 developer version. 

OMCOKE inherited the different evaluation methods in WEKA to run our experiments. A 

comprehensive study is detailed in Chapter 4 where we compared our algorithm to those of 

overlapping clustering domain and implemented the same to an application in behavioural 

science in Chapter 5. Chapter 4 also describes the implementation of OMCOKE in WEKA and a 

further graphical exposition of the GUI implementation is provided in Appendix A with a sample 

of the source code in Appendix B.   

1.3.1.4 Issue 4: Literature Review on Clustering and ASD using ML 

The main idea of review papers is to serve community members, researchers, lecturers, and 

students who are interested in understanding core concepts and cutting-edge up to date 

technology in the related field without being over-burdened with jargon and formulae. Therefore, 

it is essential to have a thorough investigation of the literature where recent advancements in 

the domain field are discussed and presented systematically for the different stakeholders. 

Contribution 

Chapters 2 and 3 of this theses benefitted from literature review papers on clustering techniques 

in general (Baadel et al., 2015a; Baadel et al., 2015b) and specifically on overlapping clustering 

(Baadel et al. 2016) that have been disseminated through conference proceedings and paper 

presentations. Further, the literature review on ASD screening using ML techniques is discussed 

in chapter 5 and our paper currently being reviewed in a reputable journal. More of this is 

discussed in the next subsection on Autism Traits Detection. 
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1.3.2 Domain Specific Issue 

1.3.2.1 Autism Traits Detection 

Autism screening is a fundamental step that addresses whether individuals exhibit potential 

autistic traits related to communication, social or repeated behaviour (Abbas et al. 2018).  This 

step is crucial as the individual and the concerned family become aware of the possibility of ASD 

traits early and hence can search for the needed formal assessments.  There are many ASD 

screening tools developed by researchers such as Autism Spectrum Quotient (AQ) and Childhood 

Autism Rating Scale (CARS) (Baron-Cohen, 2001; Baron-Cohen et al., 2006; Krug et al., 2008; 

Shopler et al., 2010). 

Most of the existing autism screening methods utilize scoring functions that compute a final score 

based on the answers given by users undergoing the screening (caregivers, parents, medical 

staff, teachers or even the adult patients).  To be specific, the screening methods take the 

answers given in the questionnaire as an input for the scoring function, which in turn processes 

the input and computes a final score to reflect whether the individual is associated with ASD 

traits. 

On the other hand, ML techniques have been implemented that use artificial intelligence and 

statistics to create intelligent models by discovering hidden patterns in data so that users can 

improve decisions (Thabtah et al., 2018). There have been recent attempts to adopt ML 

techniques in autism screening and diagnosis, i.e. (Abbas, et al., 2018; Thabtah, et al., 2018b; 

Levy, et al., 2017; Bekerom, 2017; Thabtah, 2017a; Bone, et al., 2016; Chen, et al., 2016). 

These studies focused primarily on improving time, accuracy, and reducing the dimensionality 

of the dataset by pinpointing influential autistic symptoms. 

Contribution 

In Chapter 5, a case study has been discussed in this thesis where we propose a new semi-

supervised learning method called Clustering based Autistic Trait Classification (CATC), to 
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improve the accuracy of the autism screening problem. The utilization of clustering and 

classification together as a semi-supervised learning technique is rare in autism screening 

research, and we believe ours to be the first. Unlike existing methods that primarily focused on 

the classification phase of cases and controls, we intend to utilize clustering with classification 

to validate instances in the training dataset before constructing the classification systems. CATC 

integrates unsupervised learning in the pre-processing phase with supervised learning in the 

classifier’s construction phase. By integrating clustering with classification, there is a potential 

for improving the resulting classification systems by detecting ASD traits more accurately. 

Our method, CATC, has been submitted for review and publication to a reputable journal; 

Informatics for Health and Social Care. 

1.4 Thesis Structure 

The thesis is divided into six chapters. Chapter 2 provides a critical analysis of unsupervised 

clustering techniques in machine learning and data mining. In chapter 3, we discuss the proposed 

OMCOKE algorithm following its predecessor MCOKE. In this chapter, we outline the MCOKE 

algorithm first and list some of its shortcomings and how we overcame those issues in the 

improved OMCOKE algorithm. The implementation of OMCOKE in WEKA ML tool is highlighted in 

Chapter 4. We detailed the evaluation measures used and compared our algorithm with some of 

the common overlapping clustering algorithms. We used multi-label datasets in the 

experimentation phase, and the results and analysis are presented in this chapter. We apply our 

algorithm to behavioural science in a case study in ASD screening which is detailed in Chapter 

5. Experimental analysis is conducted to show how the integration of unsupervised clustering in 

the classification techniques dramatically improves the prediction accuracy of ASD traits. Finally, 

we conclude the thesis in Chapter 6 by highlighting how the research issues raised in this chapter 

were addressed including the contribution of this thesis to the research domain. We also mention 

briefly possible research direction that can be undertaken to further enhance our algorithm. 
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Chapter 2  

Literature Review: Clustering Approaches 

2.1 Introduction  

Enormous amount of data is generated on a daily basis that pose significant challenges to extract 

information from them. This is what is commonly referred to as Big Data. The sheer volume, 

velocity, and variety of this data mean that much meaningful information is lost in this pile of 

data due to the fact that not enough resources are available to store and process them. One of 

the common machine learning techniques that can be used to mine and decipher this Big Data 

into meaningful information is clustering (Feyyad, 1996). For example, much data is collected 

on social media. Such techniques can be used to send advertisement based on how those 

individuals cluster together in certain groups. The main area of this thesis is in the field of 

Machine Learning and Data Mining. This chapter will present the background concepts on 

traditional clustering approaches. 

In order to extract meaningful information from the data and discover hidden patterns that can 

be used to predict certain trends, machine learning (ML) techniques are used. Some of these 

techniques include Association Analysis (rules that can predict relations between object variables 

in a large dataset), Classification (classifying an object to belong to one or more predefined 

classes), Clustering (grouping objects in clusters that share similar characteristics), and 

Regression (determining correlations between object attributes). 

Two fundamental concepts define ML techniques; supervised and unsupervised learning. In 

supervised learning, given an input object, we use a set of labelled training data to determine 

an output of continuous value (regression) or predict a class label associated with it 

(classification). By using the training dataset, supervised learning techniques would learn from 

the dataset after seeing some examples and use that knowledge to predict the output value 

(Thabtah et al., 2019; Thabtah et al., 2010). On the other hand, unsupervised learning 
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techniques such as clustering have no prior knowledge of the data labels. These techniques 

extract hidden patterns by looking at similarities between the data objects and grouping them 

into clusters. 

Many data mining algorithms have been developed to address the clustering problem of big data. 

These include partition-based clustering algorithms (such as K-Means and Fuzzy K-Means), 

hierarchical clustering algorithms (such as ROCK and BIRCH), density-based algorithms (such 

as DBSCAN and OPTICS), and model-based clustering algorithms (such as COBWEB and 

AutoClass) (Nagpal et al., 2013; Aggarwal & Reddy, 2014; Xu and Tian, 2015; Rodriguez et al., 

2019). 

There are two forms of clustering techniques; single membership and multiple membership 

techniques. In single membership techniques, objects belong to one cluster only and their 

calculated membership will either be 0 (does not belong to the cluster) or 1 (belongs to the 

cluster). Multiple membership techniques allow objects to belong to two or more clusters, 

allowing them to overlap (Ben N'Cir et al., 2015). 

In this thesis, we focus on distance-based overlapping clustering techniques. Distance-based 

methods can be used with almost any data type with an appropriate distance function thus 

making them very popular in the data mining literature (Aggarwal & Reddy, 2014). However, in 

this chapter, we briefly discuss other techniques that are also suitable to solve clustering 

problems. 

The chapter is organized as follows: Section 2.2 highlights the memberships in clustering 

including the taxonomy of clustering techniques. Section 2.3 looks into hierarchical clustering 

including some of its challenges and limitations. Section 2.4 discusses the single membership 

partitioning clustering and some of the related algorithms in this field. More specifically, 

subsection 2.4.1 discusses in length the popular K-means algorithm including its limitations. 

Section 2.5 discusses the multiple membership (overlapping) clustering algorithms. Finally, in 

section 2.6 we will conclude and provide a summary of this chapter. 



13 

 

2.2 The Clustering Problem and Membership Types  

Clustering involves the partitioning of a set of objects or data into clusters or subsets such that 

the objects or data in each subset or cluster contains similar traits based on measured similarities 

and data from different clusters are dissimilar (Saxena et al., 2017). In clustering, some 

structural characteristics are not known a priori unless some domain knowledge is presented in 

advance (i.e., there are no labels attached to the data patterns as in the case of supervised 

classification), thus deeming clustering a challenging problem due to this unsupervised nature 

(Hrushka, Campello, Freitas, & Carvalho, 2009); (Saxena et. al., 2017). 

In many instances, objects are assumed to belong to one cluster. These are called single 

membership. However, in reality, objects seem to have attributes that tend to overlap between 

one or more clusters and thus belong to multiple clusters. Objects with such characteristics are 

said to have multiple memberships.  

2.2.1 Single Membership 

Objects with single membership belong to one cluster only and their calculated membership will 

either be 0 (does not belong to the cluster) or 1 (belongs to the cluster). Dissimilarity measures 

are used to compare the object with the centroid, and a one is assigned to its nearest cluster 

while a 0 is assigned to the other clusters. This form of single membership grouping or is called 

crisp or hard-clustering.  

Single membership clustering can be defined as given a set S of subsets S1, S2, S3, S4 …. Sk, 

such that: 

    S1∩S2∩S3∩S4… ∩Sk =       (2.1)  

Where any instance in S can only belong to one subset and not belong to another subset. 

Table 2.1 below shows an example of a single membership where data sets of 3 objects are 

grouped into 3 clusters. Let's assume a membership table MT (of dimension N x C) such that 

MT(i,j) denotes a member of object i to cluster j where i = 1,…,N and j = 1,...,C and N=3 and 
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C=3. Each object in MT(i,j) is assigned a 1 (one) to denote membership to that cluster and a 0 

(zero) for non-membership of a cluster.  

Table 2.1 A single membership table example 

MT(i,j) 1 2 3 

1 0.0 1.0 0.0 

2 1.0 0.0 0.0 

3 0.0 0.0 1.0 

 

In this simple example, object 1 has membership degree of 0, 1, and 0 to clusters 1, 2, and 3 

respectively. Therefore, object 1 should belong only to cluster 2. The same applies to objects 2 

and 3 belonging to clusters 1 and 3 respectively for a single membership. 

2.2.2 Multiple Membership 

Overlapping clustering allows an object to have multiple memberships, i.e., to belong to two or 

more clusters. Commonly used technique is referred to Fuzzy clustering techniques that allow 

objects to belong to multiple clusters with different degrees (Höppner et al., 1999)     attained 

through some dissimilarity measure and assigning membership degrees to the objects. The 

objects are then assigned to the cluster that has the highest degree. Memberships to all clusters 

must however always equal to unity as defined in the Equation (2.2) below 

                       ∑ 𝑈𝑖𝑗 = 1𝑐
𝑖=1 ,   ∀𝑗 = 1, … 𝑛                                     (2.2)   

Where Uij is between 0 and 1, ci is the cluster centre and j is the data point from 1 to n.      

Table 2.2 below shows an example of soft-clustering where data sets of 3 objects is grouped into 

3 clusters. Let us assume that the same data in Table 1 above is run through some fuzzy 

algorithm. Each object in MT(i,j) is assigned a membership degree that must sum up to 1.  
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Table 2.2 Multiple membership table example 

MT(i,j) 1 2 3 

1 0.3 0.4 0.3 

2 0.5 0.4 0.1 

3 0.0 0.2 0.8 

 

In this simple example, object 1 has membership degree of MT(1,1) = 0.3, MT(1,2) = 0.4 and 

MT(1,3) = 0.3.  The sum of membership equals to 1. While we are able to identify the different 

degrees of belonging, object 1 has the highest degree of membership towards cluster 2, 

therefore it should belong to cluster 2. Likewise objects 2 and 3 should belong to clusters 1 and 

3 respectively. 

2.2.3 Similarities and Dissimilarities Measures 

In any given clustering process, the similarity and dissimilarity measures play a crucial role in 

assigning objects to their respective clusters by determining the distance of that object to that 

particular cluster centroid (Saxena and Wang, 2010). An object is classified as similar to another 

one if their distance measure between them is small, i.e., they are close to each other. Therefore, 

clustering algorithms use the similarity measures to cluster similar objects together, and those 

that are distant are assigned to other clusters (Rand, 1971; Milligan, 1981). A distance measure 

between an object Xi and Xj is denoted as d(xi, xj) where d(xi, xj) = d(xj, xi) i.e. the distance 

measure is symmetric.  

The most popular measures used for continuous data is the Euclidean distance (2.3) and 

Manhattan distance (2.4). 

Euc. Distance d(xi, xj) = ((xi1 – xj1)2 + (xi2 – xj2)2 + … + (xin – xjn)2)1/2   (2.3) 

Man. Distance d(xi, xj) = |xi1 – xj1| + |xi2 – xj2| + … + |xin – xjn|   (2.4) 
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Other commonly used distance measures in clustering are summarized in Table 2.2 below.    

Table 2.2 Similarity Measures in Clustering 

Distance Measure  Application in Clustering Reference Equation 

Euclidean 

 

Applied both for 

hierarchical and 

partitioning clustering, this 

is the most popular 

measure used for 

numerical datasets. 

Commonly used in K-

means algorithm and its 

extensions. 

Jain et. al (1999) 

Aggarwal and 

Reddy (2014) 

Saxena et al. 

(2017) 
(2.5) 

Normalized Cosine 

 

Used mostly in document 

similarity clustering, and 

text mining.  

Han et al. 

(2006). 

Nguyen et al. 

(2012) 

Saxena et al. 

(2017) 

(2.6) 

Extended Jaccard 

 

Used in word and 

document similarity 

clustering. 

Strehl et al. 

(2000) 

 
(2.7) 

Normalized Pearson Correlation 

 

Commonly used in 

similarity clustering of two 

variables and in gene 

expression data clustering. 

Jiang et al. 

(2004) 

Xu and Wunsch 

(2005)  

(2.8) 
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2.2.4 Clustering Taxonomy 

Clustering can be broadly viewed in two major categories; hierarchical clustering algorithms, 

and partitioning clustering algorithms (Fraley & Raftery, 1998; Rokach, 2005; Celebi et al., 2013; 

Han et al., 2011; Aggarwal and Reddy; 2014). These two have been widely researched and 

studied due to its various applications and their simplicity in their implementation (Aggarwal and 

Reddy; 2014). Hierarchical clustering develops a binary tree-based data structure that can be 

split at different levels to obtain clustering solutions. Partitioning clustering selects a set of initial 

clusters (seeds) and iteratively improve the partitioning of the objects to their clusters. Figure 

2.1 below shows the taxonomy of clustering techniques. 

 

Figure 2.1 Clustering Taxonomy 

Brief discussions on each of the clustering categories follows in the subsections below. 

2.3 Hierarchical Clustering 

This category clusters hierarchically following a dendrogram structure and using a similarity 

criterion either splits or merges the partitions to create a tree-like structure (Berkhin, 2006; 
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Carlsson and Memoli, 2010; Aggarwal and Reddy, 2014; Vijaya and Bateja, 2017). Hierarchical 

clustering is either agglomerative that start with a singleton (one-point) and recursively merges 

two or more clusters from bottom-up, or divisive where it starts with one cluster that contain all 

data objects and recursively splits them from top-down, until a stopping or termination criterion 

is attained (Murtagh, 1984; Jain, et al., 1999; Berkhin 2006). Figure 2.2 below shows the two 

hierarchical clustering dendrogram. 

 

2.3.1 Divisive Hierarchical Algorithms 

Divisive hierarchical is a top-down approach where it begins with one root that contains all the 

data points or the maximal cluster. This root is then recursively considered if it can be split 

further based on some dissimilarity distance producing a hierarchy similar to a binary tree or a 

dendrogram. This process is repeated until a singleton is obtained (Roux, 2015). 

There are two major considerations needed in using the divisive algorithm that could affect its 

performance.  

Firstly, the splitting method and criteria. As seen above, the technique for splitting the node into 

two parts is known as bisecting. The most widely used algorithm is the Bisecting K-means 

Figure 2.2 Clustering Dendrogram 
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(Steinbach et al., 2000) which uses K-means (McQueen, 1967) on the parent cluster C to 

determine the best split which maximizes Ward's distance (Ward, 1963) between two possible 

child clusters C1 and C2. The larger of the split cluster is selected as the new parent for further 

splitting, and the method is iterated until K clusters have been obtained. 

Secondly, deciding the appropriate cluster to split, i.e., whether the algorithm should choose the 

cluster with the most significant number of objects or select all clusters at each level. A more 

compromise alternative is selecting the cluster with the most substantial square error variance. 

2.3.2 Agglomerative Hierarchical Algorithms 

Agglomerative hierarchical is a bottom-up approach where all data points are represented at the 

bottom of the dendrogram or binary tree. These points are recorded in a dissimilarity matrix, 

and the closest sets of clusters are then merged. The dissimilarity matrix is then updated, and 

the process is repeated where the closest pairs that are less dissimilar are merged bottom-up 

until one maximal cluster remains that contains all the data points. 

The commonly used formula is the Lance-Williams dissimilarity update formula (Lance & 

Williams, 1967) to compute distance between the clusters by either considering single linkage 

(nearest neighbour – similarity is that between most similar member), average linkage (group 

average – considers average pair-wise similarity), and complete linkage (maximal – choosing a 

cluster pair whose merge has the smallest diameter) (Sneath & Sokal, 1962). 

2.3.3 Common Classical Hierarchical Algorithms 

One of the primary deficiencies of hierarchical clustering is that they have high computational 

time complexities making them not suitable for big data. However, hierarchical clustering 

algorithms have one major advantage in their generation of visual binary trees that make it easy 

for the users to see the clustering process visually as they are built. The following are some of 

the classical, popular algorithms that extend the hierarchical clustering techniques: 
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2.3.3.1 CHAMELEON 

Chameleon, by Karypis et al. (1999) is one the most effective hierarchical clustering algorithm. 

The agglomerative algorithm utilizes graph partitioning methods that use the relative closeness 

(proximity) and relative inter-connectivity as a determinant to merge two clusters. This 

technique makes the algorithm very effective in arbitrarily shaped clusters. However, the 

algorithms major limitation is that the algorithm performs well in low dimensional spaces and 

not in high dimensional ones (Sexena et al., 2017).  

2.3.3.2 CURE  

The Clustering Using REpresentative (CURE) algorithm by Guha et al. (1998) represents a cluster 

by using well-scattered points and then calculates the minimum distance between two 

representative points in any two clusters selected to merge the clusters. The agglomerative 

technique of using arbitrary scattered points make CURE effective in arbitrary shaped clusters 

and robust with outliers.  

2.3.3.3 ROCK 

The same authors of CURE proposed an algorithm called ROCK (Guha et al., 1999). The algorithm 

works similar to CURE that handles categorical data. However, a major limitation is that both 

algorithms have very high time computation complexities. 

2.3.3.4 BIRCH 

The Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) was proposed by 

Zhang et al. (1996; 1997). The algorithm produced a data structure called a clustering feature 

(CF) and CF-tree. The CF contained the number of data points, a linear sum of the data points, 

and the square sum of the data points in the clusters. The CF of any merged clusters is the sum 

of the CFs of the two original clusters whereas the CF-tree stores the structure of the entire 

dataset. 
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2.3.4 Challenges and Limitations of Hierarchical Clustering 

There are a few advantages of hierarchical clustering such as easiness to understand the 

hierarchical tree (Berkhin, 2006) and the ease of use of different similarity/dissimilarity distance 

functions (Xu et al., 2005). Major challenges and limitations include: 

 i) If misclassification is done, it is very difficult to reassign an object again (Berkhin, 

 2006). 

 ii) Extremely sensitive to outliers (Xu et al., 2005).  

 iii) Merge/fusion or split decisions once done are extremely difficult to be undone 

 (Fisher, 1995; Berkhin, 2006).  

 iv) Most hierarchical algorithms tend to have quadratic or higher complexity in the 

number of data points (Chakraborty & Nagwani, 2011; Aggarawal and Reddy, 2014) and thus 

not very suitable for large data sets. 

2.4 Partitioning Clustering 

This category divides data into several initial clusters’ partitions, and iteratively data is assigned 

to their closest cluster partition or centroid using a dissimilarity criterion. These produce 

partitions that can be deemed as hard (where partial memberships are not allowed, and all 

objects belong to one or more clusters) or fuzzy (where objects may belong to one or more 

clusters to a certain weight or degree) (Velmurugan and Santhanam, 2011; BenN'Cir et al., 

2015; Baadel et al., 2016). 

Hard partition algorithms allow all objects to belong to one or more clusters by dividing the data 

into smaller subsets and unlike hierarchical algorithms, where they do not revisit the points once 

linked together, gradually improve those clusters by using iterative relocation algorithms. K-

mean and its variants split the data into k clusters and represent them by the weighted average, 

i.e., mean of the centroids. However, the algorithm constraints object to single clusters. 
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This thesis primarily focuses on distance-based partitioning clustering algorithms and methods 

that extend K-means based on the squared Euclidean distance that will measure the linear 

separation between the clusters (for simplicity). This is provided in detail in sections 2.4.3 and 

the subsequent subsections. 

