On the Configuration of SAT Formulae

Mauro Vauati[0()()()7()0027842973570] Marco Maratea2 [0000—0002—9034—2527]

! School of Computing and Engineering,
University of Huddersfield,
Huddersfield, United Kingdom
m.vallati@hud.ac.uk
2 DIBRIS,

University of Genova, Genova, Italy
marco.maratea@dibris.unige.it

Abstract. It is well-known that the order in which clauses and liter-
als are listed in a SAT formulae can have a strong impact on solvers’
performance.

In this work we investigate how the performance of SAT solvers can
be improved by a specifically-designed SAT formulae configuration. We
introduce a fully automated approach for this configuration task, that
considers a number of criteria for optimising the order in which clauses
and, within clauses, literals, are listed in a formula expressed using the
Conjunctive Normal Form.

Our experimental analysis, involving three state-of-the-art SAT solvers
and six different benchmark sets, shows that the configurations identi-
fied by the proposed approach can have a significant positive impact on
solvers’ performance.

Keywords: SATisfiability - Knowledge Configuration - Performance Im-
provement.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most prominent
problems in Artificial Intelligence (AI), and it is exploited in a wide range of
real-world applications. Well-known examples include hardware and software
verification [19], test-case generation [4], automated planning [20], and schedul-
ing [6]. Nowadays, thanks also to the SAT competitions and SAT challenges,?
there is a large-yet-growing number of ready-to-use SAT solvers that can be
exploited in applications.

By exploiting algorithm configuration techniques, SAT solvers’ behaviour can
be adjusted to perform well for a specific type of instances [21,7, 14], allowing
them to be optimised for the actual problems at hand. To support this type of
customisation, most state-of-the-art solvers expose a large number of parameters
whose settings can significantly modify many parts of the solver, like the heuristic

3 http://www.satcompetition.org

2 Vallati and Maratea

and search techniques. Furthermore, in areas of Al such as automated planning
[22,23] or abstract argumentation [5], it has been demonstrated that also the
configuration of the knowledge models, i.e. the symbolic representation of the
problem that is provided as input to automated reasoners, can lead to significant
performance improvements of general domain-independent solvers. Intuitively,
such results can be due to the fact that the way in which a model is represented:
(i) implicitly carries some knowledge about the problem, and such knowledge can
positively impact the behaviour of solvers; and (ii) can early guide the search
approach towards promising areas of the search space, by ordering the way in
which options are considered. It may be argued that the first aspect can be more
relevant in “complex” models, such as those exploited in automated planning,
while the second aspect can be prominent in the case of less-structured models.

In the SAT field, it is well-known that the ordering of clauses and literals
in SAT formulae can have a strong impact on the performance of solvers, and
random shuffling has been routinely exploited in international competitions as
a technique for avoiding some potential biases. In this context, we propose in-
stead to exploit the impact that orderings can have on SAT solvers in order to
improve performance. Here we introduce an approach for performing the auto-
mated configuration of SAT formulae expressed using the Conjunctive Normal
Form (CNF). The configuration aims at identifying an ordering of clauses and,
within clauses, the involved literals, of a CNF from a specific type of instances
that allows to improve the performance of a given SAT solver. In this sense,
the proposed approach exploits the fact that the ordering of elements in SAT
formulae has an impact on solvers, to improve performance and reduce —at least
in part— the accidental complexity of formulae.

Notably, due to the fact that the configuration has to be performed online
when a new CNF is provided to the solver, it has to rely on characteristics of
the CNF that are computationally cheap to extract. Through comprehensive ex-
periments, using three state-of-the-art SAT solvers and six different benchmark
sets, we demonstrate that the proposed approach for performing CNF config-
uration can lead to significant benefits in terms of SAT solvers’ performance,
and can provide valuable information for the encoding of CNFs and for further
improvements of SAT solvers.

This paper is organised as follows. Firstly, we provide the relevant background
on the DIMACS format, used for representing CNFs. Then, we describe the
proposed approach for the automated configuration of SAT formulae. After that,
we show the results of our large experimental analysis. Finally, conclusions are
given.

2 SAT Formulae

In this work we focus on SAT formulae represented using Conjunctive Normal
Form (CNF) and following the DIMACS format. The DIMACS format is the

On the Configuration of SAT Formulae 3

p cnf 5 3
1-30
23-1-40
-5 -4 0

Fig.1. An example CNF encoded in the DIMACS format.

standard format supported by SAT solvers, and used in SAT competitions and
challenges.?

