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Abstract—When simulating and visualising volumetric data, we often do not have the means to control the visualisation. This can be due
to performance-cost or usage with an HPC where no graphical output is available. We propose a method to measure and determine a
metric for the current visualisation’s view, using the mutual information shared by the volumes raw simulated data and the visualisation’s
view achieved directly in the CUDA kernel during simulation.
Only the view’s rotation around a sphere is considered whilst maintaining all other degrees of freedom at a constant. A promising result is
achieved showing clear/notable areas around the visualisation. We also discuss further work to improve the effectiveness of the
visualisation metric.
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1 INTRODUCTION

D ATA visualisation plays an invaluable role in presenting and
interpreting data from scientific simulations. An ability to,

without manual intervention, steer a simulation visualisation to
display an optimal view at certain simulation steps can serve as
valuable feedback. In order to achieve a level of automation in
generating optimal views of a simulation, we need quantitative
metrics that supports the measurement of view optimality. One of
these metrics – Shannon’s information theory [1] – has been widely
applied to telecommunication and information compression. Its
application to data visualisation has motivated exploration into the
quantification of information embedded in visual representations
of data [2]. We examine the specific scenario whereby in-situ
data, which varies in real-time, requires visualisation to assist the
comprehension of complex phenomena that might lie within.

We present our study on the use of mutual information (MI)
for quantifying the similarity between a time-varying volumetric
dataset and its visualisation. We use the term similarity to
denote how closely a visual representation depicts the important
characteristics of its underlying data.

2 RELATED WORK

Simulation data properties are often unpredictable and varied.
Visualised data, or the context within which the data is produced,
can change and develop over time. Noteworthy advancements
could be occurring within the data which are not necessarily the
main focus in the screen space; this can result in data being
undetected by the receiver. Shannon’s original research [1], stated
that information loss can be regarded as noise or simply a risk to
successful transmission. Applying this to data visualisation, we can
regard visualisation as a means of data transmission. In this context,
information loss can be quantified against viewport configuration
and the dynamic changes in data.
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The idea of using visualisation view-space to assist the process
of visualisation is commonly referred to as viewpoint information.
Essentially, there are two choices: change something within the
visualisation, relative to the viewpoint [3], [4], [5]; or change the
viewpoint itself to improve the visualisation quality [6], [7], [8].
Whilst this article focuses primarily on the latter, both approaches
share a similar trait in that they predominantly use information
entropy-based measurement to quantify the optimal result, using
the viewpoint to determine the optimal view.

Castelló et al. [9] used viewpoint mutual information (VMI) as
a tool for intelligently decimating a mesh, allowing the VMI to
work as a metric for measuring the error. This method produced an
improved visual result than using general geometric simplification
calculations by removing interior vertices, which reduces triangle
count and mesh complexity. Although aimed more towards the
video game optimisation field, the method of using VMI to simplify
a dataset is beneficial to general data visualisation.

Bordoloi and Shen [10] proposed a measurement for viewpoint
“goodness” regarding the viewpoint’s position in screen space, giving
users the ability to define an importance function so that the
visualisation can aim to show as many important voxels as possible.
Their technique was shown to be effective for large static datasets.

Ruiz et al. [11] determined the mutual information of the view
and the voxel as a viewpoint information channel and use it as a
measure of viewpoint goodness. The VMI was computed based on
individual projected voxels from a given viewpoint. In addition to
using voxel visibility values for view manipulation to determine
informative viewpoints, ambient occlusion was used to shade voxels
identified as important to the visualisation. One of the noticeable
disadvantages of their method was the multiple rendering passes
required for calculating viewpoint information.

Our proposed method differs to Ruiz et al. by evaluating MI
on a per-ray basis instead of per voxel. This resulted a volume
rendering algorithm that only requires one pass for the computation
of viewpoint information (see Algorithm 1). We consider this to be
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crucial improvement when visualising time-varying data.

3 METHODS

3.1 Definition of Mutual Information
The entropy of a random variable X measures the amount of
information carried by the variable. Evaluating entropy requires
the probability density function of a given random variable;
see Equation 1.

H(X) =−∑
x∈X

P(x) logP(x) (1)

Similarly, the information carried by two random variables
X and Y , that coincide is dependent on its joint probability as
formulated in Equation 2.

H(X ,Y ) =− ∑
x∈X ,y∈Y

P(x,y) logP(x,y) (2)

Using both the respective and joint entropy values, mutual
information gives the ability to estimate the amount of information
that two variables share [12] as shown in Equation 3.

I(X ;Y ) = H(X)+H(Y )−H(X ,Y ) (3)

In the context of data visualisation, X denotes the raw data resulting
from a simulation and Y denotes visual elements representing
the data (e.g. pixels in the final image). As mutual information
measures the degree of dependency between two random variables,
we can exploit this metric to quantify how closely a visualisation
represents its dataset.