2.4.1 Density-based Partitioning Clustering 

This category cluster objects based on a local density criterion where objects are considered 

densely populated together and are separated by subspaces of low density (Kriegel and Pfeifle, 

2005; Kriegel et al., 2011). Sparse areas are often treated as noise data and are pruned from 

the dataset without assigning them to any clusters (Aggarwal & Reddy, 2014). Some of the 

major advantages of density-based algorithms are their effectiveness in finding arbitrary shaped 

clusters. Density-based algorithms identify 3 data points in a dataset namely: 

1) points that belong to a dense neighbourhood – the core points 

2) points that do not have a dense neighbourhood but still belong to a cluster – border points 

3) points that do not belong to any neighbourhood or cluster – noise or outliers 

Popular used density-based algorithms include DBSCAN (Ester et al., 1996) and OPTICS (Ankerst 

et al., 1999) which are briefly discussed below. 

2.4.1.1 DBSCAN 

DBSCAN (Ester et al., 1996) is a density-based algorithm that given a fixed-radius threshold, 

considers two data points to be connected if they both exceed the threshold and are within that 

neighbourhood radius. All density-connected points form a cluster(s) whereas any data points 

that do not form clusters are considered noise data and are disregarded. DBSCAN is considered 

to have a good time complexity of O(n*logn) (Xu and Tian, 2015). Some of the variations and 

implementation of DBSCAN include the X-tree (Berchtold et al., 1996) and the incremental 

version of DBSCAN by Ester et al. (1998). 
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2.4.1.2 OPTICS 

The OPTICS algorithm (Ankerst et al., 1999) works similar to DBSCAN except that the algorithm 

stores the clustering order (i.e., the order of the processed data points) as opposed to assigning 

cluster membership as done in DBSCAN. OPTICS uses a reachability-distance of a point to 

determine if a point is density-reachable to a core-point (i.e., points in a dense neighbourhood). 

Those that are reachable then belong to a cluster and those that are not are considered noise 

data and are disregarded. 

2.4.1.3 Challenges and Limitations of Density-based Clustering 

While density-based algorithms are considered to have a good time complexity and can find 

clusters with arbitrary shapes, some of the major challenges include: 

1) Due to the fixed-radius threshold parameter, it becomes difficult to identify and handle 

datasets of different densities (Aggarwal and Reddy, 2014) 

2) When the dataset has uneven density, the clustering result is of low quality (Xu and Tian, 

2015). 

3) By basing on higher density only, some subspaces of clusters cannot be easily distinguishable 

from the rest of the cluster (Grambeier and Rudolf, 2002)  

2.4.2 Model-based Partitioning Clustering 

The model-based partitioning clustering algorithms assume that the data objects match a 

statistical distribution model and those objects are clustered toward that statistical model. The 

idea is to build a statistical model for each cluster and find one that best fits (Meila and 

Heckerman, 2001; Fraley and Raftery, 2002). The user specifies the model in the form of 

parameters allowing the model to change during the learning phase. These models could be 

either hierarchical or partitional depending on the parameter assumptions entered by the user 

when running the algorithm. Popular classical model-based clustering includes COBWEB (Fisher, 

1987) and AutoClass (Stutz and Cheeseman, 1995).  
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2.4.2.1 COBWEB 

The algorithm COBWEB (Fisher, 1987) considers each node as a cluster or class that forms into 

a classification tree and integrates each object incrementally (instead of agglomerative or 

divisive manner) into the tree based on the best matching node. In this approach, every cluster 

is described intrinsically instead of it being described as a collection of data points. COBWEB has 

the ability to adjust the number of clusters without requiring the user to enter this parameter a 

priori. Due to its incremental nature, COBWEB has a good time complexity (Berkhin, 2006).  

2.4.2.2 AutoClass 

The Autoclass algorithm (Stutz and Cheeseman, 1995) that uses the Bayesian learning technique 

and based on prior distributions (models) determine the optimal number of classes. The user 

enters the probabilistic distribution (model space) for all the attributes in the dataset, and 

AutoClass iteratively assigns the objects to a cluster with such probability distribution until there 

are no more changes in the assignment of objects to the clusters. Thus, the output is usually a 

number of likely clustering outcomes based on the probability distribution of the attributes. 

Therefore, any wrong assumptions made by the user will significantly affect the output results. 

2.4.2.3 Challenges and Limitations of Model-based Clustering 

While model-based algorithms are considered to have a good time complexity and are able to 

adjust the number of clusters in its learning phase, some of the major challenges include: 

1) If user assumptions are false, the model output will be significantly erroneous (Aggarwal and 

Reddy, 2014) 

2) Model-based algorithms have a tendency to generate highly unbalanced trees (Berkhin, 

2006). 
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2.4.3 Distance-based Partitioning Clustering 

Distance-based methods are generally easy to implement due to their simplicity and can be 

applied in numerous scenarios. Popular distance-based algorithms include the K-means 

(MacQueen, 1967), K-Modes (Huang, 1998), CLARANS (Raymond & Han, 2002) and PAM 

(Partitioning Around Medoids) (Kaufman & Rousseeuw, 1990).  

This research focuses on distance-based partitioning clustering algorithms and methods that 

extend K-means based on the squared Euclidean distance which is fast and have low 

computational complexity (Borah and Ghose, 2009; Velmurugan and Santhanam, 2010) 

compared to hierarchical making them suitable for large data sets. In the following subsections, 

we will discuss the K-means and other overlapping algorithms that extend the K-means. 

2.4.3.1 K-Means  

Undoubtedly, K-means is the most widely used and most straightforward partitional clustering 

algorithm (Jain, 2010).  There are many variations of K-means algorithms that are designed to 

solve different clustering problems in the literature. Some of the variations of K-means include 

K-Medoids (Mirkin, 2005; Sheng and Liu, 2006), Fuzzy K-Means (Dunn, 1973; Bezdek, 1981), 

Genetic K-means (Krishna and Murty, 1999), Bisecting k-means (Steinbach, et al., 2000), K-

means++ (Arthur and & Vassilvitskii, 2007) and X-means (Pelleg and Moore, 2000) among 

others. There are many reasons attributed to why the K-means algorithm is so popular such as;  

a) it is very easy to implement,  

b) very versatile in that any part of the algorithm can be easily modified,  

c) it is guaranteed to converge (Selim and Ismail, 1984) at a quadratic rate (Bottou and Bengio, 

1995).  

The algorithm begins with first assigning K points as the initial cluster centres. This can be done 

randomly or by based on heuristics. Data objects are then assigned to their nearest cluster 

centre by calculating the distance using Euclidean distance measurement. The sum of squares 
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errors (objective function) is then calculated by squaring the Euclidean distances to each cluster 

centroid, and the object is assigned to the cluster with the smallest value. The recalculation of 

the centroids is taken as the average of the values of the objects that are part of that cluster.  

 

These steps are then iterated in a loop until the objects in each cluster do not change or until a 

maximum number of iterations are reached. Figure 2.3 above and figure 2.4 below provide a 

sample of the K-means algorithm and its corresponding flowchart. 

The K-means algorithm aims at minimizing the objective function defined in the Equation (2.9) 

below for the given set of centroids.  

𝐶 = ∑ ∑ ||𝑥𝑖 − 𝑐𝑘||
2

𝑥𝑖∈𝐶𝑘

𝐾

𝑘=1

  

                                                                                       (2.9) 

Where Ck is the kth cluster, xi is a point in Ck, and ck is the mean of the kth cluster. 

Input: A vector x1, x2, … xn, k number of clusters 

Output: k clusters 

procedure K-means 

{ 

1. Randomly select initial k number of centroids, C1, C2, …Ck 

2. Repeat 

3.  Assign each point to the closest centroid to form a cluster 

4.  For i = 1, i++, I =k 

5.   Recalculate the mean for each cluster centroid 

6.   Replace Ci with the mean of all the samples in cluster i 

7.  End for 

8. Until convergence criteria is met 

} 

Figure 2.3 K-means algorithm 
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Figure 2.4 K-means flowchart 

K-means clustering being a greedy-descent nature algorithm will converge to a local minimum 

(Selim & Ismail, 1984). For up to two-dimensional Euclidean space with an arbitrary number of 

k clusters, the K-means complexity is NP-Hard (Velmurugan and Santhanam, 2010; Manning et 

al., 2008; Everitt et al., 2001). 

2.4.3.2 Challenges and Limitations of K-Means Algorithm 

There are a few challenges and limitations to the K-means algorithms namely: 

1. Choosing the initial centroids 

2. Estimating the number of k clusters 

3. Works on numerical datasets only 

4. Sensitivity to outliers 
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A. Choosing the initial centroids 

Choosing the initial clusters largely affects the outcome of the algorithm (Jain et al., 1999; 

Bradley and Fayyad, 1998; Khan and Ahmad, 2004; Aggarwal & Reddy, 2014). This can be done 

randomly by picking K points as K centres as suggested in (MacQueen, 1967).  Forgy (Forgy, 

1965) suggested spreading the randomness of the initial location of the clusters. The idea being 

that this random selection is likely to pick points from the dense regions which may be good 

centres. However, by randomly selecting objects does not eliminate the possibility of picking an 

outlier for a centre. This can be minimized by having multiple runs of this method. Other heuristic 

approaches that have been proposed for cluster initialization includes Ward’s distance method 

(Ward, 1963) that uses the sum of squared errors to evaluate between two cluster distances as 

suggested in (Milligan, 1981). Kaufman’s method (Kaufman and Rousseeuw, 1990) selects the 

K centres sequentially by first choosing the most centrally located data object in the data set 

and subsequently choosing the other centres that have many data objects around it by a heuristic 

function. K-means++ (Arthur & Vassilvitskii, 2007) selects the first centroid randomly and 

subsequently chooses the next centroid which is farthest from the currently selected centroid 

based on a weighted probability score.  Bradley & Fayyad (1998) method randomly partitions 

the set into J subsets which are then combined into a superset clustered in by k-means J times 

initialized each time with a different centre. The centre set that gives the least SSE are 

considered the final centres. 

B. Estimating the number of k clusters 

As for estimating the number of K clusters in advance is not a simple feat considering that no 

prior knowledge of data is provided (Wagner et al., 2005). The ISODATA algorithm (Ball, 1965) 

was one attempt in determining the optimal K where K-means s first ran on the dataset to obtain 

the clusters which these clusters are then merged if the distance between them is less than a 

particularly given threshold or split if the standard deviation within the cluster exceeds the same 

threshold. The Silhouette Coefficient algorithm (Kaufman, 1990) takes into account the inter and 
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intra-cluster distances for any given data object. The average a1 of the distances is calculated 

for all points intra cluster for a given point x. The average a2 is then calculated for all other inter 

clusters that do not contain point x. These two values a1 and a2 are then used to estimate the 

Silhouette Coefficient of point x. The average of all the silhouettes becomes the width for all the 

dataset points. Other methods include the Gap statistic method (Tibshirani et al., 2001) that 

estimate the number of clusters using gap statistic, Calinski-Harabasz index (Calinski & 

Harabasz, 1974) among others.   

This goes to show that estimating the number of clusters is non-trivial and is a major challenge 

for the K-means algorithm. 

C. Works on numerical datasets only  

K-means also has a shortcoming in that it only works for numerical data and not categorical 

data. The K-mode clustering algorithm (Xu & Wunsch, 2005), a variation of the K-means, works 

for categorical data sets. The K-mode algorithm differs from K-means in that it uses modes 

instead of means to calculate the centroids and measures dissimilarity between the categorical 

data instead of the Euclidean distances between the objects. 

D. Sensitivity to outliers 

Another drawback for the K-means algorithm is that it is very sensitive to outliers. Since all data 

objects must be assigned to a cluster, an outlier can easily affect the mean of the data objects 

in that given centroid. K-Medoids algorithm (Mirkin, 2005; Sheng and Liu, 2006) addresses this 

problem by choosing the actual data points as the cluster prototypes.  The K-Medoid algorithm 

is further improved by the Partitioning Around Medoids (PAM) algorithm (Kaufman & Rousseeuw, 

1990) and the Clustering LARge Applications (CLARA) algorithm (Raymond & Han, 2002).  

The algorithm uses the actual data objects as prototypes and randomly assigns an object x to 

replace an object y which is represented in the cluster prototypes. Once this is done, the 

membership of all data points that belonged to the representative y are checked and if they are 

closer to x then y is swapped with x. The cost of swapping is computed as the absolute error 
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criterion for K-Medoids and is recalculated for every assignment of x and y as it obtains the final 

representative points for each cluster. This fact makes K-medoid computational complexity 

higher than that of K-means and thus not very suitable for big data sets. 

Further discussion on this topic is provided in Section 2.4.5 

2.4.4 Common Overlapping Distance-based Partitioning Clustering 

Many clustering algorithms are hard clustering techniques where an object is assigned to a single 

cluster. Overlapping partitioning clustering methods tend to relax or remove the constraints 

allowing overlaps between clusters to better fit any hidden structures in the data and assign data 

objects to one or more clusters building a non-disjoint partition of the data (Ben N'Cir et al., 

2015). This has several applications in real-life such as dynamic system identification, document 

categorization (a document belonging to different clusters), data compression, bioinformatics, 

image recognition, and classification, model construction, etc. among others (Höppner et al., 

1999; Bandyopadhyay and Maulik, 2002; Aggarwal and Reddy, 2014).  

There are several overlapping clustering algorithms which are graph-based clustering algorithms 

(Jonyer et al., 2001). Overlapping graph-based methods use greedy heuristics and may be 

applicable to community detection in complex networks (Fellows et al., 2011). However, it is 

worth mentioning that these algorithms have major limitations that do not make them practical 

for real-life problems as outlined by Pérez-Suarez et al. (2013) and are thus out of the scope of 

this research. Some of the mentioned limitations indicated are:  

i) They produce a large number of clusters in that analysing these clusters could be as difficult 

as analysing the whole collection.  

ii) There is a very high overlapping in the clusters which would essentially hinder getting useful 

information about the structure of the data.  

iii) They have a very high computational complexity thus making them unrealistic to apply them 

to real-life problems. 
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Extensions of the K-means that allow partitioning overlaps include Fuzzy K-means (Bezdek, 

1981), Kernel Overlapping K-means (KOKM) by (Ben N’Cir et al., 2010; Ben N’Cir and Essoussi, 

2012), Overlapping K-means (OKM) by Cleuziou (2008), Parametrized R-OKM (Ben N’Cir et al., 

2013) and Multi-Cluster Overlapping K-Means Extension (MCOKE) by Baadel et al. (2016). 

2.4.4.1 Fuzzy K-Means  

One of the commonly used soft-clustering techniques is the Fuzzy K-means (Bezdek, 1981) 

commonly referred to as Fuzzy C-means (FCM) (Bezdek et al., 1984). The algorithm works 

similar to the K-means where the algorithm minimizes the objective function (sum of squares 

error) until the centroid converges (Pedrycz, 2002). Other algorithms that are a variation of FCM 

to deal with non-numerical data sets include Fuzzy K-mode and Fuzzy K-medoid. Some 

extensions of FCM include Possibilistic C-means (Krishnapuram & Keller, 1996; Pal et al., 2005).  

The algorithm works similar to that of K-means and the solution will correspond to the local 

minimum of the objective function. The sum of squared errors (SSE) objective function is defined 

in the Equation (2.10) below: 

                                                 

                          (2.10) 

Where Ck is the kth cluster, xi is a point in Ck, ck is the mean of the kth cluster and w is the 

membership weight of point xi belonging to cluster Ck. β controls the fuzziness of the 

memberships such that when it approaches one it acts like k-means algorithm assigning crisp 

memberships.  

The algorithm minimizes this SSE iteratively and updates the membership weightage and 

clusters until convergence criteria are met or improvement over the previous iteration does not 

meet a certain threshold.  By assigning the memberships a weightage degree between 0 and 1, 

the objects are able to belong to more than one cluster with a certain weight hence generating 

soft partitions or clusters. The overall weight, however, must add to unity, i.e., 1.  Objects are 
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eventually assigned to clusters that have the highest degree of membership. If the highest 

degree of membership is not unique, then an object is assigned to an arbitrary cluster that 

achieves the maximum. By adding a constraint where the data object must belong to a cluster 

with the highest membership degree, a "1" is imposed on every object in the matrix thus 

degenerating it to hard-partitioning.  

2.4.4.2 Overlapping K-Means (OKM)  

The algorithm proposed by (Cleuzious et. al, 2008) initializes a random cluster prototype with 

random centroids as an image of the data. Optional threshold value can be entered by the user 

during the initialization step. The aim is to minimize the objective function given in the Equation 

(2.11) below. 

        (2.11) 

Where 𝜋𝑐 represents the cth cluster with xi ∈ ℝ .  

After calculating the SSE of the data objects to their centres using the Euclidean square distance, 

it assigns these objects to their nearest centroids. The algorithm then computes the SSE of the 

prototype and compares these objects with the prototype centre assignments to determine the 

mean of the two vectors to become the threshold to assign the objects to multiple clusters. Once 

the initial assignment of objects to their centroids is done, the mean between each cluster 

(threshold) is used to determine if the object should belong to the next nearest cluster as well. 

OKM uses a heuristic to determine the set of possible assignments by sorting the clusters from 

nearest to furthest and assigning the object to the nearest cluster. If the mean mx of the clusters 

already associated with the object plus the mean my of the next nearest cluster is lower than 

the threshold (mean of all the clusters associated with the object), then these two clusters are 

associated, and the object will belong to that cluster as well. This assignment procedure is 

iterated until the stopping criteria, or the maximum number of iterations is met resulting in new 

coverage of the data objects in multiple clusters.  
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2.4.4.3 Weighted Overlapping K-Means (WOKM)  

The WOKM is an extension of the OKM and Weighted K-means (Huang et al., 2005) that 

introduces a weighting vector 𝜆𝑐 of a subset of attributes relative to a given cluster c that may 

be assigned to that cluster and a vector 𝛾𝑖of weights relative to the representative 𝜙(xi) with the 

aim of minimizing the objective function given by Equation (2.12) below. 

           

          (2.12) 

The objective function is optimized by first assigning each data object to the nearest cluster 

while minimizing the error, and secondly by updating both the cluster representatives and the 

set of cluster weights. In this algorithm, the distance feature is also weighted by the feature 

weights contrary to the standard K-means which ignores the weights of any particular feature 

and considers all of the features to be equally important. 

2.4.4.4 Kernel Overlapping K-Means (KOKM)  

The Kernel Overlapping K-means (KOKM) algorithm by BenN’Cir & Essoussi, (2012) and 

BenN’Cir, Essoussi, & Bertrand, (2010) is a variant of OKM that utilizes the use of kernel methods 

for overlapping clustering. The authors use two variants in their method; one is a kernelization 

of the Euclidean metric, similar to the one used in OKM, that calculates the distances between 

the objects and the clusters in a high dimensional mapping space; the second variant performs 

all the clustering steps where data is implicitly mapped.  

The Parameterized R-OKM by BenN’Cir et al., (2013) algorithm is another variant of OKM that 

lets users regulate the overlaps via a parameter. The algorithm is based on the minimization of 

the objective function given by Equation (2.13) below.  

 

         (2.13) 
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where α ≥ 0 and is set by the user.  

As the size of the parameter α increases, the algorithm builds cluster with reduced overlaps, and 

vice-versa when the size of the parameter approaches zero. The PR-OKM algorithm is reduced 

to OKM when this parameter is set to exactly zero. 

2.4.4.5 Multi-Cluster Overlapping K-Means Extension (MCOKE) 

The MCOKE algorithm introduced by Baadel, et al. (2016) consists of two procedures. The first 

part is the standard K-means clustering that iterates through the data objects in order to attain 

a distinct partitioning of the data points given a priori number of k clusters by minimizing the 

distance between the objects and the cluster centroids. The algorithm is based on the 

minimization of the objective function given by Equation (2.14) below. 

 

           (2.14) 

Where vi is the centre of cluster µi, and d(xi, vi) is the Euclidean distance between a point xi and 

vi. The second part creates a membership table that compares the matrix generated after the 

initial K-means run to maxdist (the maximum distance an object allowed to belong to a cluster). 

Further details of this algorithm and its improved Outlier detection version are discussed in 

Chapters 3 and 4. 

2.4.4.6 Challenges and Limitations of Overlapping Distance-based 

Partitioning Clustering Algorithms 

All overlapping distance-based partitioning clustering that extend the K-means algorithm inherit 

the same limitations and challenges facing the parent K-Means algorithm. These include choosing 

the initial centroids, estimating the number of k clusters, sensitivity to outliers, and their ability 

to work only on numerical datasets. These are all described in section 2.4.3.2 above.  
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One other major limitation of overlapping clustering algorithms is their abilities to identify objects 

at the borderline that are a bit sparse from other cluster centroids. These objects tend to be cut 

from the dataset since the algorithms discard them as outliers. The algorithms do not have the 

capability of storing the outliers. 

