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Abstract. Many condition monitoring (CM) techniques have been investigated for early fault detection and 

diagnosis in order to avoid unexpected breakdowns due to machinery failures. However, manual techniques 

require well-skilled labours which will increase the cost of the monitoring process and may not always be 

available at the site. One of the most promising approaches is to automate the monitoring process using 

artificial intelligence (AI) techniques. However, the majority of AI-based techniques have been developed 

in CM for the post-processing stage, whereas the critical tasks including feature extraction and selection are 

still manually processed.  This study focuses on the extending AI techniques in all phases of CM process by 

using a Componential Coding Neural Network (CCNN) which has been found to have unique properties 

of being trained through unsupervised learning, capable of dealing with raw data sets, translation invariance 

and high computational efficiency. These advantages of CCNN make it particularly suitable for automated 

analysis of the vibration data arisen from typical machine components such as the rolling element bearings 

which exhibit periodic phenomena with high non-stationarity and strong noise contamination. The CCNN 

was evaluated using both simulated and experimental data collected from a healthy and two defective 

tapered roller bearings under different operating conditions. Both of the results showed the capability of 

CCNN in detecting the initial anomalies of roller element bearings. 

Keywords: artificial intelligence, componential coding network, artificial neural network, tapered roller 

bearing. Fault detection.  

1 Introduction 

The information and communication technologies continue expanding the range of possible 

applications to the industrial world. Hence, the huge amount of data produced and collected could 

overflow most conventional monitoring systems, and this has opened a new range of possible 

challenges in fault diagnosis of rotating machinery. One of the most promising approaches is to 

automate the process of CM by applying automatic and accurate fault identification techniques[1]. 

Machinery system consists of several components, and rolling element bearings (REBs) are one 

of the most critical components commonly used in almost all forms of rotary machines[2]. The 

presence of faults in rolling element bearings can cause catastrophic failure of machinery systems 

due to overheating or over speed and thermally induced seizure. Incipient fault modes of rolling 

bearings are usually those of a scratched crack, improper lubrication and the inclusion of foreign 

material. In addition, several mechanisms of wear, such as abrasive, adhesive, fretting etc., can 

occur in REBs [3] which as a result may change the surface texture due to plastic deformation. 

The clearance will increase with the occurrence of wear. Howard in [4]stated that “Severe wear 

changes the raceway profile and alters the rolling element profile and diameter, increasing the 

bearing clearance”. Furthermore, it was reported by Nguyen-Schäfer [5] that the internal 

clearance strongly influences load distribution as well as wear. According to the literature, the 

effect of internal clearance on REBs’ life has received considerable research interest. Several 

studies have investigated the impact of wear and simulated wear on the condition monitoring of 

REBs with the assumption of clearances variation such as Goerke et al.[6], Rehab et al.[7], 

Rabeyee et al.[8] and Rabeyee et al.[9]. The studies claimed that the change in internal clearance 

mailto:khalid.rabeyee@hud.ac.uk
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has influenced the diagnostic features. It can be concluded that increasing clearance due to 

unavoidable wear can affect the vibration signature and hence the diagnostic performances. This 

makes the CM of REBs more a challenging task particularly, in the case of tapered roller bearings 

(TRBs). Thus, in this study, the vibration responses of TRBs will be investigated with different 

levels of internal clearances to evaluate the performance of the proposed method using AI-based 

technique.  

To avoid catastrophic failures, early fault detection of REBs is significantly important and many 

techniques such as vibration, temperature, and acoustic emission etc. can be used for condition 

monitoring and fault diagnostics. Vibration analysis has been widely accepted as an effective 

method and a popular strategy for monitoring rotating machinery due to its high sensitivity to 

defects [10-15]. A number of research efforts were made to develop accurate fault detection and 

diagnose technique which may occur to REBs. However, the vast majority are based on signal 

processing and conventional data analysis techniques as reviewed by Rai et al in.[11]. and by El-

Thalji and Jantunen in [12]. Besides the conventional diagnosis techniques, several attempts have 

been carried out to automate the fault diagnosis of REBs based on AI. Most of the existing AI 

approaches for fault diagnosis have employed ANN and its variants (e.g., polynomial neural 

networks (PNN), dynamic wavelet neural networks (DWNN), self-organizing feature maps 