3.2 View Space Mutual Information
The orientation of view space is defined by the relative camera
pose to a volume dataset, which is denoted in spherical coordinates,
i.e. θ for yaw, φ for pitch and r for the distance. Furthermore, the

Fig. 1: Spatial relationship between the view space and the volume
data.

rendered image resolution and focal length determine field of view
and ray direction.

To quantify the information contained in a volume rendered
dataset, we evaluated the mutual information in the view space.

Let X = {~x1, . . . ,~xn} denote a set of voxels, and P =
{~p1, . . . ,~pn} is a set of pixels on the image plane. Y is the set
of voxels “visited” by the ray casting process. We regarded the
visualised data Y as a subset of X that are seen by rays cast through
the image plane P, see Figure 1.

Thus, the mutual information of a dataset and its visualisation
is:

I(X ;P) = H(X)+H(P)−H(X ,P) (4)

The evaluation of H(X ,P) in Equation 4 requires the joint
probability P(X ∩P), where X ∩P is a subset of X that is within
the viewing space:

Y = X ∩P = {~x ∈ X : ∃~p[~p ∈ P∧d(θ ,φ ,~x,~p,~o) = 0]} (5)

The function d is the ray intersection test.

d(θ ,φ ,~x,~p,~o) = 1− [(R(θ ,φ)~x−~o) · (~p−~o)] (6)

R is the rotation matrix transforming ~x into the view space.
The optimisation of viewing parameters can be modelled as a

maximisation problem on the mutual information.

(θ ,φ) = argmax
(θ ,φ)∈[−π,π])

I[X ;P(θ ,φ)] (7)

Equation 7 is a specific MI cost function defined over the view
orientation variables.

3.3 Implementation and Experiments

The probability density in Equation 7 was approximated using
histograms. In this paper, we used histograms containing 512
bins which were directly populated in the CUDA kernel during
simulation during the volume rendering process, see Algorithm 1.
The methodology to bin each collision point during the ray march
is an important distinction when compared to similar methods,
limiting the application to volume rendering applications. The
rationale behind this approach is to compute the probability density
for the entire view of the volume rather than solely on the pixel
data within the frame-buffer.

4 RESULTS AND DISCUSSION

This section presents preliminary evidence that the mutual infor-
mation of the output of a volume renderer and raw simulation data
can be used to determine the optimal way of viewing a simulation.

All results and data presented here were collected using the
output of a modified version of HemeLB [13]. We added a CUDA-
based ray-tracing kernel to the original HemeLB in order to fully
parallelise the simulation and visualisation processes.

4.1 Mutual Information Over Time

A full blood-flow simulation was performed and recorded using
only the default view of the visualisation, θ = 0;φ = 0. In Figure 2a,
the simulation plateaus at the 10,000th timestep before falling at
the 40,000th step, where the simulation begins to stabilise.

Figure 2c shows a busy looking simulation paired with a high
(plateaued) amount of mutual information when paired with the
simulation data, whereas Figure 2d displays a more stable visuali-
sation paired with a lower (further declining) mutual information.
This result tells us that Figure 2c is sharing more information with
the simulation data whilst Figure 2d is sharing less. Due to the
previously discussed limitations of data visualisation, it is likely
that there will be some kind of information loss when visualised, so
disregarding the time-step displayed in Figure 2d could potentially
be unwise. The comparison of varying visualisations paired with
the same time-step should prove a useful resource.
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Algorithm 1 Pseudo code for the CUDA single-pass ray casting and histogram building kernel.

Require: VolumeData,Trans f erFunction, ImageWidth, ImageHeight,ColourHistogram
Ensure: Out putColour,ValueHistogram

1: procedure VOLUMERENDERKERNEL(x,y,S,δ s,ρ,M). x,y are pixel position; S is ray marching step; δ s is ray step size; ρ is voxel
density; M is the view matrix

2: Out putColour← 0
3: Ray← (o,d′) . Ray defined in view space
4: t← INTERSECTVOLUME(VolumeData,Ray)
5: if 0≤ t < MAX then . Ray interests with the nearest voxel in Volume
6: p← o+d′t . Position of the nearest voxel
7: δd← d′δ s . Ray cast step vector
8: s← 0
9: while s < S do . March along the ray for S steps

10: Value← SAMPLEVOLUME(p) . Sample the value at p
11: ValueHistogram← BINVALUE(Value,ValueHistogram) . Add the simulation result to histogram bin
12: Colour← TRANSFERFUNCTION(Value) . Transfer Value to RGBA
13: Colour←Colour ·ρ . Translucency is determined by ρ