With the exception of OMCOKE, the overlapping clustering algorithms require users to set the 

number of labels in the dataset to be used by the algorithm prior to running them. This is by no 

means an easy feat especially when details of the dataset is not known in advance. 

 

2.4.5 Outlier Detection in Partitioning Clustering 

Outliers are data objects or points that do not conform to the normal behaviour or model of the 

dataset, hence are deemed inconsistent or grossly different (Berkhin, 2006). This data can be 

erroneous, but could also be classified as suspicious data in fraudulent activity; that could be 

useful for fraud detection, intrusion detection marketing, website phishing sites, etc.  

Outlier detection is considered a task in itself; research in the data mining domain has focused 

on an efficient and optimal way to detect distance-based outliers. Outlier detection surveys such 

as by Chandola et al., (2009), Bay & Schwabacher, (2003), and Kadam, & Pund, (2013), 

discussed several approaches used to tackle anomalies and noise data. In Ramaswamy, Rastogi, 

& Shim, (2000), the authors provide methods that would handle mine outliers efficiently in large 

datasets. Other recent studies have devised methods in clustering analysis that will prune or 

screen out outliers from the dataset such as Liu, Wu & Fu, (2018), Barai & Dey, (2017), and Gan 

& Ng, (2017. For example, Yu, Luo, Chen, & Ding, (2016) proposed an outlier detection method 

to identify and eliminate outliers in the dataset forming an outlier-eliminated dataset (OED). The 

authors then applied the K-means algorithm on the OED, thereby improving the accuracy of the 

clustering. 
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Similarly, the Barai & Dey, (2017) approach is to divide their algorithm into two steps. The first 

step calculates the threshold value used in detecting outliers by taking the average of the 

maximum and minimum values of the pairwise distance of all data. Each data point is then 

reiterated and compared to the threshold. Those that have a distance value greater than the 

threshold are deemed as outliers and are subsequently tossed out of the dataset. The second 

step then runs the K-means algorithm without outliers, thus improving the clustering process. 

Liu et al., (2018) also propose a two-phase approach for their clustering with the outlier removal 

(COR) algorithm. In the first phase, their method runs the K-means algorithm to generate 

primary partitions and discover outliers. The outliers here are identified as objects with large 

distances to their nearest centroid. The second phase removes the identified outlier objects, and 

the remainder is partitioned into k clusters. 

While many studies focus on pruning and discarding the outliers to improve the classification 

process, rarely do we find algorithms that detect outliers simultaneously while performing 

clustering (Gan & Ng, 2017). The K-means with outlier removal (KMOR) algorithm is similar to 

the standard K-means algorithm but introduces an outlier cluster (k+1) that takes into account 

objects that do not fit in the k defined clusters. The algorithm identifies outliers as objects that 

are above a calculated threshold which is defined by the average distance multiplied by a specific 

parameter greater or equal to 0. The average distance is calculated during the clustering phase. 

The KMOR algorithm requires three parameters such as the k number of clusters, the maximum 

number of outliers n0 (to control the number of objects being assigned as outliers), and finally, 

the third parameter to classify outliers and those that are not. Two additional parameters are 

used to help terminate the algorithm. As noted above, the KMOR algorithm requires users to 

define the maximum number of outliers, including a parameter to classify the outliers and those 

that are not. This is impractical in real-life scenarios in unsupervised datasets where no prior 

knowledge of the data is given. Also, their method requires additional parameters to help 

terminate the algorithm. This is not an easy feat to be determined by novice users. 
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Unlike other algorithms that prune the outliers and discard them, our algorithm OMCOKE 

(discussed in detail in Chapter 3 and 4) saves them on a newly created outlier cluster during the 

iteration process.  Our study considers the same idea as the KMOR algorithm and introduces an 

outlier cluster k+1 that stores the anomalies or outlier objects separately from the regular 

instances.  Our algorithm does not require users to enter parameters to terminate the algorithm 

or to identify the maximum number of outliers in the dataset; this makes it more practical in 

machine learning. None of the overlapping K-means algorithms above have the capability to 

detect outliers and store them for additional scrutiny. Thus, we provide additional value to the 

literature by introducing this new overlapping clustering method. 

2.4.6 Classification Techniques used in the Thesis Case Study 

Since this thesis is about overlapping clustering techniques, we briefly review hereunder some 

of the classification techniques that are used in the case study chapter (Chapter 5). The 

classification techniques were used to measure the proposed framework in the case study. The 

five classification techniques used were RIPPER (Cohen, 1995), PART (Frank & Witten, 1998), 

Random Forest (Breiman, 2001), Random Trees (Cutler & Zhao, 2001), and Artificial Neural Network 

[ANN] (Witten & Frank, 2005) 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is a classification technique that 

divides the dataset by looking at the least frequent class set and building it by adding attribute values 

to its body. While RIPPER adds the attributes to the body and generates a rule, it simultaneously 

prunes some of the rules to reduce redundancy.  

PART is a classification technique that uses a mathematical formula called the information gain (IG) 

to build partial decision trees from the input dataset which are then converted into rule sets using 

a rule induction strategy. The partial tree (sub-tree) is discarded from the dataset once a path 
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leading to its leaves is converted into a rule. The process is repeated until all instances in the dataset 

are removed and the dataset becomes empty. 

Artificial Neural Network (ANN) is a technique that uses inter-connected processing components 

commonly referred to as neurons to convert desired output from a given input dataset. The neural 

network (output) heavily relies on hidden nonlinearity of the neurons features and weights in the 

training phase of the classifier to form feature classes that are based on the network’s connectivity 

which is then used in the classifier predictive model. 

The random tree (RT) algorithm applies a bootstrap aggregating mechanism that combines 

classifications of randomly generated set of data for constructing a decision tree. Each node in a RT 

is split based on the best subset features selected at that node. In a RT, every leaf defines a linear 

model optimized for that leaf. Instead of computing the best split for any given node in a tree, the 

algorithm considers a random subset of all data attributes for that particular node to determine the 

best possible split allowing a reasonably balanced tree. 

The random forest (RF) algorithm uses an ensemble of random trees where the value of each tree 

is calculated independently by using random features to split each tree node to generate classes in 

the training phase of the classifier. Each tree in the training data is considered as a base classifier 

used to determine class labels from the unlabelled data, and the mode of all the classes is used as 

the output to predict.    
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2.5 Chapter Summary 

In data mining and machine learning, clustering of big data is achieved through various 

techniques. In this chapter, we critically reviewed the two common clustering techniques in ML 

namely hierarchical and partitioning clustering algorithms. In particular, we analysed the 

distance-based partitioning algorithm K-means and looked at some of the overlapping algorithms 

that extend the K-means algorithm. Furthermore, we outlined some of the challenges affecting 

the K-means algorithm and a bit of focus on the outlier detection issue. 

In the next chapter, we propose our overlapping algorithm MCOKE (Multi-Cluster Overlapping K-

Means Extension) and discuss some of the strengths and weaknesses of the algorithm. We 

further propose an improved version of the algorithm that handles outliers. 
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Chapter 3  

Outlier based Multi-Cluster Overlapping K-means 

Extension (OMCOKE) 

 

3.1 Introduction  

Many clustering algorithms in unsupervised learning constrain objects to single clusters (i.e., 

objects belong to exactly one cluster) while ignoring the fact that some objects may have 

attributes that can belong to more than one cluster. Undoubtedly, K-means is the most widely 

used partitional clustering algorithm (Jain, 2010). There are many reasons attributed to this such 

as; a) it is straightforward to implement, b) very versatile in that any part of the algorithm can 

be easily modified, c) it is guaranteed to converge (Selim and Ismail, 1984) at a quadratic rate 

(Bottou and Bengio, 1995). Thus, the algorithm has been used extensively to solve non-

overlapping clustering problems. 

Overlapping clustering methods remove the constraints and assign objects to one or more 

clusters building a non-disjoint partition of the data. Overlapping clustering algorithms such as 

the popular Fuzzy C-Means (FCM) require a particular threshold value be set a priori to determine 

the cut-off for an observation to belong to multiple clusters. For example, in fuzzy algorithms, if 

an object exceeds the predefined threshold, then it can be assigned to multiple clusters. 

However, if the nature of the dataset is not known in advance and the threshold is set to a large 

number, then observations that have membership values lower than the threshold may not be 

assigned to any cluster at all since the clusters are sensitive to the threshold values. K-means 

extended algorithms have one major drawback in that they are very sensitive to noise data. 

Noise data can be considered as outliers in the dataset and do affect the minimization of the 

objective function of the sum of squared errors (SSE).   
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 This chapter proposes a new clustering method that extends the K-means algorithm that will 

assign observations to multiple clusters without the need for pre-defining the minimum belonging 

threshold. Whenever the algorithm is run, it calculates the maximum distance an of any 

observation that belongs to a given cluster and uses that as the default threshold of belonging. 

This calculated distance is assigned to local variable maxdist and is henceforth used to assign 

the observations that have a distance lower than it to multiple clusters. The major benefit of this 

is that users do not have to pre-define the minimum threshold belonging a priori as this will be 

calculated in the algorithm and will change depending on the nature of the dataset.  

The chapter also proposes an enhancement of the MCOKE algorithm that is able to detect the 

outliers (noise data). While the calculation of maxdist can be affected by the inclusion of outliers 

in the first round of the iteration, we introduce another variable that calculates the average 

distance (averdist) between the object and the centroid for all clusters. Averdist acts as a new 

threshold for the inner radius between the object and the centroid. Another variable 

maxdistThreshold defines the outer radius distance to be considered as the outer boundary, 

which becomes the cut-off point of objects that are deemed outliers. Once one or more objects 

have been identified as outliers, the algorithm assigns them together in one cluster, known as 

the Outlier cluster (k+1). The major advantage of this is that instead of pruning and discarding 

these objects, we save them in order to study the noise data. For example, in real-life scenarios 

such as in a data security environment, noise data could mean an intrusion attempt. 

The proposed clustering method MCOKE was first implemented in a web-based application using 

JavaScript in order to evaluate proof of concept. OMCOKE has been implemented in Java within 

the Waikato Environment for Knowledge Analysis (WEKA) environment. WEKA is an open-source 

application that can be downloaded for free and may benefit different stakeholders such as 

students, researchers, or managers that are interested in data analysis. 

We have conducted experiments using real-life multi-label datasets from Mulan: A Java Library 

for Multi-Label Learning repository (more details in Chapter 4) indicate that the proposed 
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OMCOKE algorithm is better in its Precision accuracy compared to some of the commonly used 

overlapping clustering algorithms. 

The rest of this chapter is structured as follows: the proposed algorithm is discussed in section 

3.2. Section 3.3 details the enhancements made to the algorithm. Section 3.4 provides a 

comprehensive example of the different steps taken by OMCOKE algorithm in the clustering 

process. OMCOKE features compared to other overlapping clustering algorithms is given in 

sections 3.5 followed by the chapter summary in section 3.6 respectively. 

 

3.2 MCOKE  

The proposed MCOKE algorithm consists of two phases. The first phase is the standard K-means 

clustering that iterates through the data objects in order to attain a distinct partitioning of the 

data points. The algorithm begins with first assigning k points as the initial cluster centres. This 

can be done randomly or based on heuristics. Data objects are then assigned to their nearest 

cluster centre by calculating the distance using Euclidean distance measurement. The sum of 

squares errors (objective function) is then calculated by squaring the Euclidean distances to each 

cluster centroid, and the object is assigned to the cluster with the smallest value. The 

recalculation of the centroids is taken as the average of the values of the objects that are part 

of that cluster. These steps are then iterated in a loop until the objects in each cluster do not 

change or until a maximum number of iterations are reached. 

K-means clustering being a greedy-descent nature algorithm, it will converge to a local minimum 

(Selim & Ismail, 1984) with an arbitrary number of k clusters. The K-means algorithm does 

require two things a priori from the users. One is first to choose the initial centroids, and two, to 

estimate the number of k clusters in advance. Choosing the initial clusters largely affects the 

outcome of the algorithm. This can be done randomly by picking k points as k centres as 

suggested in (MacQueen, 1967).  Forgy (Forgy, 1965) suggests spreading the randomness of 

the initial location of the clusters. The idea being that this random selection is likely to pick points 
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from the dense regions which may be good centres. However, this does not eliminate the 

possibility of picking an outlier for a centre. This can be minimized by having multiple runs of 

this method. Other heuristic approaches that have been proposed for cluster initialization 

includes Ward's distance method (Ward, 1963) that uses the sum of squared errors to evaluate 

between two cluster distances as suggested in (Milligan, 1981). 

Let X = {x1, x2, x3 … xn} be the data, cl = ∑
𝑥

𝑛𝑥∈𝐶𝑘  be the cluster Cl centroid, n be the total 

number of data objects in the cluster Cl, and k be the number of clusters. The objective function 

of K-means will be defined in the Equation (3.1) below. 

  

𝑆𝑆𝐸 = ∑ ∑ ||𝑥 − 𝑐𝑙||
2

𝑥∈𝐶𝑘

𝐾

l=1

  

            (3.1) 

As we minimize the K-means objective function during the iteration process, it maximizes the 

distance function (Xiong et al., 2009). The MCOKE algorithm records the maximum distance of 

any of the data object belonging to a cluster centroid in a local variable called maxdist.  In each 

iteration, the algorithm re-computes the cluster centroids to a more sensible location until the 

centroids do not change. Steps 1 through 9 of figure 3.1 below illustrates this process.  

The variable maxdist is used in our algorithm as the global membership threshold to calculate 

the belonging of observation to a different cluster other than the one initially assigned by the K-

means algorithm. For example, if an object is assigned to cluster 1 has a membership distance 

to cluster 2 shorter than the saved maxdist value, then that object may also belong to cluster 2. 

This comparison is made by iterating through all the objects and re-assigning them new 

belongings and achieving the multi-cluster assignments which are done in phase 2 of MCOKE 

which is illustrated in steps 11 through 16 of the pseudocode in figure 3.1 below.  

After an initial run of the first step (that includes steps 1 to 9 below), the algorithm will return 

three things. Firstly, a vector of all the data objects with their assignment to each cluster. 
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Secondly, a vector containing the final list of the cluster centroids. This vector of all centroids 

will be used in the second part of the algorithm to determine if the objects should belong to 

them. Thirdly, the maxdist as determined by the Euclidean distance of the objects to the 

centroids is made the global threshold to compare the similarity of the objects to other clusters. 

The second part of the algorithm draws an initial membership matrix table with hard clustering 

result of the data objects. The algorithm softens these partitioning by iterating through the 

membership matrix and comparing the objects to the final centroids vector using the threshold 

maxdist and reassigning them to the clusters if the distance of the object to those centroids is 

less than maxdist. Let the vector results produced from the K-means algorithm generate a 

Figure 3.1 MCOKE Pseudocode 

Input: A vector x1, x2, … xn, k number of clusters 

Output: membership matrix 

procedure MCOKE 

{ 

1. Randomly select initial k number of centroids, C1, C2, …Ck 

2. Repeat 

3.  Assign each point to the closest centroid to form a cluster 

4.  For i = 1, i++, I =k 

5.   Recalculate the mean for each cluster centroid 

6.   Replace Ci with the mean of all the samples in cluster i 

7.   Update maxdist with highest distance of object assigned to centroid 

8.  End for 

9. Until convergence criteria is met 

10. Draw initial membership matrix 

11. Repeat 

12.   Compare the distance of each object assigned to centroid with maxdist 

13.   If distance to another centroid < maxdist 

14.    Assign object to that cluster as well 

15.   End if 

16. Until all objects in dataset are traversed 

 

} 
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membership table MT (of dimension N x C) such that MT(i,j) denotes a member of object i to 

cluster j where i = 1,…,N and j = 1,...,C. Each object in MT(i,j) is assigned a 1 (one) to denote 

membership to that cluster and a 0 (zero) for non-membership of a cluster. The algorithm then 

iterates through the table MT and compares the distance of the objects assigned to their 

respective clusters with the other final centroids in the table. If the object distance is less than 

the maxdist, then that object is also assigned to that cluster centroid, and the membership table 

is updated with a 1 (one). 

Since the MCOKE algorithm utilizes the K-means in the first phase, it will suffer a major drawback 

in that the objective function of K-means is designed to optimize while under the constraint of 

assigning the data objects to non-overlapping partitions. This means that all objects will be 

assigned to at least one cluster including noise or outliers which may then affect maxdist as a 

good predictor to overlap other objects in multiple clusters. 

 

3.3 OMCOKE  

Outliers are data objects or points that do not conform to the normal behaviour or model of the 

dataset, hence are deemed inconsistent or grossly different (Berkhin, 2006).  

The proposed method is an enhancement of the MCOKE algorithm that allows objects to 

overlap and belong to more than one cluster based on their distance comparison to the 

maxdist variable. Maxdist calculates the largest distance of any object assigned to any centroid 

during the partitioning phase for it to belong to a particular cluster. That distance is used as an 

outer radius of similarity threshold and as the benchmark to allow objects to belong to other 

clusters that were not initially assigned to them, allowing them to overlap. However, K-means, 

being a greedy algorithm, guarantees all objects to be assigned to a cluster including any 

outliers; hence the maxdist radius benchmark could easily be influenced by outliers. 
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We introduce another variable that calculates the average distance (averdist) between the 

object and the centroid for all clusters. Averdist acts as a new threshold for the inner radius 

between the object and the centroid.  

            𝑎𝑣𝑒𝑟𝑑𝑖𝑠𝑡 =
1

𝑛𝑖
∑ ||𝑥𝑖 − 𝐶𝑘||2

𝑥𝑖∈𝐶𝑘
                                                  𝑖 = 1, 2, … 𝐾                         (3.2) 

Where Ck is the kth cluster, xi is a point in Ck. 

It is assumed that most objects being clustered will fall close to the inner radius threshold (i.e., 

close to their cluster centroid) that is based on the average distance of all objects belonging to 

the cluster centroids. Anomalies or outliers, therefore, tend to be further away from their 

closest cluster centroid. Objects that have a distance greater than the inner radius but less or 

equal to the outer radius (maxdist) are subject to further scrutiny and are flagged to ensure 

they are not outliers on the border of the clusters. Therefore, the maxdistThreshold defines the 

outer radius distance to be considered from the outer boundary, for example, 0.98 will mean 

the area covered inside the outer boundary for objects is not to be considered an anomaly. 

This logic is based on the assumptions that: 

a) Anomalies tend to be in sparse clusters, whereas normal instances usually belong to dense 

clusters 

b) Anomalies tend to be far from the closest cluster centroid, whereas normal instances tend to 

be near their closest cluster centroid.  

In cases where some knowledge of the data is known beforehand, this value can also be 

adjusted by the user before running the algorithm.  
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This modification logic is summarized in the pseudocode provided below. 

1. For each xi 𝜖 Ck  

2. Do 

3. If (dist (xi, centroid Ck) ≤ averdist) 

4. Cluster ← xi 

5. Else  

6.  If (dist (xi, centroid Ck) ≥ maxdist * maxdistThreshold) 

7.   Outlier_Cluster  ← xi 

8. Else 

9.  Cluster ← xi 

10.         End if 

11. End if 

Figure 3.2 Outlier detection Pseudocode 

 

In Step 6 of the code above, the area covered by the maxdistThreshold is multiplied by the 

maxdist, calculated as a percentage of the overall maximum distance for any object belonging. 

This acts as the cut-off point, and any object that has a distance value greater than the upper 

percentile of this value is deemed an outlier. Upon identification of at least one outlier, the k 

number of clusters entered by the user prior to running the method is incremented by 1 on the 

fly; the outlier object is assigned to this newly created cluster. All other identified outliers, a 

subset S from the initial population, are assigned to belong to this newly created cluster. Once 

an outlier is detected, the algorithm adds k+1 clusters as the new output vector with the 

outlier cluster indexes listed as part of the output. This allows for further investigation of those 

data points as opposed to discarding them as is usual. When no outliers are detected, the 

algorithm will cluster with overlaps without incrementing the number of k clusters. 

Our approach adds immense value to the learning process as we save these data objects to 

investigate and understand their characteristics. These data objects could potentially be a 

result of an imbalanced data set with high cardinality (i.e., natural overlaps) and perhaps the k 
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number of clusters, which is defined a priori, can be revised to accommodate the data and 

allow the algorithm to fit the clusters better. 

Outliers could also indicate suspicious data objects with malicious intent. Therefore, an outlier 

cluster that can be investigated has profound real-life implications such as in e-banking, 

website phishing, cybersecurity, or medical screening. For example, in cybersecurity, historical 

data can reveal acceptable statistical trends through the data patterns and how they are 

clustered together. Any outlier objects outside the regular clustered trends will automatically 

raise red flags. Such red flags can be used in data analytics to alert the user of a potential 

security threat or an intrusion attempt. 

3.4 Example on OMCOKE  

In this section, a comprehensive example for the reader is provided to demonstrate the OMCOKE 

algorithm steps. A Sample dataset is provided with two attributes (A & B) in table 3.1 and figure 

3.3. For example, consider the following sample data with the input vector [40,4; 37,4; 45,4; 

29,2; 38,5; 38,6; 38,3] and a user-defined k as 4.  