A CNF is a conjunction of clauses, where a clause is a disjunction of literals.
Literals can be assigned a boolean value.

Figure 1 gives an example of a CNF, presented in the DIMACS format, in-
cluding five literals and three clauses. The line starting by p gives information
about the formula: the instance is a CNF, and the number of literals and clauses,
respectively, are provided. In the DIMACS format a literal is uniquely identified
by a number. After the initial descriptive line, clauses are listed. Each clause is
a sequence of distinct non-null numbers ending with 0 on the same line. Positive
numbers denote the corresponding literals. Negative numbers denote the nega-
tions of the corresponding literals. In the computation performed by modern
SAT solvers, the formula is satisfied when all the literals have been assigned,
and all the clauses are true at the same time. For the given example, a valid
solution would be 1 2 3 -4 5, corresponding to an assignment where all the
literals are True, but literal 4.

3 Configuration of SAT Formulae

In a SAT formula, clauses are usually not ordered following a principled ap-
proach, but they are ordered according to the way in which the randomised
generator has been coded, following the way in which information from the ap-
plication domain has been collected, or deliberately shuffled to prevent potential
biases. This is also generally true for the order in which literals of a given clause
are presented in the formula.

Here we focus on the following question: given the set of clauses and, for
each clause, the set of corresponding literals, in which order should they be listed
to mazimise the performance of a given solver? The underlying hypothesis is
that the order in which clauses and literals are listed can be tuned to highlights
elements that are important for satisfying, or demonstrating the unsatisfability,
of the considered SAT instance by the considered SAT solver.

3.1 Automated Configuration of SAT Formulae

In this work we use the state-of-the-art SMAC [10] configuration approach for
identifying a configuration of CNFs, encoded using the DIMACS format, that

4 http://www.satcompetition.org

4 Vallati and Maratea

aims at improving the PAR10 performance of a given SAT solver. PAR10 is the
average runtime where unsolved instances count as 10x cutoff time. PARI10 is
a metric commonly exploited in machine learning and algorithm configuration
techniques, as it allows to consider coverage and runtime at the same time.

SMAC uses predictive models of performance [15] to guide its search for
good configurations. More precisely, it uses previously observed (configuration,
performance) pairs (¢, f(c)) and supervised machine learning (random forests [3])
to learn a function

f:C—R (1)

that predicts the performance of arbitrary parameter configurations (includ-
ing those not yet evaluated). The performance data to fit these models is col-
lected sequentially. In a nutshell, after an initialisation phase, SMAC iterates
the following three steps: (1) use the performance measurements observed so far
to fit a random forest model f; (2) use f to select a promising configuration
¢ € C to evaluate next, trading off exploration in new parts of the configuration
space and exploitation in parts of the space known to perform well; and (3) run
c on one or more benchmark instances and compare its performance to the best
configuration observed so far.

The CNF configuration has to be performed online: as soon as a new formula
is provided as input, the formula has to be configured before being presented to
the solver. In a nutshell, given a set of parameters that can be used to modify
the ordering of some aspect of the CNF, and given the value assigned to each
parameter, the online configuration is performed by re-ordering clauses and lit-
erals accordingly. Notably, the value of each parameter has to be provided, and
can be identified via an appropriate off-line learning step.

Given the depicted online scenario, we are restricted to information about
the CNF that can be quickly gathered and that are computationally cheap to ex-
tract. Furthermore, the configuration must consider only general aspects that are
common to any CNF. As it is apparent, the use of a computationally expensive
configuration of a single CNF, that considers elements that are specific to the
given CNF, would nullify the potential performance improvement, by drastically
reducing the time available for the solver to find a solution (or to demonstrate
unsatisfiability).

In this work, we consider the possibility to order clauses according to the
following criteria:

(1) the number of literals of the clause;
2) the fact that the clause is binary;
3) the fact that the clause is ternary;
4) the number of positive literals involved;
) the number of negative literals of the clause;
) the fact that the clause is binary, and both literals are negative;
) the fact that the clause has only one negative literal.