(SOM)[16], multilayer perceptron (MLP) neural network[17]. ANN has the advantages that it 

can readily process nonlinear, high-order, and time-varying dynamics.  ANN in a data processing 

system that consists of three types of layers: the input layer, hidden layer, and output layer. Each 

layer has a number of simple, neuron-like processing elements called “nodes” or “neurons” that 

interact with each other by using numerically weighted connections[17]. Mainly, the application 

of ANN approach consists of three main steps namely, training, testing, and implementation. In 

the training stage of a model, feature extraction and selection are the most important and critical 

steps. In this paper, the application of unsupervised AI technique to the CM of TRB is investigated 

and the method is evaluated using both simulated and experimental datasets.  

2 Componential Coding Neural Network 

Componential coding neural network (CCNN) is an unsupervised neural network and was 

developed and introduced for multi-dimensional image data processing by [18-20]. It was 

developed based on the idea that it can adapt the data-model to the data used for training the 

model, so on average it is able to reconstruct each input vector optimally. One of the most 

important features of this network is the translation invariance. The network is trained using a 

gradient descent algorithm. It has the ability to detect relatively immutable component 

substructures, which arise again and again in the different data patterns of an ensemble. By 

learning a function(𝑥̃) ≈ (𝑥), CCNN tries to learn how to make the target values (𝑥̃) equal to the 

input (𝑥) by minimizing the reconstruction error using the equation as:   
2

( )Er x x    (1) 

In the typical neural networks, the neurone's output is calculated by a signal scalar multiply 

between the input (x) and weight vector (w) as 𝜉 = 𝑥. 𝑤𝑗 . Conversely, the neurone's output in 

CCNN is calculated (𝐽) products for each 𝑤𝑗  instead of one scalar product. This will form a 

periodic correlation function as shown in (2). 

 1( , ) ( ) ( )j jcr x w F F x F w      (2) 
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Where x represents input signal, 𝐹() is FFT, 𝐹−1()  is the inverse IFFT, ()∗ is the complex 

conjugate and the operator × for the point-wise multiplication to get a vector of coordinate 

products. 

Then a nonlinear threshold is applied to produce output vector 𝑦𝑗(𝑥) each of 𝑁samples i.e. from 

𝑛 = 1 𝑡𝑜 𝑁. 

Activation function implemented in the network is described in (3) where the r  indicates a non-

linear neuron function [20]: 

2

1
( ) log 1 exp

2
r s

s

 



 

   
      

  (3) 

Where 𝛽 is the result of the circular correlation between the input patterns and the basis vector, 

which is denoted by (4). 

( , )jcr x w    (4) 

The parameter 𝜗 represents the threshold and the 𝑆 is softness parameter and hence, their initial 

values have to be set manually in the network design stage. The code 𝑦𝑗(𝑥) is derived by applying 

the neuron function to cr correlation function as in(5).  

( ) ( ( , ))j jy x r cr x w   (5) 

The yielded code 𝑦𝑗(𝑥) is the output code of the encoder for the input x [20]. The output code in 

(5) is used to perform the reconstruction process 𝑥̃ of the input (𝑥), by firstly convolve each of 

𝑦𝑗(𝑥) with the corresponding as in (6).  

 1( , ( )) ( ) ( ( ))j j jcv w y x F F x F y x    (6) 

where cv is a circular convolution operator. Using the efficient FFT algorithm, the convolution 

function can be computed. Then, the weighted summation is used to combine the (J) resulting 

convolution functions[19, 21]. 

1

( , ( ))
J

j j j

j

x a cv y x


 w   (7) 

where ja  represents the adaptive parameters weight scales; their values are determined by 

optimization procedure as (8). 

 

1

' '

' '

( ) ( , ( ))
J

j j j x W
j jj

a M x cv w y x


    (8) 

where the inverse 𝑀−1
 is a square matrix of size 𝐽 × 𝐽  and its elements are calculated by: 

   
 

' ' ', ( ) , ( )jj j j j j
W

m cv w y x cv w y x


 
x

  (9) 
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The scalar product includes summation over all the time samples and 𝑐𝑣(𝑤𝑗 , 𝑦𝑗(𝑥))  is 𝑁 

dimensional vectors in both of the bove equations. 