 

Table 3.1 OMCOKE Sample dataset 

    

    

          

     

 

 

 A, B 

STRATEGY 40,4 

COMPUTERS 37,4 

ECON 45,4 

ENGLISH 29,2 

MATH 38,5 

STATISTICS 38,6 

E-BUSINESS 38,3 

Figure 3.3 OMCOKE Sample dataset 
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3.4.1 OMCOKE Algorithm Step 1 

In this example, data is run with k clusters initialized to 4. The user provides the value of k. The 

algorithm splits the data into partitions based on k disjoint initial groupings or clusters and using 

the objective function iteratively improving the quality of the partitions. Each point is assigned 

to its closest centroid while recalculation of the centroid of each cluster is done while checking 

the convergence of the objective function. Once the convergence criteria are met and there are 

no changes in the clusters, all objects in the dataset would be assigned to their closest centroid. 

The following table 3.2 and figures 3.4 and 3.5 below demonstrate the cluster assignment for 

each data points after the K-means algorithm run. 

 

Table 3.2 K-means output 

 

 

 

        

 

 

The unlabelled data is now clustered according to their distance to their closest centroid. The K-

means algorithm assigns each data object to a cluster. The membership of those objects will 

have a value of 0 (zero) if it does not belong to the cluster and a value of 1 (one) if it belongs 

to that cluster.  

3.4.2 OMCOKE Algorithm Step 2 

The MCOKE algorithm calculates the most significant distance an object is assigned to any cluster 

and records this to the local variable maxdist which then iterates and compares it to every object 

pair in the clusters. If the object belonging to a particular cluster has a shorter distance to 

VECTOR C0 C1 C2 C3 

40,4 0 1 0 0 

37,4 1 0 0 0 

45,4 0 1 0 0 

29,2 0 0 0 1 

38,5 0 0 1 0 

38,6 0 0 1 0 

38,3 1 0 0 0 
Figure 3.4 Initial groups Figure 3.5 Initial clusters 
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another cluster than the value of maxdist, that object is also assigned to the new cluster allowing 

it to belong to multi-clusters. Table 3.3 and figures 3.6 and 3.7 below demonstrate the cluster 

assignment after the MCOKE algorithm completes.   

 

Table 3.3 OMCOKE Output 

 

 

Objects that have a membership to a cluster are still assigned a 1 (one) and those that do not 

are assigned a 0 (zero), i.e., full memberships to the multiple clusters. There is no partial 

membership based on some weightage criteria for the objects as in fuzzy algorithms. Similar to 

K-means, the MCOKE algorithm also gets affected by noise or outlier objects. In the example 

above, it is evident that the object in cluster C1 does not belong with the rest. However, due to 

the constraints in the algorithm, this object is also assigned a cluster from the k initialized by 

the user. This shortcoming is evident in other algorithms such as the overlapping K-means 

(OKM).  

3.4.3 OMCOKE Algorithm Step 3 

In order to overcome this, the enhancement in OMCOKE looks at the average distance of all 

other objects as a guideline to determine the inner circle belonging for each object. Before 

running the algorithm, the user is asked to enter a value for maxdist threshold, the radius 

VECTOR C0 C1 C2 C3 

40,4 1 0 1 0 

37,4 0 0 1 1 

45,4 1 0 0 0 

29,2 0 1 0 0 

38,5 0 0 1 1 

38,6 0 0 0 1 

38,3 0 0 1 1 

Figure 3.4 Multi-clustered groups 

Figure 3.5 Overlapping clusters 
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distance to be considered from the outer boundary, for example, 0.98 will mean the area covered 

inside the outer boundary for objects is not to be considered an anomaly.  

This is then used as a cut-off to determine an object as an outlier. The object in C1 is thus easily 

identified as an outlier, and instead of confining the assignment of that object to one of the user-

defined k clusters, a new outlier cluster is initialized on the fly (k+1) in the algorithm, and the 

user k number of clusters are only used to group the remaining objects. Table 3.4 and figures 

3.8 and 3.9 below demonstrates this. 

Table 3.4 Outlier Cluster 

  

 

3.5 OMCOKE versus other Overlapping Algorithms 

In the research literature of clustering, a few overlapping algorithms developed which extend 

the K-means algorithm. Overlapping partitioning clustering methods tend to relax or remove the 

constraints allowing overlaps between clusters; this better fits any hidden structures in the data 

and assign data objects to one or more clusters building a non-disjoint partition of the data 

(Barai & Dey, 2017). 

Extensions of the K-means that allow overlaps include Kernel Overlapping K-means (KOKM) by 

BenN’Cir & Essoussi, (2012) and BenN’Cir, Essoussi, & Bertrand, (2010)., Overlapping K-means 

VECTOR C0 C1 C2 C3 O 

40,4 1 0 1 0 0 

37,4 0 0 1 1 0 

45,4 1 1 0 0 0 

29,2 0 0 0 0 1 

38,5 0 0 1 1 0 

38,6 0 0 0 1 0 

38,3 0 0 1 1 0 Figure 3.9 Grouping with Outlier Figure 3.8 OMCOKE K+1 Clusters 
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(OKM) by Cleuziou, G. (2008) & (2009), Parametrized R-OKM by BenN’Cir et al., (2013) and 

Multi-Cluster Overlapping K-Means Extension (MCOKE) by Baadel, Thabtah & Lu (2016). 

A few distinctions can be observed between these algorithms and the one we are proposing. 

These are listed as the following:  

 Unlike the other algorithms, the proposed one does not require the user to determine 

the threshold to be used for overlapping assignments. This is calculated in the algorithm 

and will differ depending on the nature of the data. The maxdist threshold (inner 

radius) is the desired cut-off to be used based on the maximum distance value 

calculated in the algorithm. 

 The proposed algorithm does not require users to set a priori the number of labels in 

the dataset to be used in the calculation of the overlaps of the output data clustering. 

 While other overlapping algorithms identify outliers in the dataset, none creates a new 

outlier cluster on the fly to store them. The proposed algorithm increments user entered 

k number of clusters by 1 and assigned the outliers to this newly created outlier cluster. 

This is vital information for investigation in the fields of cybersecurity and online 

banking as such outliers could indicate fraud activities. 

 

3.6 Chapter Summary 

In this chapter, a novel algorithm OMCOKE has been proposed. The algorithm differs from other 

overlapping algorithms in that it does not require a similarity threshold to be defined a priori 

which may be difficult to set depending on the data samples. It instead uses the maximum 

distance (maxdist) allowed in K-means based on the SSE on Euclidean distance to assign objects 

to a given cluster as the global threshold. However, the objective function of K-means is designed 

to optimize while under the constraint of assigning the data objects to hard-partition. This means 

that all objects will be assigned to at least one cluster including noise or outliers which may then 

affect maxdist as a good predictor to overlap other objects in multiple clusters. The algorithm 
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was then enhanced to identify and exclude the outlier objects from being assigned to the user 

entered k-clusters. This is achieved by incrementing k+1 clusters once an outlier is detected in 

the dataset. The outlier(s) are then assigned to this newly created cluster while non-noise data 

are assigned to the k-clusters in an overlapping manner giving each object full membership of 

belonging to multiple clusters. 

Our algorithm detects and stores outliers during the clustering process making it different from 

the other overlapping clustering algorithms, thus adding value in this domain. As opposed to 

discarding anomalies and outliers, our method can provide tremendous benefit to cybersecurity 

experts, medical practitioners, IT administrators, data mining researchers, and other 

stakeholders as these outliers could have real-life applications such as fraudulent activities as in 

the case of cybersecurity, fraud insurance claims in the banking domain, or to help raise flags in 

the medical field especially in the screening process. 

 In the next chapter, we show the implementation and evaluation of OMCOKE on different 

multi-label data sets in real-life application of the algorithms. 
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Chapter 4  

Implementation and Evaluation of OMCOKE 

4.1 Introduction 

In this chapter, we discuss the implementation of the new proposed Multi-Cluster MCOKE and 

OMCOKE algorithm and explain the different thresholds it utilizes for the dynamic new cluster 

creation process. Since the proposed algorithm has been implemented in the WEKA environment 

(see Section 4.2), its primary Graphical User Interface (GUI) is also briefly highlighted in Section 

4.2. We also highlight the integration of OMCOKE within the "Clusterer" package of WEKA and a 

brief discussion of the input parameters used is provided. Furthermore, a few GUIs of OMCOKE 

within WEKA are shown, in particular, the different processes to go through clustering. Section 

4.3 explains the evaluation measures (pair-based precision-recall measure, confusion matrix, 

number, etc.) used to produce the results and test the performance of the proposed OMCOKE 

algorithm and other known predictive models in classification for their comparison. 

This Chapter also includes a number of experiments on datasets published at the Mulan: A Java 

Library for Multi-Label Learning repository (see Section 4.4). The chosen datasets have a 

different number of variables, variable types, and data examples. Section 4.4 highlights the main 

characteristics of the datasets used in the experiments. The experimental evaluation validates 

OMCOKE advantages, particularly in the detection rate of clusters and assigning observations 

with a better classification precision. 

 

4.2 OMCOKE Implementation  

WEKA stands for Waikato Environment for Knowledge Analysis and is an open source tool based 

on the Java platform that contains implementations for different DM methods including filtering, 

classification, clustering, evaluation, and visualisation among others. This tool was designed and 

implemented at New Zealand’s Waikato University to assist students, researchers, and academic 

staff in conducting quantitative research. Experiments on the datasets using the considered 
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classification algorithms were conducted using WEKA. The proposed OMCOKE algorithm was 

implemented in Java and integrated into the WEKA environment. 

Since WEKA is built with Java programming language, it organises the different filtering, learning, 

and visualisation methods in packages. A package can be seen as a container that holds and 

manages related Java classes and has its subdirectories. In WEKA versions 3.7.2 and upward, 

information other than classes can be held inside a package such as the functionalities of the 

JAR file, metadata, source codes, and other related documentation of the classes. These enable 

users to have better management of which methods can be stored in separate packages, and 

therefore can use what they need.  By default, WEKA keeps packages and their related 

information in $WEKA_HOME, which is located in the user's home directory (i.e., 

user.home/WEKAfiles). 

The main class of the proposed algorithm, OMCOKE has been integrated into the WEKA 

environment inside the "clusterers" package. The "clusterers" package contains the 

implementation of a few clustering algorithms such as the Simple K-means, EM (Expectation-

Maximization) algorithm, Hierarchical Clustering, Cobweb, Density-Based Clustering among 

others. The proposed algorithm can be accessed from WEKA Explorer or the Command Line 

platforms for data processing. 
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There are many advantages of integrating OMCOKE to WEKA and the usage of WEKA in general. 

The following are some of the inherent pros of WEKA: 

a) An open-source application tool that can be downloaded freely online 

b) Its graphical user interface (GUI) is relatively easy to be used by novice users who are not very adept 

to programming or software development 

c) Results are displayed on the output pan with clear evaluation metrics used 

d) Graphical results make for clear visualization of the output  

However, there are also a few cons of using the WEKA tool. These include: 

a) Coding and utilizing inbuilt WEKA classes is quite challenging 

b) Step-by-step manual on how to use the tool missing on the GUI. This can be very intimidating for 

first time users 

c) Any updates or bug fixes must go through the WEKA community and may be time consuming 

Figure 4.1 OMCOKE algorithm integrated inside the clusterers in WEKA 
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 OMCOKE utilizes the maxdist variable to calculate the average distance of objects to the cluster 

centroids. This setting on the WEKA is set to 1 (by default) for the algorithm to use the distance 

obtained as the threshold to for determining the objects belonging in the overlapping clustering 

(see figure 4.2 below). We use this setting in our experiments as it sustains the predictive 

method of our algorithm to assign all objects pairs that may belong to multiple clusters to be 

assigned to only the selected number of clusters in the initialization phase. This will be in line 

with other methods used to measure the performance of OMCOKE.  

Figure 4.2 OMCOKE algorithm GUI parameter setting and options 
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Users may change this setting to less than 1 such as 0.95 which would mean limiting the 

similarity threshold to the fifth percentile of the maxdist average calculated by the algorithm. By 

doing so, the algorithm would then filter any data objects that are above this threshold which 

would then be deemed as outliers. However, these outlier observations are not pruned out by 

the algorithm but instead are assigned to a new cluster on the fly that will list all of these object 

indexes. 

The option useMeasures is also set to “True” by default in our algorithm as that will set our 

algorithm to calculate the effectiveness of the cluster assignments using the pair-based 

Precision-Recall measure. 

The option useFusion is set to "False" and fusionThreshold set to 1.0 by default as these features 

have not been implemented yet in our algorithm. 

All data formats that are supported by WEKA can be used to be received files in OMCOKE.  Data 

that can be loaded under in WEKA include the following formats: 

a) Files that such as WEKA's ARFF file format, C4.5 Files, text files, comma separated formats in a 

spreadsheet (CSV), and JSON files. 

b) Using the Uniform Resource Locator (URL) functionality to load data that is saved in a specific server.  

c) Databases connected externally using ODCB to any commercial or open source databases such as 

Oracle, SQL Server, or MySQL.  

For further graphical exposition, we provide a detailed example of data processing and other 

OMCOKE GUI implementation in WEKA in Appendix A. 

4.3 Evaluation Measures  

A number of measures related to predictive models in clustering that we used are discussed in 

this Section. In particular, we describe the pair-based approach, common predictive model 

evaluation criteria such as accuracy, f-measure, precision, and confusion matrix related 

measures such as false positive, false negative, true positive, and true negative. Moreover, 
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methods related to computing resources utilised through the clustering processing such as 

processing time and numbers of data examples are also covered.  

We describe some common predictive model evaluation criteria such as accuracy, sensitivity, 

specificity, one-error, harmonic mean a.k.a. F1, and other related measures such as false 

positive (FP), false negative (FN), true positive (TP), and true negative (TN). 

4.3.1 Confusion Matrix in Clustering 

Evaluation of clustering is a very critical process to assess the performance of the algorithm. For 

DM and ML predictive models, a matrix called the error table, or the confusion matrix, has been 

developed. The confusion matrix is typically used to evaluate the performance of predictive 

models with respect to the different metrics that are primarily related to the predictive power of 

the models. In measuring the performance of the models in clustering, a data node is assigned 

a predicted centroid by the model based on the similarity attributes to that cluster. If the data 

node is similar to the predicted centroid, this counts for a correct cluster assignment; otherwise, 

it is considered a false assignment or a misclassification.  

i) A true positive (TP) decision will assign two similar observations to the same cluster (a correct 

decision) 

ii) A true negative (TN) decision will assign two dissimilar observations to different clusters (a 

correct decision).  

By doing this, there is a potential of two types of errors that we are bound to commit.  

i) A false positive (FP) decision that will have assigned two dissimilar observations to the same 

cluster or  

ii) A false negative (FN) decision that will have assigned two similar observations to different 

clusters.  

This is summarized in the confusion matrix in table 4.1 below. 
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Table 4.1 Confusion Matrix 

 Same Cluster Different Cluster 

Same class TP FN 

Different class FP TN 

 

We used the pair-based Precision-Recall measure that is calculated over pairs of observations. 

The precision-recall is computed as follows: 

 

         (4.1) 

        (4.2) 

       (4.3) 

        (4.4) 

        (4.5)  

 

4.3.2 Computing Resources Evaluation Measures   

Measuring the processing time taken for the predictive model to be constructed is a useful 

indicator of the efficiency of the data processing phase. Moreover, the time taken to predict data 

cases can be measured as part of the model's efficiency. In the WEKA environment, we recorded 

the time taken to build the predictive model in milliseconds (ms), so we can compare OMCOKE 

F1 = 2*|Precision*Recall| 

             |Precision+Recall| 
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processing time performance with other clustering algorithms. Moreover, we have also computed 

how many instances are necessary to build the OMCOKE algorithms, and implemented it as a 

Java class in the WEKA version. This class contains codes that compute repetitive data scans 

and can be seen as a performance indicator of the proposed algorithm when compared with 

other algorithms.  

4.4 Data Experimental Settings 

In this section, different datasets from Mulan: A Java Library for Multi-Label Learning repository 

is used to evaluate the proposed OMCOKE algorithm performance. The data repository hosts 

more than 25 different datasets in the domains of text, audio, video, music, images, and biology 

to mention only a few. Items of Multi-label datasets can be members of multi-groups which are 

true for real-world problems and as a result ideal for the study of overlapping clustering.  In our 

empirical experiment, three different domain datasets that have been used along with their 

specifications are displayed in Table 4.2. 

Table 4.2 Statistics of used Benchmarks 

Data set Domain Instances Distinct Labels Attributes Cardinality Density 

Emotions Music 593 592 6 72 1.869 0.311 

Yeast Biology 2417 2412 14 103 4.237 0.303 

Scene Images 2407 2349 6 294 1.074 0.179 

 

Table 4.3 Descriptive Statistics of used Benchmarks 

Data set Min Max Mean StdDev 

Emotions 0.01 0.195 0.069 0.031 

Yeast -0.371 0.52 0.001 0.097 

Scene 0.0 1.0 0.659 0.214 
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In order to exhibit OMCOKE performance with respect to different measures when contrasted 

with a wide range of ML, we selected clustering algorithms using the following criteria:  

a) Utilize a partitioning method that extends the K-means algorithm 

b) The methods use the Euclidian distance to calculate the similarities between the sets of 

observations; 

c) Work on numeric attributes only 

d) All are known algorithms that have been evaluated by previous researchers in the DM and ML 

communities; 

4.4.1 Evaluation Methodology 

We conduct our experiments on real-life overlapping datasets in order to measure the 

effectiveness of the methods used to identify such overlapping groups. The three datasets have 

a wide diversity in their dataset hence make it a suitable combination for use as benchmarks. 

For example, their sizes vary from 593 (Emotions) to 2417 (Yeast), their dimension (attributes) 

from 72 (Emotion) to 294 (Scene), cardinality (i.e., overlap rates) from 1.074 (Scene) to 4.237 

(Yeast). Their application domain also varies considerably as well, i.e. music, biology, and 

images. 

All experiments have been run on an Intel Core i7 computer with a 3.4 GHz processor and 8.0 

GB RAM running on a 64-bit Windows 10 Operating System. We utilised a number of evaluation 

measures to show the benefits and negatives of the proposed algorithm when compared with 

other classification algorithms in DM. Precisely, the below measures have been used to evaluate 

OMCOKE:   

 Precision 

 F-measure 

Evaluation measures use binary functions to compute the relationships between pairs of objects 

in a cluster assuming that those objects belong to one cluster. In overlapping clustering, these 

objects could also feature in multiple clusters. Therefore, we chose the above two measures 
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precisely because of this reason since other evaluation measures such as the Recall will result in 

a biased number due to the overlaps in the dataset. 

4.4.2 Description of Overlapping Datasets    

4.4.2.1 Emotion dataset (Troihidis, et al., 2008) 

Analysing music signals are used in the detection of emotion in music. In this case, music can 

be classified into several categories at the same time since they are not usually disjoint, i.e. they 

can make one feel both "sad" and "angry." The dataset contains sound clips that can be described 

by 72 attributes which were annotated by three male music experts into 6 emotional clusters. 

Only the songs that had all three experts unanimously agree on its label were kept resulting in 

593 total songs selected for the dataset. The clusters are shown in Table 4.4 below: 

Table 4.4 Emotion dataset 

Description # of songs 

amazed-surprised 173 

happy-pleased 166 

relaxing-calm 264 

quiet-still 148 

sad-lonely 168 

angry-fearful 189 

 

4.4.2.2 Yeast dataset (Elisseeff and Weston, 2001) 

The Yeast dataset is classified into 14 gene groups or classes. A gene can belong to several 

different classes at the same time thus making this a multilabel dataset. For example, a gene 

YAL014W may belong into the following four groups: { Cell Growth, Cell Division}, {Cellular 

Organization}, {Cellular Communication, Signal Transduction} and { Transposable elements, 

Viral and Plasmid Proteins}.  

4.4.2.3 Scene dataset (Boutell, et al., 2004) 

The dataset contains 2407 natural scene images. The images were classed into 6 categories. In 

this case, the images can be classified into different categories at the same time since they are 
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not usually disjoint, i.e. they become multi labelled and can belong to more than one category 

such as field + mountain and fall foliage + mountain.  

Table 4.5 Scene Dataset 

Description # of 

Images 

Beach 369 

Sunset 364 

Fall foliage 360 

Field 327 

Mountain 405 

Urban 405 

Beach+Field 1 

Fall foliage+Field 23 

Beach+Mountain 38 

Fall foliage+Mountain 13 

Field+Mountain 75 

Field+Fall foliage+Mountain 1 

Beach+Urban 19 

Field+Urban 6 

Mountain+Urban 1 

Total 2407 

 

4.5 Empirical Results on the Multi-Label Datasets 

Our experiments are conducted on real datasets from three different domain namely Emotion, 

Yeast and Scene that have a strong overlap. For fair comparisons, datasets with different sizes 

and from different domains have been chosen and are compared to well-known algorithms that 

have been evaluated by previous researchers in the DM and ML clustering communities. Through 

experimental study, we evaluate and compare the performance of OMCOKE with 4 existing 

methods namely: Kernel Overlapping K-means (KOKM), Overlapping K-means (OKM), and 

Parametrized R-OKM as shown in table 4.6 below.  