(
(
(
— (5
(6
(7

Literals can be listed in clauses according to:

On the Configuration of SAT Formulae 5

i) the number of clauses in which the literal is involved;
i) the average size of the clauses in which the literal is involved;
i

(
(i

(#i7) the number of binary clauses in which the literal in involved;
— (#v) the number of ternary clauses in which the literal is involved;

(v) the number of times the literal appears in clauses as positive;

(vi) the number of times the literal appears in clauses as negative;

(vit) the number of times the literal is involved in clauses where all literals
are positive;
(viti) the number of times the literal is involved in clauses where all literals
are negative.

The set of proposed ordering criteria is aimed at being as inclusive as possible,
so that different characterising aspects of clauses and literals can be taken into
account, at the same time, for the configuration process.

It is easy to notice that many of the introduced criteria focus on aspects of
binary and ternary clauses. This is due to their importance in the search process.
For instance, binary clauses are responsible, to a great degree, of unit propaga-
tion. There are also criteria that aims at identifying potentially relevant aspects.
For instance, criterion 7 aims at identifying clauses that may be representing
implication relations between literals.

There are different ways for encoding the identified degrees of freedom in
CNF's as parameters. This is due to the fact that orders are not natively sup-
ported by general configuration techniques [10, 16]. Results presented by Vallati
et al. [22] suggest that purely categorical parametrisations are not indicated for
the configuration of models, as they tend to fragment the configuration space
and to introduce discontinuities. Those combined aspects make the exploration
of the configuration space particularly challenging for learning approaches. For
this reason, here we generate 7 continuous parameters for configuring the or-
der of clauses, and 8 continuous parameters for configuring the order of literals
in clauses. Each parameter corresponds to one of the aforementioned criteria,
and they have to be combined to generate different possible orderings of clauses
and literals in CNF's. Each continuous parameter has associated a real value in
the interval [—10.0,+10.0] which represents (in absolute value) the weight given
to the corresponding ordering criterion. Two additional categorical selectors are
also included. One which allows to activate or de-active the ordering of literals in
the clauses, and the second that allows to order clauses according to the ordering
(direct or inverse) followed by the involved literals. Thus, the configuration space
is C = [~10.0,+10.0]' x 2 x 3, where 2 are the possible values of the parameter
on ordering of literals in clauses, and 3 are the possible values of the categor-
ical parameter describing whether the order of clauses should follow the order
of involved literals. An ordering o instantiates each of the 17 parameters, and
can be used on any CNF. Given a CNF and an ordering o, the corresponding
configuration of the formula is obtained as follows. For each literal, an ordering
score oy(v) is defined as:

o(l) = Z(value(p, ¢) X weight(c)) (2)

ceC

6 Vallati and Maratea

p cnf 5 3
1-30
23-1-40
-5 -4 0

p cnf 5 3
3-1-420
-4 -5 0
1-30

Fig. 2. The example CNF non configured (top), and the configured version (bottom).
Configuration has been done by listing clauses according to their length and the number
of negative literals. Literals are listed following the number of clauses they are involved.

where ¢ is a continuous ordering criterion in the set C of the 8 available con-
tinuous parameters for configuring literals’ order, value(p, ¢) is the numerical
value of the corresponding aspect for the literal v, and weight(c) is the weight
assigned to the corresponding continuous parameter by the configuration tech-
nique. If the 16th parameter is set to ignore the order of literals in clauses, then
literals are ordered as in the provided initial CNF. Otherwise, for every clause,
the involved literals are ordered following the score o;(v). Ties are broken follow-
ing the order in the original CNF configuration. As it is apparent from Equation
(2), a positive (negative) value of weight(c) can be used to indicate that the as-
pect corresponding to the parameter c is important for the SAT solver, and that
literals with that aspect should be listed early (late) in the clause to improve
performance.

Similarly to what is presented in Equation (2) for literals, clauses are ordered
according to a corresponding score oc(d) —where C' is the set of clauses ordering
criteria—, unless clauses are forced to follow the order of literals via the appro-
priate parameter. In that case, clauses are ordered according to the sum of the
o1(v) scores of the involved literals L(d), as shown in Equation (3).

oc(d)= Y ov) (3)

veL(d)