14: ColourHistogram← BINVALUE(Colour,ColourHistogram) . Add ray’s colour result to the correct histogram bin
15: Out putColour← ALPHABLEND(Out putColour,Colour) . Integrate voxel colours
16: p← p+δd . March along the ray by δd
17: s← s+1

(a) Graph displaying mutual information over full simu-
lation

(b) Step 100 (c) Step 20,000 (d) Step 41,000

Fig. 2: Graph displaying the mutual information between the
simulated data and the visualisation output from the volume
renderer over a full blood flow simulation (45,246 steps total)

4.2 Mutual Information Over Views

The mutual information shared between visualisation and simu-
lation data shows little relevance to different time-steps during
the simulation. However, mutual information shared during the
same time-step could indicate the quality of the visualisation. We
demonstrate the results of the mutual information metric of a single
time-step, specifically step 20,000. Figure 3a displays a surface
with the axis representing the azimuth and elevation relating to a

sphere around the geometry with a colour map showing the mutual
information of that point.

Figure 3a displays the mutual information on a sphere around
the geometry, with white representing high MI and black rep-
resenting low MI. Predictably, the mutual information values
change around the geometry in a controlled fashion, showing
distinguishable areas of both low and high values. Due to the
busy nature of the visualisation and simulation stage, the mutual
information around the geometry leans towards the higher end
of the scale shown by the large amounts of lighter areas on the
surface (> 1.82). This behaviour displays a well-defined grouping
of mutual information values that can potentially aid in optimisation
of the algorithm.

The mutual information variation between the minimum and
maximum is ˜0.08 bits of information shared between the visualisa-
tion and simulation data. Whilst this difference is relatively small,
notable differences can be seen in the figures displayed in Figure 3.
The minimum mutual information visualisation (Figure 3c) shows
a visual representation with much of the shown geometry being
low on the transfer function. When compared with the maximum
mutual information view (Figure 3b), it is clear that small parts
of the geometry are not visible within the volume as well as a
portion of medium-pressure areas partially blocked by the large
area of low-pressure. The view containing the most information is
Figure 3b where it is clear that much of the volume’s geometry is
visible, predictably displaying an a seemingly effective overview
of the volume due to it having the closest amount of information
shared with the simulation data.

Figure 3d displays a randomly selected midmost (MI = 1.810)
mutual information. This view appears to show a similar focused
view to the low mutual information view (Figure 3c); however less
low-pressure areas are present and the small vessel (mentioned
above) is present. Whilst difficult to directly quantify, it is apparent
that Figure 3b gives a pleasing overall view of the data, displaying
the full width of the volume, as well as much of the depth when
directly compared with Figure 3c and Figure 3d.

Currently, the naive method used to gather the mutual infor-
mation of views is slow, taking ˜ 20 minutes to gather 362 points
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(a) Surface displaying mutual information over a sphere containing
the volume, mapped in radians [−π,π]. Marker 1 indicating the peak
mutual information (1.845), marker 2 the lowest (1.763) and marker 3
a randomly selected median (1.810).

(b) View containing
highest mutual infor-
mation for step 20,000
(Marker 1)

(c) View containing
lowest mutual informa-
tion for step 20,000
(Marker 2)

(d) View containing
the median mutual
information for step
20,000 (Marker 3)

Fig. 3: Figures displaying three samples of visualisations during
step 20,000. The minimum, maximum and middle mutual informa-
tion visualisations are presented

around a sphere, this is clearly far from a near acceptable speed
for any real-world application. This study proposes a proof of
concept and provides rationale the to further explore the correlation
between the mutual information shared between the view and raw
data. A function of this process needs to be determined in order to
apply a reliable method of mathematical optimisation, potentially
allowing the function to logically determine the direction towards
the best view.

5 CONCLUSION AND FUTURE WORK

Our preliminary results show that with the variation of a single
control measure (in this case, the view orientation), changes in
the mutual information between the simulation data and their
visualization are quantifiable. This provides a theoretical foundation
for our future work in automatic view steering.

The data used in this study were limited to regular structured
grid data generated from a simulation in-situ. For direct volume ren-
dering of unstructured and surface meshes, additional voxelization
steps can be introduced prior to applying our technique.

Continuing from this study, we will factor in the complete
set of parameters controlling the volume render process. These
will include view position, focal length and transfer functions.

In particular, we believe transfer functions will have a profound
influence on the viewport information due to their integral role in
transforming data into visual details such as colour and opacity.
Our future work will focus on investigating optimising transfer
functions on a per-ray rather than per-dataset basis.

Whilst this study only examined variables bound within a closed
domain, the inclusion of additional variables will be infeasible to
empirically evaluate the VMI of the complete view. A potential
solution to the maximisation problem posed here may be derived
from the work of Wells et al. [14]. Further investigation will be
conducted to develop a robust method for the maximisation of
MI-based model reported here.
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