For each experiment, we set the parameters for KOKM, OKM, and P-ROKM as follows: 
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• Maximum iterations = 10 

• Number of clusters = 3 

• Number of labels = Emotions (6), Yeast (14), and Scene (6). 

• Minimal improvement = 0.01 

• Alpha = 1 and 0.1 for P-ROKM algorithms. 

In addition to the number of iterations and clusters set as above, the following parameters were 

also set in OMCOKE: 

• maxdistThreshold = 0.99 

• useMeasures = True 

Table 4.6 Overlapping Algorithms Performance Comparisons 

Method Emotion 

 P.              F. 

Yeast 

P.           F. 

Scene 

   P.           F. 

KOKMII 

OKM 

P-ROKM (α=1) 

P-ROKM (α=0.1) 

OMCOKE 

0.471 

0.467 

0.474  

0.468 

0.565 

0.641 

0.586 

0.524 

0.578 

0.419 

0.785 

0.234 

0.919 

0.802 

0.972 

0.878 

0.376 

0.565 

0.654 

0.496 

0.193 

0.234 

0.379 

0.288 

0.706 

0.324  

0.376 

0.506 

0.439 

0.453 

 

Non-overlapping methods such as the K-means have an overlap equal to 1 simply due to the 

fact that these algorithms build non-disjoint clusters without considering that an object may 

belong to more than one cluster. Overlapping methods will have an overlap that is greater than 

1 since the objects belong to more than one cluster. The size of the overlaps affect the value of 

Precision, i.e. there will be a low value of Precision because the observations are assigned to 

more than one cluster.  



66 

 

 

Figure 4.3 Precision Accuracy of the benchmark datasets 

The pair-based Precision-Recall method used in the empirical results is calculated over pairs of 

observations. This allows for the evaluations of clusters independently and compares their 

partitions with different numbers of clusters in the dataset. It measures whether the predicted 

pair is correctly assigned in the same cluster as indicated in the true class datasets. However, 

the Recall measure uses a binary function to compute the relationship between pairs of 

observations, and not considering that those pairs of observations could also feature in multiple 

clusters in the overlap. This results in a biased Recall measure, especially when the cardinality 

in the dataset is large. Thus we chose not to use the Recall in our experiment as a measure of 

OMCOKE.  

It is evident from the above empirical results that the OMCOKE algorithm has a high precision 

rate and outperforms all the other overlapping algorithms in the study as shown in Figure 4.3 

above. This can be attributed to the algorithm's ability to separate outliers from the rest of the 

data objects when assigning them to clusters. For the Emotion, Yeast, and Scene datasets, 

OMCOKE precision was 0.565, 0.972, and 0.706 followed by P-ROKM (α=1) at 0.474, 0.919, and 

0.379 respectively.  
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The high values of Recalls generally induce high values of F-Measures as opposed to non-

overlapping algorithms whose high values of F-measures are generally as a result of the 

Precision. When compared to the other algorithms, OMCOKE performs relatively well in the F-

Measure as shown in Figure 4.4 below, scoring second behind P-ROKM (with α=1) in the Scene 

dataset; the P-ROKM method with the alpha value of 1 yielded an overlap of exactly 1 and 

dataset had a cardinality of 1.07.   

The F-Measure values are higher for clustering methods whose overlap rates are closer to the 

actual cardinality of the dataset. The cardinality shown in Table 3 is the natural overlaps in the 

dataset, i.e. the average number of categories each observation can belong to.  

 

Figure 4.4 F-Measure of the Benchmark Datasets 

The analysis shows that F-Measures and Precision are significantly affected by the overlap rate 

in the actual dataset. Algorithms that have partitions with smaller overlaps fared well in their F-

Measure meaning that they produced non-disjointed partitions that fit the data better compared 

to others. OMCOKE performed reasonably well in the Scene, and Emotion datasets since the 

cardinalities of the datasets are low (1.074 and 1.869 respectively) nearing 1 but did poorly in 

the Yeast dataset that had an overlap of over 4.   

Our algorithm detected several outliers in the dataset. These are listed in Table 4.7 below.  
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Table 4.7 Outliers Detected in the Three Datasets 

Dataset Number of Outliers Position of Outliers in the 

Dataset 

Emotion 1 27 

Scene 2 304  

1502 

Yeast 1 1819 

 

As indicated, an input dataset containing a few outliers significantly influences the mean distance 

(the outlier will skew the mean and variance) of the data objects to their respective clusters. 

This explains why OMCOKE outperformed the other methods in all datasets in terms of Precision 

rate. This also shows that by separating the outliers from the rest of the data, the OMCOKE was 

able to build its model relatively closer and more acceptable to the actual overlaps in each of the 

datasets; this is as compared to the other methods for the precision to be higher than the rest.  

4.6 Chapter Summary 

In this chapter, we provided the details of OMCOKE implementation and how it is integrated into 

WEKA environment outlining the required parameters that need to be set. We described the 

different multi-label data types used in the experiment as our benchmark. In addition, a detail 

discussion is provided on the evaluation measures used, the experimental settings, and the 

comparison that was done between OMCOKE and other well-known cluster methods in DM. 

We conducted a number of experiments in the WEKA environment that test the overlapping 

algorithms given real-life overlapping datasets. The results of the experiments are summarized 

below: 

Our algorithm, with the capability of detecting outliers and treating them as a separate cluster, 

was evaluated and compared with three existing overlapping clustering methods namely: Kernel 
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Overlapping K-means (KOKM), Overlapping K-means (OKM), and Parametrized R-OKM. We used 

real-life multi-label datasets for our experiments. The empirical results showed that the F-

Measures and Precision were significantly affected by the overlap rate in the actual dataset. 

OMCOKE did well in the Scene dataset since the cardinality of the dataset is very low, and did 

poorly in the Yeast dataset that had a significant high overlap rate of over 4.  However, when it 

came to Precision, OMCOKE outperformed the other overlapping algorithms in all datasets 

indicating that our method had a better detection rate of clusters and for assigning observations 

with a better precision after it segregated the outliers in the dataset. 

a) On the Precision measure, OMCOKE outperforms all other algorithms with a large margin. 

It is evident in this empirical result that our method has a better detection rate of clusters 

with a better classification precision. 

b) OMCOKE performed reasonably with the F-Measure especially when the cardinality of the 

dataset is relatively small. 

In the next chapter, we apply clustering with classification (semi-supervised technique) to 

discover Autism Spectrum Disorder (ASD) symptoms based on historical cases to enhance 

autism screening efficiency and accuracy. We apply OMCOKE as a clustering technique to identify 

potential autism cases based on their similarity traits as opposed to a scoring function used by 

many ASD screening tools. We test this on real datasets related to screening of autism involving 

children, adolescents, and adults and compared the performance to other common machine 

learning classification techniques. 
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Chapter 5  

Case Study on Autism Spectrum Disorder (ASD) 

Screening 

 

5.1 Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that contributes to the delay 

of social and communication behaviours of individuals (Bolton et al., 1994; Belmonte et al., 

2004). Typically, ASD diagnosis is made by clinicians in a clinical set up using visible behavioural 

indicators in a process referred to as clinical judgment (CJ) (Wiggins et al., 2014; Thabtah 

2017a). The official diagnosis process of ASD involves multiple examinations, which in turn cause 

the waiting time for patients to be lengthy (Thabtah, 2018a). For instance, the waiting time for 

an ASD diagnosis in the UK averages over 3 years (Crane et al., 2016). Therefore, it is vital that 

the administration time needed for both screening and diagnosis be reduced to cater for the 

growing number of ASD patients (Lord and Jones, 2012; Levy et al., 2017; Haber & Wall, 2017). 

Autism screening is a fundamental step that addresses whether individuals exhibit potential 

autistic traits related to communication, social or repeated behaviour (Abbas et al. 2018).  This 

step is crucial as the individual and the concerned family become aware of the possibility of ASD 

traits early and hence can search for the needed formal assessments.  There are many ASD 

screening tools developed by researchers such as Autism Spectrum Quotient (AQ) and Childhood 

Autism Rating Scale (CARS) (Baron-Cohen, 2001; Baron-Cohen et al., 2006; Krug et al., 2008; 

Shopler et al., 2010). Most of these screening methods have been developed using existing 

clinical autism diagnosis methods and are represented as questionnaires in which each question 

is associated with a few possible answers in a multiple-choice fashion. The questionnaires used 

contain measurable indicators (variables/questions) that address communication, behaviour and 

social skills, of individuals. For example, the Child Behavior Checklist (CBCL) screening method 

contains more than 100 questions (Achenbach and Rescorla, 2001), and the AQ method contains 
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50 questions (Baron-Cohen et al., 2006). These make the process of screening lengthy besides 

inaccessible as most existing screening methods usually do not exist indirectly accessible 

platforms such as mobile (Thabtah, Kamalov & Rajab, 2018; Thabtah 2018b). 

Most of the existing autism screening methods utilize scoring functions that compute a final score 

based on the answers given by users undergoing the screening (caregivers, parents, medical 

staff, teachers or even the adult patients).  To be specific, the screening methods take the 

answers given in the questionnaire as an input for the scoring function, which in turn processes 

the input and computes a final score to reflect whether the individual is associated with ASD 

traits. For instance, in AQ method, a cut-off score of larger than 32 is an indication of autistic 

traits (Baron-Cohen et al., 2006; Auyeung et al., 2008). Therefore, the final decision of having 

ASD traits lay solely on the score calculated by the function. This function in most cases sums 

up the behavioural indicators' answers and does not attempt to seek for correlations among 

these indicators and the target class (ASD traits). 

To address these shortcomings, there is a need for intelligent methods that can replace the 

scoring function and improve the efficiency of the screening. Since ASD screening involves 

forecasting whether individuals have the possibility of ASD traits based on a predefined 

characterized variable, then this issue is a predictive analysis problem in ML. The screening of 

ASD traits can be considered a classification problem in which historical data that have been 

already classified with and without ASD traits is utilized as an input to construct a classification 

system. This system is then used to guess whether a new individual exhibits any autistic traits. 

ML can be utilized for ASD screening to improve the classification of the screening and to reduce 

the process of the screening time. More importantly, ML may provide models that can contain 

useful information about ASD traits to the diagnosticians especially the correlation among 

behavioural indicators and how they relate to ASD screening. ML techniques use artificial 

intelligence and statistics to create intelligent models by discovering hidden patterns in data so 

that users can improve decisions (Thabtah and Peebles, 2019; Thabtah et al., 2018). 
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There have been recent attempts to adopt ML techniques in autism screening and diagnosis, i.e. 

(Abbas, et al., 2018; Thabtah, et al., 2018b; Levy, et al., 2017; Stewart & Lee, 2017; Bekerom, 

2017; Thabtah, 2017a; Bone, et al., 2016; Chen, et al., 2016; Ventola, et al, 2016). These 

studies focused primarily on improving time, accuracy, and reducing the dimensionality of the 

dataset by pinpointing influential autistic symptoms. Thabtah et al., (2018) proposed a new 

feature selection method called Variable Analysis (Va) to determine the most influential features 

related to ASD based on datasets related to adults, adolescents, and children. The authors were 

able to minimize the number of features to 5-7 based on predictive analysis and filter methods. 

Abbas et al., 2018 used Random Forest to improve the diagnosis process of autism and Levy et 

al., (2017) compared 17 different classification-based ML algorithms to seek improvements on 

the diagnosis performance of autism for children.  

In this chapter, we propose a new semi-supervised learning method called Clustering based 

Autistic Trait Classification (CATC), to improve the accuracy of the autism screening problem. 

The utilization of clustering and classification together as semi-supervised learning is rare in 

autism screening research. Unlike existing methods that primarily focused on the classification 

phase of cases and controls, we intend to utilize clustering with classification to validate instances 

in the training dataset prior to constructing the classification systems. CATC integrates 

unsupervised learning in the pre-processing phase with supervised learning in the classifiers 

construction phase. By integrating clustering with classification, there is a potential for improving 

the resulting classification systems by detecting ASD traits more accurately. With the CATC 

technique, the predictive model performance is enhanced in twofold; 

1) Pre-processing the dataset and clustering them in the training phase of the classification 

algorithm. By clustering the data first, we will identify relevant traits/features that can be used 

in the ASD learning phase. 
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2) Reducing data dimensionality by eliminating features redundancy. Clustering can wrap those 

traits that may appear in multiple clusters and identify them as stronger or more significant 

features for the classification algorithms.  

The proposed intelligent method considers the hard cases to be classified (Cases that exhibit few 

autistic symptoms). These cases may exhibit some autistic traits but may not be qualified to be 

on the spectrum. These cases often cause large false positives and false negatives, which 

deteriorate the performance of the classification algorithm. Thus, we show that having clustering 

at the pre-processing phase will enhance the predictability of the classification algorithm and 

improve the classifier accuracy, sensitivity, specificity, and error rates.   

The rest of the chapter is structured as follows: section 5.2 reviews the background information 

around machine learning in ASD research. Section 5.3 discusses the methodology used for CATC 

and including a description of the datasets used and the pre-processing of the data. Section 5.4 

outlines the experimental preparations and settings. Section 5.5 provides the results and 

analysis and a comprehensive comparison of different ML techniques including CATC. Lastly, we 

provide a conclusion in section 5.6.  

5.2 Background Information on ASD Detection 

Many of the ASD screening techniques rely solely on a scoring function (which sums up the 

answers based on some of the behavioural indicators) to determine ASD traits. ML algorithms 

tend to focus on improving time and accuracy by reducing the number of items in the self-

assessment phase that can be used to predict the ASD symptoms while still relying on the scoring 

function. However, these ML techniques do not focus on eliminating redundancy in the dataset 

or clustering the data based on strong features.  

Some of the researchers that use ML classification algorithms to predict ASD screening and 

diagnosis include (Wall et al., 2012; Mythili & Shanavas, 2014; Pratap et al., 2014; Bone et al., 

2014; Pancer and Derkacz, 2015; Wolfers, et al., 2015; Duda et al., 2016; Bone et al., 2016; 

Chen et al., 2016; Towle & Patrick, 2016; Bekerom, 2017; Thabtah, 2018; Thabtah et al. 2018).  
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Thabtah et al., (2018) improved the efficiency of the screening process by reducing the number 

of items in the self-assessment screening tool called AQ-10 (Allison et al., 2012). The authors 

proposed a new feature selection ranking method called variable analysis (VA) that would derive 

small yet effective autistic traits. The authors used different datasets of adult, adolescent, and 

child in their study and compared their algorithm performance measures with other classification 

tools RIPPER and C4.5 (Cohen 1995; Quinlan 1994). The results analysis showed that VA 

selected prominent features for the three datasets without compromising on the specificity, 

sensitivity, and prediction accuracies measurements. 

Abbas et al. (2017) conducted a clinical study of 162 at-risk children that had received a clinical 

diagnosis. They collected their dataset by splitting their screening process into two parts. The 

first part is answered by the parent about the child based on the Autism Diagnostic Interview-

Revised [ADI-R] (Lord et al., 1994) that have 93 multi-part questions. The second part is a video 

screener used by parents based on the Autism Diagnostic Observation Schedule [ADOS] (Lord 

et al., 2000). The authors applied their datasets to Random Forests classifiers. They later 

combined the questionnaire and video screeners using regularized logistic regression. They then 

compared their results with some of the non-machine learning screening tools such as the 

modified checklist for autism in toddlers (MCHAT) and CCBL. Their results suggest that combining 

the video and questionnaire into a single assessment boosted the sensitivity and specificity rates 

and overall performance of the study sample. 

A study by Levi et al. (2017) utilized 2 ADOS modules; one for children with phrased speech 

(Module 2) and the other for children with verbal fluency (Module 3) to build sparse models that 

were used to train about 17 classifiers from 5 different classifier families (linear regressions, 

nearest neighbour models, general linear models, support vector machines, and tree-based 

classifiers) for autism screening and diagnosis. The module 2 dataset consisted of 1389 cases 

where 1319 were considered as ASD and only 70 as No-ASD. Module 3 dataset had 3143 cases 

with 2870 considered as ASD and 273 No-ASD. The study was applied. The authors aimed at 

showing reduced subsets of features with their best parameters that can be used in the classifiers 
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to predict ASD and No-ASD cases. They concluded that SVM and logistic regression performed 

best with ROC of 93% and 92% respectively and logistic regression and Lasso performed best 

on module 3 with a ROC of 93%. 

In their study of how some frequency-specific brain indices can be used in the early detection of 

ASD, Chen et al. (2016) used a limited data set from the Autism Brain Imaging Data Exchange 

database (ABIDE) of 240 with 112 with ASD and 128 with No-ASD. They experimented by looking 

at the functional brain connectivity as the frequency bands which were considered as the feature 

attributes of the dataset. The researchers used the support vector machine algorithm and could 

predict the ASD diagnosis with a classification accuracy of 79%. 

Duda et al. (2016) made an experimental comparison of six classification algorithms on a real 

dataset consisting of 2900 cases with 65 features. The authors first pre-processed the data by 

removing any instances with more than four missing values. They applied logistic regression 

models, Random forests, support vector machine, C4.5 among other classification algorithms. 

They concluded that function based algorithms such as regression models performed better with 

high classification accuracy compared to the decision tree based algorithms such as Random 

Forest. 

Others such as Pratap et al. (2014) and Pratap & Kanimozhiselvi (2014) use multiple supervised 

and unsupervised machine learning algorithms such as Naïve Bayes, self-organization feature 

map (SOM), learning vector quantization (LVQ), artificial neural network (ANN), K-means and 

fuzzy c-means to test how machine learning methods can be used in the assessment of autism 

diagnosis. These two studies used a limited dataset of only 100 cases of children and were able 

to show that using unsupervised learning such as clustering improved the accuracy of the ASD 

based on the childhood autism rating scale (CARS) diagnostic tool. This study is limited in size 

does not measure the improvement of crucial other classification metrics and have yet to be 

verified in other works. 
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A more recent review by Thabtah, (2018) analysed some of the cons associated with ASD 

classification studies conducted earlier. The authors instigated that earlier studies had pitfalls in 

their datasets that were limited in size and had several missing values and imbalances. The 

author also pointed out that while the studies showed promising results, none were embedded 

in a screening tool. 

Allison et al. (2012) study was aimed at reducing the AQ and Q-CHAT method screening tests 

by determining the highest ranked items based on DI measure scores. The authors were able to 

prove that only ten items can be used for screening the first level of ASD traits. These ten items 

were adopted in a later study by Thabtah, et al., (2018) to build Adult, Adolescent, and Child 

datasets based on the AQ screening tool. These new datasets are used in the experiments in our 

paper. 

Our study considers key classification evaluation measures. We evaluate and compare the results 

to highlight the significance of integrating clustering algorithms and specifically Multi-Cluster 

Overlapping K-Means Extension (OMCOKE) (Baadel et al., 2016) in the pre-processing phase of 

the screening data. Clustering of the dataset adds the following value to the classification 

process; 

a) Reduces data dimensionality by eliminating redundancy. 

b) Identifies relevant and strong features that were only used in the supervised learning models. 

These features may have been cases that exhibited some autistic traits but not qualified to be 

on the spectrum hence causing large false positives and false negatives. 

The following section discusses the proposed clustering based autistic trait classification 

technique. 

5.3 Clustering based Autistic Trait Classification (CATC) 

In this section, we discuss the proposed CATC method based on the architecture shown in Figure 

5.1 below. Three data sets (adult, adolescent, and child) are collected via a mobile screening 
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app called ASDTest (Thabtah 2017b; Thabtah 2018b). The data is then cleaned for our 

experimentations and is ran through an unsupervised machine learning clustering algorithm. The 

result of this process is used as our initial model that is loaded to a classifier for the predictive 

phase. The performance of the classifier is then tested and evaluated for better accuracy, 

sensitivity, and specificity rates. Further details for each of the steps are outlined in the 

subsections that follow. 

 

Figure 5.1 CATC-based methodology 

5.3.1 Data Collection  

Initially, data is collected using a mobile screening tool called ASDTests (Thabtah, 2017b; 

Thabtah 2018b). This tool contains questionnaires based on the Q-CHAT 10, AQ-10 Child, AQ-
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10 Adolescent, and AQ-10 Adult screening methods (Allison et al., 2012). The child, adolescent 

and adult datasets that have been collected contain instances for individuals between 4-11 years 

old, 12-16 years old and above 16 years respectively. These datasets have been disseminated 

recently at the University of California Irvine data repository (Lichman, 2013) by (Thabtah et al., 

2018). 

During the screening process using the ASDTests mobile application, a user answers the 

screening questions, and a value is calculated based on the answers they enter with a score 

between 0 and 10. The attribute Class (attribute number 23 in table 2 below) is assigned a YES 

or a NO based on the score of the answers entered. A score of 6 and above based on (Allison et 

al., 2012) indicates that the individual has some ASD traits and the class label is labelled as YES. 

Otherwise, the class is given a value of NO. 

The size of the datasets varies between the three groups. The adult dataset has the highest 

number of instances followed by the child and adolescent. Table 5.1 and Figure 5.2 below 

summarizes the dataset based on the number of instances and the history of the users with 

regards to having a family member previously diagnosed with ASD. 