Example 1. Let us consider the CNF presented, using the DIMACS
format, in Figure 2 (top). Suppose that we are interested in listing
clauses according to their length (criterion 1) and to the number of
involved negative literals (criterion 5). Similarly, we are interested in
listing the literals of a clause according to the number of clauses in
which they appear (criterion 7). This can be done by leaving all the
parameters to the default value 0.0, but the ones controlling the men-
tioned criteria to 10.0. Considering only criteria 1 and 5, the clause 2 3
-1 -4 0 has a oc(d) score of (44 2) x 10.0 = 60.0: it involves 4 literals,
and 2 literals are negative. According to the same criteria, clause 1 -3
0 has a score of (2+ 1) x 10.0 = 30.0. In a similar way, but considering

On the Configuration of SAT Formulae 7

the corresponding criterion, score of literals can be calculated, and liter-
als are then ordered accordingly in each clause. Of course, the first line
of the considered CNF is unmodified, as the DIMACS format require
it to be the first, and to present information in a given order. O

The way in which the considered ordering criteria are combined, via Equa-
tions (2) and (3), gives a high degree of freedom for encoding and testing different
configurations. Very specific aspects can be prioritised: for instance, it would be
possible to present first clauses that are binary, and where both literals are pos-
itive, by penalising criterion 5 and giving a high positive weight to criterion 2.
Furthermore, additional criteria can be added, with no need to modify or update
the overall configuration framework.

4 Experimental Analysis

Our experimental analysis aims to evaluate the impact of the proposed au-
tomated approach for performing CNF configuration, on state-of-the-art SAT
solvers’ performance.

We selected 3 SAT solvers, based on their performance in recent SAT com-
petitions and in their widespread use: Cadical [2], Glucose [1], and Lingeling [2].
The latest available version of each solver has been considered. For each solver, a
benchmark-set specific configuration was generated using SMAC 2.08. A Python
2.7 script is used as a wrapper for extracting information from a given CNFs
and, according to the parameters’ value, reconfigure it and provide it as input
for the SAT solver.

In designing our experimental analysis, we followed the Configurable SAT
Solver Challenge (CSSC) [14]. The competition aimed at evaluating to which
extent SAT solvers’ performance can be improved by algorithm configuration for
solving instances from a given class of benchmarks. In that, the CSSC goals are
similar to the goals of this experimental analysis —i.e., assessing how performance
can be improved via configuration—, thus their experimental settings are deemed
to be appropriate for our analysis. However, CSSC focused on the configuration
of SAT solvers’ behaviour by modifying exposed parameters of solvers. In this
work we do not directly manipulate the behaviour of SAT solvers via exposed
parameters, but we focus on the impact that the CNF configuration can have
on solvers.

Following CSSC settings, a cutoff of 5 CPU-time minutes, and a memory limit
of 4 GB of RAM, has been set for each solver run on both training and testing
instances. This is due to the fact that many solvers have runtime distributions
with long tails [9], and that practitioners often use many instances and relatively
short runtimes to benchmark solvers for a new application domain [14]. There is
also evidence that rankings of solvers in SAT competitions would remain similar
if shorter runtimes are enforced [11].

8 Vallati and Maratea

Table 1. Results of the selected solvers on the considered benchmark sets. For each
solver and benchmark, we show the number of test set timeouts achieved when running
on the default and on the configured CNFs. Bold indicates the best result.

Cadical ‘ Glucose ‘Lingeling

timeouts: default — configured
K3 89 -84 | 72 —+69 | 76 - 75
3cnf 219 — 216|134 — 131|213 — 210
Queens 10—>9 26 — 25 | 24 — 23
Low Autocorrelation|118 — 116|115 — 109|123 — 120
Circuit Fuzz 19 — 17 9—9 12 — 10
Agilel6 31 —-29 | 24 - 19 | 55 — 48
Total 486 — 471|380 — 362|503 — 486

We chose benchmark sets from the CSSC 2014 edition [14], and the bench-
marks used in the Agile track of the 2016 SAT competition.? These two compe-
titions provide benchmarks that can highlight the importance of configuration
(CSSC) —even though a different type of configuration than the one considered
in this paper—, and that include instances that have to be solved quickly (Ag-
ile). In particular, CSSC benchmarks can allow us to compare the impact of the
proposed CNF configuration with regards to the solvers’ configuration.

Selected CSSC 2014 benchmark sets include: Circuit Fuzz (Industrial track),
3enf, K3 (Random SAT+UNSAT Track), and Queens and Low Autocorrelation
Binary Sequence (Crafted track).® Benchmark sets were selected in order to
cover most of the tracks considered in CSSC, and by checking that at least 20%
of the instances were solvable by considered solvers, when run on the default
CNF's. Benchmarks were randomly divided into training and testing instances,
aiming at having 150-250 instances for testing purposes, and a similar amount
of benchmarks for training.