3 Anomaly Detection 

To measure the performance in detecting novelty in a new data set, a normalised error is defined 

as in(10).  

𝐴𝐷𝐼 =
𝑅𝑚−𝑅𝑢

𝑅𝑢
  (10) 

Where 𝑅𝑚  is the reconstruction error of the monitored data, 𝑅𝑢  is the reconstruction error 

obtained during training from unseen data used for the validation stage. ADI is used to represent 

the ratio of the reconstruction error from the validation stage to the reconstruction error obtained 

from the monitoring stage. If the outcome of ADI > 0 by 0.1 or higher, this means the monitored 

data differ from the baseline by more than 10% and the monitored data is considered an anomaly.  

It can be used as a clear indication of physical change in the system. In addition, the higher 

amplitude of ADI the larger the fault would be. Therefore, the amplitude of the ADI is adopted 

as a measure of the fault severity. 

4 Test Rig Facilities 

A test rig with a simple structure has been developed to minimise the noise influences in the 

experimental study. It comprises of several components, such as a motor, a shaft, a coupling and 

bearings, which are described in Figure 1 (a). A tapered roller bearing type (TIMKEN 31308) is 

used as a test bearing and it was fitted in the SKF housing. Moreover, to measure the vibration 

data, two piezoelectric accelerometers (CA-YD-104T) were mounted vertically and horizontally 

on the housing. For precise clearance measurement, a slip metric gauge box set, type Matrix Pitter 

8075C was used. The gauge box is used in several applications such as length measurement for 

the regulation and adjustment of indicating measuring instruments and linear dimensions of 

industrial components [22]. The fault frequencies of the bearing are theoretically calculated based 

on the following formulas shown in Table 1 and the geometrical information provided by the 

manufacturers. 

 

(a) (b)

Supporting bearing Test bearing AC Motor

Slip metric 
gauge box

Cone Bush

Screw nut

Groove

 
Figure 1. (a) Test rig, and (b) clearance measurement structure 
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Table 1 Characteristic Fault Frequencies 

Fault type Calculation formula 

Ball Pass Frequency of Outer Race (Hz) 
1

1 cos
2

BPO s

d
f z f

D
 

 
 
 

 

Ball Pass Frequency of Inner Race (Hz) 
1

1 cos
2

BPI s

d
f z f

D
 

 
 
 

 

Ball Spin Frequency (Hz) 

2

1 cos
2

BS s

D d
f f

d D
 

  
  

  
 

Fundamental Train Frequency (Hz) 
1

1 cos
2

c s

d
f f

D
 

 
 
 

 

 
where z is the number of rolling elements, d is the rolling element diameter, D is the pitch 

diameter, 𝛼 is the contact angle, and 𝑓𝑠 is the shaft frequency. A localised defect of a rolling 

element impacts the outer race and the inner race once a spin and two transients are generated. 

Thus, 2𝑓𝑏𝑠  is normally used as the fault frequency to indicate rolling element defects. The 

theoretical fault frequencies of bearings used in this study are calculated for the outer race, rolling 

elements, carriage and inner race. Thereafter, at a running speed of 1500 rpm (𝑓𝑠 = 25𝐻𝑧) and a 

clearance of zero, all characteristic frequencies can be obtained as shown in Table 2 

Table 2 Defect frequencies of bearings tested at 1500 rpm 

Fault location Defect frequency (Hz) 

Inner race 217.5595 

Outer race 157.1041 

Roller 133.5958 

Cage 10.4736 

 

5 Results and Discussion 

5.1 Implementation of the CCNN to Simulated Data 

This section examines the detection capability of CCNN using simulation data and presents and 

discuss the results obtained from applying CCNN to real data collected from the test bearings, so 

simulating signals were generated and different levels of noise have been added to the signals. 

The anomaly detection was carried out using CCNN and the results have been discussed and 

demonstrated. 
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5.1.1 Simulated Signal 

Many attempts have been made to simulate the vibration signal of REBs. The model adopted in 

this study, as depicted in Equation (11), was developed by Randall et al. [23]. It takes into 

consideration some of key parameters which characterise the typical bearing vibration signal such 

as the periodicity nature and the random variation in pulse spacing, moreover, the modulation 

might occur due to loading distribution effects.  