Table 5.1 Statistics of used ASD Datasets 

Dataset Instances Family History of ASD                   

  Yes No 

Adolescent 248 44 204 

Adult 1118 183 935 

Child 509 86 423 
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Figure 5.2 Statistics of used ASD Datasets 

5.3.2 The initial Dataset and Data Transformation 

The initial datasets are of multivariable nature with categorical, continuous and binary attributes 

that contain a total of 23 features (see Table 5.2).  

The ASDTest mobile application assigns a “1” if the respondent to any of the questions is “slightly 

agree” or “definitely agree”, otherwise a zero “0” is allocated for questions 1, 5, 8, and 10 in the 

AQ-10 Adolescent, questions 1, 5, 7, and 10 in the AQ-10 Child, and questions 1, 7, 8, and 10 

in the AQ-10 Adult. A “slightly disagree” or “definitely disagree” had a score of “1” on all 

remaining questions. 

We modified the dataset to include only 16 attributes (1 through 15, and 23) by removing 

features marked 16-22 in Table 5.2 below in the three datasets. We deem these features to have 

no direct significance and hence have been discarded a priori to the learning phase. The 

“Screening Score” (Feature #19 in Table 5.2) has been removed to avoid any possibility of model 

overfitting since this feature indicates whether individuals have autistic traits based on the 

scoring function in the AQ-Child 10, AQ-Adult 10 and AQ-Adolescent 10 methods. The screening 

features (A1 to A10 in Table 5.2) have been transformed by mapping its original values in the 

screening method to Boolean values 1/0 for the sake of simplicity. 
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Table 5.2 ASD Data Feature Attributes 

# Feature  Type 

1 A1  Binary (0, 1) 

2 A2  Binary (0, 1) 

3 A3  Binary (0, 1) 

4 A4  Binary (0, 1) 

5 A5  Binary (0, 1) 

6 A6  Binary (0, 1) 

7 A7  Binary (0, 1) 

8 A8  Binary (0, 1) 

9 A9  Binary (0, 1) 

10 A10  Binary (0, 1) 

11 Age Integer 

12 Gender  String  

13 Ethnicity String 

14 Born with jaundice Boolean  (yes or no) 

15 Family member with PDD Boolean  (yes or no) 

16 Country of residence  String 

17 Used the screening app before  Boolean  (yes or no) 

18 Why_are_you_taken_the_scree

ning 

String 

19 Screening Score  Integer  

20 Screening Method Type  Integer (0,1,2,3) 

21 Language  String 

22 Who is completing the test String  

23 Class  String  

 

The AQ-10 screening questionnaire is used by the University of Cambridge autism research 

centre as a referral guide. A sample of the adult questionnaire is provided in Table 5.3 below. 
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Table 5.3 AQ-10 Adult Questionnaire (Allison et al., 2012) 

# Question  

1 “I often notice small sounds when others do not” 

2 “I usually concentrate more on the whole picture, rather than 

the small details” 

3 “I find it easy to do more than one thing at once” 

4 “If there is an interruption, I can switch back to what I was 

doing very quickly”  

5 “I find it easy to ‘read between the lines’ when someone is 

talking to me” 

6 “I know how to tell if someone listening to me is getting bored” 

7 “When I’m reading a story I find it difficult to work out the 

characters’ intentions”  

8 “I like to collect information about categories of things (e.g. 

types of car, types of bird, types of train, types of plant etc)”   

9 “I find it easy to work out what someone is thinking or feeling 

just by looking at their face” 

10 “I find it difficult to work out people’s intentions” 
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5.3.3 Unsupervised Clustering Phase  

The datasets are pre-processed by applying an unsupervised machine learning clustering 

method. We employ the OMCOKE algorithm which groups all items into two clusters. The process 

is summarized in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: Dataset with N number of attributes 

Output: Reduced dataset with N+1 number of attributes 

 

Given a test dataset, the pre-processing works as follow: 

 

2.  Apply Unsupervised ML Clustering (OMCOKE) filter to the dataset 

3.   A new “Cluster” attribute is appended on the dataset with each 

instance on the dataset assigned to either cluster1 or cluster2 

3.  Repeat 

4.  rename cluster1 as YES and cluster2 as NO 

5.  compare attribute “Cluster” with attribute “Class” 

6.  If Cluster Matches Class 

7.   Keep instance 

8.  Else 

9.   Prune instance 

10.  End if 

11.  Until all instances in the dataset are exhausted 

Figure 5.3 Pseudocode of Clustering phase in CATC method 
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The OMCOKE clustering technique assigns instances to either cluster1 or cluster2 based on their 

attribute similarities. The OMCOKE algorithm is based on K-means where initial k clusters are 

selected at random, and data points are assigned to each cluster using distance to the centroids. 

The centroids are recomputed, and the process is repeated until there is no movement or change 

in the assignment of data points to their closest centroid. The OMOCKE algorithm takes into 

consideration outlier or noise data in the dataset and separates these points to an outlier cluster 

built on the fly. Algorithm 5.3 above summarizes the OMCOKE clustering. 

5.3.4 Clustering based Autistic Traits Dataset: Initial Model 

The datasets contain a Boolean attribute named “Class” that has a value of YES/NO based on a 

Score. This attribute Class is used to assess whether the user has been screened to have ASD 

or not and is used in the supervised learning algorithm for their predictions. At the end of step 

2 in the CATC pre-processing phase above, we create a new attributed "Cluster" that is appended 

at the end of the dataset file. Each item is assigned to either cluster1 or cluster2 based on their 

attribute similarities. These assignments are then compared to the attribute Class to see if they 

match. Where there is a match, we keep that instance; otherwise we discard it and remove it 

from the dataset. 

The new reduced clustering based autistic dataset only has instances that the clustering 

algorithm deems to have been accurately labelled during the unsupervised screening process. 

Key features of applying CATC process includes: 

1. Grouping the data items into two clusters based on their strong attributes.  The clustering 

algorithm has assisted in identifying relevant and strong features that were only used in the 

supervised learning models. 

2. Reduce data dimensionality by eliminating redundancy. By clustering the significant features 

and comparing them to the class score, we toss out any insignificant or redundant items. 
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We adopt the clustering based autistic traits dataset which has been efficiently streamlined and 

enhanced to be used in the learning phase in the machine learning process. For example, assume 

the following simple dataset represented in figure 5.4 below as our original data.  

 

 

 

 

 

 

The clustering algorithm groups the data based on its strong attributes which are identified in 

C2 (red) and C3 (blue) clusters and the data anomaly is labelled as an outlier and discarded for 

use in the supervised learning model as indicated in the example on figure 5.5 above. 

5.3.5 Classification  

Finally, we adopt any classification algorithm for our predictive phase. Classification algorithms 

are generally divided into a two-step process where the dataset is divided into training data and 

testing data. A model is developed in the training phase by analysing the attributes of the training 

data. Class labels are built based on the rule techniques that are applied in the training dataset. 

This training data is further employed in the testing phase where the classifier is used to examine 

the accuracy of the model (Thabtah et al., 2011). We validate and evaluate the test dataset for 

better accuracy, sensitivity and specificity rates. In this paper, we tested large numbers of 

classification algorithms that utilize various district learning mechanisms in order to test the 

performance of the clustering phase (See section 5.4 for further details).  

Figure 5.4 Sample Dataset 
Figure 5.5 Clustered dataset 
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5.4 Experimental Settings  

Our experiments are conducted on real-life ASD screening datasets to measure the effectiveness 

of the enhanced screening data used to identify and predict diagnosis. The three datasets of 

adult, adolescence, and child have a wide diversity in their ethnicity, language, and age group 

and are all in the application domain of the study, hence making it suitable for use as 

benchmarks.    

We describe some common predictive model evaluation criteria such as accuracy, sensitivity, 

specificity, one-error, harmonic mean a.k.a. F1, and other related measures such as false 

positive (FP), false negative (FN), true positive (TP), and true negative (TN). 

All experiments have been run on an Intel Core i7 computer with a 3.4 GHz processor and 8.0 

GB RAM running on a 64-bit Windows 10 Operating System. We utilized a number of evaluation 

measures to show the benefits and negatives of the proposed algorithm when compared with 

other classification algorithms in DM.  

The Sensitivity ratio (equation 4.1) is a measure of all cases that have been identified correctly 

to have ASD in the overall test cases i.e. the true positive rate, whereas the Specificity ratio 

(equation 4.2) is a measure of all cases that have been identified correctly as a No ASD in the 

overall test cases, i.e. the true negative rate. The Accuracy ratio measures the overall 

classification prediction that has been correctly identified as ASD and No ASD in all test cases 

(i.e., the confidence level of the classification), whereas the One error is the opposite of Accuracy 

and denotes the number of misclassified instances on the test dataset.  

We conduct the experimentation twice for each dataset.  

Different classification algorithms have been utilized to measure the true performance of the 

proposed framework (CATC). Particularly, we adopted RIPPER (Cohen, 1995), PART (Frank & 

Witten, 1998), Random Forest (Breiman, 2001), Random Trees (Cutler & Zhao, 2001), and 

Artificial Neural Network [ANN] (Witten & Frank, 2005) algorithms to process the considered 
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autism datasets with and without clustering. Thus two types of experiments have been conducted 

per dataset as follows: 

Experiment (1): We first load the original datasets (adult, adolescent, child) without any 

clustering. Then we run the classification algorithms (RIPPER, PART, Random Forest, Random 

Trees, and Artificial Neural Network [ANN]) using their default settings and record their output 

results.  

Experiment (2): CATC processed dataset in which the clustering is applied and all default settings 

of OMCOKE are maintained except the number of k clusters is changed from the default 3 to k 

= 2. Once this data has been pre-processed, then it is run using the classification algorithms 

above.  

A tenfold cross-validation testing method on all the classifiers has been deployed in all 

experiments. This means that the dataset is partitioned into ten subsets where nine data subsets 

are used for the training phase and one subset for the prediction phase. The process is then 

repeated 10 times. This will reduce overfitting and ensure a fair evaluation of the derived 

classifiers.  

5.5 Empirical Results and Analysis 

The experiments were conducted for the three datasets, i.e. adult, adolescent, and child. The 

tables and the figures below show side by side comparison of the machine learning classifiers 

performance with/out CATC integration.  The column CATC is marked as "No" when CATC was 

not applied to the dataset; otherwise a "Yes" is indicated. Table 5.3 compares the overall 

classification prediction, i.e. accuracy rate for ML classifiers, noting a significant improvement 

when CATC is applied before the classification procedure.   
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Table 5.4 Accuracy Rates of the Classifiers 

Dataset Classifier CATC Clustering Adult Adolescent Child 

Accuracy RIPPER No 0.942 0.807 0.878 

Yes 0.969 0.944 0.936 

PART No 0.962 0.879 0.916 

Yes 0.970 0.917 0.971 

Random Forest No 0.972 0.911 0.951 

Yes 0.990 0.978 0.990 

Random Tree No 0.924 0.863 0.874 

Yes 0.998 0.961 0.997 

ANN No 0.980 0.992 0.980 

Yes 0.999 0.978 0.999 

 

Table 5.4 shows the accuracy rate of the models derived by the ML methods on the adult, 

adolescent, and child datasets. In all cases, the accuracy of the classifier has been improved by 

the ML method when CATC was applied prior training phase. In particular, RIPPER had seen an 

increase in the accuracy rate by 2.7%, 13.7% and 5.8% for the adult, adolescent, and child 

datasets respectively when CATC was applied on these datasets. In addition, PART predictive 

accuracy had improved by 0.8%, 3.8% and 5.5% on the three datasets respectively when CATC 

was applied. Similarly, Random Forest and Random Tree classifiers when integrated with CATC 

have improved (2.8%, 6.7%, and 4.9%) and (7.4%, 9.8%, and 12.3%) respectively. No 

significant change is noted in the ANN method. The significant improvement in the accuracy can 

be attributed to the fact that having clustering in the pre-processing phase of the dataset was 

able to reduce data dimensionality by eliminating redundancy in the dataset.   
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Figure 5.6 shows the error rates comparisons of the models derived by the ML methods with and 

without CATC. The figure reveals that when CATC is applied before classification, the derived 

classifiers have shown a reduction in the error rates by 2.7%, 0.8%, 2.8%, and 7.4% for RIPPER, 

PART, Random Forest, and Random Tree respectively in the adult dataset. For the adolescent 

dataset, classifiers derived when CATC was applied have a 13.7%, 3.8%, 6.7%, and 9.8% lower 

rates for RIPPER, PART, Random Forest, and Random Trees respectively. Finally, for the child 

dataset, the error rates are lower when CATC was used by 5.8%, 5.6%, 4.9% and 12.3% for 

RIPPER, PART, Random Forest, and Random Tree respectively. There is no significant change in 

the ANN classifier. This shows overall better accuracy and lower error rates for all datasets 

including those that have large numbers of instances, i.e., adult dataset, and those with a lower 

number of instances, i.e., the adolescent dataset. 

The accuracy rate alone may not be the best measure of performance because even with a 95% 

accuracy rate we might simply be predicting majority class correctly. Our focus, however, should 

be the other 5% minority class who might have been screened and diagnosed with autism. Thus, 

a good predictor of the model performance would be the true positive rate (sensitivity) and the 

true negative rate (specificity).  

Figure 5.7 shows the specificity and sensitivity results of the three datasets by the classifiers 

with and without CATC. The figure reveals that when CATC was utilized prior to learning the 

sensitivity and specificity rates of the ML have improved on all datasets. For example, in RIPPER 
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Figure 5.4 Error rate comparisons 
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algorithm case, there is a modest sensitivity rate improvement on the adult and child datasets 

(2.9% and 2.8% respectively) and a 6.8% on the adolescent dataset, when CATC was applied. 

In addition, PART classifier's sensitivity rate went up by 0.9%, 6.9% and 7.5% on the adult, 

adolescent, and child respectively, when CATC was integrated. Similarly, when CATC was 

applied, Random Forest and Random Trees classifiers observed (1.8%, 11.1%, and 5.2%) and 

(5.3%, 8.1%, and 14.5%) increase in the sensitivity rates respectively. There is only a minuscule 

change in the ANN classifier. 

Here we note that clustering the datasets identified and grouped similar cases that would have 

otherwise been difficult to be classified correctly. Cases that may have exhibited some autistic 

traits but not qualified to be on the spectrum due to overlapping features of No ASD with ASD 

cases. These cases tend to confuse the learning algorithm in the classification process hence 

causing large false positives and false negatives. 
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Figure 5.5 Sensitivity & Specificity Rates of the Classifiers 
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By considering the overlaps and clustering them based on the similarity of their attributes, this 

issue is resolved, and the performance of the classification algorithms is dramatically improved 

as shown in Figure 5.7 and Table 5.4. 

The specificity rates as shown in Figure 5.3 had seen an improvement of 2.2%, 0.8%, 4.7% and 

12% for the adult dataset on the classifiers RIPPER, PART, Random Forest, and Random Tree 

respectively when CATC was applied. On the adolescent dataset, when CATC was applied, the 

percentage increment of the RIPPER, PART, Random Forest, and Random Tree classifiers are 

21.2%, 0.5%, 2.4%, and 11.5% respectively. Similarly, the performance of the classifiers went 

up by 2.7%, 3.5%, 4.7%, and 10.1% respectively on the child dataset. 

To further understand the sensitivity and specificity rates, we investigated the confusion matrix 

results produced by the classifiers. Of all the three datasets, the adult dataset had the overall 

highest number of incorrectly classified instances by the RIPPER, PART, Random Forest, and 

Random Tree classifiers, whereas, the adolescent dataset had the least.  Random Tree had the 

highest number of incorrectly classified instances (85) followed by RIPPER (65), PART (43), and 

Random Forest (31) in the adult dataset.  Specifically, Random Tree predicted 43 instances with 

ASD traits that should not have been classified resulting in the lowest specificity rate among the 

classifiers. On the other hand, Random Forest had the lowest number of false negatives with 

only 17 instances. CATC improved the classifiers by reducing the number of incorrectly classified 

instances to 21, 20, 0 and 1 for RIPPER, PART, Random Forest, and Random Tree respectively. 

In the adolescent dataset, CATC significantly reduced the incorrectly classified instances by the 

classifiers RIPPER, PART, Random Forest, and Random Tree from 48 to 10, 30 to 15, 22 to 4, 

and 34 to 7 respectively. Thus, CATC classifiers showed improvement in both sensitivity and 

specificity rates across the board compared with all classifiers. 

With respect to the imbalance in the adult dataset due to the class variable, we included the F1 

metric also known as the harmonic mean that not only takes into consideration the precision but 

also the sensitivity (equation 4.1 above). The F1 measure for the classifiers is shown to have 
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increased by 12.3%, 0.9%, 2.8%, and 7.4% for RIPPER, PART, Random Forest, and Random 

Tree respectively when CATC was utilized (See Figure 5.8). 

    

The Receiver Operating Characteristic (ROC) is an evaluation measure that contrasts the true 

positives and false positives of the machine learning model. The measure contrasts how the 

number of correctly classified true positives with the number of incorrectly classified negative 

values.  Figure 5.9 summarizes the ROC values of the classifiers and improvement across the 

board in the ROC Area rates when CATC is applied. While the improvement rates were decent in 

the adult dataset, it was slightly significant in the smaller dataset such as the Adolescent dataset. 

The ROC Area rate was up by 12.3%, 1.0%, 1.6%, and 9.8% on RIPPER, PART, Random Forest, 

Random Tree classifiers respectively, when CATC was utilized prior to learning.  
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We also note that the number of rules generated while running the three datasets on RIPPER 

and PART decrease when CATC is applied as shown in figure 5.10 (below).  

This can be attributed to the fact that redundant rules have been removed in the building of the 

classifier due to the pre-processing of the dataset and clustering them based on their strong 

attributes. Thus, the pre-processing with clustering algorithm have assisted in identifying 

relevant and strong features that were only used in the supervised learning models. This is useful 

for diagnosticians as fewer rules could mean a reduced amount of time needed in the screening 

of autism patients.  

5.6 CHAPTER SUMMARY 

In this chapter, Autism Spectrum Disorder has been described along with some of its challenges 

and the use of ML in the screening process. The screening and diagnosis process is a very lengthy 

process and inaccessible to the vast majority of people. Screening methods have been developed 

using existing clinical autism diagnosis methods that take the answers given in a questionnaire 

format as an input for a scoring function, which in turn processes the input and computes a final 

score to reflect whether the individual is associated with ASD traits. Recent research has aimed 

at minimizing the number of questions and focused primarily on improving time, accuracy, and 

reducing the dimensionality of the dataset by pinpointing influential autistic symptoms. The focus 

of this chapter was the utilization of clustering and classification together as semi-supervised 

learning since this form of semi-supervised technique is rare in autism screening research. 

Figure 5.8 # of Rules Generated in PART and RIPPER classifiers 
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In this chapter, we proposed a method that utilizes both clustering and classification in autism 

screening, a first that we are aware of. The study utilized data obtained via a screening app 

available on both Android and iOS mobile users and accessible easily online by the users. By 

introducing clustering a priori to classification, this study was able to add value to existing 

research in four folds; 

1) This method was able to reduce data dimensionality by eliminating redundancy in the dataset.  

2) Cases that may have exhibited some autistic traits but not qualified to be on the spectrum 

due to overlapping features which caused large false positives and false negatives were resolved. 

3) The technique used did not rely on the scoring function feature popularly used in other 

research to determine autistic traits in the screening phase but instead used an unsupervised 

ML clustering algorithm to identify features based on their similarity measures. 

4) Clustering the data before application in the learning phase streamlined the data based on 

only strong features resulting in a reduced number of rules generated by the classifiers. 

The proposed model was measured by looking at the accuracy, sensitivity, specificity, and F1 

rates and compared to popular classifiers (ANN, RIPER, PART, Random Forest, and Random 

Trees). CATC improved the classifiers by reducing the number of incorrectly classified instances 

and improved on the sensitivity and specificity rates on the classifiers. The results also showed 

a significant reduction in the rules generated by PART. 

There were a couple of limitations in this study. The data used was limited to what was collected 

using the mobile app. The study could have benefited with larger balanced datasets.  Also, 

instances related to toddlers are rare and hard to obtain and were not included in this study. 

In conclusion, the case study showed employing CATC in the screening phase significantly 

improved the performance of the classifiers in all measures and especially the accuracy and 

sensitivity rates, thus making a substantial positive difference in the prediction of the ASD 
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diagnosis class. The method used in this study can easily be adopted and applied to other clinical 

science application domain such as screening for dementia.  

The thesis conclusion and future research directions are discussed in the next chapter. 
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Chapter 6  

Conclusions and Future Work 

6.1 Research Summary 

This work has investigated an issue related to the unsupervised learning technique, especially 

overlapping partitioning clustering. We studied a number of enhancements in the application of 

the K-means algorithm in clustering for multi-label datasets. The outcome of this study is a new 

multi-cluster algorithm called OMCOKE, which contains a novel characteristic of detection and 

retention of outliers and the ability to determine overlap threshold through heuristics as opposed 

to user-defined entry. These features, when combined with classification algorithms, have 

tremendously improved the prediction accuracy and efficiency of both clustering and 

classification. The improvements and the K-means modifications in this work have been 

presented in IEEE conferences and have been published in reputable statistics and data mining 

and analysis journals. 

6.2 Research Contributions 

The following sections summarizes the different contributions of this research that were outlined 

in chapter one. 