Experiments were run on a machine equipped with Intel Xeon 2.50 Ghz
processors. Each configuration process, i.e. for each pair SAT solver - benchmark
set, has been given a budget of 5 sequential CPU-time days, and run on a
dedicated processor.

Table 1 summarises the results of the selected SAT solvers on the considered
benchmark sets. Results are presented in terms of the number of timeouts on
testing instances, achieved by solvers run using either the default or the config-
ured CNF's. Indeed, all of the considered solvers benefited from the configuration
of the CNFs. Improvements vary according to the benchmark sets: the Agile16

® https:/ /baldur.iti.kit.edu/sat-competition-2016/
5 http://aclib.net/cssc2014/benchmarks.html

On the Configuration of SAT Formulae 9
Table 2. Results of the selected solvers on the considered benchmark sets. For each
solver and benchmark, we show the IPC score achieved when running on the default
and on the configured CNFs. Bold indicates the best result. Results of different solvers
can not be directly compared.

Cadical Glucose Lingeling
IPC score: default — configured

K3 56.7 — 59.9 | 71.3 — 76.3 | 67.8 — 68.6
3cnf 27.3 — 31.6 |106.6 — 107.0| 33.6 — 35.9
Queens 136.5 — 137.6/119.3 — 121.1(120.6 — 122.9
Low Autocorrelation|171.8 — 173.4(177.2 — 183.7|171.0 — 175.3
Circuit Fuzz 156.3 — 160.8(175.2 — 175.3(161.3 — 164.3
Agilel6 208.1 — 211.3{209.1 — 215.9|188.6 — 196.6
Total 756.7 — 774.6|858.7 — 879.3|742.9 — 763.6

set is, in general, the set where the solvers gained more by the use of configured
CNFs. Remarkably, the improvements observed in Table 1 are comparable to
those achieved in CSSC 2013 and 2014, that were achieved by configuring the
solvers’ behaviour [14]. In fact, these results may confirm our intuition that the
way in which clauses and literals are ordered has an impact on the way in which
solvers explore the search space. Listing “important” clauses earlier may lead the
solver to tackle complex situations early in the search process, making it then
easier to find a solution. In that, it may be argued that a solver’s behaviour can
be controlled internally, by modifying its exposed parameters, and externally by
ordering the CNF in a suitable way.

Interestingly, the overall results (last row of Table 1) indicate that the CNF
configuration does not affect all the solvers in a similar way, and that can poten-
tially lead to rank inversions in competitions or comparisons. This is the case of
Lingeling (on configured) and Cadical on default. This may suggest that current
competitions could benefit by exploiting a solver-specific configuration, in order
to mitigate any implicit bias due to the particular CNF configuration exploited.
Randomly listing clauses and variables may of course remove some bias, but it
can also be the case that different biases are introduced. In that sense, allowing
solvers to be provided with a specifically-configured CNF may lead to a better
comparison of performance. Finally, it is worth noting that the way in which the
CNF's are configured varies significantly between solvers, as well as according to
the benchmark set. In other words, there is not a single ordering that allows to
maximise the performance of all the SAT solvers at once.

To better understand the impact of configuring CNFs on the runtime of
solvers, Table 2 compares performance in terms of IPC score variations. The

10 Vallati and Maratea

IPC score provides a trade-off between runtime and coverage, and is used in the
International Planning Competition for comparing planners’ performance.
For a solver C and a SAT instance p, Score(C,p) is defined as:

0 if p is unsolved

Score(C,p) = L otherwise
1+logqo(?*
P

where 7)) is the minimum amount of time required by any compared system to
solve the instance, and T, (C) denotes the CPU time required by C to solve the
instance p. Higher values of the score indicate better performance.

In Table 2 the performance of a solver run on the default and configured
CNF's are compared. Results indicate that the configuration provides, for most
of the benchmark sets, a noticeable improvement also in terms of IPC score.

To shed some light on the most relevant aspects of the CNF configuration,
we assessed the importance of parameters in the considered configurations using
the ANOVA tool [12]. We observed that in most of the cases, improvements are
mainly due to the effect of the correct configuration of a single criterion, rather
then to the interaction of two or more criteria together. In terms of clauses,
parameters controlling the weight of criteria 4 and 5 are deemed to be the most
important: in other words, the number of positive (or negative) literals that
are involved in a clause are a very important aspect for the performance of SAT
solvers. The solver that can gain the most by ordering the clauses is Lingeling. In
particular, this solver shows best performance when clauses with a large number
of negative literals are listed early.