( ) ( ) ( )j j

j

x t A y t Tj n t         (11) 

where, 𝐴𝑗 is the amplitude of the 𝑗𝑡ℎ impact, 𝑇 is the average time between two adjacent pulses 

and it is derived by 𝑇 = 1/𝑓𝑧 ,  𝑓𝑧 stands for fault frequency, 𝑇𝑗 is the expected 𝑗𝑡ℎ time of single 

impact occurrence,𝜏𝑗 is the random uncertainty around it, 𝑛(𝑡)is random noise produced by other 

vibrations in the system. 𝑦(𝑡) is the impulse response function, derived in (12), and is simplified 

as an exponential damping cosinusoidal signal. 

cos(2 ) ; 0
y( )

0 ;

t
de f t t

t
otherwise

  
 


  (12) 

The resonance frequency 𝑓𝑑 is set to be [3 kHz, 5 kHz, 8 kHz], with 𝑎=0.05 as a damping ratio.  

A vibration signal with outer race fault spaced with shaft frequency and another vibration signal 

with roller fault spaced with cage frequency is generated,𝐴𝑗 , can be simplified as  

1 cos(2 ( ))j k jA A f Tj     (13) 

where 𝐴1  stands for the amplitude of the possible modulator, 𝑓𝑘 represents the shaft 

frequency,𝑇𝑗 + 𝜏 stands for the specific time of the 𝑗𝑡ℎ impact. Whilst, in the case of roller fault, 

𝑓𝑘 is considered as the cage frequency 𝑓𝑐 and 𝑓𝑟 − 𝑓𝑐. The generated signal for the studied defects 

is based on theoretical fault frequencies using the calculation formulas and the given parameters 

in Table 3. 

Table 3 Parameters of the generated vibration signal 

Parameter Values for outer race fault Values for roller fault 

Amplitude of pulses(𝐴1)  0.9 0.9 

Shaft frequency(𝑓𝑘)  25Hz 25Hz 

Sampling rate (𝑓𝑠)  50kHz 50kHz 

Fault frequency(𝑓𝑟)  157.5Hz 133.7Hz 

The network parameters shown in Table 4, were set to the same values found in the optimization process. 

Table 4 Impact Signal Training Parameters 

Parameter Value 

Weight vector number 8 

Weight vector size 512 

Threshold 0.4 

Sigma 0.2 

Learning rate 0.05 

Batch number Data length / WV number 

Iterations 80 
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5.1.2 Simulating Data Results 

Two aspects were considered with regard to detection performance. The first test of the network 

was to examine the influence of noise contamination on the network performance in detecting the 

anomalies. A generated signal is used with different noise levels to train and test the network. 

The portion of the noise is increased gradually from 14.4dB to -7.31B as seen in Figure 2 (a-d), 

where the signal shown in (d) was nearly buried in the noise. In first test, same signal structure 

with different noise levels is used to examine the network sensitivity to the influence of noise. 

The results as depicted in Figure 3 showed the capability of the network in detecting the hidden 

periodic components in the signal despite the high level of the random noise components. The 

ADI did not show any anomalies in the data. The test was conducted by using the same signal 

structures used during the training stage, each case was tested with the same SNR value used in 

the training stage. In this test, the network showed that it can discover the hidden patterns even 

with low SNR values of (-8 dB). The trend of ADI showed an increase with the decline of SNR 

because the increase of the noise level may change the signal structure, however, the network still 

able to discover the periodic compnents and thus, the network has not detcted any anomalies. 

 

 
Figure 2 Simulated Signals with Noise used for Training and Testing CC 
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Figure 3 The influmnce of noise level on the network detection capablity 

In second test, different signal structures with different noise levels is used to examine the 

sensitivity of the network in discovering the change in the signal structure in different noise levels. 