6.2.1 Overlapping Clustering with self-calculating threshold 

One of the significant challenges of K-means clustering algorithms is to determine a suitable 

threshold that would be used to allow objects to belong to overlap and belong to multiple 

clusters. Many algorithms require a similarity threshold be determined in advance which is used 

to determine whether an object will belong to a certain cluster or not whether it can overlap 

between multiple clusters. This may not be an easy feat to determine a priori for different 

datasets having different cardinalities. 
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The OMCOKE algorithm assigned the global threshold to determine the belonging of a data object 

to a cluster once the K-means algorithm finishes its iterations and picks the maximum distance 

(maxdist) of all objects that were assigned to the clusters. The maxdist which is based on the 

maximum Euclidean distance assigned to all the objects becomes the global threshold to reassign 

data to overlapping clusters. In this case, the threshold maxdist is not determined a priori and 

is based on heuristics that can change dynamically depending on the data.  

The implementation and evaluation of MCOKE have been disseminated and published in 

Proceedings of the XIII International Conference on Machine Learning and Computing, 

ICMLC'2015, IEEE SAI Computing Conference, London, UK and in the Canadian University Dubai 

Speaker Series 2015. 

6.2.2 Noise and Outlier detection 

Outliers are data objects or points that do not conform to the normal behaviour or model of the 

dataset, hence are deemed inconsistent or grossly different. Outliers could also indicate 

suspicious data objects with malicious intent. We modified our algorithm to detect and retain the 

outliers. Upon identification of at least one outlier, the k number of clusters entered by the user 

prior to running the method is incremented by 1 on the fly; the outlier object is assigned to this 

newly created cluster. All other identified outliers, a subset S from the initial population, are 

assigned to belong to this newly created cluster. Once an outlier is detected, the algorithm adds 

k+1 clusters as the new output vector with the outlier cluster indexes listed as part of the output. 

This allows for further investigation of those data points as opposed to discarding them as is 

usual. When no outliers are detected, the algorithm will simply cluster with overlaps without 

incrementing the number of k clusters. 

The implementation and evaluation of OMCOKE have been submitted to the Statistical Analysis 

and Data Mining journal. 
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6.2.3 Clustering based Autistic Trait Classification technique to 

improve ASD Screening: A Case Study 

One of the critical applications that machine learning (ML) can be adapted to is to improve the 

detection of autistic symptoms in Autism Spectrum Disorder (ASD) screening. In this context, 

ML techniques can be used to discover ASD symptoms based on historical cases and controls to 

enhance autism screening efficiency and accuracy. ML offers advanced techniques for discovering 

concealed information that can be utilized by physicians, clinicians as well as parents to improve 

medical diagnosis and screening. This case study aimed to improve the performance of detecting 

ASD traits by reducing data dimensionality and eliminating redundancy in the autism dataset. 

To achieve this aim, a new ML framework using a semi-supervised learning approach called 

Clustering based Autistic Trait Classification (CATC) is proposed in chapter 5 in which detecting 

autistic traits is accomplished using a clustering technique and validation of the classifiers is 

done by a classification technique. 

In chapter 5, empirical results on different datasets related to screening of autism involving 

children, adolescents, and adults collected using an online mobile application were verified and 

compared to other common machine learning classification techniques. We measured our model 

by looking at the accuracy, sensitivity, specificity, and F1 rates and compared them to popular 

classifiers (ANN, RIPER, PART, Random Forest, and Random Trees).  

This experimental study on ASD was submitted to a top-ranked journal, Informatics for Health 

and Social Care by Taylor & Francis. 

6.2.4 Outlier Detection Clustering Technique in WEKA ML Tool 

One major contribution of this thesis is the application and integration of OMCOKE algorithm in 

the WEKA environment inside the "clusterers" package. The "clusterers" package contains the 

implementation of a few clustering algorithms such as the Simple K-means, EM (Expectation-

Maximization) algorithm, Hierarchical Clustering, Cobweb, Density-Based Clustering among 
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others. The proposed algorithm can be accessed from WEKA Explorer or the Command Line 

platforms for data processing. 

6.3 Research Implications and Limitations 

The following is a summary of some of the implications of this research. 

a) Our outlier clustering approach, which is discussed in detail in Chapter 3 and Chapter 4 added 

immense value to the learning process as we save these data objects in a “k+1” cluster to investigate 

and understand their characteristics. An outlier cluster that can be investigated has profound real-

life implications such as in e-banking (fraud detection), website phishing, cyber security (intrusion 

detection), or medical screening (ASD or dementia). 

b) Our case study method, which is discussed in detail in Chapter 5 identified potential autism cases 

based on their similarity traits as opposed to a scoring function used by many ASD screening tools. 

Not only did the proposal improve the performance of the classifiers and reduced the number of 

rules generated by the algorithms, but also resolved cases that may have exhibited some autistic 

traits but not qualified to be on the spectrum due to overlapping features which caused large false 

positives and false negatives. This has great potential to improve the screening process and directly 

benefiting diagnosticians and society at large. 

c) There are many advantages of integrating OMCOKE to WEKA. WEKA being an open-source 

application tool can be downloaded freely online and puts the OMCOKE algorithm directly in the 

hands of many machine learning researchers and students. Therefore, a positive impact on the 

enhancement of literature in this domain can be achieved easily.  

There are a few limitations encountered in this research primarily in the application of the autistic traits 

detection case study. We list these limitations as: 

a) The limited dataset used – The study relied on data collected via the mobile app ASDTest. This app 

was available for download worldwide in both Android and Apple iOS devices. However, only a few 
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participated in this study. There were 248 adolescents, 1118 adults, and 509 children with 44, 183, 

and 86 that identified to have a family history of ASD respectively. 

b) Non-inclusion of toddlers – The dataset did not include instances of toddlers. While instances 

related to toddlers are rare to find, it would have nonetheless enriched the study as ASD screening 

of young toddlers may provide a better understanding of the symptoms at a very young age and 

increase the chances of early treatment. 

c) Lack of clinicians’ verification of the results -  Classification algorithms play a crucial role in 

providing a predictive model. However, these models need to be verified by licenced clinicians and 

specialists who can attest to the classification accuracy.   

6.4 Future Work 

6.4.1 Fusing of Multi-Labelled Clusters 

The OMCOKE algorithm can be extended to increment the k number of clusters based on the 

matches and mismatches of the object attributes by assigning weightage to the objects. These 

multi clusters can then be fused as new clusters based on their similarities and providing the 

mapping of objects to the clusters with their similarity weights. The following outline the steps:  

a) get user preferred number of k clusters 

b) Adjust the k number of clusters to better fit the data by allowing a maximum number of 

clusters based on the user entry 

c) Upon successful clustering of the data objects, calculate the weightage of each object based 

on their similarity to the cluster centroid 

d) Fuse and merge multi-clusters based on the object weightage for better multi-labelled clusters 

and provide a mapping of the objects to the fused clusters 

For example, let us assume a Netflix customer is presented with 3 movie genre options to select 

(i.e., horror, drama, or thriller). The customer selects all three and searches the database which 
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yields the following scenario of overlapping results of 7 different movie titles (A, B, C, D, E, F, 

G). 

Table 6.1 Search Results of Movie Titles 

Movie 

Title 

Horror Drama Thriller 

A x x  

B x   

C  x x 

D x x x 

E x  x 

F  x  

G   x 

 

The 7 movies will have been clustered in 3 categories with some movie titles overlapping between 

the different genres. These repetitive results can be summarized as: 

 4 movies of horror (A, B, D, E) 

 4 movies drama (A, C, D, F) 

 4 movies of thriller (C, D, E, G) 

Based on the number of categories k selected, the maximum number of clusters (Y) can be 

computed using the formula Y = 2k – 1. In this scenario, the clustering algorithm can be 

expanded to create 7 clusters (instead of the k=3) with the clear options of the overlapping 

genres. 

 A movie – horror/drama 

 C movie – drama/thriller 

 E movie – horror/thriller 

 D movie – horror/drama/thriller 

 B movie – horror 

 F movie – drama 

 G movie – thriller 

These assignments can now be enhanced by attaching weightage of the genre to each movie. 

For instance, 
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 A movie – horror (0.6) / drama (0.4) 

 C movie – drama (0.7) / thriller (0.3) 

 E movie – horror (0.55) / thriller (0.45) 

 D movie – horror (0.2) / drama (0.4) / thriller (0.4) 

 B movie – horror (1) 

 F movie – drama (1) 

 G movie – thriller (1) 

Given the formula, the number of clusters can grow exponentially when k is large. Hence this 

has to be minimized to only small values of k. The resulting clusters can then be fused to reduce 

the number of clusters based on their similarity weightage and provide better classification 

labels. 

In the example above, the clusters can now be merged and reduced to form a maximum of 4 

clusters based on the object weightage yielding the following results; 

 Cluster A (generic genres) 

o B movie – horror 

o F movie – drama 

o G movie – thriller 

 Cluster B (mostly horror) 

o A movie – horror (0.6) / drama (0.4) 

o E movie – horror (0.55) / thriller (0.45) 

 Cluster C (mostly drama) 

o C movie – drama (0.7) / thriller (0.3) 

 Cluster D (drama-thriller) 

o D movie – drama (0.4) / thriller (0.4) 

This clustering technique provided a better categorization of the movie and will optimize the 

customer experience due to the improved classification of the clusters labels based on their 

weightage of each genre.  

The future algorithm will first determine the maximum number of clusters based on the user-

defined k. Data objects will be assigned to each cluster based on their similarity measure allowing 

objects to overlap to multiple clusters. This is followed by calculating the weightage of each 

object to their assigned cluster(s). Finally, the clusters are fused and merged based on their 
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object similarity weightage to create better multi-labelled clusters, and a mapping of each object 

to the cluster is provided. 

6.4.2 Distributed Overlapping Clustering with MapReduce 

The literature review and critical analysis in chapter two, we find that multi-label datasets with 

large dimensionality and cardinality of the overlaps affect the value of Precision and Recall i.e., 

there will be a low value of Precision because the observations are assigned to more than one 

cluster. Recall measure uses a binary function to compute the relationship between pairs of 

observations, and not considering that those pairs of observations could also feature in multiple 

clusters in the overlap. This results in a biased recall measure, especially when the cardinality in 

the dataset is large. We also note the effect of outliers in the dataset and how easily they can 

skew and affect the mean distance calculation used in assigning objects to their clusters. These 

shortcomings effect even when such moderate sized multi-label datasets are processed locally. 

The problem becomes stark when we are to consider big data distributed over different locations.  

It is imperative we device new approaches in overlapping clustering of distributed big data. 

Hadoop and MapReduce are popular platforms used today for distributed data processing. These 

two emerging technologies are increasingly utilized in the real-life implementation of mining big 

data where the semi-structured data is distributed over large areas and to multiple locations. 

The Hadoop platform uses distributed file systems and parallel processing to create clusters of 

computer nodes to store and process data across multiple locations. On the other hand, 

MapReduce is an open-source API (application programming interface) that distributes the 

processing of data among thousands of distributed nodes in parallel. The Map function divides a 

task into smaller units among thousands of nodes, and the Reduce function integrates the 

outputs derived from the nodes into a single set. Many large social media and technology giants 

such as Facebook, Twitter, Google, and Amazon have adopted these two techniques for their big 

data processing and analytics. In a world where massive amounts of unstructured and semi-

structured data are generated every minute through different devices and technologies, there is 
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a need for overlapping clustering techniques to handle such data in a distributed and parallel 

way by integrating overlapping clustering algorithms in the MapReduce API. 
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Appendix A 

 

Extending OMCOKE in WEKA 

1. Loading and Pre-processing data in WEKA 

Several standard loaders can be used: 

a) Files that such as WEKA’s ARFF file format, C4.5 Files, text files, comma separated formats in 

spreadsheet (CSV), JSON files etc. 

b) Using the Uniform Resource Locator (URL) functionality to load data that is saved in a specific server.  

c) Databases connected externally using ODCB to any commercial or open source databases such as 

Oracle, SQL Server, or MySQL.  

 

Fig. 1 Loading and Pre-processing data in WEKA 

Once loaded, the data is pre-processed in WEKA to show the relationship that exists in the data, 

the number of instances, attributes present, type of data, and provides basic descriptive statistics 

on the data including a visual graph.  
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2. Clustering Methods 

Several ML clustering methods are available in WEKA to allow users to select as seen on Figure 

2 below. OMCOKE highlighted in the option list. 

 

Fig. 2 Clustering Methods in WEKA 

3. Standard Outputs of the Clustering Methods 

Weka provides basic outputs of the learning methods used.  Figure 3 shows an example of the 

output obtained using the K-means method in the Iris dataset. The following are the basic 

information displayed on the Output panel: 

1) The learning method used 

2) The number of instances on the dataset 

3) The number of attributes considered during the learning process on the dataset 

4) Number of iterations  

5) The optimal value achieved in the objective criterion  

6) Initial cluster assignments 

7) The final cluster representatives i.e. cluster centroids 

8)  Time taken to build the model 



118 

 

 

Fig. 3. Example of Cluster output obtained using K-means on Iris dataset 
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4. OMCOKE Parameter setting 

Default values are set on the dialog box and are displayed in Figure 4 below. The useMeasure 

setting must be set to “True” which is the default setting for the algorithm to display the display 

measures. OMCOKE has been implemented only to use the Euclidean distance. 

 

Fig. 4 OMCOKE Parameter Settings in WEKA 
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The maxDistThreshold is defaulted to 1.0. Altering this will activate the Outlier detection feature 

in the algorithm which will then create an outlier-cluster on the fly if any outliers are identified 

in the dataset. The useFusion is defaulted to False as this has not been implemented in the 

algorithm. 

 

5. Evaluation of the resulting cluster in OMCOKE 

In addition to the standard basic output displayed, when the useMeasure feature of OMCOKE is 

set to True, the following is also displayed; 

1) Number of outliers detected in the dataset 

2) Outlier index of all the data points identified as outliers 

3) Confusion matrix showing the True Positive (TF), False Positive (FP), True Negative (TN), and False 

Negative (FN) 

4) Pair-based Precision-Recall measures  

Figures 5 & 6 below highlights the results of OMCOKE run on the Iris dataset. The first run has 

the maxdistThreshold set to default, whereas in Figure 6, the value of that is adjusted to 0.95.  
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Fig. 5 OMCOKE evaluation metrics with maxdistThreshold default value of 1 
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Fig. 6 OMCOKE results on Iris dataset with the threshold set to 0.95. 

4 outliers are identified in the dataset with this setting and are marked in their corresponding 

index in the dataset. 
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6. Visualization of Data 

WEKA has a visualization tool that can be used to discover the data.  

 

Fig. 7 Visualization of data in WEKA 
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Appendix B 

OMCOKE SOURCE CODE  

Title: Clusterer 

Description: OMCOKE Project by Said Baadel 

Copyright: Copyright (c) 2018 

package weka.clusterers; 

import weka.classifiers.rules.DecisionTableHashKey; 

import weka.core.*; 

import weka.core.Capabilities.Capability; 

import weka.core.TechnicalInformation.Field; 

import weka.core.TechnicalInformation.Type; 

import java.text.DecimalFormat; 

import java.text.NumberFormat; 

import java.util.*; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

import java.util.stream.Collectors; 

import java.util.stream.IntStream; 

 

enum ALGORITHM { 

  KMEAN, OMCOKE; 

 public static SelectedTag selectedTag(String value) { 

    return new SelectedTag(value, toTags()); 

  } 

  public static Tag[] toTags() { 

    ALGORITHM[] formulas = values(); 

    Tag[] result = new Tag[formulas.length]; 

    for (int i = 0; i < result.length; i++) { 

      result[i] = new Tag(i, formulas[i].name(), formulas[i].name()); 

    } 

    return result; 

  } 

} 

public class OmcokeCluster extends RandomizableClusterer implements 

    NumberOfClustersRequestable, WeightedInstancesHandler, 

    TechnicalInformationHandler { 
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  private static Logger log = Logger.getLogger(OmcokeCluster.class.getName()); 

 

  static { 

    log.setLevel(Level.ALL); 

  } 

 

  //* new Options 

  protected String algorithm = ALGORITHM.OMCOKE.name(); //with measures 

  protected boolean useFusion = false;  

  protected boolean useMeasures = true;  

  protected boolean keepMain = false; //exclude the minimum distance from the threshold 

  //* FT default = 1, range in [0-1] , 0: full fusion, 1: no fusion 

  protected double fusionThreshold = 1.0; 

  //* MXD maxdist variable, if 1 same as largest distance of an object that was assigned to a 

cluster. 

  protected double maxDistThreshold = 1.0; 

  volatile protected String okmStringResults = ""; 

  public SelectedTag getAlgorithm() { 

    return ALGORITHM.selectedTag(algorithm); 

  } 

  public void setAlgorithm(SelectedTag tv) { 

    this.algorithm = tv.getSelectedTag().toString(); 

  } 

  public String algorithmTipText() { 

    return "TODO: Algorithm tip text"; 

  } 

  public boolean getUseFusion() { 

    return useFusion;  } 

  public void setUseFusion(boolean useFusion) { 

    this.useFusion = useFusion; 

  } 

  public String useFusionTipText() { 

    return "TODO: use fusion tip text"; 

  } 

  public boolean getUseMeasures() { 

    return useMeasures; 
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  } 

  public void setUseMeasures(boolean useMeasures) { 

    this.useMeasures = useMeasures; 

  } 

  public String useMeasuresTipText() { 

    return "use measures"; 

  } 

  public double getFusionThreshold() { 

    return fusionThreshold; 

  } 

  public void setFusionThreshold(double fusionThreshold) { 

    this.fusionThreshold = fusionThreshold; 

  } 

  public String fusionThresholdTipText() { 

    return "TODO fusion threshold"; 

  } 

  public double getMaxDistThreshold() { 

    return maxDistThreshold; 

  } 

  public void setMaxDistThreshold(double maxDistThreshold) { 

    this.maxDistThreshold = maxDistThreshold; 

  } 

  public String maxDistThresholdTipText() { 

    return "maxdist threshold"; 

  } 

  public void setKeepMain(boolean keepMain) { 

    this.keepMain = keepMain; 

  } 

  public boolean getKeepMain() { 

    return keepMain; 

  } 

  /** 

   * number of clusters to generate. 

   */ 

  protected int m_NumClusters = 3; 

 



127 

 

  /** 

   * Holds the initial start points, as supplied by the initialization method 

   * used 

   */ 

  protected Instances m_initialStartPoints; 

  /** 

   * holds the cluster centroids. 

   */ 

  protected Instances m_ClusterCentroids; 

 

  //* holds the cluster points 

//  protected Instances[] m_ClusterPoints; 

 

  //* holds the overlapped cluster points 

//  Instances[] oClusterPoints = null; 

 

  /** 

   * Holds the standard deviations of the numeric attributes in each cluster. 

   */ 

  protected Instances m_ClusterStdDevs; 

  /** 

   * For each cluster, holds the frequency counts for the values of each nominal 

   * attribute. 

   */ 

  protected double[][][] m_ClusterNominalCounts; 

  protected double[][] m_ClusterMissingCounts; 

  /** 

   * Stats on the full data set for comparison purposes. In case the attribute 

   * is numeric the value is the mean if is being used the Euclidian distance or 

   * the median if Manhattan distance and if the attribute is nominal then it's 

   * mode is saved. 

   */ 

  protected double[] m_FullMeansOrMediansOrModes; 

  protected double[] m_FullStdDevs; 

  protected double[][] m_FullNominalCounts; 

  protected double[] m_FullMissingCounts; 
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  /** 

   * Display standard deviations for numeric attributes. 

   */ 

  protected boolean m_displayStdDevs; 

 

  /** 

   * The number of instances in each cluster. 

   */ 

  protected double[] m_ClusterSizes; 

 

  /** 

   * Maximum number of iterations to be executed. 

   */ 

  protected int m_MaxIterations = 100;  

 

  /** 

   * Keep track of the number of iterations completed before convergence. 

   */ 

  protected int m_Iterations = 0; 

  /** 

   * Holds the squared errors for all clusters. 

   */ 

  protected double[] m_squaredErrors; 

  /** 

   * the distance function used. 

   */ 

  protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); 

  /** 

   * Assignments obtained. 

   */ 

  protected int[] m_Assignments = null; 

  /** 

   * the default constructor. 

   */ 

  public OmcokeCluster() { 
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    super(); 

    m_SeedDefault = 10; 

    setSeed(m_SeedDefault); 

  } 

  @Override 

  public TechnicalInformation getTechnicalInformation() { 

    TechnicalInformation result; 

    result = new TechnicalInformation(Type.INPROCEEDINGS); 

    result.setValue(Field.AUTHOR, "Said"); 

    result.setValue(Field.TITLE, "OMCOKE"); 

    result.setValue(Field.BOOKTITLE, ""); 

    result.setValue(Field.YEAR, "2017"); 

    result.setValue(Field.PAGES, "***-***"); 

    return result; 

  } 

 

  /** 

   * Returns a string describing this clusterer. 

   * 

   * @return a description of the evaluator suitable for displaying in the 

   * explorer/experimenter gui 

   */ 

  public String globalInfo() { 

    return "Cluster data using the OMCOKE algorithm. Can use either " 

        + "the Euclidean distance (default) or the Manhattan distance." 