Parameters related to criteria ii, vi, and viii have shown to have a significant
impact with regards to the literals’ ordering in clauses. For Glucose and Cadical,
criterion 7i —i.e. the average size of the clauses in which the literal is involved— is
the most important single criterion that has to be correctly configured. However,
it is a bit hard to derive some general rules, as their impact on orderings vary
significantly with regards to the solver and the benchmark. In a nutshell, they
are important, but the best way to present the literals varies.

Generally speaking, also in the light of the criteria that are most important for
clauses, the ordering of literals appears to be the most important in a CNF': this
is also because, in many cases, clauses are ordered according to the (separately-
calculated) weight of the involved literals. This behaviour can be due to the
way in which data structures are generated by solvers: usually literals are the
main element —that is also the focus of heuristic search exploited by SAT solvers.
Instead, clauses from the CNF tend to have a less marked importance during the
exploration of the search space, as they are related to literals mostly via lists, and
are exploited only for checking satisfiability and performing unit propagation.
Clauses learnt during the search process are not included in our analysis, as they
are not part of the CNF —but are generated online by the solver.

Finally, we want to test if there is a single general configuration that improves
the performance of a solver on any CNF, despite of the benchmark and underly-

On the Configuration of SAT Formulae 11

Table 3. Results achieved by the selected solvers on the general testing set. For each
solver, we show the PAR10, number of test set timeouts, and IPC score achieved when
running on the default and on the CNFs configured using the general configuration.
Bold indicates the best result.

Solver Performance: default — configured

timeouts IPC score

Cadical | 101 — 98 172.7 — 172.5
Glucose 80 — 78 207.5 — 211.2

Lingeling|109 — 108| 190.7 — 191.7

ing structure. Therefore, we trained each of the considered solvers on a training
set composed by an equal proportion of instances from each of the 6 benchmark
sets. As for previous configurations, we gave 5 days of sequential CPU-time for
each learning process, and obtained configurations have been tested on an inde-
pendent testing set that includes instances from all the benchmark sets. Results
are presented in Table 3.

Results on the independent testing set indicate that this sort of configuration
has a very limited impact on solvers’ performance. This seems to confirm our pre-
vious intuition that solvers require differently configured CNF's according to the
underlying structure of the benchmark: it is therefore the case that structurally
different sets of instances require a very different configuration. Intuitively, this
seems to point to the fact that, in different structures, the characteristics that
identify challenging elements to deal with, vary. Solvers, when dealing with dif-
ferent sets of benchmarks, are then sensitive to different aspects of the CNFs,
that should be appropriately highlighted and configured. On the one hand, this
result may be not fully satisfying, as it suggests that there is not a quick way
to improve the performance of SAT solvers. On the other hand, the results of
the other experiments indicate that, for real-world applications of SAT where
instances share some underlying structure, there is the possibility to furtherly
improve the SAT solving process by identifying a specific configuration for the
solver at hand.

5 Conclusions

Previous work in the area of algorithm configuration for SAT focused on modi-
fying the exposed parameters of SAT solvers in order to affect their behaviour.
Well-known examples include the use of ParamILS for configuring SAPS and
SPEAR [13] or of ReACTR for configuring LingeLing [8], as well as the dedi-
cated design and development of highly modular and configurable SAT solvers
such as SATenstein [17] that can then be tuned for a specific set of benchmarks.
Algorithm configuration has also been used as a technique for selecting and com-

12 Vallati and Maratea

bining different SAT solvers into portfolios [18], and for creating suitable SAT
solvers that would complement the performance of a given portfolio [24].

In this paper we proposed an approach for exploiting the fact that the order
in which literals and clauses are listed in CNF's can strongly affect the perfor-
mance of SAT solvers. The proposed approach allows to perform the automated
configuration of CNFs. We considered as configurable the order in which clauses
are listed and the order in which literals are listed in the clauses. In our exper-
imental analysis we configured CNFs for improving the PAR10 performance of
solvers, i.e. a tradeoff between runtime and coverage. The performed analysis,
aimed at investigating how the configuration of CNFs affects the performance of
state-of-the-art SAT solvers: (i) demonstrates that the automated configuration
has a significant impact on solvers’ performance; (ii) indicates that the config-
uration should be performed on specific set of benchmarks for a given solver;
and (iii) highlights important aspects of CNFs, that have a potentially strong
impact on the performance of solvers.