The test of the CCNN is to evaluate the network capability in identifying any changes in the 

hidden periodic patterns in the signal structure, i.e. the sensitivity to variation of the signal 

structure. Thus, a generated signals used to evaluate the performance of CCNN that simulate the 

outer race fault rf  = 157 Hz with different noise levels. The levels of noise used in the training 

and testing is the same. The results obtained as depicted in Figure 4 showed that CCNN can 

effectively detect the anomalies until the SNR reached (-6) with ADI of 0.14. In addition, the 

severity of the anomalies can be estimated in all the simulated cases. Despite the fact that the 

trend of the ADI amplitude decreases with the declines of the SNR levels, the overall the 

capability of CCNN in detecting the anomalies is robust and reliable even in the high level of 

noise contamination. 
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Figure 4 ADI Detection Performance of Simulated Signal with Outer Race Defect 

5.2 Implementation of the CCNN to Experimental Data  

Five datasets have been collected from tapered roller bearings. The first dataset was collected 

from a healthy bearing, the second and third datasets were collected from two defective bearings 

with small and large outer race fault respectively, and the fourth and fifth datasets belong to 

defective bearings with small and large roller fault respectively. 

CCNN was trained using datasets collected during the healthy operating condition and another 

unseen healthy dataset was used for the validation stage as during the validation stage the network 

needs to be validated with unseen dataset. The Network configured with weight vectors of 32, 

more than the weight vectors number used for the simulated signal test as experimental data have 

more complex data structure. From the waveform of raw signals, each vibration measurements 

has 150000 data samples. This data length covers more than 750 shaft rotations.  The interval 

between the expected faulty pulses of the outer race fault can be derived as ∆𝑡 =
1

𝑓𝐵𝑃𝑂
∗ 𝑓𝑠  which 

gives 320 data samples. For the roller fault ∆𝑡 =
1

𝑓𝐵𝑆
∗ 𝑓𝑠 which gives 378 data samples, 𝐹𝑠 =

50kHz stands for the sampling rate. Therefore, the network was designed with weight vector size 

of 512 to cover at least one complete fault peak. 

5.2.1 Outer Race Data Analysis  

Figure 5 shows the baseline and two outer race faulty cases, small and large, for all clearance 

studied cases. The results showed the performance of CCNN in detecting the anomalies in 

discriminating accurately the fault severities.  

In Figure 6, a comparison was made between the RMS of raw data (a) and the ADI results 

obtained from applying CCNN to the dataset with small and large outer race faults (b). The results 
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showed that CCNN can accurately discriminate the studied conditions as seen in (b) whilst, RMS 

results as seen in (a), showed no trend exists. In addition, CCNN can estimate the severity of the 

faults as the clearance declines. 

 

Figure 5 Baseline and Large Outer Race fault Data with Five clearances 

 

Figure 6 RMS of ADI of baseline and Outer Race Cases with all Clearances 



11 

 

5.2.2 Rolling Element Data Analysis 

The same procedure used in the outer race case is adopted in roller fault test. Figure 7 shows the 

results obtained from the baseline, small and large roller fault conditions. ADI values of the 

overall detection results show that CCNN produces good detection results and discrimination. 

The comparison results in Figure 8 showed the capability CCNN in early fault detection task 

compared to the results of RMS in (a), the severity of the defects can be also estimated due to 

both the fault size or variation of the internal clearances. The amplitude of the small roller fault 

has an increasing trend from 0.15 to 0.2 as the preload increases.  

 
Figure 7 ADI of baseline, Small and Large Roller Fault 
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Figure 8 RMS of Raw Signal and ADI for Roller Fault Cases 

6 Conclusions 

The performance evaluation of CCNN demonstrated that the network has good performance in 

novelty detection and discrimination when applied to both simulated data and measured data. 

Both the detection and discrimination are validated through the variation of noise levels and 

change of the signal structure. The simulation results showed CCNN has a good performance in 

overall detection and discrimination and moreover, the CCNN is robust to noise even in high 

noise levels. For experimental studies, the proposed technique perform well in fault detection and 

severity assessment. The results confirmed that CCNN is an effective method to learn the 

diagnostic features from periodic impact signals and can detect different levels of the anomalies 

in the bearings. Due to using unsupervised learning algorithm, CCNN can be used without sny 

prior-knowledge about the data, and in addition, the proposed method can be applied directly to 

raw data. Moreover, the CCNN does perform well without the need to record angular position 

when acquiring the data as it has the feature of translation invariance. Consequently, these merits 

can improve the efficiency of implementing online condition monitoring. 
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