        + " If the Manhattan distance is used, then centroids are computed " 

        + "as the component-wise median rather than mean." 

        + " For more information see:\n\n" + getTechnicalInformation().toString(); 

  } 

  /** 

   * Returns default capabilities of the clusterer. 

   * 

   * @return the capabilities of this clusterer 

   */ 

  @Override 

  public Capabilities getCapabilities() { 
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    Capabilities result = super.getCapabilities(); 

    result.disableAll(); 

    result.enable(Capability.NO_CLASS); 

 

    // attributes 

    result.enable(Capability.NOMINAL_ATTRIBUTES); 

    result.enable(Capability.NUMERIC_ATTRIBUTES); 

    result.enable(Capability.MISSING_VALUES); 

    return result; 

  } 

 

  /** 

   * Generates a clusterer. Has to initialize all fields of the clusterer that 

   * are not being set via options. 

   * 

   * @param instances set of instances serving as training data 

   * @throws Exception if the clusterer has not been generated successfully 

   */ 

  @Override 

  public void buildClusterer(Instances instances) throws Exception { 

    Instances data = new Instances(instances); 

    okmStringResults = ""; 

    InitClusters init = new InitClusters().invoke(data); 

    Instances[] m_ClusterPoints = null; 

 

    switch (ALGORITHM.valueOf(algorithm)) { 

      case KMEAN: 

        m_ClusterPoints = buildClustererKMean(init.instances, init.clusterAssignments); 

        break; 

      case OMCOKE: 

        m_ClusterPoints = buildClustererOMCOKE(data); 

        break; 

    } 

    calcStats(data, m_ClusterPoints); 

    log.info("\n" + m_ClusterCentroids.stream() 

        .map(i -> i.toString()) 
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        .collect(Collectors.joining("\n"))); 

  } 

 

  private Instances[] buildClustererMCOKE(Instances instances) { 

    return null; 

  } 

 

  /** 

   * Map all assignments to its clusters, allow overlapping 

   * 

   * @param assignments 

   * @return Map of entries : e.key = centroidIndex, e.value = List of indexes of instances 

mapped to this cluster: 

   */ 

  public static Map<Integer, List<Integer>> toClusters(List<BitSet> assignments) { 

    HashMap<Integer, List<Integer>> result = new HashMap<>(6); 

    for (int line = 0; line < assignments.size(); line++) { 

      final int ln = line; 

      final BitSet bs = assignments.get(line); 

      bs.stream() 

          .forEach(clusterIndex -> { 

            List<Integer> list = result.get(clusterIndex); 

            if (list == null) { 

              list = new ArrayList<>(); 

              result.put(clusterIndex, list); 

            } 

            list.add(ln); 

          }); 

    } 

    return result; 

  } 

 

  /** 

   * @param data 

   * @throws Exception 

   */ 

  private Instances[] buildClustererOMCOKE(Instances data) { 
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    Instances[] m_ClusterPoints = null; 

    boolean converged = false; 

 

    /* overlapped cluster points */ 

    List<Integer> outlier = null; 

    int[] bestAssignments = null; 

 

    List<BitSet> assignments = new ArrayList<>(); 

 

    // make sure not to pick up similar points 

    final Instances centroids = BUtils.sample(data, m_NumClusters, m_Seed); 

 

    int iteration = 0; 

 

    while (!converged) { 

      iteration++; 

      // distances from each point to centroids 

      List<double[]> distances = BUtils.distances(data, centroids, m_DistanceFunction); 

 

      // maximum of "highest" distances among all points 

      double maxDist = BUtils.getMaxDist(distances); 

      //threshold to cut off the outliers as a ratio of maxDist value 

      final double distanceThreshold = maxDist * maxDistThreshold; 

 

      //find overlapping assignments and apply threshold at the same time 

      List<BitSet> tempAssignments = distances 

          .stream() 

          .map(d -> BUtils.bitSetOf(d, distanceThreshold, keepMain)) 

          .collect(Collectors.toList()); 

 

      //converged is false for any changes from last assignments 

      converged = assignments.size() == tempAssignments.size() 

          && !IntStream.range(0, tempAssignments.size()) 

          .filter(a -> !assignments.get(a).equals(tempAssignments.get(a))) 

          .findAny() 

          .isPresent(); 
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      log.info(String.format("iteration = %d, converged = %s", iteration, converged)); 

      //outlier consists of all non-assigned points, 

      // (if keepMain then no outlier was found) 

      outlier = IntStream.range(0, tempAssignments.size()) 

          .filter(index -> tempAssignments.get(index).isEmpty()) 

          .boxed() 

          .collect(Collectors.toList()); 

 

      log.info(String.format("outlier size = %d", outlier.size())); 

 

      // update centroids 

      centroids.clear(); 

      centroids.addAll( 

          calculateCentroids(data, 

              tempAssignments, 

              m_NumClusters, 

              m_DistanceFunction)); 

      centroids.setClassIndex(centroids.numAttributes() - 1); 

      m_ClusterCentroids = centroids;  

 

      log.info(String.format("Number of centroids = %d", centroids.numInstances())); 

      if (iteration == m_MaxIterations) { 

        converged = true; 

      } 

      // check empty clusters 

      int emptyClusterCount = m_NumClusters - centroids.size(); 

      log.info(String.format("emptyClusterCount = %d", emptyClusterCount)); 

 

      // update stats code here 

 

      if (!converged) { 

        m_ClusterNominalCounts = new double[m_NumClusters][data.numAttributes()][0]; 

        assignments.clear(); 

        assignments.addAll(tempAssignments); 

      } else { 
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        /** converged */ 

        m_ClusterCentroids = centroids; 

 

        // save memory! 

        m_DistanceFunction.clean(); 

 

        //* setup global variable 

        m_Iterations = iteration; 

 

        m_ClusterPoints = toClustersInInstances(data, outlier, centroids); 

        int allPoints = Arrays.stream(m_ClusterPoints) 

            .mapToInt(i -> i.numInstances()) 

            .sum(); 

 

        if (useMeasures) { 

          StringJoiner sj = new StringJoiner("\n"); 

          sj.add(String.format("\nNumber of centroids = %d centroids", 

m_ClusterCentroids.numInstances())); 

          sj.add(String.format("\nAll Points = %d points", allPoints)); 

          sj.add(String.format("Number of Outliers = %d points", outlier.size())); 

          sj.add(String.format("Outlier indexes = %s", outlier.toString())); 

 

          Map<Integer, List<Integer>> tmpMap = toClusters(tempAssignments); 

          PairBasedEvaluation eval = new PairBasedEvaluation(data); 

          eval.calc(tmpMap); 

          sj.add(eval.getResults()); 

 

          sj.add("oooooooooooooooooooooooooooooooo"); 

          OPairBasedEvaluation eval2 = OPairBasedEvaluation.of(data); 

                    eval2.calc(m_ClusterPoints, allPoints); 

                    sj.add(eval.getResults()); 

 

    // save memory! 

    m_DistanceFunction.clean(); 

 

    //* setup global variable 

    m_Iterations = iteration; 
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    return tempIClusters; 

  } 

    // Quickly calculate some relevant statistics 

    for (int j = 0; j < members.numAttributes(); j++) { 

      if (members.attribute(j).isNominal()) { 

        nominalDists[j] = new double[members.attribute(j).numValues()]; 

      } 

    } 

    for (Instance inst : members) { 

      for (int j = 0; j < members.numAttributes(); j++) { 

        if (inst.isMissing(j)) { 

          weightMissing[j] += inst.weight(); 

        } else { 

          weightNonMissing[j] += inst.weight(); 

          if (members.attribute(j).isNumeric()) { 

            vals[j] += inst.weight() * inst.value(j); // Will be overwritten in Manhattan case 

          } else { 

            nominalDists[j][(int) inst.value(j)] += inst.weight(); 

          } 

        } 

      } 

    } 

    for (int j = 0; j < members.numAttributes(); j++) { 

      if (members.attribute(j).isNumeric()) { 

        if (weightNonMissing[j] > 0) { 

          vals[j] /= weightNonMissing[j]; 

        } else { 

          vals[j] = Utils.missingValue(); 

        } 

      } else { 

        double max = -Double.MAX_VALUE; 

        double maxIndex = -1; 

        for (int i = 0; i < nominalDists[j].length; i++) { 

          if (nominalDists[j][i] > max) { 

            max = nominalDists[j][i]; 

            maxIndex = i; 
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          } 

          if (max < weightMissing[j]) { 

            vals[j] = Utils.missingValue(); 

          } else { 

            vals[j] = maxIndex; 

          } 

        } 

      } 

    } 

 

    if (updateClusterInfo) { 

      for (int j = 0; j < members.numAttributes(); j++) { 

        m_ClusterMissingCounts[centroidIndex][j] = weightMissing[j]; 

        m_ClusterNominalCounts[centroidIndex][j] = nominalDists[j]; 

      } 

    } 

 

    if (addToCentroidInstances) { 

      m_ClusterCentroids.add(new DenseInstance(1.0, vals)); 

    } 

 

    return vals; 

  } 

 

  /** 

   * Returns the number of clusters. 

   * 

   * @return the number of clusters generated for a training dataset. 

   * @throws Exception if number of clusters could not be returned successfully 

   */ 

  @Override 

  public int numberOfClusters() throws Exception { 

    return m_NumClusters; 

  } 

 

  /** 
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   * Returns an enumeration describing the available options. 

   * 

   * @return an enumeration of all the available options. 

   */ 

  @Override 

  public Enumeration<Option> listOptions() { 

    Vector<Option> result = new Vector<Option>(); 

// 

    result.addElement(new Option("\tAlgorithm to be used.\n" + "\t(default KMEAN).", 

        "algorithm", 1, "-algorithm <kmean, OMCOKE>")); 

    result.addElement(new Option("\tUse fusion in algorithm.\n" + "\t(default false).", 

        "fusion", 0, "-fusion")); 

    result.addElement(new Option("\tCalc measures for algorithm.\n" + "\t(default false).", 

        "measures", 0, "-measures")); 

    result.addElement(new Option("\tExclude minimum distance class from thresholding.\n" + 

"\t(default false).", 

        "KM", 0, "-KM")); 

    result.addElement(new Option("\tFustion threshold.\n" + "\t(default 1, no fusion).", 

        "FT", 1, "-FT <num>")); 

    result.addElement(new Option("\tMaxDist threshold.\n" + "\t(default 1).", 

        "MXD", 1, "-MXD <num>")); 

    result.addElement(new Option("\tNumber of clusters.\n" + "\t(default 2).", 

        "N", 1, "-N <num>")); 

    result.addElement(new Option("\tDisplay std. deviations for centroids.\n", 

        "V", 0, "-V")); 

    result.addElement(new Option( 

        "\tDon't replace missing values with mean/mode.\n", "M", 0, "-M")); 

 

    result.add(new Option("\tDistance function to use.\n" 

        + "\t(default: weka.core.EuclideanDistance)", "A", 1, 

        "-A <classname and options>")); 

 

    result.add(new Option("\tMaximum number of iterations.\n", "I", 1, 

        "-I <num>")); 

 

    result.addAll(Collections.list(super.listOptions())); 

    return result.elements(); 
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  } 

 

  /** 

   * @param options the list of options as an array of strings 

   * @throws Exception if an option is not supported 

   */ 

  @Override 

  public void setOptions(String[] options) throws Exception { 

 

    algorithm = Utils.getOption("algorithm", options); 

    useFusion = Boolean.parseBoolean(Utils.getOption("fusion", options)); 

    useMeasures = Boolean.parseBoolean(Utils.getOption("measures", options)); 

    keepMain = Boolean.parseBoolean(Utils.getOption("KM", options)); 

    fusionThreshold = Double.parseDouble(Utils.getOption("FT", options)); 

    maxDistThreshold = Double.parseDouble(Utils.getOption("MXD", options)); 

    m_displayStdDevs = Utils.getFlag("V", options); 

 

    String optionString = Utils.getOption('N', options); 

    if (optionString.length() != 0) { 

      setNumClusters(Integer.parseInt(optionString)); 

    } 

    optionString = Utils.getOption("I", options); 

    if (optionString.length() != 0) { 

      setMaxIterations(Integer.parseInt(optionString)); 

    } 

    String distFunctionClass = Utils.getOption('A', options); 

    if (distFunctionClass.length() != 0) { 

      String distFunctionClassSpec[] = Utils.splitOptions(distFunctionClass); 

      if (distFunctionClassSpec.length == 0) { 

        throw new Exception("Invalid DistanceFunction specification string."); 

      } 

      String className = distFunctionClassSpec[0]; 

      distFunctionClassSpec[0] = ""; 

 

      setDistanceFunction((DistanceFunction) Utils.forName( 

          DistanceFunction.class, className, distFunctionClassSpec)); 
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    } else { 

      setDistanceFunction(new EuclideanDistance()); 

    } 

    super.setOptions(options); 

    Utils.checkForRemainingOptions(options); 

  } 

 

Pair-based Precision-Recall Measures 

package weka.clusterers; 

import weka.core.Instance; 

import weka.core.Instances; 

import java.util.*; 

import java.util.stream.Collectors; 

import java.util.stream.IntStream; 

 

/** 

 * https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html 

 * https://stats.stackexchange.com/questions/15158/precision-and-recall-for-clustering 

 */ 

public class OPairBasedEvaluation { 

  final Map<Integer, Integer> labels; 

  final int numLabels; 

 

  private int tp, tn, fp, fn; 

 

  /** 

   * label attribute should be set before calling the constructor 

   * 

   * @param data 

   */ 

  public static OPairBasedEvaluation of(Instances data) { 

    data.setClassIndex(data.numAttributes() - 1); 

    HashMap<Integer, Integer> m = new HashMap<>(data.numInstances()); 

    IntStream.range(0, data.numInstances()) 

        .forEach(i -> { 

          Instance inst = data.instance(i); 

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://stats.stackexchange.com/questions/15158/precision-and-recall-for-clustering
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          m.put(i, (int) inst.classValue()); 

        }); 

    int numLabels = (int) m.values() 

        .stream() 

        .distinct() 

        .count(); 

    return new OPairBasedEvaluation(m, numLabels); 

  } 

 

  public static OPairBasedEvaluation of(Map<Integer, Integer> labels, int numLabels) { 

    return new OPairBasedEvaluation(new HashMap<>(labels), numLabels); 

  } 

 

  private OPairBasedEvaluation(Map<Integer, Integer> labels, int numLabels) { 

    this.labels = labels; 

    this.numLabels = numLabels; 

  } 

 

 public static int twoCombinations(int k) { 

    if (k < 3) return 1; 

    return k * (k - 1) / 2; 

  } 

 

  public static int countCalcOneFP(int[] freqs) { 

    return Combinations.of(2, freqs) 

        .stream() 

        .mapToInt(i -> i.get(0) * i.get(1)) 

        .sum(); 

  } 

 

  /** 

   * return count streamOf labels in data in the same order streamOf attributes 

   * 

   * @param clusterPoints 

   * @param numLabels 

   * @return 
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   */ 

  public static int[] countLabels(Instances clusterPoints, final int numLabels) { 

    //assert classIndex is set before calling 

    Map<Integer, Long> counts = clusterPoints.stream() 

        .collect(Collectors.groupingBy(i -> (int) i.classValue(), Collectors.counting())); 

 

    return IntStream.range(0, numLabels) 

        .map(i -> (counts.get(i)) == null ? 0 : counts.get(i).intValue()) 

        .toArray(); 

  } 

 

  private int[] countLabels(List<Integer> points) { 

    //assert classIndex is set before calling 

    Map<Integer, Long> counts = points.stream() 

        .collect(Collectors.groupingBy( 

            i -> labels.get(i), 

            Collectors.counting())); 

 

    return IntStream.range(0, numLabels) 

        .map(i -> (counts.get(i)) == null ? 0 : counts.get(i).intValue()) 

        .toArray(); 

  } 

 

  public void calc(List<int[]> cLabels) { 

    int numPoints = cLabels.stream() 

        .flatMapToInt(i -> Arrays.stream(i)) 

        .sum(); 

    calc(cLabels, numPoints); 

  } 

 

  public void calc(List<int[]> cLabels, int numPoints) { 

    //All pairs 

    int allPairs = twoCombinations(numPoints); 

    System.out.println("allPairs = " + allPairs); 

 

    /** All positives (TP + FP) */ 
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    int tpFp = cLabels.stream() 

        .mapToInt(i -> twoCombinations(IntStream.of(i).sum())) 

        .sum(); 

    System.out.println("tpFp = " + tpFp); 

 

    /** calculate TP */ 

 

    tp = cLabels.stream() 

        .flatMapToInt(i -> IntStream.of(i) 

            .filter(v -> v >= 2) 

            .map(OPairBasedEvaluation::twoCombinations)) 

        .sum(); 

    System.out.println("tp = " + tp); 

 

    /** calculate FP */ 

/* 

 

    //method 1 : FP = ALL_TP_FP - TP 

    fp = tpFp - tp; 

    System.out.println("fp1 = " + fp); 

*/ 

 

    //method 2 

    fp = cLabels.stream() 

        .mapToInt(i -> countCalcOneFP(i)) 

        .sum(); 

    System.out.println("fp2 = " + fp); 

    assert tpFp == tp + fp; 

 

    /**  All negatives (TN + FN) */ 

    int tnFn = allPairs - tpFp; 

    System.out.println("tnFn = " + tnFn); 

 

 

    /** calculate TN */ 

//    tn = tnFn - fn; 
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//    System.out.println("tn1 = " + tn); 

    tn = countTN(cLabels, numLabels); 

    System.out.println("tn2 = " + tn); 

 

    /** calculate FN */ 

 

    //method 1 

    fn = tnFn - tn; 

    System.out.println("fn1 = " + fn); 

 

    //method 2 

 

    /*//labelsClustersCounts 

    List<int[]> labelFreqs = BUtils.transposeAndFilterZero(cLabels); 

    fn = labelFreqs.stream() 

        .mapToInt(i -> BUtils.combinProduct(i)) 

        .sum(); 

    System.out.println("fn2 = " + fn); 

    */ 

 

  } 

 

  /** 

   * @param length ex 3 

   * @return { [0,1], [0,2], [1,2]} 

   */ 

  private static List<int[]> pairs(int length) { 

    assert length >= 2; 

    if (length == 2) { 

      return new ArrayList<>(Arrays.asList(new int[]{0, 1})); 

    } 

    List<int[]> result = new ArrayList<>(length * length / 2 - length); 

    for (int i = 0; i < length - 1; i++) { 

      for (int j = i + 1; j < length; j++) { 

        result.add(new int[]{i, j}); 

      } 
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    } 

    return result; 

  } 

  public static int countTN(List<int[]> cLabels, int numLabels) { 

   List<int[]> pairs = pairs(numLabels); 

  List<int[]> communities = pairs(cLabels.size()); 

    int result = 0; 

    for (int[] cPair : communities) { 

      int[] a = cLabels.get(cPair[0]); 

      int[] b = cLabels.get(cPair[1]); 

      for (int[] pair : pairs) { 

        result += a[pair[0]] * b[pair[1]]; 

        result += a[pair[1]] * b[pair[0]]; 

      } 

    } 

    return result; 

  } 

 

  /** 

   * @param m_ClusterPoints 

   * @param allPoints 

   */ 

  public void calc(Instances[] m_ClusterPoints, int allPoints) { 

    //assume the label is the last attribute 

    int numPoints = allPoints > 0 ? allPoints : 

        Arrays.stream(m_ClusterPoints) 

            .mapToInt(Instances::numInstances) 

            .sum(); 

    //count all labels in each cluster 

    List<int[]> clustersLabelsCounts = Arrays.stream(m_ClusterPoints) 

        .map(i -> countLabels(i, numLabels)) 

        .collect(Collectors.toList()); 

 

    calc(clustersLabelsCounts, numPoints); 

  } 
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  public int getTp() { 

    return tp; 

  } 

 

  public int getTn() { 

    return tn; 

  } 

 

  public int getFp() { 

    return fp; 

  } 

  public int getFn() { 

    return fn; 

  } 

  public double precision() { 

    return (double) tp / (tp + fp); 

  } 

  public double recall() { 

    return (double) tp / (tp + fn); 

  } 

  public double fMeasure() { 

    double precision = precision(); 

    double recall = recall(); 

    return 2 * recall * precision / (recall + precision); 

  } 

  public String getResults() { 

    StringJoiner s = new StringJoiner("\n"); 

    s.add(String.format("Recall = %1.4f", recall())); 

    s.add(String.format("Precision = %1.4f", precision())); 

    s.add(String.format("F-Measure = %1.4f", fMeasure())); 

    return s.toString(); 

  } 

    // 3- Print out the current results 

    System.out.println("TP = " + eval.getTp()); 

    System.out.println("FP = " + eval.getFp()); 

    System.out.println("TN = " + eval.getTn()); 
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    System.out.println("FN = " + eval.getFn()); 

 

    System.out.println("recall = " + eval.recall());        

    System.out.println("precision = " + eval.precision());  

    System.out.println("f-measure = " + eval.fMeasure());  } 

 

} 

 

 

 

 

 

 

 

 