It should be noted that different metrics can be used to configure CNFs. In
this work we focused on the PAR10 value, but metrics with a stronger focus on
runtime, coverage, or even “quality” of generated solutions can be straightfor-
wardly exploited in the introduced framework. Similarly, additional criteria to
control the ordering of clauses and literals can be included.

We see several avenues for future work. We plan to evaluate the impact
of configuration on weighted max SAT, where the weight of the clauses can
provide another important information to the configuration process. We are also
interested in evaluating if ordering clauses (and literals) that are learnt during
the search process of a SAT solver can be beneficial for improving performance.
Finally, we plan to incorporate the re-ordering of clauses and literals into existing
approaches for configuring portfolios of SAT solvers, such as SATenstein, in order
to further improve performance, and to investigate the concurrent configuration
of CNFs and solvers.

References

1. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT solv-
ing with assumptions: Application to MUS extraction. In: Theory and Applications
of Satisfiability Testing - SAT. pp. 309-317 (2013)

2. Biere, A.: Cadical, lingeling, plingeling, treengeling and yalsat entering the sat
competition 2017. In: SAT competition 2017, Solver and Benchmark Descriptions
(2017)

3. Breiman, L.: Random forests. Machine learning 45(1), 5-32 (2001)

4. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation. pp. 209—
224 (2008)

5. Cerutti, F., Vallati, M., Giacomin, M.: On the impact of configuration on abstract
argumentation automated reasoning. Int. J. Approx. Reasoning 92, 120-138 (2018)

6. Crawford, J., Baker, A.: Experimental results on the application of satisfiability
algorithms to scheduling problems. AAAT pp. 1092-1097 (1994)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

On the Configuration of SAT Formulae 13

Falkner, S., Lindauer, M.T., Hutter, F.: Spysmac: Automated configuration and
performance analysis of SAT solvers. In: Theory and Applications of Satisfiability
Testing - SAT 2015. pp. 215-222 (2015)

Fitzgerald, T., Malitsky, Y., O’Sullivan, B.: Reactr: Realtime algorithm configura-
tion through tournament rankings. In: Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAIL pp. 304-310 (2015)
Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of Automated Reasoning
24(1), 67-100 (2000)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Proceedings of the 5th Learning and Intelligent
OptimizatioN Conference (LION). pp. 507-523 (2011)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation
of competing algorithm designs. Annals of Mathematics and Artificial Intelligence
60(1), 65-89 (2010)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: An efficient approach for assessing
hyperparameter importance. In: Proceedings of The 31st International Conference
on Machine Learning. pp. 754-762 (2014)

Hutter, F., Hoos, H.H., Leyton-Brown, K., Stiitzle, T.: Paramils: An automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267-306 (2009)
Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1-25 (2017)
Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence 206, 79-111 (2014)

Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: Isac-instance-specific algo-
rithm configuration. In: Proceedings of the 9th European Conference on Artificial
Intelligence ECAL pp. 751-756 (2010)

KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: Satenstein: Automat-
ically building local search SAT solvers from components. Artificial Intelligence
232, 2042 (2016)

Lindauer, M., Hoos, H., Hutter, F., Leyton-Brown, K.: Selection and Configuration
of Parallel Portfolios, pp. 583-615. Springer (2018)

Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in sat-based formal
verification. Int. J. Softw. Tools Technol. Transf. 7(2), 156-173 (Apr 2005)
Rintanen, J.: Engineering efficient planners with SAT. In: European Conference
on Artificial Intelligence ECAI. pp. 684-689 (2012)

Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain jack: New variable selection
heuristics in local search for sat. In: Theory and Applications of Satisfiability Test-
ing - SAT 2011. pp. 302-316 (2011)

Vallati, M., Hutter, F., Chrpa, L., McCluskey, T.: On the effective configuration
of planning domain models. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI). pp. 1704-1711 (2015)

Vallati, M., Serina, I.: A general approach for configuring pddl problem models. In:
Proceedings of the International Conference on Automated Planning & Scheduling
(ICAPS) (2018)

Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI (2010)

